M28LV16 [STMICROELECTRONICS]

16K (2K x 8) LOW VOLTAGE PARALLEL EEPROM with SOFTWARE DATA PROTECTION; 16K ( 2K ×8 )低压并行EEPROM与软件数据保护
M28LV16
型号: M28LV16
厂家: ST    ST
描述:

16K (2K x 8) LOW VOLTAGE PARALLEL EEPROM with SOFTWARE DATA PROTECTION
16K ( 2K ×8 )低压并行EEPROM与软件数据保护

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总17页 (文件大小:125K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M28LV16  
16K (2K x 8) LOW VOLTAGE PARALLEL EEPROM  
with SOFTWARE DATA PROTECTION  
NOT FOR NEW DESIGN  
FAST ACCESS TIME: 200ns  
SINGLE LOW VOLTAGE OPERATION  
LOW POWER CONSUMPTION  
FAST WRITE CYCLE:  
– 64 Bytes Page WriteOperation  
– Byte or Page Write Cycle: 3ms Max  
ENHANCED END OF WRITE DETECTION:  
– Data Polling  
24  
1
PDIP24 (P)  
PLCC32 (K)  
– ToggleBit  
PAGE LOAD TIMER STATUS BIT  
HIGH RELIABILITYSINGLE POLYSILICON,  
CMOS TECHNOLOGY:  
24  
– Endurance >100,000 Erase/Write Cycles  
– Data Retention >40 Years  
JEDEC APPROVED BYTEWIDE PIN OUT  
SOFTWARE DATA PROTECTION  
1
SO24 (MS)  
300 mils  
TSOP28 (N)  
8 x 13.4mm  
M28LV16 is replaced by the products  
described on the document M28C16A  
Figure 1. Logic Diagram  
DESCRIPTION  
The M28LV16 is a 2K x 8 low power Parallel  
EEPROMfabricatedwithSGS-THOMSONproprie-  
tary single polysilicon CMOS technology. The de-  
vice offers fast access time with low power  
dissipation and requires a 2.7V to 3.6V power  
supply. The circuit has been designed to offer a  
flexible microcontroller interface featuring both  
hardware and software handshaking with Data  
Polling and Toggle Bit. The M28LV16 supports 64  
byte page write operation. ASoftware DataProtec-  
tion (SDP) is also possible using the standard  
JEDEC algorithm.  
V
CC  
11  
8
A0-A10  
DQ0-DQ7  
W
E
M28LV16  
Table 1. Signal Names  
RB *  
A0 - A10  
Address Input  
G
DQ0 - DQ7 Data Input / Output  
W
Write Enable  
Chip Enable  
Output Enable  
Ready / Busy  
Supply Voltage  
Ground  
E
V
SS  
G
AI01567B  
RB  
VCC  
VSS  
Note: * RB function is offered only with TSOP28 package.  
November 1997  
1/17  
This is information on a product still in production but not recommended for new design.  
M28LV16  
Figure 2A. DIP Pin Connections  
Figure 2B. LCC Pin Connections  
A7  
A6  
1
2
3
4
5
6
7
8
9
24  
V
CC  
1 32  
23 A8  
A6  
A8  
A5  
22 A9  
A5  
A4  
A3  
A9  
A4  
21  
20  
W
G
NC  
NC  
G
A3  
A2  
19 A10  
M28LV16  
A2  
A1  
9
M28LV16  
25  
A1  
18  
E
A10  
E
A0  
17 DQ7  
16 DQ6  
15 DQ5  
14 DQ4  
13 DQ3  
A0  
DQ0  
NC  
DQ7  
DQ6  
DQ1 10  
DQ2 11  
DQ0  
17  
V
12  
SS  
AI01568  
AI01569B  
Warning: NC = Not Connected, DU = Don’t Use.  
Figure 2C. SO Pin Connections  
Figure 2D. TSOP Pin Connections  
G
NC  
A9  
A8  
NC  
W
22  
21  
A10  
E
A7  
A6  
1
24  
23  
V
CC  
A8  
2
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
A5  
3
22  
A9  
A4  
4
21  
W
A3  
5
20  
G
A2  
6
19  
A10  
E
V
28  
1
15  
14  
CC  
RB  
M28LV16  
M28LV16  
A1  
7
18  
V
SS  
A0  
8
17  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
NC  
A7  
A6  
A5  
A4  
A3  
DQ2  
DQ1  
DQ0  
A0  
DQ0  
DQ1  
DQ2  
9
16  
10  
11  
12  
15  
16  
V
15  
A1  
SS  
AI01570  
7
8
A2  
AI01124C  
Warning: NC = Not Connected.  
2/17  
M28LV16  
Table 2. Absolute Maximum Ratings (1)  
Symbol  
TA  
Parameter  
Value  
– 40 to 85  
Unit  
°C  
°C  
V
Ambient Operating Temperature  
Storage Temperature Range  
Supply Voltage  
TSTG  
VCC  
VIO  
