M28C64-25WKA6 [STMICROELECTRONICS]

8KX8 EEPROM 3V, 250ns, PQCC32, PLASTIC, LCC-32;
M28C64-25WKA6
型号: M28C64-25WKA6
厂家: ST    ST
描述:

8KX8 EEPROM 3V, 250ns, PQCC32, PLASTIC, LCC-32

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总24页 (文件大小:153K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M28C64  
64 Kbit (8K x 8) Parallel EEPROM  
With Software Data Protection  
Fast Access Time:  
– 90 ns at V =5 V forM28C64 and M28C64-A  
CC  
– 120 ns at V =3 V for M28C64-xxW  
CC  
Single Supply Voltage:  
– 4.5 V to 5.5 V for M28C64 and M28C64-A  
– 2.7 V to 3.6 V for M28C64-xxW  
Low Power Consumption  
28  
1
Fast BYTE and PAGE WRITE (up to 64 Bytes)  
PLCC32 (KA)  
PDIP28 (BS)  
– 1 ms at V =4.5 V for M28C64-A  
CC  
– 3 ms at V =4.5 V for M28C64  
CC  
– 5 ms at V =2.7 V for M28C64-xxW  
CC  
Enhanced Write Detection and Monitoring:  
– Ready/Busy Open Drain Output  
– Data Polling  
28  
1
– Toggle Bit  
SO28 (MS)  
300 mil width  
TSOP28 (NS)  
8 x 13.4 mm  
– Page Load Timer Status  
JEDEC Approved Bytewide Pin-Out  
Software Data Protection  
100000 Erase/Write Cycles (minimum)  
Data Retention (minimum):  
– 40 Years for M28C64 and M28C64-xxW  
– 10 Years for M28C64-A  
Figure 1. Logic Diagram  
V
CC  
Table 1. Signal Names  
13  
8
A0-A12  
Address Input  
Data Input / Output  
Write Enable  
A0-A12  
DQ0-DQ7  
DQ0-DQ7  
W
E
W
E
M28C64  
Chip Enable  
RB  
G
Output Enable  
Ready / Busy  
Supply Voltage  
G
RB  
V
CC  
V
SS  
V
AI01350C  
Ground  
SS  
June 2000  
1/24  
M28C64  
Figure 2C. SO Connections  
Figure 2A. DIP Connections  
RB  
A12  
A7  
1
2
3
4
5
6
7
8
9
28  
27  
V
CC  
W
RB  
A12  
A7  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC  
W
2
26 NC  
25 A8  
24 A9  
23 A11  
3
NC  
A8  
A6  
A6  
4
A5  
A5  
5
A9  
A4  
A4  
6
A11  
G
A3  
22  
G
A3  
7
M28C64  
M28C64  
A2  
21 A10  
20  
A2  
8
A10  
E
A1  
E
A1  
9
A0 10  
DQ0 11  
DQ1 12  
DQ2 13  
19 DQ7  
18 DQ6  
17 DQ5  
16 DQ4  
15 DQ3  
A0  
10  
11  
12  
13  
14  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ0  
DQ1  
DQ2  
V
14  
SS  
V
SS  
AI01351C  
AI01353C  
Note: 1. NC = Not Connected  
Note: 1. NC = Not Connected  
Figure 2B. PLLC Connections  
Figure 2D. TSOP Connections  
G
A11  
A9  
22  
21  
A10  
E
1 32  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
A6  
A8  
A8  
A5  
A4  
A3  
A9  
NC  
W
A11  
NC  
G
V
28  
1
15  
14  
CC  
RB  
M28C64  
A2  
A1  
9
M28C64  
25  
V
SS  
A10  
E
A12  
A7  
A6  
A5  
A4  
A3  
DQ2  
DQ1  
DQ0  
A0  
A0  
NC  
DQ7  
DQ6  
DQ0  
17  
A1  
7
8
A2  
AI01354C  
AI01352D  
Note: 1. NC = Not Connected  
2. DU = Do Not Use  
Note: 1. NC = Not Connected  
DESCRIPTION  
and software handshaking, with Ready/Busy,  
Data Polling and Toggle Bit. The device supports  
a 64 byte Page Write operation. Software Data  
Protection (SDP) is also supported, using the  
standard JEDEC algorithm.  
The M28C64 devices consist of 8192x8 bits of low  
power, parallel EEPROM, fabricated with  
STMicroelectronics’ proprietary single polysilicon  
CMOS technology. The devices offer fast access  
time, with low power dissipation, and require a  
single voltage supply (5V or 3V, depending on the  
option chosen).  
The device has been designed to offer a flexible  
microcontroller interface, featuring both hardware  
2/24  
M28C64  
1
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
-40 to 125  
-65 to 150  
-0.3 to VCC+1  
-0.6 to VCC+0.6  
-0.3 to 6.5  
4000  
Unit  
°C  
°C  
V
TA  
TSTG  
VCC  
VIO  
VI  
Ambient Operating Temperature  
Storage Temperature  
Supply Voltage  
Input or Output Voltage  
Input Voltage  
V
V
2
VESD  
V
Electrostatic Discharge Voltage (Human Body model)  
Note: 1. Except for the rating “Operating Temperature Range”, stresses above those listed in the Table “Absolute Maximum Ratings” may  
cause permanent damage to the device. These are stress ratings only, and operation of the device at these or any other conditions  
above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi-  
tions for extended periods may affect device reliability. Refer also to the ST SURE Program and other relevant quality documents.  
