M36WT864BF70ZA6 [STMICROELECTRONICS]

SPECIALTY MEMORY CIRCUIT, PBGA96, 8 X 14 MM, 0.80 MM PITCH, STACK, LFBGA-96;
M36WT864BF70ZA6
型号: M36WT864BF70ZA6
厂家: ST    ST
描述:

SPECIALTY MEMORY CIRCUIT, PBGA96, 8 X 14 MM, 0.80 MM PITCH, STACK, LFBGA-96

文件: 总92页 (文件大小:449K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M36WT864TF  
M36WT864BF  
64 Mbit (4Mb x16, Multiple Bank, Burst) Flash Memory  
and 8 Mbit (512K x16) SRAM, Multiple Memory Product  
PRODUCT PREVIEW  
FEATURES SUMMARY  
SUPPLY VOLTAGE  
SRAM  
8 Mbit (512K x 16 bit)  
EQUAL CYCLE and ACCESS TIMES: 70ns  
– V  
– V  
– V  
= 1.65V to 2.2V  
DDF  
DDS  
PPF  
= V  
= 2.7V to 3.3V  
DDQF  
LOW STANDBY CURRENT  
= 12V for Fast Program (optional)  
LOW V  
DATA RETENTION: 1.5V  
DDS  
ACCESS TIME: 70, 85, 100ns  
LOW POWER CONSUMPTION  
ELECTRONIC SIGNATURE  
TRI-STATE COMMON I/O  
AUTOMATIC POWER DOWN  
– Manufacturer Code: 20h  
Figure 1. Packages  
– Top Device Code, M36WT864TF: 8810h  
– Bottom Device Code, M36WT864BF: 8811h  
FLASH MEMORY  
PROGRAMMING TIME  
– 8µs by Word typical for Fast Factory Program  
– Double/Quadruple Word Program option  
– Enhanced Factory Program options  
MEMORY BLOCKS  
FBGA  
– Multiple Bank Memory Array: 4 Mbit Banks  
– Parameter Blocks (Top or Bottom location)  
DUAL OPERATIONS  
Stacked LFBGA96 (ZA)  
8 x 14mm  
– Program Erase in one Bank while Read in  
others  
– No delay between Read and Write operations  
BLOCK LOCKING  
– All blocks locked at Power up  
– Any combination of blocks can be locked  
– WP for Block Lock-Down  
SECURITY  
– 128 bit user programmable OTP cells  
– 64 bit unique device number  
– One parameter block permanently lockable  
COMMON FLASH INTERFACE (CFI)  
100,000 PROGRAM/ERASE CYCLES per  
BLOCK  
July 2002  
1/92  
This is preliminary information on a new product now in development. Details are subject to change without notice.  
M36WT864TF, M36WT864BF  
TABLE OF CONTENTS  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 3. LFBGA Connections (Top view through package). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Address Inputs (A0-A18). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Address Inputs (A19-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Data Input/Output (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Flash Chip Enable (EF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Flash Output Enable (GF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Flash Write Enable (WF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Flash Write Protect (WPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Flash Reset (RPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Flash Latch Enable (LF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Flash Clock (KF).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Flash Wait (WAITF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SRAM Chip Enable (E1S, E2S). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SRAM Write Enable (WS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SRAM Output Enable (GS).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SRAM Upper Byte Enable (UBS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SRAM Lower Byte Enable (LBS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
V
V
V
V
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
DDF  
and V  
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
DDS  
DDQF  
Program Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
PPF  
V
and V  
Grounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SSF , SSQF  
SSS  
FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 11  
Figure 4. Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 2. Main Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Flash Memory Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
SRAM Component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 3. Flash Bank Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 5. Flash Block Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
FLASH BUS OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Bus Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Address Latch.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
FLASH COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16  
2/92  
M36WT864TF, M36WT864BF  
Table 4. Command Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
COMMAND INTERFACE - STANDARD COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Read Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Read Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Read CFI Query Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Clear Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Bank Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Set Configuration Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Block Lock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Block Unlock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Block Lock-Down Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 5. Flash Standard Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 6. Electronic Signature Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 6. Flash Security Block and Protection Register Memory Map . . . . . . . . . . . . . . . . . . . . . . 22  
COMMAND INTERFACE - FACTORY PROGRAM COMMANDS. . . . . . . . . . . . . . . . . . . . . . . . . 23  
Double Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Quadruple Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Enhanced Factory Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Setup Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Program Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Verify Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Exit Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Quadruple Enhanced Factory Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Setup Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Load Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Program and Verify Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Exit Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 7. Flash Factory Program Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
FLASH STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Program/Erase Controller Status Bit (SR7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Erase Suspend Status Bit (SR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Erase Status Bit (SR5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Program Status Bit (SR4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
V
PPF  
Status Bit (SR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Program Suspend Status Bit (SR2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Block Protection Status Bit (SR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Bank Write/Multiple Word Program Status Bit (SR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 8. Flash Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3/92  
M36WT864TF, M36WT864BF  
FLASH CONFIGURATION REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Read Select Bit (CR15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
X-Latency Bits (CR13-CR11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Wait Polarity Bit (CR10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Data Output Configuration Bit (CR9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Wait Configuration Bit (CR8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Burst Type Bit (CR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Valid Clock Edge Bit (CR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Wrap Burst Bit (CR3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Burst length Bits (CR2-CR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 9. Flash Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 10. Burst Type Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 7. X-Latency and Data Output Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 8. Wait Configuration Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
FLASH READ MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Asynchronous Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Synchronous Burst Read Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Single Synchronous Read Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
FLASH DUAL OPERATIONS AND MULTIPLE BANK ARCHITECTURE. . . . . . . . . . . . . . . . . . . . . . 36  
Table 11. Dual Operations Allowed In Other Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 12. Dual Operations Allowed In Same Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
FLASH BLOCK LOCKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Reading a Block’s Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Locked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Unlocked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Lock-Down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Locking Operations During Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 13. Flash Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
FLASH PROGRAM AND ERASE TIMES AND ENDURANCE CYCLES. . . . . . . . . . . . . . . . . . . . . . . 39  
Table 14. Flash Program, Erase Times and Endurance Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
SRAM OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Standby/Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Data Retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 15. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
4/92  
M36WT864TF, M36WT864BF  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 16. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 9. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 10. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 17. Device Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 18. Flash DC Characteristics - Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 19. Flash DC Characteristics - Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 20. SRAM DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 11. Flash Asynchronous Random Access Read AC Waveforms. . . . . . . . . . . . . . . . . . . . . 45  
Figure 12. Flash Asynchronous Page Read AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 21. Flash Asynchronous Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 13. Flash Synchronous Burst Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 14. Flash Single Synchronous Read AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 15. Flash Clock input AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 22. Flash Synchronous Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 16. Flash Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 23. Flash Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 17. Flash Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 24. Flash Write AC Characteristics, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 18. Flash Reset and Power-up AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 25. Flash Reset and Power-up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 19. SRAM Address Controlled, Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 20. SRAM Chip Enable or Output Enable Controlled, Read AC Waveforms. . . . . . . . . . . . 56  
Figure 21. SRAM Chip Enable or UBS/LBS Controlled, Standby AC Waveforms . . . . . . . . . . . . . 57  
Table 26. SRAM Read and Standby AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 22. SRAM Write AC Waveforms, Write Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 23. SRAM Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 24. SRAM Write AC Waveforms, UB/LB Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 27. SRAM Write AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 25. SRAM Low VDD Data Retention AC Waveforms, E1S Controlled. . . . . . . . . . . . . . . . . 61  
Figure 26. SRAM Low VDD Data Retention AC Waveforms, E2S Controlled. . . . . . . . . . . . . . . . . 61  
Table 28. SRAM Low VDD Data Retention Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 27. Stacked LFBGA96 - 8x14mm, 8x10ball array, 0.8mm pitch, Bottom View Package Outline  
62  
Table 29. Stacked LFBGA96 - 8x14mm, 8x10 ball array, 0.8mm pitch, Package Mechanical Data62  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 30. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 31. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
APPENDIX A. FLASH BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
5/92  
M36WT864TF, M36WT864BF  
Table 32. Flash Top Boot Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 33. Flash Bottom Boot Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
APPENDIX B. FLASH COMMON FLASH INTERFACE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Table 34. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Table 35. CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Table 36. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Table 37. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Table 38. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Table 39. Protection Register Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 40. Burst Read Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 41. Bank and Erase Block Region Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 42. Bank and Erase Block Region 1 Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Table 43. Bank and Erase Block Region 2 Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
APPENDIX C. FLASH FLOWCHARTS AND PSEUDO CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 28. Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 29. Double Word Program Flowchart and Pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 30. Quadruple Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 31. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 79  
Figure 32. Block Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 33. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 34. Locking Operations Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 35. Protection Register Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 36. Enhanced Factory Program Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Enhanced Factory Program Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 37. Quadruple Enhanced Factory Program Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Quadruple Enhanced Factory Program Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
APPENDIX D. FLASH COMMAND INTERFACE STATE TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Table 44. Command Interface States - Modify Table, Next State . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Table 45. Command Interface States - Modify Table, Next Output. . . . . . . . . . . . . . . . . . . . . . . . . 89  
Table 46. Command Interface States - Lock Table, Next State . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Table 47. Command Interface States - Lock Table, Next Output . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
6/92  
M36WT864TF, M36WT864BF  
SUMMARY DESCRIPTION  
The M36WT864 is a low voltage Multiple Memory  
Product which combines two memory devices; a  
64 Mbit Multiple Bank Flash memory and an 8 Mbit  
SRAM. Recommended operating conditions do  
not allow both the Flash and the SRAM to be ac-  
tive at the same time.  
Table 1. Signal Names  
A0-A18  
Address Inputs  
A19-A21  
DQ0-DQ15  
Address Inputs for Flash Chip only  
Data Input/Output  
The memory is offered in a Stacked LFBGA96 (8  
x 14mm, 0.8 mm pitch) package and is supplied  
with all the bits erased (set to ‘1’).  
V
Flash Power Supply  
DDF  
V
Flash Power Supply for I/O Buffers  
DDQF  
Flash Optional Supply Voltage for Fast  
Program & Erase  
Figure 2. Logic Diagram  
V
PPF  
V
V
V
V
Flash Ground  
SSF  
V
V
DDQF  
DDS  
Flash Ground for I/O Buffers  
SRAM Power Supply  
SRAM Ground  
SSQF  
DDS  
SSS  
V
V
PPF  
DDF  
22  
16  
DQ0-DQ15  
A0-A21  
EF  
NC  
DU  
Not Connected Internally  
Do Not Use as Internally Connected  
GF  
Flash control functions  
WF  
WAITF  
LF  
Latch Enable input  
RPF  
WPF  
LF  
EF  
Chip Enable input  
Output Enable input  
Write Enable input  
Reset input  
M36WT864TF  
M36WT864BF  
GF  
KF  
WF  
E1S  
E2S  
GS  
RPF  
WPF  
KF  
Write Protect input  
Flash Burst Clock  
Wait Data in Burst Mode  
WS  
UBS  
LBS  
WAITF  
SRAM control functions  
E1S, E2S  
GS  
Chip Enable inputs  
V
V
SSF  
SSS  
Output Enable input  
Write Enable input  
V
SSQF  
WS  
AI06270  
UBS  
Upper Byte Enable input  
Lower Byte Enable input  
LBS  
7/92  
M36WT864TF, M36WT864BF  
Figure 3. LFBGA Connections (Top view through package)  
1
2
3
4
5
6
7
8
NC  
NC  
A4  
NC  
NC  
#A  
#B  
A
NC  
NC  
NC  
NC  
A11  
A12  
A13  
A15  
A16  
DU  
A18  
LBS  
A17  
A7  
A19  
NC  
V
V
V
WS  
KF  
A21  
NC  
SSS  
SSS  
PPF  
A5  
B
E2S  
V
DDS  
C
A3  
NC  
V
V
A9  
DDF  
LF  
SSF  
A2  
D
NC  
WPF  
RP  
A20  
A8  
A10  
A14  
WAITF  
DQ7  
DQ15  
E
A1  
A6  
UBS  
DQ2  
DQ1  
DQ9  
DU  
WF  
DQ5  
DQ12  
DQ4  
F
A0  
DQ8  
DQ0  
GF  
DQ10  
DQ3  
DQ11  
DQ13  
DQ14  
DQ6  
DU  
G
GS  
E1S  
EF  
DU  
DU  
H
J
DU  
V
V
V
V
DDS  
DDS  
DDQF  
SSS  
SSS  
V
K
V
V
V
V
V
V
V
SSS  
SSQF  
NC  
DDQF  
DDF  
SSS  
SSQF  
SSF  
NC  
NC  
NC  
#C  
#D  
NC  
NC  
NC  
NC  
AI06271  
8/92  
M36WT864TF, M36WT864BF  
SIGNAL DESCRIPTIONS  
See Figure 2 Logic Diagram and Table 1,Signal  
Names, for a brief overview of the signals connect-  
ed to this device.  
When Reset is at V , the device is in normal op-  
IH  
eration. Exiting reset mode the device enters  
asynchronous read mode, but a negative transi-  
tion of Chip Enable or Latch Enable is required to  
ensure valid data outputs.  
Address Inputs (A0-A18). Addresses  
A0-A18  
are common inputs for the Flash and the SRAM  
components. The Address Inputs select the cells  
in the memory array to access during Bus Read  
operations. During Bus Write operations they con-  
trol the commands sent to the Command Interface  
of the internal state machine. The Flash memory is  
accessed through the Chip Enable (EF) and Write  
Enable (WF) signals, while the SRAM is accessed  
through two Chip Enable signals (E1S and E2S)  
and the Write Enable signal (WS).  
Address Inputs (A19-A21). Addresses A19-A21  
are inputs for the Flash component only. The  
Flash memory is accessed through the Chip En-  
able (EF) and Write Enable (WF) signals.  
Data Input/Output (DQ0-DQ15). The Data I/O  
outputs the data stored at the selected address  
during a Bus Read operation or inputs a command  
or the data to be programmed during a Write Bus  
operation.  
Flash Chip Enable (EF). The Chip Enable input  
activates the memory control logic, input buffers,  
decoders and sense amplifiers. When Chip En-  
The Reset pin can be interfaced with 3V logic with-  
out any additional circuitry. It can be tied to V  
RPH  
(refer to Table 19, DC Characteristics).  
Flash Latch Enable (LF). Latch Enable latches  
the address bits on its rising edge. The address  
latch is transparent when Latch Enable is at V  
IL  
and it is inhibited when Latch Enable is at V .  
IH  
Latch Enable can be kept Low (also at board level)  
when the Latch Enable function is not required or  
supported.  
Flash Clock (KF). The clock input synchronizes  
the Flash memory to the microcontroller during  
synchronous read operations; the address is  
latched on a Clock edge (rising or falling, accord-  
ing to the configuration settings) when Latch En-  
able is at V . Clock is don't care during  
IL  
asynchronous read and in write operations.  
Flash Wait (WAITF). Wait is a Flash output signal  
used during synchronous read to indicate whether  
the data on the output bus are valid. This output is  
high impedance when Flash Chip Enable is at V  
IH  
able is at V and Reset is at V the device is in ac-  
or Flash Reset is at V . It can be configured to be  
IL  
IH  
IL  
tive mode. When Chip Enable is at V  
the  
active during the wait cycle or one clock cycle in  
advance. The WAITF signal is not gated by Output  
Enable.  
IH  
memory is deselected, the outputs are high imped-  
ance and the power consumption is reduced to the  
stand-by level.  
SRAM Chip Enable (E1S, E2S). The Chip En-  
Flash Output Enable (GF). The Output Enable  
controls data outputs during the Bus Read opera-  
tion of the memory.  
Flash Write Enable (WF). The Write Enable  
controls the Bus Write operation of the memory’s  
Command Interface. The data and address inputs  
are latched on the rising edge of Chip Enable or  
Write Enable whichever occurs first.  
able inputs activate the SRAM memory control  
logic, input buffers and decoders. E1S at V or  
IH  
E2S at V deselects the memory and reduces the  
IL  
power consumption to the standby level. E1S and  
E2S can also be used to control writing to the  
SRAM memory array, while WS remains at V It  
IL.  
is not allowed to set EF at V E1S at V and E2S  
IL,  
IL  
at V at the same time.  
IH  
SRAM Write Enable (WS). The Write Enable in-  
put controls writing to the SRAM memory array.  
WS is active low.  
Flash Write Protect (WPF). Write Protect is an  
input that gives an additional hardware protection  
for each block. When Write Protect is at V , the  
IL  
Lock-Down is enabled and the protection status of  
the Locked-Down blocks cannot be changed.  
SRAM Output Enable (GS). The Output Enable  
gates the outputs through the data buffers during  
a read operation of the SRAM memory. GS is ac-  
tive low.  
SRAM Upper Byte Enable (UBS). The Upper  
Byte Enable input enables the upper byte for  
SRAM (DQ8-DQ15). UBS is active low.  
When Write Protect is at V , the Lock-Down is  
IH  
disabled and the Locked-Down blocks can be  
locked or unlocked. (refer to Table 13, Lock Sta-  
tus).  
Flash Reset (RPF). The Reset input provides a  
hardware reset of the memory. When Reset is at  
SRAM Lower Byte Enable (LBS). The Lower  
Byte Enable input enables the lower byte for  
SRAM (DQ0-DQ7). LBS is active low.  
V , the memory is in reset mode: the outputs are  
IL  
high impedance and the current consumption is  
reduced to the Reset Supply Current I  
. Refer to  
DD2  
V
Supply Voltage. V  
supply to the internal core of the Flash memory de-  
provides the power  
DDF  
DDF  
Table 2, DC Characteristics - Currents for the val-  
ue of I After Reset all blocks are in the Locked  
DD2.  
state and the Configuration Register is reset.  
9/92  
M36WT864TF, M36WT864BF  
vice. It is the main power supply for all Flash oper-  
ations (Read, Program and Erase).  
is only sampled at the beginning of a program or  
erase; a change in its value after the operation has  
started does not have any effect and program or  
erase operations continue.  
V
and V  
Supply Voltage. V  
pro-  
vides the power supply for the Flash memory I/O  
pins and V provides the power supply for the  
DDQF  
DDS  
DDQF  
If V  
is in the range of V  
it acts as a power  
PPHF  
DDS  
PPF  
SRAM control and I/O pins. This allows all Outputs  
to be powered independently from the Flash core  
supply pin. In this condition V  
until the Program/Erase algorithm is completed.  
must be stable  
PPF  
power supply, V  
it can use a separate supply.  
. V  
can be tied to V  
or  
DDF  
DDQF  
DDS  
V
and V  
V
SSS  
and V Grounds. V  
are the ground references for all voltage  
,
V
SSQF  
SSF , SSQF  
SSS  
SSF  
V
Program Supply Voltage. V  
is both a  
PPF  
measurements in the Flash (core and I/O Buffers)  
and SRAM chips, respectively.  
Note: Each device in a system should have  
PPF  
Flash control input and a Flash power supply pin.  
The two functions are selected by the voltage  
range applied to the pin.  
V
and V  
decoupled with a 0.1µF ceramic  
DDF  
PPF  
capacitor close to the pin (high frequency, in-  
herently low inductance capacitors should be  
as close as possible to the package). See Fig-  
ure 10, AC Measurement Load Circuit. The  
PCB trace widths should be sufficient to carry  
If V  
)
DDQF  
PPF  
V
PPF  
age lower than V  
tion against program or erase, while V  
enables these functions (see Tables 18 and 19,  
DC Characteristics for the relevant values). V  
PP1F  
the required V  
program and erase currents.  
PPF  
PPF  
10/92  
M36WT864TF, M36WT864BF  
FUNCTIONAL DESCRIPTION  
The Flash and SRAM components have separate  
power supplies and grounds and are distinguished  
by three chip enable inputs: EF for the Flash mem-  
ory and, E1S and E2S for the SRAM.  
Recommended operating conditions do not allow  
both the Flash and the SRAM to be in active mode  
at the same time. The most common example is  
simultaneous read operations on the Flash and  
the SRAM which would result in a data bus con-  
tention. Therefore it is recommended to put the  
