M29W800DT70ZE6E [STMICROELECTRONICS]

512KX16 FLASH 3V PROM, 70ns, PBGA48, 6 X 8 MM, 0.80 MM PITCH, LEAD FREE, TFBGA-48;
M29W800DT70ZE6E
型号: M29W800DT70ZE6E
厂家: ST    ST
描述:

512KX16 FLASH 3V PROM, 70ns, PBGA48, 6 X 8 MM, 0.80 MM PITCH, LEAD FREE, TFBGA-48

可编程只读存储器 内存集成电路 闪存
文件: 总49页 (文件大小:433K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M29W800DT  
M29W800DB  
8 Mbit (1Mb x8 or 512Kb x16, Boot Block)  
3V Supply Flash Memory  
Features  
Supply voltage  
– V = 2.7V to 3.6V for Program, Erase and  
CC  
Read  
Access times: 45, 70, 90ns  
Programming time  
– 10µs per Byte/Word typical  
SO44 (M)  
19 memory blocks  
– 1 Boot block (Top or Bottom location)  
– 2 Parameter and 16 main blocks  
Program/Erase controller  
– Embedded Byte/Word Program algorithms  
Erase Suspend and Resume modes  
TSOP48 (N)  
12 x 20 mm  
– Read and Program another Block during  
Erase Suspend  
Unlock bypass program command  
FBGA  
– Faster production/batch programming  
Temporary block unprotection mode  
TFBGA48 (ZE)  
6 x 8 mm  
Common flash interface  
– 64-bit Security Code  
Low power consumption  
– Standby and Automatic Standby  
100,000 Program/Erase cycles per block  
Electronic signature  
– Manufacturer Code: 0020h  
Top Device Code M29W800DT: 22D7h  
– Bottom Device Code M29W800DB: 225Bh  
March 2006  
Rev 8  
1/49  
www.st.com  
1
Contents  
M29W800DT, M29W800DB  
Contents  
1
2
3
4
5
6
7
8
9
Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Command interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Appendix A Block address table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Appendix B Common Flash Interface (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Appendix C Block protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
C.1  
C.2  
Programmer Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
In-System Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
2/49  
M29W800DT, M29W800DB  
List of tables  
List of tables  
Table 1.  
Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 2.  
Table 3.  
Bus Operations, BYTE = V  
Bus Operations, BYTE = V  
IL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
IH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Table 4.  
Table 5.  
Commands, 16-bit mode, BYTE = V  
Commands, 8-bit mode, BYTE = V  
IH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
IL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Program, Erase Times and Program, Erase Endurance Cycles. . . . . . . . . . . . . . . . . . . . . 20  
Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Device Capacitance  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Write AC Characteristics, Write Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Reset/Block Temporary Unprotect AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
SO44 – 44 lead Plastic Small Outline, 525 mils body width, Package Mechanical Data . . 32  
TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data. . . 33  
TFBGA48 6x8mm – 6x8 active ball array – 0.80mm pitch, Package Mechanical Data . . . 34  
Ordering Information Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Top Boot Block Addresses, M29W800DT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Bottom Boot Block Addresses, M29W800DB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Primary Algorithm-Specific Extended Query Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Security Code Area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Programmer Technique Bus Operations, BYTE = V or V  
IH  
IL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3/49  
List of figures  
M29W800DT, M29W800DB  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
SO Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
TSOP Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Block Addresses (x8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Block Addresses (x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Data Polling Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Data Toggle Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
AC Measurement I/O Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 10. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 11. Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 12. Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 13. Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 14. Reset/Block Temporary Unprotect AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 15. SO44 – 44 lead Plastic Small Outline, 525 mils body width, Package Outline . . . . . . . . . 32  
Figure 16. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline . . . . . . . . . . 33  
Figure 17. TFBGA48 6x8mm – 6x8 ball array – 0.80mm pitch, Bottom View Package Outline . . . . . 34  
Figure 18. Programmer Equipment Block Protect Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 19. Programmer Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 20. In-System Equipment Block Protect Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 21. In-System Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
4/49  
M29W800DT, M29W800DB  
Summary description  
1
Summary description  
The M29W800D is a 8 Mbit (1Mb x8 or 512Kb x16) non-volatile memory that can be read,  
erased and reprogrammed. These operations can be performed using a single low voltage  
(2.7 to 3.6V) supply. On power-up the memory defaults to its Read mode where it can be  
read in the same way as a ROM or EPROM.  
The memory is divided into blocks that can be erased independently so it is possible to  
preserve valid data while old data is erased. Each block can be protected independently to  
prevent accidental Program or Erase commands from modifying the memory. Program and  
Erase commands are written to the Command Interface of the memory. An on-chip  
Program/Erase Controller simplifies the process of programming or erasing the memory by  
taking care of all of the special operations that are required to update the memory contents.  
The end of a program or erase operation can be detected and any error conditions  
identified. The command set required to control the memory is consistent with JEDEC  
standards.  
The blocks in the memory are asymmetrically arranged, see Figure 5: Block Addresses (x8)  
and Figure 6: Block Addresses (x16). The first or last 64 Kbytes have been divided into four  
additional blocks. The 16 Kbyte Boot Block can be used for small initialization code to start  
the microprocessor, the two 8 Kbyte Parameter Blocks can be used for parameter storage  
and the remaining 32K is a small Main Block where the application may be stored.  
Chip Enable, Output Enable and Write Enable signals control the bus operation of the  
memory. They allow simple connection to most microprocessors, often without additional  
logic.  
The memory is offered in SO44, TSOP48 (12 x 20mm) and TFBGA48 6 x 8mm (0.8mm  
pitch) packages. The memory is supplied with all the bits erased (set to ’1’).  
Figure 1.  
Logic Diagram  
V
CC  
19  
15  
A0-A18  
DQ0-DQ14  
DQ15A–1  
W
E
M29W800DT  
M29W800DB  
G
RB  
RP  
BYTE  
V
SS  
AI05470B  
5/49  
Summary description  
Table 1.  
M29W800DT, M29W800DB  
Signal Names  
Signal  
Description  
A0-A18  
DQ0-DQ7  
DQ8-DQ14  
DQ15A–1  
E
Address Inputs  
Data Inputs/Outputs  
Data Inputs/Outputs  
Data Input/Output or Address Input  
Chip Enable  
G
Output Enable  
W
Write Enable  
RP  
Reset/Block Temporary Unprotect  
RB  
Ready/Busy Output (not available on SO44 package)  
Byte/Word Organization Select  
Supply Voltage  
BYTE  
VCC  
VSS  
Ground  
NC  
Not Connected Internally  
Figure 2.  
SO Connections  
RP  
1
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
W
A18  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
E
2
NC  
3
A8  
4
A9  
5
A10  
A11  
A12  
A13  
A14  
A15  
A16  
BYTE  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
M29W800DT  
M29W800DB  
V
V
SS  
DQ15A–1  
SS  
G
DQ0  
DQ8  
DQ7  
DQ14  
DQ6  
DQ1  
DQ9  
DQ13  
DQ5  
DQ2  
DQ10  
DQ3  
DQ12  
DQ4  
DQ11  
V
CC  
AI05462b  
6/49  
M29W800DT, M29W800DB  
Summary description  
Figure 3.  
TSOP Connections  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
48  
A16  
BYTE  
V
SS  
DQ15A–1  
DQ7  
DQ14  
DQ6  
A8  
DQ13  
DQ5  
NC  
NC  
W
DQ12  
DQ4  
RP  
NC  
NC  
RB  
A18  
A17  
A7  
12  
13  
37  
36  
V
M29W800DT  
M29W800DB  
CC  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
G
A6  
A5  
A4  
A3  
V
E
SS  
A2  
A1  
24  
25  
A0  
AI05461  
7/49  
Summary description  
Figure 4.  
M29W800DT, M29W800DB  
TFBGA Connections (Top view through package)  
1
2
3
4
5
6
A9  
A8  
A
B
C
D
E
F
A3  
A4  
A7  
RB  
NC  
W
A13  
A12  
RP  
A17  
A2  
A1  
A6  
A5  
A18  
NC  
NC  
NC  
A10  
A11  
A14  
A15  
A0  
DQ0  
DQ2  
DQ5  
DQ7  
A16  
DQ12  
DQ14  
DQ13  
DQ6  
E
DQ8  
DQ9  
DQ1  
DQ10  
DQ11  
DQ3  
BYTE  
DQ15  
A–1  
G
H
G
V
CC  
V
DQ4  
V
SS  
SS  
AI00656  
8/49  
M29W800DT, M29W800DB  
Summary description  
Figure 5.  
Block Addresses (x8)  
M29W800DT  
Top Boot Block Addresses (x8)  
M29W800DB  
Bottom Boot Block Addresses (x8)  
FFFFFh  
FFFFFh  
16 KByte  
8 KByte  
8 KByte  
32 KByte  
64 KByte  
64 KByte  
64 KByte  
FC000h  
FBFFFh  
F0000h  
EFFFFh  
FA000h  
F9FFFh  
E0000h  
Total of 15  
64 KByte Blocks  
F8000h  
F7FFFh  
F0000h  
EFFFFh  
1FFFFh  
64 KByte  
32 KByte  
8 KByte  
8 KByte  
16 KByte  
E0000h  
10000h  
0FFFFh  
08000h  
07FFFh  
Total of 15  
64 KByte Blocks  
06000h  
05FFFh  
1FFFFh  
64 KByte  
64 KByte  
10000h  
0FFFFh  
04000h  
03FFFh  
00000h  
00000h  
AI05463  
Note:  
Also see Appendix A: Block address table, Table 20 and Table 21 for a full listing of the  
Block Addresses.  
9/49  
Summary description  
M29W800DT, M29W800DB  
Figure 6.  
Block Addresses (x16)  
M29W800DT  
Top Boot Block Addresses (x16)  