2. MIL-STD-883C, 3015.7 (100 pF, 1500 )  
Figure 3. Block Diagram  
RB  
E
G
W
V
GEN  
RESET  
CONTROL LOGIC  
PP  
ADDRESS  
LATCH  
A6-A12  
(Page Address)  
64K ARRAY  
ADDRESS  
LATCH  
A0-A5  
Y
DECODE  
SENSE AND DATA LATCH  
I/O BUFFERS  
PAGE LOAD  
TIMER STATUS  
TOGGLE BIT  
DATA POLLING  
DQ0-DQ7  
AI01355  
3/24  
M28C64  
1
Table 3. Operating Modes  
Mode  
E
1
X
X
0
0
0
G
X
1
W
X
X
1
DQ0-DQ7  
Hi-Z  
Stand-by  
Output Disable  
Write Disable  
Read  
Hi-Z  
X
0
Hi-Z  
1
Data Out  
Data In  
Hi-Z  
Write  
1
0
Chip Erase  
V
0
Note: 1. 0=VIL; 1=VIH; X = VIH or VIL; V=12V ± 5%.  
SIGNAL DESCRIPTION  
The external connections to the device are  
summarized in Table 1, and their use in Table 3.  
Ready/Busy (RB). Ready/Busy is an open drain  
output that can be used to detect the end of the  
internal write cycle.  
Addresses (A0-A12). The address inputs are  
used to select one byte from the memory array  
during a read or write operation.  
Data In/Out (DQ0-DQ7). The contents of the data  
byte are written to, or read from, the memory array  
through the Data I/O pins.  
DEVICE OPERATION  
In order to prevent data corruption and inadvertent  
write operations, an internal V  
inhibits the Write operations if the V  
comparator  
CC  
CC  
voltage is  
lower than V (see Table 4A and Table 4B). Once  
WI  
the voltage applied on the V  
pin goes over the  
CC  
Chip Enable (E). The chip enable input must be  
held low to enable read and write operations.  
When Chip Enable is high, power consumption is  
reduced.  
Output Enable (G). The Output Enable input  
controls the data output buffers, and is used to  
initiate read operations.  
Write Enable (W). The Write Enable input controls  
whether the addressed location is to be read, from  
or written to.  
V
threshold (V >V ), write access to the  
WI  
CC WI  
memory is allowed after a time-out t  
, as  
PUW  
specified in Table 4A and Table 4B.  
Further protection against data corruption is  
offered by the E and W low pass filters: any glitch,  
on the E and W inputs, with a pulse width less than  
10 ns (typical) is internally filtered out to prevent  
inadvertent write operations to the memory.  
1
Table 4A. Power-Up Timing for M28C64 (5V range)  
(T = 0 to 70 °C or –40 to 85 °C or –40 to 125 °C; V = 4.5 to 5.5 V)  
A
CC  
Symbol  
Parameter  
Min.  
Max.  
1
Unit  
µs  
t
Time Delay to Read Operation  
PUR  
t
Time Delay to Write Operation (once VCC VWI  
)
10  
ms  
V
PUW  
VWI  
Write Inhibit Threshold  
3.0  
4.2  
Note: 1. Sampled only, not 100% tested.  
1
Table 4B. Power-Up Timing for M28C64-xxW (3V range)  
(T = 0 to 70 °C or –40 to 85 °C; V = 2.7 to 3.6 V)  
A
CC  
Symbol  
Parameter  
Min.  
Max.  
1
Unit  
µs  
t
Time Delay to Read Operation  
Time Delay to Write Operation (once VCC VWI  
Write Inhibit Threshold  
PUR  
t
)
15  
ms  
V
PUW  
VWI  
1.5  
2.5  
Note: 1. Sampled only, not 100% tested.  
4/24  
M28C64  
Read  
All bytes must be located on the same page  
address (A12-A6 must be the same for all bytes).  
The device is accessed like a static RAM. When E  
and G are low, and W is high, the contents of the  
addressed location are presented on the I/O pins.  
Otherwise, when either G or E is high, the I/O pins  
revert to their high impedance state.  
The internal write cycle can start at any instant  
after t  
. Once initiated, the write operation is  
WLQ5H  
internally timed, and continues, uninterrupted,  
until completion.  
Write  
As with the single byte Write operation, described  
above, the DQ5, DQ6 and DQ7 lines can be used  
to detect the beginning and end of the internally  
controlled phase of the Page Write cycle.  
Write operations are initiated when both W and E  
are low and G is high. The device supports both  
W-controlled and E-controlled write cycles (as  
shown in Figure 11 and Figure 12). The address is  
latched during the falling edge of W or E (which  
ever occurs later) and the data is latched on the  
rising edge of W or E (which ever occurs first).  
Software Data Protection (SDP)  
The device offers a software-controlled write-  
protection mechanism that allows the user to  
inhibit all write operations to the device. This can  
be useful for protecting the memory from  
inadvertent write cycles that may occur during  
periods of instability (uncontrolled bus conditions  
when excessive noise is detected, or when power  
supply levels are outside their specified values).  
By default, the device is shipped in the  
“unprotected” state: the memory contents can be  
freely changed by the user. Once the Software  
Data Protection Mode is enabled, all write  
commands are ignored, and have no effect on the  
memory contents.  
