M29W008DT90N6F [STMICROELECTRONICS]

Flash, 1MX8, 90ns, PDSO40, 10 X 20 MM, LEAD FREE, PLASTIC, TSOP-40;
M29W008DT90N6F
型号: M29W008DT90N6F
厂家: ST    ST
描述:

Flash, 1MX8, 90ns, PDSO40, 10 X 20 MM, LEAD FREE, PLASTIC, TSOP-40

光电二极管
文件: 总34页 (文件大小:462K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M29W008DT  
M29W008DB  
8 Mbit (1Mb x 8, Boot Block)  
3V Supply Flash Memory  
FEATURES SUMMARY  
SUPPLY VOLTAGE  
Figure 1. Package  
2.7V to 3.6V for Program, Erase and Read  
ACCESS TIMES: 70ns, 90ns  
PROGRAMMING TIME: 10µs per Byte typical  
PROGRAM/ERASE CONTROLLER (P/E.C.)  
Embedded Byte Program Algorithm  
Status Register bits and Ready/Busy  
Output  
19 MEMORY BLOCKS  
1 Boot Block (Top or Bottom location)  
2 Parameter and 16 Main Blocks  
TSOP40 (N)  
10 x 20mm  
BLOCK, MULTI-BLOCK and CHIP ERASE  
MULTIPLE BLOCK PROTECTION/  
TEMPORARY UNPROTECTION MODE  
ERASE SUSPEND and RESUME MODES  
LOW POWER CONSUMPTION  
Standby and Automatic Standby modes  
100,000 PROGRAM/ERASE CYCLES per  
BLOCK  
20 YEARS DATA RETENTION  
Defectivity below 1ppm/year  
ELECTRONIC SIGNATURE  
Manufacturer Code: 20h  
M29W008DT Device Code: D2h  
M29W008DB Device Code: DCh  
August 2004  
1/34  
M29W008DT, M29W008DB  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 2. Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 3. TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 4. Block Addresses (Top Boot Block) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 5. Block Addresses (Bottom Boot Block). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Address Inputs (A0-A19). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Data Input/Outputs (DQ0-DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Ready/Busy Output (RB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Reset/Block Temporary Unprotect Input (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
VCC Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
V
SS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Standard Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Bus Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Special Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Read Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block Protection and Unprotection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 2. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Command Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Read/Reset Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Auto Select Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Unlock Bypass Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Unlock Bypass Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Unlock Bypass Reset Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Block Erase Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Chip Erase Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Erase Suspend Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2/34  
M29W008DT, M29W008DB  
Erase Resume Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 3. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 4. Program, Erase Times and Program, Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . 15  
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Data Polling Bit (DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Toggle Bit (DQ6).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Error Bit (DQ5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Erase Timer Bit (DQ3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Alternative Toggle Bit (DQ2).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 5. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 6. Data Polling Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 7. Data Toggle Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 6. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
DC AND AC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 7. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 8. AC Testing Input Output Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 8. AC Testing Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 9. Device Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 10. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 9. Read Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 11. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 10.Write AC Waveforms, W Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 12. Write AC Characteristics, W Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 11.Write AC Waveforms, E Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 13. Write AC Characteristics, E Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 12.Reset/Block Temporary Unprotect AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 14. Reset/Block Temporary Unprotect AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 13.TSOP40 - 40 lead Plastic Thin Small Outline, 10 x 20mm, Package Outline . . . . . . . . . 25  
Table 15. TSOP40 - 40 lead Plastic Thin Small Outline, 10 x 20mm, Package Mechanical Data . 25  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 16. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
APPENDIX A.BLOCK ADDRESS TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 17. Top Boot Block Addresses, M29W008DT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 18. Bottom Boot Block Addresses, M29W008DB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
APPENDIX B.BLOCK PROTECTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Programmer Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3/34  
M29W008DT, M29W008DB  
In-System Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 19. Programmer Technique Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 14.Programmer Equipment Block Protect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 15.Programmer Equipment Chip Unprotect Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 16.In-System Equipment Block Protect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 17.In-System Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 20. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
4/34  
M29W008DT, M29W008DB  
SUMMARY DESCRIPTION  
The M29W008D is a 8 Mbit (1Mb x 8) non-volatile  
Flash memory that can be read, erased at block,  
multi-block or chip level and programmed at Byte  
level. These operations are performed using a sin-  
gle 2.7V to 3.6V VCC supply voltage. For Program  
and Erase operations the necessary high voltages  
are generated internally. The device can also be  
programmed using standard programming equip-  
ment.  
The memory is divided into blocks that are asym-  
metrically arranged. Both M29W008DT and  
M29W008DB devices have an array of 19 blocks  
composed of one Boot Block of 16 KBytes, two  
Parameter Blocks of 8 KBytes, one Main Block of  
32 KBytes and fifteen Main Blocks of 64 KBytes. In  
the M29W008DT, the Boot Block is located at the  
top of the memory address space while in the  
M29W008DB, it is located at the bottom. The  
memory maps are showed in Figure 4., Block Ad-  
dresses (Top Boot Block) and Figure 5., Block Ad-  
dresses (Bottom Boot Block). Each block can be  
erased and reprogrammed independently so it is  
possible to preserve valid data while old data is  
