M40Z300AVMH1E [STMICROELECTRONICS]

3V NVRAM Supervisor for Up to 8 LPSRAMs; 3V NVRAM监控多达8 LPSRAMs
M40Z300AVMH1E
型号: M40Z300AVMH1E
厂家: ST    ST
描述:

3V NVRAM Supervisor for Up to 8 LPSRAMs
3V NVRAM监控多达8 LPSRAMs

电源电路 电源管理电路 静态存储器 光电二极管 监控
文件: 总20页 (文件大小:269K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M40Z300AV  
3V NVRAM Supervisor for Up to 8 LPSRAMs  
FEATURES SUMMARY  
CONVERTS LOW POWER SRAM INTO  
NVRAMs  
PRECISION POWER MONITORING AND  
POWER SWITCHING CIRCUITRY  
AUTOMATIC WRITE-PROTECTION WHEN  
Figure 1. 16-pin SOIC Package  
16  
1
V
CC  
IS OUT-OF-TOLERANCE  
SO16 (MQ)  
TWO-INPUT DECODER ALLOWS  
CONTROL FOR UP TO 8 SRAMs (with 2  
devices active in parallel)  
Figure 2. 28-pin SOIC Package*  
SUPPLY VOLTAGE AND POWER-FAIL  
DESELECT VOLTAGE:  
SNAPHAT (SH)  
Crystal/Battery  
M40Z300AV:  
= 3.0V to 3.6V  
V
CC  
THS = V : 2.8V V  
3.0V  
PFD  
SS  
RESET OUTPUT (RST) FOR POWER ON  
RESET  
BATTERY LOW PIN (BL)  
LESS THAN 20ns CHIP ENABLE ACCESS  
PROPAGATION DELAY  
PACKAGING INCLUDES A 16-LEAD SOIC  
OR A 28-LEAD SOIC AND SNAPHAT TOP  
(to be ordered separately)  
SOIC PACKAGE PROVIDES DIRECT  
CONNECTION FOR A SNAPHAT TOP  
WHICH CONTAINS THE BATTERY  
®
28  
1
SOH28 (MH)  
March 2004  
1/20  
M40Z300AV  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. 16-pin SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 2. 28-pin SOIC Package*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 4. 28-pin SOIC Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 5. M40Z300AV 16-pin SOIC Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 6. Hardware Hookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Two to Four Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 2. Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 7. Address-Decode Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Data Retention Lifetime Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Power-on Reset Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Battery Low Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
V
CC  
Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 8. Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 3. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 4. DC and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 9. AC Testing Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 5. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 6. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 10.Power Down Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 11.Power Up Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 7. Power Down/Up Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 12.SOH28 – 28-lead Plastic Small Outline, 4-socket battery SNAPHAT, Package Outline. 14  
Table 8. SOH28 – 28-lead Plastic Small Outline, battery SNAPHAT, Package Mechanical Data 14  
Figure 13.SH – 4-pin SNAPHAT Housing for 48mAh Battery, Package Outline. . . . . . . . . . . . . . . 15  
Table 9. SH – 4-pin SNAPHAT Housing for 48mAh Battery, Package Mechanical Data . . . . . . . 15  
Figure 14.SH – 4-pin SNAPHAT Housing for 120mAh Battery, Package Outline. . . . . . . . . . . . . . 16  
Table 10. SH – 4-pin SNAPHAT Housing for 120mAh Battery, Package Mechanical Data . . . . . . 16  
Figure 15.SO16 – 16-lead Plastic Small Outline, 150 mils body width, Package Outline . . . . . . . . 17  
Table 11. SO16 – 16-lead Plastic Small Outline, 150 mils body width, Package Mechanical Data 17  
2/20  
M40Z300AV  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 12. Ordering Information Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 13. SNAPHAT® Battery Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 14. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3/20  
M40Z300AV  
DESCRIPTION  
The M40Z300AV NVRAM SUPERVISOR is a self-  
contained device which converts a standard low-  
power SRAM into a non-volatile memory. A preci-  
sion voltage reference and comparator monitors  
of the SOIC package after the completion of the  
surface mount process which greatly reduces the  
board manufacturing process complexity of either  
directly soldering or inserting a battery into a sol-  
dered holder. Providing non-volatility becomes a  