After a delay, t  
, that cannot be shorter than  
WLQ5H  
the value specified in Table 10A to Table 10C, the  
internal write cycle starts. It continues, under  
internal timing control, until the write operation is  
complete. The commencement of this period can  
be detected by reading the Page Load Timer  
Status on DQ5. The end of the cycle can be  
detected by reading the status of the Data Polling  
and the Toggle Bit functions on DQ7 and DQ6.  
Page Write  
The Page Write mode allows up to 64 bytes to be  
written on a single page in a single go. This is  
achieved through a series of successive Write  
operations, no two of which are separated by more  
than the t  
to Table 10C).  
The device remains in this mode until a valid  
Software Data Protection disable sequence is  
received. The device reverts to its “unprotected”  
state.  
value (as specified in Table 10A  
WLQ5H  
The status of the Software Data Protection  
(enabled or disabled) is represented by a non-  
Figure 4. Software Data Protection Enable Algorithm and Memory Write  
Write AAh in  
Write AAh in  
Address 1555h  
Address 1555h  
Page Write  
Timing  
(see note 1)  
Page Write  
Timing  
(see note 1)  
Write 55h in  
Address 0AAAh  
Write 55h in  
Address 0AAAh  
Write A0h in  
Write A0h in  
Address 1555h  
Address 1555h  
Write  
is enabled  
SDP is set  
Physical  
Page Write  
Instruction  
Page Write  
(1 up to 64 bytes)  
SDP Enable Algorithm  
Write to Memory  
When SDP is SET  
AI01356C  
Note: 1. The most significant address bits (A12 to A6) differ during these specific Page Write operations.  
5/24  
M28C64  
Figure 5. Software Data Protection Disable Algorithm  
Write AAh in  
Address 1555h  
Write 55h in  
Address 0AAAh  
Write 80h in  
Address 1555h  
Page Write  
Timing  
Write AAh in  
Address 1555h  
Write 55h in  
Address 0AAAh  
Write 20h in  
Address 1555h  
Unprotected State  
AI01357B  
Status Bits  
volatile latch, and is remembered across periods  
of the power being off.  
The devices provide three status bits (DQ7, DQ6  
and DQ5), and one output pin (RB), for use during  
write operations. These allow the application to  
use the write time latency of the device for getting  
on with other work. These signals are available on  
the I/O port bits DQ7, DQ6 and DQ5 (but only  
during programming cycle, once a byte or more  
has been latched into the memory)or continuously  
on the RB output pin.  
The Software Data Protection Enable command  
consists of the writing of three specific data bytes  
to three specific memory locations (each location  
being on a different page), as shown in Figure 4.  
Similarly to disable the Software Data Protection,  
the user has to write specific data bytes into six  
different locations, as shown in Figure 5. This  
complex series of operations protects against the  
chance of inadvertent enabling or disabling of the  
Software Data Protection mechanism.  
Data Polling bit (DQ7). The internally timed write  
cycle starts after t  
(defined in Table 10A to  
WLQ5H  
Table 10C) has elapsed since the previous byte  
was latched in to the memory. The value of the  
DQ7 bit of this last byte, is used as a signal  
When SDP is enabled, the memory array can still  
have data written to it, but the sequence is more  
complex (and hence better protected from  
inadvertent use). The sequence is as shown in  
Figure 4. This consists of an unlock key, to enable  
the write action, at the end of which the SDP  
continues to be enabled. This allows the SDP to  
be enabled, and data to be written, within a single  
Figure 6. Status Bit Assignment  
Write cycle (t ).  
Software Chip Erase  
WC  
DQ7 DQ6 DQ5 DQ4 DQ3 DQ2 DQ1 DQ0  
Using this function, available on the M28C64 but  
not on the M28C64-A or M28C64-xxW, the  
contents of the entire memory are erased (set to  
FFh) by holding Chip Enable (E) low, and holding  
DP  
TB  
PLTS Hi-Z  
Hi-Z  
Hi-Z Hi-Z  
Hi-Z  
DP  
TB  
= Data Polling  
= Toggle Bit  
Output Enable (G) at V +7.0V. The chip is  
CC  
PLTS = Page Load Timer Status  
Hi-Z = High impedance  
cleared when a 10 ms low pulse is applied to the  
Write Enable (W) signal (see Figure 7 and Table 5  
for details).  
AI02815  
6/24  
M28C64  
Figure 7. Chip Erase AC Waveforms (M28C64 and M28C64-xxW)  
tWHEH  
E
G
tGLWH  
W
tELWL  
tWLWH2  
tWHRH  
AI01484B  
throughout this write operation: it is inverted while  
the internal write operation is underway, and is  
inverted back to its original value once the  
operation is complete.  
overflowed (hence showing that the device is now  
starting the internal write to the memory array).  
Ready/Busy pin. The RB pin is an open drain  
output that is held low during the erase/write cycle,  
and that is released (allowed to float) at the  
completion of the programming cycle.  
Toggle bit (DQ6). The device offers another way  
for determining when the internal write cycle is  
completed. During the internal Erase/Write cycle,  
DQ6 toggles from ’0’ to ’1’ and ’1’ to ’0’ (the first  
read value being ’0’) on subsequent attempts to  
read any byte of the memory. When the internal  
write cycle is complete, the toggling is stopped,  
and the values read on DQ7-DQ0 are those of the  
addressed memory byte. This indicates that the  
device is again available for new Read and Write  
operations.  