erased. Program and Erase commands are written  
to the Command Interface of the memory. An on-  
chip Program/Erase Controller simplifies the pro-  
cess of programming or erasing the memory by  
taking care of all of the special operations that are  
required to update the memory contents. The end  
of a program or erase operation can be detected  
and any error conditions identified. Erase opera-  
tions in one block can be temporarily suspended in  
order to read from or program in blocks that are  
not being erased. Each block can be programmed  
and erased over 100,000 cycles.  
Each block can be protected independently to pre-  
vent accidental Program or Erase commands from  
modifying the memory. All previously protected  
blocks can be temporarily unprotected.  
The device is offered in TSOP40 (10 x 20mm)  
package and supplied with all the bits erased (set  
to ’1’).  
Table 1. Signal Names  
Figure 2. Logic diagram  
A0-A19  
Address Inputs  
V
CC  
DQ0-DQ7  
Data Input/Outputs, Command Inputs  
Chip Enable  
20  
15  
E
A0-A19  
DQ0-DQ7  
G
Output Enable  
W
E
W
Write Enable  
M29W008DT  
M29W00DB  
RP  
RB  
Reset/Block Temporary Unprotect  
Ready/Busy Output  
Supply Voltage  
G
RB  
RP  
V
CC  
V
Ground  
SS  
NC  
Not Connected Internally  
V
SS  
AI08169  
5/34  
M29W008DT, M29W008DB  
Figure 3. TSOP Connections  
A16  
A15  
A14  
A13  
A12  
A11  
A9  
1
40  
A17  
V
SS  
NC  
A19  
A10  
DQ7  
DQ6  
DQ5  
DQ4  
A8  
W
RP  
NC  
RB  
A18  
A7  
10 M29W008DT 31  
M29W008DB  
V
V
CC  
CC  
11  
30  
NC  
DQ3  
DQ2  
DQ1  
DQ0  
G
A6  
A5  
A4  
A3  
V
E
SS  
A2  
A1  
20  
21  
A0  
AI09440  
6/34  
M29W008DT, M29W008DB  
Figure 4. Block Addresses (Top Boot Block)  
M29W008DT  
Top Boot Block Addresses  
FFFFFh  
FFFFFh  
16 KByte BOOT BLOCK  
FC000h  
FBFFFh  
F0000h  
EFFFFh  
8 KByte PARAMETER BLOCK  
64 KByte MAIN BLOCK  
64 KByte MAIN BLOCK  
FA000h  
F9FFFh  
E0000h  
DFFFFh  
8 KByte PARAMETER BLOCK  
F8000h  
D0000h  
CFFFFh  
F7FFFh  
32 KByte MAIN BLOCK  
64 KByte MAIN BLOCK  
64 KByte MAIN BLOCK  
64 KByte MAIN BLOCK  
64 KByte MAIN BLOCK  
F0000h  
AI09441  
7/34  
C0000h  
BFFFFh  
B0000h  
AFFFFh  
A0000h  
9FFFFh  
90000h  
8FFFFh  
64 KByte MAIN BLOCK  
64 KByte MAIN BLOCK  
64 KByte MAIN BLOCK  
Total of 16  
64 KByte Blocks  
80000h  
7FFFFh  
70000h  
6FFFFh  
60000h  
5FFFFh  
64 KByte MAIN BLOCK  
64 KByte MAIN BLOCK  
64 KByte MAIN BLOCK  
64 KByte MAIN BLOCK  
50000h  
4FFFFh  
40000h  
3FFFFh  
30000h  
2FFFFh  
20000h  
1FFFFh  
64 KByte MAIN BLOCK  
64 KByte MAIN BLOCK  
10000h  
0FFFFh  
00000h  
M29W008DT, M29W008DB  
Figure 5. Block Addresses (Bottom Boot Block)  
M29W008DB  
Bottom Boot Block Addresses  
FFFFFh  
64 KByte MAIN BLOCK  
F0000h  
EFFFFh  
64 KByte MAIN BLOCK  
E0000h  
DFFFFh  
64 KByte MAIN BLOCK  
D0000h  
CFFFFh  
64 KByte MAIN BLOCK  
C0000h  
BFFFFh  
64 KByte MAIN BLOCK  
B0000h  
AFFFFh  
64 KByte MAIN BLOCK  
A0000h  
9FFFFh  
64 KByte MAIN BLOCK  
90000h  
8FFFFh  
64 KByte MAIN BLOCK  
Total of 16  
64 KByte Blocks  
80000h  
7FFFFh  
64 KByte MAIN BLOCK  
64 KByte MAIN BLOCK  
70000h  
6FFFFh  
60000h  
5FFFFh  
64 KByte MAIN BLOCK  
64 KByte MAIN BLOCK  
64 KByte MAIN BLOCK  
64 KByte MAIN BLOCK  
50000h  
4FFFFh  
40000h  
3FFFFh  
0FFFFh  
32 KByte MAIN BLOCK  
08000h  
07FFFh  
30000h  
2FFFFh  
8 KByte PARAMETER BLOCK  
8 KByte PARAMETER BLOCK  
06000h  
05FFFh  
20000h  
1FFFFh  
64 KByte MAIN BLOCK  
10000h  
0FFFFh  
04000h  
03FFFh  
16 KByte BOOT BLOCK  
00000h  
00000h  
AI09442a  
8/34  
M29W008DT, M29W008DB  
SIGNAL DESCRIPTIONS  
See Figure 2., Logic diagram and Table 1., Signal  
Names, for a brief overview of the signals connect-  
ed to this device.  
Address Inputs (A0-A19). The address inputs  
for the memory array are latched during a Bus  
Write operation on the falling edge of Chip Enable,  
E or Write Enable, W. When A9 is raised to VID, ei-  
ther a Read Electronic Signature Manufacturer or  
Device Code, Block Protection Status or a Write  
Block Protection or Block Unprotection is enabled  
depending on the combination of levels on A0, A1  
A6, A12 and A15.  
is high impedance during Read mode, Auto Select  
mode and Erase Suspend mode.  
After a Hardware Reset, Bus Read and Bus Write  
operations cannot begin until Ready/Busy be-  
comes high impedance. See Table 14., Reset/  
Block Temporary Unprotect AC Characteristics  
and Figure 12., Reset/Block Temporary Unprotect  
AC Waveforms.  
During Program or Erase operations Ready/Busy  
is Low, VOL. Ready/Busy will remain Low during  
Read/Reset commands or Hardware Resets until  
the memory is ready to enter Read mode.  
Data Input/Outputs (DQ0-DQ7). During  
Bus  
Reset/Block Temporary Unprotect Input (RP).  
Write operations, the Data Inputs/Outputs input  
the data to be programmed in the memory array or  
a command to be written to the Command Inter-  
face. Both are latched on the rising edge of Chip  
Enable, E or Write Enable, W. The Data Inputs/  
Outputs output the data stored at the selected ad-  
dress during a Bus Read operation, the Electronic  
Signature (Manufacturer or Device codes), the  
Block Protection Status or the Data Polling bit  
(DQ7), Toggle Bits (DQ6) and DQ2), Error bit  
(DQ5) or Erase Timer bit (DQ3) of the Status Reg-  
ister. Outputs are valid when Chip Enable, E and  
Output Enable, G are active. The output is high im-  
pedance when the chip is deselected or the out-  
puts are disabled and when RP is Low.  
Chip Enable (E). The Chip Enable, E, activates  
the memory control logic, input buffers, decoders  
and sense amplifiers. When Chip Enable is High,  
VIH, the memory is deselected and the power con-  
sumption is reduced to the Standby level. The  
Chip Enable, E, can also be used to control Write  
operations to the command register and to the  
memory array, while W remains Low. The Chip  
Enable must be forced to VID during Block Unpro-  
tection operations.  
The Reset/Block Temporary Unprotect input, RP,  
can be used to apply a Hardware Reset to the  
memory or to temporarily unprotect all blocks that  
have been previously protected.  
A Hardware Reset is achieved by holding RP Low,  
VIL for at least tPLPX. After Reset/Block Temporary  
Unprotect goes High, VIH, if the device is in Read  
or Standby mode, it will be ready for new opera-  
tions tPHEL after the rising edge of RP. If the device  
is in Erase, Erase Suspend or Program mode, the  
Hardware Reset will last tPLYH during which the  
RB signal will be held at VIL. The end of the mem-  
ory Hardware Reset will be indicated by the rising  
edge of RB. A Hardware Reset during an Erase or  
Program operation will corrupt the data being pro-  
grammed or the blocks being erased. See Table  
14., Reset/Block Temporary Unprotect AC Char-  
acteristics and Figure 12., Reset/Block Temporary  
Unprotect AC Waveforms.  
Holding RP at VID will temporarily unprotect the  
previously protected blocks in the memory. Pro-  
gram and Erase operations on all blocks will be  
possible. The transition of RP from VIH to VID must  
slower than tPHPHH  
.
When RP is returned from VID to VIH all blocks  
temporarily unprotected will be again protected.  
VCC Supply Voltage. The power supply for all  
