M28V420-180M1TR [STMICROELECTRONICS]

512KX8 FLASH 12V PROM, 180ns, PDSO44, 0.525 INCH, PLASTIC, SO-44;
M28V420-180M1TR
型号: M28V420-180M1TR
厂家: ST    ST
描述:

512KX8 FLASH 12V PROM, 180ns, PDSO44, 0.525 INCH, PLASTIC, SO-44

可编程只读存储器 光电二极管 内存集成电路
文件: 总27页 (文件大小:216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M28V410  
M28V420  
LOW VOLTAGE  
4 Megabit (x8 or x16, Block Erase) FLASH MEMORY  
PRODUCT PREVIEW  
DUAL x8 and x16 ORGANIZATION  
SMALL SIZE PLASTIC PACKAGESTSOP56  
and SO44  
MEMORY ERASE in BLOCKS  
44  
– One 16K Byte or 8K Word Boot Block (top or  
bottom location) with hardware write and  
erase protection  
1
– Two 8K Byte or 4K Word Key Parameter  
Blocks  
– One 96K Byte or 48K Word Main Block  
– Three 128K Byte or 64K Word Main Blocks  
3.3V ± 0.3V SUPPLY VOLTAGE  
SO44 (M)  
TSOP56 (N)  
14 x 20mm  
12V ± 10% or 5% PROGRAMMING VOLTAGE  
10,000 PROGRAM/ERASE CYCLES  
PROGRAM/ERASE CONTROLLER  
AUTOMATIC STATIC MODE  
Figure 1. Logic Diagram  
LOW POWER CONSUMPTION  
– 2mA Typical in Static Operation  
– 55µA Typical in Standby  
– 0.2µA Typical in Deep Power Down  
– 15/20mATypical Operating Consumption  
(Byte/Word)  
HIGH SPEED ACCESS TIME: 120ns  
EXTENDED TEMPERATURE RANGES  
V
CC  
V
PP  
18  
DQ15A-1  
A0-A17  
15  
RP  
W
E
DQ0-DQ14  
BYTE  
M28V410  
M28V420  
Table 1. Signal Names  
A0-A17  
Address Inputs  
DQ0-DQ7  
Data Input / Outputs  
DQ8-  
DQ14  
Data Input / Outputs  
G
DQ15A-1  
E
Data Input/Output or Address Input  
Chip Enable  
V
SS  
G
Output Enable  
AI01408  
W
Write Enable  
BYTE  
RP  
Byte/Word Organization  
Reset/Power Down/Boot Block Unlock  
Program & Erase Supply Voltage  
Supply Voltage  
VPP  
VCC  
December 1994  
1/27  
This is preliminary informationon a new product now in development.Detailsare subjectto change without notice.  
M28V410, M28V420  
Figure 2A. TSOP Pin Connections  
Figure 2B. SO Pin Connections  
NC  
NC  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
56  
NC  
A16  
BYTE  
V
1
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
RP  
PP  
V
SS  
DU  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
E
2
W
DQ15A-1  
3
A8  
DQ7  
4
A9  
DQ14  
DQ6  
5
A10  
A11  
A12  
A13  
A14  
A15  
A16  
BYTE  
6
DQ13  
DQ5  
7
A8  
8
NC  
NC  
W
DQ12  
DQ4  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
V
V
CC  
CC  
M28V410  
M28V420  
(Normal)  
M28V410  
M28V420  
RP  
NC  
NC  
14  
15  
43  
42  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
G
V
V
SS  
DQ15A-1  
SS  
G
V
PP  
DU  
DQ0  
DQ8  
DQ7  
DQ14  
DQ6  
NC  
A17  
A7  
DQ1  
DQ9  
DQ13  
DQ5  
DQ2  
A6  
DQ10  
DQ3  
DQ12  
DQ4  
A5  
A4  
V
E
SS  
DQ11  
V
CC  
A3  
AI01410  
A2  
A0  
A1  
NC  
NC  
NC  
28  
29  
AI01409  
Warning: NC = Not Connected, DU = Don’t Use  
Warning: DU = Don’t Use  
Table 2. Absolute Maximum Ratings (1)  
Symbol  
Parameter  
Value  
Unit  
TA  
Ambient Operating Temperature  
grade 1  
grade 3  
grade 6  
0 to 70  
–40 to 125  
–40 to 85  
°C  
TBIAS  
TSTG  
Temperature Under Bias  
Storage Temperature  
Input or Output Voltages  
Supply Voltage  
–50 to 125  
–65 to 150  
–0.6 to 7  
°C  
°C  
V
(2, 3)  
VIO  
VCC  
–0.6 to 7  
V
(2)  
VA9  
A9 Voltage  
–0.6 to 13.5  
V
Program Supply Voltage, during Erase  
or Programming  
(2)  
VPP  
–0.6 to 14  
V
(2)  
VRP  
RP Voltage  
–0.6 to 13.5  
V
Notes: 1. Except for the rating ”Operating Temperature Range”, stresses above those listed in the Table ”Absolute Maximum Ratings”  
may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other  
conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum  
Rating conditions for extended periods may affect device reliability. Refer also to the SGS-THOMSON SURE Program and other  
relevant quality documents.  
2. Minimum Voltage may undershoot to –2V during transition and for less than 20ns.  
3. Maximum DC voltage on I/O is VCC + 0.5V, overshoot to 7V allowed for less than 20ns.  
2/27  
M28V410, M28V420  
Table 3. Operations  
Operation  
Read Word  
Read Byte  
E
G
VIL  
VIL  
VIH  
VIH  
VIH  
X
W
VIH  
VIH  
VIL  
VIL  
VIH  
X
RP  
VIH  
VIH  
VIH  
VIH  
VIH  
VIH  
VIL  
BYTE  
VIH  
VIL  
VIH  
VIL  
X
DQ0 - DQ7  
Data Output  
Data Output  
Data Input  
Data Input  
Hi-Z  
DQ8 - DQ14  
DQ15A-1  
Data Output  
Address Input  
Data Input  
Address Input  
Hi-Z  
VIL  
VIL  
VIL  
VIL  
VIL  
VIH  
X
Data Output  
Hi-Z  
Write Word  
Write Byte  
Data Input  
Hi-Z  
Output Disable  
Standby  
Hi-Z  
X
Hi-Z  
Hi-Z  
Hi-Z  
Power Down  
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
Note: X = VIL or VIH, VPP = VPPL or VPPH  
Table 4. Electronic Signature  
Organis  
ation  
A1-A8 &  
A10-A17  
DQ0 -  
DQ7  
DQ8 - DQ15  
Code  
Device  
E
G
W
BYTE A0 A9  
DQ14  
A-1  
Manufact.  
Code  
Don’t  
Care  
VIL VIL VIH  
VIL VIH  
VIH  
VIH  
VIH  
VIL  
VIL VID  
VIH VID  
20h  
0F3h  
0FBh  
20h  
00h  
0
Word-  
wide  
Don’t  
Care  
M28V410 VIL  
00h  
00h  
Hi-Z  
Hi-Z  
Hi-Z  
0
0
Device  
Code  
VIL VIH  
VIH VID  
Don’t  
Care  
M28V420 VIL  
Manufact.  
Code  
Don’t  
Care  
Don’t  
Care  
VIL VIL VIH  
VIL VIH  
VIL VID  
VIH VID  
Byte-  
wide  
Don’t  
Care  
Don’t  
Care  
M28V410 VIL  
VIL  
VIL  
0F3h  
0FBh  
Device  
Code  
VIL VIH  
VIH VID  
Don’t  
Care  
Don’t  
Care  
M28V420 VIL  
Note: RP = VIH  
DESCRIPTION  
BYTE is Low and the x8 organizationis selected,  
the Data Input/Outputsignal DQ15 actsasAddress  
line A-1 and selects the lower or upper byte of the  
memory word for output on DQ0-DQ7, DQ8-DQ14  
remain high impedance. When BYTE is High the  
memory uses the Address inputs A0-A17 and the  
Data Input/OutputsDQ0-DQ15. Memory control is  
provided by Chip Enable, Output Enableand Write  
Enable inputs. A Reset/Power Down/Boot block  
unlock, tri-level input, places the memory in deep  
power down, normal operation or enables pro-  
gramming and erasure of the Boot block.  
The M28V410 and M28V420FLASH MEMORIES  
are non-volatile memories that may be erased  
electrically at the block level and programmed by  
byte or word. The interface is directly compatible  
with most microprocessors. SO44 and TSOP56  
packages are used.  
Organization  
The organization, as 512K x 8 or 256K x 16, is  
selectable by an external BYTE signal. When  
3/27  
M28V410, M28V420  
Table 5. Instructions  
1st Cycle  
2nd Cycle  
Address  
Mnemo  
Instruction  
nic  
Cycles  
Operation Address (1)  
Data (4)  
Operation  
Data  
Read  
Memory  
Array  
Read  
RD  
1+  
1+  
3
Write  
Write  
Write  
X
X
X
0FFh  
Read (2)  
Data  
Address  
Read  
Status  
Register  
Status  
Register  
RSR  
RSIG  
70h  
90h  
Read (2)  
Read (2)  
X
Read  
Electronic  
Signature  
Signature  
Adress (3)  
Signature  
Block  
Address  