Page Load Timer Status bit (DQ5). An internal  
timer is used to measure the period between  
successive Write operations, up to t  
WLQ5H  
(defined in Table 10A to Table 10C). The DQ5 line  
is held low to show when this timer is running  
(hence showing that the device has received one  
write operation, and is waiting for the next). The  
DQ5 line is held high when the counter has  
1
Table 5. Chip Erase AC Characteristics for M28C64 and M28C64-xxW  
(T = 0 to 70 °C or –40 to 85 °C or –40 to 125 °C; V = 4.5 to 5.5 V)  
A
CC  
(T = 0 to 70 °C or –40 to 85 °C; V = 2.7 to 3.6 V)  
A
CC  
Symbol  
Parameter  
Test Condition  
G = VCC + 7V  
G = VCC + 7V  
G = VCC + 7V  
G = VCC + 7V  
G = VCC + 7V  
Min.  
1
Max.  
Unit  
µs  
t
Chip Enable Low to Write Enable Low  
Write Enable High to Chip Enable High  
Write Enable Low to Write Enable High  
Output Enable Low to Write Enable High  
Write Enable High to Write Enable Low  
ELWL  
t
0
ns  
WHEH  
t
10  
1
ms  
µs  
WLWH2  
t
GLWH  
t
3
ms  
WHRH  
Note: 1. Sampled only, not 100% tested.  
7/24  
M28C64  
Table 6A. Read Mode DC Characteristics for M28C64 and M28C64-A (5V range)  
(T = 0 to 70 °C or –40 to 85 °C or –40 to 125 °C; V = 4.5 to 5.5 V)  
A
CC  
Symbol  
Parameter  
Test Condition  
Min.  
Max.  
10  
Unit  
µA  
ILI  
Input Leakage Current  
0 V VIN VCC  
0 V VOUT VCC  
ILO  
Output Leakage Current  
Supply Current (TTL inputs)  
Supply Current (CMOS inputs)  
10  
µA  
E = VIL, G = VIL , f = 5 MHz  
E = VIL, G = VIL , f = 5 MHz  
30  
mA  
mA  
1
ICC  
25  
1
E = V  
Supply Current (Stand-by) TTL  
Supply Current (Stand-by) CMOS  
1
mA  
ICC1  
IH  
1
E > VCC - 0.3V  
100  
µA  
ICC2  
VIL  
VIH  
VOL  
VOH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
-0.3  
2
0.8  
CC + 0.5  
0.4  
V
V
V
V
V
I
OL = 2.1 mA  
IOH = -400 µA  
2.4  
Note: 1. All inputs and outputs open circuit.  
Table 6B. Read Mode DC Characteristics for M28C64-xxW (3V range)  
(T = 0 to 70 °C or –40 to 85 °C; V = 2.7 to 3.6 V)  
A
CC  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Test Condition  
0 V VIN VCC  
Min.  
Max.  
10  
10  
8
Unit  
µA  
ILI  
ILO  
0 V VOUT VCC  
µA  
E = VIL, G = VIL , f = 5 MHz, VCC = 3.3V  
E = VIL, G = VIL , f = 5 MHz, VCC = 3.6V  
E > VCC - 0.3V  
mA  
mA  
µA  
1
Supply Current (CMOS inputs)  
ICC  
10  
20  
1
Supply Current (Stand-by) CMOS  
ICC2  
VIL  
VIH  
VOL  
VOH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
-0.3  
2
0.6  
V
V
V
V
V
CC + 0.5  
IOL = 1.6 mA  
0.2 VCC  
IOH = -400 µA  
0.8 VCC  
Note: 1. All inputs and outputs open circuit.  
8/24  
M28C64  
1
Table 7. Input and Output Parameters (T = 25 °C, f = 1 MHz)  
A
Symbol  
CIN  
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
VIN = 0 V  
Min.  
Max.  
6
Unit  
pF  
COUT  
VOUT = 0 V  
12  
pF  
Note: 1. Sampled only, not 100% tested.  
Table 8. AC Measurement Conditions  
Input Rise and Fall Times  
20 ns  
Input Pulse Voltages (M28C64, M28C64-A)  
Input Pulse Voltages (M28C64-xxW)  
0.4 V to 2.4 V  
0 V to V -0.3V  
CC  
Input and Output Timing Reference Voltages (M28C64, M28C64-A)  
Input and Output Timing Reference Voltages (M28C64-xxW)  
0.8 V to 2.0 V  
0.5 V  
CC  
Figure 8. AC Testing Input Output Waveforms  
Figure 9. AC Testing Equivalent Load Circuit  
4.5V to 5.5V Operating Voltage  
2.4V  
2.0V  
0.8V  
I
OL  
0.4V  
DEVICE  
UNDER  
TEST  
OUT  
2.7V to 3.6V Operating Voltage  
I
OH  
V
– 0.3V  
C
= 100pF  
CC  
L
0.5 V  
CC  
0V  
AI02101B  
C
includes JIG capacitance  
L
AI02102B  
9/24  
M28C64  
Table 9A. Read Mode AC Characteristics for M28C64 and M28C64-A (5V range)  
(T = 0 to 70 °C or –40 to 85 °C; V = 4.5 to 5.5 V)  
A
CC  
M28C64  
-12  
Test  
Condit  
ion  
Symbol  
Alt.  