Output Enable (G). The Output Enable, G, gates  
the outputs through the data buffers during a Bus  
Read operation. When G is High, VIH, the outputs  
are high impedance. G must be forced to VID dur-  
ing Block Protection and Unprotection operations.  
Write Enable (W). This Write Enable, W, controls  
write operations of the memory’s Command Inter-  
face.  
operations (Read, Program and Erase).  
A 0.1µF capacitor should be connected between  
the VCC Supply Voltage pin and the VSS Ground  
pin to decouple the current surges from the power  
supply. The PCB track widths must be sufficient to  
carry the currents required during program and  
erase operations, ICC3  
Ready/Busy Output (RB). The Ready/Busy pin  
is an open-drain output that can be used to identify  
when the memory array can be read. Ready/Busy  
VSS Ground. VSS is the reference for all voltage  
measurements.  
9/34  
M29W008DT, M29W008DB  
BUS OPERATIONS  
There are 5 standard bus operations that control  
the device. These are Bus Read, us Write, Output  
Disable, Standby and Automatic Standby. See Ta-  
ble 2., Bus Operations, for a summary. Typically  
glitches of less than 5ns on Chip Enable or Write  
Enable are ignored by the memory and do not af-  
fect the bus operations.  
are high impedance, independent of the Output  
Enable G or Write Enable W inputs.  
Automatic Standby. If CMOS levels (VCC  
±
0.2V) are used to drive the bus and if the bus is in-  
active (no address transition, E = VIL) during  
150ns or more, the memory automatically enters a  
Automatic Standby mode where the Supply Cur-  
rent is reduced to the Standby Supply Current,  
Standard Bus Operations  
I
CC2. The Inputs/Outputs will still output data if a  
Bus Read. Bus Read operations are used to out-  
put the contents of the Memory Array, the Elec-  
tronic Signature, the Status Register or the Block  
Protection Status. Both Chip Enable E and Output  
Enable G must be Low in order to read the output  
of the memory. A new Bus Read operation is initi-  
ated either on the falling edge of Chip Enable, E,  
or on any address transition with E at VIL.  
Bus Read operation is in progress.  
Special Bus Operations  
Additional bus operations can be performed to  
read the Electronic Signature and also to apply  
and remove Block Protection. These bus opera-  
tions are intended for use by programming equip-  
ment and are not usually used in applications.  
They require VID to be applied to some pins.  
Read Electronic Signature. The memory has  
two codes, the Manufacturer code and the Device  
code, that can be read to identify the memory.  
These codes allow programming equipment or ap-  
plications to automatically match their interface to  
the characteristics of the M29W008D.  
The electronic Signature is output either by apply-  
ing the signals listed in Table 2., Bus Operations  
or by issuing an Auto Select command (see Auto  
Select command description in the XX section).  
Block Protection and Unprotection. Each  
block can be individually protected against acci-  
dental Program or Erase using programming  
equipment. Protected blocks can be unprotected  
to allow data to be changed.  
There are two methods available for protecting  
and unprotecting the blocks, one for use on pro-  
gramming equipment (Programmer Technique)  
and the other for in-system use (In-System Tech-  
nique). Block Protect and Chip Unprotect opera-  
tions are described in APPENDIX B., BLOCK  
PROTECTION.  
See Figure 9., Read Mode AC Waveforms, and  
Tables Table 11., Read AC Characteristics for de-  
tails of the timing requirements.  
Bus Write. Bus Write operations are used to write  
to the Command Interface or to latch input data to  
be programmed. A valid Bus Write operation be-  
gins by setting the desired address on the Address  
Inputs. The Address Inputs are latched by the  
Command Interface on the falling edge of Chip En-  
able or Write Enable, whichever occurs last. The  
Data Inputs/Outputs are latched by the Command  
Interface on the rising edge of Chip Enable or  
Write Enable, whichever occurs first. Output En-  
able must remain High, VIH, during the whole Bus  
Write operation.  
See Figures 10 and 11, Write AC Waveforms and  
Tables 12 and 13, Write AC Characteristics, for  
details of the timing requirements.  
Output Disable. The data outputs are high im-  
pedance when the Output Enable G is High with  
Write Enable W High.  
Standby. The memory is in Standby mode when  
Chip Enable, E, is High and the Program/Erase  
Controller is idle. The Supply Current is reduced to  
the Standby Supply Current, ICC2, and the outputs  
10/34  
M29W008DT, M29W008DB  
Table 2. Bus Operations  
Operation  
DQ0-  
DQ7  
E
G
W
RP  
Address Inputs A0-A19  
Data  
Output  
V
V
V
V
Byte Read  
Byte Write  
Cell Address  
IL  
IL  
IH  
IH  
Data  
Input  
V
V
V
V
V
V
IH  
Command Address  
IL  
IL  
IH  
IH  
IL  
V
V
V
IH  
Output Disable  
Standby  
X
X
Hi-Z  
Hi-Z  
IH  
V
IH  
X
X
IH  
A0= V , A1= V , A9=V ,  
others address bits are ‘Don’t Care’  
IL  
IL  
ID  
V
V
V
V
V
V
Manufacturer Code  
Read  
20h  
IL  
IL  
IL  
IL  
IH  
IH  
IH  
Electronic  
M29W008DT  
M29W008DB  
D2h  
DCh  
A0= V , A1= V , A9=V ,  
Device  
Code  
IH  
IL  
ID  
signature  
V
V
IH  
others address bits are ‘Don’t Care’  
Note: 1. X = V or V  
.
IH  
IL  
11/34  
M29W008DT, M29W008DB  
COMMAND INTERFACE  
All Bus Write operations to the memory are inter-  
preted by the Command Interface.  
eration latches the address and data and starts the  
Program/Erase Controller.  
Commands consist of one or more sequential Bus  
Write operations. Failure to observe a valid se-  
quence of Bus Write operations will result in the  
memory returning to Read mode. The long com-  
mand sequences are imposed to maximize data  
security. All commands start with two coded cycles  
which unlock the Command Interface.  
Seven commands are available: Read/Reset,  
Auto Select (to read the Electronic Signature and  
the Block Protection Status), Program, Block  
Erase, Chip Erase, Erase Suspend and Erase Re-  
sume (see Table 3., Commands).  
If the address falls in a protected block then the  
Program command is ignored, the data remains  
unchanged. The Status Register is never read and  
no error condition is given.  
During the program operation the memory will ig-  
nore all commands. It is not possible to issue any  
command to abort or pause the operation. Typical  
program times are given in Table 4., Program,  
Erase Times and Program, Erase Endurance Cy-  
cles. Bus Read operations during the program op-  
eration will output the Status Register on the Data  
Inputs/Outputs. See STATUS REGISTER section  
for more details.  
Read/Reset Command. The Read/Reset com-  
mand returns the memory to its Read mode where  
it behaves like a ROM or EPROM, unless other-  
wise stated. It also resets the errors in the Status  
Register. Either one or three Bus Write operations  
can be used to issue the Read/Reset command.  
After the program operation has completed the  
memory will return to the Read mode, unless an  
error has occurred. When an error occurs the  
memory will continue to output the Status Regis-  
ter. A Read/Reset command must be issued to re-  