EE  
PG  
Erase  
2
2
Write  
Write  
X
X
20h  
Write  
Write  
0D0h  
Program  
40h or 10h  
Address  
Data Input  
Clear  
Status  
Register  
CLRS  
1
Write  
X
50h  
Erase  
Suspend  
ES  
ER  
1
1
Write  
Write  
X
X
0B0h  
0D0h  
Erase  
Resume  
Notes: 1. X = Don’t Care.  
2. The first cycle of the RD, RSR or RSIG instruction is followed by read operations toread memory array, Status Register  
or Electronic Signature codes. Any number of Read cycle can occur after one command cycle.  
3. Signature address bit A0=VIL will output Manufacturer code. Address bit A0=VIH will output Device code. Other address bits are  
ignored.  
4. When word organization is used, upper byte is don’t care for command input.  
Blockof 96K Bytes or 48K Words, and three ’Main  
Blocksof 128KBytesor64KWords. TheM28V410  
memory has the Boot Block at thetop of the mem-  
ory address space (3FFFFh) and the M28V420  
locates the Boot Block starting at the bottom  
(00000h). Erasure of each block takes typically 1  
second and each block can be programmed and  
erased over 10,000 cycles.  
Table 6. Commands  
Hex Code  
Command  
00h  
10h  
Invalid/Reserved  
Alternative Program Set-up  
Erase Set-up  
20h  
40h  
Program Set-up  
The Boot Block is hardware protected from acci-  
dental programming or erasure depending on the  
RP signal. Program/Erase commands in the Boot  
Block are executed only when RP is at 12V. Block  
erasure may be suspendedwhile data is read from  
other blocks of the memory, then resumed.  
50h  
Clear Status Register  
Read Status Register  
Read Electronic Signature  
Erase Suspend  
70h  
90h  
Bus Operations  
0B0h  
0D0h  
0FFh  
Sixoperationscan beperformedbytheappropriate  
bus cycles, Read Byte or Word from the Array,  
Read Electronic Signature, Output Disable,  
Standby,Power Down and Write the Command of  
an Instruction.  
Erase Resume/Erase Confirm  
Read Array  
Blocks  
Command Interface  
Erasure of the memories is in blocks. There are 7  
blocks in the memory address space, one Boot  
Blockof 16K Bytesor 8K Words, two ’Key Parame-  
ter Blocks’ of 8K Bytes or 4K Words, one ’Main  
Commands can be written toa CommandInterface  
(C.I.) latch to perform read, programming, erasure  
and to monitor the memory’s status. When power  
4/27  
M28V410, M28V420  
Table 7. Status Register  
Mnemon  
Logic  
Level  
Bit  
Name  
Definition  
Ready  
Note  
ic  
’1’  
’0’  
’1’  
Indicates the P/E.C. status, check during Program  
or Erase, and on completion before checking bits  
b4 or b5 for Program or Erase Success  
P/ECS  
7
P/E.C. Status  
Busy  
Suspended  
Erase  
Suspend  
Status  
On an Erase Suspend instruction P/ECS and  
ESS bits are set to ’1’. ESS bit remains ’1’ until an  
Erase Resume instruction is given.  
ESS  
ES  
6
5
4
3
In progress or  
Completed  
’0’  
’1’  
’0’  
’1’  
Erase Error  
ES bit is set to ’1’ if P/E.C. has applied the  
maximum number of erase pulses to the block  
without achieving an erase verify.  
Erase Status  
Erase Success  
Program Error  
Program  
Status  
PS bit set to ’1’ if the P/E.C. has failed to program  
a byte or word.  
PS  
Program  
Success  
’0’  
’1’  
’0’  
V
PP Low, Abort  
VPPS bit is set if the VPP voltage is below  
PPH(min) when a Program or Erase instruction  
VPPS  
VPP Status  
V
has been executed.  
VPP OK  
2
1
0
Reserved  
Reserved  
Reserved  
Notes: Logic level ’1’ is High, ’0’ is Low.  
is first applied, on exit from power down or if VCC  
falls below VLKO, the command interface is reset to  
Read Memory Array.  
word programmingtakes typically9µs, blockerase  
typically 1 second. Erasureof a memory block may  
be suspended in order to read data from another  
block and then resumed. AStatusRegister may be  
read atany time, including duringthe programming  
or erase cycles, to monitor the progress of the  
operation.  
Instructions and Commands  
Eight Instructions are defined to perform Read  
Memory Array, Read Status Register, Read Elec-  
tronic Signature, Erase, Program, Clear Status  
Register, Erase Suspend and Erase Resume. An  
internalProgram/EraseController(P/E.C.) handles  
all timing and verificationof the Programand Erase  
instructions and provides status bits to indicate its  
operation and exit status. Instructions are com-  
posed of a first command write operation followed  
by either second command write, to confirm the  
commands for programming or erase, or a read  
operationtoread datafromthe array,theElectronic  
Signatureor the Status Register.  
Power Saving  
The M28V410 and M28V420 have a number of  
power saving features. Following a Read access  
the memory enters a static mode in which the  
supply current is typically 2mA. A CMOS standby  
mode is entered when the Chip Enable E and the  
Reset/PowerDown (RP) signals are at VCC, when  
the supply current drops to typically 60µA. Adeep  
power down mode is enabled when the Re-  
set/Power Down (RP) signal is at VSS, when the  
supply current drops to typically 0.2µA. The time  
requiredto awakefromthedeeppowerdownmode  
is 700ns maximum, with instructions to the C.I.  
recognised after only 580ns.  
For added data protection, the instructions for byte  
or word program and block erase consist of two  
commands that are written to the memory and  
which start the automaticP/E.C. operation.Byte or  
5/27  
M28V410, M28V420  
Table 8. AC Measurement Conditions  
SRAM Interface Levels  
EPROM Interface Levels  
10ns  
Input Rise and Fall Times  
10ns  
0 to 3V  
1.5V  
Input Pulse Voltages  
0.45V to 2.4V  
0.8V and 2V  
Input and Output Timing Ref. Voltages  
Figure 3. AC Testing Input Output Waveform  
Figure 4. AC Testing Load Circuit  
1.3V  
SRAM Interface  
1N914  
3V  
1.5V  
3.3kΩ  
0V  
DEVICE  
UNDER  
TEST  
OUT  
= 30pF or 100pF  
EPROM Interface  
C
2.4V  
L
2.0V  
0.8V  
0.45V  
C
C
C
= 30pF for SRAM Interface  
L
L
L
AI01275  
= 100pF for EPROM Interface  
includes JIG capacitance  
AI01276  
Table 9. Capacitance (1) (TA = 25 °C, f = 1 MHz )  
Symbol  
CIN  
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
VIN = 0V  
Min  
Max  
Unit  
pF  
6
COUT  
VOUT = 0V  
12  
pF  
Note: 1. Sampled only, not 100% tested.  
DEVICE OPERATION  
Signal Descriptions  
DQ0-DQ7 Data Input/Outputs. The data inputs, a  
byte or the lower byte of a word to be programmed  
or a command to the C.I., are latched when both  
ChipEnable E and Write EnableW are active. The  
data output from the memory Array, the Electronic  
Signature or Status Register is valid when Chip  
Enable E and Output Enable G are active. The  
output is high impedance when the chip is dese-  
lected or the outputs are disabled.  
A0-A17 Address Inputs. The address signals,  
inputs for the memory array, are latched during a  
write operation.  
A9 Address Input is also used for the Electronic  
SignatureOperation. When A9 is raised to 12V the  
Electronic Signature may be read.The A0signal is  
used to read two words or bytes, when A0 is Low  
the Manufacturercode is read and when A0 isHigh  
the Device code. When BYTE is Low DQ0-DQ7  
output the codes and DQ8-DQ15 are don’t care,  
when BYTE is High DQ0-DQ7 output the codes  
and DQ8-DQ15 output 00h.  
DQ8-DQ14 and DQ15A-1 Data Input/Outputs.  
These input/outputs are used in the word-wide  
organization. When BYTE is High for the most  
significant byte of the input or output, functioning  
as described for DQ0-DQ7 above. When BYTE is  
Low, DQ8-DQ14 are high impedance, DQ15A-1 is  
the Address A-1 input.  
6/27  
M28V410, M28V420  
Table 10. DC Characteristics  
(TA = 0 to70°C; VCC = 3.3V ± 0.3V;VPP = 12V±5% or 12V±10%)  
Symbol  
ILI  
Parameter  
Input Leakage Current  
Test Condition  
0V VIN VCC  
Min  
Max  
±1  
Unit  
µA  
ILO  
Output Leakage Current  
0V VOUT VCC  
±10  
40  
45  
35  
40  
3
µA  
(1, 3)  
ICC  
Supply Current (Read Byte-wide) TTL  
Supply Current (Read Word-wide) TTL  
Supply Current (Read Byte-wide) CMOS  
Supply Current (Read Word-wide) CMOS  
Supply Current (Standby) TTL  
E = VIL, G = VIL, f = 5MHz  
E = VIL, G = VIL, f = 5MHz  
E = VSS, G = VSS, f = 5MHz  
E = VSS, G = VSS, f = 5MHz  
E = VIH, RP = VIH  
mA  
mA  
mA  
mA  
mA  
(1, 3)  
ICC  
(1, 3)  
ICC  
(3)  
ICC1  
E = VCC ± 0.2V,  
RP = VCC ± 0.2V,  
Supply Current (Standby) CMOS  
150  
µA  
BYTE = VCC ± 0.2V or VSS  
(3)  
ICC2  
Supply Current (Power Down)  
Supply Current (Program Byte-wide)  
Supply Current (Program Word-wide)  
Supply Current (Erase)  
RP = VSS ± 0.2V  
Byte program in progress  
Word program in progress  
Erase in progress  
5
50  
60  
30  
10  
200  
µA  
mA  
mA  
mA  
mA  
µA  
ICC3  
ICC4  
(2)  
ICC5  
Supply Current (Erase Suspend)  
Program Current (Read or Standby)  
E = VIH, Erasesuspended  
VPP > VCC  
IPP  
Program Leakage Current (Read or  
Standby)  
IPP1  
V
PP VCC  
±15  
µA  
IPP2  
IPP3  
IPP3  
IPP4  
IPP5  
VIL  
Program Current (Power Down)  
Program Current (Program Byte-wide)  
Program Current (Program Word-wide)  
Program Current (Erase)  
RP = VSS ± 0.2V  
Byte program in progress  
Word program in progress  
Erase in progress  
5
30  
µA  
mA  
mA  
mA  
µA  
V
40  
30  
Program Current (Erase Suspend)  
Input Low Voltage  
Erase suspended  
200  
0.6  
–0.5  
2
VIH  
Input High Voltage  
VCC + 0.5  
0.4  
V
VOL  
VOH  
VPPL  
Output Low Voltage  
IOL = 2mA  
V
Output High Voltage  
IOH = –2mA  
2.4  
0
V
Program Voltage (Normal operation)  
4.1  
V
Program Voltage (Program or Erase  
operations) 5% range  
11.4  
12.6  
V
V
VPPH  
Program Voltage (Program or Erase  
operations) 10% range  
10.8  
11.4  
13.2  
VID  
IID  
A9 Voltage (Electronic Signature)  
A9 Current (Electronic Signature)  
13  
V
A9 = VID  
500  
µA  
Supply Voltage (Erase and Program lock-  
out)  
VLKO  
VHH  
2
V
V
Input Voltage (RP, Boot unlock)  
Boot block Program or Erase  
11.4  
13  
Notes: 1. Automatic Power Saving reduces ICC to 2mA typical in static operation.  
2. Current increases to ICC + ICC5 during a read operation.  
3. CMOS levels VCC ± 0.2V and VSS ± 0.2V. TTL levels VIH and VIL.  
7/27  
M28V410, M28V420  
Table 11. Read AC Characteristics  
(TA = 0 to70°C; VCC = 3.3V ± 0.3V;VPP = 12V±5% or 12V±10%)  
M28V410 / 420  
-150  
-120  
-180  
Symbol  
Alt  
Parameter  
Test Condition  
Unit  
SRAM  
Interface  
EPROM  
Interface  
EPROM  
Interface  
Min  
Max  
Min  
Max  
Min  
Max  
Address Valid to  
Next Address Valid  
tAVAV  
tAVQV  
tPHQV  
tRC  
tACC  
tPWH  
tLZ  
E = VIL, G = VIL  
E = VIL, G = VIL  
E = VIL, G = VIL  
G = VIL  
120  
150  
180  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Valid to  
Output Valid  
120  
700  
150  
700  
180  
700  
Power Down High  
to Output Valid  
(1)  
Chip Enable Low to  
Output Transition  
tELQX  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Chip Enable Low to  
Output Valid  
(2)  
tELQV  
tCE  
G = VIL  
120  
60  
150  
65  
180  
70  
Output Enable Low  
to Output Transition  
(1)  
tGLQX  
tOLZ  
tOE  
tOH  
tHZ  
E = VIL  
Output Enable Low  
to Output Valid  
(2)  
tGLQV  
E = VIL  
Output Enable High  
to Output Transition  
tEHQX  
G = VIL  
Chip Enable High  
to Output Hi-Z  
(1)  
tEHQZ  
G = VIL  
50  
55  
60  
Output Enable High  
to Output Transition  
tGHQX  
tOH  
tDF  
E = VIL  
Output Enable High  
to Output Hi-Z  
(1)  
tGHQZ  
E = VIL  
45  
50  
55  
Address Transition  
to Output Transition  
tAXQX  
tOH  
E = VIL, G = VIL  
Notes: 1. Sampled only, not 100% tested.  
2. G may bedelayed by up to tELQV - tGLQV after the fallingedge of E without increasing tELQV  
.
8/27  
M28V410, M28V420  
Figure 5. Read Mode AC Waveforms  
9/27  
M28V410, M28V420  
Table 12. Write AC Characteristics,Write Enable Controlled  
(TA = 0 to70°C; VCC = 3.3V ± 0.3V;VPP = 12V±5% or 12V±10%)  
M28V410 / 420  
-150  
-120  
-180  
Symbol  
Alt  
Parameter  
Unit  
SRAM  
Interface  
EPROM  
Interface  
EPROM  
Interface  
Min  
Max  
Min  
Max  
Min  
Max  
tAVAV  
tWC Write Cycle Time  
120  
1
150  
180  
1
ns  
Power Down High to Write Enable  
Low  
tPHWL  
tPS  
tCS  
tWP  
1
0
µs  
Chip Enable Low to Write Enable  
Low  
tELWL  
0
0
ns  
Write Enable Low to Write Enable  
High  
tWLWH  
tDVWH  
tWHDX  
100  
100  
0
100  
100  
0
100  
100  
0
ns  
ns  
ns  
tDS Input Valid to Write Enable High  
Write Enable High to Input  
Transition  
tDH  
Write Enable High to Chip Enable  
High  
tWHEH  
tCH  
10  
10  
10  
ns  
Write Enable High to Write Enable  
tWHWL  
tAVWH  
tWPH  
Low  
50  
95  
50  
95  
50  
95  
ns  
ns  
ns  
ns  
ns  
tAS Address Validto Write Enable High  
Power Down VHH (Boot Block  
tPHS  
tPHHWH  
tVPHWH  
tWHAX  
200  
200  
10  
200  
200  
10  
200  
200  
10  
Unlock) to Write Enable High  
tVPS VPP High to Write Enable High  
Write Enable High to Address  
Transition  
tAH  
Write Enable High to Output Valid  
(Word/Byte Program)  
(1, 2)  
tWHQV1  
6
6
6
µs  
(1, 2)  
(1)  
Write Enable High to Output Valid  
(Boot Block Erase)  
tWHQV2  
0.3  
0.3  
0.6  
0.3  
0.3  
0.6  
0.3  
0.3  
0.6  
sec  
sec  
sec  
Write Enable High to Output Valid  
(Parameter Block Erase)  
tWHQV3  
tWHQV4  
tQVPH  
Write Enable High to Output Valid  
(Main Block Erase)  
(1)  
Output Validto Reset/Power Down  
High  
tPHH  
0
0
0
0
0
0
ns  
ns  
ns  
tQVVPL  
Output Validto VPP Low  
Reset/Power Down High to Boot  
Block Relock  
(3)  
tPHBR  
200  
200  
200  
Notes: 1. Time is measured to Status Register Read giving bit b7 =1’.  
2. For Program or Erase of the Boot Block RP must be at VHH  
.
3. Time required for Relocking the Boot Block.  
10/27  
M28V410, M28V420  
Figure 6. Program & Erase AC Waveforms, W Controlled  
11/27  
M28V410, M28V420  
Table 13. Write AC Characteristics, Chip Enable Controlled  
(TA = 0 to70°C; VCC = 3.3V ± 0.3V;VPP = 12V±5% or 12V±10%)  
M28V410 / 420  
-150  
-120  
-180  
Symbol  
Alt  
Parameter  
Unit  
SRAM  
Interface  
EPROM  
Interface  
EPROM  
Interface  
Min  
Max  
Min  
Max  
Min  
Max  
tAVAV  
tPHEL  
tWC  
tPS  
Write Cycle Time  
120  
1
150  
180  
1
ns  
Power Down High to Chip  
Enable Low  
1
0
µs  
Write Enable Low to Chip  
Enable Low  
tWLEL  
tCS  
0
0
ns  
Chip Enable Low to Chip Enable  
High  
tELEH  
tDVEH  
tEHDX  
tWP  
tDS  
tDH  
100  
100  
0
100  
100  
0
100  
100  
0
ns  
ns  
ns  
Input Valid to Chip Enable High  
Chip Enable High to Input  
Transition  
Chip Enable High to Write  
Enable High  
tEHWH  
tEHEL  
tAVEH  
tCH  
tWPH  
tAS  
10  
50  
95  
10  
50  
95  
10  
50  
95  
ns  
ns  
ns  
Chip Enable High to Chip  
Enable Low  
Address Valid to Chip Enable  
High  
Power Down VHH (Boot Block  
Unlock) to Chip Enable High  
tPHHEH  
tVPHEH  
tEHAX  
tPHS  
tVPS  
tAH  
200  
200  
10  
200  
200  
10  
200  
200  
10  
ns  
ns  
ns  
VPP High to Chip Enable High  
Chip Enable High to Address  
Transition  
Chip Enable High to Output  
Valid (Word/Byte Program)  
(1, 2)  
tEHQV1  
6
6
6
µs  
Chip Enable High to Output  
Valid (Boot Block Erase)  
(1, 2)  
tEHQV2  
0.3  
0.3  
0.6  
0.3  
0.3  
0.6  
0.3  
0.3  
0.6  
sec  
sec  
sec  
Chip Enable High to Output  
Valid (Parameter Block Erase)  
(1)  
tEHQV3  
Chip Enable High to Output  
Valid (Main Block Erase)  
(1)  
tEHQV4  
Output Valid to Reset/Power  
Down High  
tQVPH  
tPHH  
0
0
0
0
0
0
ns  
ns  
ns  
tQVVPL  
Output Valid to VPP Low  
Reset/Power Down High to Boot  
Block Relock  
(3)  
tPHBR  
200  
200  
200  
Note: 1. Time is measured to Status Register Read giving bit b7 =1’.  
2. For Program or Erase of the Boot Block RP must be at VHH  
.
3. Time required for Relocking the Boot Block.  
12/27  
M28V410, M28V420  
Figure 7. Program & Erase AC Waveforms, E Controlled  
13/27  
M28V410, M28V420  
Table 14. Word/Byte Program, Erase Times  
(TA = 0 to70°C; VCC = 3.3V ± 0.3V)  
M28V410 / 420  
Parameter  
Test Conditions  
Unit  
Min  
Typ  
1.2  
0.6  
1
Max  
4.2  
2.1  
7
Main Block Program (Byte)  
Main Block Program (Word)  
Boot or Parameter Block Erase  
Main Block Erase  
V
PP = 12V ±5%  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
VPP = 12V ±5%  
V
V
PP = 12V ±5%  
PP = 12V ±5%  
2.4  
6
14  
20  
10  
40  
60  
Main Block Program (Byte)  
Main Block Program (Word)  
Boot or Parameter Block Erase  
Main Block Erase  
VPP = 12V ±10%  
VPP = 12V ±10%  
VPP = 12V ±10%  
VPP = 12V ±10%  
3
5.8  
14  
DEVICE OPERATION (cont’d)  
DQ8-DQ14 are high impedance. When BYTE is  
High the memory is organized x16 and data in-  
put/output uses DQ0-DQ15 with the memory ad-  
dressed by A0-A17.  
E Chip Enable. The Chip Enable activates the  
memory control logic, input buffers, decoders and  
sense amplifiers. E High de-selects the memory  
and reducesthe powerconsumptiontothe standby  
level. E can also be used to control writing to the  
command register and to the memory array, while  
W remains at a low level. Both addressesand data  
inputs are then latched on the rising edge of E.  
VPP ProgramSupply Voltage. Thissupply voltage  
is used for memory Programming and Erase.  
V
PP ±10% tolerance option is provided for applica-  
tion requiringmaximum 100writeanderase cycles.  
VCC Supply Voltage. It is the main circuit supply.  
RP Reset/Power Down. This is a tri-level input  
which locks the Boot Block from programmingand  
erasure, and allows the memory to be put in deep  
power down.  
VSS Ground. It is the reference for all voltage  
measurements.  
Memory Blocks  
When RP is High (up to 6.5V maximum) the Boot  
Block is locked and cannot be programmed or  
erased. When RP is above 11.4V the Boot Block is  
unlockedforprogrammingorerasure.WithRPLow  
the memory is in deep power down, and if RP is  
within VSS+0.2V the lowest supply current is ab-  
sorbed.  
The memoryblocks ofthe M28V410and M28V420  
are shown in Figure 8. The difference between the  
two productsissimply aninversionoftheblockmap  
to position the Boot Block at the top or bottom of  
the memory. The selectionof the Boot Block at the  
top or bottom of the memory depends on the  
microprocessor needs.  
G Output Enable. The Output Enable gates the  
outputs through the data buffers during a read  
operation.  
Each block of the memory can be erased sepa-  
rately, but only by one block at a time. The erase  
operation is managed by the P/E.C. but can be  
suspended in orderto read from another block and  
then resumed.  
W Write Enable. It controls writing to the Com-  
mand Register and Input Address and Data  
latches. Both Addresses and Data Inputs are  
latched on the rising edge of W.  
Programming and erasure of the memory is dis-  
abled when the program supply is at VPPL. For  
successful programming and erasure the program  
BYTE Byte/Word Organization Select. Thisinput  
selects either byte-wide or word-wide organization  
of the memory. When BYTEis Low the memory is  
organized x8 or byte-wide and data input/output  
uses DQ0-DQ7 while A-1 acts as the additional,  
LSB, of the memory address that multiplexes the  
upper or lower byte. In the byte-wide organization  
supply must be at VPPH  
.
The BootBlockprovides additionalhardwaresecu-  
rity by use of the RP signal which must be at VHH  
before any program or erase operation will be  
executed by the P/E.C. on the Boot Block.  
14/27  
M28V410, M28V420  
Figure 8. Memory Map, Word-wide Addresses  
M28V410 TOP BOOT BLOCK  
M28V420 BOTTOM BOOT BLOCK  
A0-A17  
3FFFFh  
Word Wide  
A0-A17  
3FFFFh  
Word Wide  
8K BOOT BLOCK  
64K MAIN BLOCK  
3E000h  
3DFFFh  
30000h  
2FFFFh  
4K PARAMETER BLOCK  
4K PARAMETER BLOCK  
48K MAIN BLOCK  
64K MAIN BLOCK  
64K MAIN BLOCK  
3D000h  
3CFFFh  
20000h  
1FFFFh  
3C000h  
3BFFFh  
10000h  
0FFFFh  
48K MAIN BLOCK  
30000h  
2FFFFh  
04000h  
03FFFh  
64K MAIN BLOCK  
4K PARAMETER BLOCK  
4K PARAMETER BLOCK  
8K BOOT BLOCK  
20000h  
1FFFFh  
03000h  
02FFFh  
64K MAIN BLOCK  
10000h  
0FFFFh  
02000h  
01FFFh  
64K MAIN BLOCK  
00000h  
00000h  
AI01411  
Operations  
Write. Write operations are used to give Instruction  
Commands to the memory or to latch input data to  
be programmed. Awrite operation is initiated when  
Chip Enable E is Low and Write Enable W is Low  
withOutput EnableG High. Commands, InputData  
and Addressesare latchedon the rising edge of W  
or E. As for the Read operation,when BYTE is Low  
a byte is input, DQ8-DQ14 are ’don’t care’ and A-1  
is an additional address. When BYTE is High a  
word is input.  
Operations are defined as specific bus cycles and  
signals which allow memory Read, Command  
Write, Output Disable, Standby,Power Down, and  
Electronic Signature Read. They are shown in Ta-  
ble 3.  
Read. Read operations are used to output the  
contents of the Memory Array, the Status Register  
or the Electronic Signature. Both Chip Enable E  
and Output Enable G must be low in order to read  
the output of the memory. The Chip Enable input  
alsoprovides powercontrol andshouldbe usedfor  
device selection. Output Enable should be used to  
gatedataontotheoutputindependentofthe device  
selection. Aread operation will outputeither a byte  
or a word depending on the BYTE signal level.  
WhenBYTEis Low theoutputbyte ison DQ0-DQ7,  
DQ8-DQ14 are Hi-Z and A-1 is an additional ad-  
dress input. When BYTEis High the output word is  
on DQ0-DQ15.  
Output Disable. Thedata outputsare high imped-  
ance when the Output Enable G is High with Write  
EnableW High.  
Standby. Thememory is in standbywhen the Chip  
Enable E is High. The power consumption is re-  
duced to the standby level and theoutputsare high  
impedance, independent of the Output Enable G  
or Write Enable W inputs.  
PowerDown. Thememoryis in PowerDownwhen  
RP is low. The power consumption is reduced to  
the Power Down level, and Outputs are in high  
impedance, independant of the Chip Enable E,  
Output Enable G or Write Enable W inputs.  
The data read depends on the previous command  
written to the memory (see instructions RD, RSR  
and RSIG).  
15/27  
M28V410, M28V420  
Electronic Signature. Two codes identifying the  
manufacturerand the device can be read from  
the memories, the manufacturer code for SGS-  
THOMSON is 20h, and the device codes are 0F3h  
for the M28V410(Top BootBlock) and0FBhfor the  
M28V420(Bottom Boot Block). These codes allow  
programming equipment or applications to auto-  
maticallymatchtheirinterfacetothe characteristics  
of the particular manufacturer’sproduct.  
giving the command 70h.SubsequentReadopera-  
tions output the contents of the Status Register.  
The contents of the status register are latched on  
the falling edge of E or G signals, and can be read  
until E or G returns to its initial high level. Either E  
or G must be toggled to V to update the latch.  
IH  
Additionally, any read attempt during program or  
erase operation will automatically output the con-  
tents of the Status Register.  
Read Electronic Signature (RSIG) instruction.  
Thisinstructionuses3 operations.Itconsists ofone  
write operation giving the command 90h followed  
by two read operations to output the manufacturer  
and device codes. The manufacturer code, 20h, is  
output when the address line A0 is Low, and the  
device code, 0F3h for the M28V410or 0FBh forthe  
M28V420, when A0 is High.  
The Electronic Signatureis output by a Read Array  
operation when the voltage applied to A9 is at VID,  
the manufacturercode is output when the Address  
input A0is Low and the devicecodewhen this input  
is High. Other Address inputs are ignored. The  
codes are output on DQ0-DQ7. When the BYTE  
signal is High the outputs DQ8-DQ15 output 00h,  
when Low these outputs are high impedance and  
Address input A-1 is ignored.  
Erase (EE) instruction. This instruction uses two  
write operations.The first command written is the  
Erase Set-up command 20h. The second com-  
mand isthe Erase Confirm command0D0h.During  
the inputofthe second command anaddressof the  
block to be erased is given and this is latched into  
the memory. If the second command given is not  
the EraseConfirm command then the status regis-  
ter bitsb4 and b5 areset andthe instruction aborts.  
Read operations output the status register after  
erasure has started.  
The Electronic Signature can also be read,without  
raising A9 to VID, after giving the memory the  
instruction RSIG (see below).  
Instructions and Commands  
The memories include a Command Interface(C.I.)  
which latches commands written to the memory.  
Instructions are made up from one or more com-  
mands to perform memory Read, Read Status  
Register, Read Electronic Signature, Erase, Pro-  
gram, Clear Status Register, Erase Suspend and  
Erase Resume. These instructions require from 1  
to 3 operations,the first of which is always a write  
operation and is followed by either a further write  
operation to confirm the first command or a read  
operation(s) to output data.  
Duringthe executionof the erasebythe P/E.C., the  
memory accepts only the RSR (Read Status Reg-  
ister) and ES (Erase Suspend) instructions. Status  
Register bit b7 returns ’0’ while the erasure is in  
progress and ’1’ when it has completed. After com-  
pletion the Status Register bit b5 returns ’1’ if there  
has been an Erase Failure because erasure has  
not been verified even after the maximum number  
of erase cycles have been executed. Status Reg-  
ister bitb3 returns1’ ifVPP doesnotremain atVPPH  
level when the erasureis attemptedand/orproced-  
ing.  
A Status Register indicates the P/E.C. status  
Ready or Busy, the suspend/in-progressstatus of  
erase operations, the failure/successof erase and  
program operations and the low/correct value of  
the Program Supply voltage VPP.  
The P/E.C. automatically sets bits b3 to b7 and  
clears bit b6 & b7. It cannot clear bits b3 to b5. The  
register can be read by the Read Status Register  
(RSR) instruction and cleared by the Clear Status  
Register (CLRS) instruction. The meaning of the  
bits b3 to b7 is shown in Table 7. Bits b0 to b2 are  
reserved for future use (and should be masked out  
during status checks).  
VPP must be at VPPH when erasing, erase should  
not be attempted when VPP < VPPH as the results  
will beuncertain.IfVPP fallsbelow VPPH orRP goes  
Low the erase aborts and must be repeated, after  
having cleared the Status Register (CLRS).  
The BootBlock can only be erasedwhen RP is also  
at VHH  
.
Read (RD) instruction. TheRead instruction con-  
sists of one write operation giving the command  
0FFh. Subsequent read operations will read the  
addressedmemory array contentandoutputabyte  
or word depending on the level of the BYTEinput.  
Program (PG) instruction. This instruction uses  
two write operations. The first command written is  
the Program Set-up command 40h (or 10h). A  
secondwriteoperationlatchestheAddressand the  
Data to be written and starts the P/E.C. Read  
operationsoutput the status register after the pro-  
gramming has started.  
Read Status Register (RSR) instruction. The  
Read Status Register instruction may be given at  
any time, including while the Program/Erase Con-  
troller is active. It consists of one write operation  
Memory programming is only made by writing ’0in  
place of ’1’ in a byte or word.  
16/27  
M28V410, M28V420  
DEVICE OPERATION (cont’d)  
sumefeaturesofthememoriesare showninFigure  
9 to Figure 11.  
During the execution of the programming by the  
P/E.C., the memory accepts only the RSR (Read  
StatusRegister)instruction.The StatusRegisterbit  
b7 returns0’ while the programming is in progress  
and ’1’ when it hascompleted. After completionthe  
Status register bit b4 returns ’1’ if there has been a  
Program Failure. Status Register bit b3 returns a  
’1’ if VPP does not remain at VPPH when program-  
ming is attempted and/or during programming.  
Programming. The memory can be programmed  
byte-by-byte(or word-by-wordinx16organization).  
The Program Supply voltage VPP must be applied  
before program instructions are given, and if the  
programming is in the BootBlock, RPmust also be  
raised to VHH to unlock the Boot Block. The Pro-  
gram Supply voltage may be applied continuously  
during programming.  
The program sequenceis started by writing a Pro-  
gram Set-up command (40h) to the Command  
Interface,this isfollowedbywritingthe addressand  
data byte or word to the memory. The Pro-  
gram/EraseControllerautomaticallystartsandper-  
forms the programming after the second write  
operation, providing that the VPP voltage (and RP  
voltage if programming the Boot Block) are correct.  
During the programming the memory status is  
checked by reading the statusregister bit b7 which  
shows the status of the P/E.C. Bit b7 = ’1’ indicates  
that programming is completed.  
VPP mustbe at VPPH whenprogramming, program-  
ming should not be attempted when VPP < VPPH  
as the results will be uncertain. Programming  
aborts if VPP drops below VPPH or RP goes Low. If  
aborted the data may be incorrect. Then after  
having cleared the Status Register (CLRS), the  
memory must be erased and re-programmed.  
The Boot Block can onlybe programmed when RP  
is at VHH  
.
Clear Status Register (CLRS) instruction. The  
Clear Status Register uses a single write operation  
which clears bits b3, b4 and b5, if latched to ’1’ by  
the P/E.C., to ’0’. Its use is necessary before any  
new operation when an error has been detected.  
A full status check can be made after each  
byte/word or after a sequence of data has been  
programmed. The status check is made on bit b3  
for any possible VPP error and on bit b4 for any  
possibleprogramming error.  
Erase Suspend (ES) instruction. The Erase op-  
erationmay be suspended bythis instructionwhich  
consists of writing the command 0B0h. The Status  
Register bit b6 indicates whether the erase has  
actually been suspended,b6 = ’1’, or whether the  
P/E.C. cycle was the last and the erase is com-  
pleted, b6 = ’0’.  
Erase. The memory can be erased by blocks. The  
Program Supply voltage VPP must be applied be-  
fore the Erase instruction is given, and if the Erase  
is of the Boot Block RP must also be raised to VHH  
to unlock the Boot Block. The Erase sequence is  
started by writing an Erase Set-upcommand (20h)  
to the Command Interface, this is followed by an  
address in the block to be erased and the Erase  
Confirm command (0D0h).  
During the suspension the memory will respond  
only to Read (RD), Read Status Register (RSR) or  
Erase Resume (ER) instructions. Read operations  
initially output the status register while erase is  
suspendedbut, following a Read instruction, data  
from other blocks of the memory can be read. VPP  
must be maintained at VPPH while erase is sus-  
pended. If VPP does not remain at VPPH or the RP  
signal goes Low while erase is suspended then  
erase is aborted while bits b5 and b3 of the status  
register are set. Erase operationmust be repeated  
after having cleared the status register, to be cer-  
tain to erase the block.  
The Program/Erase Controller automatically starts  
and performs the block erase, providing the VPP  
voltage (and the RP voltage if the erase is of the  
BootBlock) iscorrect.During theerasethememory  
status is checked by reading the status register bit  
b7 which shows the status of the P/E.C. Bit b7 =  
’1’ indicates that erase is completed.  
A full status check can be made after the block  
erase by checkingbit b3 for anypossibleVPP error,  
bits b5 and b6 for any command sequence errors  
(erase suspended) and bit b5 alone for an erase  
error.  
Erase Resume (ER) instruction. If an Erase Sus-  
pend instruction was previously executed, the  
erase operation may be resumed by giving the  
command 0D0h. The status register bit b6 is  
cleared when erasure resumes. Read operations  
output the status register after the erase is re-  
sumed.  
Reset. Note that after any program or erase in-  
struction has completed with an error indication or  
after any VPP transitions down to VPPL the Com-  
mand Interface must be reset by a Clear Status  
Register Instruction before data can be accessed.  
The suggested flow charts for programs that use  
the programming, erasure and erase suspend/re-  
17/27  
M28V410, M28V420  
Automatic Power Saving  
Power Up  
The Supply voltage VCC and the Program Supply  
voltage VPP can be applied in any order. Themem-  
ory Command Interface is reset on power up to  
Read Memory Array, but a negative transition of  
Chip Enable E or a change of the addresses is  
required to ensure valid data outputs. Care must  
be taken to avoid writes to the memory when VCC  
is above VLKO and VPP powers up first. Writes can  
be inhibited by driving either E or W to VIH. The  
memory is disabled until RP is up to VIH.  
The M28V410 and M28V420 memories place  
themselves in a lower power state when not being  
accessed. Following a Read operation, after a  
delay equalto the memory access time, the Supply  
Current is reduced from a typical read current of  
20mA (CMOS inputs, word-wide organization) to  
less than 2mA.  
Power Down  
The memories provide a power down control input  
RP. When this signal is taken to below VSS + 0.2V  
all internal circuits are switchedoff and the supply  
current drops to typically 0.2µA and the program  
current to typically 0.1µA. If RP is taken low during  
a memory read operation then the memory is de-  
selectedand theoutputs become highimpedance.  
If RP is taken low during a program or erase  
sequence then it is aborted and the memory con-  
tent is no longer valid.  
Supply Rails  
Normal precautionsmust be taken for supply volt-  
age decoupling, each device in a system should  
have the VCC andVPP rails decoupledwitha 0.1µF  
capacitor close to the VCC and VSS pins. The PCB  
trace widths should be sufficient to carry the VPP  
program and erase currents required.  
Recovery from deep power down requires 700ns  
to a memory read operation, or 580ns to a com-  
mand write. On return from power down the status  
register is cleared to 00h.  
18/27  
M28V410, M28V420  
Figure 9. Program Flow-chart and Pseudo Code  
Start  
Write 40h  
Command  
PG instruction:  
– write 40h command  
– write Address & Data  
(memory enters read status  
state after the PG instruction)  
Write Address  
& Data  
Read Status  
Register  
do:  
– read status register  
(E or G must be toggled)  
NO  
b7 = 1  
while b7 = 1  
YES  
NO  
NO  
V
Low  
If b3 = 0, V  
low error:  
– error handler  
PP  
PP  
b3 = 0  
YES  
Error (1, 2)  
Program  
Error (1, 2)  
If b4 = 0, Program error:  
– error handler  
b4 = 0  
YES  
End  
AI01278  
Notes: 1. Status check of b3 (VPP Low) and b4 (Program Error) can be made after each byte/word programming or after a sequence.  
2. If a VPP Low or Program Erase is found, the Status Register must be cleared (CLRS instruction) before further P/E.C. operations.  
19/27  
M28V410, M28V420  
Figure 10. Erase Flow-chart and Pseudo Code  
Start  
Write 20h  
Command  
EE instruction:  
– write 20h command  
– write Block Address  
(A12-A17) & command 0D0h  
(memory enters read status  
state after the EE instruction)  
Write Block Address  
& 0D0h Command  
Suspend  
Loop  
NO  
do:  
Read Status  
– read status register  
(E or G must be toggled)  
if EE instruction given execute  
suspend erase loop  
Register  
Suspend  
YES  
NO  
NO  
NO  
NO  
b7 = 1  
YES  
while b7 = 1  
V
Low  
If b3 = 0, V  
low error:  
PP  
PP  
– error handler  
b3 = 0  
YES  
Error (1)  
Command  
Sequence Error  
If b4, b5 = 0, Command Sequence error:  
– error handler  
b4, b5 = 1  
YES  
Erase  
If b5 = 0, Erase error:  
– error handler  
b5 = 0  
Error (1)  
YES  
End  
AI01279  
Note: 1. If VPP Low or Erase Error is found, the Status Register must be cleared (CLRS instruction) before further P/E.C. operations.  
20/27  
M28V410, M28V420  
Figure 11. Erase Suspend & Resume Flow-chart and Pseudo Code  
Start  
Write 0B0h  
Command  
ES instruction:  
– write 0B0h command  
(memory enters read register  
state after the ES instruction)  
do:  
Read Status  
Register  
– read status register  
(E or G must be toggled)  
NO  
NO  
b7 = 1  
YES  
while b7 = 1  
If b6 = 0, Erase completed  
(at this point the memory wich  
accept only the RD or ER instruction)  
Erase  
Complete  
b6 = 1  
YES  
Write 0FFh  
Command  
RD instruction:  
– write 0FFh command  
– one o more data reads  
from another block  
Read data from  
another block  
Write 0D0h  
Command  
ER instruction:  
– write 0D0h command  
to resume erasure  
Erase Continues  
AI01280  
21/27  
M28V410, M28V420  
Figure 12. Command Interface and Program Erase Controller Flow-diagram (a)  
WAIT FOR  
COMMAND  
WRITE (1)  
NO  
90h  
YES  
BYTE  
IDENTIFIER  
NO  
70h  
YES  
READ  
ARRAY  
READ  
STATUS  
NO  
50h  
YES  
CLEAR  
STATUS  
NO  
40h or  
10h  
YES  
PROGRAM  
SET-UP  
NO  
20h  
YES  
READ  
STATUS  
PROGRAM  
ERASE  
SET-UP  
NO  
0FFh  
YES  
YES  
READY  
(2)  
NO  
OD0h  
NO  
YES  
ERASE  
COMMAND  
ERROR  
READ  
STATUS  
A
B
AI01286C  
Notes: 1. If no command is written, the Command Interface remains in its previous valid state. Upon power-up, on exit from power-down or  
if VCC falls below VLKO, the Command Interface defaults to Read Array mode.  
2. P/E.C. status (Ready or Busy) is read on Status Register bit 7.  
22/27  
M28V410, M28V420  
Figure 13. Command Interface and Program Erase Controller Flow-diagram (b)  
A
B
ERASE  
(READ STATUS)  
YES  
READY  
(2)  
NO  
NO  
0B0h  
YES  
READ  
STATUS  
ERASE  
SUSPEND  
YES  
READY  
(2)  
NO  
ERASE  
SUSPENDED  
?
NO  
READ  
STATUS  
YES  
YES  
NO  
70h  
NO  
READ  
STATUS  
YES  
0D0h  
READ  
ARRAY  
READ  
STATUS  
(ERASE RESUME)  
AI01287B  
Note: 2. P/E.C. status(Ready or Busy) is read on Status Register bit 7.  
23/27  
M28V410, M28V420  
ORDERING INFORMATION SCHEME  
Example:  
M28V410  
-80  
N
1
TR  
VCC Range  
Array Org.  
Top Boot  
Temp. Range  
Option  
V
3.3V  
1
2
1
0 to 70 °C  
TR Tape & Reel  
Packing  
Bottom Boot  
3
6
–40 to 125 °C  
–40 to 85 °C  
Speed  
Package  
-120 120ns  
-150 150ns  
-180 180ns  
M
N
SO44  
TSOP56  
14 x 20mm  
For a list of available options(VCC Range, Array Organisation, Speed, etc...) refer to the current Memory  
Shortform catalogue.  
For further information on any aspect of this device, please contact SGS-THOMSON Sales Office nearest  
to you.  
24/27  
M28V410, M28V420  
TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20mm  
mm  
Min  
inches  
Symb  
Typ  
Max  
1.20  
0.15  
1.05  
0.27  
0.21  
20.20  
18.50  
14.10  
-
Typ  
Min  
Max  
0.047  
0.006  
0.041  
0.011  
0.008  
0.795  
0.728  
0.555  
-
A
A1  
A2  
B
0.05  
0.95  
0.17  
0.10  
19.80  
18.30  
13.90  
-
0.002  
0.037  
0.007  
0.004  
0.780  
0.720  
0.547  
-
C
D
D1  
E
e
0.50  
0.020  
L
0.50  
0°  
0.70  
5°  
0.020  
0°  
0.028  
5°  
α
N
56  
56  
CP  
0.10  
0.004  
TSOP56  
A2  
1
N
e
E
B
N/2  
D1  
A
CP  
D
DIE  
C
TSOP-a  
A1  
α
L
Drawing is not to scale  
25/27  
M28V410, M28V420  
SO44 - 44 lead Plastic Small Outline, 525 mils body width  
mm  
Min  
2.42  
0.22  
2.25  
inches  
Min  
Symb  
Typ  
Max  
2.62  
0.23  
2.35  
0.50  
0.25  
28.30  
13.40  
Typ  
Max  
0.103  
0.010  
0.093  
0.020  
0.010  
1.114  
0.528  
A
A1  
A2  
B
0.095  
0.009  
0.089  
C
0.10  
28.10  
13.20  
0.004  
1.106  
0.520  
D
E
e
1.27  
0.050  
H
15.90  
44  
16.10  
0.626  
44  
0.634  
L
0.80  
0.031  
α
3°  
3°  
N
CP  
0.10  
0.004  
SO44  
A2  
A
C
B
CP  
e
D
N
1
E
H
A1  
α
L
SO-b  
Drawing is not to scale  
26/27  
M28V410, M28V420  
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringementof patents or other rights of third parties which may result from its use. No  
license is granted by implication or otherwise under any patent or patent rights ofSGS-THOMSON Microelectronics. Specifications mentioned  
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.  
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express  
written approval of SGS-THOMSON Microelectronics.  
1994 SGS-THOMSON Microelectronics - All Rights Reserved  
SGS-THOMSON Microelectronics GROUP OF COMPANIES  
Australia - Brazil - China - France - Germany -Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan- Thailand - United Kingdom - U.S.A.  
27/27  

相关型号:

M28V420-180M3TR

512KX8 FLASH 12V PROM, 180ns, PDSO44, 0.525 INCH, PLASTIC, SO-44
STMICROELECTR

M28V420-180M6TR

512KX8 FLASH 12V PROM, 180ns, PDSO44, 0.525 INCH, PLASTIC, SO-44
STMICROELECTR

M28V420M

Flash, 512KX8, 120ns, PDSO44, SO-44
NUMONYX

M28V420N

Flash, 512KX8, 120ns, PDSO56, TSOP-56
NUMONYX

M28V421-120N1TR

512KX8 FLASH 12V PROM, 120ns, PDSO40, 10 X 20 MM, PLASTIC, TSOP-40
STMICROELECTR

M28V421-120N3

512KX8 FLASH 12V PROM, 120ns, PDSO40, 10 X 20 MM, PLASTIC, TSOP-40
STMICROELECTR

M28V421-120N5

512KX8 FLASH 12V PROM, 120ns, PDSO40, 10 X 20 MM, PLASTIC, TSOP-40
STMICROELECTR

M28V421-120N5TR

512KX8 FLASH 12V PROM, 120ns, PDSO40, 10 X 20 MM, PLASTIC, TSOP-40
STMICROELECTR

M28V421-120N6

512KX8 FLASH 12V PROM, 120ns, PDSO40, 10 X 20 MM, PLASTIC, TSOP-40
STMICROELECTR

M28V421-120N6TR

512KX8 FLASH 12V PROM, 120ns, PDSO40, 10 X 20 MM, PLASTIC, TSOP-40
STMICROELECTR

M28V421-150N1TR

512KX8 FLASH 12V PROM, 150ns, PDSO40, 10 X 20 MM, PLASTIC, TSOP-40
STMICROELECTR

M28V421-150N3

512KX8 FLASH 12V PROM, 150ns, PDSO40, 10 X 20 MM, PLASTIC, TSOP-40
STMICROELECTR