Parameter  
-90  
-15  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
E = V ,  
G = V  
IL  
t
t
ACC  
Address Valid to Output Valid  
90  
120  
150  
ns  
AVQV  
IL  
IL  
IL  
t
t
G = V  
Chip Enable Low to Output Valid  
90  
40  
120  
45  
150  
50  
ns  
ns  
ELQV  
CE  
t
t
Output Enable Low to Output Valid E = V  
GLQV  
OE  
1
t
t
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
G = V  
0
0
40  
40  
0
0
45  
45  
0
0
50  
50  
ns  
ns  
t
DF  
DF  
IL  
EHQZ  
GHQZ  
1
E = V  
t
IL  
E = V ,  
Address Transition to Output  
Transition  
IL  
t
t
0
0
0
ns  
AXQX  
OH  
G = V  
IL  
Note: 1. Output Hi-Z is defined as the point at which data is no longer driven.  
Table 9B. Read Mode AC Characteristics for M28C64 (5V range)  
(T = –40 to 125 °C; V = 4.5 to 5.5 V)  
A
CC  
M28C64  
-12  
Test  
Condit  
ion  
Symbol  
Alt.  
Parameter  
Unit  
Min  
Max  
E = V ,  
IL  
t
t
Address Valid to Output Valid  
120  
ns  
AVQV  
ACC  
G = V  
G = V  
E = V  
IL  
t
t
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
120  
45  
ns  
ns  
ELQV  
CE  
IL  
t
t
GLQV  
OE  
IL  
1
t
G = V  
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
0
0
65  
65  
ns  
ns  
t
DF  
IL  
IL  
EHQZ  
1
t
E = V  
t
DF  
GHQZ  
E = V ,  
Address Transition to Output  
Transition  
IL  
t
t
0
ns  
AXQX  
OH  
G = V  
IL  
Note: 1. Output Hi-Z is defined as the point at which data is no longer driven.  
10/24  
M28C64  
Table 9C. Read Mode AC Characteristics for M28C64-xxW (3V range)  
(T = 0 to 70 °C or –40 to 85 °C; V = 2.7 to 3.6 V)  
A
CC  
M28C64-xxW  
-20  
Test  
Condit  
ion  
Symbol Alt.  
Parameter  
-12  
-15  
-25  
-30  
Unit  
Min Max Min Max Min Max Min Max Min Max  
E =V ,  
Address Valid to  
Output Valid  
IL  
t
t
ACC  
120  
120  
80  
150  
150  
80  
200  
200  
100  
55  
250  
250  
150  
60  
300  
300  
150  
60  
ns  
ns  
ns  
ns  
ns  
ns  
AVQV  
G = V  
IL  
Chip Enable Low to  
Output Valid  
t
t
CE  
G = V  
ELQV  
IL  
Output Enable Low  
to Output Valid  
t
t
E = V  
IL  
GLQV  
OE  
Chip Enable High to  
Output Hi-Z  
1
t
t
t
G = V  
0
0
0
45  
0
0
0
50  
0
0
0
0
0
0
0
0
0
t
DF  
DF  
IL  
EHQZ  
Output Enable High  
to Output Hi-Z  
1
E = V  
45  
50  
55  
60  
60  
t
IL  
GHQZ  
E =V ,  
Address Transition  
IL  
t
AXQX  
OH  
to Output Transition G = V  
IL  
Note: 1. Output Hi-Z is defined as the point at which data is no longer driven.  
Figure 10. Read Mode AC Waveforms (with Write Enable, W, high)  
A0-A12  
E
VALID  
tAVQV  
tAXQX  
tGLQV  
tEHQZ  
G
tELQV  
tGHQZ  
Hi-Z  
DQ0-DQ7  
DATA OUT  
AI00749B  
Note: 1. Write Enable (W) = V  
IH  
11/24  
M28C64  
Table 10A. Write Mode AC Characteristics for M28C64 and M28C64-A (5V range)  
(T = 0 to 70 °C or –40 to 85 °C; V = 4.5 to 5.5 V)  
A
CC  
M28C64  
Symbol  
Alt.  