set the error condition and return to Read mode.  
The Read/Reset Command can be issued, be-  
tween Bus Write cycles before the start of a pro-  
gram or erase operation, to return the device to  
read mode. Once the program or erase operation  
has started the Read/Reset command is no longer  
accepted. The Read/Reset command will not  
abort an Erase operation when issued while in  
Erase Suspend.  
Auto Select Command. The Auto Select com-  
mand is used to read the Manufacturer Code, the  
Device Code and the Block Protection Status.  
Three consecutive Bus Write operations are re-  
quired to issue the Auto Select command. Once  
the Auto Select command is issued the memory  
remains in Auto Select mode until another com-  
mand is issued.  
From the Auto Select mode the Manufacturer  
Code can be read using a Bus Read operation  
with A0 = VIL and A1 = VIL. The other address bits  
may be set to either VIL or VIH.  
The Device Code can be read using a Bus Read  
operation with A0 = VIH and A1 = VIL. The other  
address bits may be set to either VIL or VIH.  
Note that the Program command cannot change a  
bit set at ’0’ back to ’1’. One of the Erase Com-  
mands must be used to set all the bits in a block or  
in the whole memory from ’0’ to ’1’.  
Unlock Bypass Command. The Unlock Bypass  
command is used in conjunction with the Unlock  
Bypass Program command to program the memo-  
ry. When the access time to the device is long (as  
with some EPROM programmers) considerable  
time saving can be made by using these com-  
mands. Three Bus Write operations are required  
to issue the Unlock Bypass command.  
Once the Unlock Bypass command has been is-  
sued the memory will only accept the Unlock By-  
pass Program command and the Unlock Bypass  
Reset command. The memory can be read as if in  
Read mode.  
Unlock Bypass Program Command. The Un-  
lock Bypass Program command can be used to  
program one address in memory at a time. The  
command requires two Bus Write operations, the  
final write operation latches the address and data  
and starts the Program/Erase Controller.  
The Block Protection Status of each block can be  
read using a Bus Read operation with A0 = VIL, A1  
= VIH, and A13-A19 specifying the address of the  
block. The other address bits may be set to either  
VIL or VIH. If the addressed block is protected  
then 01h is output on Data Inputs/Outputs DQ0-  
DQ7, otherwise 00h is output.  
Program Command. The Program command  
can be used to program a value to one address in  
the memory array at a time. The command re-  
quires four Bus Write operations, the final write op-  
The Program operation using the Unlock Bypass  
Program command behaves identically to the Pro-  
gram operation using the Program command. A  
protected block cannot be programmed; the oper-  
ation cannot be aborted and the Status Register is  
read. Errors must be reset using the Read/Reset  
command, which leaves the device in Unlock By-  
pass Mode. See the Program command for details  
on the behavior.  
Unlock Bypass Reset Command. The Unlock  
Bypass Reset command can be used to return to  
12/34  
M29W008DT, M29W008DB  
Read/Reset mode from Unlock Bypass Mode.  
Two Bus Write operations are required to issue the  
Unlock Bypass Reset command. Read/Reset  
command does not exit from Unlock Bypass  
Mode.  
During the erase operation the memory will ignore  
all commands. It is not possible to issue any com-  
mand to abort the operation. Typical program  
times are given in Table 4., Program, Erase Times  
and Program, Erase Endurance Cycles. All Bus  
Read operations during the Chip Erase operation  
will output the Status Register on the Data Inputs/  
Outputs. See the section on the Status Register  
for more details.  
After the Chip Erase operation has completed the  
memory will return to the Read Mode, unless an  
error has occurred. When an error occurs the  
memory will continue to output the Status Regis-  
ter. A Read/Reset command must be issued to re-  
set the error condition and return to Read Mode.  
The Chip Erase Command sets all of the bits in un-  
protected blocks of the memory to ’1’. All previous  
data is lost.  
Erase Suspend Command. The Erase Suspend  
Command may be used to temporarily suspend a  
Block Erase operation and return the memory to  
Read mode. The command requires one Bus  
Write operation.  
The Program/Erase Controller will suspend within  
the Erase Suspend Latency Time after the Erase  
Suspend Command is issued (see Table  
4., Program, Erase Times and Program, Erase  
Endurance Cycles). Once the Program/Erase  
Controller has stopped the memory will be set to  
Read mode and the Erase will be suspended. If  
the Erase Suspend command is issued during the  
period when the memory is waiting for an addition-  
al block (before the Program/Erase Controller  
starts) then the Erase is suspended immediately  
and will start immediately when the Erase Resume  
Command is issued. It is not possible to select any  
further blocks to erase after the Erase Resume.  
Block Erase Command. The Block Erase com-  
mand can be used to erase a list of one or more  
blocks. Six Bus Write operations are required to  
select the first block in the list. Each additional  
block in the list can be selected by repeating the  
sixth Bus Write operation using the address of the  
additional block. The Block Erase operation starts  
the Program/Erase Controller about 50µs after the  
last Bus Write operation. Once the Program/Erase  
Controller starts it is not possible to select any  
more blocks. Each additional block must therefore  
be selected within 50µs of the last block. The 50µs  
timer restarts when an additional block is selected.  
The Status Register can be read after the sixth  
Bus Write operation. See the Status Register for  
details on how to identify if the Program/Erase  
Controller has started the Block Erase operation.  
If any selected blocks are protected then these are  
ignored and all the other selected blocks are  
erased. If all of the selected blocks are protected  
the Block Erase operation appears to start but will  
terminate within about 100µs, leaving the data un-  
changed. No error condition is given when protect-  
ed blocks are ignored.  
During the Block Erase operation the memory will  
ignore all commands except the Erase Suspend  
command. Typical program times are given in Ta-  
ble 4., Program, Erase Times and Program, Erase  
Endurance Cycles. All Bus Read operations dur-  
ing the Block Erase operation will output the Sta-  
tus Register on the Data Inputs/Outputs. See the  
section on the Status Register for more details.  
After the Block Erase operation has completed the  
memory will return to the Read Mode, unless an  
error has occurred. When an error occurs the  
memory will continue to output the Status Regis-  
ter. A Read/Reset command must be issued to re-  
set the error condition and return to Read mode.  
The Block Erase Command sets all of the bits in  
the unprotected selected blocks to ’1’. All previous  
data in the selected blocks is lost.  
Chip Erase Command. The Chip Erase com-  
mand can be used to erase the entire chip. Six Bus  
Write operations are required to issue the Chip  
Erase Command and start the Program/Erase  
Controller.  
If any blocks are protected then these are ignored  
and all the other blocks are erased. If all of the  
blocks are protected the Chip Erase operation ap-  
pears to start but will terminate within about 100µs,  
leaving the data unchanged. No error condition is  
given when protected blocks are ignored.  
During Erase Suspend it is possible to Read and  
Program cells in blocks that are not being erased;  
both Read and Program operations behave as  
normal on these blocks. If any attempt is made to  
program in a protected block or in the suspended  
block then the Program command is ignored and  
the data remains unchanged. The Status Register  
is not read and no error condition is given. Read-  
ing from blocks that are being erased will output  
the Status Register.  
It is also possible to issue the Auto Select, during  
an Erase Suspend. The Read/Reset command  
must be issued to return the device to Read Array  
mode before the Resume command will be ac-  
cepted.  
Erase Resume Command. The Erase Resume  
command must be used to restart the Program/  
Erase Controller from Erase Suspend. An erase  
can be suspended and resumed more than once.  
13/34  
M29W008DT, M29W008DB  
Table 3. Commands  
(3,7)  
Bus Write Operations  
3rd 4th  
Add Data Add Data Add Data Add Data Add Data Add Data Add Data  
F0h Read Memory Array until a new write cycle is initiated.  
Command  
1st  
2nd  
5th  
6th  
7th  
1+  
X
(2,4)  
Read/Reset  
3+ 555h AAh 2AAh 55h 555h F0h Read Memory Array until a new write cycle is initiated.  
Read Electronic Signature or Block Protection Status  
3+ 555h AAh 2AAh 55h 555h 90h  
(4)  
Auto Select  
Program  
until a new write cycle is initiated. See Note 5 and 6.  
Read Data Polling or Toggle Bit until  
Program completes.  
4
3
2
555h AAh 2AAh 55h 555h A0h  
555h AAh 2AAh 55h 555h 20h  
PA  
PD  
Unlock Bypass  
Unlock Bypass  
Program  
X
X
A0h  
90h  
PA  
X
PD  
Unlock Bypass  
Reset  
2
6
00h  
Chip Erase  
Block Erase  
555h AAh 2AAh 55h 555h 80h 555h AAh 2AAh 55h 555h 10h  
BA 30h  
Note 9  
(8)  
6+ 555h AAh 2AAh 55h 555h 80h 555h AAh 2AAh 55h  
30h  
AB  
Read until Toggle stops, then read all the data needed from any Block(s) not being  
erased then Resume Erase.  
(10)  
1
1
X
X
B0h  
30h  
Erase Suspend  
Erase Resume  
Read Data Polling or Toggle Bits until Erase completes or Erase is suspended  
another time.  
Note: 1. Commands not interpreted in this table will default to read array mode.  
2. A wait of t is necessary after a Read/Reset command if the memory was in an Erase or Program mode before starting any new  
PLYH  
operation (see Table 11., Read AC Characteristics).  
3. X = Don't Care. PA = Program Address, PD = Program Data, BA = Block Address, AB = Additional Block  
4. The first cycles of the Read/Reset and Auto Select commands are followed by read operations. Any number of read cycles can  
occur after the command cycles.  
5. Signature Address bits A0, A1, at V will output the Manufacturer Code (20h). Address bits A0 at V and A1, at V will output the  
IL  
IH  
IL  
Device Code.  
6. Block Protection Address: A0, at V , A1 at V and A13-A19 within the Block will output the Block Protection status.  
IL  
IH  
7. For Coded cycles address inputs A15-A19 are don't care.  
8. Optional, Additional Block (AB) addresses must be entered within the erase time-out delay after last write entry, time-out status can  
be verified through DQ3 value (see Erase Timer Bit DQ3 description). When full command is entered, read Data Polling or Toggle  
bit until Erase has completed or is suspended.  
9. Read Data Polling, Toggle bits or RB until Erase completes.  
10. During Erase Suspend, Read and Data Program functions are allowed in blocks not being erased.  
14/34  
M29W008DT, M29W008DB  
Table 4. Program, Erase Times and Program, Erase Endurance Cycles  
(1, 2)  
(2)  
Parameter  
Min  
Unit  
s
Typ  
12  
Max  
(3)  
Chip Erase  
60  
(4)  
Block Erase (64 KBytes)  
0.8  
15  
10  
12  
s
6
(3)  
Erase Suspend Latency Time  
Program (Byte)  
µs  
µs  
25  
(3)  
200  
(3)  
Chip Program (Byte by Byte)  
Program/Erase Cycles (per Block)  
Data Retention  
s
60  
100,000  
20  
cycles  
years  
Note: 1. Typical values measured at room temperature and nominal voltages.  
2. Sampled, but not 100% tested.  
3. Maximum value measured at worst case conditions for both temperature and V after 100,00 program/erase cycles.  
CC  
4. Maximum value measured at worst case conditions for both temperature and V  
.
CC  
15/34  
M29W008DT, M29W008DB  
STATUS REGISTER  
The status of the Program/Erase Controller during  
command execution is indicated by bit DQ7 (Data  
Polling bit), Toggle bits DQ6 and DQ2 and Error  
bits DQ3 and DQ5. Any attempt to read the memo-  
ry array during Program or Erase command execu-  
tion will automatically output these five Status  
Register bits. The Program/Erase Controller auto-  
matically sets bits DQ2, DQ3, DQ5, DQ6 and DQ7.  
Other bits (DQ0, DQ1 and DQ4) are reserved for  
future use and should be masked (see Table  
5., Status Register Bits).  
Data Polling Bit (DQ7). The Data Polling Bit can  
be used to identify whether the Program/Erase  
Controller has successfully completed its operation  
or if it has responded to an Erase Suspend. The  
Data Polling Bit is output on DQ7 when the Status  
Register is read.  
During Program operations the Data Polling Bit  
outputs the complement of the bit being pro-  
grammed to DQ7. After successful completion of  
the Program operation the memory returns to Read  
mode and Bus Read operations from the address  
just programmed output DQ7, not its complement.  
During Erase operations the Data Polling Bit out-  
puts ’0’, the complement of the erased state of  
DQ7. After successful completion of the Erase op-  
eration the memory returns to Read Mode.  
In Erase Suspend mode the Data Polling Bit will  
output a ’1’ during a Bus Read operation within a  
block being erased. The Data Polling Bit will  
change from a ’0’ to a ’1’ when the Program/Erase  
Controller has suspended the Erase operation.  
Figure 6., Data Polling Flowchart gives an exam-  
ple of how to use the Data Polling Bit. A Valid Ad-  
dress is the address being programmed or an  
address within the block being erased.  
Toggle Bit (DQ6). The Toggle Bit can be used to  
identify whether the Program/Erase Controller has  
successfully completed its operation or if it has re-  
sponded to an Erase Suspend. The Toggle Bit is  
output on DQ6 when the Status Register is read.  
suspended block, the operation is aborted, no error  
is signalled and DQ6 toggles for approximately  
1µs.  
Figure 7., Data Toggle Flowchart gives an exam-  
ple of how to use the Data Toggle bit.  
Error Bit (DQ5). The Error Bit can be used to  
identify errors detected by the Program/Erase Con-  
troller. The Error Bit is set to ’1’ when a Program,  
Block Erase or Chip Erase operation fails to write  
the correct data to the memory. If the Error Bit is set  
a Read/Reset command must be issued before  
other commands are issued. The Error bit is output  
on DQ5 when the Status Register is read.  
Note that the Program command cannot change a  