– 65 to 150  
– 0.3 to 6.5  
– 0.3 to VCC +0.6  
– 0.3 to 6.5  
4000  
Input/Output Voltage  
V
VI  
Input Voltage  
V
VESD  
Electrostatic Discharge Voltage (Human Body model) (2)  
V
Note: 1. Except for the rating ”Operating Temperature Range”, stresses above those listed in the Table ”Absolute Maximum Ratings” may  
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions  
above those indicated in the Operating sections of this specification is not implied. Exposure toAbsolute Maximum Rating  
conditions for extended periods may affect device reliability. Refer also to the SGS-THOMSON SURE Program and other  
relevant quality documents.  
2. 100pF through 1500; MIL-STD-883C, 3015.7  
(1)  
Table 3. Operating Modes  
Mode  
E
1
X
X
0
0
G
X
1
W
X
X
1
DQ0 - DQ7  
Hi-Z  
Standby  
Output Disable  
Write Disable  
Read  
Hi-Z  
X
0
Hi-Z  
1
Data Out  
Data In  
Write  
1
0
Note: 1. 0 = V ; 1 = VIH; X = VIL or VIH.  
IL  
PIN DESCRIPTION  
OPERATION  
In order to prevent data corruption and inadvertent  
write operations during power-up, a Power On  
Reset(POR) circuitresetsall internalprogramming  
cicuitry. Access to the memory in write mode is  
allowed after a power-up as specifiedin Table 7.  
Addresses (A0-A10). The address inputs select  
an 8-bit memory location during a read or write  
operation.  
Chip Enable (E). The chip enable input must be  
low to enable all read/write operations. When Chip  
Enable is high, power consumption is reduced.  
Read  
The M28LV16is accessedlike astatic RAM. When  
E and G are low with W high, the data addressed  
is presentedon the I/O pins. The I/O pins are high  
impedance when either G or E is high.  
Output Enable (G). The Output Enable input con-  
trols the data output buffers and is used to initiate  
read operations.  
DataIn/ Out (DQ0 - DQ7). Datais written to orread  
from the M28LV16 through the I/O pins.  
Write  
Write operations are initiated when both W and E  
are low and G is high.TheM28LV16 supports both  
E and W controlled write cycles. The Address is  
latched by the falling edge of E or W which ever  
occurs last and the Data on the rising edge of E or  
W which ever occurs first. Once initiated the write  
operation is internally timed until completion.  
Write Enable (W). TheWrite Enable input controls  
the writing of data to the M28LV16.  
Ready/Busy (RB). Ready/Busy is an open drain  
output that can be used to detect the end of the  
internal write cycle.  
It is offered only with the TSOP28 package. The  
reader should refer to the M28LV17 datasheet  
for more information about the Ready/Busy  
function.  
3/17  
M28LV16  
Figure 3. Block Diagram  
E
G
W
V
GEN  
RESET  
CONTROL LOGIC  
PP  
ADDRESS  
LATCH  
A6-A10  
(Page Address)  
64K ARRAY  
ADDRESS  
LATCH  
A0-A5  
Y
DECODE  
SENSE AND DATA LATCH  
I/O BUFFERS  
PAGE LOAD  
TIMER STATUS  
TOGGLE BIT  
DATA POLLING  
DQ0-DQ7  
AI01520  
Page Write  
Data Polling bit (DQ7). During the internal write  
cycle, any attempt to read the last byte written will  
produce on DQ7 the complementary value of the  
previously latched bit. Once the write cycle is fin-  
ished the true logic value appears on DQ7 in the  
read cycle.  
Page write allows up to 64 bytes to be consecu-  
tively latched into the memory prior to initiating a  
programming cycle. All bytes must be located in a  
single page address, that is A6-A10 must be the  