Parameter  
Test Condition  
Unit  
Min  
0
Max  
t
t
E = V , G = V  
IH  
Address Valid to Write Enable Low  
Address Valid to Chip Enable Low  
Chip Enable Low to Write Enable Low  
Output Enable High to Write Enable Low  
Output Enable High to Chip Enable Low  
Write Enable Low to Chip Enable Low  
Write Enable Low to Address Transition  
Chip Enable Low to Address Transition  
Write Enable Low to Input Valid  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ms  
ms  
ns  
ns  
ns  
ns  
AVWL  
AS  
IL  
t
t
G = V , W = V  
0
AVEL  
AS  
IH  
IL  
t
t
G = V  
0
ELWL  
CES  
IH  
t
t
E = V  
IL  
0
GHWL  
OES  
t
t
W = V  
IL  
0
GHEL  
OES  
t
t
G = V  
0
WLEL  
WLAX  
WES  
IH  
t
t
50  
50  
AH  
t
t
ELAX  
AH  
t
t
E = V , G = V  
IL  
1
1
WLDV  
DV  
IH  
t
t
G = V , W = V  
Chip Enable Low to Input Valid  
ELDV  
ELEH  
WHEH  
DV  
IH  
IL  
t
t
WP  
Chip Enable Low to Chip Enable High  
Write Enable High to Chip Enable High  
Write Enable High to Output Enable Low  
Chip Enable High to Output Enable Low  
Chip Enable High to Write Enable High  
Write Enable High to Input Transition  
Chip Enable High to Input Transition  
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
Time-out after last byte write (M28C64)  
Time-out after last byte write (M28C64-A)  
Write Cycle Time (M28C64)  
50  
0
t
t
CEH  
OEH  
OEH  
t
t
t
0
WHGL  
t
0
EHGL  
EHWH  
WHDX  
t
t
t
0
WEH  
t
0
DH  
t
t
0
EHDX  
DH  
t
t
WPH  
50  
50  
100  
20  
1000  
WHWL  
t
t
WLWH  
WP  
t
t
BLC  
WLQ5H  
3
t
t
WC  
Q5HQ5X  
Write Cycle Time (M28C64-A)  
1
t
t
t
Write Enable High to Ready/Busy Low  
Chip Enable High to Ready/Busy Low  
Data Valid before Write Enable High  
Data Valid before Chip Enable High  
Note 1  
Note 1  
150  
150  
WHRL  
DB  
DB  
DS  
DS  
t
t
t
t
EHRL  
50  
50  
DVWH  
t
DVEH  
Note: 1. With a 3.3 kpull-up resistor.  
12/24  
M28C64  
Table 10B. Write Mode AC Characteristics for M28C64 (5V range)  
(T = –40 to 125 °C; V = 4.5 to 5.5 V)  
A
CC  
M28C64  
Max  
Symbol  
Alt.  
Parameter  
Test Condition  
Unit  
Min  
0
t
t
E = V , G = V  
IH  
Address Valid to Write Enable Low  
Address Valid to Chip Enable Low  
Chip Enable Low to Write Enable Low  
Output Enable High to Write Enable Low  
Output Enable High to Chip Enable Low  
Write Enable Low to Chip Enable Low  
Write Enable Low to Address Transition  
Chip Enable Low to Address Transition  
Write Enable Low to Input Valid  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ms  
ms  
ns  
ns  
ns  
ns  
AVWL  
AS  
IL  
t
t
G = V , W = V  
0
AVEL  
AS  
IH  
IL  
t
t
G = V  
0
ELWL  
CES  
IH  
t
t
E = V  
0
GHWL  
OES  
IL  
t
t
W = V  
0
GHEL  
OES  
WES  
IL  
t
t
G = V  
0
WLEL  
IH  
t
t
t
75  
75  
WLAX  
AH  
t
t
AH  
ELAX  
t
E = V , G = V  
IL  
1
1
WLDV  
DV  
IH  
t
t
G = V , W = V  
Chip Enable Low to Input Valid  
ELDV  
ELEH  
DV  
IH  
IL  
t
t
WP  
Chip Enable Low to Chip Enable High  
Write Enable High to Chip Enable High  
Write Enable High to Output Enable Low  
Chip Enable High to Output Enable Low  
Chip Enable High to Write Enable High  
Write Enable High to Input Transition  
Chip Enable High to Input Transition  
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
Time-out after last byte write (M28C64)  
Time-out after last byte write (M28C64-A)  
Write Cycle Time (M28C64)  
50  
0
t
t
WHEH  
CEH  
OEH  
OEH  
t
t
t
t
0
WHGL  
t
0
EHGL  
t
0
EHWH  
WHDX  
WEH  
t
t
t
0
DH  
t
t
0
EHDX  
DH  
t
50  
50  
100  
20  
1000  
WHWL  
WPH  
t
t
WLWH  
WP  
t
t
BLC  
WLQ5H  
3
t
t
WC  
Q5HQ5X  
Write Cycle Time (M28C64-A)  
1
t
t
Write Enable High to Ready/Busy Low  
Chip Enable High to Ready/Busy Low  
Data Valid before Write Enable High  
Data Valid before Chip Enable High  
Note 1  
Note 1  
150  
150  
WHRL  
DB  
DB  
DS  
DS  
t
t
t
t
EHRL  
t
50  
50  
DVWH  
t
DVEH  
13/24  
M28C64  
Table 10C. Write Mode AC Characteristics for M28C64-xxW (3V range)  
(T = 0 to 70 °C or –40 to 85 °C; V = 2.7 to 3.6 V)  
A
CC  
M28C64-xxW  
Min Max  
Symbol  
Alt.  