bit set to ’0’ back to ’1’ and attempting to do so will  
set DQ5 to ‘1’. A Bus Read operation to that ad-  
dress will show the bit is still ‘0’. One of the Erase  
commands must be used to set all the bits in a  
block or in the whole memory from ’0’ to ’1’  
Erase Timer Bit (DQ3). The Erase Timer Bit can  
be used to identify the start of Program/Erase Con-  
troller operation during a Block Erase command.  
Once the Program/Erase Controller starts erasing  
the Erase Timer Bit is set to ’1’. Before the Pro-  
gram/Erase Controller starts the Erase Timer Bit is  
set to ’0’ and additional blocks to be erased may be  
written to the Command Interface. The Erase Tim-  
er Bit is output on DQ3 when the Status Register is  
read.  
Alternative Toggle Bit (DQ2). The  
Alternative  
Toggle Bit can be used to monitor the Program/  
Erase controller during Erase operations. The Al-  
ternative Toggle Bit is output on DQ2 when the Sta-  
tus Register is read.  
During Chip Erase and Block Erase operations the  
Toggle Bit changes from ’0’ to ’1’ to ’0’, etc., with  
successive Bus Read operations from addresses  
within the blocks being erased. A protected block is  
treated the same as a block not being erased.  
Once the operation completes the memory returns  
to Read mode.  
During Program and Erase operations the Toggle  
Bit changes from ’0’ to ’1’ to ’0’, etc., with succes-  
sive Bus Read operations at any address. After  
successful completion of the operation the memory  
returns to Read mode.  
During Erase Suspend mode the Toggle Bit will  
output when addressing a cell within a block being  
erased. The Toggle Bit will stop toggling when the  
Program/Erase Controller has suspended the  
Erase operation.  
During Erase Suspend the Alternative Toggle Bit  
changes from ’0’ to ’1’ to ’0’, etc. with successive  
Bus Read operations from addresses within the  
blocks being erased. Bus Read operations to ad-  
dresses within blocks not being erased will output  
the memory cell data as if in Read mode.  
After an Erase operation that causes the Error Bit  
to be set the Alternative Toggle Bit can be used to  
identify which block or blocks have caused the er-  
ror. The Alternative Toggle Bit changes from ’0’ to  
’1’ to ’0’, etc. with successive Bus Read Operations  
from addresses within blocks that have not erased  
correctly. The Alternative Toggle Bit does not  
change if the addressed block has erased correct-  
ly.  
If any attempt is made to erase a protected block,  
the operation is aborted, no error is signalled and  
DQ6 toggles for approximately 100µs. If any at-  
tempt is made to program a protected block or a  
16/34  
M29W008DT, M29W008DB  
Table 5. Status Register Bits  
Operation  
Program  
Address  
DQ7  
DQ6  
DQ5  
DQ3  
DQ2  
RB  
Any Address  
Any Address  
DQ7  
Toggle  
0
0
Program During Erase  
Suspend  
DQ7  
Toggle  
0
0
Program Error  
Chip Erase  
Any Address  
Any Address  
DQ7  
Toggle  
Toggle  
1
0
0
0
0
0
0
1
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
Toggle  
Erasing Block  
Toggle  
Toggle  
Block Erase before  
timeout  
Non-Erasing Block  
Erasing Block  
Toggle  
No Toggle  
Toggle  
Toggle  
Block Erase  
Erase Suspend  
Erase Error  
Non-Erasing Block  
Erasing Block  
Toggle  
No Toggle  
Toggle  
No Toggle  
Non-Erasing Block  
Good Block Address  
Faulty Block Address  
Data read as normal  
0
0
Toggle  
Toggle  
1
1
1
No Toggle  
Toggle  
1
Note: 1. Unspecified data bits should be ignored.  
Figure 6. Data Polling Flowchart  
Figure 7. Data Toggle Flowchart  
START  
START  
READ DQ6  
READ DQ5 & DQ7  
at VALID ADDRESS  
READ  
DQ5 & DQ6  
DQ7  
=
DATA  
YES  
DQ6  
NO  
=
NO  
TOGGLE  
YES  
NO  
DQ5  
= 1  
NO  
DQ5  
= 1  
YES  
YES  
READ DQ7  
at VALID ADDRESS  
READ DQ6  
TWICE  
DQ7  
=
DATA  
YES  
DQ6  
=
NO  
NO  
FAIL  
TOGGLE  
YES  
FAIL  
PASS  
PASS  
AI03598  
AI01370C  
17/34  
M29W008DT, M29W008DB  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings table may cause per-  
manent damage to the device. Exposure to Abso-  
lute Maximum Rating conditions for extended  
periods may affect device reliability. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
Table 6. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
Unit  
°C  
T
Temperature Under Bias  
Storage Temperature  
–50 to 125  
–65 to 150  
BIAS  
T
°C  
STG  
(1)  
(2)  
T
°C  
LEAD  
Lead Temperature during Soldering  
Input or Output Voltage  
Supply Voltage  
260  
(3)  
–0.6 to 5  
–0.6 to 5  
V
V
V
V
IO  
V
CC  
(4)  
Identification Voltage  
–0.6 to 13.5  
V
ID  
1. Compliant with the ST 7191395 specification for Lead-free soldering processes.  
2. Not exceeding 250°C for more than 30s, and peaking at 260°C.  
3.  
V
and V may undershoot to –2V during transition and for less than 20ns during transitions.  
ID IO  
18/34  
M29W008DT, M29W008DB  
DC AND AC CHARACTERISTICS  
This section summarizes the operating measure-  
ment conditions, and the DC and AC characteris-  
tics of the device. The parameters in the DC and  
AC characteristics Tables that follow, are derived  
from tests performed under the Measurement  
Conditions summarized in Table 7, Operating and  
AC Measurement Conditions. Designers should  
check that the operating conditions in their circuit  
match the operating conditions when relying on  
the quoted parameters.  
Table 7. Operating and AC Measurement Conditions  
M29W008D  
Parameter  
70  
90  
Unit  
Min  
Max  
3.6  
85  
Min  
2.7  
–40  
0
Max  
3.6  
85  
V
Supply Voltage  
2.7  
–40  
0
V
CC  
Ambient Operating Temperature (range 6)  
Ambient Operating Temperature (range 1)  
°C  
70  
70  
Load Capacitance (C )  
30  
100  
pF  
ns  
V
L
Input Rise and Fall Times  
10  
10  
0 to V  
0 to V  
Input Pulse Voltages  
CC  
CC  
V
CC  
/2  
V
/2  
CC  
Input and Output Timing Ref. Voltages  
V
Table 8. AC Testing Input Output Waveform  
Figure 8. AC Testing Load Circuit  
0.8V  
V
CC  
1N914  
V
CC/2  
0V  
3.3k  
AI09444  
DEVICE  
UNDER  
TEST  
OUT  
C
L
C
includes JIG capacitance  
L
AI09445  
Table 9. Device Capacitance  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
Min  
Max  
6
Unit  
pF  
C
V
IN  
= 0V  
= 0V  
IN  
C
V
OUT  
12  
pF  
OUT  
Note: 1. Sampled only, not 100% tested.  
19/34  
M29W008DT, M29W008DB  
Table 10. DC Characteristics  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Supply Current (Read)  
Test Condition  
Min  
Max  
±1  
Unit  
µA  
I
LI  
0V V V  
IN  
CC  
I
LO  
0V V  
V  
OUT CC  
±1  
µA  
I
E = V , G = V , f = 6MHz  
IL IH  
10  
mA  
CC1  
E = V ±0.2V  
CC  
I
Supply Current (Standby)  
100  
µA  
CC2  
RP = V ±0.2V  
CC  
Supply Current  
(Program or Erase)  
Program,/ Erase Controller  
active  
(1)  
20  
mA  
I
CC3  
V
Input Low Voltage  
–0.5  
0.8  
V
V
IL  
V
V
0.7 V  
V
+ 0.3  
CC  
Input High Voltage  
IH  
CC  
I
OL  
= 1.8mA  
Output Low Voltage  
0.45  
V
OL  
V
I
= –100µA  
V
–0.4V  
CC  
Output High Voltage CMOS  
A9 Voltage (Electronic Signature)  
A9 Current (Electronic Signature)  
V
OH  
OH  
V
11.5  
12.5  
100  
V
ID  
ID  
I
A9 = V  
µA  
ID  
Supply Voltage (Erase and Program  
lock-out)  
(1)  
1.8  
2.3  
V
V
LKO  
Note: 1. Sampled only, not 100% tested.  
Figure 9. Read Mode AC Waveforms  
tAVAV  
VALID  
A0-A19  
tAVQV  
tAXQX  
E
tELQV  
tELQX  
tEHQX  
tEHQZ  
G
tGLQX  
tGLQV  
tGHQX  
tGHQZ  
VALID  
DQ0-DQ7  
AI09446  
20/34  
M29W008DT, M29W008DB  
Table 11. Read AC Characteristics  
M29W008D  
Symbol  
Alt  
Parameter  
Test Condition  
Unit  
70  
90  
E = V ,  
IL  
t
t
Address Valid to Next Address Valid  
Address Valid to Output Valid  
Min  
70  
90  
ns  
ns  
AVAV  
RC  
G = V  
IL  
E = V ,  
IL  
t
t
ACC  
Max  
70  
90  
AVQV  
G = V  
G = V  
G = V  
E = V  
IL  
IL  
IL  
(1)  
t
Chip Enable Low to Output Transition  
Chip Enable Low to Output Valid  
Output Enable Low to Output Transition  
Output Enable Low to Output Valid  
Chip Enable High to Output Hi-Z  
Min  
Max  
Min  
0
0
ns  
ns  
ns  
ns  
ns  
t
LZ  
ELQX  
t
t
70  
0
90  
0
ELQV  
CE  
(1)  
t
t
t
OLZ  
IL  
IL  
GLQX  
t
t
E = V  
Max  
Max  
30  
25  
35  
30  
GLQV  
OE  
(1)  
t
G = V  
HZ  
DF  
IL  
IL  
EHQZ  
GHQZ  
(1)  
t
E = V  
Output Enable High to Output Hi-Z  
Max  
Min  
25  
0
30  
0
ns  
ns  
t
t
t
EHQX  
Chip Enable, Output Enable or Address  
Transition to Output Transition  
t
GHQX  
OH  
t
AXQX  
Note: 1. Sampled only, not 100% tested.  
2. Address are latched on the falling edge of W, Data is latched on the rising edge of W.  
Figure 10. Write AC Waveforms, W Controlled  
tAVAV  
A0-A19  
VALID  
tWLAX  
tAVWL  
tWHEH  
E
tELWL  
tWHGL  
G
W
tGHWL  
tWLWH  
tWHWL  
tWHDX  
tDVWH  
VALID  
DQ0-DQ7  
V
CC  
tVCHEL  
RB  
AI02192  
tWHRL  
21/34  
M29W008DT, M29W008DB  
Table 12. Write AC Characteristics, W Controlled  
M29W008D  
Symbol  
Alt  
Parameter  
Unit  
70  
70  
0
90  
90  
0
t
t
WC  
Address Valid to Next Address Valid  
Chip Enable Low to Write Enable Low  
Write Enable Low to Write Enable High  
Input Valid to Write Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
t
CS  
ELWL  
t
t
45  
45  
0
50  
50  
0
WLWH  
WP  
t
t
DVWH  
DS  
DH  
CH  
t
t
t
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Write Enable High to Write Enable Low  
Address Valid to Write Enable Low  
Write Enable Low to Address Transition  
Output Enable High to Write Enable Low  
Write Enable High to Output Enable Low  
Program/Erase Valid to RB Low  
WHDX  
t
0
0
WHEH  
t
t
WPH  
30  
0
30  
0
WHWL  
t
t
AS  
AVWL  
t
t
45  
0
50  
0
WLAX  
AH  
t
GHWL  
t
t
OEH  
0
0
WHGL  
(1)  
t
30  
50  
35  
50  
t
BUSY  
WHRL  
t
t
V
High to Chip Enable Low  
CC  
Min  
µs  
VCHEL  
VCS  
Note: 1. Sampled only, not 100% tested.  
Figure 11. Write AC Waveforms, E Controlled  
tAVAV  
VALID  
A0-A19  
tELAX  
tAVEL  
tEHWH  
W
tWLEL  
tEHGL  
G
tGHEL  
tELEH  
E
tEHEL  
tEHDX  
tDVEH  
VALID  
DQ0-DQ7  
V
CC  
tVCHWL  
RB  
tEHRL  
Note: 1. Address are latched on the falling edge of E, Data is latched on the rising edge of E.  
AI02193  
22/34  
M29W008DT, M29W008DB  
Table 13. Write AC Characteristics, E Controlled  
M29W008D  
Unit  
Symbol  
Alt  
Parameter  
70  
70  
0
90  
90  
0
t
t
WC  
Address Valid to Next Address Valid  
Write Enable Low to Chip Enable Low  
Chip Enable Low to Chip Enable High  
Input Valid to Chip Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
t
WS  
WLEL  
t
t
45  
45  
0
50  
50  
0
ELEH  
CP  
DS  
DH  
t
t
t
DVEH  
t
Chip Enable High to Input Transition  
Chip Enable High to Write Enable High  
Chip Enable High to Chip Enable Low  
Address Valid to Chip Enable Low  
Chip Enable Low to Address Transition  
Output Enable High Chip Enable Low  
Chip Enable High to Output Enable Low  
Program/Erase Valid to RB Low  
EHDX  
t
t
WH  
0
0
EHWH  
t
t
30  
0
30  
0
EHEL  
CPH  
t
t
AS  
AVEL  
t
t
45  
0
50  
0
ELAX  
AH  
t
GHEL  
t
t
0
0
EHGL  
OEH  
(1)  
t
30  
50  
35  
50  
t
BUSY  
EHRL  
t
t
V
High to Write Enable Low  
CC  
Min  
µs  
VCHWL  
VCS  
Note: 1. Sampled only, not 100% tested.  
Figure 12. Reset/Block Temporary Unprotect AC Waveforms  
W, E, G  
tPHWL, tPHEL, tPHGL  
RB  
tRHWL, tRHEL, tRHGL  
tPHPHH  
tPLPX  
RP  
tPLYH  
AI09447  
23/34  
M29W008DT, M29W008DB  
Table 14. Reset/Block Temporary Unprotect AC Characteristics  
M29W008D  
Symbol  
Alt  
Parameter  
Unit  
70  
90  
(1)  
t
PHWL  
RP High to Write Enable Low, Chip Enable Low,  
Output Enable Low  
t
t
Min  
Min  
50  
50  
ns  
PHEL  
RH  
(1)  
t
PHGL  
(1)  
(1)  
(1)  
t
t
RHWL  
RB High to Write Enable Low, Chip Enable Low,  
Output Enable Low  
t
0
0
ns  
t
RB  
RHEL  
RHGL  
t
t
RP Pulse Width  
Min  
500  
10  
500  
10  
ns  
µs  
PLPX  
RP  
(1)  
t
RP Low to Read Mode  
Max  
t
READY  
PLYH  
(1)  
t
RP Rise Time to V  
Min  
500  
500  
ns  
t
VIDR  
ID  
PHPHH  
Note: 1. Sampled only, not 100% tested.  
24/34  
M29W008DT, M29W008DB  
PACKAGE MECHANICAL  
Figure 13. TSOP40 - 40 lead Plastic Thin Small Outline, 10 x 20mm, Package Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
Note: Drawing is not to scale.  
A1  
α
L
Table 15. TSOP40 - 40 lead Plastic Thin Small Outline, 10 x 20mm, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
1.200  
0.150  
1.050  
0.270  
0.210  
0.100  
20.200  
18.500  
Typ  
Max  
0
A
A1  
A2  
B
0.050  
0.950  
0.170  
0.100  
0
0
0
0
0
0
0
C
0
CP  
D
0
19.800  
18.300  
1
1
0
0
0
1
D1  
e
1
0.500  
0
E
9.900  
0.500  
0
10.100  
0.700  
5
0
L
0
5
α
N
40  
40  
25/34  
M29W008DT, M29W008DB  
PART NUMBERING  
Table 16. Ordering Information Scheme  
Example:  
M29W008DT  
70  
N
1
T
Device Type  
M29  
Operating Voltage  
W = 2.7 to 3.6V  
Device Function  
008D = 8 Mbit (1Mb x8), Boot Block  
Array Matrix  
T = Top Boot  
B = Bottom Boot  
Speed  
70 = 70ns  
90 = 90ns  
Package  
N = TSOP40: 10 x 20 mm  
Temperature Range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Option  
Blank = Standard Packing  
T = Tape & Reel Packing, 24mm  
E = Lead-free Package, Standard Packing  
F = Lead-free Package, Tape & Reel Packing, 24mm  
Devices are shipped from the factory with the memory content bits erased to ’1’.  
For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device,  
please contact the ST Sales Office nearest to you.  
26/34  
M29W008DT, M29W008DB  
APPENDIX A. BLOCK ADDRESS TABLE  
Table 17. Top Boot Block Addresses,  
M29W008DT  
Table 18. Bottom Boot Block Addresses,  
M29W008DB  
Size  
(Kbytes)  
Address Range  
(x8)  
Size  
(Kbytes)  
Address Range  
(x8)  
#
#
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
16  
8
FC000h-FFFFFh  
FA000h-FBFFFh  
F8000h-F9FFFh  
F0000h-F7FFFh  
E0000h-EFFFFh  
D0000h-DFFFFh  
C0000h-CFFFFh  
B0000h-BFFFFh  
A0000h-AFFFFh  
90000h-9FFFFh  
80000h-8FFFFh  
70000h-7FFFFh  
60000h-6FFFFh  
50000h-5FFFFh  
40000h-4FFFFh  
30000h-3FFFFh  
20000h-2FFFFh  
10000h-1FFFFh  
00000h-0FFFFh  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
32  
8
F0000h-FFFFFh  
E0000h-EFFFFh  
D0000h-DFFFFh  
C0000h-CFFFFh  
B0000h-BFFFFh  
A0000h-AFFFFh  
90000h-9FFFFh  
80000h-8FFFFh  
70000h-7FFFFh  
60000h-6FFFFh  
50000h-5FFFFh  
40000h-4FFFFh  
30000h-3FFFFh  
20000h-2FFFFh  
10000h-1FFFFh  
08000h-0FFFFh  
06000h-07FFFh  
04000h-05FFFh  
00000h-03FFFh  
8
32  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
8
0
0
16  
27/34  
M29W008DT, M29W008DB  
APPENDIX B. BLOCK PROTECTION  
Block protection can be used to prevent any oper-  
ation from modifying the data stored in the Flash.  
Each Block can be protected individually. Once  
protected, Program and Erase operations on the  
block fail to change the data.  
There are three techniques that can be used to  
control Block Protection, these are the Program-  
mer technique, the In-System technique and Tem-  
porary Unprotection. Temporary Unprotection is  
controlled by the Reset/Block Temporary Unpro-  
tection pin, RP; this is described in the Signal De-  
scriptions section.  
Unlike the Command Interface of the Program/  
Erase Controller, the techniques for protecting and  
unprotecting blocks change between different  
Flash memory suppliers. For example, the tech-  
niques for AMD parts will not work on STMicro-  
electronics parts. Care should be taken when  
changing drivers for one part to work on another.  
Technique Bus Operations, gives a summary of  
each operation.  
The timing on these flowcharts is critical. Care  
should be taken to ensure that, where a pause is  
specified, it is followed as closely as possible. Do  
not abort the procedure before reaching the end.  
Chip Unprotect can take several seconds and a  
user message should be provided to show that the  
operation is progressing.  
In-System Technique  
The In-System technique requires a high voltage  
level on the Reset/Blocks Temporary Unprotect  
pin, RP. This can be achieved without violating the  
maximum ratings of the components on the micro-  
processor bus, therefore this technique is suitable  
for use after the Flash has been fitted to the sys-  
tem.  
To protect a block follow the flowchart in Figure 16,  
In-System Block Protect Flowchart. To unprotect  
the whole chip it is necessary to protect all of the  
blocks first, then all the blocks can be unprotected  
at the same time. To unprotect the chip follow Fig-  
ure 17, In-System Chip Unprotect Flowchart.  
The timing on these flowcharts is critical. Care  
should be taken to ensure that, where a pause is  
specified, it is followed as closely as possible. Do  
not allow the microprocessor to service interrupts  
that will upset the timing and do not abort the pro-  
cedure before reaching the end. Chip Unprotect  
can take several seconds and a user message  
should be provided to show that the operation is  
progressing.  
Programmer Technique  
The Programmer technique uses high (VID) volt-  
age levels on some of the bus pins. These cannot  
be achieved using a standard microprocessor bus,  
therefore the technique is recommended only for  
use in Programming Equipment.  
To protect a block follow the flowchart in Figure 14,  
Programmer Equipment Block Protect Flowchart.  
To unprotect the whole chip it is necessary to pro-  
tect all of the blocks first, then all blocks can be un-  
protected at the same time. To unprotect the chip  
follow Figure 15, Programmer Equipment Chip  
Unprotect Flowchart. Table 19, Programmer  
Table 19. Programmer Technique Bus Operations  
Address Inputs  
A0-A18  
Data Inputs/Outputs  
DQ7-DQ0  
Operation  
E
G
W
A9 = V , A13-A19= Block Address  
ID  
V
V
V
V
Pulse  
Pulse  
Block Protect  
X
X
IL  
ID  
IL  
Others = X  
A9 = V , A13 = V , A16 = V  
ID  
IH  
IH  
V
V
ID  
Chip Unprotect  
ID  
IL  
Others = X  
A0 = V , A1 = V , A6 = V , A9 = V ,  
IL  
IH  
IL  
ID  
Block Protection  
Verify  
Pass = 01h  
Retry = 00h  
V
V
V
V
A13-A19= Block Address  
Others = X  
IL  
IL  
IL  
IL  
IH  
IH  
A0 = V , A1 = V , A6 = V , A9 = V ,  
IL  
IH  
IH  
ID  
Block Unprotection  
Verify  
Retry = 01h  
Pass = 00h  
V
V
A13-A19= Block Address  
Others = X  
28/34  
M29W008DT, M29W008DB  
Figure 14. Programmer Equipment Block Protect Flowchart  
START  
ADDRESS = BLOCK ADDRESS  
W = V  
IH  
n = 0  
G, A9 = V  
E = V  
,
ID  
IL  
Wait 4µs  
W = V  
IL  
Wait 100µs  
W = V  
IH  
E, G = V  
,
IH  
A0, A6 = V  
A1 = V  
,
IL  
IH  
E = V  
IL  
Wait 4µs  
G = V  
IL  
Wait 60ns  
Read DATA  
DATA  
=
01h  
NO  
YES  
++n  
= 25  
NO  
A9 = V  
E, G = V  
IH  
IH  
YES  
PASS  
A9 = V  
IH  
E, G = V  
IH  
AI09448  
FAIL  
29/34  
M29W008DT, M29W008DB  
Figure 15. Programmer Equipment Chip Unprotect Flowchart  
START  
PROTECT ALL BLOCKS  
n = 0  
CURRENT BLOCK = 0  
(1)  
A6, A13, A16 = V  
IH  
E, G, A9 = V  
ID  
Wait 4µs  
W = V  
IL  
Wait 10ms  
W = V  
IH  
E, G = V  
IH  
ADDRESS = CURRENT BLOCK ADDRESS  
A0 = V , A1, A6 = V  
IL  
IH  
E = V  
IL  
Wait 4µs  
G = V  
IL  
INCREMENT  
CURRENT BLOCK  
Wait 60ns  
Read DATA  
NO  
YES  
DATA  
=
00h  
LAST  
BLOCK  
NO  
NO  
++n  
= 1000  
YES  
YES  
A9 = V  
IH  
A9 = V  
IH  
E, G = V  
E, G = V  
IH  
IH  
FAIL  
PASS  
AI09449  
30/34  
M29W008DT, M29W008DB  
Figure 16. In-System Equipment Block Protect Flowchart  
START  
n = 0  
RP = V  
ID  
WRITE 60h  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
WRITE 60h  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
Wait 100µs  
WRITE 40h  
IL  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
Wait 4µs  
READ DATA  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
DATA  
NO  
=
01h  
YES  
++n  
= 25  
NO  
RP = V  
IH  
YES  
ISSUE READ/RESET  
COMMAND  
RP = V  
IH  
PASS  
ISSUE READ/RESET  
COMMAND  
FAIL  
AI09450  
31/34  
M29W008DT, M29W008DB  
Figure 17. In-System Equipment Chip Unprotect Flowchart  
START  
PROTECT ALL BLOCKS  
n = 0  
CURRENT BLOCK = 0  
RP = V  
ID  
WRITE 60h  
ANY ADDRESS WITH  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
WRITE 60h  
ANY ADDRESS WITH  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
Wait 10ms  
WRITE 40h  
ADDRESS = CURRENT BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
Wait 4µs  
INCREMENT  
CURRENT BLOCK  
READ DATA  
ADDRESS = CURRENT BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
DATA  
NO  
YES  
=
00h  
++n  
= 1000  
NO  
NO  
LAST  
BLOCK  
YES  
YES  
RP = V  
IH  
RP = V  
IH  
ISSUE READ/RESET  
COMMAND  
ISSUE READ/RESET  
COMMAND  
PASS  
FAIL  
AI09451  
32/34  
M29W008DT, M29W008DB  
REVISION HISTORY  
Table 20. Document Revision History  
Date  
Version  
Revision Details  
16-Apr-2004  
0.1  
First Issue.  
Figure 5., Block Addresses (Bottom Boot Block), modified.  
Unlock Bypass command addresses and data modified in Table 3., Commands.  
08-Jun-2004  
05-Aug-2004  
0.2  
1.0  
Datasheet status changed to “Full Datasheet”.  
33/34  
M29W008DT, M29W008DB  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
34/34  

相关型号:

M29W008DT90N6T

Flash, 1MX8, 90ns, PDSO40, 10 X 20 MM, PLASTIC, TSOP-40
STMICROELECTR

M29W008EB

8 Mbit (1Mb x 8, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W008EB70N1E

8 Mbit (1Mb x 8, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W008EB70N1F

8 Mbit (1Mb x 8, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W008EB70N6E

8 Mbit (1Mb x 8, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W008EB70N6F

8 Mbit (1Mb x 8, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W008EB90N1E

8 Mbit (1Mb x 8, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W008EB90N1F

8 Mbit (1Mb x 8, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W008EB90N6E

8 Mbit (1Mb x 8, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W008EB90N6F

8 Mbit (1Mb x 8, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W008ET

8 Mbit (1Mb x 8, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W008ET70N1E

8 Mbit (1Mb x 8, Boot Block) 3V Supply Flash Memory
STMICROELECTR