same for all bytes. The page write can be initiated  
during any byte write operation.  
Following the first byte write instruction the host  
may send another address and data with a mini-  
mum data transfer rateof 1/tWHWH (see Figure13).  
If atransitionofEor Wis not detectedwithin tWHWH  
the internal programming cycle will start.  
Microcontroller Control Interface  
The M28LV16 provides two write operation status  
bitsandonestatuspin that can beusedtominimize  
the system write cycle. These signals are available  
on the I/O port bits DQ7 or DQ6 of the memory  
during programming cycle only.  
Toggle bit (DQ6). The M28LV16 offers another  
way for determining when the internal write cycle  
iscompleted. During the internalErase/Writecycle,  
DQ6 will toggle from ”0” to ”1” and ”1” to ”0” (the  
first read value is ”0”) on subsequent attempts to  
read the memory. When the internal cycle is com-  
pleted the toggling will stop and the device will be  
accessible for a new Read or Write operation.  
,
Page Load Timer Status bit (DQ5). In the Page  
Write mode data may be latched by E or W. Up to  
32 bytes may be input. The Data output (DQ5)  
indicates the status of the internal Page Load  
Timer. DQ5 may be read by asserting Output En-  
able Low (tPLTS). DQ5 Low indicates the timer is  
running, High indicates time-out after which the  
write cycle will start andno new data may be input.  
Figure 4. Status Bit Assignment  
DQ7 DQ6 DQ5 DQ4 DQ3 DQ2 DQ1 DQ0  
DP  
TB PLTS Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z  
DP = Data Polling  
TB = Toggle Bit  
PLTS = Page Load Timer Status  
4/17  
M28LV16  
Figure 5. Software Data Protection Enable Algorithm and Memory Write  
WRITE AAh in  
Address 555h  
WRITE AAh in  
Address 555h  
Page  
Write  
Instruction  
(Note 1)  
Page  
Write  
Instruction  
(Note 1)  
WRITE 55h in  
Address 2AAh  
WRITE 55h in  
Address 2AAh  
WRITE A0h in  
Address 555h  
WRITE A0h in  
Address 555h  
WRITE  
is enabled  
SDP is set  
Write Page  
(1 up to 64 bytes)  
SDP ENABLE ALGORITHM  
WRITE IN MEMORY  
WHEN SDP IS SET  
AI01509B  
Note: 1. MSB Address bits (A6 to A10) differ during these specific Page Write operations.  
Software Data Protection  
Figure 6. Software Data Protection Disable  
Algorithm  
The M28LV16 offers a software controlled write  
protection facility that allows the user to inhibit all  
write modes to the device including the Chip Erase  
instruction. This can be useful in protecting the  
memory from inadvertent write cycles that may  
occur due to uncontrolledbus conditions.  
WRITE AAh in  
Address 555h  
The M28LV16is shippedasstandardin theunpro-  
tected” state meaning that the memory contents  
can be changed as required by the user. After the  
Software Data Protection enable algorithm is is-  
sued, the device enters the ”Protect Mode” of  
operation where no further write commands have  
any effect on the memory contents. The device  
remains in this mode until a valid Software Data  
Protection (SDP) disable sequence is received  
whereby the device reverts to its ”unprotected”  
state. The Software Data Protection is fully non-  
volatile and is not changed by power on/off se-  
quences.  
WRITE 55h in  
Address 2AAh  
WRITE 80h in  
Address 555h  
Page  
Write  
Instruction  
WRITE AAh in  
Address 555h  
WRITE 55h in  
Address 2AAh  
To enable the Software Data Protection (SDP) the  
devicerequirestheusertowrite (with aPage Write)  
three specific data bytes to three specific memory  
locations as per Figure 5. Similarly to disable the  
Software Data Protection the user has to write  
specificdata bytesinto six differentlocationsasper  
Figure 6 (with a Page Write). This complexseries  
ensures that the user will never enable or disable  
the Software Data Protectionaccidentally.  
WRITE 20h in  
Address 555h  
Unprotected State  
AI01510  
5/17  
M28LV16  
Table 4. AC Measurement Conditions  
Figure 8. AC Testing Equivalent Load Circuit  
Input Rise and Fall Times  
Input Pulse Voltages  
20ns  
V
CC  
0V to VCC -0.3V  
1.5V  
Input and Output Timing Ref.  
Voltages  
1.8k  
Note that Output Hi-Z is defined as the point where data is no  
longer driven.  
DEVICE  
UNDER  
TEST  
OUT  
Figure 7. AC Testing Input Output Waveforms  
1.3kΩ  
C
= 100pF  
L
V
–0.3V  
0V  
CC  
0.5 V  
CC  
C
includes JIG capacitance  
L
AI01274  
AI01396  
Table 5. Capacitance (1) (TA = 25 °C, f = 1 MHz )  
Symbol  
CIN  
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
VIN = 0V  
Min  
Max  
6
Unit  
pF  
COUT  
VOUT = 0V  
12  
pF  
Note: 1. Sampled only, not 100% tested.  
Table 6. Read Mode DC Characteristics  
(TA = 0 to70°C or –40 to 85°C; VCC = 2.7V to 3.6V)  
Symbol  
ILI  
Parameter  
Test Condition  
0V VIN VCC  
Min  
Max  
10  
10  
8
Unit  
Input Leakage Current  
Output Leakage Current  
µA  
µA  
ILO  
0V VIN VCC  
E = VIL, G = VIL, f = 5 MHz, VCC = 3.3V  
E = VIL, G = VIL, f = 5 MHz, VCC = 3.6V  
mA  
mA  
Supply Current  
(CMOS inputs)  
(1)  
ICC  
10  
(1)  
Supply Current (Standby)  
CMOS  
ICC2  
E > VCC –0.3V  
50  
µA  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
– 0.3  
2
0.6  
V
V
V
V
VCC +0.5  
0.2 VCC  
VOL  
VOH  
IOL = 1 mA  
IOH = 1 mA  
0.8 VCC  
Note: 1. All I/O’s open circuit.  
Table 7. Power Up Timing (1) (TA = 0 to 70°C or –40 to 85°C; VCC = 2.7V to 3.6V)  
Symbol  
tPUR  
Parameter  
Time Delay to Read Operation  
Min  
1
Max  
Unit  
µs  
ms  
V
tPUW  
Time Delay to Write Operation  
Write Inhibit Threshold  
10  
1.5  
VWI  
2.5  
Note: 1. Sampled only, not 100% tested.  
6/17  
M28LV16  
Table 8. Read Mode AC Characteristics  
(TA = 0 to70°C or –40 to 85°C; VCC = 2.7V to 3.6V)  
M28LV16  
-250  
Symbol  
Alt  
Parameter  
Test Condition  
Unit  
-200  
-300  
Min Max Min Max Min Max  
Address Valid to Output  
Valid  
tAVQV  
tELQV  
tGLQV  
tACC  
tCE  
tOE  
tDF  
E = VIL, G = VIL  
G = VIL  
200  
200  
100  
55  
250  
250  
150  
60  
300  
300  
150  
60  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable Low to Output  
Valid  
Output Enable Low to  
Output Valid  
E = VIL  
Chip Enable High to Output  
Hi-Z  
(1)  
tEHQZ  
G = VIL  
0
0
0
0
0
0
0
0
0
Output Enable High to  
Output Hi-Z  
(1)  
tGHQZ  
tDF  
E = VIL  
55  
60  
60  
Address Transition to  
Output Transition  
tAXQX  
tOH  
E = VIL, G = VIL  
Note: 1. Output Hi-Z is defined as the point at which data is no longer driven.  
Figure 9. Read Mode AC Waveforms  
A0-A10  
E
VALID  
tAVQV  
tAXQX  
tGLQV  
tEHQZ  
tGHQZ  
G
tELQV  
Hi-Z  
DQ0-DQ7  
DATA OUT  
AI01511B  
Note: Write Enable (W) = High  
7/17  
M28LV16  
Table 9. Write Mode AC Characteristics  
(TA = 0 to70°C or –40 to 85°C; VCC = 2.7V to 3.6V)  
Symbol  
tAVWL  
Alt  
tAS  
Parameter  
Test Condition  
E = VIL, G = VIH  
G = VIH, W = VIL  
G = VIH  
Min  
0
Max  
Unit  
ns  
Address Validto Write Enable Low  
Address Validto Chip Enable Low  
Chip Enable Low to Write Enable Low  
tAVEL  
tAS  
0
ns  
tELWL  
tCES  
0
ns  
Output Enable High to Write Enable  
Low  
tGHWL  
tOES  
E = VIL  
0
ns  
tGHEL  
tWLEL  
tWLAX  
tELAX  
tWLDV  
tELDV  
tELEH  
tWHEH  
tOES  
tWES  
tAH  
Output Enable High to Chip Enable Low  
Write Enable Low to Chip Enable Low  
Write Enable Low to Address Transition  
Chip Enable Low to Address Transition  
Write Enable Low to Input Valid  
W = VIL  
G = VIH  
0
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
0
100  
100  
tAH  
tDV  
E = VIL, G = VIH  
G = VIH, W = VIL  
1
1
tDV  
Chip Enable Low to Input Valid  
tWP  
tCEH  
Chip Enable Low to Chip Enable High  
Write Enable High to Chip Enable High  
100  
0
1000  
Write Enable High to Output Enable  
Low  
tWHGL  
tOEH  
0
ns  
tEHGL  
tEHWH  
tWHDX  
tEHDX  
tWHWL  
tWLWH  
tWHWH  
tWHRH  
tDVWH  
tDVEH  
tOEH  
tWEH  
tDH  
Chip Enable High to Output Enable Low  
Chip Enable High to Write Enable High  
Write Enable High to Input Transition  
Chip Enable High to Input Transition  
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
Byte Load Repeat Cycle Time  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ms  
ns  
ns  
0
tDH  
0
tWPH  
tWP  
tBLC  
tWC  
tDS  
50  
100  
0.2  
100  
3
Write Cycle Time  
Data Valid before Write Enable High  
Data Valid before Chip Enable High  
50  
50  
tDS  
8/17  
M28LV16  
Figure 10. Write Mode AC Waveforms - Write Enable Controlled  
A0-A10  
E
VALID  
tAVWL  
tELWL  
tGHWL  
tWLAX  
tWHEH  
tWHGL  
G
tWLWH  
W
tWLDV  
tWHWL  
DATA IN  
tDVWH  
DQ0-DQ7  
tWHDX  
AI01521  
Figure 11. Write Mode AC Waveforms - Chip Enable Controlled  
A0-A10  
E
VALID  
tAVEL  
tGHEL  
tWLEL  
tELAX  
tELEH  
G
tEHGL  
W
tELDV  
tEHWH  
DATA IN  
tDVEH  
DQ0-DQ7  
tEHDX  
AI01522  
9/17  
M28LV16  
Figure 12. Page Write Mode AC Waveforms - Write Enable Controlled  
A0-A10  
Addr 0  
Addr 1  
Addr 2  
Addr n  
E
tPLTS  
G
tWHWL  
tWHRH  
W
tWLWH  
tWHWH  
Byte 2  
tWHWH  
DQ0-DQ7  
DQ5  
Byte 0  
Byte 1  
Byte n  
Byte n  
AI01523  
Figure 13. Software Protected Write Cycle Waveforms  
G
E
tWLWH  
tWHWL  
tWHWH  
W
tAVEL  
tWLAX  
2AAh  
A0-A5  
Byte Address  
Page Address  
Byte 0  
tWHDX  
555h  
A6-A10  
DQ0-DQ7  
555h  
tDVWH  
AAh  
55h  
A0h  
Byte 62  
Byte 63  
AI01515  
Note: A6 through A10 must specify the same page address during each high to lowtransition of W (or E) after the software code has been  
entered. G must be high only when W and E are both low.  
10/17  
M28LV16  
Figure 14. Data Polling Waveform Sequence  
A0-A10  
Address of the last byte of the Page Write instruction  
E
G
W
DQ7  
DQ7  
DQ7  
DQ7  
DQ7  
DQ7  
LAST WRITE  
INTERNAL WRITE SEQUENCE  
READY  
AI01516  
Figure 15. Toggle Bit Waveform Sequence  
A0-A10  
E
G
W
DQ6  
(1)  
LAST WRITE  
TOGGLE  
READY  
INTERNAL WRITE SEQUENCE  
AI01517  
Note: 1. First Toggle bit is forced to ’0’  
11/17  
M28LV16  
ORDERING INFORMATION SCHEME  
Example:  
M28LV16  
-200 K  
1
T
Speed  
Package  
P (2) PDIP24  
PLCC32  
Temperature Range  
Option  
-200  
-250  
-300  
200ns  
250ns  
300ns  
1
6
0 to 70 °C  
T
Tape & Reel  
Packing  
K
–40 to 85 °C  
MS (2) SO24 300mils  
N (1) TSOP28  
8 x 13.4mm  
Notes: 1. The M28LV16 in TSOP28 package has a Ready/Busy output on pin 1.  
2. Packages available on request only.  
Devices are shipped from the factory with the memory content set at all ”1’s” (FFh).  
For a list ofavailableoptions (Package, etc...) or for further information on any aspect of this device, please  
contact the SGS-THOMSON Sales Office nearest to you.  
12/17  
M28LV16  
PDIP24 - 24 pin Plastic DIP, 600 mils width  
mm  
Min  
inches  
Symb  
Typ  
Max  
5.08  
1.78  
4.06  
0.56  
1.78  
0.30  
32.26  
16.26  
13.97  
Typ  
Min  
Max  
0.200  
0.070  
0.160  
0.021  
0.070  
0.012  
1.270  
0.640  
0.550  
A
A1  
A2  
B
3.94  
0.38  
3.56  
0.38  
1.14  
0.20  
0.155  
0.015  
0.140  
0.015  
0.045  
0.008  
B1  
C
D
E
14.80  
12.50  
0.583  
0.492  
E1  
e1  
eA  
L
2.54  
0.100  
15.20  
3.05  
1.02  
0°  
17.78  
3.82  
2.29  
15°  
0.598  
0.120  
0.040  
0°  
0.700  
0.150  
0.090  
15°  
S
α
N
24  
24  
PDIP24  
A2  
A
A1  
e1  
L
B1  
B
D
α
C
eA  
S
N
1
E1  
E
PDIP  
Drawing is not to scale.  
13/17  
M28LV16  
PLCC32 - 32 lead Plastic Leaded Chip Carrier, rectangular  
mm  
Min  
2.54  
1.52  
0.33  
0.66  
12.32  
11.35  
9.91  
14.86  
13.89  
12.45  
inches  
Min  
Symb  
Typ  
Max  
3.56  
2.41  
0.53  
0.81  
12.57  
11.56  
10.92  
15.11  
14.10  
13.46  
Typ  
Max  
0.140  
0.095  
0.021  
0.032  
0.495  
0.455  
0.430  
0.595  
0.555  
0.530  
A
A1  
B
0.100  
0.060  
0.013  
0.026  
0.485  
0.447  
0.390  
0.585  
0.547  
0.490  
B1  
D
D1  
D2  
E
E1  
E2  
e
1.27  
0.89  
0.050  
0.035  
j
N
32  
32  
Nd  
Ne  
7
7
9
9
CP  
0.10  
0.004  
PLCC32  
D
A1  
D1  
j
1 N  
B1  
e
Ne  
E1 E  
D2/E2  
B
Nd  
A
CP  
PLCC  
Drawing is not to scale.  
14/17  
M28LV16  
SO24 - 24 lead Plastic Small Outline, 300 mils body width  
mm  
Min  
2.46  
0.13  
2.29  
0.35  
0.23  
15.20  
7.42  
inches  
Min  
Symb  
Typ  
Max  
2.64  
0.29  
2.39  
0.48  
0.32  
15.60  
7.59  
Typ  
Max  
0.104  
0.011  
0.094  
0.019  
0.013  
0.614  
0.299  
A
A1  
A2  
B
0.097  
0.005  
0.090  
0.014  
0.009  
0.598  
0.292  
C
D
E
e
1.27  
0.050  
H
10.16  
0.61  
0°  
10.41  
1.02  
8°  
0.400  
0.024  
0°  
0.410  
0.040  
8°  
L
α
N
24  
24  
CP  
0.10  
0.004  
SO24  
A2  
A
C
B
CP  
e
D
N
1
E
H
A1  
α
L
SO-b  
Drawing is not to scale.  
15/17  
M28LV16  
TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4mm  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
1.25  
0.20  
1.15  
0.27  
0.21  
13.60  
11.90  
8.10  
Typ  
Max  
0.049  
0.008  
0.045  
0.011  
0.008  
0.535  
0.469  
0.319  
A
A1  
A2  
B
0.95  
0.17  
0.10  
13.20  
11.70  
7.90  
0.037  
0.007  
0.004  
0.520  
0.461  
0.311  
C
D
D1  
E
e
0.55  
0.022  
L
0.50  
0°  
0.70  
5°  
0.020  
0°  
0.028  
5°  
α
N
28  
28  
CP  
0.10  
0.004  
TSOP28  
A2  
22  
21  
e
28  
1
E
B
7
8
D1  
A
CP  
D
DIE  
C
TSOP-c  
A1  
α
L
Drawing is not to scale.  
16/17  
M28LV16  
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringementof patents or other rights of third parties which may result from its use. No  
license is granted by implication or otherwise under any patent or patent rights ofSGS-THOMSON Microelectronics. Specifications mentioned  
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.  
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express  
written approval of SGS-THOMSON Microelectronics.  
1997 SGS-THOMSON Microelectronics - All Rights Reserved  
SGS-THOMSON Microelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan- Thailand - United Kingdom - U.S.A.  
17/17  