Parameter  
Test Condition  
Unit  
t
t
E = V , G = V  
IH  
Address Valid to Write Enable Low  
Address Valid to Chip Enable Low  
Chip Enable Low to Write Enable Low  
Output Enable High to Write Enable Low  
Output Enable High to Chip Enable Low  
Write Enable Low to Chip Enable Low  
Write Enable Low to Address Transition  
Chip Enable Low to Address Transition  
Write Enable Low to Input Valid  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ms  
ns  
ns  
ns  
ns  
AVWL  
AS  
IL  
t
t
G = V , W = V  
AVEL  
AS  
IH  
IL  
t
t
G = V  
0
ELWL  
CES  
IH  
t
t
E = V  
IL  
0
GHWL  
OES  
t
t
W = V  
IL  
0
GHEL  
OES  
t
t
G = V  
0
WLEL  
WLAX  
WES  
IH  
t
t
100  
100  
AH  
t
t
ELAX  
AH  
t
t
E = V , G = V  
IL  
1
1
WLDV  
DV  
IH  
t
t
G = V , W = V  
Chip Enable Low to Input Valid  
ELDV  
ELEH  
WHEH  
DV  
IH  
IL  
t
t
WP  
Chip Enable Low to Chip Enable High  
Write Enable High to Chip Enable High  
Write Enable High to Output Enable Low  
Chip Enable High to Output Enable Low  
Chip Enable High to Write Enable High  
Write Enable High to Input Transition  
Chip Enable High to Input Transition  
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
Time-out after the last byte write  
100  
0
1000  
t
t
CEH  
OEH  
OEH  
t
t
t
0
WHGL  
t
0
EHGL  
EHWH  
WHDX  
t
t
t
0
WEH  
t
0
DH  
t
t
0
EHDX  
DH  
t
t
WPH  
50  
100  
100  
1000  
WHWL  
t
t
WLWH  
WP  
t
t
BLC  
WLQ5H  
t
t
WC  
Write Cycle Time  
5
Q5HQ5X  
t
t
Write Enable High to Ready/Busy Low  
Chip Enable High to Ready/Busy Low  
Data Valid before Write Enable High  
Data Valid before Chip Enable High  
Note 1  
Note 1  
150  
150  
WHRL  
DB  
DB  
DS  
DS  
t
t
t
t
EHRL  
t
50  
50  
DVWH  
t
DVEH  
Note: 1. With a 3.3 kpull-up resistor.  
14/24  
M28C64  
Figure 11. Write Mode AC Waveforms (Write Enable, W, controlled)  
A0-A12  
VALID  
tAVWL  
tELWL  
tGHWL  
tWLAX  
E
tWHEH  
tWHGL  
G
tWLWH  
W
tWLDV  
tWHWL  
DATA IN  
tDVWH  
DQ0-DQ7  
tWHDX  
RB  
tWHRL  
AI01126  
Figure 12. Write Mode AC Waveforms (Chip Enable, E, controlled)  
A0-A12  
VALID  
tAVEL  
tGHEL  
tWLEL  
tELAX  
E
tELEH  
G
tEHGL  
W
tELDV  
tEHWH  
DATA IN  
tDVEH  
DQ0-DQ7  
tEHDX  
RB  
tEHRL  
AI00751  
15/24  
M28C64  
Figure 13. Page Write Mode AC Waveforms (Write Enable, W, controlled)  
A0-A12  
Addr 0  
Addr 1  
Addr 2  
Addr n  
E
G
tWHWL  
W
tWLWH  
Byte 0  
Byte 1  
Byte 2  
Byte n  
DQ0-DQ7 (in)  
DQ5 (out)  
tWHRL  
tWLQ5H  
tQ5HQ5X  
RB  
AI00752D  
Figure 14. Software Protected Write Cycle Waveforms  
G
E
tWLWH  
tWHWL  
W
tAVEL  
tWLAX  
A0-A5  
Byte Address  
tWHDX  
1555h  
A6-A12  
DQ0-DQ7  
1555h  
tDVWH  
AAh  
0AAAh  
Page Address  
Byte 0  
55h  
A0h  
Byte 62  
Byte 63  
AI01358B  
Note: 1. A12 to A6 must specify the same page address during each high-to-low transition of W (or E). G must be high only when W and E  
are both low.  
16/24  
M28C64  
Figure 15. Data Polling Sequence Waveforms  
A0-A12  
Address of the last byte of the Page Write instruction  
E
G
W
DQ7  
DQ7  
DQ7  
DQ7  
DQ7  
DQ7  
LAST WRITE  
INTERNAL WRITE SEQUENCE  
READY  
AI00753C  
Figure 16. Toggle Bit Sequence Waveforms  
A0-A12  
E
G
W
DQ6  
(1)  
LAST WRITE  
TOGGLE  
INTERNAL WRITE SEQUENCE  
READY  
AI00754D  
Note: 1. The Toggle Bit is first set to ‘0’.  
17/24  
M28C64  
Table 11. Ordering Information Scheme  
Example:  
M28C64  
A
12  
BS  
6
T
Write Time  
Option  
t
t
= 3 ms at 4.5V to 5.5V;  
= 5 ms at 2.7V to 3.6V  
WC  
WC  
blank  
T
Tape and Reel Packing  
1
t
= 1 ms at 4.5V to 5.5V  
A
WC  
Speed  
Temperature Range  
0 °C to 70 °C  
2
90 ns  
1
6
3
90  
12  
15  
120 ns  
150 ns  
–40 °C to 85 °C  
5
–40 °C to 125 °C  
3
200 ns  
250 ns  
300 ns  
20  
3
25  
3
Package  
PDIP28  
30  
BS  
KA  
Operating Voltage  
PLCC32  
blank 4.5 V to 5.5 V  
MS SO28 (300 mil width)  
TSOP28 (8 x 13.4 mm)  
NS  
4
2.7 V to 3.6 V  
W
Note: 1. Available only with 120 ns speed (-12), 5V operating range (-blank), and -40 to 85 °C temperature range (-6).  
2. Available for the M28C64 only.  
3. Available for the 3V range (-xxW) only.  
4. Not available for the 1 ms write time option (-A).  
5. Available only for the “M28C64 - 12 MS 3” (5V range, SO28 package)  
ORDERING INFORMATION  
Devices are shipped from the factory with the  
memory content set at all ‘1’s (FFh).  