M29W800DB  
Bottom Boot Block Addresses (x16)  
7FFFFh  
7FFFFh  
8 KWord  
4 KWord  
4 KWord  
16 KWord  
32 KWord  
32 KWord  
32 KWord  
7E000h  
7DFFFh  
78000h  
77FFFh  
7D000h  
7CFFFh  
70000h  
Total of 15  
32 KWord Blocks  
7C000h  
7BFFFh  
78000h  
77FFFh  
0FFFFh  
32 KWord  
16 KWord  
4 KWord  
4 KWord  
8 KWord  
70000h  
08000h  
07FFFh  
04000h  
03FFFh  
Total of 15  
32 KWord Blocks  
03000h  
02FFFh  
0FFFFh  
32 KWord  
32 KWord  
08000h  
07FFFh  
02000h  
01FFFh  
00000h  
00000h  
AI05464  
Note:  
Also see Appendix A: Block address table, Table 20 and Table 21 for a full listing of the  
Block Addresses.  
10/49  
M29W800DT, M29W800DB  
Signal descriptions  
2
Signal descriptions  
See Figure 1: Logic Diagram and Table 1: Signal Names for a brief overview of the signals  
connected to this device.  
Address Inputs (A0-A18)  
The Address Inputs select the cells in the memory array to access during Bus Read  
operations. During Bus Write operations they control the commands sent to the Command  
Interface of the internal state machine.  
Data Inputs/Outputs (DQ0-DQ7)  
The Data Inputs/Outputs output the data stored at the selected address during a Bus Read  
operation. During Bus Write operations they represent the commands sent to the Command  
Interface of the internal state machine.  
Data Inputs/Outputs (DQ8-DQ14)  
The Data Inputs/Outputs output the data stored at the selected address during a Bus Read  
operation when BYTE is High, V . When BYTE is Low, V , these pins are not used and are  
IH  
IL  
high impedance. During Bus Write operations the Command Register does not use these  
bits. When reading the Status Register these bits should be ignored.  
Data Input/Output or Address Input (DQ15A-1)  
When BYTE is High, V , this pin behaves as a Data Input/Output pin (as DQ8-DQ14).  
IH  
When BYTE is Low, V , this pin behaves as an address pin; DQ15A–1 Low will select the  
IL  
LSB of the Word on the other addresses, DQ15A–1 High will select the MSB. Throughout  
the text consider references to the Data Input/Output to include this pin when BYTE is High  
and references to the Address Inputs to include this pin when BYTE is Low except when  
stated explicitly otherwise.  
Chip Enable (E)  
The Chip Enable, E, activates the memory, allowing Bus Read and Bus Write operations to  
be performed. When Chip Enable is High, V , all other pins are ignored.  
IH  
Output Enable (G)  
The Output Enable, G, controls the Bus Read operation of the memory.  
Write Enable (W)  
The Write Enable, W, controls the Bus Write operation of the memory’s Command Interface.  
Reset/Block Temporary Unprotect (RP)  
The Reset/Block Temporary Unprotect pin can be used to apply a Hardware Reset to the  
memory or to temporarily unprotect all Blocks that have been protected.  
A Hardware Reset is achieved by holding Reset/Block Temporary Unprotect Low, V , for at  
IL  
least t  
. After Reset/Block Temporary Unprotect goes High, V , the memory will be  
PLPX  
IH  
ready for Bus Read and Bus Write operations after t  
or t  
, whichever occurs last.  
RHEL  
PHEL  
See the Ready/Busy Output section, Table 15: Reset/Block Temporary Unprotect AC  
11/49  
Signal descriptions  
M29W800DT, M29W800DB  
Characteristics and Figure 14: Reset/Block Temporary Unprotect AC Waveforms, for more  
details.  
Holding RP at V will temporarily unprotect the protected Blocks in the memory. Program  
ID  
and Erase operations on all blocks will be possible. The transition from V to V must be  
IH  
ID  
slower than t  
.
PHPHH  
Ready/Busy Output (RB)  
The Ready/Busy pin is an open-drain output that can be used to identify when the device is  
performing a Program or Erase operation. During Program or Erase operations Ready/Busy  
is Low, V . Ready/Busy is high-impedance during Read mode, Auto Select mode and  
OL  
Erase Suspend mode.  
After a Hardware Reset, Bus Read and Bus Write operations cannot begin until Ready/Busy  
becomes high-impedance. See Table 15: Reset/Block Temporary Unprotect AC  
Characteristics and Figure 14: Reset/Block Temporary Unprotect AC Waveforms.  
The use of an open-drain output allows the Ready/Busy pins from several memories to be  
connected to a single pull-up resistor. A Low will then indicate that one, or more, of the  
memories is busy.  
Byte/Word Organization Select (BYTE)  
The Byte/Word Organization Select pin is used to switch between the 8-bit and 16-bit Bus  
modes of the memory. When Byte/Word Organization Select is Low, V , the memory is in 8-  
IL  
bit mode, when it is High, V , the memory is in 16-bit mode.  
IH  
VCC Supply Voltage  
The V Supply Voltage supplies the power for all operations (Read, Program, Erase etc.).  
CC  
The Command Interface is disabled when the V Supply Voltage is less than the Lockout  
CC  
Voltage, V  
. This prevents Bus Write operations from accidentally damaging the data  
LKO  
during power up, power down and power surges. If the Program/Erase Controller is  
programming or erasing during this time then the operation aborts and the memory contents  
being altered will be invalid.  
A 0.1µF capacitor should be connected between the V Supply Voltage pin and the V  
CC  
SS  
Ground pin to decouple the current surges from the power supply. The PCB track widths  
must be sufficient to carry the currents required during program and erase operations, I  
.
CC3  
VSS Ground  
The V Ground is the reference for all voltage measurements.  
SS  
12/49  
M29W800DT, M29W800DB  
Bus operations  
3
Bus operations  
There are five standard bus operations that control the device. These are Bus Read, Bus  
Write, Output Disable, Standby and Automatic Standby. See Table 2 and Table 3, Bus  
Operations, for a summary. Typically glitches of less than 5ns on Chip Enable or Write  
Enable are ignored by the memory and do not affect bus operations.  
Bus Read  
Bus Read operations read from the memory cells, or specific registers in the Command  
Interface. A valid Bus Read operation involves setting the desired address on the Address  
Inputs, applying a Low signal, V , to Chip Enable and Output Enable and keeping Write  
IL  
Enable High, V . The Data Inputs/Outputs will output the value, see Figure 11: Read Mode  
IH  
AC Waveforms, and Figure 12: Read AC Characteristics for details of when the output  
becomes valid.  
Bus Write  
Bus Write operations write to the Command Interface. A valid Bus Write operation begins by  
setting the desired address on the Address Inputs. The Address Inputs are latched by the  
Command Interface on the falling edge of Chip Enable or Write Enable, whichever occurs  
last. The Data Inputs/Outputs are latched by the Command Interface on the rising edge of  
Chip Enable or Write Enable, whichever occurs first. Output Enable must remain High, V ,  
IH  
during the whole Bus Write operation. See Figure 12 and Figure 13, Write AC Waveforms,  
and Table 13 and Table 14, Write AC Characteristics, for details of the timing requirements.  
Output Disable  
The Data Inputs/Outputs are in the high impedance state when Output Enable is High, V .  
IH  
Standby  
When Chip Enable is High, V , the memory enters Standby mode and the Data  
IH  
Inputs/Outputs pins are placed in the high-impedance state. To reduce the Supply Current to  
the Standby Supply Current, I  
, Chip Enable should be held within V ± 0.2V. For the  
CC2  
CC  
Standby current level see Table 11: DC Characteristics.  
During program or erase operations the memory will continue to use the Program/Erase  
Supply Current, I  
, for Program or Erase operations until the operation completes.  
CC3  
Automatic Standby  
If CMOS levels (V ± 0.2V) are used to drive the bus and the bus is inactive for 150ns or  
CC  
more the memory enters Automatic Standby where the internal Supply Current is reduced to  
the Standby Supply Current, I  
. The Data Inputs/Outputs will still output data if a Bus  
CC2  
Read operation is in progress.  
Special Bus Operations  
Additional bus operations can be performed to read the Electronic Signature and also to  
apply and remove Block Protection. These bus operations are intended for use by  
programming equipment and are not usually used in applications. They require V to be  
ID  
applied to some pins.  
13/49  
Bus operations  
M29W800DT, M29W800DB  
Electronic Signature  
The memory has two codes, the manufacturer code and the device code, that can be read  
to identify the memory. These codes can be read by applying the signals listed in Table 2  
and Table 3, Bus Operations.  
Block Protection and Blocks Unprotection  
Each block can be separately protected against accidental Program or Erase. Protected  
blocks can be unprotected to allow data to be changed.  
There are two methods available for protecting and unprotecting the blocks, one for use on  
programming equipment and the other for in-system use. Block Protect and Chip Unprotect  
operations are described in Appendix C: Block protection.  
(1)  
Table 2.  
Bus Operations, BYTE = V  
IL  
Data Inputs/Outputs  
Address Inputs  
Operation  
E
G
W
DQ15A–1, A0-A18  
DQ14-DQ8  
DQ7-DQ0  
Bus Read  
Bus Write  
Output Disable  
Standby  
VIL  
VIL  
X
VIL  
VIH  
VIH  
X
VIH Cell Address  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Data Output  
Data Input  
Hi-Z  
VIL Command Address  
VIH  
X
X
X
VIH  
Hi-Z  
Read  
Manufacturer  
Code  
A0 = VIL, A1 = VIL, A9 =  
VID, Others VIL or VIH  
VIL  
VIL  
VIL  
VIH  
VIH  
Hi-Z  
Hi-Z  
20h  
D7h (M29W800DT)  
5Bh (M29W800DB)  
A0 = VIH, A1 = VIL, A9 =  
VID, Others VIL or VIH  
Read Device Code VIL  
1. X = VIL or VIH  
.
(1)  
Bus Operations, BYTE = V  
IH  
Table 3.  
Address Inputs  
Data Inputs/Outputs  
DQ15A–1, DQ14-DQ0  
Operation  
E
G
W
A0-A18  
Bus Read  
Bus Write  