SRAM in the high impedance state when reading  
the Flash and vice versa (see Table 2 Main Oper-  
ation Modes for details).  
Figure 4. Functional Block Diagram  
V
V
V
DDF DDQF PPF  
EF  
GF  
WF  
RPF  
WPF  
LF  
Flash Memory  
64 Mbit (x16)  
WAITF  
KF  
A19-A21  
A0-A18  
V
V
SSQF  
SSF  
V
DQ0-DQ15  
DDS  
E1S  
E2S  
GS  
SRAM  
8 Mbit (x 16)  
WS  
UBS  
LBS  
V
SSS  
AI06272  
11/92  
M36WT864TF, M36WT864BF  
Table 2. Main Operation Modes  
Operation Mode EF  
GF  
WF  
LF  
RPF WAITF E1S E2S GS WS UBS, LBS DQ15-DQ0  
(2)  
V
V
V
V
V
Bus Read  
Bus Write  
SRAM must be disabled  
SRAM must be disabled  
Data Output  
V
IL  
IL  
IL  
IH  
IH  
IH  
IL  
(2)  
V
IH  
V
V
Data Input  
IL  
V
IL  
Data Output  
Address  
Latch  
V
V
V
V
X
SRAM must be disabled  
SRAM must be disabled  
IL  
IL  
IH  
IL  
IH  
(3)  
or Hi-Z  
Output  
Disable  
V
V
V
IH  
V
IH  
V
V
X
Hi-Z  
IH  
Standby  
Reset  
X
X
X
X
X
X
Hi-Z  
Hi-Z  
Any SRAM mode is allowed  
Any SRAM mode is allowed  
Hi-Z  
Hi-Z  
IH  
IH  
V
X
IL  
Data out  
Word Read  
V
V
V
V
V
Read  
Write  
Flash must be disabled  
Flash must be disabled  
IL  
IL  
IH  
IH  
IL  
IH  
IL  
IL  
Data in  
Word Write  
V
V
V
V
IL  
V
X
X
X
X
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
IH  
Standby/  
Power Down  
V
Any Flash mode is allowable  
X
X
X
X
IL  
IL  
V
X
X
IH  
Data  
Retention  
Any Flash mode is allowable  
Any Flash mode is allowable  
V
IH  
V
V
X
X
X
X
Hi-Z  
Hi-Z  
Output  
Disable  
V
V
V
IH  
IL  
IH  
IH  
Note: 1. X = Don't care.  
2. L can be tied to V if the valid address has been previously latched.  
IH  
3. Depends on G.  
4. WAIT signal polarity is configured using the Set Configuration Register command.  
12/92  
M36WT864TF, M36WT864BF  
Flash Memory Component  
The device supports synchronous burst read and  
asynchronous read from all blocks of the memory  
array; at power-up the device is configured for  
asynchronous read. In synchronous burst mode,  
data is output on each clock cycle at frequencies  
of up to 54MHz.  
The Flash memory is a 64 Mbit (4Mbit x16) non-  
volatile Flash memory that may be erased electri-  
cally at block level and programmed in-system on  
a Word-by-Word basis using a 1.65V to 2.2V V  
supply for the circuitry and a 1.65V to 3.3V V  
DD  
DDQ  
supply for the Input/Output pins. An optional 12V  
power supply is provided to speed up cus-  
tomer programming.  
The device features an Automatic Standby mode.  
During asynchronous read operations, after a bus  
inactivity of 150ns, the device automatically  
switches to the Automatic Standby mode. In this  
condition the power consumption is reduced to the  
V
PPF  
The device features an asymmetrical block archi-  
tecture with an array of 135 blocks divided into 4  
Mbit banks. There are 15 banks each containing 8  
main blocks of 32 KWords, and one parameter  
bank containing 8 parameter blocks of 4 KWords  
and 7 main blocks of 32 KWords. The Multiple  
Bank Architecture allows Dual Operations, while  
programming or erasing in one bank, Read opera-  
tions are possible in other banks. Only one bank at  
a time is allowed to be in Program or Erase mode.  
It is possible to perform burst reads that cross  
bank boundaries. The bank architecture is sum-  
marized in Table 3, and the memory maps are  
shown in Figure 5. The Parameter Blocks are lo-  
cated at the top of the memory address space for  
the M36WT864TF, and at the bottom for the  
M36WT864BF.  
standby value I  
and the outputs are still driven.  
DD4  
The Flash memory features an instant, individual  
block locking scheme that allows any block to be  
locked or unlocked with no latency, enabling in-  
stant code and data protection. All blocks have  
three levels of protection. They can be locked and  
locked-down individually preventing any acciden-  
tal programming or erasure. There is an additional  
hardware protection against program and erase.  
When V  
V  
all blocks are protected  
PPF  
PPLK  
against program or erase. All blocks are locked at  
Power- Up.  
The device includes a Protection Register and a  
Security Block to increase the protection of a sys-  
tem’s design. The Protection Register is divided  
into two segments: a 64 bit segment containing a  
unique device number written by ST, and a 128 bit  
segment One-Time-Programmable (OTP) by the  
user. The user programmable segment can be  
permanently protected. The Security Block, pa-  
rameter block 0, can be permanently protected by  
the user. Figure 6, shows the Security Block and  
Protection Register Memory Map.  
Each block can be erased separately. Erase can  
be suspended, in order to perform program in any  
other block, and then resumed. Program can be  
suspended to read data in any other block and  
then resumed. Each block can be programmed  
and erased over 100,000 cycles using the supply  
voltage V . There are two Enhanced Factory  
DD  
programming commands available to speed up  
programming.  
SRAM Component  
Program and Erase commands are written to the  
Command Interface of the memory. An internal  
Program/Erase Controller takes care of the tim-  
ings necessary for program and erase operations.  
The end of a program or erase operation can be  
detected and any error conditions identified in the  
Status Register. The command set required to  
control the memory is consistent with JEDEC stan-  
dards.  
The SRAM is an 8 Mbit (512Kb x16) asynchronous  
random access memory which features a super  
low voltage operation and low current consump-  
tion with an access time of 70ns. The memory op-  
erations can be performed using a single low  
voltage supply, 2.7V to 3.3V.  
13/92  
M36WT864TF, M36WT864BF  
Table 3. Flash Bank Architecture  
Number  
Parameter Bank  
Bank 0  
Bank Size  
Parameter Blocks  
Main Blocks  
4 Mbits  
4 Mbits  
4 Mbits  
4 Mbits  
8 blocks of 4 KWords  
7 blocks of 32 KWords  
8 blocks of 32 KWords  
8 blocks of 32 KWords  
8 blocks of 32 KWords  
-
-
-
Bank 1  
Bank 2  
Bank 13  
Bank 14  
4 Mbits  
4 Mbits  
-
-
8 blocks of 32 KWords  
8 blocks of 32 KWords  
Figure 5. Flash Block Addresses  
Top Boot Block  
Bottom Boot Block  
Address lines A21-A0  
Address lines A21-A0  
000000h  
32 KWord  
007FFFh  
000000h  
000FFFh  
4 KWord  
8 Main  
Blocks  
8 Parameter  
Blocks  
Bank 14  
038000h  
32 KWord  
03FFFFh  
007000h  
4KWord  
Parameter  
Bank  
007FFFh  
008000h  
00FFFFh  
32 KWord  
7 Main  
Blocks  
038000h  
03FFFFh  
040000h  
047FFFh  
32 KWord  
32 KWord  
300000h  
32 KWord  
307FFFh  
8 Main  
Blocks  
8 Main  
Blocks  
Bank 2  
Bank 0  
Bank 1  
Bank 2  
338000h  
32 KWord  
33FFFFh  
340000h  
32 KWord  
377FFFh  
078000h  
07FFFFh  
080000h  
087FFFh  
32 KWord  
32 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
Bank 1  
378000h  
32 KWord  
37FFFFh  
380000h  
32 KWord  
387FFFh  
0B8000h  
0BFFFFh  
0C0000h  
0C7FFFh  
32 KWord  
32 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
Bank 0  
3D8000h  
32 KWord  
3BFFFFh  
3C0000h  
32 KWord  
3C7FFFh  
0F8000h  
0FFFFFh  
32 KWord  
7 Main  
Blocks  
3F0000h  
32 KWord  
Parameter  
Bank  
3F7FFFh  
3F8000h  
3F8FFFh  
3C0000h  
3C7FFFh  
4 KWord  
32 KWord  
32 KWord  
8 Parameter  
Blocks  
8 Main  
Blocks  
Bank 14  
3FF000h  
3FFFFFh  
3F8000h  
3FFFFFh  
4 KWord  
AI06273  
14/92  
M36WT864TF, M36WT864BF  
FLASH BUS OPERATIONS  
There are six standard bus operations that control  
the Flash device. These are Bus Read, Bus Write,  
Address Latch, Output Disable, Standby and Re-  
set. See Table 2, Main Operating Modes, for a  
summary.  
the Latch Enable should be tied to V during the  
bus write operation.  
See Figures 16 and 17, Write AC Waveforms, and  
Tables 23 and 24, Write AC Characteristics, for  
details of the timing requirements.  
IH  
Typically glitches of less than 5ns on Chip Enable  
or Write Enable are ignored by the memory and do  
not affect Bus Write operations.  
Address Latch. Address latch operations input  
valid addresses. Both Chip enable and Latch En-  
able must be at V during address latch opera-  
IL  
Bus Read. Bus Read operations are used to out-  
put the contents of the Memory Array, the Elec-  
tronic Signature, the Status Register and the  
Common Flash Interface. Both Chip Enable and  
tions. The addresses are latched on the rising  
edge of Latch Enable.  
Output Disable. The outputs are high imped-  
ance when the Output Enable is at V .  
IH  
Output Enable must be at V in order to perform a  
IL  
Standby. Standby disables most of the internal  
circuitry allowing a substantial reduction of the cur-  
rent consumption. The memory is in stand-by  
read operation. The Chip Enable input should be  
used to enable the device. Output Enable should  
be used to gate data onto the output. The data  
read depends on the previous command written to  
the memory (see Command Interface section).  
See Figures 11, 12, 13 and 14 Read AC Wave-  
forms, and Tables 21 and 22 Read AC Character-  
istics, for details of when the output becomes  
valid.  
when Chip Enable and Reset are at V . The pow-  
IH  
er consumption is reduced to the stand-by level  
and the outputs are set to high impedance, inde-  
pendently from the Output Enable or Write Enable  
inputs. If Chip Enable switches to V during a pro-  
IH  
gram or erase operation, the device enters Stand-  
by mode when finished.  
Reset. During Reset mode the memory is dese-  
Bus Write. Bus Write operations write Com-  
mands to the memory or latch Input Data to be  
programmed. A bus write operation is initiated  
lected and the outputs are high impedance. The  
memory is in Reset mode when Reset is at V .  
IL  
when Chip Enable and Write Enable are at V with  
IL  
The power consumption is reduced to the Standby  
level, independently from the Chip Enable, Output  
Enable or Write Enable inputs. If Reset is pulled to  
Output Enable at V . Commands, Input Data and  
IH  
Addresses are latched on the rising edge of Write  
Enable or Chip Enable, whichever occurs first. The  
addresses can also be latched prior to the write  
operation by toggling Latch Enable. In this case  
V
during a Program or Erase, this operation is  
SS  
aborted and the memory content is no longer valid.  
15/92  
M36WT864TF, M36WT864BF  
FLASH COMMAND INTERFACE  
All Bus Write operations to the memory are inter-  
preted by the Command Interface. Commands  
consist of one or more sequential Bus Write oper-  
ations. An internal Program/Erase Controller han-  
dles all timings and verifies the correct execution  
of the Program and Erase commands. The Pro-  
gram/Erase Controller provides a Status Register  
whose output may be read at any time to monitor  
the progress or the result of the operation.  
Table 4. Command Codes  
Hex Code  
01h  
Command  
Block Lock Confirm  
03h  
Set Configuration Register Confirm  
Alternative Program Setup  
Block Erase Setup  
10h  
20h  
The Command Interface is reset to read mode  
when power is first applied, when exiting from Re-  
2Fh  
Block Lock-Down Confirm  
Enhanced Factory Program Setup  
Double Word Program Setup  
Program Setup  
30h  
set or whenever V  
is lower than V  
. Com-  
DD  
LKO  
mand sequences must be followed exactly. Any  
invalid combination of commands will reset the de-  
vice to read mode.  
35h  
40h  
Refer to Table 4, Command Codes and Appendix  
D, Tables 44, 45, 46 and 47, Command Interface  
States - Modify and Lock Tables, for a summary of  
the Command Interface.  
The Command Interface is split into two types of  
commands: Standard commands and Factory  
Program commands. The following sections ex-  
plain in detail how to perform each command.  
50h  
Clear Status Register  
56h  
Quadruple Word Program Setup  
Block Lock Setup, Block Unlock Setup,  
Block Lock Down Setup and Set  
Configuration Register Setup  
60h  
70h  
75h  
Read Status Register  
Quadruple Enhanced Factory Program  
Setup  
80h  
90h  
98h  
B0h  
C0h  
Bank Erase Setup  
Read Electronic Signature  
Read CFI Query  
Program/Erase Suspend  
Protection Register Program  
Program/Erase Resume, Block Erase  
Confirm, Bank Erase Confirm, Block  
Unlock Confirm or Enhanced Factory  
Program Confirm  
D0h  
FFh  
Read Array  
16/92  
M36WT864TF, M36WT864BF  
COMMAND INTERFACE - STANDARD COMMANDS  
The following commands are the basic commands  
used to read, write to and configure the device.  
Refer to Table 5, Standard Commands, in con-  
junction with the following text descriptions.  
Read CFI Query Command  
The Read CFI Query command is used to read  
data from the Common Flash Interface (CFI). The  
Read CFI Query Command consists of one Bus  
Write cycle, to an address within one of the banks.  
Once the command is issued subsequent Bus  
Read operations in the same bank read from the  
Common Flash Interface.  
If a Read CFI Query command is issued in a bank  
that is executing a Program or Erase operation the  
bank will go into Read CFI Query mode, subse-  
quent Bus Read cycles will output the CFI data  
and the Program/Erase controller will continue to  
Program or Erase in the background. This mode  
supports asynchronous or single synchronous  
reads only, it does not support page mode or syn-  
chronous burst reads.  
Read Array Command  
The Read Array command returns the addressed  
bank to Read Array mode. One Bus Write cycle is  
required to issue the Read Array command and re-  
turn the addressed bank to Read Array mode.  
Subsequent read operations will read the ad-  
dressed location and output the data. A Read Ar-  
ray command can be issued in one bank while  
programming or erasing in another bank. However  
if a Read Array command is issued to a bank cur-  
rently executing a Program or Erase operation the  
command will be executed but the output data is  
not guaranteed.  
Read Status Register Command  
The status of the other banks is not affected by the  
command (see Table 11). After issuing a Read  
CFI Query command, a Read Array command  
should be issued to the addressed bank to return  
the bank to Read Array mode.  
The Status Register indicates when a Program or  
Erase operation is complete and the success or  
failure of operation itself. Issue a Read Status  
Register command to read the Status Register  
content. The Read Status Register command can  
be issued at any time, even during Program or  
Erase operations.  
The following read operations output the content  
of the Status Register of the addressed bank. The  
Status Register is latched on the falling edge of E  
or G signals, and can be read until E or G returns  
See Appendix C, Common Flash Interface, Tables  
34, 35, 36, 37, 38, 40, 41, 42 and 43 for details on  
the information contained in the Common Flash In-  
terface memory area.  
Clear Status Register Command  
The Clear Status Register command can be used  
to reset (set to ‘0’) error bits 1, 3, 4 and 5 in the Sta-  
tus Register. One bus write cycle is required to is-  
sue the Clear Status Register command. After the  
Clear Status Register command the bank returns  
to read mode.  
to V . Either E or G must be toggled to update the  
IH  
latched data. See Table 8 for the description of the  
Status Register Bits. This mode supports asyn-  
chronous or single synchronous reads only.  
Read Electronic Signature Command  
The error bits in the Status Register do not auto-  
matically return to ‘0’ when a new command is is-  
sued. The error bits in the Status Register should  
be cleared before attempting a new Program or  
Erase command.  
The Read Electronic Signature command reads  
the Manufacturer and Device Codes, the Block  
Locking Status, the Protection Register, and the  
Configuration Register.  
The Read Electronic Signature command consists  
of one write cycle to an address within one of the  
banks. A subsequent Read operation in the same  
bank will output the Manufacturer Code, the De-  
vice Code, the protection Status of the blocks in  
the targeted bank, the Protection Register, or the  
Configuration Register (see Table 6).  
If a Read Electronic Signature command is issued  
in a bank that is executing a Program or Erase op-  
eration the bank will go into Read Electronic Sig-  
nature mode, subsequent Bus Read cycles will  
output the Electronic Signature data and the Pro-  
gram/Erase controller will continue to program or  
erase in the background. This mode supports  
asynchronous or single synchronous reads only, it  
does not support page mode or synchronous burst  
reads.  
Block Erase Command  
The Block Erase command can be used to erase  
a block. It sets all the bits within the selected block  
to ’1’. All previous data in the block is lost. If the  
block is protected then the Erase operation will  
abort, the data in the block will not be changed and  
the Status Register will output the error. The Block  
Erase command can be issued at any moment, re-  
gardless of whether the block has been pro-  
grammed or not.  
Two Bus Write cycles are required to issue the  
command.  
The first bus cycle sets up the Erase command.  
The second latches the block address in the  
internal state machine and starts the Program/  
Erase Controller.  
17/92  
M36WT864TF, M36WT864BF  
If the second bus cycle is not Write Erase Confirm  
(D0h), Status Register bits 4 and 5 are set and the  
command aborts. Erase aborts if Reset turns to  
CFI Query command, all other commands will be  
ignored. A Bank Erase operation cannot be sus-  
pended.  
V . As data integrity cannot be guaranteed when  
the Erase operation is aborted, the block must be  
erased again.  
IL  
Refer to Dual Operations section for detailed infor-  
mation about simultaneous operations allowed in  
banks not being erased. Typical Erase times are  
given in Table 14, Program, Erase Times and Pro-  
gram/Erase Endurance Cycles.  
Once the command is issued the device outputs  
the Status Register data when any address within  
the bank is read. At the end of the operation the  
bank will remain in Read Status Register mode un-  
til a Read Array, Read CFI Query or Read Elec-  
tronic Signature command is issued.  
During Erase operations the bank containing the  
block being erased will only accept the Read Ar-  
ray, Read Status Register, Read Electronic Signa-  
ture, Read CFI Query and the Program/Erase  
Suspend command, all other commands will be ig-  
nored. Refer to Dual Operations section for de-  
tailed information about simultaneous operations  
allowed in banks not being erased. Typical Erase  
times are given in Table 14, Program, Erase  
Times and Program/Erase Endurance Cycles.  
Program Command  
The memory array can be programmed word-by-  
word. Only one Word in one bank can be pro-  
grammed at any one time. Two bus write cycles  
are required to issue the Program Command.  
The first bus cycle sets up the Program  
command.  
The second latches the Address and the Data to  
be written and starts the Program/Erase  
Controller.  
After programming has started, read operations in  
the bank being programmed output the Status  
Register content.  
See Appendix C, Figure 32, Block Erase Flow-  
chart and Pseudo Code, for a suggested flowchart  
for using the Block Erase command.  
During Program operations the bank being pro-  
grammed will only accept the Read Array, Read  
Status Register, Read Electronic Signature, Read  
CFI Query and the Program/Erase Suspend com-  
mand. Refer to Dual Operations section for de-  
tailed information about simultaneous operations  
allowed in banks not being programmed. Typical  
Program times are given in Table 14, Program,  
Erase Times and Program/Erase Endurance Cy-  
cles.  
Bank Erase Command  
The Bank Erase command can be used to erase a  
bank. It sets all the bits within the selected bank to  
’1’. All previous data in the bank is lost. The Bank  
Erase command will ignore any protected blocks  
within the bank. If all blocks in the bank are pro-  
tected then the Bank Erase operation will abort  
and the data in the bank will not be changed. The  
Status Register will not output any error.  
Two Bus Write cycles are required to issue the  
command.  
The first bus cycle sets up the Bank Erase  
Programming aborts if Reset goes to V . As data  
IL  
integrity cannot be guaranteed when the program  
operation is aborted, the memory location must be  
reprogrammed.  
See Appendix C, Figure 28, Program Flowchart  
and Pseudo Code, for the flowchart for using the  
Program command.  
command.  
The second latches the bank address in the  
internal state machine and starts the Program/  
Erase Controller.  
If the second bus cycle is not Write Bank Erase  
Confirm (D0h), Status Register bits SR4 and SR5  
are set and the command aborts. Erase aborts if  
Program/Erase Suspend Command  
The Program/Erase Suspend command is used to  
pause a Program or Block Erase operation. A  
Bank Erase operation cannot be suspended.  
One bus write cycle is required to issue the Pro-  
gram/Erase command. Once the Program/Erase  
Controller has paused bits SR7, SR6 and/ or SR2  
of the Status Register will be set to ‘1’. The com-  
mand can be addressed to any bank.  
Reset turns to V . As data integrity cannot be  
IL  
guaranteed when the Erase operation is aborted,  
the bank must be erased again.  
Once the command is issued the device outputs  
the Status Register data when any address within  
the bank is read. At the end of the operation the  
bank will remain in Read Status Register mode un-  
til a Read Array, Read CFI Query or Read Elec-  
tronic Signature command is issued.  
During Bank Erase operations the bank being  
erased will only accept the Read Array, Read Sta-  
tus Register, Read Electronic Signature and Read  
During Program/Erase Suspend the Command In-  
terface will accept the Program/Erase Resume,  
Read Array (cannot read the suspended block),  
Read Status Register, Read Electronic Signature  
and Read CFI Query commands. Additionally, if  
the suspend operation was Erase then the Clear  
status Register, Program, Block Lock, Block Lock-  
Down or Block Unlock commands will also be ac-  
cepted. The block being erased may be protected  
18/92  
M36WT864TF, M36WT864BF  
by issuing the Block Lock, Block Lock-Down or  
Protection Register Program commands. Only the  
blocks not being erased may be read or pro-  
grammed correctly. When the Program/Erase Re-  
sume command is issued the operation will  
complete. Refer to the Dual Operations section for  
detailed information about simultaneous opera-  
tions allowed during Program/Erase Suspend.  
The second latches the Address and the Data to  
be written to the Protection Register and starts  
the Program/Erase Controller.  
Read operations output the Status Register con-  
tent after the programming has started.  
The segment can be protected by programming bit  
1 of the Protection Lock Register. Bit 1 of the Pro-  
tection Lock Register also protects bit 2 of the Pro-  
tection Lock Register. Programming bit 2 of the  
Protection Lock Register will result in a permanent  
protection of Parameter Block #0 (see Figure 6,  
Security Block and Protection Register Memory  
Map). Attempting to program a previously protect-  
ed Protection Register will result in a Status Reg-  
ister error. The protection of the Protection  
Register and/or the Security Block is not revers-  
ible.  
During a Program/Erase Suspend, the device can  
be placed in standby mode by taking Chip Enable  
to V . Program/Erase is aborted if Reset turns to  
IH  
V .  
IL  
See Appendix C, Figure 31, Program Suspend &  
Resume Flowchart and Pseudo Code, and Figure  
33, Erase Suspend & Resume Flowchart and  
Pseudo Code for flowcharts for using the Program/  
Erase Suspend command.  
Program/Erase Resume Command  
The Protection Register Program cannot be sus-  
pended. See Appendix C, Figure 35, Protection  
Register Program Flowchart and Pseudo Code,  
for a flowchart for using the Protection Register  
Program command.  
The Program/Erase Resume command can be  
used to restart the Program/Erase Controller after  
a Program/Erase Suspend command has paused  
it. One Bus Write cycle is required to issue the  
command. The command can be written to any  
address.  
The Program/Erase Resume command does not  
change the read mode of the banks. If the sus-  
pended bank was in Read Status Register, Read  
Electronic signature or Read CFI Query mode the  
bank remains in that mode and outputs the corre-  
sponding data. If the bank was in Read Array  
mode subsequent read operations will output in-  
valid data.  
If a Program command is issued during a Block  
Erase Suspend, then the erase cannot be re-  
sumed until the programming operation has com-  
pleted. It is possible to accumulate suspend  
operations. For example: suspend an erase oper-  
ation, start a programming operation, suspend the  
programming operation then read the array. See  
Appendix C, Figure 31, Program Suspend & Re-  
sume Flowchart and Pseudo Code, and Figure 33,  
Erase Suspend & Resume Flowchart and Pseudo  
Code for flowcharts for using the Program/Erase  
Resume command.  
Set Configuration Register Command.  
The Set Configuration Register command is used  
to write a new value to the Burst Configuration  
Control Register which defines the burst length,  
type, X latency, Synchronous/Asynchronous Read  
mode and the valid Clock edge configuration.  
Two Bus Write cycles are required to issue the Set  
Configuration Register command.  
The first cycle writes the setup command and  
the address corresponding to the Configuration  
Register content.  
The second cycle writes the Configuration  
Register data and the confirm command.  
Once the command is issued the memory returns  
to Read mode.  
The value for the Configuration Register is always  
presented on A0-A15. CR0 is on A0, CR1 on A1,  
etc.; the other address bits are ignored.  
Block Lock Command  
The Block Lock command is used to lock a block  
and prevent Program or Erase operations from  
changing the data in it. All blocks are locked at  
power-up or reset.  
Two Bus Write cycles are required to issue the  
Block Lock command.  
Protection Register Program Command  
The Protection Register Program command is  
used to Program the 128 bit user One-Time-Pro-  
grammable (OTP) segment of the Protection Reg-  
ister and the Protection Register Lock. The  
segment is programmed 16 bits at a time. When  
shipped all bits in the segment are set to ‘1’. The  
user can only program the bits to ‘0’.  
Two write cycles are required to issue the Protec-  
tion Register Program command.  
The first bus cycle sets up the Protection  
The first bus cycle sets up the Block Lock  
command.  
The second Bus Write cycle latches the block  
address.  
The lock status can be monitored for each block  
using the Read Electronic Signature command.  
Table. 13 shows the Lock Status after issuing a  
Block Lock command.  
Register Program command.  
19/92  
M36WT864TF, M36WT864BF  
The Block Lock bits are volatile, once set they re-  
main set until a hardware reset or power-down/  
power-up. They are cleared by a Block Unlock  
command. Refer to the section, Block Locking, for  
a detailed explanation. See Appendix C, Figure  
34, Locking Operations Flowchart and Pseudo  
Code, for a flowchart for using the Lock command.  
Block Lock-Down Command  
A locked or unlocked block can be locked-down by  
issuing the Block Lock-Down command. A locked-  
down block cannot be programmed or erased, or  
have its protection status changed when WP is  
low, V . When WP is high, V the Lock-Down  
IL  
IH,  
function is disabled and the locked blocks can be  
individually unlocked by the Block Unlock com-  
mand.  
Two Bus Write cycles are required to issue the  
Block Lock-Down command.  
Block Unlock Command  
The Block Unlock command is used to unlock a  
block, allowing the block to be programmed or  
erased. Two Bus Write cycles are required to is-  
sue the Block Unlock command.  
The first bus cycle sets up the Block Lock  
The first bus cycle sets up the Block Unlock  
command.  
command.  
The second Bus Write cycle latches the block  
The second Bus Write cycle latches the block  
address.  
address.  
The lock status can be monitored for each block  
using the Read Electronic Signature command.  
Locked-Down blocks revert to the locked (and not  
locked-down) state when the device is reset on  
power-down. Table. 13 shows the Lock Status af-  
ter issuing a Block Lock-Down command. Refer to  
the section, Block Locking, for a detailed explana-  
tion and Appendix C, Figure 34, Locking Opera-  
tions Flowchart and Pseudo Code, for a flowchart  
for using the Lock-Down command.  
The lock status can be monitored for each block  
using the Read Electronic Signature command.  
Table 13 shows the protection status after issuing  
a Block Unlock command. Refer to the section,  
Block Locking, for a detailed explanation and Ap-  
pendix C, Figure 34, Locking Operations Flow-  
chart and Pseudo Code, for a flowchart for using  
the Unlock command.  
20/92  
M36WT864TF, M36WT864BF  
Table 5. Flash Standard Commands  
Commands  
Bus Operations  
1st Cycle  
Add  
2nd Cycle  
Add  
Op.  
Write  
Write  
Write  
Write  
Data  
FFh  
70h  
90h  
98h  
Op.  
Data  
RD  
Read Array  
1+  
1+  
1+  
1+  
BKA  
WA  
Read  
Read  
(2)  
Read Status Register  
Read Electronic Signature  
Read CFI Query  
BKA  
BKA  
BKA  
SRD  
ESD  
QD  
BKA  
(2)  
Read  
Read  
BKA  
(2)  
BKA  
Clear Status Register  
Block Erase  
1
2
2
2
1
1
2
2
2
2
2
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
BKA  
BKA  
BKA  
BKA  
X
50h  
20h  
Write  
Write  
Write  
BA  
BKA  
WA  
D0h  
D0h  
PD  
Bank Erase  
80h  
Program  
40h or 10h  
B0h  
Program/Erase Suspend  
Program/Erase Resume  
Protection Register Program  
Set Configuration Register  
Block Lock  
X
D0h  
PRA  
CRD  
BKA  
BKA  
BKA  
C0h  
Write  
Write  
Write  
Write  
Write  
PRD  
03h  
01h  
D0h  
2Fh  
PRA  
CRD  
BA  
60h  
60h  
Block Unlock  
60h  
BA  
Block Lock-Down  
60h  
BA  
Note: 1. X = Don't Care, WA=Word Address in targeted bank, RD=Read Data, SRD=Status Register Data, ESD=Electronic Signature Data,  
QD=Query Data, BA=Block Address, BKA= Bank Address, PD=Program Data, PRA=Protection Register Address, PRD=Protection  
Register Data, CRD=Configuration Register Data.  
2. Must be same bank as in the first cycle. The signature addresses are listed in Table 6.  
21/92  
M36WT864TF, M36WT864BF  
Table 6. Electronic Signature Codes  
Code  
Address (h)  
Data (h)  
0020  
Manufacturer Code  
Bank Address + 00  
Bank Address + 01  
Bank Address + 01  
Top  
Device Code  
8810  
Bottom  
8811  
Lock  
0001  
Unlocked  
0000  
Block Protection  
Block Address + 02  
Locked and Locked-Down  
0003  
Unlocked and Locked-Down  
0002  
Reserved  
Bank Address + 03  
Bank Address + 05  
Reserved  
CR  
Configuration Register  
ST Factory Default  
0006  
Security Block Permanently Locked  
OTP Area Permanently Locked  
0002  
Protection Register Lock  
Bank Address + 80  
0004  
Security Block and OTP Area Permanently  
Locked  
0000  
Bank Address + 81 Unique Device  
Bank Address + 84  
Number  
Protection Register  
Bank Address + 85  
Bank Address + 8C  
OTP Area  
Note: CR=Configuration Register.  
Figure 6. Flash Security Block and Protection Register Memory Map  
PROTECTION REGISTER  
8Ch  
SECURITY BLOCK  
Parameter Block # 0  
User Programmable OTP  
85h  
84h  
Unique device number  
81h  
80h  
Protection Register Lock  
2
1
0
AI06181  
22/92  
M36WT864TF, M36WT864BF  
COMMAND INTERFACE - FACTORY PROGRAM COMMANDS  
The Factory Program commands are used to  
speed up programming. They require V to be at  
Five bus write cycles are necessary to issue the  
Quadruple Word Program command.  
PPF  
V
. Refer to Table 7, Factory Program Com-  
PPH  
The first bus cycle sets up the Double Word  
Program Command.  
The second bus cycle latches the Address and  
mands, in conjunction with the following text de-  
scriptions.  
Double Word Program Command  
the Data of the first word to be written.  
The Double Word Program command improves  
the programming throughput by writing a page of  
two adjacent words in parallel. The two words  
must differ only for the address A0.  
The third bus cycle latches the Address and the  
Data of the second word to be written.  
The fourth bus cycle latches the Address and  
the Data of the third word to be written.  
Programming should not be attempted when V  
PPF  
The fifth bus cycle latches the Address and the  
Data of the fourth word to be written and starts  
the Program/Erase Controller.  
Read operations to the bank being programmed  
output the Status Register content after the pro-  
gramming has started.  
is not at V  
. The command can be executed if  
PPH  
V
is below V  
but the result is not guaran-  
PPF  
PPH  
teed.  
Three bus write cycles are necessary to issue the  
Double Word Program command.  
The first bus cycle sets up the Double Word  
Program Command.  
The second bus cycle latches the Address and  
Programming aborts if Reset goes to V . As data  
IL  
integrity cannot be guaranteed when the program  
operation is aborted, the memory locations must  
be reprogrammed.  
the Data of the first word to be written.  
The third bus cycle latches the Address and the  
Data of the second word to be written and starts  
the Program/Erase Controller.  
Read operations in the bank being programmed  
output the Status Register content after the pro-  
gramming has started.  
During Double Word Program operations the bank  
being programmed will only accept the Read Ar-  
ray, Read Status Register, Read Electronic Signa-  
ture and Read CFI Query command, all other  
commands will be ignored. Dual operations are  
not supported during Double Word Program oper-  
ations and it is not recommended to suspend a  
Double Word Program operation. Typical Program  
times are given in Table 14, Program, Erase  
Times and Program/Erase Endurance Cycles.  
During Quadruple Word Program operations the  
bank being programmed will only accept the Read  
Array, Read Status Register, Read Electronic Sig-  
nature and Read CFI Query command, all other  
commands will be ignored.  
Dual operations are not supported during Quadru-  
ple Word Program operations and it is not recom-  
mended to suspend a Quadruple Word Program  
operation. Typical Program times are given in Ta-  
ble 14, Program, Erase Times and Program/Erase  
Endurance Cycles.  
See Appendix C, Figure 30, Quadruple Word Pro-  
gram Flowchart and Pseudo Code, for the flow-  
chart for using the Quadruple Word Program  
command.  
Enhanced Factory Program Command  
Programming aborts if Reset goes to V . As data  
IL  
The Enhanced Factory Program command can be  
used to program large streams of data within any  
one block. It greatly reduces the total program-  
ming time when a large number of Words are writ-  
ten to a block at any one time.  
The use of the Enhanced Factory Program com-  
mand requires certain operating conditions.  
integrity cannot be guaranteed when the program  
operation is aborted, the memory locations must  
be reprogrammed.  
See Appendix C, Figure 29, Double Word Pro-  
gram Flowchart and Pseudo Code, for the flow-  
chart for using the Double Word Program  
command.  
V  
V  
must be set to V  
PPH  
PPF  
Quadruple Word Program Command  
must be within operating range  
DD  
The Quadruple Word Program command im-  
proves the programming throughput by writing a  
page of four adjacent words in parallel. The four  
words must differ only for the addresses A0 and  
A1.  
Ambient temperature, T must be 25°C ± 5°C  
A
The targeted block must be unlocked  
Dual operations are not supported during the En-  
hanced Factory Program operation and the com-  
mand cannot be suspended.  
For optimum performance the Enhanced Factory  
Program commands should be limited to a maxi-  
mum of 10 program/erase cycles per block. If this  
Programming should not be attempted when V  
PPF  
is not at V  
. The command can be executed if  
PPH  
V
is below V  
but the result is not guaran-  
PPF  
PPH  
teed.  
23/92  
M36WT864TF, M36WT864BF  
limit is exceeded the internal algorithm will contin-  
ue to work properly but some degradation in per-  
formance is possible. Typical Program times are  
given in Table 14.  
The Enhanced Factory Program command has  
four phases: the Setup Phase, the Program Phase  
to program the data to the memory, the Verify  
Phase to check that the data has been correctly  
programmed and reprogram if necessary and the  
Exit Phase. Refer to Table 7, Enhanced Factory  
Program Command and Figure 36, Enhanced  
Factory Program Flowchart.  
Setup Phase. The Enhanced Factory Program  
command requires two Bus Write operations to ini-  
tiate the command.  
The first bus cycle sets up the Enhanced  
Factory Program command.  
The second bus cycle confirms the command.  
The Status Register P/E.C. Bit 7 should be read to  
check that the P/E.C. is ready. After the confirm  
command is issued, read operations output the  
Status Register data. The read Status Register  
command must not be issued as it will be  
interpreted as data to program.  
Program Phase. The Program Phase requires  
n+1 cycles, where n is the number of Words (refer  
to Table 7, Enhanced Factory Program Command  
and Figure 36, Enhanced Factory Program Flow-  
chart).  
Verify Phase. The Verify Phase is similar to the  
Program Phase in that all Words must be resent to  
the memory for them to be checked against the  
programmed data. The Program/Erase Controller  
checks the stream of data with the data that was  
programmed in the Program Phase and repro-  
grams the memory location if necessary.  
Three successive steps are required to execute  
the Verify Phase of the command.  
1. Use one Bus Write operation to latch the Start  
Address and the first Word, to be verified. The  
Status Register bit SR0 should be read to check  
that the Program/Erase Controller is ready for  
the next Word.  
2. Each subsequent Word to be verified is latched  
with a new Bus Write operation. The Words  
must be written in the same order as in the  
Program Phase. The address can remain the  
Start Address or be incremented. If any address  
that is not in the same block as the Start  
Address is given, the Verify Phase terminates.  
Status Register bit SR0 should be read to check  
that the P/E.C. is ready for the next Word.  
3. Finally, after all Words have been verified, write  
one Bus Write operation with data FFFFh to any  
address outside the block containing the Start  
Address, to terminate the Verify Phase.  
If the Verify Phase is successfully completed the  
memory returns to the Read mode. If the Program/  
Erase Controller fails to reprogram a given loca-  
tion, the error will be signaled in the Status Regis-  
ter.  
Three successive steps are required to issue and  
execute the Program Phase of the command.  
1. Use one Bus Write operation to latch the Start  
Address and the first Word to be programmed.  
The Status Register Bank Write Status bit SR0  
should be read to check that the P/E.C. is ready  
for the next Word.  
Exit Phase. Status Register P/E.C. bit SR7 set to  
‘1’ indicates that the device has returned to Read  
mode. A full Status Register check should be done  
to ensure that the block has been successfully pro-  
grammed. See the section on the Status Register  
for more details.  
Quadruple Enhanced Factory Program  
Command  
The Quadruple Enhanced Factory Program com-  
mand can be used to program one or more pages  
of four adjacent words in parallel. The four words  
2. Each subsequent Word to be programmed is  
latched with a new Bus Write operation. The  
address can either remain the Start Address, in  
which case the P/E.C. increments the address  
location or the address can be incremented in  
which case the P/E.C. jumps to the new  
address. If any address that is not in the same  
block as the Start Address is given with data  
FFFFh, the Program Phase terminates and the  
Verify Phase begins. The Status Register bit  
SR0 should be read between each Bus Write  
cycle to check that the P/E.C. is ready for the  
next Word.  
3. Finally, after all Words have been programmed,  
write one Bus Write operation with data FFFFh  
to any address outside the block containing the  
Start Address, to terminate the programming  
phase. If the data is not FFFFh, the command is  
ignored.  
must differ only for the addresses A0 and A1. V  
PPF  
must be set to V  
during Quadruple Enhanced  
PPH  
Factory Program.  
It has four phases: the Setup Phase, the Load  
Phase where the data is loaded into the buffer, the  
combined Program and Verify Phase where the  
loaded data is programmed to the memory and  
then automatically checked and reprogrammed if  
necessary and the Exit Phase. Unlike the En-  
hanced Factory Program it is not necessary to re-  
submit the data for the Verify Phase. The Load  
Phase and the Program and Verify Phase can be  
repeated to program any number of pages within  
the block.  
The memory is now set to enter the Verify Phase.  
24/92  
M36WT864TF, M36WT864BF  
Setup Phase. The Quadruple Enhanced Factory  
Program command requires one Bus Write opera-  
tion to initiate the load phase. After the setup  
command is issued, read operations output the  
Status Register data. The Read Status Register  
command must not be issued as it will be  
interpreted as data to program.  
Load Phase. The Load Phase requires 4 cycles  
to load the data (refer to Table 7, Factory Program  
Commands and Figure 37, Quadruple Enhanced  
Factory Program Flowchart). Once the first Word  
of each Page is written it is impossible to exit the  
Load phase until all four Words have been written.  
cycle to check that the P/E.C. is ready for the  
next Word.  
The memory is now set to enter the Program and  
Verify Phase.  
Program and Verify Phase. In the Program and  
Verify Phase the four Words that were loaded in  
the Load Phase are programmed in the memory  
array and then verified by the Program/Erase Con-  
troller. If any errors are found the Program/Erase  
Controller reprograms the location. During this  
phase the Status Register shows that the Pro-  
gram/Erase Controller is busy, Status Register bit  
SR7 set to ‘0’, and that the device is not waiting for  
new data, Status Register bit SR0 set to ‘1’. When  
Status Register bit SR0 is set to ‘0’ the Program  
and Verify phase has terminated.  
Two successive steps are required to issue and  
execute the Load Phase of the Quadruple En-  
hanced Factory Program command.  
1. Use one Bus Write operation to latch the Start  
Address and the first Word of the first Page to  
be programmed. For subsequent Pages the first  
Word address can remain the Start Address (in  
which case the next Page is programmed) or  
can be any address in the same block. If any  
address is given that is not in the same block as  
the Start Address, the device enters the Exit  
Phase. For the first Load Phase Status Register  
bit SR7 should be read after the first Word has  
been issued to check that the command has  
been accepted (bit 7 set to ‘0’). This check is not  
required for subsequent Load Phases. Status  
Register bit SR0 should be read to check that  
the P/E.C. is ready for the next Word.  
2. Each subsequent Word to be programmed is  
latched with a new Bus Write operation. The  
address is only checked for the first Word of  
each Page as the order of the Words to be  
programmed is fixed. The Status Register bit  
SR0 should be read between each Bus Write  
Once the Verify Phase has successfully complet-  
ed subsequent pages in the same block can be  
loaded and programmed. The device returns to  
the beginning of the Load Phase by issuing one  
Bus Write operation to latch the Address and the  
first of the four new Words to be programmed.  
Exit Phase. Finally, after all the pages have been  
programmed, write one Bus Write operation with  
data FFFFh to any address outside the block con-  
taining the Start Address, to terminate the Load  
and Program and Verify Phases.  
If the Program and Verify Phase has successfully  
completed the memory returns to Read mode. If  
the P/E.C. fails to program and reprogram a given  
location, the error will be signaled in the Status  
Register.  
Status Register bit SR7 set to ‘1’ and bit 0 set to ‘0’  
indicate that the device has returned to Read  
mode. A full Status Register check should be done  
to ensure that the block has been successfully pro-  
grammed. See the section on the Status Register  
for more details.  
25/92  
M36WT864TF, M36WT864BF  
Table 7. Flash Factory Program Commands  
Bus Write Operations  
3rd  
Command  
Phase  
1st  
2nd  
Add  
Final -1  
Final  
Add  
Data  
Data Add  
Data  
Add  
Data  
Add  
Data  
(4)  
3
5
2
BKA  
35h  
WA1 PD1 WA2  
WA1 PD1 WA2  
PD2  
Double Word Program  
Quadruple Word  
BKA  
56h  
30h  
PD2  
PD1  
WA3  
PD3  
PAn  
WA4  
NOT  
PD4  
(5)  
Program  
Setup,  
Enhanced  
Factory  
(2)  
(3)  
+n BKA  
+1  
BA  
D0h  
FFFFh  
WA1  
WAn  
(2)  
Program  
WA1  
Program  
(6)  
NOT  
n
+1  
(2)  
(3)  
(3)  
(7)  
(3)  
Verify, Exit  
PD1  
75h  
PD2  
PD1  
PD3  
PD2  
PAn  
PD3  
FFFFh  
PD4  
WA1  
WA2  
WA3  
WAn  
WA3  
(2)  
WA1  
Setup,  
(2)  
(7)  
(7)  
5
BKA  
WA1  
WA2  
WA4  
first Load  
First  
Program &  
Verify  
Automatic  
Quadruple  
Enhanced  
Factory  
Program  
(5,6)  
Subsequent  
Loads  
WA1i  
WA2i  
(7)  
WA3i  
(7)  
WA4i  
(7)  
4
1
PD1i  
PD2i  
PD3i  
PD4i  
(2)  
Subsequent  
Program &  
Verify  
Automatic  
NOT  
WA1  
(2)  
Exit  
FFFFh  
Note: 1. WA=Word Address in targeted bank, BKA= Bank Address, PD=Program Data, BA=Block Address.  
2. WA1 is the Start Address. NOT WA1 is any address that is not in the same block as WA1.  
3. Address can remain Starting Address WA1 or be incremented.  
4. Word Addresses 1 and 2 must be consecutive Addresses differing only for A0.  
5. Word Addresses 1,2,3 and 4 must be consecutive Addresses differing only for A0 and A1.  
6. A Bus Read must be done between each Write cycle where the data is programmed or verified to read the Status Register and  
check that the memory is ready to accept the next data. n = number of Words, i = number of Pages to be programmed.  
7. Address is only checked for the first Word of each Page as the order to program the Words in each page is fixed so subsequent  
Words in each Page can be written to any address.  
26/92  
M36WT864TF, M36WT864BF  
FLASH STATUS REGISTER  
The Flash memory contains a Status Register  
which provides information on the current or previ-  
ous Program or Erase operations. Issue a Read  
Status Register command to read the contents of  
the Status Register, refer to Read Status Register  
Command section for more details. To output the  
contents, the Status Register is latched and updat-  
ed on the falling edge of the Chip Enable or Output  
Enable signals and can be read until Chip Enable  
tion has been suspended or is going to be sus-  
pended in the addressed block. When the Erase  
Suspend Status bit is High (set to ‘1’), a Program/  
Erase Suspend command has been issued and  
the memory is waiting for a Program/Erase Re-  
sume command.  
The Erase Suspend Status should only be consid-  
ered valid when the Program/Erase Controller Sta-  
tus bit is High (Program/Erase Controller inactive).  
SR7 is set within the Erase Suspend Latency time  
of the Program/Erase Suspend command being  
issued therefore the memory may still complete  
the operation rather than entering the Suspend  
mode.  
or Output Enable returns to V . The Status Reg-  
IH  
ister can only be read using single asynchronous  
or single synchronous reads. Bus Read opera-  
tions from any address within the bank, always  
read the Status Register during Program and  
Erase operations.  
The various bits convey information about the sta-  
tus and any errors of the operation. Bits SR7, SR6,  
SR2 and SR0 give information on the status of the  
device and are set and reset by the device. Bits  
SR5, SR4, SR3 and SR1 give information on er-  
rors, they are set by the device but must be reset  
by issuing a Clear Status Register command or a  
hardware reset. If an error bit is set to ‘1’ the Status  
Register should be reset before issuing another  
command. SR7 to SR1 refer to the status of the  
device while SR0 refers to the status of the ad-  
dressed bank.  
When a Program/Erase Resume command is is-  
sued the Erase Suspend Status bit returns Low.  
Erase Status Bit (SR5). The Erase Status bit  
can be used to identify if the memory has failed to  
verify that the block or bank has erased correctly.  
When the Erase Status bit is High (set to ‘1’), the  
Program/Erase Controller has applied the maxi-  
mum number of pulses to the block or bank and  
still failed to verify that it has erased correctly. The  
Erase Status bit should be read once the Program/  
Erase Controller Status bit is High (Program/Erase  
Controller inactive).  
Once set High, the Erase Status bit can only be re-  
set Low by a Clear Status Register command or a  
hardware reset. If set High it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
Program Status Bit (SR4). The Program Status  
bit is used to identify a Program failure. When the  
Program Status bit is High (set to ‘1’), the Pro-  
gram/Erase Controller has applied the maximum  
number of pulses to the byte and still failed to ver-  
ify that it has programmed correctly. The Program  
Status bit should be read once the Program/Erase  
Controller Status bit is High (Program/Erase Con-  
troller inactive).  
The bits in the Status Register are summarized in  
Table 8, Status Register Bits. Refer to Table 8 in  
conjunction with the following text descriptions.  
Program/Erase Controller Status Bit (SR7).  
The Program/Erase Controller Status bit indicates  
whether the Program/Erase Controller is active or  
inactive in any bank. When the Program/Erase  
Controller Status bit is Low (set to ‘0’), the Pro-  
gram/Erase Controller is active; when the bit is  
High (set to ‘1’), the Program/Erase Controller is  
inactive, and the device is ready to process a new  
command.  
The Program/Erase Controller Status is Low im-  
mediately after a Program/Erase Suspend com-  
mand is issued until the Program/Erase Controller  
pauses. After the Program/Erase Controller paus-  
es the bit is High.  
During Program, Erase, operations the Program/  
Erase Controller Status bit can be polled to find the  
end of the operation. Other bits in the Status Reg-  
ister should not be tested until the Program/Erase  
Controller completes the operation and the bit is  
High.  
Once set High, the Program Status bit can only be  
reset Low by a Clear Status Register command or  
a hardware reset. If set High it should be reset be-  
fore a new command is issued, otherwise the new  
command will appear to fail.  
V
Status Bit (SR3). The V  
Status bit can  
PPF  
PPF  
be used to identify an invalid voltage on the V  
PPF  
pin during Program and Erase operations. The  
pin is only sampled at the beginning of a Pro-  
V
PPF  
gram or Erase operation. Indeterminate results  
After the Program/Erase Controller completes its  
can occur if V  
ation.  
becomes invalid during an oper-  
PPF  
operation the Erase Status, Program Status, V  
PPF  
Status and Block Lock Status bits should be tested  
for errors.  
When the V  
voltage on the V  
Status bit is Low (set to ‘0’), the  
PPF  
pin was sampled at a valid  
PPF  
Erase Suspend Status Bit (SR6). The  
Suspend Status bit indicates that an Erase opera-  
Erase  
Status bit is High (set to  
PPF  
27/92  
M36WT864TF, M36WT864BF  
V
Lockout Voltage, V  
, the memory is pro-  
PPLK  
Once set High, the Block Protection Status bit can  
only be reset Low by a Clear Status Register com-  
mand or a hardware reset. If set High it should be  
reset before a new command is issued, otherwise  
the new command will appear to fail.  
Bank Write/Multiple Word Program Status Bit  
(SR0). The Bank Write Status bit indicates wheth-  
er the addressed bank is programming or erasing.  
In Enhanced Factory Program mode the Multiple  
Word Program bit shows if a Word has finished  
programming or verifying depending on the phase.  
The Bank Write Status bit should only be consid-  
ered valid when the Program/Erase Controller Sta-  
tus SR7 is Low (set to ‘0’).  
When both the Program/Erase Controller Status bit  
and the Bank Write Status bit are Low (set to ‘0’),  
the addressed bank is executing a Program or  
Erase operation. When the Program/Erase Con-  
troller Status bit is Low (set to ‘0’) and the Bank  
Write Status bit is High (set to ‘1’), a Program or  
Erase operation is being executed in a bank other  
than the one being addressed.  
In Enhanced Factory Program mode if Multiple  
Word Program Status bit is Low (set to ‘0’), the de-  
vice is ready for the next Word, if the Multiple Word  
Program Status bit is High (set to ‘1’) the device is  
not ready for the next Word.  
PPF  
tected and Program and Erase operations cannot  
be performed.  
Once set High, the V  
set Low by a Clear Status Register command or a  
hardware reset. If set High it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
Status bit can only be re-  
PPF  
Program Suspend Status Bit (SR2). The Pro-  
gram Suspend Status bit indicates that a Program  
operation has been suspended in the addressed  
block. When the Program Suspend Status bit is  
High (set to ‘1’), a Program/Erase Suspend com-  
mand has been issued and the memory is waiting  
for a Program/Erase Resume command. The Pro-  
gram Suspend Status should only be considered  
valid when the Program/Erase Controller Status  
bit is High (Program/Erase Controller inactive).  
SR2 is set within the Program Suspend Latency  
time of the Program/Erase Suspend command be-  
ing issued therefore the memory may still com-  
plete the operation rather than entering the  
Suspend mode.  
When a Program/Erase Resume command is is-  
sued the Program Suspend Status bit returns Low.  
Block Protection Status Bit (SR1). The Block  
Protection Status bit can be used to identify if a  
Program or Block Erase operation has tried to  
modify the contents of a locked block.  
Note: Refer to Appendix C, Flowcharts and Pseu-  
do Codes, for using the Status Register.  
When the Block Protection Status bit is High (set  
to ‘1’), a Program or Erase operation has been at-  
tempted on a locked block.  
28/92  
M36WT864TF, M36WT864BF  
Table 8. Flash Status Register Bits  
Bit  
Name  
Type LogicLevel  
Definition  
'1'  
Ready  
SR7 P/E.C. Status  
Status  
'0'  
Busy  
'1'  
Erase Suspended  
SR6 Erase Suspend Status  
SR5 Erase Status  
Status  
'0'  
Erase In progress or Completed  
Erase Error  
'1'  
Error  
'0'  
Erase Success  
'1'  
Program Error  
SR4 Program Status  
Error  
'0'  
Program Success  
V
V
Invalid, Abort  
OK  
'1'  
PPF  
V
Status  
SR3  
Error  
'0'  
PPF  
PPF  
'1'  
Program Suspended  
SR2 Program Suspend Status Status  
'0'  
'1'  
'0'  
Program In Progress or Completed  
Program/Erase on protected Block, Abort  
No operation to protected blocks  
SR1 Block Protection Status  
Error  
SR7 = ‘0’ Program or erase operation in addressed bank  
SR7 = ‘1’ No Program or erase operation in the device  
'0'  
'1'  
Bank Write Status  
Status  
Program or erase operation in a bank other than  
SR7 = ‘0’  
the addressed bank  
SR7 = ‘1’ Not Allowed  
SR0  
SR7 = ‘0’ the device is NOT ready for the next word  
'1'  
'0'  
Multiple Word Program  
Status (Enhanced  
Not Allowed  
SR7 = ‘1’  
Status  
SR7 = ‘0’ the device is ready for the next Word  
SR7 = ‘1’ the device is exiting from EFP  
Factory Program mode)  
Note: Logic level '1' is High, '0' is Low.  
29/92  
M36WT864TF, M36WT864BF  
FLASH CONFIGURATION REGISTER  
The Flash memory contains a Configuration Reg-  
ister which is used to configure the type of bus ac-  
cess that the memory will perform. Refer to Read  
Modes section for details on read operations.  
The Configuration Register is set through the  
Command Interface. After a Reset or Power-Up  
the device is configured for asynchronous page  
read (CR15 = 1). The Configuration Register bits  
are described in Table 9. They specify the selec-  
tion of the burst length, burst type, burst X latency  
and the Read operation. Refer to Figures 7 and 8  
for examples of synchronous burst configurations.  
Refer to Figure 7, X-Latency and Data Output  
Configuration Example.  
Wait Polarity Bit (CR10)  
In synchronous burst mode the Wait signal indi-  
cates whether the output data are valid or a WAIT  
state must be inserted. The Wait Polarity bit is  
used to set the polarity of the Wait signal. When  
the Wait Polarity bit is set to ‘0’ the Wait signal is  
active Low. When the Wait Polarity bit is set to ‘1’  
the Wait signal is active High (default).  
Data Output Configuration Bit (CR9)  
The Data Output Configuration bit determines  
whether the output remains valid for one or two  
clock cycles. When the Data Output Configuration  
Bit is ’0’ the output data is valid for one clock cycle,  
when the Data Output Configuration Bit is ’1’ the  
output data is valid for two clock cycles.  
Read Select Bit (CR15)  
The Read Select bit, CR15, is used to switch be-  
tween asynchronous and synchronous Bus Read  
operations. When the Read Select bit is set to ’1’,  
read operations are asynchronous; when the  
Read Select bit is set to ’0’, read operations are  
synchronous. Synchronous Burst Read is support-  
ed in both parameter and main blocks and can be  
performed across banks.  
The Data Output Configuration depends on the  
condition:  
t > t  
+ t  
QVK_CPU  
K
KQV  
where t is the clock period, t  
setup time required by the system CPU and t  
is the data  
K
QVK_CPU  
On reset or power-up the Read Select bit is set  
to’1’ for asynchronous access.  
KQV  
is the clock to data valid time. If this condition is not  
satisfied, the Data Output Configuration bit should  
be set to ‘1’ (two clock cycles). Refer to Figure 7,  
X-Latency and Data Output Configuration Exam-  
ple.  
X-Latency Bits (CR13-CR11)  
The X-Latency bits are used during Synchronous  
Read operations to set the number of clock cycles  
between the address being latched and the first  
data becoming available. For correct operation the  
X-Latency bits can only assume the values in Ta-  
ble 9, Configuration Register.  
The correspondence between X-Latency settings  
and the maximum sustainable frequency must be  
calculated taking into account some system pa-  
rameters. Two conditions must be satisfied:  
Wait Configuration Bit (CR8)  
In burst mode the Wait bit controls the timing of the  
Wait output pin, WAIT. When the Wait bit is ’0’ the  
Wait output pin is asserted during the wait state.  
When the Wait bit is ’1’ (default) the Wait output  
pin is asserted one clock cycle before the wait  
state.  
WAIT is asserted during a continuous burst and  
also during a 4 or 8 burst length if no-wrap config-  
uration is selected. WAIT is not asserted during  
asynchronous reads, single synchronous reads or  
during latency in synchronous reads.  
1. Depending on whether t  
or t  
is  
DELAY  
AVK_CPU  
supplied either one of the following two  
equations must be satisfied:  
(n + 1) t t  
- t  
+ t  
K
ACC AVK_CPU QVK_CPU  
(n + 2) t t  
+ t  
+ t  
DELAY QVK_CPU  
K
ACC  
2. and also  
t > t  
Burst Type Bit (CR7)  
+ t  
QVK_CPU  
The Burst Type bit is used to configure the se-  
quence of addresses read as sequential or inter-  
leaved. When the Burst Type bit is ’0’ the memory  
outputs from interleaved addresses; when the  
Burst Type bit is ’1’ (default) the memory outputs  
from sequential addresses. See Tables 10, Burst  
Type Definition, for the sequence of addresses  
output from a given starting address in each mode.  
K
KQV  
where  
n is the chosen X-Latency configuration code  
t is the clock period  
K
t
is clock to address valid, L Low, or E  
AVK_CPU  
Low, whichever occurs last  
t
is address valid, L Low, or E Low to clock,  
DELAY  
Valid Clock Edge Bit (CR6)  
whichever occurs last  
The Valid Clock Edge bit, CR6, is used to config-  
ure the active edge of the Clock, K, during Syn-  
chronous Burst Read operations. When the Valid  
Clock Edge bit is ’0’ the falling edge of the Clock is  
t
is the data setup time required by the  
QVK_CPU  
system CPU,  
t
t
is the clock to data valid time  
is the random access time of the device.  
KQV  
ACC  
30/92  
M36WT864TF, M36WT864BF  
the active edge; when the Valid Clock Edge bit is  
’1’ the rising edge of the Clock is active.  
In continuous burst mode the burst sequence can  
cross bank boundaries.  
Wrap Burst Bit (CR3)  
In continuous burst mode or in 4, 8 words no-wrap,  
depending on the starting address, the device as-  
serts the WAIT output to indicate that a delay is  
necessary before the data is output.  
If the starting address is aligned to a 4 word  
boundary no wait states are needed and the WAIT  
output is not asserted.  
The burst reads can be confined inside the 4 or 8  
Word boundary (wrap) or overcome the boundary  
(no wrap). The Wrap Burst bit is used to select be-  
tween wrap and no wrap. When the Wrap Burst bit  
is set to ‘0’ the burst read wraps; when it is set to  
‘1’ the burst read does not wrap.  
Burst length Bits (CR2-CR0)  
If the starting address is shifted by 1,2 or 3 posi-  
tions from the four word boundary, WAIT will be  
asserted for 1, 2 or 3 clock cycles when the burst  
sequence crosses the first 64 word boundary, to  
indicate that the device needs an internal delay to  
read the successive words in the array. WAIT will  
be asserted only once during a continuous burst  
access. See also Table 10, Burst Type Definition.  
The Burst Length bits set the number of Words to  
be output during a Synchronous Burst Read oper-  
ation as result of a single address latch cycle.  
They can be set for 4 words, 8 words or continu-  
ous burst, where all the words are read sequential-  
ly.  
CR14, CR5 and CR4 are reserved for future use.  
31/92  
M36WT864TF, M36WT864BF  
Table 9. Flash Configuration Register  
Bit  
Description  
Value  
Description  
0
1
Synchronous Read  
CR15  
CR14  
Read Select  
Asynchronous Read (Default at power-on)  
Reserved  
010  
011  
100  
101  
111  
2 clock latency  
3 clock latency  
4 clock latency  
CR13-CR11  
X-Latency  
5 clock latency  
Reserved  
Other configurations reserved  
0
1
0
1
0
1
0
1
0
1
WAIT is active Low  
WAIT is active high (default)  
Data held for one clock cycle  
Data held for two clock cycles  
WAIT is active during wait state  
WAIT is active one data cycle before wait state (default)  
Interleaved  
CR10  
CR9  
CR8  
CR7  
Wait Polarity  
Data Output  
Configuration  
Wait Configuration  
Burst Type  
Sequential (default)  
Falling Clock edge  
CR6  
CR5-CR4  
CR3  
Valid Clock Edge  
Rising Clock edge  
Reserved  
0
Wrap  
Wrap Burst  
1
No Wrap  
001  
010  
111  
4 words  
CR2-CR0  
Burst Length  
8 words  
Continuous (CR7 must be set to ‘1’)  
32/92  
M36WT864TF, M36WT864BF  
Table 10. Burst Type Definition  
Start  
Address  
4 Words  
8 Words  
Sequential  
Continuous Burst  
Sequential  
Interleaved  
0-1-2-3  
Interleaved  
0
1
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
0-1-2-3-4-5-6-7  
1-0-3-2-5-4-7-6  
2-3-0-1-6-7-4-5  
3-2-1-0-7-6-5-4  
0-1-2-3-4-5-6...  
1-2-3-4-5-6-7...  
2-3-4-5-6-7-8...  
3-4-5-6-7-8-9...  
1-0-3-2  
2
2-3-0-1  
3
3-2-1-0  
...  
7
7-4-5-6  
7-6-5-4  
7-0-1-2-3-4-5-6  
7-6-5-4-3-2-1-0  
7-8-9-10-11-12-13...  
...  
60  
61  
62  
60-61-62-63-64-65-66...  
61-62-63-WAIT-64-65-66...  
62-63-WAIT-WAIT-64-65-66...  
63-WAIT-WAIT-WAIT-64-65-  
66...  
63  
Sequential  
0-1-2-3  
Interleaved  
Sequential  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
2-3-4-5-6-7-8-9...  
3-4-5-6-7-8-9-10  
Interleaved  
0
1
1-2-3-4  
2
2-3-4-5  
3
3-4-5-6  
...  
7
7-8-9-10  
7-8-9-10-11-12-13-14  
Same as for Wrap  
(Wrap /No Wrap  
has no effect on  
Continuous Burst )  
...  
60-61-62-63-64-65-66-  
67  
60  
61  
62  
63  
60-61-62-63  
61-62-63-WAIT-64-65-  
66-67-68  
61-62-63-WAIT-64  
62-63-WAIT-  
WAIT-64-65  
62-63-WAIT-WAIT-64-  
65-66-67-68-69  
63-WAIT-WAIT-  
WAIT-64-65-66  
63-WAIT-WAIT-WAIT-  
64-65-66-67-68-69-70  
33/92  
M36WT864TF, M36WT864BF  
Figure 7. X-Latency and Data Output Configuration Example  
X-latency  
1st cycle  
2nd cycle  
3rd cycle  
4th cycle  
K
E
L
A21-A0  
tDELAY  
VALID ADDRESS  
tAVK_CPU  
tQVK_CPU  
tK  
tQVK_CPU  
tACC  
tKQV  
DQ15-DQ0  
VALID DATA VALID DATA  
Note. Settings shown: X-latency = 4, Data Output held for one clock cycle  
AI06182  
Figure 8. Wait Configuration Example  
E
K
L
A21-A0  
VALID ADDRESS  
DQ15-DQ0  
VALID DATA VALID DATA NOT VALID VALID DATA  
WAIT  
CR8 = '0'  
CR10 = '0'  
WAIT  
CR8 = '1'  
CR10 = '0'  
WAIT  
CR8 = '0'  
CR10 = '1'  
WAIT  
CR8 = '1'  
CR10 = '1'  
AI06972  
34/92  
M36WT864TF, M36WT864BF  
FLASH READ MODES  
Flash Read operations can be performed in two  
different ways depending on the settings in the  
Configuration Register. If the clock signal is ‘don’t  
care’ for the data output, the read operation is  
Asynchronous; if the data output is synchronized  
with clock, the read operation is Synchronous.  
The Read mode and data output format are deter-  
mined by the Configuration Register. (See Config-  
uration Register section for details). All banks  
supports both asynchronous and synchronous  
read operations. The Multiple Bank architecture  
allows read operations in one bank, while write op-  
erations are being executed in another (see Ta-  
bles 11 and 12).  
In Synchronous Burst Read mode the flow of the  
data output depends on parameters that are con-  
figured in the Configuration Register.  
A burst sequence is started at the first clock edge  
(rising or falling depending on Valid Clock Edge bit  
CR6 in the Configuration Register) after the falling  
edge of Latch Enable. Addresses are internally in-  
cremented and after a delay of 2 to 5 clock cycles  
(X latency bits CR13-CR11) the corresponding  
data are output on each clock cycle.  
The number of Words to be output during a Syn-  
chronous Burst Read operation can be configured  
as 4 or 8 Words or Continuous (Burst Length bits  
CR2-CR0). The data can be configured to remain  
valid for one or two clock cycles (Data Output Con-  
figuration bit CR9).  
The order of the data output can be modified  
through the Burst Type and the Wrap Burst bits in  
the Configuration Register. The burst sequence  
may be configured to be sequential or interleaved  
(CR7). The burst reads can be confined inside the  
4 or 8 Word boundary (Wrap) or overcome the  
boundary (No Wrap). If the starting address is  
aligned to a 4 Word Page the wrapped configura-  
tion has no impact on the output sequence. Inter-  
leaved mode is not allowed in Continuous Burst  
Read mode or with No Wrap sequences.  
Asynchronous Read Mode  
In Asynchronous Read operations the clock signal  
is ‘don’t care’. The device outputs the data corre-  
sponding to the address latched, that is the mem-  
ory array, Status Register, Common Flash  
Interface or Electronic Signature depending on the  
command issued. CR15 in the Configuration Reg-  
ister must be set to ‘1’ for Asynchronous opera-  
tions.  
In Asynchronous Read mode a Page of data is in-  
ternally read and stored in a Page Buffer. The  
Page has a size of 4 Words and is addressed by  
A0 and A1 address inputs. The address inputs A0  
and A1 are not gated by Latch Enable in Asyn-  
chronous Read mode.  
A WAIT signal may be asserted to indicate to the  
system that an output delay will occur. This delay  
will depend on the starting address of the burst se-  
quence; the worst case delay will occur when the  
sequence is crossing a 64 word boundary and the  
starting address was at the end of a four word  
boundary.  
The first read operation within the Page has a  
longer access time (T , Random access time),  
acc  
subsequent reads within the same Page have  
much shorter access times. If the Page changes  
then the normal, longer timings apply again.  
WAIT is asserted during X latency and the Wait  
state and is only deasserted when output data are  
valid. In Continuous Burst Read mode a Wait state  
will occur when crossing the first 64 Word bound-  
ary. If the burst starting address is aligned to a 4  
Word Page, the Wait state will not occur.  
Asynchronous Read operations can be performed  
in two different ways, Asynchronous Random Ac-  
cess Read and Asynchronous Page Read. Only  
Asynchronous Page Read takes full advantage of  
the internal page storage so different timings are  
applied.  
The WAIT signal can be configured to be active  
Low or active High (default) by setting CR10 in the  
Configuration Register. The WAIT signal is mean-  
ingful only in Synchronous Burst Read mode, in  
other modes, WAIT is always asserted (except for  
Read Array mode).  
See Table 21, Asynchronous Read AC Character-  
istics, Figure 11, Asynchronous Random Access  
Read AC Waveform and Figure 12, Asynchronous  
Page Read AC Waveform for details.  
Synchronous Burst Read Mode  
In Synchronous Burst Read mode the data is out-  
put in bursts synchronized with the clock. It is pos-  
sible to perform burst reads across bank  
boundaries.  
Synchronous Burst Read mode can only be used  
to read the memory array. For other read opera-  
tions, such as Read Status Register, Read CFI  
and Read Electronic Signature, Single Synchro-  
nous Read or Asynchronous Random Access  
Read must be used.  
See Table 22, Synchronous Read AC Character-  
istics and Figure 13, Synchronous Burst Read AC  
Waveform for details.  
Single Synchronous Read Mode  
Single Synchronous Read operations are similar  
to Synchronous Burst Read operations except that  
only the first data output after the X latency is valid.  
Other Configuration Register parameters have no  
effect on Single Synchronous Read operations.  
35/92  
M36WT864TF, M36WT864BF  
Synchronous Single Reads are used to read the  
Electronic Signature, Status Register, CFI, Block  
Protection Status, Configuration Register Status  
or Protection Register. When the addressed bank  
is in Read CFI, Read Status Register or Read  
Electronic Signature mode, the WAIT signal is al-  
ways asserted.  
See Table 22, Synchronous Read AC Character-  
istics and Figure 14, Single Synchronous Read AC  
Waveform for details.  
FLASH DUAL OPERATIONS AND MULTIPLE BANK ARCHITECTURE  
The Multiple Bank Architecture of the Flash mem-  
ory provides flexibility for software developers by  
allowing code and data to be split with 4Mbit gran-  
ularity. The Dual Operations feature simplifies the  
software management of the device and allows  
code to be executed from one bank while another  
bank is being programmed or erased.  
then a Program command can be issued to anoth-  
er block, so the device can have one block in  
Erase Suspend mode, one programming and oth-  
er banks in Read mode. Bus Read operations are  
allowed in another bank between setup and con-  
firm cycles of program or erase operations. The  
combination of these features means that read op-  
erations are possible at any moment.  
Tables 11 and 12 show the dual operations possi-  
ble in other banks and in the same bank. Note that  
only the commonly used commands are repre-  
sented in these tables. For a complete list of pos-  
sible commands refer to Appendix D, Command  
Interface State Tables.  
The Dual operations feature means that while pro-  
gramming or erasing in one bank, Read opera-  
tions are possible in another bank with zero  
latency (only one bank at a time is allowed to be in  
Program or Erase mode). If a Read operation is re-  
quired in a bank which is programming or erasing,  
the Program or Erase operation can be suspend-  
ed. Also if the suspended operation was Erase  
Table 11. Dual Operations Allowed In Other Banks  
Commands allowed in another bank  
Read  
Status  
Register  
Read Read  
CFI Electronic Program  
Program/ Program/  
Erase Erase  
Suspend Resume  
Status of bank  
Read  
Array  
Erase  
Query  
Signature  
Idle  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Programming  
Yes  
Yes  
Erasing  
Yes  
Yes  
Program Suspended  
Erase Suspended  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Table 12. Dual Operations Allowed In Same Bank  
Commands allowed in same bank  
Read  
Status  
Register  
Read  
Program/ Program/  
Erase Erase  
Suspend Resume  
Status of bank  
Read  
Array  
Read  
CFI Query  
Electronic Program  
Signature  
Erase  
Idle  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
(2)  
Programming  
(2)  
Erasing  
(1)  
Program Suspended  
Erase Suspended  
Yes  
Yes  
Yes  
(1)  
(1)  
Yes  
Yes  
Note: 1. Not allowed in the Block or Word that is being erased or programmed.  
2. The Read Array command is accepted but the data output is not guaranteed until the Program or Erase has completed.  
36/92  
M36WT864TF, M36WT864BF  
FLASH BLOCK LOCKING  
The Flash memory features an instant, individual  
block locking scheme that allows any block to be  
locked or unlocked with no latency. This locking  
scheme has three levels of protection.  
Locked or Locked-Down using the appropriate  
software commands. A locked block can be un-  
locked by issuing the Unlock command.  
Lock-Down State  
Lock/Unlock - this first level allows software-  
Blocks that are Locked-Down (state (0,1,x))are  
protected from program and erase operations (as  
for Locked blocks) but their protection status can-  
not be changed using software commands alone.  
A Locked or Unlocked block can be Locked-Down  
by issuing the Lock-Down command. Locked-  
Down blocks revert to the Locked state when the  
device is reset or powered-down.  
only control of block locking.  
Lock-Down - this second level requires  
hardware interaction before locking can be  
changed.  
V  
V  
- the third level offers a complete  
PPLK  
PPF  
hardware protection against program and erase  
on all blocks.  
The Lock-Down function is dependent on the WP  
input pin. When WP=0 (V ), the blocks in the  
IL  
The protection status of each block can be set to  
Locked, Unlocked, and Lock-Down. Table 13, de-  
fines all of the possible protection states (WP,  
DQ1, DQ0), and Appendix C, Figure 34, shows a  
flowchart for the locking operations.  
Lock-Down state (0,1,x) are protected from pro-  
gram, erase and protection status changes. When  
WP=1 (V ) the Lock-Down function is disabled  
IH  
(1,1,x) and Locked-Down blocks can be individual-  
ly unlocked to the (1,1,0) state by issuing the soft-  
ware command, where they can be erased and  
programmed. These blocks can then be re-locked  
(1,1,1) and unlocked (1,1,0) as desired while WP  
remains high. When WP is low , blocks that were  
previously Locked-Down return to the Lock-Down  
state (0,1,x) regardless of any changes made  
while WP was high. Device reset or power-down  
resets all blocks , including those in Lock-Down, to  
the Locked state.  
Reading a Block’s Lock Status  
The lock status of every block can be read in the  
Read Electronic Signature mode of the device. To  
enter this mode write 90h to the device. Subse-  
quent reads at the address specified in Table 6,  
will output the protection status of that block. The  
lock status is represented by DQ0 and DQ1. DQ0  
indicates the Block Lock/Unlock status and is set  
by the Lock command and cleared by the Unlock  
command. It is also automatically set when enter-  
ing Lock-Down. DQ1 indicates the Lock-Down sta-  
tus and is set by the Lock-Down command. It  
cannot be cleared by software, only by a hardware  
reset or power-down.  
Locking Operations During Erase Suspend  
Changes to block lock status can be performed  
during an erase suspend by using the standard  
locking command sequences to unlock, lock or  
lock-down a block. This is useful in the case when  
another block needs to be updated while an erase  
operation is in progress.  
The following sections explain the operation of the  
locking system.  
Locked State  
To change block locking during an erase opera-  
tion, first write the Erase Suspend command, then  
check the status register until it indicates that the  
erase operation has been suspended. Next write  
the desired Lock command sequence to a block  
and the lock status will be changed. After complet-  
ing any desired lock, read, or program operations,  
resume the erase operation with the Erase Re-  
sume command.  
If a block is locked or locked-down during an erase  
suspend of the same block, the locking status bits  
will be changed immediately, but when the erase  
is resumed, the erase operation will complete.  
Locking operations cannot be performed during a  
program suspend. Refer to Appendix , Command  
Interface State Table, for detailed information on  
which commands are valid during erase suspend.  
The default status of all blocks on power-up or af-  
ter a hardware reset is Locked (states (0,0,1) or  
(1,0,1)). Locked blocks are fully protected from  
any program or erase. Any program or erase oper-  
ations attempted on a locked block will return an  
error in the Status Register. The Status of a  
Locked block can be changed to Unlocked or  
Lock-Down using the appropriate software com-  
mands. An Unlocked block can be Locked by issu-  
ing the Lock command.  
Unlocked State  
Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)),  
can be programmed or erased. All unlocked  
blocks return to the Locked state after a hardware  
reset or when the device is powered-down. The  
status of an unlocked block can be changed to  
37/92  
M36WT864TF, M36WT864BF  
Table 13. Flash Lock Status  
Current  
(1)  
Next Protection Status  
(WP, DQ1, DQ0)  
(1)  
Protection Status  
(WP, DQ1, DQ0)  
After  
Block Lock  
Command  
After  
Block Unlock  
Command  
After Block  
Lock-Down  
Command  
Program/Erase  
Current State  
After  
WP transition  
Allowed  
1,0,0  
yes  
1,0,1  
1,0,0  
1,1,1  
0,0,0  
(2)  
no  
yes  
no  
1,0,1  
1,1,1  
1,1,1  
0,0,1  
1,0,0  
1,1,0  
1,1,0  
0,0,0  
1,1,1  
1,1,1  
1,1,1  
0,1,1  
0,0,1  
0,1,1  
0,1,1  
1,0,0  
1,0,1  
1,1,0  
1,1,1  
0,0,0  
yes  
(2)  
no  
no  
0,0,1  
0,1,1  
0,0,0  
0,1,1  
0,1,1  
0,1,1  
1,0,1  
0,0,1  
(3)  
0,1,1  
1,1,1 or 1,1,0  
Note: 1. The lock status is defined by the write protect pin and by DQ1 (‘1’ for a locked-down block) and DQ0 (‘1’ for a locked block) as read  
in the Read Electronic Signature command with A1 = V and A0 = V .  
IH  
IL  
2. All blocks are locked at power-up, so the default configuration is 001 or 101 according to WP status.  
3. A WP transition to V on a locked block will restore the previous DQ0 value, giving a 111 or 110.  
IH  
38/92  
M36WT864TF, M36WT864BF  
FLASH PROGRAM AND ERASE TIMES AND ENDURANCE CYCLES  
The Program and Erase times and the number of  
Program/ Erase cycles per block are shown in Ta-  
ble 14. In the Flash memory the maximum number  
of Program/ Erase cycles depends on the voltage  
supply used.  
Table 14. Flash Program, Erase Times and Endurance Cycles  
Typicalafter  
100k W/E  
Cycles  
Parameter  
Condition  
Min  
Typ  
Unit  
Max  
(2)  
0.3  
1
3
2.5  
s
Parameter Block (4 KWord) Erase  
Main Block (32 KWord) Erase  
Preprogrammed  
Not Preprogrammed  
Preprogrammed  
Not Preprogrammed  
(3)  
0.8  
1.1  
3
4
4
s
s
s
s
Bank (4Mbit) Erase  
4.5  
40  
ms  
ms  
Parameter Block (4 KWord) Program  
(3)  
300  
Main Block (32 KWord) Program  
(3)  
10  
5
10  
100  
10  
µs  
µs  
Word Program  
Program Suspend Latency  
Erase Suspend Latency  
5
20  
µs  
Main Blocks  
100,000  
100,000  
cycles  
cycles  
s
Program/Erase Cycles (per Block)  
Parameter Blocks  
0.3  
0.9  
3.5  
2.5  
4
Parameter Block (4 KWord) Erase  
Main Block (32 KWord) Erase  
Bank (4Mbit) Erase  
s
s
(4)  
Bank (4Mbit) Program (Quad-Enhanced Factory Program)  
s
t.b.a.  
510  
8
4Mbit Program  
Quadruple Word  
ms  
µs  
(3)  
100  
Word/ Double Word/ Quadruple Word Program  
Parameter Block (4 KWord)  
Quadruple Word  
8
ms  
(3)  
Program  
Word  
32  
ms  
Quadruple Word  
Word  
64  
ms  
ms  
(3)  
Main Block (32 KWord) Program  
256  
Main Blocks  
Parameter Blocks  
1000 cycles  
2500 cycles  
Program/Erase Cycles (per Block)  
Note: 1. T = –40 to 85°C; V = 1.65V to 2.2V; V = 1.65V to 3.3V.  
DDQ  
A
DD  
2. The difference between Preprogrammed and not preprogrammed is not significant (‹30ms).  
3. Excludes the time needed to execute the command sequence.  
4. t.b.a. = to be announced  
39/92  
M36WT864TF, M36WT864BF  
SRAM OPERATIONS  
There are five standard operations that control the  
SRAM component. These are Bus Read, Bus  
Write, Standby/Power-down, Data Retention and  
Output Disable. A summary is shown in Table 2,  
Main Operation Modes  
Read. Read operations are used to output the  
contents of the SRAM Array. The data is output ei-  
ther by x8 (DQ0-DQ7) or x16 (DQ0-DQ15) de-  
pending on which of the LBS and UBS signals are  
enabled. The SRAM is in Read mode whenever  
Chip Enable, E2S, and Write Enable, WS, are at  
LBS are High, the data is latched on the falling  
edge of UBS, or LBS , whichever occurs first.  
The Write cycle is terminated on the rising edge of  
E1S, WS , UBS or LBS, whichever occurs first.  
If the Output is enabled (E1S=V , E2S=V ,  
IL  
IH  
GS=V and UBS=LBS=V ), then WS will return  
IL  
IL  
the outputs to high impedance within t  
of its  
WLQZ  
falling edge. Care must be taken to avoid bus con-  
tention in this type of operation. The Data input  
must be valid for t  
Write Enable, for t  
before the rising edge of  
before the rising edge of  
DVWH  
DVEH  
V , and Output Enable, GS, and Chip Enable E1S  
IH  
E1S or for t  
before the rising edge of UBS/  
DVBH  
are at V .  
IL  
LBS, whichever occurs first, and remain valid for  
, t and t respectively.  
Valid data will be available on the output pins after  
t
WHDX EHDX  
BHDX  
a time of t  
after the last stable address. If the  
AVQV  
(see Table 27, Figure 22, 23 and 24).  
Chip Enable or Output Enable access times are  
not met, data access will be measured from the  
limiting parameter (t  
Standby/Power-Down. The SRAM component  
has a chip enabled power-down feature which in-  
vokes an automatic standby mode (see Table 26,  
Figure 19). The SRAM is in Standby mode when-  
, t  
, or t  
) rather  
GLQV  
ELQV EHQV  
than the address. Data out may be indeterminate  
at t , t and t , but data lines will al-  
ELQX GLQX  
BLQX  
ever either Chip Enable is deasserted, E1S at V  
IH  
ways be valid at t  
and 20).  
Write. Write operations are used to write data to  
the SRAM. The SRAM is in Write mode whenever  
Write Enable, WS, and Chip Enable, E1S, are at  
(see Table 26, Figures 19  
AVQV  
or E2S at V .  
IL  
Data Retention. The SRAM data retention per-  
formances as V go down to V are described  
DDS  
DR  
in Table 28 and Figures 25 and 26. In E1S con-  
trolled data retention mode, the minimum standby  
current mode is entered when E1S V  
V , and Chip Enable, E2S, is at V .  
IL  
IH  
– 0.2V  
DDS  
Either the Chip Enable input, E1S or the Write En-  
able input, WS, must be deasserted during ad-  
dress transitions for subsequent write cycles.  
and E2S 0.2V or E2S V  
– 0.2V. In E2S  
DDS  
controlled data retention mode, minimum standby  
current mode is entered when E2S 0.2V.  
A Write operation is initiated when E1S is at V ,  
IL  
Output Disable. The SRAM is in the output dis-  
E2S is at V and WS is at V . When UBS or LBS  
IH  
IL  
able state when GS and WS are both at V , refer  
IH  
are Low, the data is latched on the falling edge of  
E1S, or WS, whichever occurs first. When UBS or  
to Table 2 for more details.  
40/92  
M36WT864TF, M36WT864BF  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings table may cause per-  
manent damage to the device. These are stress  
ratings only and operation of the device at these or  
any other conditions above those indicated in the  
Operating sections of this specification is not im-  
plied. Exposure to Absolute Maximum Rating con-  
ditions for extended periods may affect device  
reliability. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
Table 15. Absolute Maximum Ratings  
Value  
Symbol  
Parameter  
Ambient Operating Temperature  
Temperature Under Bias  
Storage Temperature  
Min  
–40  
–40  
–65  
–0.5  
–0.2  
–0.2  
–0.2  
Max  
85  
Unit  
°C  
T
A
T
125  
155  
°C  
BIAS  
T
°C  
STG  
V
V
+0.6  
Input or Output Voltage  
Supply Voltage  
V
IO  
DDQF  
V
2.45  
3.3  
V
DDF  
V
/ V  
Input/Output Supply Voltage  
Program Voltage  
V
DDQF  
DDS  
V
14  
V
PPF  
I
Output Short Circuit Current  
100  
100  
mA  
hours  
O
t
Time for V at V  
PPF PPFH  
VPPFH  
41/92  
M36WT864TF, M36WT864BF  
DC AND AC PARAMETERS  
This section summarizes the operating measure-  
ment conditions, and the DC and AC characteris-  
tics of the device. The parameters in the DC and  
AC characteristics Tables that follow, are derived  
from tests performed under the Measurement  
Conditions summarized in Table 16, Operating  
and AC Measurement Conditions. Designers  
should check that the operating conditions in their  
circuit match the operating conditions when rely-  
ing on the quoted parameters.  
Table 16. Operating and AC Measurement Conditions  
SRAM  
Flash Memory  
70/ 85/ 100  
Parameter  
70  
Units  
Min  
Max  
Min  
1.65  
2.7  
Max  
2.2  
V
V
V
Supply Voltage  
V
V
V
DD  
Supply Voltage  
2.7  
3.3  
3.3  
DDQ  
PPF  
Supply Voltage (Factory environment)  
11.4  
12.6  
V
+0  
DDQ  
.4  
V
PPF  
Supply Voltage (Application environment)  
-0.4  
V
Ambient Operating Temperature  
– 40  
85  
2
– 40  
85  
°C  
pF  
ns  
V
Load Capacitance (C )  
30  
30  
L
Input Rise and Fall Times  
5
0 to V  
0 to V  
V
Input Pulse Voltages  
DDF  
DDQ  
V
/2  
/2  
Input and Output Timing Ref. Voltages  
V
DDF  
DDQ  
Figure 9. AC Measurement I/O Waveform  
Figure 10. AC Measurement Load Circuit  
V
DDQF  
V
DDF  
V
/2  
DDF  
V
DDQF  
V
0V  
DDF  
16.7kΩ  
AI06110  
DEVICE  
UNDER  
TEST  
Note: V  
= V  
DDS  
DDF  
C
L
16.7kΩ  
0.1µF  
0.1µF  
C
includes JIG capacitance  
L
AI06274  
Table 17. Device Capacitance  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
Min  
Max  
8
Unit  
C
IN  
V
= 0V  
= 0V  
6
8
pF  
pF  
IN  
C
OUT  
V
OUT  
12  
Note: Sampled only, not 100% tested.  
42/92  
M36WT864TF, M36WT864BF  
Table 18. Flash DC Characteristics - Currents  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Test Condition  
Min  
Typ  
Max  
±1  
Unit  
µA  
I
0V V V  
LI  
IN  
DDQ  
I
LO  
0V V  
V  
OUT DDQ  
±1  
µA  
Supply Current  
Asynchronous Read (f=6MHz)  
E = V , G = V  
3
6
mA  
IL  
IH  
4 Word  
8 Word  
6
8
13  
14  
10  
16  
18  
25  
mA  
mA  
mA  
mA  
mA  
mA  
Supply Current  
Synchronous Read (f=40MHz)  
I
DD1  
Continuous  
4 Word  
6
7
Supply Current  
Synchronous Read (f=54MHz)  
8 Word  
10  
13  
Continuous  
Supply Current  
(Reset)  
I
I
I
RP = V ± 0.2V  
10  
10  
10  
50  
50  
50  
µA  
µA  
µA  
DD2  
DD3  
DD4  
SS  
E = V ± 0.2V  
Supply Current (Standby)  
DD  
Supply Current (Automatic  
Standby)  
E = V , G = V  
IL  
IH  
V
= V  
PPH  
8
10  
8
15  
20  
15  
20  
mA  
mA  
mA  
mA  
PPF  
Supply Current (Program)  
Supply Current (Erase)  
V
= V  
= V  
PPF  
PPF  
DD  
(1)  
I
DD5  
V
PPH  
V
= V  
DD  
10  
PPF  
Program/Erase in one  
Bank, Asynchronous  
Read in another Bank  
13  
26  
mA  
Supply Current  
(Dual Operations)  
(1,2)  
(1)  
I
DD6  
Program/Erase in one  
Bank, Synchronous  
Read in another Bank  
16  
10  
30  
50  
mA  
µA  
Supply Current Program/ Erase  
Suspended (Standby)  
E = V ± 0.2V  
I
I
DD  
DD7  
V
V
V
= V  
PPH  
2
5
5
mA  
µA  
mA  
µA  
µA  
µA  
µA  
PPF  
V
V
Supply Current (Program)  
Supply Current (Erase)  
PPF  
V
= V  
= V  
0.2  
2
PPF  
PPF  
DD  
(1)  
PP1  
5
PPH  
PPF  
V
= V  
DD  
0.2  
100  
0.2  
0.2  
5
PPF  
= V  
400  
5
PPF  
PPH  
I
V
V
Supply Current (Read)  
PP2  
PPF  
V
V  
V  
PPF  
DD  
DD  
(1)  
Supply Current (Standby)  
V
PPF  
5
I
PPF  
PP3  
Note: 1. Sampled only, not 100% tested.  
2. V Dual Operation current is the sum of read and program or erase currents.  
DD  
43/92  
M36WT864TF, M36WT864BF  
Table 19. Flash DC Characteristics - Voltages  
Symbol  
Parameter  
Input Low Voltage  
Test Condition  
Min  
Typ  
Max  
Unit  
V
V
IL  
–0.5  
0.4  
V
V
V
–0.4  
V
+ 0.4  
DDQ  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
V
IH  
DDQ  
V
OL  
I
= 100µA  
OL  
0.1  
V
V
I
= –100µA  
–0.1  
V
OH  
OH  
DDQ  
V
V
Program Voltage-Logic  
Program, Erase  
Program, Erase  
1
1.8  
12  
1.95  
12.6  
0.9  
V
PP1  
PPF  
PPF  
V
PPH  
V
Program Voltage Factory  
11.4  
V
V
Program or Erase Lockout  
V Lock Voltage  
DD  
V
PPLK  
V
LKO  
1
V
V
RPH  
RP pin Extended High Voltage  
3.3  
V
Table 20. SRAM DC Characteristics  
Symbol  
Parameter  
Test Condition  
= 3.3V, f = 1/t  
Min  
Typ  
Max  
Unit  
V
,
AVAV  
DDS  
(1,2)  
Operating Supply Current  
70ns  
35  
mA  
I
DD1  
I
= 0mA  
OUT  
V
= 3.3V, f = 1MHz,  
DDS  
(3)  
Operating Supply Current  
4
mA  
µA  
I
DD2  
I
= 0mA  
OUT  
V
= 3.3V, f = 0,  
DDS  
I
E1 V  
–0.2V or E2 0.2V or  
DDS  
Standby Supply Current CMOS  
1
20  
SB  
LB=UB V  
–0.2V  
DDS  
I
0V V V  
IN DDS  
Input Leakage Current  
Output Leakage Current  
–1  
–1  
1
1
µA  
µA  
LI  
(4)  
I
LO  
0V V  
V  
DDS  
OUT  
V
+
DDS  
0.3  
V
Input High Voltage  
2.2  
V
IH  
V
Input Low Voltage  
Output High Voltage  
Output Low Voltage  
–0.3  
2.4  
0.6  
0.4  
V
V
V
IL  
V
OH  
I
= –1.0mA  
= 2.1mA  
OH  
V
I
OL  
OL  
Note: 1. Average AC current, cycling at t  
minimum.  
AVAV  
2. E1 = V AND E2 = V LB OR/AND UB = V , V = V OR V .  
IL  
IH,  
IL  
IN  
IL  
IH  
3. E1 0.2V AND E2 V  
–0.2V, LB OR/AND UB 0.2V, V 0.2V OR V V  
–0.2V.  
DDS  
DDS  
IN  
IN  
4. Output disabled.  
44/92  
M36WT864TF, M36WT864BF  
Figure 11. Flash Asynchronous Random Access Read AC Waveforms  
45/92  
M36WT864TF, M36WT864BF  
Figure 12. Flash Asynchronous Page Read AC Waveforms  
46/92  
M36WT864TF, M36WT864BF  
Table 21. Flash Asynchronous Read AC Characteristics  
M36WT864TF/BF  
Unit  
Symbol  
Alt  
Parameter  
70  
85  
85  
85  
25  
100  
100  
100  
25  
(3)  
t
t
Address Valid to Next Address Valid  
Address Valid to Output Valid (Random)  
Address Valid to Output Valid (Page)  
Address Transition to Output Transition  
Chip Enable Low to Wait Valid  
Min  
Max  
Max  
Min  
Max  
Max  
Min  
Max  
Min  
Max  
Max  
Min  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
RC  
70  
70  
20  
(3)  
(3)  
t
t
ACC  
AVQV  
t
t
PAGE  
AVQV1  
(1)  
t
0
0
18  
85  
0
0
18  
100  
0
t
OH  
AXQX  
(3)  
t
ELTV  
14  
70  
(2)  
(3)  
t
Chip Enable Low to Output Valid  
t
t
CE  
ELQV  
(1)  
t
LZ  
Chip Enable Low to Output Transition  
Chip Enable High to Wait Hi-Z  
0
ELQX  
(3)  
t
20  
0
20  
0
EHTZ  
20  
(1)  
(1)  
(2)  
(1)  
(1)  
(1)  
t
Chip Enable High to Output Transition  
Chip Enable High to Output Hi-Z  
0
t
OH  
EHQX  
EHQZ  
GLQV  
GLQX  
(3)  
t
20  
25  
0
20  
25  
0
t
t
t
t
HZ  
20  
t
Output Enable Low to Output Valid  
Output Enable Low to Output Transition  
Output Enable High to Output Transition  
20  
OE  
t
0
0
OLZ  
t
0
0
OH  
GHQX  
(3)  
t
Output Enable High to Output Hi-Z  
Address Valid to Latch Enable High  
Chip Enable Low to Latch Enable High  
Latch Enable High to Address Transition  
Latch Enable Pulse Width  
Max  
Min  
Min  
Min  
Min  
Max  
Min  
20  
10  
10  
10  
10  
85  
0
20  
10  
10  
10  
10  
100  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
DF  
20  
GHQZ  
t
t
t
t
10  
10  
10  
10  
AVLH  
AVADVH  
ELADVH  
t
ELLH  
t
LHAX  
ADVHAX  
t
t
ADVLADVH  
LLLH  
(3)  
t
t
t
Latch Enable Low to Output Valid (Random)  
Latch Enable High to Output Enable Low  
LLQV  
ADVLQV  
70  
t
0
LHGL  
ADVHGL  
Note: 1. Sampled only, not 100% tested.  
2. G may be delayed by up to t  
3. To be characterized.  
- t  
after the falling edge of E without increasing t  
.
ELQV  
ELQV GLQV  
47/92  
M36WT864TF, M36WT864BF  
Figure 13. Flash Synchronous Burst Read AC Waveforms  
48/92  
M36WT864TF, M36WT864BF  
Figure 14. Flash Single Synchronous Read AC Waveforms  
49/92  
M36WT864TF, M36WT864BF  
Figure 15. Flash Clock input AC Waveform  
tKHKL  
tKHKH  
tr  
tf  
tKLKH  
AI06981  
Table 22. Flash Synchronous Read AC Characteristics  
M36WT864TF/BF  
Symbol  
Alt  
Parameter  
Unit  
70  
85  
9
100  
t
t
AVCLKH  
Address Valid to Clock High  
Chip Enable Low to Clock High  
Chip Enable Low to Wait Valid  
Min  
Min  
Max  
9
9
9
9
ns  
ns  
ns  
AVKH  
t
t
ELCLKH  
9
ELKH  
(3)  
t
18  
18  
ELTV  
EHEL  
EHTZ  
14  
14  
20  
Chip Enable Pulse Width  
(subsequent synchronous reads)  
(3)  
(3)  
t
Min  
14  
14  
ns  
t
t
Chip Enable High to Wait Hi-Z  
Clock High to Address Transition  
Max  
Min  
20  
10  
20  
10  
ns  
ns  
t
10  
KHAX  
CLKHAX  
t
t
Clock High to Output Valid  
Clock High to WAIT Valid  
KHQV  
(3)  
t
t
Max  
Min  
18  
4
18  
4
ns  
ns  
CLKHQV  
14  
KHTV  
t
t
Clock High to Output Transition  
Clock High to WAIT Transition  
KHQX  
4
CLKHQX  
KHTX  
t
t
ADVLCLKH  
Latch Enable Low to Clock High  
Clock Period (f=40MHz)  
Min  
Min  
Min  
9
9
9
ns  
ns  
ns  
LLKH  
25  
25  
t
t
CLK  
KHKH  
Clock Period (f=54MHz)  
18.5  
4.5  
t
t
Clock High to Clock Low  
Clock Low to Clock High  
KHKL  
Min  
5
3
5
3
ns  
ns  
KLKH  
t
f
Clock Fall or Rise Time  
Max  
3
t
r
Note: 1. Sampled only, not 100% tested.  
2. For other timings please refer to Table 21, Asynchronous Read AC Characteristics.  
3. To be characterized.  
50/92  
M36WT864TF, M36WT864BF  
Figure 16. Flash Write AC Waveforms, Write Enable Controlled  
51/92  
M36WT864TF, M36WT864BF  
Table 23. Flash Write AC Characteristics, Write Enable Controlled  
M36WT864TF/BF  
Symbol  
Alt  
Parameter  
Unit  
70  
85  
85  
10  
50  
100  
(3)  
t
t
Address Valid to Next Address Valid  
Address Valid to Latch Enable High  
Address Valid to Write Enable High  
Min  
Min  
Min  
100  
10  
ns  
ns  
ns  
AVAV  
WC  
70  
t
10  
AVLH  
(4)  
(3)  
t
50  
t
WC  
45  
45  
AVWH  
(3)  
t
t
Data Valid to Write Enable High  
Min  
Min  
Min  
50  
10  
0
50  
10  
0
ns  
ns  
ns  
DVWH  
DS  
t
Chip Enable Low to Latch Enable High  
Chip Enable Low to Write Enable Low  
10  
ELLH  
t
t
0
ELWL  
CS  
(3)  
Chip Enable Low to Output Valid  
Min  
85  
100  
ns  
t
70  
ELQV  
Chip Enable High to Clock Valid  
Output Enable High to Write Enable Low  
Latch Enable High to Address Transition  
Latch Enable Pulse Width  
Min  
Min  
Min  
Min  
Min  
9
9
9
ns  
ns  
ns  
ns  
ns  
t
ELKV  
t
20  
10  
10  
0
20  
10  
10  
0
20  
10  
10  
0
GHWL  
t
LHAX  
t
LLLH  
(4)  
Write Enable High to Address Valid  
t
t
WHAV  
(4)  
t
t
Write Enable High to Address Transition  
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Write Enable High to Chip Enable Low  
Write Enable High to Output Enable Low  
Write Enable High to Latch Enable Low  
Write Enable High to Write Enable Low  
Write Enable High to Output Valid  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
0
0
0
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AH  
WHAX  
t
WHDX  
WHEH  
DH  
CH  
t
t
0
0
(2)  
(3)  
25  
0
25  
0
t
25  
WHEL  
t
0
0
WHGL  
t
0
0
WHLL  
t
t
WPH  
25  
25  
110  
25  
125  
WHWL  
(3)  
t
WHQV  
95  
45  
(3)  
t
t
Write Enable Low to Write Enable High  
Min  
Min  
50  
0
50  
0
ns  
ns  
WLWH  
WP  
t
Output (Status Register) Valid to V  
Low  
0
QVVPL  
PPF  
Output (Status Register) Valid to Write Protect  
Low  
t
Min  
0
0
0
ns  
QVWPL  
t
t
V
High to Write Enable High  
Min  
Min  
Min  
Min  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
ns  
ns  
ns  
ns  
VPHWH  
VPS  
PPF  
t
Write Enable High to V  
Low  
WHVPL  
PPF  
t
t
Write Enable High to Write Protect Low  
Write Protect High to Write Enable High  
WHWPL  
WPHWH  
Note: 1. Sampled only, not 100% tested.  
2. t has the values shown when reading in the targeted bank. System designers should take this into account and may insert a  
WHEL  
software No-Op instruction to delay the first read in the same bank after issuing a command. If it is a Read Array operation in a  
different bank t is 0ns.  
WHEL  
3. To be characterized.  
4. Meaningful only if LF is always kept low.  
52/92  
M36WT864TF, M36WT864BF  
Figure 17. Flash Write AC Waveforms, Chip Enable Controlled  
53/92  
M36WT864TF, M36WT864BF  
Table 24. Flash Write AC Characteristics, Chip Enable Controlled  
M36WT864TF/BF  
Symbol  
Alt  
Parameter  
Unit  
70  
85  
100  
(3)  
t
t
Address Valid to Next Address Valid  
Min  
85  
100  
ns  
AVAV  
WC  
70  
45  
(3)  
t
t
Address Valid to Chip Enable High  
Address Valid to Latch Enable High  
Data Valid to Write Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
50  
10  
50  
0
50  
10  
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVEH  
WC  
t
10  
AVLH  
(3)  
t
t
DVEH  
DS  
AH  
DH  
45  
t
t
t
Chip Enable High to Address Transition  
Chip Enable High to Input Transition  
Chip Enable High to Chip Enable Low  
Chip Enable High to Output Enable Low  
Chip Enable High to Write Enable High  
Chip Enable Low to Clock Valid  
0
EHAX  
t
0
25  
0
0
0
EHDX  
t
t
WPH  
25  
0
25  
0
EHEL  
t
EHGL  
t
t
0
0
0
EHWH  
CH  
t
9
9
9
ELKV  
ELEH  
(3)  
t
t
Chip Enable Low to Chip Enable High  
Chip Enable Low to Latch Enable High  
Chip Enable Low to Output Valid  
50  
10  
85  
20  
10  
10  
50  
10  
100  
20  
10  
10  
WP  
45  
t
t
10  
ELLH  
(3)  
ELQV  
GHEL  
70  
t
Output Enable High to Chip Enable Low  
Latch Enable High to Address Transition  
Latch Enable Pulse Width  
20  
10  
10  
t
LHAX  
t
LLLH  
(2)  
(3)  
Write Enable High to Chip Enable Low  
Write Enable High to Output Valid  
Write Enable Low to Chip Enable Low  
Min  
Min  
Min  
Min  
Min  
Min  
25  
110  
0
25  
125  
0
ns  
ns  
ns  
ns  
ns  
ns  
t
25  
WHEL  
t
95  
0
WHQV  
t
t
WLEL  
CS  
t
Chip Enable High to V  
Low  
PPF  
200  
200  
0
200  
200  
0
200  
200  
0
EHVPL  
t
Chip Enable High to Write Protect Low  
EHWPL  
t
Output (Status Register) Valid to V  
Low  
QVVPL  
PPF  
Output (Status Register) Valid to Write Protect  
Low  
t
Min  
0
0
0
ns  
QVWPL  
t
t
V
High to Chip Enable High  
Min  
Min  
200  
200  
200  
200  
200  
200  
ns  
ns  
VPHEH  
VPS  
PPF  
t
Write Protect High to Chip Enable High  
WPHEH  
Note: 1. Sampled only, not 100% tested.  
2. t has the values shown when reading in the targeted bank. System designers should take this into account and may insert a  
WHEL  
software No-Op instruction to delay the first read in the same bank after issuing a command. If it is a Read Array operation in a  
different bank t is 0ns.  
WHEL  
3. To be characterized.  
54/92  
M36WT864TF, M36WT864BF  
Figure 18. Flash Reset and Power-up AC Waveforms  
tPHWL  
tPLWL  
tPLEL  
tPLGL  
tPLLL  
WF, EF, GF, LF  
tPHEL  
tPHGL  
tPHLL  
RP  
tVDHPH  
tPLPH  
VDD, VDDQ  
Power-Up  
Reset  
AI06281  
Table 25. Flash Reset and Power-up AC Characteristics  
Symbol  
Parameter  
Test Condition  
During Program  
70  
10  
20  
85  
10  
20  
100  
10  
Unit  
µs  
Reset Low to  
Min  
Min  
t
PLWL  
Write Enable Low,  
Chip Enable Low,  
Output Enable Low,  
Latch Enable Low  
t
t
PLEL  
PLGL  
During Erase  
20  
µs  
t
Other Conditions  
Min  
80  
80  
80  
30  
ns  
ns  
PLLL  
Reset High to  
t
t
PHWL  
Write Enable Low  
Chip Enable Low  
Output Enable Low  
Latch Enable Low  
t
PHEL  
PHGL  
Min  
30  
30  
t
PHLL  
(1,2)  
(3)  
RP Pulse Width  
Min  
Min  
50  
50  
50  
50  
50  
50  
ns  
µs  
t
PLPH  
Supply Voltages High to Reset  
High  
t
VDHPH  
Note: 1. The device Reset is possible but not guaranteed if t  
2. Sampled only, not 100% tested.  
< 50ns.  
PLPH  
3. It is important to assert RP in order to allow proper CPU initialization during Power-Up or Reset.  
55/92  
M36WT864TF, M36WT864BF  
Figure 19. SRAM Address Controlled, Read AC Waveforms  
tAVAV  
A0-A18  
VALID  
tAVQV  
tAXQX  
DQ0-DQ7 and/or DQ8-DQ15  
DATA VALID  
AI05839  
Note: E1S = Low, E2S = High, GS = Low, WS = High, UBS = Low and/or LBS = Low.  
Figure 20. SRAM Chip Enable or Output Enable Controlled, Read AC Waveforms  
tAVAV  
A0-A18  
VALID  
tAVQV  
tELQV  
tAXQX  
tEHQZ  
E1S  
E2S  
tELQX  
tGLQV  
tGHQZ  
GS  
tGLQX  
DQ0-DQ15  
VALID  
tBLQV  
tBHQZ  
UBS, LBS  
tBLQX  
AI06282  
Note: Write Enable (WF) = High  
56/92  
M36WT864TF, M36WT864BF  
Figure 21. SRAM Chip Enable or UBS/LBS Controlled, Standby AC Waveforms  
E1S, UBS, LBS  
E2S  
tPU  
tPD  
I
DD  
50%  
I
SB  
AI06283  
Table 26. SRAM Read and Standby AC Characteristics  
M36WT864TF/BF  
Symbol  
Parameter  
Unit  
70  
70  
70  
t
Read Cycle Time  
Min  
Max  
Min  
ns  
ns  
ns  
AVAV  
t
Address Valid to Output Valid  
AVQV  
(1)  
Data hold from address change  
5
25  
70  
5
t
AXQX  
(2,3,4)  
Upper/Lower Byte Enable High to Output Hi-Z  
Upper/Lower Byte Enable Low to Output Valid  
Upper/Lower Byte Enable Low to Output Transition  
Chip Enable High to Output Hi-Z  
Max  
Max  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
BHQZ  
t
BLQV  
(1)  
t
BLQX  
(2,3,4)  
Max  
Max  
Min  
25  
70  
5
EHQZ  
t
Chip Enable Low to Output Valid  
ELQV  
(1)  
Chip Enable Low to Output Transition  
Output Enable High to Output Hi-Z  
t
ELQX  
(2,3,4)  
Max  
Max  
Min  
25  
35  
5
GHQZ  
t
Output Enable Low to Output Valid  
GLQV  
(1)  
Output Enable Low to Output Transition  
Chip Enable or UB/LB High to Power Down  
Chip Enable or UB/LB Low to Power Up  
t
GLQX  
(4)  
Max  
Min  
0
t
t
PD  
PU  
(4)  
70  
Note: 1. Test conditions assume transition timing reference level = 0.3V  
or 0.7V  
.
DDS  
DDS  
2. At any given temperature and voltage condition, t  
any given device.  
is less than t  
, t  
is less than t  
and t  
is less than t  
for  
GHQZ  
GLQX BHQZ  
BLQX  
EHQZ  
ELQX  
3. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output  
voltage levels.  
4. Tested initially and after any design or process changes that may affect these parameters.  
57/92  
M36WT864TF, M36WT864BF  
Figure 22. SRAM Write AC Waveforms, Write Enable Controlled  
tAVAV  
A0-A18  
VALID  
tAVWH  
tAVEL  
tELWH  
tWLWH  
tWHAX  
E1S  
E2S  
tAVWL  
WS  
tWLQZ  
tWHQX  
tWHDX  
DQ0-DQ15  
UBS, LBS  
DATA INPUT  
tDVWH  
tBLBH  
AI06284  
Note: 1. During this period DQ0-DQ15 are in output state and input signals should not be applied.  
58/92  
M36WT864TF, M36WT864BF  
Figure 23. SRAM Write AC Waveforms, Chip Enable Controlled  
tAVAV  
A0-A18  
VALID  
tAVEH  
tELEH  
tAVEL  
tEHAX  
E1S  
E2S  
tAVWL  
tWLEH  
WS  
tEHDX  
DQ0-DQ15  
DATA INPUT  
tDVEH  
tBLBH  
UBS, LBS  
AI06285  
Figure 24. SRAM Write AC Waveforms, UB/LB Controlled  
tAVAV  
A0-A18  
VALID  
tAVBH  
tBHAX  
E1S  
E2S  
tAVWL  
tWLBH  
WS  
tWLQZ  
tBHDX  
DQ0-DQ15  
DATA (1)  
DATA INPUT  
tDVBH  
tAVBL  
tBLBH  
UBS, LBS  
AI06286  
Note: 1. During this period DQ0-DQ15 are in output state and input signals should not be applied.  
59/92  
M36WT864TF, M36WT864BF  
Table 27. SRAM Write AC Characteristics  
M36WT864TF/BF  
Symbol  
Parameter  
Unit  
70  
70  
60  
0
t
Write Cycle Time  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
Address Valid to LBS, UBS High  
Address Valid to LBS, UBS Low  
Address Valid to Chip Enable High  
Address valid to Chip Enable Low  
Address Valid to Write Enable High  
Address Valid to Write Enable Low  
LBS, UBS High to Address Transition  
LBS, UBS High to Input Transition  
LBS, UBS Low to LBS, UBS High  
LBS, UBS Low to Chip Enable High  
LBS, UBS Low to Write Enable High  
Input Valid to LBS, UBS High  
AVBH  
t
AVBL  
t
60  
0
AVEH  
t
AVEL  
t
60  
0
AVWH  
t
AVWL  
t
0
BHAX  
t
0
BHDX  
t
60  
60  
60  
30  
30  
30  
0
BLBH  
t
BLEH  
t
BLWH  
t
DVBH  
t
Input Valid to Chip Enable High  
DVEH  
t
Input Valid to Write Enable High  
Chip Enable High to Address Transition  
Chip enable High to Input Transition  
Chip Enable Low to LBS, UBS High  
Chip Enable Low to Chip Enable High  
Chip Enable Low to Write Enable High  
Write Enable High to Address Transition  
Write Enable High to Input Transition  
Write Enable High to Output Transition  
Write Enable Low to LBS, UBS High  
Write Enable Low to Chip Enable High  
Write Enable Low to Output Hi-Z  
Write Enable Low to Write Enable High  
DVWH  
t
EHAX  
t
0
EHDX  
t
60  
60  
60  
0
ELBH  
t
ELEH  
t
ELWH  
t
WHAX  
t
0
WHDX  
(1)  
5
t
WHQX  
t
60  
60  
20  
50  
WLBH  
t
WLEH  
(1,2,3)  
t
WLQZ  
t
Min  
WLWH  
Note: 1. At any given temperature and voltage condition, t  
is less than t  
for any given device.  
WLQZ  
WHQX  
2. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output  
voltage levels.  
3. Tested initially and after any design or process changes that may affect these parameters.  
60/92  
M36WT864TF, M36WT864BF  
Figure 25. SRAM Low V Data Retention AC Waveforms, E1S Controlled  
DD  
DATA RETENTION MODE  
3.3V  
2.7V  
V
DDS  
V
> 1.5V  
DR  
tCDR  
E1S V  
tR  
– 0.2V or UBS = LBS V  
– 0.2V  
DR  
DR  
E1S or UBS/LBS  
AI06287  
Figure 26. SRAM Low V Data Retention AC Waveforms, E2S Controlled  
DD  
DATA RETENTION MODE  
3.3V  
V
2.7V  
DDS  
V
> 1.5V  
DR  
tCDR  
tR  
E2S 0.2V  
E2S  
AI06288  
Table 28. SRAM Low V Data Retention Characteristics  
DD  
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
10  
Unit  
V
DD  
= 1.5V, E1S V  
–0.2V or  
DDS  
(1)  
Supply Current (Data Retention)  
E2S 0.2V or  
5
µA  
I
DDDR  
UBS = LBS V  
–0.2V, f = 0  
DDS  
Chip Deselected to Data  
Retention Time  
(1,2)  
0
ns  
ns  
V
t
CDR  
(2)  
t
Operation Recovery Time  
t
R
AVAV  
E1S V  
UBS = LBS V  
–0.2V or E2S 0.2V or  
DDS  
(1)  
Supply Voltage (Data Retention)  
1.5  
V
DR  
–0.2V, f = 0  
DDS  
Note: 1. All other Inputs at V V  
–0.2V or V 0.2V.  
IL  
IH  
DDS  
2. Tested initially and after any design or process that may affect these parameters. t  
AVAV  
is Read cycle time.  
3. No input may exceed V  
+0.2V.  
DDS  
61/92  
M36WT864TF, M36WT864BF  
PACKAGE MECHANICAL  
Figure 27. Stacked LFBGA96 - 8x14mm, 8x10ball array, 0.8mm pitch, Bottom View Package Outline  
D
D1  
SE  
E
E2 E1  
b
e
BALL "A1"  
ddd  
FE1 FE  
FD  
A
SD  
A2  
A1  
BGA-Z31  
Note: Drawing is not to scale.  
Table 29. Stacked LFBGA96 - 8x14mm, 8x10 ball array, 0.8mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.400  
0.0551  
0.300  
0.0118  
0.960  
0.400  
8.000  
5.600  
0.0378  
0.0157  
0.3150  
0.2205  
0.350  
7.900  
0.450  
0.0138  
0.3110  
0.0177  
D
8.100  
0.3189  
D1  
ddd  
E
0.100  
0.0039  
14.000  
7.200  
10.400  
0.800  
1.200  
3.400  
1.800  
0.400  
0.400  
13.900  
14.100  
0.5512  
0.2835  
0.4094  
0.0315  
0.0472  
0.1339  
0.0709  
0.0157  
0.0157  
0.5472  
0.5551  
E1  
E2  
e
FD  
FE  
FE1  
SD  
SE  
62/92  
M36WT864TF, M36WT864BF  
PART NUMBERING  
Table 30. Ordering Information Scheme  
Example:  
M36WT864TF  
70 ZA  
6
T
Device Type  
M36 = MMP (Flash + SRAM)  
Architecture  
W = Multiple Bank, Burst mode  
Operating Voltage  
T = V  
= 1.65V to 2.2V; V  
= V  
= 2.7V to 3.3V  
DDF  
DDS  
DDQF  
SRAM Chip Size & Organization  
8 = 8 Mbit (512K x16-bit)  
Device Function  
64T = 64 Mbit (x16), Multiple Bank, Top Boot  
64B = 64 Mbit (x16), Multiple Bank, Bottom Boot  
B = SRAM Asynchronous 70ns  
Speed  
70 = 70ns  
85 = 85ns  
10 = 100ns  
Package  
ZA = LFBGA96 - 8x14mm, 8x10 ball array, 0.8mm pitch  
Temperature Range  
6 = –40 to 85°C  
Option  
T = Tape & Reel packing  
Devices are shipped from the factory with the memory content bits erased to ’1’. For a list of available op-  
tions (Speed, Package, etc...) or for further information on any aspect of this device, please contact the  
STMicroelectronics Sales Office nearest to you.  
63/92  
M36WT864TF, M36WT864BF  
REVISION HISTORY  
Table 31. Document Revision History  
Date  
Version  
Revision Details  
10-Jul-2002  
1.0  
First Issue  
64/92  
M36WT864TF, M36WT864BF  
APPENDIX A. FLASH BLOCK ADDRESS TABLES  
Table 32. Flash Top Boot Block Addresses  
Size  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
2F8000-2FFFFF  
2F0000-2F7FFF  
2E8000-2EFFFF  
2E0000-2E7FFF  
2D8000-2DFFFF  
2D0000-2D7FFF  
2C8000-2CFFFF  
2C0000-2C7FFF  
2B8000-2BFFFF  
2B0000-2B7FFF  
2A8000-2AFFFF  
2A0000-2A7FFF  
298000-29FFFF  
290000-297FFF  
288000-28FFFF  
280000-287FFF  
278000-27FFFF  
270000-277FFF  
268000-26FFFF  
260000-267FFF  
258000-25FFFF  
250000-257FFF  
248000-24FFFF  
240000-247FFF  
238000-23FFFF  
230000-237FFF  
228000-22FFFF  
220000-227FFF  
218000-21FFFF  
210000-217FFF  
208000-20FFFF  
200000-207FFF  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
Bank  
#
Address Range  
(KWord)  
0
4
3FF000-3FFFFF  
3FE000-3FEFFF  
3FD000-3FDFFF  
3FC000-3FCFFF  
3FB000-3FBFFF  
3FA000-3FAFFF  
3F9000-3F9FFF  
3F8000-3F8FFF  
3F0000-3F7FFF  
3E8000-3EFFFF  
3E0000-3E7FFF  
3D8000-3DFFFF  
3D0000-3D7FFF  
3C8000-3CFFFF  
3C0000-3C7FFF  
3B8000-3BFFFF  
3B0000-3B7FFF  
3A8000-3AFFFF  
3A0000-3A7FFF  
398000-39FFFF  
390000-397FFF  
388000-38FFFF  
380000-387FFF  
378000-37FFFF  
370000-377FFF  
368000-36FFFF  
360000-367FFF  
358000-35FFFF  
350000-357FFF  
348000-34FFFF  
340000-347FFF  
338000-33FFFF  
330000-337FFF  
328000-32FFFF  
320000-327FFF  
318000-31FFFF  
310000-317FFF  
308000-30FFFF  
300000-307FFF  
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
65/92  
M36WT864TF, M36WT864BF  
79  
80  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
0F8000-0FFFFF  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
000000-007FFF  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
Note: There are two Bank Regions, Region 1 contains all the banks  
that are made up of main blocks only, Region 2 contains the  
banks that are made up of the parameter and main blocks.  
66/92  
M36WT864TF, M36WT864BF  
Table 33. Flash Bottom Boot Block Addresses  
Size  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
2B8000-2BFFFF  
2B0000-2B7FFF  
2A8000-2AFFFF  
2A0000-2A7FFF  
298000-29FFFF  
290000-297FFF  
288000-28FFFF  
280000-287FFF  
278000-27FFFF  
270000-277FFF  
268000-26FFFF  
260000-267FFF  
258000-25FFFF  
250000-257FFF  
248000-24FFFF  
240000-247FFF  
238000-23FFFF  
230000-237FFF  
228000-22FFFF  
220000-227FFF  
218000-21FFFF  
210000-217FFF  
208000-20FFFF  
200000-207FFF  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
Bank  
#
Address Range  
(KWord)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
134  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
3F8000-3FFFFF  
3F0000-3F7FFF  
3E8000-3EFFFF  
3E0000-3E7FFF  
3D8000-3DFFFF  
3D0000-3D7FFF  
3C8000-3CFFFF  
3C0000-3C7FFF  
3B8000-3BFFFF  
3B0000-3B7FFF  
3A8000-3AFFFF  
3A0000-3A7FFF  
398000-39FFFF  
390000-397FFF  
388000-38FFFF  
380000-387FFF  
378000-37FFFF  
370000-377FFF  
368000-36FFFF  
360000-367FFF  
358000-35FFFF  
350000-357FFF  
348000-34FFFF  
340000-347FFF  
338000-33FFFF  
330000-337FFF  
328000-32FFFF  
320000-327FFF  
318000-31FFFF  
310000-317FFF  
308000-30FFFF  
300000-307FFF  
2F8000-2FFFFF  
2F0000-2F7FFF  
2E8000-2EFFFF  
2E0000-2E7FFF  
2D8000-2DFFFF  
2D0000-2D7FFF  
2C8000-2CFFFF  
2C0000-2C7FFF  
98  
97  
96  
95  
67/92  
M36WT864TF, M36WT864BF  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
0F8000-0FFFFF  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
007000-007FFF  
006000-006FFF  
005000-005FFF  
004000-004FFF  
003000-003FFF  
002000-002FFF  
001000-001FFF  
000000-000FFF  
8
7
6
4
5
4
4
4
3
4
2
4
1
4
0
4
Note: There are two Bank Regions, Region 1 contains all the banks  
that are made up of main blocks only, Region 2 contains the  
banks that are made up of the parameter and main blocks.  
68/92  
M36WT864TF, M36WT864BF  
APPENDIX B. FLASH COMMON FLASH INTERFACE  
The Common Flash Interface is a JEDEC ap-  
proved, standardized data structure that can be  
read from the Flash memory device. It allows a  
system software to query the device to determine  
various electrical and timing parameters, density  
information and functions supported by the mem-  
ory. The system can interface easily with the de-  
vice, enabling the software to upgrade itself when  
necessary.  
36, 37, 38, 40 and 1 show the addresses used to  
retrieve the data. The Query data is always pre-  
sented on the lowest order data outputs (DQ0-  
DQ7), the other outputs (DQ8-DQ15) are set to 0.  
The CFI data structure also contains a security  
area where a 64 bit unique security number is writ-  
ten (see Table 1, Security Code area). This area  
can be accessed only in Read mode by the final  
user. It is impossible to change the security num-  
ber after it has been written by ST. Issue a Read  
Array command to return to Read mode.  
When the Read CFI Query Command is issued  
the device enters CFI Query mode and the data  
structure is read from the memory. Tables 34, 35,  
Table 34. Query Structure Overview  
Offset  
00h  
Sub-section Name  
Description  
Reserved for algorithm-specific information  
Command set ID and algorithm data offset  
Device timing & voltage information  
Flash device layout  
Reserved  
10h  
CFI Query Identification String  
System Interface Information  
Device Geometry Definition  
1Bh  
27h  
Additional information specific to the Primary  
Algorithm (optional)  
P
A
Primary Algorithm-specific Extended Query table  
Alternate Algorithm-specific Extended Query table  
Additional information specific to the Alternate  
Algorithm (optional)  
Lock Protection Register  
Unique device Number and  
User Programmable OTP  
80h  
Security Code Area  
Note: The Flash memory display the CFI data structure when CFI Query command is issued. In this table are listed the main sub-sections  
detailed in Tables 35, 36, 37, 38, 40 and 1. Query data is always presented on the lowest order data outputs.  
Table 35. CFI Query Identification String  
Offset  
Sub-section Name  
Description  
Value  
00h  
0020h  
Manufacturer Code  
Device Code  
ST  
8810h  
8811h  
Top  
Bottom  
01h  
02h  
03h  
reserved  
reserved  
reserved  
0051h  
Reserved  
Reserved  
Reserved  
04h-0Fh  
10h  
"Q"  
"R"  
"Y"  
11h  
0052h  
Query Unique ASCII String "QRY"  
12h  
0059h  
13h  
0003h  
Primary Algorithm Command Set and Control Interface ID code 16  
bit ID code defining a specific algorithm  
14h  
0000h  
15h  
offset = P = 0039h  
0000h  
Address for Primary Algorithm extended Query table (see Table 37)  
p = 39h  
NA  
16h  
17h  
0000h  
Alternate Vendor Command Set and Control Interface ID Code  
second vendor - specified algorithm supported  
18h  
0000h  
19h  
value = A = 0000h  
0000h  
Address for Alternate Algorithm extended Query table  
NA  
1Ah  
69/92  
M36WT864TF, M36WT864BF  
Table 36. CFI Query System Interface Information  
Offset  
Data  
Description  
Value  
V
V
V
V
Logic Supply Minimum Program/Erase or Write voltage  
DD  
1Bh  
0017h  
1.7V  
bit 7 to 4  
bit 3 to 0  
BCD value in volts  
BCD value in 100 millivolts  
Logic Supply Maximum Program/Erase or Write voltage  
DD  
1Ch  
1Dh  
1Eh  
0022h  
0017h  
00C0h  
2.2V  
1.7V  
12V  
bit 7 to 4  
bit 3 to 0  
BCD value in volts  
BCD value in 100 millivolts  
[Programming] Supply Minimum Program/Erase voltage  
PPF  
PPF  
bit 7 to 4  
bit 3 to 0  
HEX value in volts  
BCD value in 100 millivolts  
[Programming] Supply Maximum Program/Erase voltage  
bit 7 to 4  
bit 3 to 0  
HEX value in volts  
BCD value in 100 millivolts  
n
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0004h  
0003h  
000Ah  
0000h  
0003h  
0004h  
0002h  
0000h  
16µs  
8µs  
Typical time-out per single byte/word program = 2 µs  
n
Typical time-out for quadruple word program = 2 µs  
n
1s  
Typical time-out per individual block erase = 2 ms  
n
NA  
Typical time-out for full chip erase = 2 ms  
n
128µs  
128µs  
4s  
Maximum time-out for word program = 2 times typical  
n
Maximum time-out for quadruple word = 2 times typical  
n
Maximum time-out per individual block erase = 2 times typical  
n
NA  
Maximum time-out for chip erase = 2 times typical  
Table 37. Device Geometry Definition  
Offset Word  
Data  
Description  
Value  
Mode  
n
27h  
0017h  
8 MByte  
Device Size = 2 in number of bytes  
28h  
29h  
0001h  
0000h  
x16  
Async.  
Flash Device Interface Code description  
2Ah  
2Bh  
0003h  
0000h  
n
8 Byte  
2
Maximum number of bytes in multi-byte program or page = 2  
2Ch  
0002h  
Number of identical sized erase block regions within the device  
bit 7 to 0 = x = number of Erase Block Regions  
2Dh  
2Eh  
007Eh  
0000h  
Region 1 Information  
Number of identical-size erase blocks = 007Eh+1  
127  
2Fh  
30h  
0000h  
0001h  
Region 1 Information  
Block size in Region 1 = 0100h * 256 byte  
64 KByte  
8
31h  
32h  
0007h  
0000h  
Region 2 Information  
Number of identical-size erase blocks = 0007h+1  
33h  
34h  
0020h  
0000h  
Region 2 Information  
Block size in Region 2 = 0020h * 256 byte  
8 KByte  
NA  
35h  
38h  
0000h  
Reserved for future erase block region information  
70/92  
M36WT864TF  
M36WT864BF  
64 Mbit (4Mb x16, Multiple Bank, Burst) Flash Memory  
and 8 Mbit (512K x16) SRAM, Multiple Memory Product  
PRODUCT PREVIEW  
July 2002  
1/92  
This is preliminary information on a new product now in development. Details are subject to change without notice.  
M36WT864TF, M36WT864BF  
Offset  
Data  
Description  
Value  
V
DD  
Logic Supply Optimum Program/Erase voltage (highest performance)  
(P+C)h = 45h  
0018h  
1.8V  
bit 7 to 4HEX value in volts  
bit 3 to 0BCD value in 100 mV  
V
PPF  
Supply Optimum Program/Erase voltage  
(P+D)h = 46h  
00C0h  
12V  
bit 7 to 4HEX value in volts  
bit 3 to 0BCD value in 100 mV  
Table 39. Protection Register Information  
Offset  
Data  
Description  
Value  
Number of protection register fields in JEDEC ID space. 0000h indicates that  
256 fields are available.  
(P+E)h = 47h  
0001h  
1
(P+F)h = 48h  
(P+10)h = 49h  
(P+11)h = 4Ah  
(P+12)h= 4Bh  
0080h  
0000h  
0003h  
0004h  
Protection Field 1: Protection Description  
Bits 0-7 Lower byte of protection register address  
0080h  
Bits 8-15 Upper byte of protection register address  
n
8 Bytes  
Bits 16-23 2 bytes in factory pre-programmed region  
n
Bits 24-31 2 bytes in user programmable region  
16 Bytes  
Table 40. Burst Read Information  
Data  
Description  
Value  
Offset  
(P+13)h = 4Ch  
0003h  
Page-mode read capability  
8 Bytes  
n
bits 0-7  
’n’ such that 2 HEX value represents the number of read-  
page bytes. See offset 28h for device word width to  
determine page-mode data output width.  
(P+14)h = 4Dh  
(P+15)h = 4Eh  
0003h  
0001h  
Number of synchronous mode read configuration fields that follow.  
Synchronous mode read capability configuration 1  
3
4
bit 3-7  
Reserved  
n+1  
bit 0-2  
’n’ such that 2  
HEX value represents the maximum  
number of continuous synchronous reads when the device is  
configured for its maximum word width. A value of 07h  
indicates that the device is capable of continuous linear  
bursts that will output data until the internal burst counter  
reaches the end of the device’s burstable address space.  
This field’s 3-bit value can be written directly to the read  
configuration register bit 0-2 if the device is configured for its  
maximum word width. See offset 28h for word width to  
determine the burst data output width.  
(P+16)h = 4Fh  
(P+17)h = 50h  
0002h  
0007h  
Synchronous mode read capability configuration 2  
Synchronous mode read capability configuration 3  
8
Cont.  
Table 41. Bank and Erase Block Region Information  
M36WT864TF (top)  
M36WT864BF (bottom)  
Description  
Offset  
Data  
Offset  
Data  
(P+18)h =51h  
02h  
(P+18)h =51h  
02h  
Number of Bank Regions within the device  
Note: 1. The variable P is a pointer which is defined at CFI offset 15h.  
2. Bank Regions. There are two Bank Regions, 1 contains all the banks that are made up of main blocks only, 2 contains the banks  
that are made up of the parameter and main blocks.  
72/92  
M36WT864TF, M36WT864BF  
Table 42. Bank and Erase Block Region 1 Information  
M36WT864TF (top)  
M36WT864BF (bottom)  
Description  
Offset  
Data  
0Fh  
00h  
Offset  
Data  
01h  
00h  
(P+19)h =52h  
(P+1A)h =53h  
(P+19)h =52h  
(P+1A)h =53h  
Number of identical banks within Bank Region 1  
Number of program or erase operations allowed in region 1:  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
(P+1B)h =54h  
(P+1C)h =55h  
11h  
00h  
(P+1B)h =54h  
(P+1C)h =55h  
11h  
00h  
Number of program or erase operations allowed in other banks  
while a bank in same region is programming  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
Number of program or erase operations allowed in other banks  
while a bank in this region is erasing  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
(P+1D)h =56h  
(P+1E)h =57h  
00h  
01h  
(P+1D)h =56h  
(P+1E)h =57h  
00h  
02h  
Types of erase block regions in region 1  
n = number of erase block regions with contiguous same-size  
erase blocks.  
(2)  
Symmetrically blocked banks have one blocking region.  
(P+1F)h =58h  
(P+20)h =59h  
(P+21)h =5Ah  
(P+22)h =5Bh  
(P+23)h =5Ch  
(P+24)h =5Dh  
07h  
00h  
00h  
01h  
64h  
00h  
(P+1F)h =58h  
(P+20)h =59h  
(P+21)h =5Ah  
(P+22)h =5Bh  
(P+23)h =5Ch  
(P+24)h =5Dh  
07h  
00h  
20h  
00h  
64h  
00h  
Bank Region 1 Erase Block Type 1 Information  
Bits 0-15: n+1 = number of identical-sized erase blocks  
Bits 16-31: n×256 = number of bytes in erase block region  
Bank Region 1 (Erase Block Type 1)  
Minimum block erase cycles × 1000  
Bank Region 1 (Erase Block Type 1): BIts per cell, internal  
ECC  
(P+25)h =5Eh  
(P+26)h =5Fh  
01h  
03h  
(P+25)h =5Eh  
(P+26)h =5Fh  
01h  
03h  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved 5Eh 01 5Eh 01  
Bank Region 1 (Erase Block Type 1): Page mode and  
synchronous mode capabilities  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
(P+27)h =60h  
(P+28)h =61h  
(P+29)h =62h  
(P+2A)h =63h  
(P+2B)h =64h  
(P+2C)h =65h  
06h  
00h  
00h  
01h  
64h  
00h  
Bank Region 1 Erase Block Type 2 Information  
Bits 0-15: n+1 = number of identical-sized erase blocks  
Bits 16-31: n×256 = number of bytes in erase block region  
Bank Region 1 (Erase Block Type 2)  
Minimum block erase cycles × 1000  
73/92  
M36WT864TF, M36WT864BF  
M36WT864TF (top)  
Offset Data  
M36WT864BF (bottom)  
Description  
Offset  
Data  
Bank Regions 1 (Erase Block Type 2): BIts per cell, internal  
ECC  
(P+2D)h =66h  
01h  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved  
Bank Region 1 (Erase Block Type 2): Page mode and  
synchronous mode capabilities  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
(P+2E)h =67h  
03h  
Note: 1. The variable P is a pointer which is defined at CFI offset 15h.  
2. Bank Regions. There are two Bank Regions, 1 contains all the banks that are made up of main blocks only, 2 contains the banks  
that are made up of the parameter and main blocks.  
Table 43. Bank and Erase Block Region 2 Information  
M36WT864TF (top)  
M36WT864BF (bottom)  
Description  
Offset  
Data  
01h  
00h  
Offset  
Data  
0Fh  
00h  
(P+27)h =60h  
(P+28)h =61h  
(P+2F)h =68h  
(P+30)h =69h  
Number of identical banks within bank region 2  
Number of program or erase operations allowed in bank region  
2:  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
(P+29)h =62h  
(P+2A)h =63h  
(P+2B)h =64h  
(P+2C)h =65h  
11h  
00h  
00h  
02h  
(P+31)h =6Ah  
(P+32)h =6Bh  
(P+33)h =6Ch  
(P+34)h =6Dh  
11h  
00h  
00h  
01h  
Number of program or erase operations allowed in other banks  
while a bank in this region is programming  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
Number of program or erase operations allowed in other banks  
while a bank in this region is erasing  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
Types of erase block regions in region 2  
n = number of erase block regions with contiguous same-size  
erase blocks.  
(2)  
Symmetrically blocked banks have one blocking region.  
(P+2D)h =66h  
(P+2E)h =67h  
(P+2F)h =68h  
(P+30)h =69h  
(P+31)h =6Ah  
(P+32)h =6Bh  
06h  
00h  
00h  
01h  
64h  
00h  
(P+35)h =6Eh  
(P+36)h =6Fh  
(P+37)h =70h  
(P+38)h =71h  
(P+39)h =72h  
(P+3A)h =73h  
07h  
00h  
00h  
01h  
64h  
00h  
Bank Region 2 Erase Block Type 1 Information  
Bits 0-15: n+1 = number of identical-sized erase blocks  
Bits 16-31: n×256 = number of bytes in erase block region  
Bank Region 2 (Erase Block Type 1)  
Minimum block erase cycles × 1000  
Bank Region 2 (Erase Block Type 1): BIts per cell, internal  
ECC  
(P+33)h =6Ch  
01h  
(P+3B)h =74h  
01h  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved  
74/92  
M36WT864TF, M36WT864BF  
M36WT864TF (top)  
M36WT864BF (bottom)  
Description  
Offset  
Data  
Offset  
Data  
Bank Region 2 (Erase Block Type 1): Page mode and  
synchronous  
mode capabilities (defined in table 10)  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
(P+34)h =6Dh  
03h  
(P+3C)h =75h  
03h  
(P+35)h =6Eh  
(P+36)h =6Fh  
(P+37)h =70h  
(P+38)h =71h  
(P+39)h =72h  
(P+3A)h =73h  
07h  
00h  
02h  
00h  
64h  
00h  
Bank Region 2 Erase Block Type 2 Information  
Bits 0-15: n+1 = number of identical-sized erase blocks  
Bits 16-31: n×256 = number of bytes in erase block region  
Bank Region 2 (Erase Block Type 2)  
Minimum block erase cycles × 1000  
Bank Region 2 (Erase Block Type 2): BIts per cell, internal  
ECC  
(P+3B)h =74h  
01h  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved  
Bank Region 2 (Erase Block Type 2): Page mode and  
synchronous  
mode capabilities (defined in table 10)  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
(P+3C)h =75h  
03h  
(P+3D)h =76h  
(P+3E)h =77h  
(P+3D)h =76h  
(P+3E)h =77h  
Feature Space definitions  
Reserved  
Note: 1. The variable P is a pointer which is defined at CFI offset 15h.  
2. Bank Regions. There are two Bank Regions, Region 1 contains all the banks that are made up of main blocks only, Region 2 con-  
tains the banks that are made up of the parameter and main blocks.  
75/92  
M36WT864TF, M36WT864BF  
APPENDIX C. FLASH FLOWCHARTS AND PSEUDO CODES  
Figure 28. Program Flowchart and Pseudo Code  
Start  
program_command (addressToProgram, dataToProgram) {:  
Write 40h or 10h  
writeToFlash (bank_address, 0x40) ;  
/*or writeToFlash (bank_address, 0x10) ; */  
writeToFlash (addressToProgram, dataToProgram) ;  
/*Memory enters read status state after  
the Program Command*/  
Write Address  
& Data  
do {  
Read Status  
Register  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
NO  
V
Invalid  
if (status_register.SR3==1) /*VPP invalid error */  
error_handler ( ) ;  
PP  
SR3 = 0  
YES  
Error (1, 2)  
NO  
NO  
Program  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
SR4 = 0  
YES  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06170  
Note: 1. Status check of SR1 (Protected Block), SR3 (V (V  
PP  
) Invalid) and SR4 (Program Error) can be made after each program oper-  
PPF  
ation or after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.  
76/92  
M36WT864TF, M36WT864BF  
Figure 29. Double Word Program Flowchart and Pseudo code  
Start  
Write 30h  
double_word_program_command (addressToProgram1, dataToProgram1,  
addressToProgram2, dataToProgram2)  
{
writeToFlash (bank_address, 0x30) ;  
writeToFlash (addressToProgram1, dataToProgram1) ;  
/*see note (3) */  
Write Address 1  
& Data 1 (3)  
writeToFlash (addressToProgram2, dataToProgram2) ;  
/*see note (3) */  
/*Memory enters read status state after  
the Program command*/  
Write Address 2  
& Data 2 (3)  
do {  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
Read Status  
Register  
NO  
NO  
NO  
NO  
SR7 = 1  
YES  
} while (status_register.b7== 0) ;  
V
Invalid  
if (status_register.SR3==1) /*VPP invalid error */  
error_handler ( ) ;  
PP  
SR3 = 0  
YES  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
Program  
SR4 = 0  
YES  
Error (1, 2)  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06171  
Note: 1. Status check of b1 (Protected Block), b3 (V (V  
PP  
) Invalid) and b4 (Program Error) can be made after each program operation  
PPF  
or after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.  
3. Address 1 and Address 2 must be consecutive addresses differing only for bit A0.  
77/92  
M36WT864TF, M36WT864BF  
Figure 30. Quadruple Word Program Flowchart and Pseudo Code  
Start  
quadruple_word_program_command (addressToProgram1, dataToProgram1,  
Write 56h  
addressToProgram2, dataToProgram2,  
addressToProgram3, dataToProgram3,  
addressToProgram4, dataToProgram4)  
{
Write Address 1  
& Data 1 (3)  
writeToFlash (bank_address, 0x56) ;  
writeToFlash (addressToProgram1, dataToProgram1) ;  
/*see note (3) */  
Write Address 2  
& Data 2 (3)  
writeToFlash (addressToProgram2, dataToProgram2) ;  
/*see note (3) */  
writeToFlash (addressToProgram3, dataToProgram3) ;  
/*see note (3) */  
Write Address 3  
& Data 3 (3)  
writeToFlash (addressToProgram4, dataToProgram4) ;  
/*see note (3) */  
Write Address 4  
& Data 4 (3)  
/*Memory enters read status state after  
the Program command*/  
do {  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
Read Status  
Register  
NO  
NO  
NO  
NO  
SR7 = 1  
YES  
} while (status_register.b7== 0) ;  
V
Invalid  
if (status_register.SR3==1) /*VPP invalid error */  
error_handler ( ) ;  
PP  
SR3 = 0  
YES  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
Program  
SR4 = 0  
YES  
Error (1, 2)  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06977  
Note: 1. Status check of SR1 (Protected Block), SR3 (V (V  
PP  
) Invalid) and SR4 (Program Error) can be made after each program oper-  
PPF  
ation or after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.  
3. Address 1 to Address 4 must be consecutive addresses differing only for bits A0 and A1.  
78/92  
M36WT864TF, M36WT864BF  
Figure 31. Program Suspend & Resume Flowchart and Pseudo Code  
Start  
program_suspend_command ( ) {  
writeToFlash (any_address, 0xB0) ;  
Write B0h  
writeToFlash (bank_address, 0x70) ;  
/* read status register to check if  
program has already completed */  
Write 70h  
do {  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
Read Status  
Register  
NO  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
SR2 = 1  
YES  
Program Complete  
if (status_register.SR2==0) /*program completed */  
{ writeToFlash (bank_address, 0xFF) ;  
read_data ( ) ; /*read data from another block*/  
/*The device returns to Read Array  
(as if program/erase suspend was not issued).*/  
Write FFh  
}
Read data from  
another address  
else  
{ writeToFlash (bank_address, 0xFF) ;  
read_data ( ); /*read data from another address*/  
writeToFlash (any_address, 0xD0) ;  
/*write 0xD0 to resume program*/  
Write D0h  
Write FFh  
Read Data  
}
}
Program Continues  
AI06173  
79/92  
M36WT864TF, M36WT864BF  
Figure 32. Block Erase Flowchart and Pseudo Code  
Start  
erase_command ( blockToErase ) {  
writeToFlash (bank_address, 0x20) ;  
Write 20h  
writeToFlash (blockToErase, 0xD0) ;  
/* only A12-A20 are significannt */  
/* Memory enters read status state after  
the Erase Command */  
Write Block  
Address & D0h  
do {  
Read Status  
Register  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
NO  
SR7 = 1  
} while (status_register.SR7== 0) ;  
YES  
NO  
YES  
NO  
NO  
V
Invalid  
if (status_register.SR3==1) /*VPP invalid error */  
error_handler ( ) ;  
PP  
Error (1)  
SR3 = 0  
YES  
if ( (status_register.SR4==1) && (status_register.SR5==1) )  
/* command sequence error */  
Command  
Sequence Error (1)  
SR4, SR5 = 1  
NO  
error_handler ( ) ;  
if ( (status_register.SR5==1) )  
/* erase error */  
SR5 = 0  
YES  
Erase Error (1)  
error_handler ( ) ;  
Erase to Protected  
Block Error (1)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06174  
Note: If an error is found, the Status Register must be cleared before further Program/Erase operations.  
80/92  
M36WT864TF, M36WT864BF  
Figure 33. Erase Suspend & Resume Flowchart and Pseudo Code  
Start  
erase_suspend_command ( ) {  
writeToFlash (bank_address, 0xB0) ;  
Write B0h  
Write 70h  
writeToFlash (bank_address, 0x70) ;  
/* read status register to check if  
erase has already completed */  
do {  
Read Status  
Register  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
NO  
NO  
} while (status_register.SR7== 0) ;  
SR7 = 1  
YES  
if (status_register.SR6==0) /*erase completed */  
{ writeToFlash (bank_address, 0xFF) ;  
SR6 = 1  
YES  
Erase Complete  
read_data ( ) ;  
/*read data from another block*/  
/*The device returns to Read Array  
(as if program/erase suspend was not issued).*/  
Write FFh  
Read data from  
another block  
or  
Program/Protection Program  
or  
Block Protect/Unprotect/Lock  
}
else  
{ writeToFlash (bank_address, 0xFF) ;  
read_program_data ( );  
Write D0h  
Write FFh  
Read Data  
/*read or program data from another address*/  
writeToFlash (bank_address, 0xD0) ;  
/*write 0xD0 to resume erase*/  
}
}
Erase Continues  
AI06175  
81/92  
M36WT864TF, M36WT864BF  
Figure 34. Locking Operations Flowchart and Pseudo Code  
Start  
locking_operation_command (address, lock_operation) {  
Write 60h  
writeToFlash (bank_address, 0x60) ; /*configuration setup*/  
if (lock_operation==LOCK) /*to protect the block*/  
writeToFlash (address, 0x01) ;  
else if (lock_operation==UNLOCK) /*to unprotect the block*/  
writeToFlash (address, 0xD0) ;  
Write  
01h, D0h or 2Fh  
else if (lock_operation==LOCK-DOWN) /*to lock the block*/  
writeToFlash (address, 0x2F) ;  
writeToFlash (bank_address, 0x90) ;  
Write 90h  
Read Block  
Lock States  
if (readFlash (address) ! = locking_state_expected)  
error_handler () ;  
NO  
Locking  
change  
/*Check the locking state (see Read Block Signature table )*/  
confirmed?  
YES  
writeToFlash (bank_address, 0xFF) ; /*Reset to Read Array mode*/  
Write FFh  
}
End  
AI06176  
82/92  
M36WT864TF, M36WT864BF  
Figure 35. Protection Register Program Flowchart and Pseudo Code  
Start  
protection_register_program_command (addressToProgram, dataToProgram) {:  
writeToFlash (bank_address, 0xC0) ;  
Write C0h  
writeToFlash (addressToProgram, dataToProgram) ;  
/*Memory enters read status state after  
the Program Command*/  
Write Address  
& Data  
do {  
Read Status  
Register  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
NO  
V
Invalid  
if (status_register.SR3==1) /*VPP invalid error */  
error_handler ( ) ;  
PP  
SR3 = 0  
YES  
Error (1, 2)  
NO  
NO  
Program  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
SR4 = 0  
YES  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06177  
Note: 1. Status check of SR1 (Protected Block), SR3 (V (V  
PP  
) Invalid) and SR4 (Program Error) can be made after each program oper-  
PPF  
ation or after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.  
83/92  
M36WT864TF, M36WT864BF  
Figure 36. Enhanced Factory Program Flowchart  
SETUP PHASE  
Start  
VERIFY PHASE  
Write PD1  
Address WA1(  
Write 30h  
Address WA1  
1)  
Write D0h  
Address WA1  
Read Status  
Register  
Read Status  
Register  
NO  
SR0 = 0?  
YES  
NO  
SR7 = 0?  
Check SR4, SR3  
Write PD2  
YES  
1)  
and SR1 for program,  
Address WA2(  
V
PP and Lock Errors  
NO  
SR0 = 0?  
YES  
Exit  
Read Status  
Register  
Write PD1  
Address WA1  
PROGRAM PHASE  
NO  
SR0 = 0?  
Read Status  
Register  
YES  
Write PDn  
Address WAn(  
NO  
1)  
SR0 = 0?  
YES  
Read Status  
Register  
Write PD2  
Address WA2(  
1)  
NO  
Read Status  
Register  
SR0 = 0?  
YES  
NO  
Write FFFFh  
SR0 = 0?  
YES  
Address Block WA1  
=
/
EXIT PHASE  
Write PDn  
Address WAn(  
1)  
Read Status  
Register  
Read Status  
Register  
NO  
SR7 = 1?  
YES  
NO  
SR0 = 0?  
Check Status  
Register for Errors  
YES  
Write FFFFh  
=
Address Block WA1  
/
End  
Note 1. Address can remain Starting Address WA1 or be incremented.  
AI06160  
84/92  
M36WT864TF, M36WT864BF  
Enhanced Factory Program Pseudo Code  
efp_command(addressFlow,dataFlow,n)  
/* n is the number of data to be programmed */  
{
/* setup phase */  
writeToFlash(addressFlow[0],0x30);  
writeToFlash(addressFlow[0],0xD0);  
status_register=readFlash(any_address);  
if (status_register.b7==1){  
/*EFP aborted for an error*/  
if (status_register.b4==1) /*program error*/  
error_handler();  
if (status_register.b3==1) /*VPP invalid error*/  
error_handler();  
if (status_register.b1==1) /*program to protect block error*/  
error_handler();  
}
else{  
/*Program Phase*/  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
} while (status_register.b0==1)  
/*Ready for first data*/  
for (i=0; i++; i< n){  
writeToFlash(addressFlow[i],dataFlow[i]);  
/* status register polling*/  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
} while (status_register.b0==1);  
/* Ready for a new data */  
}
writeToFlash(another_block_address,FFFFh);  
/* Verify Phase */  
for (i=0; i++; i< n){  
writeToFlash(addressFlow[i],dataFlow[i]);  
/* status register polling*/  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
} while (status_register.b0==1);  
/* Ready for a new data */  
}
writeToFlash(another_block_address,FFFFh);  
/* exit program phase */  
/* Exit Phase */  
/* status register polling */  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled */  
} while (status_register.b7==0);  
if (status_register.b4==1) /*program failure error*/  
error_handler();  
if (status_register.b3==1) /*VPP invalid error*/  
error_handler();  
if (status_register.b1==1) /*program to protect block error*/  
error_handler();  
}
}
85/92  
M36WT864TF, M36WT864BF  
Figure 37. Quadruple Enhanced Factory Program Flowchart  
SETUP PHASE  
LOAD PHASE  
Start  
Write PD1  
Address WA1  
1)  
(
Write 75h  
Address WA1  
Read Status  
Register  
FIRST  
LOAD PHASE  
Write PD1  
Address WA1  
NO  
NO  
NO  
SR0 = 0?  
YES  
Read Status  
Register  
Write PD2  
Address WA2  
2)  
(
NO  
SR7 = 0?  
YES  
Read Status  
Register  
Check SR4, SR3  
and SR1 for program,  
SR0 = 0?  
V
and Lock Errors  
PP  
YES  
Write PD3  
Address WA3  
Exit  
2)  
(
Read Status  
Register  
SR0 = 0?  
YES  
Write PD4  
Address WA4  
2)  
(
EXIT PHASE  
PROGRAM AND  
VERIFY PHASE  
Write FFFFh  
Address =Block WA1  
/
Read Status  
Register  
NO  
NO  
Check Status  
Register for Errors  
SR0 = 0?  
YES  
End  
Last Page?  
YES  
Note 1. Address can remain Starting Address WA1 (in which case the next Page is programmed) or can be  
any address in the same block.  
2.The address is only checked for the first Word of each Page as the order to program the Words is fixed  
so subsequent Words in each Page can be written to any address.  
AI06178  
86/92  
M36WT864TF, M36WT864BF  
Quadruple Enhanced Factory Program Pseudo Code  
quad_efp_command(addressFlow,dataFlow,n)  
/* n is the number of pages to be programmed.*/  
{
/* Setup phase */  
writeToFlash(addressFlow[0],0x75);  
for (i=0; i++; i< n){  
/*Data Load Phase*/  
/*First Data*/  
writeToFlash(addressFlow[i],dataFlow[i,0]);  
/*at the first data of the first page, Quad-EFP may be aborted*/  
if (First_Page) {  
status_register=readFlash(any_address);  
if (status_register.b7==1){  
/*EFP aborted for an error*/  
if (status_register.b4==1) /*program error*/  
error_handler();  
if (status_register.b3==1) /*VPP invalid error*/  
error_handler();  
if (status_register.b1==1) /*program to protect block error*/  
error_handler();  
}
}
/*2nd data*/  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
}while (status_register.b0==1)  
writeToFlash(addressFlow[i],dataFlow[i,1]);  
/*3rd data*/  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
}while (status_register.b0==1)  
writeToFlash(addressFlow[i],dataFlow[i,2]);  
/*4th data*/  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
}while (status_register.b0==1)  
writeToFlash(addressFlow[i],dataFlow[i,3]);  
/* Program&Verify Phase */  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
}while (status_register.b0==1)  
}
/* Exit Phase */  
writeToFlash(another_block_address,FFFFh);  
/* status register polling */  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled */  
} while (status_register.b7==0);  
if (status_register.b1==1) /*program to protected block error*/  
error_handler();  
if (status_register.b3==1) /*VPP invalid error*/  
error_handler();  
if (status_register.b4==1) /*program failure error*/  
error_handler();  
}
}
87/92  
M36WT864TF, M36WT864BF  
APPENDIX D. FLASH COMMAND INTERFACE STATE TABLES  
Table 44. Command Interface States - Modify Table, Next State  
Next CI State After Command Input  
Erase  
Confirm  
P/E  
Block  
Read  
Program Program  
Erase,  
Bank  
Erase  
Setup  
(3,4)  
Clear  
status  
Register  
(5)  
Quad- Resume, Program/ Read  
Electronic  
signature,  
Read CFI  
Query  
WP  
DWP,  
Current CI State  
Read  
EFP  
Setup  
EFP  
Setup  
Block  
Erase  
Status  
setup  
(3,4)  
QWP  
Setup  
(3,4)  
(2)  
Array  
Unlock Suspend Register  
confirm,  
EFP  
Confirm  
Program  
Setup  
Program  
Setup  
Quad-EFP  
Setup  
Ready  
Ready  
Erase Setup EFP Setup  
Ready  
Lock/CR Setup  
Ready (Lock Error)  
Ready  
Ready (Lock Error)  
Setup  
OTP  
OTPBusy  
Busy  
Setup  
Program Busy  
Program  
Suspended  
Busy  
Program Busy  
Program Busy  
Program  
Program  
Busy  
Suspend  
Setup  
Program Suspended  
Ready (error)  
Program Suspended  
Ready (error)  
Erase Busy  
Erase  
Suspended  
Busy  
Erase Busy  
Erase Busy  
Erase  
Program in  
Erase  
Suspend  
Erase  
Suspended  
Suspend  
Setup  
Erase Suspended  
Erase Busy  
Erase Suspended  
Program in Erase Suspend Busy  
Program in  
Erase  
Suspend  
Suspended  
Busy  
Program in Erase Suspend Busy  
Program in Erase Suspend Busy  
Program  
in Erase  
Suspend  
Program in  
Erase  
Suspend  
Busy  
Suspend  
Program in Erase Suspend Suspended  
Program in Erase Suspend Suspended  
Lock/CR Setup  
in Erase Suspend  
Erase  
Suspend  
Erase Suspend (Lock Error)  
Ready (error)  
Erase Suspend (Lock Error)  
Ready (error)  
Setup  
EFP Busy  
(6)  
Busy  
Verify  
Setup  
Busy  
EFP  
EFPBusy  
EFPVerify  
(6)  
(6)  
(6)  
Quad EFP Busy  
Quad  
EFP  
Quad EFP Busy  
Note: 1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple Enhanced Fac-  
tory Program, DWP = Double Word Program, QWP = Quadruple Word Program, P/E. C. = Program/Erase Controller.  
2. At Power-Up, all banks are in Read Array mode. A Read Array command issued to a busy bank, results in undetermined data out-  
put.  
3. The two cycle command should be issued to the same bank address.  
4. If the P/E.C. is active, both cycles are ignored.  
5. The Clear Status Register command clears the Status Register error bits except when the P/E.C. is busy or suspended.  
6. EFP and Quad EFP are allowed only when Status Register bit SR0 is set to ‘0’.EFP and Quad EFP are busy if Block Address is  
first EFP Address. Any other commands are treated as data.  
88/92  
M36WT864TF, M36WT864BF  
Table 45. Command Interface States - Modify Table, Next Output  
Next Output State After Command Input (6)  
Erase  
Confirm  
P/E  
Resume,  
Block  
Unlock  
confirm,  
EFP  
Block  
Erase,  
Bank  
Erase  
Setup  
(3,4)  
Read  
Program  
DWP,  
QWP  
Setup  
(3,4)  
Quad-  
EFP  
Setup  
Program/  
Erase  
Suspend Register  
Read  
Status  
Electronic  
signature,  
Read CFI  
Query  
Clear status  
Register  
(5)  
Read  
Current CI State  
EFP  
Setup  
(2)  
Array  
Confirm  
Program Setup  
Erase Setup  
OTP Setup  
Program in  
Erase Suspend  
Status Register  
EFP Setup  
EFP Busy  
EFP Verify  
Quad EFP Setup  
Quad EFP Busy  
Lock/CR Setup  
Lock/CR Setup  
in Erase  
Status Register  
Suspend  
Status  
Register  
Output  
Unchanged  
Status  
Register  
OTP Busy  
Array  
Array  
Status Register  
Status Register  
Output Unchanged  
Ready  
Program Busy  
Erase Busy  
Program/Erase  
Electronic  
Signature/  
CFI  
Status  
Register  
Output  
Unchanged  
Program in  
Erase Suspend  
Busy  
Output Unchanged  
Program in  
Erase Suspend  
Suspended  
Note: 1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple Enhanced Fac-  
tory Program, DWP = Double Word Program, QWP = Quadruple Word Program, P/E. C. = Program/Erase Controller.  
2. At Power-Up, all banks are in Read Array mode. A Read Array command issued to a busy bank, results in undetermined data out-  
put.  
3. The two cycle command should be issued to the same bank address.  
4. If the P/E.C. is active, both cycles are ignored.  
5. The Clear Status Register command clears the Status Register error bits except when the P/E.C. is busy or suspended.  
6. The output state shows the type of data that appears at the outputs if the bank address is the same as the command address. A  
bank can be placed in Read Array, Read Status Register, Read Electronic Signature or Read CFI Query mode, depending on the  
command issued. Each bank remains in its last output state until a new command is issued. The next state does not depend on the  
bank’s output state.  
89/92  
M36WT864TF, M36WT864BF  
Table 46. Command Interface States - Lock Table, Next State  
Next CI State After Command Input  
Block  
Lock-Down  
EFP Exit,  
P/E. C.  
Operation  
Completed  
Illegal  
Command  
(5)  
Current CI State  
Lock/CR  
Block Lock  
Confirm  
Set CR  
OTP Setup  
(4)  
Quad EFP  
(4)  
Setup  
Confirm  
(3)  
Confirm  
Exit  
Lock/CR  
Setup  
Ready  
OTP Setup  
Ready  
N/A  
Lock/CR Setup  
Ready (Lock error)  
Ready  
Ready (Lock error)  
N/A  
N/A  
Setup  
OTP  
OTP Busy  
Busy  
Ready  
N/A  
Setup  
Program Busy  
Program Busy  
Program  
Erase  
Busy  
Suspend  
Setup  
Ready  
N/A  
Program Suspended  
Ready (error)  
N/A  
Busy  
Erase Busy  
Ready  
Lock/CR  
Setup in  
Erase  
Suspend  
Erase Suspended  
N/A  
Suspend  
Setup  
Busy  
Program in Erase Suspend Busy  
Program in Erase Suspend Busy  
Program in Erase Suspend Suspended  
Erase Suspend  
N/A  
Program in  
Erase  
Suspend  
Erase  
Suspended  
Suspend  
N/A  
Lock/CR Setup  
in Erase Suspend  
Erase Suspend (Lock  
error)  
Erase Suspend (Lock error)  
N/A  
Setup  
Ready (error)  
N/A  
N/A  
(2)  
(2)  
(2)  
Busy  
Verify  
Setup  
EFP Verify  
Ready  
EFP  
EFP Busy  
EFP Busy  
(2)  
Ready  
N/A  
EFP Verify  
EFP Verify  
(2)  
Quad EFP Busy  
QuadEFP  
Quad EFP  
(2)  
Busy  
Ready  
Ready  
Quad EFP Busy  
(2)  
Busy  
Note: 1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple Enhanced Fac-  
tory Program, P/E. C. = Program/Erase Controller.  
2. EFP and Quad EFP are allowed only when Status Register bit SR0 is set to ‘0’. EFP and Quad EFP are busy if Block Address is  
first EFP Address. Any other commands are treated as data.  
3. EFP and Quad EFP exit when Block Address is different from first Block Address and data is FFFFh.  
4. If the P/E.C. is active, both cycles are ignored.  
5. Illegal commands are those not defined in the command set.  
90/92  
M36WT864TF, M36WT864BF  
Table 47. Command Interface States - Lock Table, Next Output  
Next Output State After Command Input  
Block  
Lock-Down  
EFP Exit,  
Quad EFP  
P/E. C.  
Operation  
Completed  
Illegal  
Command  
(4)  
Current CI State  
Lock/CR  
Block Lock  
Confirm  
Set CR  
OTP Setup  
(3)  
(3)  
Setup  
Confirm  
(2)  
Confirm  
Exit  
Program Setup  
Erase Setup  
OTP Setup  
Program in Erase  
Suspend  
Output  
Unchanged  
Status Register  
EFP Setup  
EFP Busy  
EFP Verify  
Quad EFP Setup  
Quad EFP Busy  
Lock/CR Setup  
Output  
Unchanged  
Status Register  
Array  
Status Register  
Output  
Lock/CR Setup in  
Erase Suspend  
Output  
Unchanged Unchanged  
OTP Busy  
Status Register  
Output Unchanged  
Output Unchanged  
Array  
Ready  
Program Busy  
EraseBusy  
Program/Erase  
Output  
Output  
Unchanged Unchanged  
Status Register  
Array  
Program in Erase  
Suspend Busy  
Program in Erase  
Suspend  
Suspended  
Note: 1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple Enhanced Fac-  
tory Program, P/E. C. = Program/Erase Controller.  
2. EFP and Quad EFP exit when Block Address is different from first Block Address and data is FFFFh.  
3. If the P/E.C. is active, both cycles are ignored.  
4. Illegal commands are those not defined in the command set.  
91/92  
M36WT864TF, M36WT864BF  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners  
© 2002 STMicroelectronics - All Rights Reserved  
STMicroelectronics group of companies  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong -  
India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.  
www.st.com  
92/92  

相关型号:

M36WT864BF70ZA6T

SPECIALTY MEMORY CIRCUIT, PBGA96, 8 X 14 MM, 0.80 MM PITCH, STACK, LFBGA-96
STMICROELECTR

M36WT864BF85ZA6

SPECIALTY MEMORY CIRCUIT, PBGA96, 8 X 14 MM, 0.80 MM PITCH, STACK, LFBGA-96
STMICROELECTR

M36WT864BF85ZA6T

SPECIALTY MEMORY CIRCUIT, PBGA96, 8 X 14 MM, 0.80 MM PITCH, STACK, LFBGA-96
STMICROELECTR

M36WT864BFZA

64 Mbit 4Mb x16, Multiple Bank, Burst Flash Memory and 8 Mbit 512K x16 SRAM, Multiple Memory Product
STMICROELECTR

M36WT864T10ZA6T

64 Mbit 4Mb x16, Multiple Bank, Burst Flash Memory and 8 Mbit 512K x16 SRAM, Multiple Memory Product
STMICROELECTR

M36WT864T70ZA6T

64 Mbit 4Mb x16, Multiple Bank, Burst Flash Memory and 8 Mbit 512K x16 SRAM, Multiple Memory Product
STMICROELECTR

M36WT864T85ZA6T

64 Mbit 4Mb x16, Multiple Bank, Burst Flash Memory and 8 Mbit 512K x16 SRAM, Multiple Memory Product
STMICROELECTR

M36WT864TF

64 Mbit 4Mb x16, Multiple Bank, Burst Flash Memory and 8 Mbit 512K x16 SRAM, Multiple Memory Product
STMICROELECTR

M36WT864TF100ZA6

SPECIALTY MEMORY CIRCUIT, PBGA96, 8 X 14 MM, 0.80 MM PITCH, STACK, LFBGA-96
STMICROELECTR

M36WT864TF100ZA6T

SPECIALTY MEMORY CIRCUIT, PBGA96, 8 X 14 MM, 0.80 MM PITCH, STACK, LFBGA-96
STMICROELECTR

M36WT864TF10ZA6

SPECIALTY MEMORY CIRCUIT, PBGA96, 8 X 14 MM, 0.80 MM PITCH, STACK, LFBGA-96
STMICROELECTR

M36WT864TF10ZA6T

SPECIALTY MEMORY CIRCUIT, PBGA96, 8 X 14 MM, 0.80 MM PITCH, STACK, LFBGA-96
STMICROELECTR