M40SZ100W [STMICROELECTRONICS]

5V or 3V NVRAM SUPERVISOR FOR LPSRAM; 5V或3V NVRAM监督员LPSRAM
M40SZ100W
型号: M40SZ100W
厂家: ST    ST
描述:

5V or 3V NVRAM SUPERVISOR FOR LPSRAM
5V或3V NVRAM监督员LPSRAM

静态存储器
文件: 总19页 (文件大小:271K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M40SZ100Y  
M40SZ100W  
5V or 3V NVRAM SUPERVISOR FOR LPSRAM  
FEATURES SUMMARY  
CONVERT LOW POWER SRAMs INTO  
Figure 1. 16-pin SOIC Package  
NVRAMs  
5V OR 3V OPERATING VOLTAGE  
PRECISION POWER MONITORING and  
16  
POWER SWITCHING CIRCUITRY  
1
AUTOMATIC WRITE-PROTECTION WHEN  
V
IS OUT-OF-TOLERANCE  
CC  
SO16 (MQ)  
CHOICE OF SUPPLY VOLTAGES and  
POWER-FAIL DESELECT VOLTAGES:  
– M40SZ100Y: V = 4.5 to 5.5V;  
CC  
Figure 2. 28-pin SOIC Package*  
4.20V V  
4.50V  
PFD  
– M40SZ100W: V = 2.7 to 3.6V;  
CC  
2.55V V  
2.70V  
PFD  
SNAPHAT (SH)  
Battery  
RESET OUTPUT (RST) FOR POWER ON  
RESET  
1.25V REFERENCE (for PFI/PFO)  
LESS THAN 10ns CHIP ENABLE ACCESS  
PROPAGATION DELAY (at 5V)  
OPTIONAL PACKAGING INCLUDES A 28-  
®
LEAD SOIC and SNAPHAT TOP (to be  
ordered separately)  
28  
1
28-LEAD SOIC PACKAGE PROVIDES  
DIRECT CONNECTION FOR A SNAPHAT  
TOP WHICH CONTAINS THE BATTERY  
SOH28 (MH)  
BATTERY LOW PIN (BL)  
* Contact Local Sales Office  
September 2003  
1/19  
Rev. 1.3  
M40SZ100Y, M40SZ100W  
TABLE OF CONTENTS  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Logic Diagram (Figure 3.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Signal Names (Table 1.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
SOIC16 Connections (Figure 4.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
SOIC28 Connections (Figure 5.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Block Diagram (Figure 6.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Hardware Hookup (Figure 7.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Absolute Maximum Ratings (Table 2.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
DC and AC Measurement Conditions (Table 3.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
AC Testing Load Circuit (Figure 8.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
AC Testing Input/Output Waveforms (Figure 9.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Capacitance (Table 4.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
DC Characteristics (Table 5.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Data Retention Lifetime Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power Down Timing (Figure 10.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power Up Timing (Figure 11.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power Down/Up AC Characteristics (Table 6.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power-on Reset Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Reset Input (RSTIN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
RSTIN Timing Waveform (Figure 12.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Reset AC Characteristics (Table 7.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Battery Low Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Power-fail Input/Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
V
CC  
Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Supply Voltage Protection (Figure 13.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
SNAPHAT® Battery Table (Table 13.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2/19  
M40SZ100Y, M40SZ100W  
SUMMARY DESCRIPTION  
The M40SZ100Y/W NVRAM Controller is a self-  
contained device which converts a standard low-  
power SRAM into a non-volatile memory. A preci-  
sion voltage reference and comparator monitors  
of the SOIC package after the completion of the  
surface mount process which greatly reduces the  
board manufacturing process complexity of either  
directly soldering or inserting a battery into a sol-  
dered holder. Providing non-volatility becomes a  
“SNAP.” This feature is also available in the “top-  
less” 16-pin SOIC package (MQ).  
the V input for an out-of-tolerance condition.  
CC  
When an invalid V  
tioned chip enable output (E  
condition occurs, the condi-  
CC  
) is forced inactive  
CON  
to write protect the stored data in the SRAM. Dur-  
ing a power failure, the SRAM is switched from the  
Insertion of the SNAPHAT housing after reflow  
prevents potential battery damage due to the high  
temperatures required for device surface-mount-  
ing. The SNAPHAT housing is also keyed to pre-  
vent reverse insertion.  