The notation used for the device number is as  
shown in Table 11. For a list of available options  
(speed, package, etc.) or for further information on  
any aspect of this device, please contact your  
nearest ST Sales Office.  
18/24  
M28C64  
Table 12. PDIP28 - 28 pin Plastic DIP, 600 mils width  
mm  
inches  
Min.  
Symb.  
Typ.  
Min.  
3.94  
0.38  
3.56  
0.38  
1.14  
0.20  
34.70  
14.80  
12.50  
Max.  
5.08  
1.78  
4.06  
0.56  
1.78  
0.30  
37.34  
16.26  
13.97  
Typ.  
Max.  
0.200  
0.070  
0.160  
0.021  
0.070  
0.012  
1.470  
0.640  
0.550  
A
A1  
A2  
B
0.155  
0.015  
0.140  
0.015  
0.045  
0.008  
1.366  
0.583  
0.492  
B1  
C
D
E
E1  
e1  
eA  
L
2.54  
0.100  
15.20  
3.05  
1.02  
0°  
17.78  
3.82  
2.29  
15°  
0.598  
0.120  
0.040  
0°  
0.700  
0.150  
0.090  
15°  
S
α
N
28  
28  
Figure 17. PDIP28 (BS)  
A2  
A
L
A1  
e1  
α
C
B1  
B
eA  
eB  
D2  
D
S
N
1
E1  
E
PDIP  
Note: 1. Drawing is not to scale.  
19/24  
M28C64  
Table 13. PLCC32 - 32 lead Plastic Leaded Chip Carrier, rectangular  
mm  
inches  
Min.  
0.100  
0.060  
Symbol  
Typ.  
Min.  
2.54  
1.52  
Max.  
3.56  
2.41  
0.38  
0.53  
0.81  
12.57  
11.56  
10.92  
15.11  
14.10  
13.46  
Typ.  
Max.  
0.140  
0.095  
0.015  
0.021  
0.032  
0.495  
0.455  
0.430  
0.595  
0.555  
0.530  
A
A1  
A2  
B
0.33  
0.66  
12.32  
11.35  
9.91  
14.86  
13.89  
12.45  
0.013  
0.026  
0.485  
0.447  
0.390  
0.585  
0.547  
0.490  
B1  
D
D1  
D2  
E
E1  
E2  
e
1.27  
0.89  
0.050  
0.035  
F
0.00  
0.25  
0.000  
0.010  
R
N
32  
32  
Nd  
Ne  
CP  
7
7
9
9
0.10  
0.004  
Figure 18. PLCC (KA)  
D
A1  
D1  
A2  
1
N
B1  
e
Ne  
E1 E  
D2/E2  
F
B
0.51 (.020)  
1.14 (.045)  
Nd  
A
R
CP  
PLCC  
Note: 1. Drawing is not to scale.  
20/24  
M28C64  
Table 14. SO28 - 28 lead Plastic Small Outline, 300 mils body width  
mm  
inches  
Min.  
0.097  
0.005  
0.090  
0.014  
0.009  
0.701  
0.292  
Symb.  
Typ.  
Min.  
2.46  
0.13  
2.29  
0.35  
0.23  
17.81  
7.42  
Max.  
2.64  
0.29  
2.39  
0.48  
0.32  
18.06  
7.59  
Typ.  
Max.  
0.104  
0.011  
0.094  
0.019  
0.013  
0.711  
0.299  
A
A1  
A2  
B
C
D
E
e
1.27  
0.050  
H
10.16  
0.61  
0°  
10.41  
1.02  
8°  
0.400  
0.024  
0°  
0.410  
0.040  
8°  
L
α
N
28  
28  
CP  
0.10  
0.004  
Figure 19. SO28 wide (MS)  
A2  
A
C
B
CP  
e
D
N
E
H
1
A1  
α
L
SO-b  
Note: 1. Drawing is not to scale.  
21/24  
M28C64  
Table 15. TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4 mm  
mm  
inches  
Min.  
Symb.  
Typ.  
Min.  
Max.  
1.25  
0.20  
1.15  
0.27  
0.21  
13.60  
11.90  
8.10  
Typ.  
Max.  
0.049  
0.008  
0.045  
0.011  
0.008  
0.535  
0.469  
0.319  
A
A1  
A2  
B
0.95  
0.17  
0.10  
13.20  
11.70  
7.90  
0.037  
0.007  
0.004  
0.520  
0.461  
0.311  
C
D
D1  
E
e
0.55  
0.022  
L
0.50  
0°  
0.70  
5°  
0.020  
0°  
0.028  
5°  
α
N
28  
28  
CP  
0.10  
0.004  
Figure 20. TSOP28 (NS)  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
A1  
α
L
Note: 1. Drawing is not to scale.  
22/24  
M28C64  
Table 16. Revision History  
Date  
Description of Revision  
31-Mar-2000  
19-Jun-2000  
–40 to 125°C temperature range added to timing and characteristics tables, and order info  
Paragraph on behaviour, following an out-of-bounds page write operation, corrected  
23/24  
M28C64  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of useof such information nor for any infringement of patents or other rights of third parties which may result from its use. No license isgranted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express writtenapproval of STMicroelectronics.  
2000 STMicroelectronics - All Rights Reserved  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain -  
Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
24/24  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY