M36DR432AD [STMICROELECTRONICS]

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256Kb x16 SRAM, Multiple Memory Product; 32兆位的2Mb X16 ,双行,页闪存和4兆位256Kb的SRAM X16 ,多重内存产品
M36DR432AD
型号: M36DR432AD
厂家: ST    ST
描述:

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256Kb x16 SRAM, Multiple Memory Product
32兆位的2Mb X16 ,双行,页闪存和4兆位256Kb的SRAM X16 ,多重内存产品

闪存 静态存储器
文件: 总52页 (文件大小:782K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M36DR432AD  
M36DR432BD  
32 Mbit (2Mb x16, Dual Bank, Page) Flash Memory  
and 4 Mbit (256Kb x16) SRAM, Multiple Memory Product  
FEATURES SUMMARY  
Multiple Memory Product  
Figure 1. Package  
– 1 bank of 32 Mbit (2Mb x16) Flash Memory  
– 1 bank of 4 Mbit (256Kb x16) SRAM  
SUPPLY VOLTAGE  
– V  
– V  
= V  
=1.65V to 2.2V  
DDF  
PPF  
DDS  
= 12V for Fast Program (optional)  
FBGA  
ACCESS TIMES: 85ns, 100ns, 120ns  
LOW POWER CONSUMPTION  
ELECTRONIC SIGNATURE  
Stacked LFBGA66 (ZA)  
12 x8mm  
– Manufacturer Code: 0020h  
– Top Device Code, M36DR432AD: 00A0h  
– Bottom Device Code, M36DR432BD: 00A1h  
FLASH MEMORY  
MEMORY BLOCKS  
– Dual Bank Memory Array: 4 Mbit, 28 Mbit  
– Parameter Blocks (Top or Bottom location)  
PROGRAMMING TIME  
ERASE SUSPEND and RESUME MODES  
– 10µs by Word typical  
100,000 PROGRAM/ERASE CYCLES per  
– Double Word Program Option  
ASYNCHRONOUS PAGE MODE READ  
– Page Width: 4 Words  
BLOCK  
20 YEARS DATA RETENTION  
– Defectivity below 1ppm/year  
– Page Access: 35ns  
SRAM  
– Random Access: 85ns, 100ns, 120ns  
DUAL BANK OPERATIONS  
4 Mbit (256Kb x16)  
LOW V  
DATA RETENTION: 1.0V  
DDS  
– Read within one Bank while Program or  
Erase within the other  
POWER DOWN FEATURES USING TWO  
CHIP ENABLE INPUTS  
– No delay between Read and Write operations  
BLOCK LOCKING  
– All blocks locked at Power up  
– Any combination of blocks can be locked  
– WPF for Block Lock-Down  
COMMON FLASH INTERFACE (CFI)  
– 64 bit Unique Device Identifier  
– 64 bit User Programmable OTP Cells  
February 2003  
1/52  
M36DR432AD, M36DR432BD  
TABLE OF CONTENTS  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 3. TFBGA Connections (Top view through package). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Address Inputs (A0-A17). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Address Inputs (A18-A20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Data Input/Output (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Flash Chip Enable (EF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Flash Output Enable (GF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Flash Write Enable (WF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Flash Write Protect (WPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Flash Write Protect (WPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Flash Reset/Power-Down (RPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
VDDF Supply Voltage (1.65V to 2.2V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
V
V
Programming Voltage (11.4V to 12.6V).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Ground.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
PPF  
SSF  
SRAM Chip Enable (ES). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SRAM Write Enable (WS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SRAM Output Enable (GS).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SRAM Upper Byte Enable (UBS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SRAM Lower Byte Enable (LBS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
VDDS Supply Voltage (1.65V to 2.2V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 4. Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 2. Main Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
FLASH MEMORY COMPONENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 3. Flash Bank Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 5. Flash Security Block and Protection Register Memory Map . . . . . . . . . . . . . . . . . . . . . . 13  
Flash Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Flash Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Flash Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Flash Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Flash Standby.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Automatic Flash Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Flash Power-Down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Dual Bank Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Flash Command Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Flash Read/Reset Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Flash Read CFI Query Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2/52  
M36DR432AD, M36DR432BD  
Auto Select Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Set Configuration Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Double Word Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Quadruple Word Program Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Enter Bypass Mode Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Exit Bypass Mode Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Program in Bypass Mode Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Double Word Program in Bypass Mode Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Quadruple Word Program in Bypass Mode Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Block Lock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Block Unlock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Block Lock-Down Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Block Erase Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Bank Erase Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Erase Suspend Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Erase Resume Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 4. Flash Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 5. Read Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 6. Flash Read Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 7. Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 8. Read Protection Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 9. Program, Erase Times and Program, Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . . 19  
Flash Block Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Reading a Block’s Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Locked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Unlocked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Lock-Down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Locking Operations During Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 10. Flash Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Flash Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Data Polling Bit (DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Toggle Bit (DQ6).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Toggle Bit (DQ2).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Error Bit (DQ5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Erase Timer Bit (DQ3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Polling and Toggle Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 11. Polling and Toggle Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 12. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
SRAM COMPONENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SRAM Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3/52  
M36DR432AD, M36DR432BD  
Standby/Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Data Retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 13. Absolute Maximum Ratings(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 26  
Table 14. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 6. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 7. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 15. Device Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 16. Flash DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 17. SRAM DC Characteristics (T = –40 to 85°C; V  
= V  
= 1.65V to 2.2V) . . . . . . . . 28  
DDS  
A
DDF  
Figure 8. Flash Random Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 9. Flash Page Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 18. Flash Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 10. Flash Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 19. Flash Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 11. Flash Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 20. Flash Write AC Characteristics, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 12. Flash Reset/Power-Down AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 21. Flash Reset/Power-Down AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 13. Flash Data Polling DQ7 AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 14. Flash Data Toggle DQ6, DQ2 AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 22. Flash Data Polling and Toggle Bits AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 15. Flash Data Polling Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 16. Flash Data Toggle Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 17. SRAM Read Mode AC Waveforms, Address Controlled with UBS = LBS = V . . . . . . 38  
IL  
Figure 18. SRAM Read AC Waveforms, ES or GS Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 19. SRAM Standby AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 23. SRAM Read AC Characteristics). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 20. SRAM Write AC Waveforms, WS Controlled with GS Low . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 21. SRAM Write AC Waveforms, WS Controlled with GS High . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 22. SRAM Write Cycle Waveform, UBS and LBS Controlled, G Low . . . . . . . . . . . . . . . . . 41  
Figure 23. SRAM Write AC Waveforms, ES Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 24. SRAM Write AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 24. SRAM Low V  
Data Retention AC Waveforms, ES Controlled . . . . . . . . . . . . . . . . . 42  
Data Retention Characteristics (1, 2) . . . . . . . . . . . . . . . . . . . . . . . . . 43  
DDS  
Table 25. SRAM Low V  
DDS  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 25. Stacked LFBGA 12x8mm - 8x8 ball array, 0.8mm pitch, Bottom View Package Outline44  
Table 26. Stacked LFBGA 12x8mm - 8x8 ball array, 0.8mm pitch, Package Mechanical Data . . . 44  
4/52  
M36DR432AD, M36DR432BD  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 27. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
APPENDIX A. BLOCK ADDRESSES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 28. Bank A, Top Boot Block Addresses M36DR432AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 29. Bank B, Top Boot Block Addresses M36DR432AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 30. Bank B, Bottom Boot Block Addresses M36DR432BD . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 31. Bank A, Bottom Boot Block Addresses M36DR432BD . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
APPENDIX B. COMMON FLASH INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 32. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 33. CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 34. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 35. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 36. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 51  
5/52  
M36DR432AD, M36DR432BD  
SUMMARY DESCRIPTION  
The M36DR432AD/BD is a low-voltage Multiple  
Memory Product which combines two memory de-  
vices: a 32 Mbit (2Mbit x16) non-volatile Flash  
memory and a 4 Mbit SRAM.  
The memory is available in a Stacked LFBGA66  
12x8mm - 8x8 active ball array, 0.8mm pitch pack-  
age and supplied with all the bits erased (set to  
‘1’).  
Table 1. Signal Names  
A0-A17  
Address Inputs  
A18-A20  
DQ0-DQ15  
Address Inputs for Flash Chip only  
Data Input/Outputs, Command Inputs  
Flash Power Supply  
V
DDF  
Flash Optional Supply Voltage for Fast  
Program & Erase  
V
PPF  
Figure 2. Logic Diagram  
V
V
V
Flash Ground  
V
V
V
SSF  
DDS  
SSS  
DDF PPF DDS  
SRAM Power Supply  
SRAM Ground  
21  
16  
A0-A20  
DQ0-DQ15  
NC  
Not Connected Internally  
WF  
EF  
Flash control functions  
EF  
Chip Enable  
GF  
GF  
Output Enable  
RPF  
WPF  
WF  
RPF  
WPF  
Write Enable  
M36DR432AD  
M36DR432BD  
Reset/Power-Down  
Write Protect input  
E1S  
E2S  
GS  
SRAM control functions  
E1S  
E2S  
GS  
Chip Enable  
WS  
UBS  
LBS  
Chip Enable  
Output Enable  
Write Enable  
WS  
UBS  
LBS  
Upper Byte Enable  
Lower Byte Enable  
V
V
SSS  
SSF  
AI07309b  
6/52  
M36DR432AD, M36DR432BD  
Figure 3. TFBGA Connections (Top view through package)  
7/52  
M36DR432AD, M36DR432BD  
SIGNAL DESCRIPTIONS  
See Figure 2 Logic Diagram and Table 1, Signal  
Names, for a brief overview of the signals connect-  
ed to this device.  
When Output Enable, GF, is at V the outputs are  
High impedance.  
Flash Write Enable (WF). The Write Enable  
controls the Bus Write operation of the Flash  
memory’s Command Interface.  
IH  
Address Inputs (A0-A17). Addresses A0-A17  
are common inputs for the Flash and the SRAM  
components. The Address Inputs select the cells  
in the memory array to access during Bus Read  
operations. During Bus Write operations they con-  
trol the commands sent to the Command Interface  
of the internal state machine. During a write oper-  
ation, the address inputs for the Flash memory are  
latched on the falling edge of the Flash Chip En-  
able (EF) or Write Enable (WF), whichever occurs  
last, whereas for the SRAM array they are latched  
on the falling edge of the SRAM Chip Enable lines  
(E1S or E2S) or Write Enable (WS). In the rest of  
the datasheet, only the Active Low SRAM Chip  
Enable line will be discussed. It will be referred to  
as ES.  
Address Inputs (A18-A20). Addresses A18-A20  
are inputs for the Flash component only. They are  
latched during a write operation on the falling edge  
of Flash Chip Enable (EF) or Write Enable (WF),  
whichever occurs last.  
Data Input/Output (DQ0-DQ15). The Data I/O  
output the data stored at the selected address dur-  
ing a Bus Read operation or input a command or  
the data to be programmed during a Write Bus op-  
eration.  
Flash Write Protect (WPF). Write Protect is an  
input that gives an additional hardware protection  
for each Flash block. When Write Protect is at V ,  
IL  
the locked-down blocks cannot be locked or un-  
locked. When Write Protect is at V , the Lock-  
IH  
Down is disabled and the Locked-Down blocks  
can be locked or unlocked. Refer to Table 8, Read  
Protection Register.  
Flash Reset/Power-Down (RPF). The Reset/  
Power-Down input provides hardware reset of the  
Flash memory, and/or Power-Down functions, de-  
pending on the Flash Configuration Register sta-  
tus. Reset or Power-Down of the memory is  
achieved by pulling RPF to V for at least t  
.
IL  
PLPH  
The Reset/Power-Down function is set in the Con-  
figuration Register (see Set Configuration Regis-  
ter Command). If it is set to ‘0’ the Reset function  
is enabled, if it is set to ‘1’ the Power-Down func-  
tion is enabled. After a Reset or Power-Up the  
power save function is disabled and all blocks are  
locked.  
The memory Command Interface is reset on Pow-  
er Up to Read Array. Either Chip Enable or Write  
Enable must be tied to V during Power Up to al-  
IH  
The input is data to be programmed in the Flash or  
SRAM memory array or a command to be written  
to the C.I. of the Flash memory. Both are latched  
on the rising edge of Flash Write Enable (WF) and,  
SRAM Chip Enable lines (ES) or Write Enable  
(WS). The output is data from the Flash memory  
array or SRAM array, the Electronic Signature  
Manufacturer or Device codes, the Block Protec-  
tion status, the Configuration Register status or  
the Status Register Data (Polling bit DQ7, Toggle  
bits DQ6 and DQ2, Error bit DQ5 or Erase Timer  
bit DQ3) depending on the address. Outputs are  
valid when Flash Chip Enable (EF) and Output En-  
able (GF) or SRAM Chip Enable lines (ES) and  
Output Enable (GS) are active.  
low maximum security and the possibility to write a  
command on the first rising edge of Write Enable.  
After a Reset, when the device is in Read, Erase  
Suspend Read or Standby, valid data will be out-  
put t  
after the rising edge of RPF. If the de-  
PHQ7V1  
vice is in Erase or Program, the operation will be  
aborted and the reset recovery will take a maxi-  
mum of t  
set/Power-Down t  
. The memory will recover from Re-  
PLQ7V  
after the rising edge of  
PHQ7V2  
RPF. See Tables 18 and 19, and Figure 12.  
V
Supply Voltage (1.65V to 2.2V). V  
pro-  
DDF  
DDF  
vides the power supply to the internal core and I/O  
pins of the memory device. It is the main power  
supply for all operations (read, program and  
erase).  
The output is high impedance when both the Flash  
chip and the SRAM chip are deselected or the out-  
V
PPF  
Programming Voltage (11.4V to 12.6V).  
puts are disabled and when Reset (RPF) is at V .  
V
provides a high voltage power supply for fast  
IL  
PPF  
factory programming. V  
Double Word and Quadruple Word Program com-  
mands.  
is required to use the  
PPF  
Flash Chip Enable (EF). The Chip Enable input  
activates the Flash memory control logic, input  
buffers, decoders and sense amplifiers. When  
Chip Enable is at V the memory is deselected  
V
Ground. V  
ground is the reference for  
SSF  
IH  
SSF  
and the power consumption is reduced to the  
standby level.  
the core supply. It must be connected to the sys-  
tem ground.  
Flash Output Enable (GF). gates the outputs  
through the data buffers during a read operation.  
SRAM Chip Enable (ES). The Chip Enable in-  
puts for SRAM activate the memory control logic,  
input buffers and decoders. ES at V deselects  
IH  
8/52  
M36DR432AD, M36DR432BD  
the memory and reduces the power consumption  
to the standby level. ES can also be used to con-  
trol writing to the SRAM memory array, while WS  
SRAM Upper Byte Enable (UBS). Enables the  
upper bytes for SRAM (DQ8-DQ15). UBS is active  
Low.  
remains at V . It is not allowed to set EF at V and  
IL  
IL  
SRAM Lower Byte Enable (LBS). Enables the  
lower bytes for SRAM (DQ0-DQ7). LBS is active  
Low.  
ES at V at the same time.  
IL  
SRAM Write Enable (WS). The Write Enable in-  
put controls writing to the SRAM memory array.  
WS is active Low.  
V
Supply Voltage (1.65V to 2.2V). V  
is the  
DDS  
DDS  
SRAM power supply for all operations.  
Note: Each device in a system should have  
and V decoupled with a 0.1µF capaci-  
SRAM Output Enable (GS). The Output Enable  
gates the outputs through the data buffers during  
a read operation of the SRAM chip. GS is active  
Low.  
V
DDF  
PPF  
tor close to the pin. See Figure 7, AC Measure-  
ment Load Circuit. The PCB trace widths  
should be sufficient to carry the required V  
program and erase currents.  
PPF  
9/52  
M36DR432AD, M36DR432BD  
FUNCTIONAL DESCRIPTION  
The Flash and SRAM components have separate  
power supplies and grounds and are distinguished  
by three chip enable inputs: EF for the Flash mem-  
ory and ES (E1S and E2S, respectively) for the  
SRAM.  
Figure 4. Functional Block Diagram  
V
V
PPF  
DDF  
EF  
GF  
WF  
Flash Memory  
32 Mbit (2Mb x 16)  
RPF  
WPF  
A18-A20  
A0-A17  
V
SSF  
V
DQ0-DQ15  
DDS  
E1S  
E2S  
GS  
SRAM  
4 Mbit (256Kb x 16)  
WS  
UBS  
LBS  
V
SSS  
AI07310b  
10/52  
M36DR432AD, M36DR432BD  
Table 2. Main Operation Modes  
(1)  
Operation Mode  
Read  
EF  
GF  
WF  
RPF  
WPF  
ES  
GS WS  
DQ15-DQ0  
Data Output  
Data Output  
Data Input  
Hi-Z  
UBS, LBS  
V
V
IL  
V
V
IH  
V
IH  
SRAM must be disabled  
SRAM must be disabled  
SRAM must be disabled  
Any SRAM mode is allowed  
IL  
IH  
V
IL  
V
IL  
V
V
IH  
V
IH  
Page Read  
Write  
IH  
V
IL  
V
IH  
V
IL  
V
IH  
V
IH  
V
IH  
V
IH  
V
IH  
Standby  
X
X
X
X
Reset/  
Power-Down  
V
IL  
V
IH  
X
Any SRAM mode is allowed  
Any SRAM mode is allowed  
Hi-Z  
Hi-Z  
V
V
IH  
V
V
IH  
V
IH  
Output Disable  
Read  
IL  
IH  
Data out  
Word Read  
V
IL  
V
IL  
V
IH  
V
Flash must be disabled  
Flash must be disabled  
IL  
IL  
Data in Word  
Write  
V
IL  
V
V
IL  
V
Write  
IH  
V
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
IH  
Standby/Power  
Down  
Any Flash mode is allowable  
V
IH  
X
X
X
X
X
X
X
V
X
IH  
Data Retention  
Output Disable  
Any Flash mode is allowable  
Any Flash mode is allowable  
V
IH  
X
V
V
V
IH  
X
IL  
IH  
Note: 1. X = Don’t care (V or V ).  
IL  
IH  
2. If UBS and LBS are tied together the bus is at 16 bit. For an 8 bit bus configuration use UBS and LBS separately.  
11/52  
M36DR432AD, M36DR432BD  
FLASH MEMORY COMPONENT  
The Flash Memory is a 32 Mbit (2Mbit x16) non-  
volatile Flash memory that may be erased electri-  
cally at block level and programmed in-system on  
Program and Erase commands are written to the  
Command Interface of the memory. An internal  
Program/Erase Controller takes care of the tim-  
ings necessary for program and erase operations.  
The end of a program or erase operation can be  
detected and any error conditions identified in the  
Status Register. The command set required to  
control the memory is consistent with JEDEC stan-  
dards.  
a Word-by-Word basis using a 1.65V to 2.2V V  
DDF  
supply for the circuitry and a 1.65V to 2.2V V  
DDQF  
supply for the Input/Output pins (in the stacked de-  
vice, V and V are tied internally). An op-  
DDF  
DDQF  
tional 12V V  
power supply is provided to speed  
PPF  
up customer programming.  
The Flash device features an asymmetrical block  
architecture with an array of 71 blocks divided into  
two banks, Banks A and B, providing Dual Bank  
operations. While programming or erasing in Bank  
A, read operations are possible in Bank B or vice  
versa. Only one bank at a time is allowed to be in  
program or erase mode. The bank architecture is  
summarized in Table 3, and the Block Addresses  
are shown in Appendix A. The Parameter Blocks  
are located at the top of the memory address  
space for the M36DR432AD and, at the bottom for  
the M36DR432BD.  
Each block can be erased separately. Erase can  
be suspended, in order to perform either read or  
program in any other block, and then resumed.  
Each block can be programmed and erased over  
100,000 cycles.  
The Flash memory features an instant, individual  
block locking scheme that allows any block to be  
locked or unlocked with no latency, enabling in-  
stant code and data protection. All blocks have two  
levels of protection. They can be individually  
locked and locked-down preventing any acciden-  
tal programming or erasure. All blocks are locked  
at Power Up and Reset.  
The device includes a 128 bit Protection Register  
and a Security Block to increase the protection of  
a system’s design. The Protection Register is di-  
vided into two 64 bit segments. The first segment  
contains a unique device number written by ST,  
while the second one is one-time-programmable  
by the user. The user programmable segment can  
be permanently protected. The Security Block, pa-  
rameter block 0, can be permanently protected by  
the user. Figure 5, shows the Flash Security Block  
and Protection Register Memory Map.  
Table 3. Flash Bank Architecture  
Bank Size  
Parameter Blocks  
Main Blocks  
Bank A  
Bank B  
4 Mbits  
8 blocks of 4 KWords  
-
7 blocks of 32 KWords  
56 blocks of 32 KWords  
28 Mbits  
12/52  
M36DR432AD, M36DR432BD  
Figure 5. Flash Security Block and Protection Register Memory Map  
PROTECTION REGISTER  
User Programmable OTP  
88h  
SECURITY BLOCK  
Parameter Block # 0  
85h  
84h  
Unique device number  
81h  
80h  
Protection Register Lock  
2
1
0
AI06185  
Flash Bus Operations  
Flash Output Disable. The data outputs are high  
impedance when the Output Enable GF is at V  
IH  
The following operations can be performed using  
the appropriate bus cycles: Flash Read Array  
(Random and Page Modes), Flash Write, Flash  
Output Disable, Flash Standby and Flash Reset/  
Power-Down, see Table 2, Main Operation  
Modes.  
Flash Read. Flash Read operations are used to  
output the contents of the Memory Array, the Elec-  
tronic Signature, the Status Register, the CFI, the  
Block Protection Status or the Configuration Reg-  
ister status. Read operation of the Flash memory  
array is performed in asynchronous page mode,  
that provides fast access time. Data is internally  
read and stored in a page buffer. The page has a  
size of 4 words and is addressed by A0-A1 ad-  
dress inputs. Read operations of the Electronic  
Signature, the Status Register, the CFI, the Block  
Protection Status, the Configuration Register sta-  
tus and the Security Code are performed as single  
asynchronous read cycles (Random Read). Both  
Flash Chip Enable EF and Flash Output Enable  
with Write Enable WF at V .  
IH  
Flash Standby. The memory is in standby when  
Chip Enable EF is at V and the P/E.C. is idle.  
IH  
The power consumption is reduced to the standby  
level and the outputs are high impedance, inde-  
pendent of the Output Enable GF or Write Enable  
WF inputs.  
Automatic Flash Standby. In Read mode, after  
150ns of bus inactivity and when CMOS levels are  
driving the addresses, the chip automatically en-  
ters a pseudo-standby mode where consumption  
is reduced to the CMOS standby value, while out-  
puts still drive the bus.  
Flash Power-Down. The memory is in Power-  
Down when the Configuration Register is set for/  
Power-Down and RPF is at V . The power con-  
IL  
sumption is reduced to the Power-Down level, and  
Outputs are high impedance, independent of the  
Chip Enable EF, Output Enable GF or Write En-  
able WF inputs.  
Dual Bank Operations. The Dual Bank allows  
data to be read from one bank of memory while a  
program or erase operation is in progress in the  
other bank of the memory. Read and Write cycles  
can be initiated for simultaneous operations in dif-  
ferent banks without any delay. Status Register  
during Program or Erase must be monitored using  
an address within the bank being modified.  
GF must be at V in order to read the output of the  
IL  
memory.  
Flash Write. Write operations are used to give  
commands to the memory or to latch Input Data to  
be programmed. A write operation is initiated  
when Chip Enable EF and Write Enable WF are at  
V
with Output Enable GF at V . Addresses are  
IL  
IH  
latched on the falling edge of WF or EF whichever  
occurs last. Commands and Input Data are  
latched on the rising edge of WF or EF whichever  
occurs first. Noise pulses of less than 5ns typical  
on EF, WF and GF signals do not start a write cy-  
cle.  
Flash Command Interface  
All Bus Write operations to the memory are inter-  
preted by the Command Interface. Commands  
consist of one or more sequential Bus Write oper-  
ations. An internal Program/Erase Controller han-  
13/52  
M36DR432AD, M36DR432BD  
dles all timings and verifies the correct execution  
of the Program and Erase commands. Two bus  
write cycles are required to unlock the Command  
Interface. They are followed by a setup or confirm  
cycle. The increased number of write cycles is to  
ensure maximum data security.  
address bits are ignored. Address input A10 de-  
fines the status of the Reset/Power-Down func-  
tions. If it is set to ‘0’ the Reset function is enabled,  
if it is set to ‘1’ the Power-Down function is en-  
abled. At Power Up the Configuration Register bit  
is set to ‘0’.  
The Program/Erase Controller provides a Status  
Register whose output may be read at any time to  
monitor the progress or the result of the operation.  
The Command Interface is reset to Read mode  
when power is first applied or exiting from Reset.  
Command sequences must be followed exactly.  
Any invalid combination of commands will reset  
the device to Read mode  
Flash Read/Reset Command. The Read/Reset  
command returns the device to Read mode. One  
Bus Write cycle is required to issue the Read/Re-  
set command and return the device to Read mode.  
Subsequent Read operations will read the ad-  
dressed location and output the data. The write cy-  
cle can be preceded by the unlock cycles but it is  
not mandatory.  
The Set Configuration Register command is used  
to write a new value to the Configuration Register.  
The command uses the two unlock cycles followed  
by one write cycle to setup the command and a  
further write cycle to write the data and confirm the  
command.  
Program Command. The Program command  
uses the two unlock cycles followed by a write cy-  
cle to setup the command and a further write cycle  
to latch the Address and Data and start the Pro-  
gram Erase Controller. Read operations within the  
same bank output the Status Register after pro-  
gramming has started.  
Note that the Program command cannot change a  
bit set at ’0’ back to ’1’. One of the Erase Com-  
mands must be used to set all the bits in a block or  
in the whole bank from ’0’ to ’1’. If the Program  
command is used to try to set a bit from ‘0’ to ‘1’  
Status Register Error bit DQ5 will be set to ‘1’, only  
Flash Read CFI Query Command. The  
Read  
CFI Query command is used to read data from the  
Common Flash Interface (CFI) and the Electronic  
Signature (Manufacturer or the Device Code, see  
Table 5). The Read CFI Query Command consists  
of one Bus Write cycle. Once the command is is-  
sued the device enters Read CFI mode. Subse-  
quent Bus Read operations read the Common  
Flash Interface or Electronic Signature. Once the  
device has entered Read CFI mode, only the  
Read/Reset command should be used and no oth-  
er. Issuing the Read/Reset command returns the  
device to Read mode.  
if V  
is in the range of 11.4V to 12.6V.  
PPF  
Double Word Program Command. This feature  
is offered to improve the programming throughput  
by writing a page of two adjacent words in parallel.  
The V  
supply voltage is required to be from  
PPF  
11.4V to 12.6V for the Double Word Program com-  
mand.  
The command uses the two unlock cycles followed  
by a write cycle to setup the command. A further  
two cycles are required to latch the address and  
data of the two Words and start the Program Erase  
Controller.  
The addresses must be the same except for the  
A0. The Double Word Program command can be  
executed in Bypass mode to skip the two unlock  
cycles.  
See Appendix B, Common Flash Interface, Tables  
33, 34, and 35 for details on the information con-  
tained in the Common Flash Interface memory ar-  
ea.  
Auto Select Command. The Auto Select com-  
mand uses the two unlock cycles followed by one  
write cycle to any bank address to setup the com-  
mand. Subsequent reads at any address will out-  
put the Block Protection status, Protection  
Register and Protection Register Lock or the Con-  
figuration Register status depending on the levels  
of A0 and A1 (see Tables 6, 7 and 8). Once the  
Auto Select command has been issued only the  
Read/Reset command should be used and no oth-  
er. Issuing the Read/Reset command returns the  
device to Read mode.  
Set Configuration Register Command. The  
Flash component contains a Configuration Regis-  
ter, see Table 7, Configuration Register.  
It is used to define the status of the Reset/Power-  
Down functions. The value for the Configuration  
Register is always presented on A0-A15, the other  
Note that the Double Word Program command  
cannot change a bit set at ’0’ back to ’1’. One of the  
Erase Commands must be used to set all the bits  
in a block or in the whole bank from ’0’ to ’1’. If the  
Double Word Program command is used to try to  
set a bit from ‘0’ to ‘1’ Status Register Error bit DQ5  
will be set to ‘1’.  
Quadruple Word Program Command. The  
Quadruple Word Program command improves the  
programming throughput by writing a page of four  
adjacent words in parallel. The four words must  
differ only for the addresses A0 and A1. The V  
PPF  
supply voltage is required to be from 11.4V to  
12.6V for the Quadruple Word Program com-  
mand.  
14/52  
M36DR432AD, M36DR432BD  
The command uses the two unlock cycles followed  
by a write cycle to setup the command. A further  
four cycles are required to latch the address and  
data of the four Words and start the Program  
Erase Controller.  
The Quadruple Word Program command can be  
executed in Bypass mode to skip the two unlock  
cycles.  
The first two bus cycles unlock the Command  
Interface.  
The third bus cycle sets up the Block Lock  
command and latches the block address.  
The lock status can be monitored for each block  
using the Auto Select command. Table 10 shows  
the Lock Status after issuing a Block Lock com-  
mand.  
Note that the Quadruple Word Program command  
cannot change a bit set to ’0’ back to ’1’. One of the  
Erase Commands must be used to set all the bits  
in a block or in the whole bank from ’0’ to ’1’. If the  
Quadruple Word Program command is used to try  
to set a bit from ‘0’ to ‘1’ Status Register Error bit  
DQ5 will be set to ‘1’.  
The Block Lock bits are volatile, once set they re-  
main set until a hardware reset or power-down/  
power-up. They are cleared by a Blocks Unlock  
command. Refer to the section, Block Locking, for  
a detailed explanation.  
Block Unlock Command. The Blocks Unlock  
command is used to unlock a block, allowing the  
block to be programmed or erased.  
Three Bus Write cycles are required to issue the  
Blocks Unlock command.  
Enter Bypass Mode Command. The  
Bypass  
mode is used to reduce the overall programming  
time when large memory arrays need to be pro-  
grammed.  
The Enter Bypass Mode command uses the two  
unlock cycles followed by one write cycle to set up  
the command. Once in Bypass mode, it is impera-  
tive that only the following commands be issued:  
Exit Bypass, Program, Double Word Program or  
Quadruple Word Program.  
Exit Bypass Mode Command. The Exit Bypass  
Mode command uses two write cycles to setup  
and confirm the command. The unlock cycles are  
not required. After the Exit Bypass Mode com-  
mand, the device resets to Read mode.  
Program in Bypass Mode Command. The  
Program in Bypass Mode command can be is-  
sued when the device is in Bypass mode (issue a  
Enter Bypass Mode command). It uses the same  
sequence of cycles as the Program command with  
the exception of the unlock cycles.  
The first two bus cycles unlock the Command  
Interface.  
The third bus cycle sets up the Block UnLock  
command and latches the block address.  
The lock status can be monitored for each block  
using the Auto Select command. Table 10 shows  
the lock status after issuing a Block Unlock com-  
mand. Refer to the section, Block Locking, for a  
detailed explanation.  
Block Lock-Down Command. A locked or un-  
locked block can be locked-down by issuing the  
Block Lock-Down command. A locked-down block  
cannot be programmed or erased, or have its pro-  
tection status changed when WPF is Low, V .  
IL  
When WPF is High, V the Lock-Down function is  
IH,  
disabled and the locked blocks can be individually  
unlocked by the Block Unlock command.  
Three Bus Write cycles are required to issue the  
Block Lock-Down command.  
The first two bus cycles unlock the Command  
Double Word Program in Bypass Mode Com-  
mand. The Double Word Program in Bypass  
Mode command can be issued when the device is  
in Bypass mode (issue a Enter Bypass Mode com-  
mand). It uses the same sequence of cycles as the  
Double Word Program command with the excep-  
tion of the unlock cycles.  
Quadruple Word Program in Bypass Mode  
Command. The Quadruple Word Program in By-  
pass Mode command can be issued when the de-  
vice is in Bypass mode (issue a Enter Bypass  
Mode command). It uses the same sequence of  
cycles as the Quadruple Word Program command  
with the exception of the unlock cycles.  
Interface.  
The third bus cycle sets up the Block Lock-  
Down command and latches the block address.  
The lock status can be monitored for each block  
using the Auto Select command. Locked-Down  
blocks revert to the locked (and not locked-down)  
state when the device is reset on power-down. Ta-  
ble 10 shows the Lock Status after issuing a Block  
Lock-Down command. Refer to the section, Block  
Locking, for a detailed explanation.  
Block Erase Command. The Block Erase com-  
mand can be used to erase a block. It sets all the  
bits within the selected block to ’1’. All previous  
data in the block is lost. If the block is protected  
then the Erase operation will abort, the data in the  
block will not be changed and the device will return  
to Read Array mode. It is not necessary to pre-pro-  
Block Lock Command. The Block Lock com-  
mand is used to lock a block and prevent Program  
or Erase operations from changing the data in it.  
All blocks are locked at power-up or reset.  
Three Bus Write cycles are required to issue the  
Block Lock command.  
15/52  
M36DR432AD, M36DR432BD  
gram the block as the Program/Erase Controller  
does it automatically before erasing.  
On successful completion of the Bank Erase com-  
mand, the device returns to Read Array mode.  
Six Bus Write cycles are required to issue the  
command.  
The first two write cycles unlock the Command  
Erase Suspend Command. The Erase Suspend  
command is used to pause a Block Erase opera-  
tion. In a Dual Bank memory it can be used to read  
data within the bank where an Erase operation is  
in progress. It is also possible to program data in  
blocks not being erased.  
Interface.  
The third write cycles sets up the command  
the fourth and fifth write cycles repeat the unlock  
One bus write cycle is required to issue the Erase  
Suspend command. The Program/Erase Control-  
ler suspends the Erase operation within 20µs of  
the Erase Suspend command being issued and  
bits 7, 6 and/ or 2 of the Status Register are set to  
‘1’. The device is then automatically set to Read  
mode. The command can be addressed to any  
bank.  
sequence  
the sixth write cycle latches the block address  
and confirms the command.  
Additional Block Erase confirm cycles can be is-  
sued to erase other blocks without further unlock  
cycles. All blocks must belong to the same bank; if  
a new block belonging to the other bank is given,  
the operation is aborted.  
The additional Block Erase confirm cycles must be  
given within the DQ3 erase timeout period. Each  
time a new confirm cycle is issued the timeout pe-  
riod restarts. The status of the internal timer can  
be monitored through the level of DQ3, see Status  
Register section for more details.  
Once the command is issued the device outputs  
the Status Register data when any address within  
the bank is read.  
After the command has been issued the Flash  
Read/Reset command will be accepted during the  
DQ3 timeout period, after that only the Erase Sus-  
pend command will be accepted.  
During Erase Suspend the memory will accept the  
Erase Resume, Program, Read CFI Query, Auto  
Select, Block Lock, Block Unlock and Block Lock-  
Down commands.  
Erase Resume Command. The Erase Resume  
command can be used to restart the Program/  
Erase Controller after an Erase Suspend com-  
mand has paused it. One Bus Write cycle is re-  
quired to issue the command. The command must  
be issued to an address within the bank being  
erased. The unlock cycles are not required.  
Protection Register Program Command. The  
Protection Register Program command is used to  
Program the Protection Register (One-Time-Pro-  
grammable (OTP) segment and Protection Regis-  
ter Lock). The OTP segment is programmed 16  
bits at a time. When shipped all bits in the segment  
are set to ‘1’. The user can only program the bits  
to ‘0’.  
On successful completion of the Block Erase com-  
mand, the device returns to Read Array mode.  
Bank Erase Command. The Bank Erase com-  
mand can be used to erase a bank. It sets all the  
bits within the selected bank to ’1’. All previous  
data in the bank is lost. The Bank Erase command  
will ignore any protected blocks within the bank. If  
all blocks in the bank are protected then the Bank  
Erase operation will abort and the data in the bank  
will not be changed. It is not necessary to pre-pro-  
gram the bank as the Program/Erase Controller  
does it automatically before erasing.  
Four write cycles are required to issue the Protec-  
tion Register Program command.  
The first two bus cycles unlock the Command  
Interface.  
The third bus cycle sets up the Protection  
Register Program command.  
The fourth latches the Address and the Data to  
be written to the Protection Register and starts  
the Program/Erase Controller.  
As for the Block Erase command six Bus Write cy-  
cles are required to issue the command.  
The first two write cycles unlock the Command  
Read operations output the Status Register con-  
tent after the programming has started.  
Interface.  
The third write cycles sets up the command  
The OTP segment can be protected by program-  
ming bit 1 of the Protection Register Lock. The  
segment can be protected by programming bit 1 of  
the Protection Register Lock. Bit 1 of the Protec-  
tion Register Lock also protects bit 2 of the Protec-  
tion Register Lock. Programming bit 2 of the  
Protection Register Lock will result in a permanent  
protection of Parameter Block #0 (see Figure 5,  
Flash Security Block and Protection Register  
Memory Map). Attempting to program a previously  
the fourth and fifth write cycles repeat the unlock  
sequence  
the sixth write cycle latches the block address  
and confirms the command.  
Once the command is issued the device outputs  
the Status Register data when any address within  
the bank is read.  
16/52  
M36DR432AD, M36DR432BD  
protected Protection Register will result in a Status  
Register error. The protection of the Protection  
Register and/or the Security Block is not revers-  
ible.  
Table 4. Flash Commands  
Bus Operations  
3rd 4th  
1st  
2nd  
5th  
6th  
7th  
Commands  
Add Data Add Data Add Data Add Data Add Data Add Data Add Data  
1+  
X
F0h  
Read Memory Array until a new write cycle is initiated.  
Read/Reset  
CFI Query  
3+ 555h AAh 2AAh 55h 555h F0h Read Memory Array until a new write cycle is initiated.  
1+ 55h 98h  
Read CFI and Electronic Signature until a Read/Reset command is issued.  
Read Protection Register, Block Protection or  
Auto Select  
3+ 555h AAh 2AAh 55h 555h 90h  
Configuration Register Status until a Read/Reset  
command is issued.  
Set Configuration  
Register  
4 555h AAh 2AAh 55h 555h 60h CRD 03h  
4 555h AAh 2AAh 55h 555h A0h PA PD  
Read Data Polling or Toggle Bit until  
Program completes.  
Program  
Double Word  
Program  
5 555h AAh 2AAh 55h 555h 40h PA1 PD1 PA2 PD2  
5 555h AAh 2AAh 55h 555h 50h PA1 PD1 PA2 PD2 PA3 PD3 PA4 PD4  
3 555h AAh 2AAh 55h 555h 20h  
Quadruple Word  
Program  
Enter Bypass  
Mode  
Exit Bypass  
Mode  
2
2
X
X
90h  
A0h  
X
00h  
PD  
Program in  
Bypass Mode  
PA  
Read Data Polling or Toggle Bit until Program completes.  
Double Word  
Program in  
Bypass Mode  
3
3
X
X
40h PA1 PD1 PA2 PD2  
Quadruple Word  
Program in  
50h PA1 PD1 PA2 PD2 PA3 PD3 PA4 PD4  
Bypass Mode  
Block Lock  
4 555h AAh 2AAh 55h 555h 60h  
4 555h AAh 2AAh 55h 555h 60h  
BA  
BA  
BA  
01h  
D0h  
2Fh  
Block Unlock  
Block Lock-Down 4 555h AAh 2AAh 55h 555h 60h  
Block Erase  
Bank Erase  
6+ 555h AAh 2AAh 55h 555h 80h 555h AAh 2AAh 55h  
6 555h AAh 2AAh 55h 555h 80h 555h AAh 2AAh 55h  
BA  
BA  
30h  
10h  
Read until Toggle stops, then read all the data needed from any Blocks not being  
erased then Resume Erase.  
Erase Suspend  
Erase Resume  
1
1
X
B0h  
30h  
Read Data Polling or Toggle Bits until Erase completes or Erase is suspended  
another time  
BA  
Protection  
Register Program  
4 555h AAh 2AAh 55h  
PA  
C0h  
PA  
PD  
Note: X = Don’t Care, BA = Block Address, PA = Program address, PD = Program Data, CRD = Configuration Register Data. For Coded  
cycles address inputs A12-A20 are don’t care.  
17/52  
M36DR432AD, M36DR432BD  
Table 5. Read Electronic Signature  
Code  
Device  
EF  
GF  
WF  
A0  
A1  
A7-A2 A8-A20 DQ15-DQ0  
V
V
V
V
V
Manufacturer Code  
0
0
0
X
X
X
0020h  
00A0h  
00A1h  
IL  
IL  
IH  
IL  
IL  
V
V
IL  
V
IH  
V
V
IL  
M36DR432AD  
M36DR432BD  
IL  
IH  
Device Code  
V
V
IL  
V
IH  
V
V
IL  
IL  
IH  
Note: X = Don’t care.  
Table 6. Flash Read Block Protection  
Other  
Addresses  
Block Status  
EF GF WF A0 A1  
A20-A12  
A7-A2  
DQ0 DQ1 DQ15-DQ2  
V
V
V
V
V
V
V
V
V
V
Locked Block  
Block Address  
Block Address  
0
0
X
X
1
0
0
0
0000h  
0000h  
IL  
IL  
IL  
IL  
IH  
IL  
IH  
Unlocked Block  
IH  
IL  
IH  
Locked-Down  
Block  
V
V
V
IH  
V
IL  
V
IH  
Block Address  
0
X
X
1
0000h  
IL  
IL  
Note: X = Don’t care.  
Table 7. Configuration Register  
DQ9-DQ0  
DQ15-DQ11  
RPF Function  
Reset  
EF  
GF  
WF  
A0  
A1 A7-A2 Other Addresses  
DQ10  
V
IL  
V
IL  
V
V
V
V
V
0
0
X
X
0
1
Don’t Care  
Don’t Care  
IH  
IH  
IH  
IH  
V
IL  
V
IL  
V
Reset/Power-Down  
Note: X = Don’t care.  
IH  
IH  
18/52  
M36DR432AD, M36DR432BD  
Table 8. Read Protection Register  
Word  
EF GF WF  
A20-A8  
A7-0  
DQ15-8  
DQ7-3  
DQ2  
DQ1  
DQ0  
Security  
prot.data  
OTP  
prot.data  
V
IL  
V
IL  
V
IH  
Lock  
X
80h  
XXh  
00000b  
0
V
IL  
V
IL  
V
IL  
V
IL  
V
IL  
V
IL  
V
IL  
V
IL  
V
IL  
V
IL  
V
IL  
V
IL  
V
IL  
V
IL  
V
IL  
V
IL  
V
IH  
V
IH  
V
IH  
V
IH  
V
IH  
V
IH  
V
IH  
V
IH  
Unique ID 0  
Unique ID 1  
Unique ID 2  
Unique ID 3  
OTP 0  
X
X
X
X
X
X
X
X
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
OTP data OTP data OTP data OTP data OTP data  
OTP data OTP data OTP data OTP data OTP data  
OTP data OTP data OTP data OTP data OTP data  
OTP data OTP data OTP data OTP data OTP data  
OTP 1  
OTP 2  
OTP 3  
Note: X= Don’t care.  
Table 9. Program, Erase Times and Program, Erase Endurance Cycles  
M36DR432AD, M36DR432BD  
Parameter  
Unit  
Typical after  
100k W/E Cycles  
Min  
Max  
Typ  
Parameter Block (4 KWord) Erase (Preprogrammed)  
Main Block (32 KWord) Erase (Preprogrammed)  
Bank Erase (Preprogrammed, Bank A)  
2.5  
4
0.3  
0.8  
3
1
3
s
s
s
s
s
6
Bank Erase (Preprogrammed, Bank B)  
20  
20  
30  
25  
(1)  
Chip Program  
(1)  
8
s
Chip Program (Double Word, V  
= 12V)  
PPF  
(2)  
100  
100  
100  
10  
8
µs  
Word Program  
Double Word Program (V  
= 12V)  
µs  
µs  
PPF  
Quadruple Word Program (V  
= 12V)  
8
PPF  
Program/Erase Cycles (per Block)  
100,000  
cycles  
Note: 1. Excludes the time needed to execute the sequence for program command.  
2. Same timing value if V  
= 12V  
PPF  
Flash Block Locking  
The protection status of each block can be set to  
Locked, Unlocked, and Lock-Down. Table 10, de-  
fines all of the possible protection states (WPF,  
DQ1, DQ0).  
The Flash memory features an instant, individual  
block locking scheme that allows any block to be  
locked or unlocked with no latency. This locking  
scheme has two levels of protection.  
Reading a Block’s Lock Status  
Lock/Unlock - this first level allows software-  
The lock status of every block can be read in the  
Auto Select mode of the device. Subsequent  
reads at the address specified in Table 6, will out-  
put the protection status of that block. The lock  
status is represented by DQ0 and DQ1. DQ0 indi-  
cates the Block Lock/Unlock status and is set by  
the Lock command and cleared by the Unlock  
command. It is also automatically set when enter-  
only control of block locking.  
Lock-Down - this second level requires  
hardware interaction before locking can be  
changed.  
19/52  
M36DR432AD, M36DR432BD  
ing Lock-Down. DQ1 indicates the Lock-Down sta-  
tus and is set by the Lock-Down command. It  
cannot be cleared by software, only by a hardware  
reset or power-down.  
The following sections explain the operation of the  
locking system.  
The Lock-Down function is dependent on the WPF  
input pin. When WPF=0 (V ), the blocks in the  
IL  
Lock-Down state (0,1,x) are protected from pro-  
gram, erase and protection status changes. When  
WPF=1 (V ) the Lock-Down function is disabled  
IH  
(1,1,1) and Locked-Down blocks can be individu-  
ally unlocked to the (1,1,0) state by issuing the  
software command, where they can be erased and  
programmed. These blocks can then be re-locked  
(1,1,1) and unlocked (1,1,0) as desired while WPF  
remains High. When WPF is Low, blocks that were  
previously Locked-Down return to the Lock-Down  
state (0,1,x) regardless of any changes made  
while WPF was High. Device reset or power-down  
resets all blocks, including those in Lock-Down, to  
the Locked state.  
Locked State  
The default status of all blocks on power-up or af-  
ter a hardware reset is Locked (states (0,0,1) or  
(1,0,1)). Locked blocks are fully protected from  
any program or erase. Any program or erase oper-  
ations attempted on a locked block will reset the  
device to Read Array mode. The Status of a  
Locked block can be changed to Unlocked or  
Lock-Down using the appropriate software com-  
mands. An Unlocked block can be Locked by issu-  
ing the Lock command.  
Locking Operations During Erase Suspend  
Changes to block lock status can be performed  
during an erase suspend by using the standard  
locking command sequences to unlock, lock or  
lock-down a block. This is useful in the case when  
another block needs to be updated while an erase  
operation is in progress.  
To change block locking during an erase opera-  
tion, first write the Erase Suspend command, then  
check the status register until it indicates that the  
erase operation has been suspended. Next write  
the desired Lock command sequence to a block  
and the lock status will be changed. After complet-  
ing any desired lock, read, or program operations,  
resume the erase operation with the Erase Re-  
sume command.  
Unlocked State  
Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)),  
can be programmed or erased. All unlocked  
blocks return to the Locked state after a hardware  
reset or when the device is powered-down. The  
status of an unlocked block can be changed to  
Locked or Locked-Down using the appropriate  
software commands. A locked block can be un-  
locked by issuing the Unlock command.  
Lock-Down State  
Blocks that are Locked-Down (state (0,1,x))are  
protected from program and erase operations (as  
for Locked blocks) but their protection status can-  
not be changed using software commands alone.  
A Locked or Unlocked block can be Locked-Down  
by issuing the Lock-Down command. Locked-  
Down blocks revert to the Locked state when the  
device is reset or powered-down.  
If a block is locked or locked-down during an erase  
suspend of the same block, the locking status bits  
will be changed immediately, but when the erase  
is resumed, the erase operation will complete.  
20/52  
M36DR432AD, M36DR432BD  
Table 10. Flash Lock Status  
Current  
(1)  
Next Protection Status  
(WPF, DQ1, DQ0)  
(1)  
Protection Status  
(WPF, DQ1, DQ0)  
After  
Block Lock  
Command  
After  
Block Unlock  
Command  
After Block  
Lock-Down  
Command  
Program/Erase  
Current State  
After  
WPF transition  
Allowed  
1,0,0  
yes  
no  
1,0,1  
1,0,1  
1,1,1  
1,1,1  
0,0,1  
0,0,1  
1,0,0  
1,0,0  
1,1,0  
1,1,0  
0,0,0  
0,0,0  
1,1,1  
1,1,1  
1,1,1  
1,1,1  
0,1,1  
0,1,1  
0,0,0  
0,0,1  
0,1,1  
0,1,1  
1,0,0  
1,0,1  
(2)  
1,0,1  
1,1,0  
1,1,1  
0,0,0  
yes  
no  
yes  
no  
(2)  
0,0,1  
(3)  
0,1,1  
no  
0,1,1  
0,1,1  
0,1,1  
1,1,1 or 1,1,0  
Note: 1. The lock status is defined by the write protect pin and by DQ1 (‘1’ for a locked-down block) and DQ0 (‘1’ for a locked block) as read  
in the Auto Select command with A1 = V and A0 = V .  
IH  
IL  
2. All blocks are locked at power-up, so the default configuration is 001 or 101 according to WPF status.  
3. A WPF transition to V on a locked block will restore the previous DQ0 value, giving a 111 or 110.  
IH  
Flash Status Register  
provided. DQ7 will output ’1’ if the read is attempt-  
ed on a block being erased and the data value on  
other blocks. During a program operation in Erase  
Suspend, DQ7 will have the same behavior as in  
the normal program.  
Toggle Bit (DQ6). When Program or Erase oper-  
ations are in progress, successive attempts to  
read DQ6 will output complementary data. DQ6  
will toggle following the toggling of either GF or EF.  
The operation is completed when two successive  
reads give the same output data. The next read  
will output the bit last programmed or a ’1’ after  
erasing.  
The Status Register provides information on the  
current or previous Program or Erase operations.  
Bus Read operations from any address within the  
bank, always read the Status Register during Pro-  
gram and Erase operations.  
The various bits convey information about the sta-  
tus and any errors of the operation.  
The bits in the Status Register are summarized in  
Table 12, Status Register Bits. Refer to Tables 11  
and 12 in conjunction with the following text de-  
scriptions.  
Data Polling Bit (DQ7). When Program opera-  
tions are in progress, the Data Polling bit outputs  
the complement of the bit being programmed on  
DQ7. For a Double Word Program operation, it is  
the complement of DQ7 for the last Word written to  
the Command Interface.  
During an Erase operation, it outputs a ’0’. After  
completion of the operation, DQ7 will output the bit  
last programmed or a ’1’ after erasing.  
Data Polling is valid and only effective during P/  
E.C. operation, that is after the fourth WF pulse for  
programming or after the sixth WF pulse for erase.  
It must be performed at the address being pro-  
grammed or at an address within the block being  
erased. See Figure 22 for the Data Polling flow-  
chart and Figure 13 for the Data Polling wave-  
forms.  
DQ7 will also flag an Erase Suspend by switching  
from ’0’ to ’1’ at the start of the Erase Suspend. In  
order to monitor DQ7 in the Erase Suspend mode  
an address within a block being erased must be  
The Toggle Bit DQ6 is valid only during P/E.C. op-  
erations, that is after the fourth WF pulse for pro-  
gramming or after the sixth WF pulse for Erase.  
DQ6 will be set to ’1’ if a read operation is attempt-  
ed on an Erase Suspend block. When erase is  
suspended DQ6 will toggle during programming  
operations in a block different from the block in  
Erase Suspend.  
See Figure 16 for Toggle Bit flowchart and Figure  
14 for Toggle Bit waveforms.  
Toggle Bit (DQ2). Toggle Bit DQ2, together with  
DQ6, can be used to determine the device status  
during erase operations.  
During Erase Suspend a read from a block being  
erased will cause DQ2 to toggle. A read from a  
block not being erased will output data. DQ2 will  
be set to '1' during program operation and to ‘0’ in  
erase operation. If a read operation is addressed  
to a block where an erase error has occurred, DQ2  
will toggle.  
21/52  
M36DR432AD, M36DR432BD  
Error Bit (DQ5). The Error Bit can be used to  
identify if an error occurs during a program or  
erase operation.  
DQ0, DQ1 and DQ4 are reserved for future use  
and should be masked.  
The Error Bit is set to ‘1’ when a program or erase  
operation has failed. When it is set to ‘0’ the pro-  
gram or erase operation was successful.  
If any Program command is used to try to set a bit  
from ‘0’ to ‘1’ Status Register Error bit DQ5 will be  
Table 11. Polling and Toggle Bits  
Mode  
DQ7  
DQ7  
0
DQ6  
DQ2  
1
Program  
Erase  
Toggle  
Toggle  
set to ‘1’, only if V is in the range of 11.4V to  
PP  
N/A  
12.6V.  
Erase Suspend Read  
(in Erase Suspend  
block)  
The Error Bit is reset by a Read/Reset command.  
1
1
Toggle  
Erase Timer Bit (DQ3). The Erase Timer bit is  
used to indicate the timeout period for an erase  
operation.  
When the last block Erase command has been en-  
tered to the Command Interface and it is waiting  
for the erase operation to start, the Erase Timer Bit  
is set to ‘0’. When the erase timeout period is fin-  
ished, DQ3 returns to ‘1’, (80µs to 120µs).  
Erase Suspend Read  
(outside Erase Suspend  
block)  
DQ7  
DQ7  
DQ6  
DQ2  
1
Erase Suspend Program  
Toggle  
22/52  
M36DR432AD, M36DR432BD  
Table 12. Status Register Bits  
DQ  
Name  
Logic Level  
Definition  
Note  
Erase complete or erase block  
in Erase Suspend.  
’1’  
’0’  
Indicates the P/E.C. status, check  
during Program or Erase, and on  
completion before checking bits DQ5  
for Program or Erase success.  
Erase in progress  
Data  
Polling  
7
Program complete or data of  
non erase block during Erase  
Suspend.  
DQ  
(2)  
DQ  
’-1-0-1-0-1-0-1-’  
DQ  
Program in progress  
Erase or Program in progress  
Program complete  
Successive reads output  
complementary data on DQ6 while  
Programming or Erase operations are  
in progress. DQ6 remains at constant  
level when P/E.C. operations are  
completed or Erase Suspend is  
acknowledged.  
6
Toggle Bit  
Erase complete or Erase  
Suspend on currently addressed  
block  
’-1-1-1-1-1-1-1-’  
’1’  
’0’  
Program or Erase Error  
This bit is set to ’1’ in the case of  
Programming or Erase failure.  
5
4
Error Bit  
Program or Erase in progress  
Reserved  
P/E.C. Erase operation has started.  
Only possible command entry is Erase  
Suspend  
’1’  
’0’  
Erase Timeout Period Expired  
Erase Time  
Bit  
3
An additional block to be erased in  
parallel can be entered to the P/E.C  
provided that it belongs to the same  
bank  
Erase Timeout Period in  
progress  
Erase Suspend read in the  
Erase Suspended Block.  
Erase Error due to the currently  
addressed block (when DQ5 =  
’1’).  
’-1-0-1-0-1-0-1-’  
Indicates the erase status and allows  
to identify the erased block.  
2
Toggle Bit  
Program in progress or Erase  
complete.  
1
Erase Suspend read on non  
Erase Suspend block.  
DQ  
1
0
Reserved  
Reserved  
Note: 1. Logic level ’1’ is High, ’0’ is Low. -0-1-0-0-0-1-1-1-0- represent bit value in successive read operations.  
2. In case of double word program DQ7 refers to the last word input.  
23/52  
M36DR432AD, M36DR432BD  
SRAM COMPONENT  
The SRAM is a 4 Mbit (256Kb x16) low-power con-  
among ES going to V and WS going to V .  
IL IL  
sumption memory array with low V  
tion.  
data reten-  
Therefore, address setup time is referenced to  
Write Enable and Chip Enable as t and t  
DDS  
AVWL  
AVEL  
respectively, and is determined by the latter occur-  
ring edge. The Write cycle can be terminated by  
the rising edge of ES or the rising edge of WS,  
whichever occurs first.  
SRAM Operations  
The following operations can be performed using  
the appropriate bus cycles: Read Array, Write Ar-  
ray, Output Disable, Power Down (see Table 2).  
Read. Read operations are used to output the  
contents of the SRAM Array. The SRAM is in Read  
mode whenever Write Enable (WS) is at V with  
Output Enable (GS) at V , Chip Enable ES and  
UBS, LBS combinations are asserted.  
Valid data will be available at the output pins within  
If the Output is enabled (ES=V and GS=V ),  
IL  
IL  
then WS will return the outputs to high impedance  
within t of its falling edge. Care must be taken  
WLQZ  
IH  
to avoid bus contention in this type of operation.  
Data input must be valid for t before the ris-  
IL  
DVWH  
ing edge of Write Enable, or for t  
before the  
DVEH  
rising edge of ES, whichever occurs first, and re-  
t
after the last stable address, provided that  
main valid for t and t (see Table 24, Fig-  
AVQV  
WHDX  
EHAX  
GS is Low and ES is Low. If Chip Enable or Output  
Enable access times are not met, data access will  
be measured from the limiting parameter (t  
ure 20, 22, 24).  
Standby/Power-Down. The SRAM chip has a  
Chip Enable power-down feature which invokes  
an automatic standby mode (see Table 23, Figure  
19) whenever either Chip Enable is de-asserted  
or  
ELQV  
t
) rather than the address. Data out may be  
GLQV  
indeterminate at t  
and t  
AVQV  
, but data lines  
(see Table 23, Figures  
ELQX  
GLQX  
will always be valid at t  
17 and 18).  
Write. Write operations are used to write data in  
the SRAM. The SRAM is in Write mode whenever  
the WS and ES pins are at V . Either the Chip En-  
able input (ES) or the Write Enable input (WS)  
must be de-asserted during address transitions for  
subsequent write cycles. Write begins with the  
concurrence of Chip Enable being active and WS  
(ES=V ).  
IH  
Data Retention. The SRAM data retention per-  
formances as V  
go down to V are described  
DDS  
DR  
in Table 25 and Figure 24. In ES controlled data  
retention mode, minimum standby current mode is  
IL  
entered when ES V  
– 0.2V.  
DDS  
Output Disable. The data outputs are high im-  
pedance when the Output Enable (GS) is at V  
IH  
with Write Enable (WS) at V .  
IH  
at V . A Write begins at the latest transition  
IL  
24/52  
M36DR432AD, M36DR432BD  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings table may cause per-  
manent damage to the device. These are stress  
ratings only and operation of the device at these or  
any other conditions above those indicated in the  
Operating sections of this specification is not im-  
plied. Exposure to Absolute Maximum Rating con-  
ditions for extended periods may affect device  
reliability. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
(1)  
Table 13. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
Unit  
°C  
(3)  
T
A
–40 to 85  
–40 to 125  
Ambient Operating Temperature  
T
BIAS  
Temperature Under Bias  
Storage Temperature  
°C  
T
–55 to 150  
°C  
STG  
(2)  
(3)  
Input or Output Voltage  
Supply Voltage  
V
V
V
V
V
–0.5 to V  
+0.5  
IO  
DD  
V
–0.5 to 2.7  
–0.5 to 2.4  
–0.5 to 13  
DDF  
V
SRAM Chip Supply Voltage  
Program Voltage  
DDS  
V
PPF  
Note: 1. Minimum voltage may undershoot to –2V during transition and for less than 20ns.  
2. Depends on range.  
3. V = V  
= V  
.
DD  
DDS  
DDF  
25/52  
M36DR432AD, M36DR432BD  
DC AND AC PARAMETERS  
This section summarizes the operating measure-  
ment conditions, and the DC and AC characteris-  
tics of the device. The parameters in the DC and  
AC characteristics Tables that follow, are derived  
from tests performed under the Measurement  
Conditions summarized in Table 14, Operating  
and AC Measurement Conditions. Designers  
should check that the operating conditions in their  
circuit match the operating conditions when rely-  
ing on the quoted parameters.  
Table 14. Operating and AC Measurement Conditions  
SRAM  
Flash  
70  
85  
100, 120  
Parameter  
Units  
Min  
-
Max  
Min  
1.8  
-
Max  
Min  
Max  
2.2  
-
V
V
V
Supply Voltage  
Supply Voltage  
Supply Voltage  
-
2.2  
-
1.65  
-
V
V
DDF  
DDS  
PPF  
1.65  
2.2  
11.4  
– 40  
12.6  
85  
11.4  
– 40  
12.6  
85  
V
Ambient Operating Temperature  
– 40  
30  
85  
5
°C  
pF  
ns  
V
Load Capacitance (C )  
30  
30  
L
Input Rise and Fall Times  
2
4
4
(1)  
0 to V  
0 to V  
0 to V  
DD  
DD  
DD  
Input Pulse Voltages  
(1)  
V
DD  
/2  
V
DD  
/2  
V
DD  
/2  
V
Input and Output Timing Ref. Voltages  
Note: 1. V = V  
= V  
DDF  
DD  
DDS  
Figure 6. AC Measurement I/O Waveform  
Figure 7. AC Measurement Load Circuit  
VDD  
V
DD  
V
DD  
V
/2  
DD  
25k  
0V  
DEVICE  
UNDER  
TEST  
AI90206  
Note: V means V  
= V  
DDS  
DD  
DDF  
25kΩ  
0.1µF  
C
L
= 50pF  
AI90207  
C
includes JIG capacitance  
L
Note: V means V  
= V  
DDS  
DD  
DDF  
Table 15. Device Capacitance  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
Min  
Max  
12  
Unit  
pF  
C
V
= 0V  
= 0V  
IN  
IN  
C
OUT  
V
OUT  
15  
pF  
Note: Sampled only, not 100% tested.  
26/52  
M36DR432AD, M36DR432BD  
Table 16. Flash DC Characteristics  
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
±1  
Unit  
µA  
I
0V V V  
Input Leakage Current  
Output Leakage Current  
LI  
IN  
DD  
I
LO  
0V V  
V  
OUT DD  
±5  
µA  
EF = V , GF = V , f =  
Supply Current  
(Read Mode)  
IL  
IH  
I
3
6
mA  
CC1  
6MHz  
Supply Current  
(Power-Down)  
I
RPF = V ± 0.2V  
2
10  
50  
20  
µA  
µA  
CC2  
SS  
I
EF = V ± 0.2V  
Supply Current (Standby)  
10  
10  
CC3  
DD  
Supply Current  
(Program or Erase)  
Word Program, Block Erase  
in progress  
(1)  
mA  
I
CC4  
Program/Erase in progress  
in one Bank, Read in the  
other Bank  
Supply Current  
(Dual Bank)  
(1)  
13  
2
26  
5
mA  
mA  
I
CC5  
V
Supply Current  
PPF  
I
V
= 12V ± 0.6V  
PPF1  
PPF2  
PPF  
(Program or Erase)  
V
V  
0.2  
5
µA  
µA  
V
PPF  
DD  
V
Supply Current  
PPF  
I
(Standby or Read)  
V
= 12V ± 0.6V  
100  
400  
0.4  
PPF  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
–0.5  
IL  
V
V
– 0.4  
V
+ 0.4  
DD  
V
IH  
DD  
V
I
OL  
= 100µA  
0.1  
V
OL  
Output High Voltage  
CMOS  
V
OH  
I
= –100µA  
V
DD  
–0.1  
V
OH  
V
+ 0.4  
–0.4  
11.4  
V
V
DD  
V
Supply Voltage  
PPF  
(2,3)  
V
PPF  
(Program or Erase)  
Double Word Program  
12.6  
Note: 1. Sampled only, not 100% tested.  
2. V may be connected to 12V power supply for a total of less than 100 hrs.  
PPF  
3. For standard program/erase operation V  
is don’t care.  
PPF  
27/52  
M36DR432AD, M36DR432BD  
Table 17. SRAM DC Characteristics  
(T = –40 to 85°C; V  
= V  
= 1.65V to 2.2V)  
A
DDF  
DDS  
Symbol  
Parameter  
Test Condition  
V  
output disabled  
Min  
-1  
Typ  
+1  
Max  
+1  
Unit  
µA  
Output Leakage  
Current  
I
0V V  
OUT  
OZ  
DDS,  
I
IX  
0V V V  
IN DDS  
Input Load Current  
-1  
±1  
+1  
µA  
ES V  
– 0.2V, V V  
or V 0.2V, f=0  
IN  
– 0.2V  
DDS  
IN  
DDS  
V
Standby  
Current  
DD  
I
1
10  
7
µA  
DDS  
V
DDS  
= 2.2V  
I
= 0 mA, f = f  
= 1/t , CMOS levels  
= 2.2V  
OUT  
MAX  
RC  
4
1
mA  
mA  
V
DDS  
I
Supply Current  
DD  
I
= 0 mA, f = 0Hz  
OUT  
5
CMOS levels  
V
V
V
= 1.65V  
= 2.2V  
Input Low Voltage  
Input High Voltage  
–0.5  
1.4  
0.4  
V
V
IL  
DDS  
V
V
DDS  
V
+0.2V  
DDS  
IH  
= 1.65V  
= 0.1µA  
DDS  
V
OL  
Output Low Voltage  
Output High Voltage  
0.2  
V
V
I
OL  
V
= 1.65V  
= –0.1µA  
DDS  
V
OH  
1.4  
I
OH  
Note: 1. I  
and I  
DDWS  
DDR.  
are specified with device deselected. If device is read while in erase suspend, current draw is sum of I  
DDES  
DDES  
and I  
If the device is read while in program suspend, current draw is the sum of I  
DDWS  
and I .  
DDR  
2. V = V or V  
IH  
IN  
IL  
28/52  
M36DR432AD, M36DR432BD  
Figure 8. Flash Random Read AC Waveforms  
29/52  
M36DR432AD, M36DR432BD  
Figure 9. Flash Page Read AC Waveforms  
30/52  
M36DR432AD, M36DR432BD  
Table 18. Flash Read AC Characteristics  
M36DR432AD, M36DR432BD  
Symbol  
Alt  
Parameter  
Test Condition  
85  
100  
Max  
120  
Unit  
Min Max Min  
Min  
Max  
Address Valid to Next  
Address Valid  
(3)  
100  
85  
t
t
EF = V , GF = V  
120  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
RC  
IL  
IL  
Address Valid to  
Output Valid (Random)  
(3)  
t
t
EF = V , GF = V  
100  
35  
120  
45  
AVQV  
ACC  
IL  
IL  
85  
Address Valid to  
Output Valid (Page)  
(3)  
t
t
EF = V , GF = V  
AVQV1  
PAGE  
IL  
IL  
30  
Chip Enable Low to  
Output Transition  
(1)  
t
GF = V  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
t
LZ  
IL  
ELQX  
Chip Enable Low to  
Output Valid  
(2)  
(3)  
(3)  
(3)  
(3)  
t
GF = V  
100  
25  
120  
35  
t
CE  
IL  
85  
25  
20  
20  
ELQV  
Output Enable Low to  
Output Transition  
(1)  
t
EF = V  
t
OLZ  
IL  
GLQX  
Output Enable Low to  
Output Valid  
(2)  
t
EF = V  
t
OE  
IL  
GLQV  
Chip Enable High to  
Output Transition  
t
t
GF = V  
EHQX  
OH  
IL  
Chip Enable High to  
Output Hi-Z  
(1)  
t
GF = V  
25  
35  
t
HZ  
IL  
EHQZ  
Output Enable High to  
Output Transition  
t
t
EF = V  
GHQX  
OH  
IL  
Output Enable High to  
Output Hi-Z  
(1)  
t
EF = V  
25  
35  
t
DF  
IL  
GHQZ  
Address Transition to  
Output Transition  
t
t
EF = V , GF = V  
AXQX  
OH  
IL  
IL  
Note: 1. Sampled only, not 100% tested.  
2. GF may be delayed by up to t  
3. To be characterized.  
- t  
after the falling edge of EF without increasing t  
.
ELQV  
ELQV GLQV  
31/52  
M36DR432AD, M36DR432BD  
Figure 10. Flash Write AC Waveforms, Write Enable Controlled  
tAVAV  
A0-A20  
VALID  
tWLAX  
tAVWL  
tWHEH  
EF  
tELWL  
tWHGL  
GF  
WF  
tGHWL  
tWLWH  
tWHWL  
tWHDX  
tDVWH  
VALID  
DQ0-DQ15  
V
DDF  
tVDHEL  
AI07314  
Note: Addresses are latched on the falling edge of WF, Data is latched on the rising edge of WF.  
Table 19. Flash Write AC Characteristics, Write Enable Controlled  
M36DR432AD, M36DR432BD  
100 120  
Symbol  
Alt  
Parameter  
85  
Unit  
Min  
Max  
Min  
100  
0
Max  
Min  
120  
0
Max  
(1)  
t
t
WC  
Address Valid to Next Address Valid  
Chip Enable Low to Write Enable Low  
Write Enable Low to Write Enable High  
ns  
ns  
ns  
AVAV  
85  
t
t
CS  
0
ELWL  
(1)  
t
t
50  
50  
WLWH  
WP  
50  
(1)  
t
t
Input Valid to Write Enable High  
50  
0
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
DVWH  
DS  
DH  
CH  
40  
t
t
t
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Write Enable High to Write Enable Low  
Address Valid to Write Enable Low  
Write Enable Low to Address Transition  
Output Enable High to Write Enable Low  
0
0
WHDX  
t
0
0
WHEH  
t
t
WPH  
30  
0
30  
0
30  
0
WHWL  
t
t
AVWL  
AS  
t
t
50  
0
50  
0
50  
0
WLAX  
AH  
t
GHWL  
t
t
V
DD  
High to Chip Enable Low  
50  
30  
50  
30  
50  
30  
VDHEL  
VCS  
t
t
Write Enable High to Output Enable Low  
WHGL  
OEH  
RPF Low to Reset Complete During  
Program/Erase  
t
15  
15  
15  
µs  
PLQ7V  
Note: 1. To be characterized.  
32/52  
M36DR432AD, M36DR432BD  
Figure 11. Flash Write AC Waveforms, Chip Enable Controlled  
tAVAV  
A0-A20  
VALID  
tELAX  
tAVEL  
tEHWH  
tEHGL  
WF  
GF  
EF  
tWLEL  
tGHEL  
tELEH  
tEHEL  
tEHDX  
tDVEH  
VALID  
DQ0-DQ15  
V
DDF  
tVDHWL  
AI07315  
Note: Addresses are latched on the falling edge of EF, Data is latched on the rising edge of EF.  
Table 20. Flash Write AC Characteristics, Chip Enable Controlled  
M36DR432AD, M36DR432BD  
85 100 120  
Symbol  
Alt  
Parameter  
Unit  
Min  
Max  
Min  
100  
0
Max  
Min  
120  
0
Max  
(1)  
t
t
WC  
Address Valid to Next Address Valid  
Write Enable Low to Chip Enable Low  
Chip Enable Low to Chip Enable High  
ns  
ns  
ns  
AVAV  
85  
t
t
WS  
0
WLEL  
(1)  
t
t
50  
50  
ELEH  
CP  
50  
(1)  
t
t
t
Input Valid to Chip Enable High  
50  
0
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
DVEH  
DS  
40  
t
Chip Enable High to Input Transition  
Chip Enable High to Write Enable High  
Chip Enable High to Chip Enable Low  
Address Valid to Chip Enable Low  
Chip Enable Low to Address Transition  
Output Enable High Chip Enable Low  
0
0
EHDX  
DH  
t
t
WH  
0
0
EHWH  
t
t
30  
0
30  
0
30  
0
EHEL  
CPH  
t
t
AVEL  
AS  
t
t
AH  
50  
0
50  
0
50  
0
ELAX  
t
GHEL  
t
t
V
DD  
High to Write Enable Low  
50  
30  
50  
30  
50  
30  
VDHWL  
VCS  
t
t
Chip Enable High to Output Enable Low  
EHGL  
OEH  
RPF Low to Reset Complete During  
Program/Erase  
t
15  
15  
15  
µs  
PLQ7V  
Note: 1. To be characterized  
33/52  
M36DR432AD, M36DR432BD  
Figure 12. Flash Reset/Power-Down AC Waveform  
READ  
PROGRAM / ERASE  
WF  
DQ7  
RPF  
DQ7  
VALID  
VALID  
tPLPH  
tPHQ7V  
tPLQ7V  
AI07316  
Table 21. Flash Reset/Power-Down AC Characteristics  
M36DR432AD, M36DR432BD  
85 100 120  
Max  
Symbol Alt  
Parameter  
Test Condition  
Unit  
Min  
Max  
Min  
Min  
Max  
RPF High to Data Valid  
(Read Mode)  
t
150  
150  
50  
150  
ns  
PHQ7V1  
RPF High to Data Valid  
(Reset/Power-Down  
enabled)  
t
50  
50  
µs  
PHQ7V2  
During Program  
During Erase  
10  
20  
10  
20  
10  
20  
µs  
µs  
ns  
RPF Low to Reset  
Complete  
t
PLQ7V  
t
t
RP  
RPF Pulse Width  
50  
50  
50  
PLPH  
34/52  
M36DR432AD, M36DR432BD  
Figure 13. Flash Data Polling DQ7 AC Waveforms  
35/52  
M36DR432AD, M36DR432BD  
Figure 14. Flash Data Toggle DQ6, DQ2 AC Waveforms  
36/52  
M36DR432AD, M36DR432BD  
Table 22. Flash Data Polling and Toggle Bits AC Characteristics  
M36DR432AD,  
M36DR432BD  
Symbol  
Parameter  
Unit  
Min  
8
Max  
100  
4
Write Enable High to DQ7 Valid (Program, WF Controlled)  
Write Enable High to DQ7 Valid (Block Erase, WF Controlled)  
Chip Enable High to DQ7 Valid (Program, EF Controlled)  
Chip Enable High to DQ7 Valid (Block Erase, EF Controlled)  
Q7 Valid to Output Valid (Data Polling)  
µs  
s
t
WHQ7V  
0.8  
8
100  
4
µs  
s
t
EHQ7V  
0.8  
t
0
ns  
µs  
s
Q7VQV  
Write Enable High to Output Valid (Program)  
8
0.8  
8
100  
4
t
WHQV  
Write Enable High to Output Valid (Block Erase)  
Chip Enable High to Output Valid (Program)  
100  
4
µs  
s
t
EHQV  
Chip Enable High to Output Valid (Block Erase)  
0.8  
Note: All other timings are defined in Read AC Characteristics  
Figure 15. Flash Data Polling Flowchart  
Figure 16. Flash Data Toggle Flowchart  
START  
START  
READ  
DQ5 & DQ6  
READ DQ5 & DQ7  
at VALID ADDRESS  
DQ6  
NO  
=
DQ7  
=
DATA  
YES  
TOGGLES  
YES  
NO  
NO  
DQ5  
= 1  
NO  
DQ5  
= 1  
YES  
YES  
READ DQ6  
READ DQ7  
DQ6  
=
DQ7  
=
DATA  
NO  
YES  
TOGGLES  
NO  
YES  
FAIL  
PASS  
FAIL  
PASS  
AI06197  
AI06198  
37/52  
M36DR432AD, M36DR432BD  
Figure 17. SRAM Read Mode AC Waveforms, Address Controlled with UBS = LBS = V  
IL  
tAVAV  
A0-A17  
VALID  
tAVQV  
tAXQX  
DQ0-DQ15  
DATA VALID  
DATA VALID  
AI90217  
Note: ES = Low, GS = Low, WS = High.  
Figure 18. SRAM Read AC Waveforms, ES or GS Controlled  
tAVAV  
A0-A17  
VALID  
tAVQV  
tELQV  
tAXQX  
tEHQZ  
ES  
tELQX  
tBLQV  
tBHQZ  
UBS, LBS  
tBLQX  
tGLQV  
tGHQZ  
GS  
tGLQX  
DQ0-DQ15  
DATA VALID  
AI07311  
Note: Write Enable (WS) = High.  
38/52  
M36DR432AD, M36DR432BD  
Figure 19. SRAM Standby AC Waveforms  
ES  
tPU  
tPD  
I
DD  
AI07320  
Table 23. SRAM Read AC Characteristics)  
SRAM  
Symbol  
Alt  
Parameter  
70  
Unit  
Min  
Max  
t
t
Read Cycle Time  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
RC  
t
t
Address Valid to Output Valid  
70  
AVQV  
AA  
t
t
Address Transition to Output Transition  
UBS, LBS Disable to Hi-Z Output  
UBS, LBS Access Time  
10  
5
AXQX  
OH  
t
t
BHZ  
25  
45  
BHQZ  
t
t
BLQV  
BA  
t
t
BLZ  
UBS, LBS Enable to Low-Z Output  
Chip Enable High to Output Hi-Z  
Chip Enable Low to Output Valid  
Chip Enable Low to Output Transition  
Output Enable High to Output Hi-Z  
Output Enable Low to Output Valid  
Output Enable Low to Output Transition  
Chip Enable High to Power Down  
BLQX  
t
t
HZ  
25  
70  
EHQZ  
t
t
ELQV  
ACE  
t
t
5
ELQX  
LZ  
t
t
25  
35  
GHQZ  
OHZ  
t
t
GLQV  
EO  
t
t
OLZ  
5
0
GLQX  
(1)  
70  
t
PD  
t
PU  
(1)  
Chip Enable Low to Power Up  
ns  
Note: 1. Sampled only. Not 100% tested.  
39/52  
M36DR432AD, M36DR432BD  
Figure 20. SRAM Write AC Waveforms, WS Controlled with GS Low  
tAVAV  
A0-A17  
VALID  
tAVWH  
tELWH  
tAVEL  
tWHAX  
ES  
tBLWH  
UBS, LBS  
WS  
tAVWL  
tWLQZ  
tWLWH  
tWHQX  
tWHDX  
tDVWH  
INPUT VALID  
DQ0-DQ15  
AI07321  
Note: Output Enable (GS) = Low.  
Figure 21. SRAM Write AC Waveforms, WS Controlled with GS High  
tAVAV  
A0-A17  
VALID  
tAVWH  
tELWH  
tAVEL  
tWHAX  
ES  
tBLWH  
UBS, LBS  
tAVWL  
tWLWH  
WS  
GS  
tDVWH  
INPUT VALID  
tWHDX  
DQ0-DQ15  
AI07322  
40/52  
M36DR432AD, M36DR432BD  
Figure 22. SRAM Write Cycle Waveform, UBS and LBS Controlled, G Low  
tAVAV  
VALID  
A0-A17  
ES  
tEHAX  
tAVWH  
tBLWH  
UBS, LBS  
tAVWL  
tWLEH  
WS  
tWHQX  
tWHDX  
DQ0-DQ15  
tWLQZ  
tDVWH  
INPUT VALID  
AI07323  
Figure 23. SRAM Write AC Waveforms, ES Controlled  
tAVAV  
A0-A17  
ES  
VALID  
tELWH  
tAVEL  
tEHAX  
tBLWH  
tWLWH  
UBS, LBS  
WS  
tDVWH  
INPUT VALID  
tWHDX  
DQ0-DQ15  
AI07324  
Note: Output Enable (GS) = High.  
41/52  
M36DR432AD, M36DR432BD  
Table 24. SRAM Write AC Characteristics  
SRAM  
70  
Symbol  
Alt  
Parameter  
Unit  
Min  
Max  
t
t
Write Cycle Time  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
WC  
(1)  
t
Address Valid to Chip Enable Low  
Address Valid to Write Enable High  
Address Valid to Write Enable Low  
UBS, LBS Valid to End of Write  
Input Valid to Write Enable High  
Chip Enable High to Address Transition  
0
60  
0
t
t
AVEL  
AS  
t
t
AVWH  
AW  
(1)  
t
AVWL  
AS  
t
t
60  
BLWH  
BW  
t
t
DW  
30  
0
DVWH  
(2)  
(3)  
(2)  
t
t
t
EHAX  
WR  
t
,
Chip Select to End of Write  
60  
ns  
ELWH  
CW  
t
Write Enable High to Address Transition  
Write Enable High to Input Transition  
Write Enable High to Output Transition  
Write Enable Low to Output Hi-Z  
Write Enable Pulse Width  
0
0
ns  
ns  
ns  
ns  
ns  
t
WHAX  
WHDX  
WR  
t
t
t
DH  
t
10  
WHQX  
OW  
t
t
25  
WLQZ  
WLWH  
WHZ  
(4)  
t
50  
t
WP  
Note: 1. t is measured from the address valid to the beginning of write.  
AS  
2. t  
3. t  
is measured from the end or write to the address change. t  
is measured from ES going Low end of write.  
applied in case a write ends as ES or WS goes High.  
WR  
WR  
CW  
4. A Write occurs during the overlap (t ) of Low ES and Low WS. A write begins when ES goes Low and WS goes Low with asserting  
WP  
UBS or LBS for single byte operation or simultaneously asserting UBS and LBS for double byte operation. A write ends at the ear-  
liest transition when ES goes High and WS goes High. The t  
is measured from the beginning of write to the end of write.  
WP  
Figure 24. SRAM Low V  
Data Retention AC Waveforms, ES Controlled  
DDS  
tCDR  
DATA RETENTION MODE  
tR  
V
1.65 V  
1.0 V  
DDS  
V
DR  
ES  
ES V  
– 0.2V  
DDS  
AI07325  
42/52  
M36DR432AD, M36DR432BD  
(1, 2)  
Table 25. SRAM Low V  
Data Retention Characteristics  
DDS  
Symbol  
Parameter  
Test Condition  
Min  
Typical  
Max  
10  
Unit  
µA  
V
V
DDS  
= 1.0V, ES V – 0.2V  
DDS  
I
Supply Current (Data Retention)  
Supply Voltage (Data Retention)  
0.5  
DDDR  
no input may exceed V  
+ 2V  
DDS  
V
DR  
ES V  
– 0.2V  
1
0
2.2  
DDS  
DDS  
Chip Disable to Data Retention  
Time  
t
ES V  
– 0.2V  
ns  
CDR  
t
t
Operation Recovery Time  
ns  
R
RC  
Note: 1. All other Inputs V V  
– 0.2V or V 0.2V.  
IL  
IH  
DDS  
2. Sampled only. Not 100% tested.  
43/52  
M36DR432AD, M36DR432BD  
PACKAGE MECHANICAL  
Figure 25. Stacked LFBGA 12x8mm - 8x8 ball array, 0.8mm pitch, Bottom View Package Outline  
D
D2  
D1  
SE  
b
E
E1  
BALL "A1"  
e
ddd  
FE  
FD  
SD  
e
A
A2  
A1  
BGA-Z12  
Note: Drawing is not to scale.  
Table 26. Stacked LFBGA 12x8mm - 8x8 ball array, 0.8mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.400  
0.0551  
0.250  
0.0098  
1.100  
0.0433  
0.400  
12.000  
5.600  
8.800  
0.350  
0.450  
0.0157  
0.4724  
0.2205  
0.3465  
0.0138  
0.0177  
D
D1  
D2  
ddd  
E
0.100  
0.0039  
8.000  
5.600  
0.800  
1.600  
1.200  
0.400  
0.400  
0.3150  
0.2205  
0.0315  
0.0630  
0.0472  
0.0157  
0.0157  
E1  
e
FD  
FE  
SD  
SE  
44/52  
M36DR432AD, M36DR432BD  
PART NUMBERING  
Table 27. Ordering Information Scheme  
Example:  
M36 D R 4 32A  
D
10 ZA  
6
T
Device Type  
M36 = MMP (Flash + SRAM)  
Architecture  
D = Dual Bank, Page Mode  
Operating Voltage  
R = V  
= V  
= 1.65V to 2.2V  
DDS  
DDF  
SRAM Chip Size & Organization  
4 = 4 Mbit (256Kb x 16 bit)  
Flash Specification Details  
32A = 32 Mbit (x16), Dual Bank: 1/8-7/8 partitioning, Top Configuration  
32B = 32 Mbit (x16), Dual Bank: 1/8-7/8 partitioning, Bottom Configuration  
SRAM Specification Details  
D = Asynchronous SRAM, 0.16µm, 70ns speed  
Speed  
85 = 85ns (to be characterized)  
10 = 100ns  
12 = 120ns  
Package  
ZA = LFBGA66: 0.8mm pitch  
Temperature Range  
6 = –40 to 85°C  
Option  
T = Tape & Reel packing  
Devices are shipped from the factory with the memory content bits erased to ’1’. For a list of available op-  
tions (Speed, Package, etc.) or for further information on any aspect of this device, please contact the ST-  
Microelectronics Sales Office nearest to you.  
45/52  
M36DR432AD, M36DR432BD  
APPENDIX A. BLOCK ADDRESSES  
Table 28. Bank A, Top Boot Block Addresses  
M36DR432AD  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
130000h-137FFFh  
128000h-12FFFFh  
120000h-127FFFh  
118000h-11FFFFh  
110000h-117FFFh  
108000h-10FFFFh  
100000h-107FFFh  
0F8000h-0FFFFFh  
0F0000h-0F7FFFh  
0E8000h-0EFFFFh  
0E0000h-0E7FFFh  
0D8000h-0DFFFFh  
0D0000h-0D7FFFh  
0C8000h-0CFFFFh  
0C0000h-0C7FFFh  
0B8000h-0BFFFFh  
0B0000h-0B7FFFh  
0A8000h-0AFFFFh  
0A0000h-0A7FFFh  
098000h-09FFFFh  
090000h-097FFFh  
088000h-08FFFFh  
080000h-087FFFh  
078000h-07FFFFh  
070000h-077FFFh  
068000h-06FFFFh  
060000h-067FFFh  
058000h-05FFFFh  
050000h-057FFFh  
048000h-04FFFFh  
040000h-047FFFh  
038000h-03FFFFh  
030000h-037FFFh  
028000h-02FFFFh  
020000h-027FFFh  
018000h-01FFFFh  
010000h-017FFFh  
008000h-00FFFFh  
000000h-007FFFh  
Size  
(KWord)  
#
Address Range  
14  
13  
12  
11  
10  
9
4
4
1FF000h-1FFFFFh  
1FE000h-1FEFFFh  
1FD000h-1FDFFFh  
1FC000h-1FCFFFh  
1FB000h-1FBFFFh  
1FA000h-1FAFFFh  
1F9000h-1F9FFFh  
1F8000h-1F8FFFh  
1F0000h-1F7FFFh  
1E8000h-1EFFFFh  
1E0000h-1E7FFFh  
1D8000h-1DFFFFh  
1D0000h-1D7FFFh  
1C8000h-1CFFFFh  
1C0000h-1C7FFFh  
4
4
4
4
8
4
7
4
6
32  
32  
32  
32  
32  
32  
32  
5
4
3
2
1
0
Table 29. Bank B, Top Boot Block Addresses  
M36DR432AD  
Size  
(KWord)  
#
Address Range  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
32  
1B8000h-1BFFFFh  
1B0000h-1B7FFFh  
1A8000h-1AFFFFh  
1A0000h-1A7FFFh  
198000h-19FFFFh  
190000h-197FFFh  
188000h-18FFFFh  
180000h-187FFFh  
178000h-17FFFFh  
170000h-177FFFh  
168000h-16FFFFh  
160000h-167FFFh  
158000h-15FFFFh  
150000h-157FFFh  
148000h-14FFFFh  
140000h-147FFFh  
138000h-13FFFFh  
32  
32  
32  
32  
32  
32  
32  
8
32  
7
32  
6
32  
5
32  
4
32  
3
32  
2
32  
1
32  
0
32  
46/52  
M36DR432AD, M36DR432BD  
Table 30. Bank B, Bottom Boot Block  
Addresses M36DR432BD  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
0D0000h-0D7FFFh  
0C8000h-0CFFFFh  
0C0000h-0C7FFFh  
0B8000h-0BFFFFh  
0B0000h-0B7FFFh  
0A8000h-0AFFFFh  
0A0000h-0A7FFFh  
098000h-09FFFFh  
090000h-097FFFh  
088000h-08FFFFh  
080000h-087FFFh  
078000h-07FFFFh  
070000h-077FFFh  
068000h-06FFFFh  
060000h-067FFFh  
058000h-05FFFFh  
050000h-057FFFh  
048000h-04FFFFh  
040000h-047FFFh  
Size  
#
Address Range  
(KWord)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
1F8000h-1FFFFFh  
1F0000h-1F7FFFh  
1E8000h-1EFFFFh  
1E0000h-1E7FFFh  
1D8000h-1DFFFFh  
1D0000h-1D7FFFh  
1C8000h-1CFFFFh  
1C0000h-1C7FFFh  
1B8000h-1BFFFFh  
1B0000h-1B7FFFh  
1A8000h-1AFFFFh  
1A0000h-1A7FFFh  
198000h-19FFFFh  
190000h-197FFFh  
188000h-18FFFFh  
180000h-187FFFh  
178000h-17FFFFh  
170000h-177FFFh  
168000h-16FFFFh  
160000h-167FFFh  
158000h-15FFFFh  
150000h-157FFFh  
148000h-14FFFFh  
140000h-147FFFh  
138000h-13FFFFh  
130000h-137FFFh  
128000h-12FFFFh  
120000h-127FFFh  
118000h-11FFFFh  
110000h-117FFFh  
108000h-10FFFFh  
100000h-107FFFh  
0F8000h-0FFFFFh  
0F0000h-0F7FFFh  
0E8000h-0EFFFFh  
0E0000h-0E7FFFh  
0D8000h-0DFFFFh  
8
7
6
5
4
3
2
1
0
Table 31. Bank A, Bottom Boot Block  
Addresses M36DR432BD  
Size  
(KWord)  
#
Address Range  
14  
13  
12  
11  
10  
9
32  
32  
32  
32  
32  
32  
32  
4
038000h-03FFFFh  
030000h-037FFFh  
028000h-02FFFFh  
020000h-027FFFh  
018000h-01FFFFh  
010000h-017FFFh  
008000h-00FFFFh  
007000h-007FFFh  
006000h-006FFFh  
005000h-005FFFh  
004000h-004FFFh  
003000h-003FFFh  
002000h-002FFFh  
001000h-001FFFh  
000000h-000FFFh  
8
7
6
4
5
4
4
4
3
4
2
4
1
4
0
4
47/52  
M36DR432AD, M36DR432BD  
APPENDIX B. COMMON FLASH INTERFACE  
The Common Flash Interface is a JEDEC ap-  
proved, standardized data structure that can be  
read from the Flash memory device. It allows a  
system software to query the device to determine  
various electrical and timing parameters, density  
information and functions supported by the mem-  
ory. The system can interface easily with the de-  
vice, enabling the software to upgrade itself when  
necessary.  
structure is read from the memory. Tables 32, 33,  
34 and 35 show the address used to retrieve each  
data. The Query data is always presented on the  
lowest order data outputs (DQ0-DQ7), the other  
outputs (DQ8-DQ15) are set to 0.  
The CFI data structure contains also a security  
area starting at address 81h. This area can be ac-  
cessed only in read mode and it is impossible to  
change after it has been written by ST. Issue a  
Read command to return to Read mode.  
When the Read CFI Query Command is issued  
the device enters CFI Query mode and the data  
Table 32. Query Structure Overview  
Offset  
00h  
Sub-section Name  
Description  
Reserved for algorithm-specific information  
Command set ID and algorithm data offset  
Device timing & voltage information  
Flash device layout  
Reserved  
10h  
CFI Query Identification String  
System Interface Information  
Device Geometry Definition  
1Bh  
27h  
Additional information specific to the Primary  
Algorithm (optional)  
P
A
Primary Algorithm-specific Extended Query table  
Alternate Algorithm-specific Extended Query table  
Additional information specific to the Alternate  
Algorithm (optional)  
Table 33. CFI Query Identification String  
Offset  
Data  
Description  
00h  
0020h  
Manufacturer Code  
Device Code  
Reserved  
00A1h - bottom  
00A0h - top  
01h  
02h-0Fh  
10h  
reserved  
0051h  
Query Unique ASCII String "QRY"  
Query Unique ASCII String "QRY"  
Query Unique ASCII String "QRY"  
11h  
0052h  
12h  
0059h  
13h  
0002h  
Primary Algorithm Command Set and Control Interface ID code 16 bit ID code  
defining a specific algorithm  
14h  
0000h  
15h  
offset = P = 0040h  
0000h  
Address for Primary Algorithm extended Query table  
16h  
17h  
0000h  
Alternate Vendor Command Set and Control Interface ID Code second vendor  
- specified algorithm supported (note: 0000h means none exists)  
18h  
0000h  
19h  
value = A = 0000h  
0000h  
Address for Alternate Algorithm extended Query table  
note: 0000h means none exists  
1Ah  
48/52  
M36DR432AD, M36DR432BD  
Table 34. CFI Query System Interface Information  
Offset  
Data  
Description  
V
DDF  
V
DDF  
V
PPF  
Logic Supply Minimum Program/Erase or Write voltage  
1Bh  
0017h  
bit 7 to 4  
bit 3 to 0  
BCD value in volts  
BCD value in 100 millivolts  
Logic Supply Maximum Program/Erase or Write voltage  
1Ch  
1Dh  
0022h  
0000h  
bit 7 to 4  
bit 3 to 0  
BCD value in volts  
BCD value in 100 millivolts  
[Programming] Supply Minimum Program/Erase voltage  
bit 7 to 4  
bit 3 to 0  
HEX value in volts  
BCD value in 100 millivolts  
Note: This value must be 0000h if no V  
pin is present  
PPF  
V
PPF  
[Programming] Supply Maximum Program/Erase voltage  
bit 7 to 4  
bit 3 to 0  
HEX value in volts  
BCD value in 100 millivolts  
1Eh  
00C0h  
Note: This value must be 0000h if no V  
pin is present  
PPF  
n
Typical timeout per single byte/word program (multi-byte program count = 1), 2 µs  
(if supported; 0000h = not supported)  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0004h  
0003h  
000Ah  
0000h  
0003h  
0004h  
0002h  
0000h  
n
Typical timeout for maximum-size multi-byte program or page write, 2 µs  
(if supported; 0000h = not supported)  
n
Typical timeout per individual block erase, 2 ms  
(if supported; 0000h = not supported)  
n
Typical timeout for full chip erase, 2 ms  
(if supported; 0000h = not supported)  
n
Maximum timeout for byte/word program, 2 times typical (offset 1Fh)  
(0000h = not supported)  
n
Maximum timeout for multi-byte program or page write, 2 times typical (offset 20h)  
(0000h = not supported)  
n
Maximum timeout per individual block erase, 2 times typical (offset 21h)  
(0000h = not supported)  
n
Maximum timeout for chip erase, 2 times typical (offset 22h)  
(0000h = not supported)  
49/52  
M36DR432AD, M36DR432BD  
Table 35. Device Geometry Definition  
Offset Word  
Data  
Description  
Device Size = 2 in number of bytes  
Mode  
n
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
0016h  
0001h  
0000h  
0000h  
0000h  
0002h  
Flash Device Interface Code description: Asynchronous x16  
Maximum number of bytes in multi-byte program or page = 2  
n
Number of Erase Block Regions within device  
bit 7 to 0 = x = number of Erase Block Regions  
Note:1. x = 0 means no erase blocking, i.e. the device erases at once in "bulk."  
2. x specifies the number of regions within the device containing one or more  
contiguous Erase Blocks of the same size. For example, a 128KB device  
(1Mb) having blocking of 16KB, 8KB, four 2KB, two 16KB, and one 64KB is  
considered to have 5 Erase Block Regions. Even though two regions both  
contain 16KB blocks, the fact that they are not contiguous means they are  
separate Erase Block Regions.  
3. By definition, symmetrically block devices have only one blocking region.  
M36DR432AD M36DR432AD Erase Block Region Information  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
003Eh  
0000h  
0000h  
0001h  
0007h  
0000h  
0020h  
0000h  
bit 31 to 16 = z, where the Erase Block(s) within this Region are (z) times 256 bytes  
in size. The value z = 0 is used for 128 byte block size.  
e.g. for 64KB block size, z = 0100h = 256 => 256 * 256 = 64K  
bit 15 to 0 = y, where y+1 = Number of Erase Blocks of identical size within the Erase  
Block Region:  
e.g. y = D15-D0 = FFFFh => y+1 = 64K blocks [maximum number]  
y = 0 means no blocking (# blocks = y+1 = "1 block")  
Note: y = 0 value must be used with number of block regions of one as indicated  
by (x) = 0  
M36DR432AD M36DR432AD  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
0007h  
0000h  
0020h  
0000h  
003Eh  
0000h  
0000h  
0001h  
50/52  
M36DR432AD, M36DR432BD  
REVISION HISTORY  
Table 36. Document Revision History  
Date  
Version  
1.0  
Revision Details  
15-Jan-2003  
15-Jan-2003  
25-Feb-2003  
First issue.  
Bottom Device Code corrected on page 1.  
Document promoted from Preliminary Data to full Datasheet status.  
signal removed from datasheet. SRAM Input Rise and Fall Times added to,  
1.1  
2.0  
V
DDQF  
and V  
and V  
parameters differentiated in Table 14, Operating and AC  
28-Feb-2003  
2.1  
DDF  
DDS  
Measurement Conditions. V  
added to the SIGNAL DESCRIPTIONS section.  
DDS  
51/52  
M36DR432AD, M36DR432BD  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners  
© 2003 STMicroelectronics - All Rights Reserved  
STMicroelectronics group of companies  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong -  
India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.  
www.st.com  
52/52  

相关型号:

M36DR432AD10ZA6T

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256Kb x16 SRAM, Multiple Memory Product
STMICROELECTR

M36DR432AD12ZA6

SPECIALTY MEMORY CIRCUIT, PBGA66, 12 X 8 MM, 0.80 MM PITCH, STACK, LFBGA-66
STMICROELECTR

M36DR432AD12ZA6T

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256Kb x16 SRAM, Multiple Memory Product
STMICROELECTR

M36DR432AD85ZA6

暂无描述
STMICROELECTR

M36DR432AD85ZA6T

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256Kb x16 SRAM, Multiple Memory Product
STMICROELECTR

M36DR432ADZA

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256Kb x16 SRAM, Multiple Memory Product
STMICROELECTR

M36DR432AZA

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256K x16 SRAM, Multiple Memory Product
STMICROELECTR

M36DR432B

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256K x16 SRAM, Multiple Memory Product
STMICROELECTR

M36DR432B100ZA6

SPECIALTY MEMORY CIRCUIT, PBGA66, 0.80 MM PITCH, STACK, LFBGA-66
NUMONYX

M36DR432B100ZA6C

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256K x16 SRAM, Multiple Memory Product
STMICROELECTR

M36DR432B100ZA6CT

IC,MIXED MEMORY,FLASH+SRAM,HYBRID,BGA,66PIN,PLASTIC
STMICROELECTR

M36DR432B100ZA6T

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256K x16 SRAM, Multiple Memory Product
STMICROELECTR