The 28-pin SOIC and battery packages are  
shipped separately in plastic anti-static tubes or in  
Tape & Reel form. For the 28-lead SOIC, the bat-  
tery/crystal package (e.g., SNAPHAT) part num-  
ber is “M4ZXX-BR00SH” (see Table 13, page 17).  
V
pin to the lithium cell within the SNAPHAT (or  
CC  
external battery for the 16-lead SOIC) to provide  
the energy required for data retention. On a sub-  
sequent power-up, the SRAM remains write pro-  
tected until a valid power condition returns.  
The 28-pin, 330 mil SOIC provides sockets with  
gold plated contacts for direct connection to a sep-  
®
arate SNAPHAT housing containing the battery.  
The SNAPHAT housing has gold plated pins  
which mate with the sockets, ensuring reliable  
connection. The housing is keyed to prevent im-  
proper insertion. This unique design allows the  
SNAPHAT battery package to be mounted on top  
Caution: Do not place the SNAPHAT battery top  
in conductive foam, as this will drain the lithium  
button-cell battery.  
Figure 3. Logic Diagram  
Table 1. Signal Names  
E
Chip Enable Input  
(1)  
V
V
CC BAT  
E
Conditioned Chip Enable Output  
Reset Output (Open Drain)  
Reset Input  
CON  
RST  
RSTIN  
BL  
V
OUT  
Battery Low Output (Open Drain)  
Supply Voltage Output  
Supply Voltage  
E
BL  
E
V
OUT  
M40SZ100Y  
M40SZ100W  
PFI  
CON  
V
CC  
PFO  
RST  
RSTIN  
(1)  
Back-up Supply Voltage  
V
BAT  
PFI  
PFO  
Power Fail Input  
Power Fail Output  
Ground  
V
SS  
V
SS  
AI03933  
NC  
Not Connected Internally  
Note: 1. For SO16 only.  
Note: 1. For 16-pin SOIC package only.  
3/19  
M40SZ100Y, M40SZ100W  
Figure 4. SOIC16 Connections  
Figure 5. SOIC28 Connections  
1
2
3
4
5
6
7
8
9
28  
27  
V
CC  
BL  
NC  
NC  
NC  
V
26  
NC  
NC  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
CC  
NC  
25  
NC  
OUT  
24  
NC  
NC  
NC  
PFI  
NC  
E
RST  
NC  
V
OUT  
23  
NC  
NC  
PFI  
BL  
E
M40SZ100Y  
M40SZ100W  
22  
NC  
M40SZ100Y  
M40SZ100W  
RSTIN  
PFO  
21  
NC  
20  
RSTIN  
NC  
V
BAT  
10  
11  
12  
13  
14  
19  
NC  
RST  
NC  
NC  
E
V
E
CON  
SS  
18  
NC  
NC  
17  
AI03935  
16  
PFO  
V
15  
SS  
CON  
AI03934  
Note: 1. DU = Do Not Use  
Figure 6. Block Diagram  
V
V
CC  
OUT  
V
BAT  
(1)  
COMPARE  
BL  
V
= 2.5V  
= 2.5V  
BL  
COMPARE  
V
SO  
POR  
COMPARE  
V
= 4.4V  
PFD  
(2.65V for SZ100W)  
(1)  
RST  
E
RSTIN  
E
CON  
PFI  
PFO  
COMPARE  
1.25V  
AI04766  
Note: Open drain output  
4/19  
M40SZ100Y, M40SZ100W  
Figure 7. Hardware Hookup  
3.0V, 3.3V or 5V  
Regulator  
Unregulated  
Voltage  
V
V
V
E
V
OUT  
IN  
CC  
CC  
V
CC  
0.1µF  
M40SZ100Y  
M40SZ100W  
1Mb or 4Mb  
LPSRAM  
0.1µF  
E
From Microprocessor  
RSTIN  
PFI  
E
CON  
PFO  
R1  
R2  
To Microprocessor NMI  
To Microprocessor Reset  
To Battery Monitor Circuit  
V
RST  
BL  
SS  
(1)  
V
BAT  
AI04767  
Note: 1. User supplied for the 16-pin package  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
“Absolute Maximum Ratings” table may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
Unit  
°C  
SNAPHAT  
SOIC  
–40 to 85  
–55 to 125  
T
Storage Temperature (V Off)  
CC  
STG  
°C  
(1)  
SLD  
Lead Solder Temperature for 10 seconds  
Input or Output Voltages  
260  
°C  
T
V
IO  
–0.3 to V +0.3  
V
V
CC  
M40SZ100Y  
M40SZ100W  
–0.3 to 7  
V
Supply Voltage  
CC  
–0.3 to 4.6  
V
I
Output Current  
20  
1
mA  
W
O
P
Power Dissipation  
D
Note: 1. Reflow at peak temperature of 215°C to 225°C for < 60 seconds (total thermal budget not to exceed 180°C for between 90 to 120  
seconds).  
CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode.  
CAUTION: Do NOT wave solder SOIC to avoid damaging SNAPHAT sockets.  
5/19  
M40SZ100Y, M40SZ100W  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, as well as the DC and AC  
characteristics of the device. The parameters in  
the following DC and AC Characteristic tables are  
derived from tests performed under the Measure-  
ment Conditions listed in the relevant tables. De-  
signers should check that the operating conditions  
in their projects match the measurement condi-  
tions when using the quoted parameters.  
Table 3. DC and AC Measurement Conditions  
Parameter  
M40SZ100Y  
4.5 to 5.5V  
–40 to 85°C  
100pF  
M40SZ100W  
2.7 to 3.6V  
–40 to 85°C  
50pF  
V
CC  
Supply Voltage  
Ambient Operating Temperature  
Load Capacitance (C )  
L
Input Rise and Fall Times  
5ns  
5ns  
0.2 to 0.8V  
0.2 to 0.8V  
Input Pulse Voltages  