相关型号:

M28LV16-200K1T

2KX8 EEPROM 3V, 200ns, PQCC32, PLASTIC, LCC-32
STMICROELECTR

M28LV16-200K6T

2KX8 EEPROM 3V, 200ns, PQCC32, PLASTIC, LCC-32
STMICROELECTR

M28LV16-200MS1T

2KX8 EEPROM 3V, 200ns, PDSO24, 0.300 INCH, PLASTIC, SO-24
STMICROELECTR

M28LV16-200MS6T

2KX8 EEPROM 3V, 200ns, PDSO24, 0.300 INCH, PLASTIC, SO-24
STMICROELECTR

M28LV16-250K1

2KX8 EEPROM 3V, 250ns, PQCC32, PLASTIC, LCC-32
STMICROELECTR

M28LV16-250K1T

2KX8 EEPROM 3V, 250ns, PQCC32, PLASTIC, LCC-32
STMICROELECTR

M28LV16-250K6

2KX8 EEPROM 3V, 250ns, PQCC32, PLASTIC, LCC-32
STMICROELECTR

M28LV16-250K6T

2KX8 EEPROM 3V, 250ns, PQCC32, PLASTIC, LCC-32
STMICROELECTR

M28LV16-250N1

2KX8 EEPROM 3V, 250ns, PDSO28, 8 X 13.40 MM, PLASTIC, TSOP-28
STMICROELECTR

M28LV16-250N1T

2KX8 EEPROM 3V, 250ns, PDSO28, 8 X 13.40 MM, PLASTIC, TSOP-28
STMICROELECTR

M28LV16-250N6

2KX8 EEPROM 3V, 250ns, PDSO28, 8 X 13.40 MM, PLASTIC, TSOP-28
STMICROELECTR

M28LV16-250N6T

2KX8 EEPROM 3V, 250ns, PDSO28, 8 X 13.40 MM, PLASTIC, TSOP-28
STMICROELECTR