Output Disable  
Standby  
VIL  
VIL  
X
VIL  
VIH  
VIH  
X
VIH  
VIL  
VIH  
X
Cell Address  
Data Output  
Data Input  
Hi-Z  
Command Address  
X
X
VIH  
Hi-Z  
Read Manufacturer  
Code  
A0 = VIL, A1 = VIL, A9 = VID,  
Others VIL or VIH  
VIL  
VIL  
VIL  
VIL  
VIH  
VIH  
0020h  
22D7h (M29W800DT)  
225Bh (M29W800DB)  
A0 = VIH, A1 = VIL, A9 =  
VID, Others VIL or VIH  
Read Device Code  
1. X = VIL or VIH  
.
14/49  
M29W800DT, M29W800DB  
Command interface  
4
Command interface  
All Bus Write operations to the memory are interpreted by the Command Interface.  
Commands consist of one or more sequential Bus Write operations. Failure to observe a  
valid sequence of Bus Write operations will result in the memory returning to Read mode.  
The long command sequences are imposed to maximize data security.  
The address used for the commands changes depending on whether the memory is in 16-  
bit or 8-bit mode. See either Table 4, or Table 5, depending on the configuration that is being  
used, for a summary of the commands.  
Read/Reset Command  
The Read/Reset command returns the memory to its Read mode where it behaves like a  
ROM or EPROM, unless otherwise stated. It also resets the errors in the Status Register.  
Either one or three Bus Write operations can be used to issue the Read/Reset command.  
The Read/Reset Command can be issued, between Bus Write cycles before the start of a  
program or erase operation, to return the device to read mode. Once the program or erase  
operation has started the Read/Reset command is no longer accepted. The Read/Reset  
command will not abort an Erase operation when issued while in Erase Suspend.  
Auto Select Command  
The Auto Select command is used to read the Manufacturer Code, the Device Code and the  
Block Protection Status. Three consecutive Bus Write operations are required to issue the  
Auto Select command. Once the Auto Select command is issued the memory remains in  
Auto Select mode until a Read/Reset command is issued. Read CFI Query and Read/Reset  
commands are accepted in Auto Select mode, all other commands are ignored.  
From the Auto Select mode the Manufacturer Code can be read using a Bus Read operation  
with A0 = V and A1 = V . The other address bits may be set to either V or V . The  
IL  
IL  
IL  
IH  
Manufacturer Code for STMicroelectronics is 0020h.  
The Device Code can be read using a Bus Read operation with A0 = V and A1 = V . The  
IH  
IL  
other address bits may be set to either V or V . The Device Code for the M29W800DT is  
IL  
IH  
22D7h and for the M29W800DB is 225Bh.  
The Block Protection Status of each block can be read using a Bus Read operation with A0  
= V , A1 = V , and A12-A18 specifying the address of the block. The other address bits  
IL  
IH  
may be set to either V or V . If the addressed block is protected then 01h is output on  
IL  
IH  
Data Inputs/Outputs DQ0-DQ7, otherwise 00h is output.  
Program Command  
The Program command can be used to program a value to one address in the memory array  
at a time. The command requires four Bus Write operations, the final write operation latches  
the address and data in the internal state machine and starts the Program/Erase Controller.  
If the address falls in a protected block then the Program command is ignored, the data  
remains unchanged. The Status Register is never read and no error condition is given.  
During the program operation the memory will ignore all commands. It is not possible to  
issue any command to abort or pause the operation. Typical program times are given in  
Table 6 Bus Read operations during the program operation will output the Status Register  
on the Data Inputs/Outputs. See the section on the Status Register for more details.  
15/49  
Command interface  
M29W800DT, M29W800DB  
After the program operation has completed the memory will return to the Read mode, unless  
an error has occurred. When an error occurs the memory will continue to output the Status  
Register. A Read/Reset command must be issued to reset the error condition and return to  
Read mode.  
Note that the Program command cannot change a bit set at ’0’ back to ’1’. One of the Erase  
Commands must be used to set all the bits in a block or in the whole memory from ’0’ to ’1’.  
Unlock Bypass Command  
The Unlock Bypass command is used in conjunction with the Unlock Bypass Program  
command to program the memory. When the access time to the device is long (as with  
some EPROM programmers) considerable time saving can be made by using these  
commands. Three Bus Write operations are required to issue the Unlock Bypass command.  
Once the Unlock Bypass command has been issued the memory will only accept the Unlock  
Bypass Program command and the Unlock Bypass Reset command. The memory can be  
read as if in Read mode.  
Unlock Bypass Program Command  
The Unlock Bypass Program command can be used to program one address in memory at  
a time. The command requires two Bus Write operations, the final write operation latches  
the address and data in the internal state machine and starts the Program/Erase Controller.  
The Program operation using the Unlock Bypass Program command behaves identically to  
the Program operation using the Program command. A protected block cannot be  
programmed; the operation cannot be aborted and the Status Register is read. Errors must  
be reset using the Read/Reset command, which leaves the device in Unlock Bypass Mode.  
See the Program command for details on the behavior.  
Unlock Bypass Reset Command  
The Unlock Bypass Reset command can be used to return to Read/Reset mode from  
Unlock Bypass Mode. Two Bus Write operations are required to issue the Unlock Bypass  
Reset command. Read/Reset command does not exit from Unlock Bypass Mode.  
Chip Erase Command  
The Chip Erase command can be used to erase the entire chip. Six Bus Write operations  
are required to issue the Chip Erase Command and start the Program/Erase Controller.  
If any blocks are protected then these are ignored and all the other blocks are erased. If all  
of the blocks are protected the Chip Erase operation appears to start but will terminate  
within about 100µs, leaving the data unchanged. No error condition is given when protected  
blocks are ignored.  
During the erase operation the memory will ignore all commands. It is not possible to issue  
any command to abort the operation. Typical chip erase times are given in Table 6 All Bus  
Read operations during the Chip Erase operation will output the Status Register on the Data  
Inputs/Outputs. See the section on the Status Register for more details.  
After the Chip Erase operation has completed the memory will return to the Read Mode,  
unless an error has occurred. When an error occurs the memory will continue to output the  
Status Register. A Read/Reset command must be issued to reset the error condition and  
return to Read Mode.  
16/49  
M29W800DT, M29W800DB  
Command interface  
The Chip Erase Command sets all of the bits in unprotected blocks of the memory to ’1’. All  
previous data is lost.  
Block Erase Command  
The Block Erase command can be used to erase a list of one or more blocks. Six Bus Write  
operations are required to select the first block in the list. Each additional block in the list can  
be selected by repeating the sixth Bus Write operation using the address of the additional  
block. The Block Erase operation starts the Program/Erase Controller about 50µs after the  
last Bus Write operation. Once the Program/Erase Controller starts it is not possible to  
select any more blocks. Each additional block must therefore be selected within 50µs of the  
last block. The 50µs timer restarts when an additional block is selected. The Status Register  
can be read after the sixth Bus Write operation. See the Status Register for details on how  
to identify if the Program/Erase Controller has started the Block Erase operation.  
If any selected blocks are protected then these are ignored and all the other selected blocks  
are erased. If all of the selected blocks are protected the Block Erase operation appears to  
start but will terminate within about 100µs, leaving the data unchanged. No error condition is  
given when protected blocks are ignored.  
During the Block Erase operation the memory will ignore all commands except the Erase  
Suspend command. Typical block erase times are given in Table 6 All Bus Read operations  
during the Block Erase operation will output the Status Register on the Data Inputs/Outputs.  
See the section on the Status Register for more details.  
After the Block Erase operation has completed the memory will return to the Read Mode,  
unless an error has occurred. When an error occurs the memory will continue to output the  
Status Register. A Read/Reset command must be issued to reset the error condition and  
return to Read mode.  
The Block Erase Command sets all of the bits in the unprotected selected blocks to ’1’. All  
previous data in the selected blocks is lost.  
Erase Suspend Command  
The Erase Suspend Command may be used to temporarily suspend a Block Erase  
operation and return the memory to Read mode. The command requires one Bus Write  
operation.  
The Program/Erase Controller will suspend within the Erase Suspend Latency Time (refer to  
Table 6 for value) of the Erase Suspend Command being issued. Once the Program/Erase  
Controller has stopped the memory will be set to Read mode and the Erase will be  
suspended. If the Erase Suspend command is issued during the period when the memory is  
waiting for an additional block (before the Program/Erase Controller starts) then the Erase is  
suspended immediately and will start immediately when the Erase Resume Command is  
issued. It is not possible to select any further blocks to erase after the Erase Resume.  
During Erase Suspend it is possible to Read and Program cells in blocks that are not being  
erased; both Read and Program operations behave as normal on these blocks. If any  
attempt is made to program in a protected block or in the suspended block then the Program  
command is ignored and the data remains unchanged. The Status Register is not read and  
no error condition is given. Reading from blocks that are being erased will output the Status  
Register.  
It is also possible to issue the Auto Select, Read CFI Query and Unlock Bypass commands  
during an Erase Suspend. The Read/Reset command must be issued to return the device to  
Read Array mode before the Resume command will be accepted.  
17/49  
Command interface  
M29W800DT, M29W800DB  
Erase Resume Command  
The Erase Resume command must be used to restart the Program/Erase Controller from  
Erase Suspend. An erase can be suspended and resumed more than once.  
Read CFI Query Command  
The Read CFI Query Command is used to read data from the Common Flash Interface  
(CFI) Memory Area. This command is valid when the device is in the Read Array mode, or  
when the device is in Auto Select mode.  
One Bus Write cycle is required to issue the Read CFI Query Command. Once the  
command is issued subsequent Bus Read operations read from the Common Flash  
Interface Memory Area.  
The Read/Reset command must be issued to return the device to the previous mode (Read  
Array mode or Auto Select mode). A second Read/Reset command would be needed if the  
device is to be put in the Read Array mode from Auto Select mode.  
See Appendix B: Common Flash Interface (CFI), Table 22, Table 23, Table 24, Table 25,  
Table 26 and Table 27 for details on the information contained in the Common Flash  
Interface (CFI) memory area.  
Block Protect and Chip Unprotect Commands  
Each block can be separately protected against accidental Program or Erase. The whole  
chip can be unprotected to allow the data inside the blocks to be changed.  
Block Protect and Chip Unprotect operations are described in Appendix C: Block protection  
18/49  
M29W800DT, M29W800DB  
Command interface  
(1)  
Table 4.  
Commands, 16-bit mode, BYTE = V  
IH  
Bus Write Operations  
3rd 4th  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Command  
1st  
2nd  
5th  
6th  
1
3
3
4
3
2
2
6
X
F0  
AA  
AA  
AA  
AA  
A0  
90  
Read/Reset  
555  
555  
555  
555  
X
2AA  
2AA  
2AA  
2AA  
PA  
55  
55  
55  
55  
PD  
00  
55  
55  
X
F0  
90  
A0  
20  
Auto Select  
555  
555  
555  
Program  
PA  
PD  
Unlock Bypass  
Unlock Bypass Program  
Unlock Bypass Reset  
Chip Erase  
X
X
555  
AA  
AA  
B0  
30  
2AA  
2AA  
555  
555  
80  
80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
BA  
10  
30  
Block Erase  
6+ 555  
Erase Suspend  
Erase Resume  
Read CFI Query  
1
1
1
X
X
55  
98  
1. X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block.  
All values in the table are in hexadecimal format.  
The Command Interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A18, DQ8-DQ14 and DQ15  
are Don’t Care. DQ15A–1 is A–1 when BYTE is VIL or DQ15 when BYTE is VIH  
.
19/49  
Command interface  
M29W800DT, M29W800DB  
(1)  
Table 5.  
Commands, 8-bit mode, BYTE = V  
IL  
Bus Write Operations  
3rd 4th  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Command  
1st  
2nd  
5th  
6th  
1
3
3
4
3
X
F0  
AA  
AA  
AA  
AA  
Read/Reset  
AAA  
AAA  
AAA  
AAA  
555  
555  
555  
555  
55  
55  
55  
55  
X
F0  
90  
A0  
20  
Auto Select  
Program  
AAA  
AAA  
AAA  
PA  
PD  
Unlock Bypass  
Unlock Bypass  
Program  
2
X
A0  
PA  
PD  
Unlock Bypass Reset  
Chip Erase  
2
6
X
90  
AA  
AA  
B0  
30  
98  
X
00  
55  
55  
AAA  
555  
555  
AAA  
AAA  
80  
80  
AAA  
AAA  
AA  
AA  
555  
555  
55  
55  
AAA  
BA  
10  
30  
Block Erase  
6+ AAA  
Erase Suspend  
Erase Resume  
Read CFI Query  
1
1
1
X
X
AA  
1. X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block.  
All values in the table are in hexadecimal.  
The Command Interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A18, DQ8-DQ14 and DQ15  
are Don’t Care. DQ15A–1 is A–1 when BYTE is VIL or DQ15 when BYTE is VIH  
.
Table 6.  
Program, Erase Times and Program, Erase Endurance Cycles  
Parameter  
Min.  
Typ. (1), (2)  
Max. (2)  
Unit  
Chip Erase  
12  
0.8  
15  
10  
12  
6
60 (3)  
6 (4)  
s
s
Block Erase (64 Kbytes)  
Erase Suspend Latency Time  
Program (Byte or Word)  
25 (3)  
200 (3)  
60 (3)  
30 (4)  
µs  
µs  
Chip Program (Byte by Byte)  
Chip Program (Word by Word)  
Program/Erase Cycles (per Block)  
Data Retention  
s
s
100,000  
20  
cycles  
years  
1. Typical values measured at room temperature and nominal voltages.  
2. Sampled, but not 100% tested.  
3. Maximum value measured at worst case conditions for both temperature and VCC after 100,000 program/erase cycles.  
4. Maximum value measured at worst case conditions for both temperature and VCC  
.
20/49  
M29W800DT, M29W800DB  
Status register  
5
Status register  
Bus Read operations from any address always read the Status Register during Program and  
Erase operations. It is also read during Erase Suspend when an address within a block  
being erased is accessed.  
The bits in the Status Register are summarized in Table 7: Status Register Bits.  
Data Polling Bit (DQ7)  
The Data Polling Bit can be used to identify whether the Program/Erase Controller has  
successfully completed its operation or if it has responded to an Erase Suspend. The Data  
Polling Bit is output on DQ7 when the Status Register is read.  
During Program operations the Data Polling Bit outputs the complement of the bit being  
programmed to DQ7. After successful completion of the Program operation the memory  
returns to Read mode and Bus Read operations from the address just programmed output  
DQ7, not its complement.  
During Erase operations the Data Polling Bit outputs ’0’, the complement of the erased state  
of DQ7. After successful completion of the Erase operation the memory returns to Read  
Mode.  
In Erase Suspend mode the Data Polling Bit will output a ’1’ during a Bus Read operation  
within a block being erased. The Data Polling Bit will change from a ’0’ to a ’1’ when the  
Program/Erase Controller has suspended the Erase operation.  
Figure 7: Data Polling Flowchart gives an example of how to use the Data Polling Bit. A Valid  
Address is the address being programmed or an address within the block being erased.  
Toggle Bit (DQ6)  
The Toggle Bit can be used to identify whether the Program/Erase Controller has  
successfully completed its operation or if it has responded to an Erase Suspend. The Toggle  
Bit is output on DQ6 when the Status Register is read.  
During Program and Erase operations the Toggle Bit changes from ’0’ to ’1’ to ’0’, etc., with  
successive Bus Read operations at any address. After successful completion of the  
operation the memory returns to Read mode.  
During Erase Suspend mode the Toggle Bit will output when addressing a cell within a block  
being erased. The Toggle Bit will stop toggling when the Program/Erase Controller has  
suspended the Erase operation.  
If any attempt is made to erase a protected block, the operation is aborted, no error is  
signalled and DQ6 toggles for approximately 100µs. If any attempt is made to program a  
protected block or a suspended block, the operation is aborted, no error is signalled and  
DQ6 toggles for approximately 1µs.  
Figure 8: Data Toggle Flowchart gives an example of how to use the Data Toggle Bit.  
Error Bit (DQ5)  
The Error Bit can be used to identify errors detected by the Program/Erase Controller. The  
Error Bit is set to ’1’ when a Program, Block Erase or Chip Erase operation fails to write the  
correct data to the memory. If the Error Bit is set a Read/Reset command must be issued  
21/49  
Status register  
M29W800DT, M29W800DB  
before other commands are issued. The Error bit is output on DQ5 when the Status Register  
is read.  
Note that the Program command cannot change a bit set to ’0’ back to ’1’ and attempting to  
do so will set DQ5 to ‘1’. A Bus Read operation to that address will show the bit is still ‘0’.  
One of the Erase commands must be used to set all the bits in a block or in the whole  
memory from ’0’ to ’1’  
Erase Timer Bit (DQ3)  
The Erase Timer Bit can be used to identify the start of Program/Erase Controller operation  
during a Block Erase command. Once the Program/Erase Controller starts erasing the  
Erase Timer Bit is set to ’1’. Before the Program/Erase Controller starts the Erase Timer Bit  
is set to ’0’ and additional blocks to be erased may be written to the Command Interface.  
The Erase Timer Bit is output on DQ3 when the Status Register is read.  
Alternative Toggle Bit (DQ2)  
The Alternative Toggle Bit can be used to monitor the Program/Erase controller during  
Erase operations. The Alternative Toggle Bit is output on DQ2 when the Status Register is  
read.  
During Chip Erase and Block Erase operations the Toggle Bit changes from ’0’ to ’1’ to ’0’,  
etc., with successive Bus Read operations from addresses within the blocks being erased. A  
protected block is treated the same as a block not being erased. Once the operation  
completes the memory returns to Read mode.  
During Erase Suspend the Alternative Toggle Bit changes from ’0’ to ’1’ to ’0’, etc. with  
successive Bus Read operations from addresses within the blocks being erased. Bus Read  
operations to addresses within blocks not being erased will output the memory cell data as if  
in Read mode.  
After an Erase operation that causes the Error Bit to be set the Alternative Toggle Bit can be  
used to identify which block or blocks have caused the error. The Alternative Toggle Bit  
changes from ’0’ to ’1’ to ’0’, etc. with successive Bus Read Operations from addresses  
within blocks that have not erased correctly. The Alternative Toggle Bit does not change if  
the addressed block has erased correctly.  
22/49  
M29W800DT, M29W800DB  
Status register  
(1)  
Table 7.  
Status Register Bits  
Operation  
Address  
DQ7  
DQ6  
DQ5  
DQ3  
DQ2  
RB  
Program  
Any Address  
DQ7  
Toggle  
0
0
Program During Erase  
Suspend  
Any Address  
DQ7  
Toggle  
0
0
Program Error  
Chip Erase  
Any Address  
Any Address  
DQ7  
Toggle  
Toggle  
1
0
0
0
0
0
0
1
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
Toggle  
Erasing Block  
Toggle  
Toggle  
Block Erase before  
timeout  
Non-Erasing Block  
Erasing Block  
Toggle  
No Toggle  
Toggle  
Toggle  
Block Erase  
Erase Suspend  
Erase Error  
Non-Erasing Block  
Erasing Block  
Toggle  
No Toggle  
Toggle  
No Toggle  
Non-Erasing Block  
Good Block Address  
Faulty Block Address  
Data read as normal  
0
0
Toggle  
Toggle  
1
1
1
No Toggle  
Toggle  
1
1. Unspecified data bits should be ignored.  
Figure 7.  
Data Polling Flowchart  
START  
READ DQ5 & DQ7  
at VALID ADDRESS  
DQ7  
=
DATA  
YES  
NO  
NO  
DQ5  
= 1  
YES  
READ DQ7  
at VALID ADDRESS  
DQ7  
=
DATA  
YES  
NO  
FAIL  
PASS  
AI03598  
23/49  
Status register  
M29W800DT, M29W800DB  
Figure 8.  
Data Toggle Flowchart  
START  
READ DQ6  
READ  
DQ5 & DQ6  
DQ6  
=
NO  
TOGGLE  
YES  
NO  
DQ5  
= 1  
YES  
READ DQ6  
TWICE  
DQ6  
=
NO  
TOGGLE  
YES  
FAIL  
PASS  
AI01370C  
24/49  
M29W800DT, M29W800DB  
Maximum rating  
6
Maximum rating  
Stressing the device above the rating listed in the Absolute Maximum Ratings table may  
cause permanent damage to the device. Exposure to Absolute Maximum Rating conditions  
for extended periods may affect device reliability. These are stress ratings only and  
operation of the device at these or any other conditions above those indicated in the  
Operating sections of this specification is not implied. Refer also to the STMicroelectronics  
SURE Program and other relevant quality documents.  
Table 8.  
Symbol  
Absolute maximum ratings  
Parameter  
Min  
Max  
Unit  
TBIAS  
TSTG  
VIO  
Temperature Under Bias  
Storage Temperature  
Input or Output Voltage (1) (2)  
Supply Voltage  
–50  
–65  
125  
150  
°C  
°C  
V
–0.6  
–0.6  
–0.6  
VCC +0.6  
4
VCC  
VID  
V
Identification Voltage  
13.5  
V
1. Minimum voltage may undershoot to –2V during transition and for less than 20ns during transitions.  
2. Maximum voltage may overshoot to VCC +2V during transition and for less than 20ns during transitions.  
25/49  
DC and AC parameters  
M29W800DT, M29W800DB  
7
DC and AC parameters  
This section summarizes the operating measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristics Tables that  
follow, are derived from tests performed under the Measurement Conditions summarized in  
Table 9: Operating and AC Measurement Conditions. Designers should check that the  
operating conditions in their circuit match the operating conditions when relying on the  
quoted parameters.  
Table 9.  
Operating and AC Measurement Conditions  
M29W800D  
Parameter  
45  
70  
90  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
V
CC Supply Voltage  
3.0  
–40  
0
3.6  
85  
70  
2.7  
–40  
0
3.6  
85  
70  
2.7  
–40  
0
3.6  
85  
70  
V
Ambient Operating Temperature (Range 6)  
Ambient Operating Temperature (Range 1)  
Load Capacitance (CL)  
°C  
30  
30  
100  
pF  
ns  
V
Input Rise and Fall Times  
10  
10  
10  
Input Pulse Voltages  
0 to VCC  
VCC/2  
0 to VCC  
VCC/2  
0 to VCC  
VCC/2  
Input and Output Timing Ref. Voltages  
V
Figure 9.  
AC Measurement I/O Waveform  
V
CC  
0V  
V
/2  
CC  
AI04498  
26/49  
M29W800DT, M29W800DB  
DC and AC parameters  
Figure 10. AC Measurement Load Circuit  
V
V
CC  
CC  
25k  
DEVICE  
UNDER  
TEST  
25kΩ  
0.1µF  
C
L
AI04499  
C
includes JIG capacitance  
L
(1)  
Table 10. Device Capacitance  
Symbol  
Parameter  
Test Condition  
Min  
Max  
Unit  
CIN  
Input Capacitance  
Output Capacitance  
VIN = 0V  
6
pF  
pF  
COUT  
VOUT = 0V  
12  
1. Sampled only, not 100% tested.  
Table 11. DC Characteristics  
Symbol  
Parameter  
Test Condition  
Min  
Max  
Unit  
ILI  
Input Leakage Current  
Output Leakage Current  
0V VIN VCC  
±1  
±1  
µA  
µA  
ILO  
0V VOUT VCC  
E = VIL, G = VIH,  
f = 6MHz  
ICC1  
Supply Current (Read)  
10  
mA  
µA  
E = VCC ±0.2V,  
RP = VCC ±0.2V  
ICC2  
Supply Current (Standby)  
100  
Supply Current  
(Program/Erase)  
Program/Erase  
Controller active  
(1)  
ICC3  
20  
mA  
VIL  
VIH  
VOL  
VOH  
VID  
IID  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Identification Voltage  
Identification Current  
–0.5  
0.8  
V
V
0.7VCC  
VCC +0.3  
0.45  
IOL = 1.8mA  
V
IOH = –100µA  
VCC –0.4  
11.5  
V
12.5  
100  
V
A9 = VID  
µA  
Program/Erase Lockout Supply  
Voltage  
VLKO  
1.8  
2.3  
V
1. Sampled only, not 100% tested.  
27/49  
DC and AC parameters  
M29W800DT, M29W800DB  
Figure 11. Read Mode AC Waveforms  
tAVAV  
VALID  
A0-A18/  
A–1  
tAVQV  
tAXQX  
E
tELQV  
tELQX  
tEHQX  
tEHQZ  
G
tGLQX  
tGLQV  
tGHQX  
tGHQZ  
VALID  
DQ0-DQ7/  
DQ8-DQ15  
tBHQV  
BYTE  
tELBL/tELBH  
tBLQZ  
AI05448  
Table 12. Read AC Characteristics  
M29W800D  
Symbol  
Alt  
Parameter  
Test Condition  
Unit  
45  
70  
90  
E = VIL,  
Min  
tAVAV  
tAVQV  
tRC  
Address Valid to Next Address Valid  
45  
70  
90  
ns  
ns  
G = VIL  
E = VIL,  
Max  
tACC Address Valid to Output Valid  
45  
70  
90  
G = VIL  
(1)  
tELQX  
tLZ  
Chip Enable Low to Output Transition  
Chip Enable Low to Output Valid  
G = VIL Min  
G = VIL Max  
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
tELQV  
tCE  
45  
0
70  
0
90  
0
(1)  
tGLQX  
tOLZ Output Enable Low to Output Transition  
E = VIL  
Min  
tGLQV  
tOE  
tHZ  
tDF  
Output Enable Low to Output Valid  
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
E = VIL Max  
G = VIL Max  
E = VIL Max  
25  
20  
20  
30  
25  
25  
35  
30  
30  
(1)  
tEHQZ  
(1)  
tGHQZ  
tEHQX  
tGHQX  
Chip Enable, Output Enable or Address  
Transition to Output Transition  
tOH  
Min  
0
5
0
5
0
5
ns  
ns  
tAXQX  
tELBL  
tELBH  
tBLQZ  
tBHQV  
tELFL  
tELFH  
Chip Enable to BYTE Low or High  
Max  
tFLQZ BYTE Low to Output Hi-Z  
tFHQV BYTE High to Output Valid  
Max  
Max  
25  
30  
25  
30  
30  
40  
ns  
ns  
1. Sampled only, not 100% tested.  
28/49  
M29W800DT, M29W800DB  
DC and AC parameters  
Figure 12. Write AC Waveforms, Write Enable Controlled  
tAVAV  
A0-A18/  
VALID  
A–1  
tWLAX  
tAVWL  
tWHEH  
E
tELWL  
tWHGL  
G
tGHWL  
tWLWH  
W
tWHWL  
tWHDX  
tDVWH  
VALID  
DQ0-DQ7/  
DQ8-DQ15  
V
CC  
tVCHEL  
RB  
tWHRL  
AI05449  
Table 13. Write AC Characteristics, Write Enable Controlled  
M29W800D  
70  
Symbol  
Alt  
Parameter  
Unit  
45  
90  
tAVAV  
tELWL  
tWLWH  
tDVWH  
tWHDX  
tWHEH  
tWHWL  
tAVWL  
tWLAX  
tGHWL  
tWHGL  
tWC  
tCS  
tWP  
tDS  
Address Valid to Next Address Valid  
Chip Enable Low to Write Enable Low  
Write Enable Low to Write Enable High  
Input Valid to Write Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
45  
0
70  
0
90  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
30  
25  
0
45  
45  
0
50  
50  
0
tDH  
tCH  
tWPH  
tAS  
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Write Enable High to Write Enable Low  
Address Valid to Write Enable Low  
Write Enable Low to Address Transition  
Output Enable High to Write Enable Low  
Write Enable High to Output Enable Low  
Program/Erase Valid to RB Low  
0
0
0
30  
0
30  
0
30  
0
tAH  
40  
0
45  
0
50  
0
tOEH  
tBUSY  
tVCS  
0
0
0
(1)  
tWHRL  
30  
50  
30  
50  
35  
50  
tVCHEL  
VCC High to Chip Enable Low  
1. Sampled only, not 100% tested.  
29/49  
DC and AC parameters  
M29W800DT, M29W800DB  
Figure 13. Write AC Waveforms, Chip Enable Controlled  
tAVAV  
A0-A18/  
VALID  
A–1  
tELAX  
tAVEL  
tEHWH  
W
tWLEL  
tEHGL  
G
tGHEL  
tELEH  
E
tEHEL  
tEHDX  
tDVEH  
VALID  
DQ0-DQ7/  
DQ8-DQ15  
V
CC  
tVCHWL  
RB  
tEHRL  
AI05450  
Table 14. Write AC Characteristics, Chip Enable Controlled  
M29W800D  
Symbol  
Alt  
Parameter  
Unit  
45  
70  
90  
tAVAV  
tWLEL  
tELEH  
tDVEH  
tEHDX  
tEHWH  
tEHEL  
tAVEL  
tELAX  
tGHEL  
tEHGL  
tWC  
tWS  
tCP  
Address Valid to Next Address Valid  
Write Enable Low to Chip Enable Low  
Chip Enable Low to Chip Enable High  
Input Valid to Chip Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
45  
0
70  
0
90  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
30  
25  
0
45  
45  
0
50  
50  
0
tDS  
tDH  
tWH  
tCPH  
tAS  
Chip Enable High to Input Transition  
Chip Enable High to Write Enable High  
Chip Enable High to Chip Enable Low  
Address Valid to Chip Enable Low  
Chip Enable Low to Address Transition  
Output Enable High Chip Enable Low  
Chip Enable High to Output Enable Low  
Program/Erase Valid to RB Low  
0
0
0
30  
0
30  
0
30  
0
tAH  
40  
0
45  
0
50  
0
tOEH  
tBUSY  
tVCS  
0
0
0
(1)  
tEHRL  
30  
50  
30  
50  
35  
50  
tVCHWL  
VCC High to Write Enable Low  
1. Sampled only, not 100% tested.  
30/49  
M29W800DT, M29W800DB  
DC and AC parameters  
Figure 14. Reset/Block Temporary Unprotect AC Waveforms  
W, E, G  
tPHWL, tPHEL, tPHGL  
RB  
tRHWL, tRHEL, tRHGL  
tPLPX  
RP  
tPHPHH  
tPLYH  
AI06870  
Table 15. Reset/Block Temporary Unprotect AC Characteristics  
M29W800D  
Symbol  
Alt  
Parameter  
Unit  
ns  
45  
70  
90  
(1)  
tPHWL  
RP High to Write Enable Low, Chip Enable  
Low, Output Enable Low  
tPHEL  
tRH  
Min  
Min  
50  
50  
50  
(1)  
tPHGL  
(1)  
tRHWL  
RB High to Write Enable Low, Chip Enable  
Low, Output Enable Low  
(1)  
tRHEL  
tRB  
0
0
0
ns  
(1)  
tRHGL  
tPLPX  
tRP  
RP Pulse Width  
Min  
Max  
Min  
500  
10  
500  