CC  
CC  
0.3 to 0.7V  
0.3 to 0.7V  
Input and Output Timing Ref. Voltages  
CC  
CC  
Figure 8. AC Testing Load Circuit  
Figure 9. AC Testing Input/Output Waveforms  
333Ω  
DEVICE  
UNDER  
TEST  
0.8V  
CC  
0.7V  
CC  
1.73V  
0.3V  
CC  
C
= 100pF  
or 50pF  
L
0.2V  
CC  
AI02568  
C
includes JIG capacitance  
L
AI02393  
Note: 1. CL = 100pF for M40SZ100Y and 50pF for M40SZ100W.  
Table 4. Capacitance  
(1,2)  
Symbol  
Min  
Max  
7
Unit  
pF  
Parameter  
C
Input Capacitance  
Output Capacitance  
IN  
(3)  
10  
pF  
C
OUT  
Note: 1. Sampled only, not 100% tested.  
2. At 25°C, f = 1MHz.  
3. Outputs deselected  
6/19  
M40SZ100Y, M40SZ100W  
Table 5. DC Characteristics  
M40SZ100Y  
Typ  
M40SZ100W  
Unit  
(1)  
Sym  
Parameter  
Test Condition  
Min  
Max  
Min  
Typ  
Max  
I
Supply Current  
Outputs open  
1
0.5  
mA  
nA  
CC  
Data Retention Mode  
I
50  
2
200  
50  
200  
CCDR  
(2)  
Current  
Input Leakage  
Current  
0V V V  
±1  
25  
±1  
25  
µA  
nA  
µA  
mA  
µA  
IN  
CC  
(3)  
I
LI  
Input Leakage  
Current (PFI)  
–25  
–25  
2
Output Leakage  
Current  
(4)  
LO  
0V V  
V  
CC  
±1  
±1  
I
OUT  
V
Current  
OUT  
(5)  
V
V
> V – 0.3  
CC  
175  
100  
100  
100  
I
OUT  
OUT1  
(Active)  
V
Current  
OUT  
I
> V  
– 0.3  
BAT  
OUT2  
OUT  
(Battery Back-up)  
Battery Voltage  
Input High Voltage  
Input Low Voltage  
Output High  
(6)  
(6)  
V
2.5  
3.0  
V
2.5  
3.0  
V
V
V
BAT  
3.5  
3.5  
V
0.7V  
+ 0.3 0.7V  
V
+ 0.3  
IH  
CC  
CC  
CC  
CC  
V
0.3V  
0.3V  
CC  
–0.3  
2.4  
–0.3  
IL  
CC  
V
I
= –1.0mA  
= –1.0µA  
2.4  
2.5  
V
OH  
OH  
(7)  
Voltage  
V
Battery Back-  
OH  
(8)  
V
OHB  
I
2.5  
2.9  
3.5  
0.4  
0.4  
2.9  
3.5  
0.4  
0.4  
V
V
V
OUT2  
up  
I
= 3.0mA  
Output Low Voltage  
Output Low Voltage  
OL  
V
OL  
I
OL  
= 10mA  
(9)  
(open drain)  
Power-fail Deselect  
Voltage  
V
4.20  
4.40  
4.50  
2.55  
2.60  
2.70  
V
PFD  
V
V
= 5V(Y)  
= 3V(V)  
CC  
CC  
PFI Input Threshold  
PFI Hysteresis  
1.225 1.250  
1.275  
70  
1.225 1.250  
1.275  
70  
V
mV  
V
V
PFI  
PFI Rising  
20  
20  
Battery Back-up  
Switchover Voltage  
V
2.5  
2.5  
SO  
Note: 1. Valid for Ambient Operating Temperature: T = –40 to 85°C; V = 2.7 to 3.6V or 4.5 to 5.5V(except where noted).  
A
CC  
2. Measured with V  
and E  
open.  
OUT  
CON  
3. RSTIN internally pulled-up to V through 100kresistor.  
CC  
4. Outputs deselected.  
5. External SRAM must match SUPERVISOR chip V specification (3V or 5V).  
CC  
6. For rechargeable back-up, V  
7. For PFO pin (CMOS).  
(max) may be considered V – 0.5V.  
CC  
BAT  
8. Chip Enable output (E  
duce battery life.  
) can only sustain CMOS leakage currents in the battery back-up mode. Higher leakage currents will re-  
CON  
9. For RST & BL pins (Open Drain).  
7/19  
M40SZ100Y, M40SZ100W  
OPERATION  
The M40SZ100Y/W, as shown in Figure 7, page 5,  
can control one (two, if placed in parallel) standard  
low-power SRAM. This SRAM must be configured  
to have the chip enable input disable all other input  
signals. Most slow, low-power SRAMs are config-  
ured like this, however many fast SRAMs are not.  
During normal operating conditions, the condi-  
supply has reached V  
put, to allow for processor stabilization (see Figure  
11, page 10).  
Data Retention Lifetime Calculation  
Most low power SRAMs on the market today can  
be used with the M40SZ100Y/W NVRAM Control-  
ler. There are, however some criteria which should  
be used in making the final choice of which SRAM  
to use. The SRAM must be designed in a way  
where the chip enable input disables all other in-  
puts to the SRAM. This allows inputs to the  
M40SZ100Y/W and SRAMs to be “Don't care”  
, independent of the E in-  
PFD  
tioned chip enable (E  
) output pin follows the  
CON  
chip enable (E) input pin with timing shown in Ta-  
ble 6, page 10. An internal switch connects V to  
CC  
V
. This switch has a voltage drop of less than  
OUT  
0.3V (I  
).  
OUT1  
When V degrades during a power failure, E  
CC  
CON  
once V  
falls below V  
(min) (see Figure 10,  
CC  
PFD  
is forced inactive independent of E. In this situa-  
tion, the SRAM is unconditionally write protected  
page 9). The SRAM should also guarantee data  
retention down to V = 2.0V. The chip enable ac-  
CC  
as V  
falls below an out-of-tolerance threshold  
). For the M40SZ100Y/W the power fail de-  
CC  
cess time must be sufficient to meet the system  
needs with the chip enable propagation delays in-  
cluded.  
(V  
PFD  
tection value associated with V  
ble 5, page 7.  
is shown in Ta-  
PFD  
If data retention lifetime is a critical parameter for  
the system, it is important to review the data reten-  
tion current specifications for the particular  
SRAMs being evaluated. Most SRAMs specify a  
data retention current at 3.0V. Manufacturers gen-  
erally specify a typical condition for room temper-  
ature along with a worst case condition (generally  
at elevated temperatures). The system level re-  
quirements will determine the choice of which val-  
ue to use. The data retention current value of the  
If chip enable access is in progress during a power  
fail detection, that memory cycle continues to com-  
pletion before the memory is write protected. If the  
memory cycle is not terminated within time t  
,
WPT  
E
is unconditionally driven high, write protect-  
CON  
ing the SRAM. A power failure during a WRITE cy-  
cle may corrupt data at the currently addressed  
location, but does not jeopardize the rest of the  
SRAM's contents. At voltages below V  
(min),  
PFD  
the user can be assured the memory will be write  
protected within the Write Protect Time (t ) pro-  
SRAMs can then be added to the I  
value of  
CCDR  
WPT  
the M40SZ100Y/W to determine the total current  
requirements for data retention. The available bat-  
vided the V fall time does not exceed t (see Ta-  
CC  
F
®
ble 6, page 10).  
tery capacity for the SNAPHAT of your choice  
As V  
continues to degrade, the internal switch  
(see Table 13, page 17) can then be divided by  
this current to determine the amount of data reten-  
tion available.  
CC  
disconnects V and connects the internal battery  
CC  
to V  
. This occurs at the switchover voltage  
OUT  
(V ). Below the V , the battery provides a volt-  
SO  
SO  
CAUTION: Take care to avoid inadvertent dis-  
age V  
to the SRAM and can supply current  
(see Table 5, page 7).  
OHB  
charge through V  
been attached.  
and E  
after battery has  
OUT  
CON  
I
OUT2  
When V  
rises above V , V  
is switched  
CC  
SO  
OUT  
For a further more detailed review of lifetime calcu-  
lations, please see Application Note AN1012.  
back to the supply voltage. Output E  
active for t  
is held in-  
CON  
(120ms maximum) after the power  
CER  
8/19  
M40SZ100Y, M40SZ100W  
Figure 10. Power Down Timing  
V
CC  
V
V
V
V
(max)  
(min)  
PFD  
PFD  
PFD  
SO  
tF  
tFB  
E
E
tWPT  
V
OHB  
CON  
RST  
PFO  
VALID  
AI03936  
9/19  
M40SZ100Y, M40SZ100W  
Figure 11. Power Up Timing  
V
CC  
V
V
V
(max)  
(min)  
PFD  
PFD  
PFD  
V
SO  
tR  
tRB  
tCER  
E
E
tEPD  
tEPD  
V
OHB  
CON  
tREC  
RST  
PFO  
VALID  
AI03937  
Table 6. Power Down/Up AC Characteristics  
(1)  
Symbol  
Min  
Max  
Unit  
µs  
Parameter  
(2)  
V
V
(max) to V  
(min) to V  
(min) V Fall Time  
300  
t
PFD  
PFD  
CC  
F
(3)  
V
Fall Time  
10  
15  
10  
µs  
t
PFD  
SS CC  
FB  
t
PFI to PFO Propagation Delay  
V (min) to V (max) V Rise Time  
PFD  
25  
µs  
µs  
ns  
ns  
µs  
ms  
ms  
µs  
PFD  
t
R
PFD  
CC  
M40SZ100Y  
M40SZ100W  
10  
15  
t
Chip Enable Propagation Delay (Low or High)  
V to V (min) V Rise Time  
SS  
EPD  
t
1
RB  
PFD  
CC  
t
Chip Enable Recovery  
V (max) to RST High  
PFD  
40  
40  
40  
120  
200  
200  
CER  
t
REC  
t
Write Protect Time  
WPT  
Note: 1. Valid for Ambient Operating Temperature: T = –40 to 85°C; V = 2.7 to 3.6V or 4.5 to 5.5V(except where noted).  
A
CC  
2. V  
(max) to V  
(min) fall time of less than tF may result in deselection/write protection not occurring until 200 µs after V  
PFD CC  
PFD  
passes V  
(min).  
PFD  
3. V  
(min) to V fall time of less than tFB may cause corruption of RAM data.  
PFD  
SS  
10/19  
M40SZ100Y, M40SZ100W  
Power-on Reset Output  
Reset Input (RSTIN)  
All microprocessors have a reset input which forc-  
es them to a known state when starting. The  
M40SZ100Y/W has a reset output (RST) pin which  
The M40SZ100Y/W provides one independent in-  
put which can generate an output reset. The dura-  
tion and function of this reset is identical to a reset  
generated by a power cycle. Table 7 and Figure 12  
illustrate the AC reset characteristics of this func-  
is guaranteed to be low by V  
(see Table 5,  
PFD  
page 7). This signal is an open drain configuration.  
An appropriate pull-up resistor to V should be  
tion. Pulses shorter than t  
will not generate a  
CC  
RLRH  
chosen to control the rise time. This signal will be  
valid for all voltage conditions, even when V  
reset condition. RSTIN is internally pulled up to  
through a 100kresistor.  
V
CC  
CC  
equals V (with valid battery voltage).  
SS  
Once V  
exceeds the power failure detect volt-  
, an internal timer keeps RST low for  
CC  
age V  
PFD  
t
to allow the power supply to stabilize.  
REC  
Figure 12. RSTIN Timing Waveform  
RSTIN  
tRLRH  
RST (1)  
tR1HRH  
AI04768  
Note: With pull-up resistor  
Table 7. Reset AC Characteristics  
(1)  
Symbol  
Min  
200  
40  
Max  
Unit  
ns  
Parameter  
(2)  
RSTIN Low to RSTIN High  
RSTIN High to RST High  
t
RLRH  
(3)  
200  
ms  
t
R1HRH  
Note: 1. Valid for Ambient Operating Temperature: T = –40 to 85°C; V = 2.7 to 3.6V or 4.5 to 5.5V (except where noted).  
A
CC  
2. Pulse width less than 50ns will result in no RESET (for noise immunity).  
3. C = 5pF (see Figure 8, page 6).  
L
11/19  
M40SZ100Y, M40SZ100W  
Battery Low Pin  
The M40SZ100Y/W automatically performs bat-  
tery voltage monitoring upon power-up, and at fac-  
tory-programmed time intervals of at least 24  
hours. The Battery Low (BL) pin will be asserted if  
the battery voltage is found to be less than approx-  
imately 2.5V. The BL pin will remain asserted until  
completion of battery replacement and subse-  
quent battery low monitoring tests, either during  
the next power-up sequence or the next scheduled  
24-hour interval.  
curs after V drops below V  
er returns, PFO is forced high, irrespective of V  
(min). When pow-  
PFD  
CC  
PFI  
for the write protect time (t  
), which is the time  
REC  
from V  
(max) until the inputs are recognized. At  
PFD  
the end of this time, the power-fail comparator is  
enabled and PFO follows PFI. If the comparator is  
unused, PFI should be connected to V and PFO  
SS  
left unconnected.  
V
Noise And Negative Going Transients  
CC  
I
transients, including those produced by output  
CC  
If a battery low is generated during a power-up se-  
quence, this indicates that the battery is below  
2.5V and may not be able to maintain data integrity  
in the SRAM. Data should be considered suspect,  
and verified as correct. A fresh battery should be  
installed.  
If a battery low indication is generated during the  
24-hour interval check, this indicates that the bat-  
tery is near end of life. However, data is not com-  
switching, can produce voltage fluctuations, re-  
sulting in spikes on the V bus. These transients  
CC  
can be reduced if capacitors are used to store en-  
ergy which stabilizes the V  
bus. The energy  
CC  
stored in the bypass capacitors will be released as  
low going spikes are generated or energy will be  
absorbed when overshoots occur. A ceramic by-  
pass capacitor value of 0.1µF (as shown in Figure  
13) is recommended in order to provide the need-  
ed filtering.  
promised due to the fact that a nominal V  
is  
CC  
supplied. In order to insure data integrity during  
subsequent periods of battery back-up mode, the  
battery should be replaced.  
In addition to transients that are caused by normal  
SRAM operation, power cycling can generate neg-  
ative voltage spikes on V  
that drive it to values  
CC  
The M40SZ100Y/W only monitors the battery  
below V by as much as one volt. These negative  
SS  
when a nominal V is applied to the device. Thus  
spikes can cause data corruption in the SRAM  
while in battery backup mode. To protect from  
these voltage spikes, STMicroelectronics recom-  
CC  
applications which require extensive durations in  
the battery back-up mode should be powered-up  
periodically (at least once every few months) in or-  
der for this technique to be beneficial. Additionally,  
if a battery low is indicated, data integrity should  
be verified upon power-up via a checksum or other  
technique. The BL pin is an open drain output and  
mends connecting a schottky diode from V  
to  
CC  
V
(cathode connected to V , anode to V ).  
SS  
CC SS  
Schottky diode 1N5817 is recommended for  
through hole and MBRS120T3 is recommended  
for surface mount.  
an appropriate pull-up resistor to V  
chosen to control the rise time.  
Power-fail Input/Output  
should be  
CC  
Figure 13. Supply Voltage Protection  
The Power-Fail Input (PFI) is compared to an in-  
ternal reference voltage (independent from the  
V
V
comparator). If PFI is less than the power-fail  
CC  
PFD  
threshold (V ), the Power-Fail Output (PFO) will  
PFI  
V
go low. This function is intended for use as an un-  
der-voltage detector to signal a failing power sup-  
ply. Typically PFI is connected through an external  
voltage divider (see Figure 7, page 5) to either the  
unregulated DC input (if it is available) or the reg-  
CC  
0.1µF  
DEVICE  
ulated output of the V regulator. The voltage di-  
CC  
vider can be set up such that the voltage at PFI  
V
SS  
falls below V  
several milliseconds before the  
PFI  
regulated V  
input to the M40SZ100Y/W or the  
CC  
microprocessor drops below the minimum operat-  
ing voltage.  
AI00622  
During battery back-up, the power-fail comparator  
turns off and PFO goes (or remains) low. This oc-  
12/19  
M40SZ100Y, M40SZ100W  
PACKAGE MECHANICAL INFORMATION  
Figure 14. SO16 – 16-lead Plastic Small Package Outline  
A2  
A
C
B
CP  
e
D
N
1
E
H
A1  
α
L
SO-b  
Note: Drawing is not to scale.  
Table 8. SO16 – 16-lead Plastic Small Plastic Package Mechanical Data  
mm  
inches  
Min.  
Symbol  
Typ.  
Min.  
Max.  
1.75  
0.25  
1.60  
0.46  
0.25  
10.00  
4.00  
Typ.  
Max.  
0.069  
0.010  
0.063  
0.018  
0.010  
0.394  
0.158  
A
A1  
A2  
B
0.10  
0.004  
0.35  
0.19  
9.80  
3.80  
0.014  
0.007  
0.386  
0.150  
C
D
E
e
1.27  
0.050  
H
5.80  
0.40  
0°  
6.20  
1.27  
8°  
0.228  
0.016  
0°  
0.244  
0.050  
8°  
L
a
N
16  
16  
CP  
0.10  
0.004  
13/19  
M40SZ100Y, M40SZ100W  
Figure 15. SOH28 – 28-lead Plastic Small Outline, 4-socket battery SNAPHAT, Package Outline  
A2  
A
C
eB  
B
e
CP  
D
N
E
H
A1  
α
L
1
SOH-A  
Note: Drawing is not to scale.  
Table 9. SOH28 – 28-lead Plastic Small Outline, battery SNAPHAT, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symbol  
Typ  
Max  
3.05  
0.36  
2.69  
0.51  
0.32  
18.49  
8.89  
Typ  
Max  
0.120  
0.014  
0.106  
0.020  
0.012  
0.728  
0.350  
A
A1  
A2  
B
0.05  
2.34  
0.36  
0.15  
17.71  
8.23  
0.002  
0.092  
0.014  
0.006  
0.697  
0.324  
C
D
E
e
1.27  
0.050  
eB  
H
3.20  
11.51  
0.41  
0°  
3.61  
12.70  
1.27  
8°  
0.126  
0.453  
0.016  
0°  
0.142  
0.500  
0.050  
8°  
L
α
N
28  
28  
CP  
0.10  
0.004  
14/19  
M40SZ100Y, M40SZ100W  
Figure 16. SH – 4-pin SNAPHAT Housing for 48mAh Battery, Package Outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHZP-A  
Note: Drawing is not to scale.  
Table 10. SH – 4-pin SNAPHAT Housing for 48mAh Battery, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symbol  
Typ  
Max  
9.78  
7.24  
6.99  
0.38  
0.56  
21.84  
14.99  
15.95  
3.61  
2.29  
Typ  
Max  
A
A1  
A2  
A3  
B
0.385  
0.285  
0.275  
0.015  
0.022  
0.860  
0.590  
0.628  
0.142  
0.090  
6.73  
6.48  
0.265  
0.255  
0.46  
21.21  
14.22  
15.55  
3.20  
0.018  
0.835  
0.560  
0.612  
0.126  
0.080  
D
E
eA  
eB  
L
2.03  
15/19  
M40SZ100Y, M40SZ100W  
Figure 17. SH – 4-pin SNAPHAT Housing for 120mAh Battery, Package Outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHZP-A  
Note: Drawing is not to scale.  
Table 11. SH – 4-pin SNAPHAT Housing for 120mAh Battery, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symbol  
Typ  
Max  
10.54  
8.51  
Typ  
Max  
A
A1  
A2  
A3  
B
0.415  
0.335  
0.315  
0.015  
0.022  
0.860  
0.710  
0.628  
0.142  
0.090  
8.00  
7.24  
0.315  
0.285  
8.00  
0.38  
0.46  
21.21  
17.27  
15.55  
3.20  
0.56  
0.018  
0.835  
0.680  
0.612  
0.126  
0.080  
D
21.84  
18.03  
15.95  
3.61  
E
eA  
eB  
L
2.03  
2.29  
16/19  
M40SZ100Y, M40SZ100W  
PART NUMBERING  
Table 12. Ordering Information Scheme  
Example:  
M40SZ  
100Y  
MQ  
6
TR  
Device Type  
M40SZ  
Supply Voltage and Write Protect Voltage  
100Y = V  
= 4.5 to 5.5V; V  
= 4.2 to 4.5V  
= 2.6 to 2.7V  
CC  
PFD  
100W = V  
= 2.7 to 3.6V; V  
PFD  
CC  
Package  
MQ = SO16  
(1,2)  
MH  
= SOH28  
Temperature Range  
6 = –40 to 85°C  
Shipping Method for SOIC  
blank = Tubes  
TR = Tape & Reel  
®
Note: 1. The SOIC package (SOH28) requires the battery package (SNAPHAT ) which is ordered separately under the part number  
“M4ZXX-BR00SHX” in plastic tube or “M4ZXX-BR00SHXTR” in Tape & Reel form.  
2. Contact Local Sales Office  
Caution: Do not place the SNAPHAT battery package “M4Zxx-BR00SH” in conductive foam as it will drain the lithium button-cell bat-  
tery.  
For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device,  
please contact the ST Sales Office nearest to you.  
®
Table 13. SNAPHAT Battery Table  
Part Number  
M4Z28-BR00SH  
M4Z32-BR00SH  
Description  
Package  
SH  
SNAPHAT Housing for 48mAh Battery  
SNAPHAT Housing for 120mAh Battery  
SH  
17/19  
M40SZ100Y, M40SZ100W  
REVISION HISTORY  
Table 14. Document Revision History  
Date  
Rev. #  
1.0  
Revision Details  
December 2001  
13-May-02  
01-Aug-02  
First Issue  
1.1  
Modify reflow time and temperature footnote (Table 2)  
Add marketing status (Figure 2; Table 12)  
1.2  
15-Sep-03  
1.3  
Remove reference to M68xxx (obsolete) part (Figure 7); update disclaimer  
18/19  
M40SZ100Y, M40SZ100W  
M40SZ100, M40SZ100Y, M40SZ100W, 40SZ100, 40SZ100Y, 40SZ100W, ZEROPOWER, ZEROPOWER, ZEROPOW-  
ER, ZEROPOWER, ZEROPOWER, ZEROPOWER, ZEROPOWER, ZEROPOWER, ZEROPOWER, ZEROPOWER,  
ZEROPOWER, ZEROPOWER, ZEROPOWER, ZEROPOWER, ZEROPOWER, SUPERVISOR, SUPERVISOR, SU-  
PERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVI-  
SOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, NVRAM, NVRAM, NVRAM,  
NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM,  
NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM,  
NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM,  
NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, I2C, I2C, I2C,  
I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C,  
I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, I2C, RTC, RTC, RTC, RTC, RTC, RTC, RTC,  
RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC,  
RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC,  
RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, Oscillator, Os-  
cillator, Oscillator, Oscillator, Oscillator, Oscillator, Oscillator, Oscillator, Oscillator, Oscillator, Oscillator, Oscillator, Os-  
cillator, Oscillator, Oscillator, Oscillator, Oscillator, Oscillator, Oscillator, Oscillator, Oscillator, Oscillator, Oscillator,  
Oscillator, Oscillator, Oscillator, Oscillator, Oscillator, Oscillator, Oscillator, Oscillator, Oscillator, Oscillator, Oscillator,  
Oscillator, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Micro-  
processor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Micro-  
processor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor,  
LPSRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM,  
LPSRAM, LPSRAM, LPSRAM, LPSRAM, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI,  
PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFO, PFO, PFO, PFO, PFO,  
PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, Reset, Reset, Reset, Reset,  
Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset,  
Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset,  
Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset,  
Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset,  
Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset,  
Reset, Reset, Reset, Reset, Reset, Reset, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write  
Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Pro-  
tect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect,  
Write Protect, Write Protect, Write Protect, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery,  
Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery,  
Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery,  
Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery,  
Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Switchover, Switchover, Switchover,  
Switchover, Switchover, Switchover, Switchover, Switchover, Switchover, Switchover, Power-fail, Power-fail, Power-fail,  
Power-fail, Power-fail, Power-fail, Power-fail, Power-fail, Power-fail, Power-fail, Comparator, Comparator, Comparator,  
Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator,  
Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator,  
Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator,  
Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator,  
Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, SNAPHAT, SNAPHAT, SNAPHAT,  
SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT,  
SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT,  
SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT,  
SNAPHAT, SNAPHAT, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC,  
SOIC, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V,  
5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V,  
3V, 3V  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2003 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
19/19  

相关型号:

M40SZ100WMH

5V or 3V NVRAM SUPERVISOR FOR LPSRAM
STMICROELECTR

M40SZ100WMH6

5V or 3V NVRAM SUPERVISOR FOR LPSRAM
STMICROELECTR

M40SZ100WMH6E

5 V or 3 V NVRAM supervisor for LPSRAM
STMICROELECTR

M40SZ100WMH6F

5 V or 3 V NVRAM supervisor for LPSRAM
STMICROELECTR

M40SZ100WMH6TR

5V or 3V NVRAM SUPERVISOR FOR LPSRAM
STMICROELECTR

M40SZ100WMQ

5V or 3V NVRAM SUPERVISOR FOR LPSRAM
STMICROELECTR

M40SZ100WMQ6

5V or 3V NVRAM SUPERVISOR FOR LPSRAM
STMICROELECTR

M40SZ100WMQ6E

5 V or 3 V NVRAM supervisor for LPSRAM
STMICROELECTR

M40SZ100WMQ6F

5 V or 3 V NVRAM supervisor for LPSRAM
STMICROELECTR

M40SZ100WMQ6TR

5V or 3V NVRAM SUPERVISOR FOR LPSRAM
STMICROELECTR

M40SZ100WSH

5V or 3V NVRAM SUPERVISOR FOR LPSRAM
STMICROELECTR

M40SZ100Y

5V or 3V NVRAM SUPERVISOR FOR LPSRAM
STMICROELECTR