10  
500  
10  
ns  
µs  
ns  
(1)  
tPLYH  
tREADY RP Low to Read Mode  
tVIDR RP Rise Time to VID  
(1)  
tPHPHH  
500  
500  
500  
1. Sampled only, not 100% tested.  
31/49  
Package mechanical data  
M29W800DT, M29W800DB  
8
Package mechanical data  
Figure 15. SO44 – 44 lead Plastic Small Outline, 525 mils body width, Package Outline  
A2  
A
C
b
e
CP  
D
N
E
EH  
1
A1  
α
L
SO-d  
Note:  
Drawing is not to scale.  
Table 16. SO44 – 44 lead Plastic Small Outline, 525 mils body width, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
2.80  
0.1102  
0.10  
2.20  
0.35  
0.10  
0.0039  
0.0866  
0.0138  
0.0039  
2.30  
0.40  
0.15  
2.40  
0.50  
0.20  
0.08  
28.40  
13.50  
16.25  
0.0906  
0.0157  
0.0059  
0.0945  
0.0197  
0.0079  
0.0030  
1.1181  
0.5315  
0.6398  
C
CP  
D
28.20  
13.30  
16.00  
1.27  
28.00  
13.20  
15.75  
1.1102  
0.5236  
0.6299  
0.0500  
0.0315  
1.1024  
0.5197  
0.6201  
E
EH  
e
L
0.80  
a
8°  
8°  
N
44  
44  
32/49  
M29W800DT, M29W800DB  
Package mechanical data  
Figure 16. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline  
1
48  
e
D1  
B
L1  
24  
25  
A2  
A
E1  
E
A1  
α
L
DIE  
C
CP  
TSOP-G  
Note:  
Drawing is not to scale.  
Table 17. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
B
1.200  
0.150  
1.050  
0.270  
0.210  
0.080  
12.100  
20.200  
18.500  
0.0472  
0.0059  
0.0413  
0.0106  
0.0083  
0.0031  
0.4764  
0.7953  
0.7283  
0.100  
1.000  
0.220  
0.050  
0.950  
0.170  
0.100  
0.0039  
0.0394  
0.0087  
0.0020  
0.0374  
0.0067  
0.0039  
C
CP  
D1  
E
12.000  
20.000  
18.400  
0.500  
0.600  
0.800  
3°  
11.900  
19.800  
18.300  
0.4724  
0.7874  
0.7244  
0.0197  
0.0236  
0.0315  
3°  
0.4685  
0.7795  
0.7205  
E1  
e
L
0.500  
0.700  
0.0197  
0.0276  
L1  
a
0°  
5°  
0°  
5°  
33/49  
Package mechanical data  
M29W800DT, M29W800DB  
Figure 17. TFBGA48 6x8mm – 6x8 ball array – 0.80mm pitch, Bottom View Package Outline  
D
D1  
FD  
FE  
SD  
SE  
BALL "A1"  
E
E1  
ddd  
e
e
b
A
A2  
A1  
BGA-Z32  
Note:  
Drawing is not to scale.  
Table 18. TFBGA48 6x8mm – 6x8 active ball array – 0.80mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.200  
0.0472  
0.260  
0.0102  
0.900  
0.0354  
0.350  
5.900  
0.450  
0.0138  
0.2323  
0.0177  
D
6.000  
4.000  
6.100  
0.2362  
0.1575  
0.2402  
D1  
ddd  
E
0.100  
0.0039  
8.000  
5.600  
0.800  
1.000  
1.200  
0.400  
0.400  
7.900  
8.100  
0.3150  
0.2205  
0.0315  
0.0394  
0.0472  
0.0157  
0.0157  
0.3110  
0.3189  
E1  
e
FD  
FE  
SD  
SE  
34/49  
M29W800DT, M29W800DB  
Part numbering  
9
Part numbering  
Table 19. Ordering Information Scheme  
Example:  
M29W800DB  
90 N  
6
T
Device Type  
M29  
Operating Voltage  
W = VCC = 2.7 to 3.6V  
Device Function  
800D = 8 Mbit (x8/x16), Boot Block  
Array Matrix  
T = Top Boot  
B = Bottom Boot  
Speed  
45 = 45ns  
70 = 70 ns  
90 = 90 ns  
Package  
M = SO44  
N = TSOP48: 12 x 20 mm  
ZE = TFBGA48: 6x8mm, 0.80mm pitch  
Temperature Range  
6 = –40 to 85 °C  
1 = 0 to 70 °C  
Option  
T = Tape & Reel Packing  
E = Lead-free Package, Standard Packing  
F = Lead-free Package, Tape & Reel Packing  
Devices are shipped from the factory with the memory content bits erased to ’1’.  
For a list of available options (Speed, Package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST Sales Office.  
35/49  
Block address table  
M29W800DT, M29W800DB  
Appendix A  
Block address table  
Table 20. Top Boot Block Addresses, M29W800DT  
#
Size (Kbytes)  
Address Range (x8)  
Address Range (x16)  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
16  
8
FC000h-FFFFFh  
FA000h-FBFFFh  
F8000h-F9FFFh  
F0000h-F7FFFh  
E0000h-EFFFFh  
D0000h-DFFFFh  
C0000h-CFFFFh  
B0000h-BFFFFh  
A0000h-AFFFFh  
90000h-9FFFFh  
80000h-8FFFFh  
70000h-7FFFFh  
60000h-6FFFFh  
50000h-5FFFFh  
40000h-4FFFFh  
30000h-3FFFFh  
20000h-2FFFFh  
10000h-1FFFFh  
00000h-0FFFFh  
7E000h-7FFFFh  
7D000h-7DFFFh  
7C000h-7CFFFh  
78000h-7BFFFh  
70000h-77FFFh  
68000h-6FFFFh  
60000h-67FFFh  
58000h-5FFFFh  
50000h-57FFFh  
48000h-4FFFFh  
40000h-47FFFh  
38000h-3FFFFh  
30000h-37FFFh  
28000h-2FFFFh  
20000h-27FFFh  
18000h-1FFFFh  
10000h-17FFFh  
08000h-0FFFFh  
00000h-07FFFh  
8
32  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
8
7
6
5
4
3
2
1
0
36/49  
M29W800DT, M29W800DB  
Block address table  
Table 21. Bottom Boot Block Addresses, M29W800DB  
#
Size (Kbytes)  
Address Range (x8)  
Address Range (x16)  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
32  
8
F0000h-FFFFFh  
E0000h-EFFFFh  
D0000h-DFFFFh  
C0000h-CFFFFh  
B0000h-BFFFFh  
A0000h-AFFFFh  
90000h-9FFFFh  
80000h-8FFFFh  
70000h-7FFFFh  
60000h-6FFFFh  
50000h-5FFFFh  
40000h-4FFFFh  
30000h-3FFFFh  
20000h-2FFFFh  
10000h-1FFFFh  
08000h-0FFFFh  
06000h-07FFFh  
04000h-05FFFh  
00000h-03FFFh  
78000h-7FFFFh  
70000h-77FFFh  
68000h-6FFFFh  
60000h-67FFFh  
58000h-5FFFFh  
50000h-57FFFh  
48000h-4FFFFh  
40000h-47FFFh  
38000h-3FFFFh  
30000h-37FFFh  
28000h-2FFFFh  
20000h-27FFFh  
18000h-1FFFFh  
10000h-17FFFh  
08000h-0FFFFh  
04000h-07FFFh  
03000h-03FFFh  
02000h-02FFFh  
00000h-01FFFh  
8
7
6
5
4
3
2
1
8
0
16  
37/49  
Common Flash Interface (CFI)  
M29W800DT, M29W800DB  
Appendix B  
Common Flash Interface (CFI)  
The Common Flash Interface is a JEDEC approved, standardized data structure that can be  
read from the Flash memory device. It allows a system software to query the device to  
determine various electrical and timing parameters, density information and functions  
supported by the memory. The system can interface easily with the device, enabling the  
software to upgrade itself when necessary.  
When the CFI Query Command is issued the device enters CFI Query mode and the data  
structure is read from the memory. Table 22, Table 23, Table 24, Table 25, Table 26 and  
Table 27 show the addresses used to retrieve the data.  
The CFI data structure also contains a security area where a 64-bit unique security number  
is written (see Table 27: Security Code Area). This area can be accessed only in Read  
mode by the final user. It is impossible to change the security number after it has been  
written by ST. Issue a Read command to return to Read mode.  
(1)  
Table 22. Query Structure Overview  
Address  
Sub-section Name  
Description  
x16  
x8  
10h  
1Bh  
27h  
20h  
36h  
4Eh  
CFI Query Identification String  
System Interface Information  
Device Geometry Definition  
Command set ID and algorithm data offset  
Device timing & voltage information  
Flash device layout  
Primary Algorithm-specific Extended Additional information specific to the  
40h  
61h  
80h  
Query table  
Primary Algorithm (optional)  
C2h Security Code Area  
64 bit unique device number  
1. Query data are always presented on the lowest order data outputs.  
38/49  
M29W800DT, M29W800DB  
Common Flash Interface (CFI)  
(1)  
Table 23. CFI Query Identification String  
Address  
Data  
Description  
Value  
x16  
x8  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
30h  
32h  
34h  
0051h  
"Q"  
"R"  
"Y"  
0052h Query Unique ASCII String "QRY"  
0059h  
0002h  
AMD  
Primary Algorithm Command Set and Control Interface ID  
code 16 bit ID code defining a specific algorithm  
Compatible  
0000h  
0040h  
Address for Primary Algorithm extended Query table (see  
Table 26)  
P = 40h  
NA  
0000h  
0000h  
Alternate Vendor Command Set and Control Interface ID  
Code second vendor - specified algorithm supported  
0000h  
0000h  
0000h  
Address for Alternate Algorithm extended Query table  
NA  
1. Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.  
Table 24. CFI Query System Interface Information  
Address  
Data  
0027h  
0036h  
Description  
Value  
2.7V  
3.6V  
x16  
x8  
V
CC Logic Supply Minimum Program/Erase voltage  
1Bh  
36h  
bit 7 to 4  
bit 3 to 0  
BCD value in volts  
BCD value in 100 mV  
VCC Logic Supply Maximum Program/Erase voltage  
1Ch  
38h  
bit 7 to 4  
bit 3 to 0  
BCD value in volts  
BCD value in 100 mV  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
0000h VPP [Programming] Supply Minimum Program/Erase voltage  
0000h PP [Programming] Supply Maximum Program/Erase voltage  
0004h Typical timeout per single byte/word program = 2n µs  
0000h Typical timeout for minimum size write buffer program = 2n µs  
000Ah Typical timeout per individual block erase = 2n ms  
0000h Typical timeout for full chip erase = 2n ms (1)  
NA  
NA  
V
16µs  
NA  
1s  
0004h Maximum timeout for byte/word program = 2n times typical  
0000h Maximum timeout for write buffer program = 2n times typical  
0003h Maximum timeout per individual block erase = 2n times typical  
0000h Maximum timeout for chip erase = 2n times typical (1)  
256µs  
NA  
8s  
1. Not supported in the CFI.  
39/49  
Common Flash Interface (CFI)  
M29W800DT, M29W800DB  
Table 25.  
Address  
Device Geometry Definition  
Data  
Description  
Value  
x16  
x8  
27h  
4Eh  
0014h Device Size = 2n in number of bytes  
1 MByte  
28h  
29h  
50h  
52h  
0002h  
x8, x16  
Async.  
Flash Device Interface Code description  
0000h  
2Ah  
2Bh  
54h  
56h  
0000h  
0000h  
Maximum number of bytes in multi-byte program or page =  
NA  
4
2n  
Number of Erase Block Regions within the device.  
2Ch  
58h  
0004h  
It specifies the number of regions within the device  
containing contiguous Erase Blocks of the same size.  
2Dh  
2Eh  
5Ah  
5Ch  
0000h Region 1 Information  
1
16 Kbyte  
2
0000h Number of identical size erase block = 0000h+1  
2Fh  
30h  
5Eh  
60h  
0040h Region 1 Information  
0000h Block size in Region 1 = 0040h * 256 byte  
31h  
32h  
62h  
64h  
0001h Region 2 Information  
0000h Number of identical size erase block = 0001h+1  
33h  
34h  
66h  
68h  
0020h Region 2 Information  
8 Kbyte  
1
0000h Block size in Region 2 = 0020h * 256 byte  
35h  
36h  
6Ah  
6Ch  
0000h Region 3 Information  
0000h Number of identical size erase block = 0000h+1  
37h  
38h  
6Eh  
70h  
0080h Region 3 Information  
32 Kbyte  
15  
0000h Block size in Region 3 = 0080h * 256 byte  
39h  
3Ah  
72h  
74h  
000Eh Region 4 Information  
0000h Number of identical-size erase block = 000Eh+1  
3Bh  
3Ch  
76h  
78h  
0000h Region 4 Information  
64 Kbyte  
0001h Block size in Region 4 = 0100h * 256 byte  
40/49  
M29W800DT, M29W800DB  
Common Flash Interface (CFI)  
Table 26. Primary Algorithm-Specific Extended Query Table  
Address  
Data  
Description  
Value  
x16  
x8  
40h  
41h  
42h  
43h  
44h  
80h  
82h  
84h  
86h  
88h  
0050h  
0052h  
0049h  
"P"  
"R"  
"I"  
Primary Algorithm extended Query table unique ASCII  
string “PRI”  
0031h Major version number, ASCII  
0030h Minor version number, ASCII  
"1"  
"0"  
Address Sensitive Unlock (bits 1 to 0)  
0000h 00 = required, 01= not required  
Silicon Revision Number (bits 7 to 2)  
45h  
8Ah  
Yes  
Erase Suspend  
46h  
47h  
48h  
49h  
8Ch  
8Eh  
90h  
92h  
0002h  
2
1
00 = not supported, 01 = Read only, 02 = Read and Write  
Block Protection  
0001h  
00 = not supported, x = number of sectors in per group  
Temporary Block Unprotect  
0001h  
Yes  
4
00 = not supported, 01 = supported  
Block Protect /Unprotect  
0004h  
04 = M29W400B  
4Ah  
4Bh  
94h  
96h  
0000h Simultaneous Operations, 00 = not supported  
0000h Burst Mode, 00 = not supported, 01 = supported  
No  
No  
Page Mode, 00 = not supported, 01 = 4 page word, 02 = 8  
page word  
4Ch  
98h  
0000h  
No  
Table 27. Security Code Area  
Address  
Data  
Description  
x16  
x8  
61h  
62h  
63h  
64h  
C3h, C2h  
C5h, C4h  
C7h, C6h  
C9h, C8h  
XXXX  
XXXX  
XXXX  
XXXX  
64 bit: unique device number  
41/49  
Block protection  
M29W800DT, M29W800DB  
Appendix C  
Block protection  
Block protection can be used to prevent any operation from modifying the data stored in the  
Flash. Each Block can be protected individually. Once protected, Program and Erase  
operations on the block fail to change the data.  
There are three techniques that can be used to control Block Protection, these are the  
Programmer technique, the In-System technique and Temporary Unprotection. Temporary  
Unprotection is controlled by the Reset/Block Temporary Unprotection pin, RP; this is  
described in the Signal Descriptions section.  
Unlike the Command Interface of the Program/Erase Controller, the techniques for  
protecting and unprotecting blocks change between different Flash memory suppliers. For  
example, the techniques for AMD parts will not work on STMicroelectronics parts. Care  
should be taken when changing drivers for one part to work on another.  
C.1  
Programmer Technique  
The Programmer technique uses high (V ) voltage levels on some of the bus pins. These  
ID  
cannot be achieved using a standard microprocessor bus, therefore the technique is  
recommended only for use in Programming Equipment.  
To protect a block follow the flowchart in Figure 18: Programmer Equipment Block Protect  
Flowchart, To unprotect the whole chip it is necessary to protect all of the blocks first, then  
all blocks can be unprotected at the same time. To unprotect the chip follow Figure 19:  
Programmer Equipment Chip Unprotect Flowchart. Table 28: Programmer Technique Bus  
Operations, BYTE = VIH or VIL, gives a summary of each operation.  
The timing on these flowcharts is critical. Care should be taken to ensure that, where a  
pause is specified, it is followed as closely as possible. Do not abort the procedure before  
reaching the end. Chip Unprotect can take several seconds and a user message should be  
provided to show that the operation is progressing.  
C.2  
In-System Technique  
The In-System technique requires a high voltage level on the Reset/Blocks Temporary  
Unprotect pin, RP. This can be achieved without violating the maximum ratings of the  
components on the microprocessor bus, therefore this technique is suitable for use after the  
Flash has been fitted to the system.  
To protect a block follow the flowchart in Figure 20: In-System Equipment Block Protect  
Flowchart. To unprotect the whole chip it is necessary to protect all of the blocks first, then  
all the blocks can be unprotected at the same time. To unprotect the chip follow Figure 21:  
In-System Equipment Chip Unprotect Flowchart.  
The timing on these flowcharts is critical. Care should be taken to ensure that, where a  
pause is specified, it is followed as closely as possible. Do not allow the microprocessor to  
service interrupts that will upset the timing and do not abort the procedure before reaching  
the end. Chip Unprotect can take several seconds and a user message should be provided  
to show that the operation is progressing.  
42/49  
M29W800DT, M29W800DB  
Block protection  
Table 28. Programmer Technique Bus Operations, BYTE = V or V  
IH  
IL  
Address Inputs  
Data Inputs/Outputs  
DQ15A–1, DQ14-DQ0  
Operation  
E
G
W
A0-A18  
A9 = VID, A12-A18 Block Address  
Others = X  
Block Protect  
VIL  
VID VIL Pulse  
X
X
A9 = VID, A12 = VIH, A15 = VIH  
Others = X  
Chip Unprotect  
VID VID VIL Pulse  
A0 = VIL, A1 = VIH, A6 = VIL, A9 = VID,  
A12-A18 Block Address  
Pass = XX01h  
Retry = XX00h  
Block Protection  
Verify  
VIL  
VIL  
VIH  
Others = X  
A0 = VIL, A1 = VIH, A6 = VIH,  
A9 = VID, A12-A18 Block Address  
Retry = XX01h  
Pass = XX00h  
Block Unprotection  
Verify  
VIL  
VIL  
VIH  
Others = X  
43/49  
Block protection  
M29W800DT, M29W800DB  
Figure 18. Programmer Equipment Block Protect Flowchart  
START  
ADDRESS = BLOCK ADDRESS  
W = V  
IH  
n = 0  
G, A9 = V  
E = V  
,
ID  
IL  
Wait 4µs  
W = V  
IL  
Wait 100µs  
W = V  
IH  
E, G = V  
,
IH  
A0, A6 = V  
A1 = V  
,
IL  
IH  
E = V  
IL  
Wait 4µs  
G = V  
IL  
Wait 60ns  
Read DATA  
DATA  
=
01h  
NO  
YES  
++n  
= 25  
NO  
A9 = V  
E, G = V  
IH  
IH  
YES  
PASS  
A9 = V  
IH  
E, G = V  
IH  
AI03469  
FAIL  
44/49  
M29W800DT, M29W800DB  
Block protection  
Figure 19. Programmer Equipment Chip Unprotect Flowchart  
START  
PROTECT ALL BLOCKS  
n = 0  
CURRENT BLOCK = 0  
(1)  
A6, A12, A15 = V  
IH  
E, G, A9 = V  
ID  
Wait 4µs  
W = V  
IL  
Wait 10ms  
W = V  
IH  
E, G = V  
IH  
ADDRESS = CURRENT BLOCK ADDRESS  
A0 = V , A1, A6 = V  
IL  
IH  
E = V  
IL  
Wait 4µs  
G = V  
IL  
INCREMENT  
CURRENT BLOCK  
Wait 60ns  
Read DATA  
NO  
YES  
DATA  
=
00h  
LAST  
BLOCK  
NO  
NO  
++n  
= 1000  
YES  
YES  
A9 = V  
IH  
A9 = V  
IH  
E, G = V  
E, G = V  
IH  
IH  
FAIL  
PASS  
AI03470  
45/49  
Block protection  
M29W800DT, M29W800DB  
Figure 20. In-System Equipment Block Protect Flowchart  
START  
n = 0  
RP = V  
ID  
WRITE 60h  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
WRITE 60h  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
Wait 100µs  
WRITE 40h  
IL  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
Wait 4µs  
READ DATA  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
DATA  
NO  
=
01h  
YES  
++n  
= 25  
NO  
RP = V  
IH  
YES  
ISSUE READ/RESET  
COMMAND  
RP = V  
IH  
PASS  
ISSUE READ/RESET  
COMMAND  
FAIL  
AI03471  
46/49  
M29W800DT, M29W800DB  
Block protection  
Figure 21. In-System Equipment Chip Unprotect Flowchart  
START  
PROTECT ALL BLOCKS  
n = 0  
CURRENT BLOCK = 0  
RP = V  
ID  
WRITE 60h  
ANY ADDRESS WITH  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
IH  
WRITE 60h  
ANY ADDRESS WITH  
A0 = V , A1 = V , A6 = V  
IL  
IH  
Wait 10ms  
WRITE 40h  
ADDRESS = CURRENT BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
Wait 4µs  
INCREMENT  
CURRENT BLOCK  
READ DATA  
ADDRESS = CURRENT BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
DATA  
NO  
YES  
=
00h  
++n  
= 1000  
NO  
NO  
LAST  
BLOCK  
YES  
RP = V  
YES  
RP = V  
IH  
IH  
ISSUE READ/RESET  
COMMAND  
ISSUE READ/RESET  
COMMAND  
PASS  
FAIL  
AI03472  
47/49  
Revision history  
M29W800DT, M29W800DB  
Revision history  
Table 29. Document revision history  
Date  
Version  
Revision Details  
August 2001  
1.0  
First Issue  
Block Protection Appendix added, SO44 drawing and package  
mechanical data updated, CFI Table 26, address 39h/72h data clarified,  
Read/Reset operation during Erase Suspend clarified  
03-Dec-2001  
2.0  
Description of Ready/Busy signal clarified (and Figure 14 modified)  
Clarified allowable commands during block erase  
01-Mar-2002  
11-Apr-2002  
3.0  
4.0  
Clarified the mode the device returns to in the CFI Read Query command  
section  
Temperature range 1 added  
Document promoted from Preliminary Data to full Data Sheet  
Erase Suspend Latency Time (typical and maximum) and Data Retention  
parameters added to Table Table 6: Program, Erase Times and Program,  
Erase Endurance Cycles, and Typical after 100k W/E Cycles column  
removed. Minimum voltage corrected for 70ns Speed Class in Table 9:  
Operating and AC Measurement Conditions.  
31-Mar-2003  
13-Feb-2004  
4.1  
5.0  
Logic Diagram and Data Toggle Flowchart corrected.  
Lead-free package options E and F added to Table 19: Ordering  
Information Scheme.  
TSOP48 package Outline and Mechanical Data updated.  
TFBGA48 6x8mm – 6x8 active ball array – 0.80mm pitch added.  
Table 9: Operating and AC Measurement Conditions updated for 70ns  
speed option.  
23-Apr-2004  
16-Sep-2004  
6.0  
7.0  
Figure 2: SO Connections updated.  
45ns speed class added.  
Removed TFBGA48 (ZA) (6 x 9 mm) package. Converted to new ST  
Corporate template.  
21-Mar-2006  
8.0  
48/49  
M29W800DT, M29W800DB  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,  
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,  
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR  
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
49/49  

相关型号:

M29W800DT70ZE6F

8-Mbit (1 Mbit x 8 or 512 Kbits x 16, boot block) 3 V supply flash memory
NUMONYX

M29W800DT70ZE6F

512KX16 FLASH 3V PROM, 70ns, PBGA48, 6 X 8 MM, 0.80 MM PITCH, LEAD FREE, TFBGA-48
STMICROELECTR

M29W800DT70ZE6T

8-Mbit (1 Mbit x 8 or 512 Kbits x 16, boot block) 3 V supply flash memory
NUMONYX

M29W800DT70ZE6T

8 Mbit (1Mb x8 or 512Kb x16, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W800DT90M1E

8-Mbit (1 Mbit x 8 or 512 Kbits x 16, boot block) 3 V supply flash memory
NUMONYX

M29W800DT90M1F

8-Mbit (1 Mbit x 8 or 512 Kbits x 16, boot block) 3 V supply flash memory
NUMONYX

M29W800DT90M1F

512KX16 FLASH 3V PROM, 90ns, PDSO44, 0.525 INCH, LEAD FREE, PLASTIC, SO-44
STMICROELECTR

M29W800DT90M1T

8 Mbit (1Mb x8 or 512Kb x16, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W800DT90M1T

8-Mbit (1 Mbit x 8 or 512 Kbits x 16, boot block) 3 V supply flash memory
NUMONYX

M29W800DT90M6E

8-Mbit (1 Mbit x 8 or 512 Kbits x 16, boot block) 3 V supply flash memory
NUMONYX

M29W800DT90M6E

512KX16 FLASH 3V PROM, 90ns, PDSO44, 0.525 INCH, LEAD FREE, PLASTIC, SO-44
STMICROELECTR

M29W800DT90M6F

8-Mbit (1 Mbit x 8 or 512 Kbits x 16, boot block) 3 V supply flash memory
NUMONYX