“SNAP.” The 16-pin SOIC provides battery pins for  
an external user-supplied battery.  
the V input for an out-of-tolerance condition.  
CC  
When an invalid V  
condition occurs, the condi-  
CC  
tioned chip enable outputs (E1  
to E4  
) are  
CON  
CON  
forced inactive to write-protect the stored data in  
the SRAM. During a power failure, the SRAM is  
Insertion of the SNAPHAT housing after reflow  
prevents potential battery damage due to the high  
temperatures required for device surface-mount-  
ing. The SNAPHAT housing is also keyed to pre-  
vent reverse insertion.  
The 28-pin SOIC and battery packages are  
shipped separately in plastic anti-static tubes or in  
Tape & Reel form. For the 28-lead SOIC, the bat-  
tery/crystal package (e.g., SNAPHAT) part num-  
switched from the V pin to the lithium cell within  
CC  
®
the SNAPHAT to provide the energy required for  
data retention. On a subsequent power-up, the  
SRAM remains write protected until a valid power  
condition returns.  
The 28-pin, 330mil SOIC provides sockets with  
gold plated contacts for direct connection to a sep-  
arate SNAPHAT housing containing the battery.  
The SNAPHAT housing has gold plated pins  
which mate with the sockets, ensuring reliable  
connection. The housing is keyed to prevent im-  
proper insertion. This unique design allows the  
SNAPHAT battery package to be mounted on top  
ber  
is  
“M4ZXX-BR00SH”  
(see  
Table  
13., page 18).  
Caution: Do not place the SNAPHAT battery top  
in conductive foam, as this will drain the lithium  
button-cell battery.  
Figure 3. Logic Diagram  
Table 1. Signal Names  
(1)  
(1)  
Threshold Select Input  
Chip Enable Input  
THS  
E
V
B+  
CC  
Conditioned Chip Enable  
Output  
(2)  
E1  
- E4  
CON  
V
CON  
THS  
OUT  
E
B
A
BL  
E1  
E2  
E3  
E4  
A, B  
RST  
Decoder Inputs  
Reset Output (Open Drain)  
CON  
CON  
CON  
CON  
M40Z300AV  
Battery Low Output (Open  
Drain)  
BL  
V
Supply Voltage Output  
Supply Voltage  
OUT  
V
CC  
RST  
V
Ground  
SS  
B +  
Positive Battery Pin  
Negative Battery Pin  
Not Connected Internally  
(1)  
V
SS  
B–  
(2)  
B –  
AI08893  
NC  
Note: 1. For 16-pin SOIC package only.  
2. THS pin must be connected to V  
Note: 1. THS pin must be connected to V  
.
SS  
.
SS  
2. For M40Z300AV, B– must be connected to the negative  
battery terminal only (not to Pin 8, V ).  
SS  
4/20  
M40Z300AV  
Figure 4. 28-pin SOIC Connections  
Figure 5. M40Z300AV 16-pin SOIC  
Connections  
V
1
28  
27  
V
E
OUT  
NC  
CC  
2
NC  
RST  
NC  
A
3
26  
NC  
NC  
NC  
E1  
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
CC  
OUT  
NC  
4
25  
(1)  
B–  
E
5
24  
RST  
A
6
23  
CON  
E1  
E2  
E3  
E4  
B+  
CON  
CON  
CON  
CON  
NC  
B
7
22  
E2  
CON  
B
8
21  
NC  
E3  
BL  
THS  
NC  
BL  
9
20  
CON  
10  
11  
12  
13  
14  
19  
NC  
NC  
NC  
E4  
V
SS  
NC  
NC  
THS  
18  
17  
AI08895  
16  
CON  
V
15  
NC  
SS  
AI08894  
Note: 1. For M40Z300AV, B– must be connected to the negative  
battery terminal only (not to Pin 8, V ).  
SS  
Figure 6. Hardware Hookup  
3.3V  
VCC  
VOUT  
VCC  
VCC  
VCC  
VCC  
E2(1)  
0.1µF  
E2(1)  
E2(1)  
E2(1)  
M40Z300AV  
CMOS  
SRAM  
CMOS  
SRAM  
CMOS  
SRAM  
CMOS  
SRAM  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
E
E
E
E
E1CON  
E2CON  
E3CON  
E4CON  
A
B
E
Threshold  
THS(2)  
RST  
BL  
To Microprocessor  
VSS  
To Battery Monitor Circuit  
AI08896  
Note: 1. If the second chip enable pin (E2) is unused, it should be tied to V  
.
OUT  
2. THS pin must be connected to V  
.
SS  
5/20  
M40Z300AV  
OPERATION  
The M40Z300AV, as shown in Figure 6., page 5,  
can control up to four (eight, if placed in parallel)  
standard low-power SRAMs. These SRAMs must  
be configured to have the chip enable input dis-  
able all other input signals. Most slow, low-power  
SRAMs are configured like this, however many  
fast SRAMs are not. During normal operating con-  
a WRITE cycle may corrupt data at the currently  
addressed location, but does not jeopardize the  
rest of the SRAM's contents. At voltages below  
V
(min), the user can be assured the memory  
PFD  
will be write protected within the Write Protect  
Time (t ) provided the V fall time exceeds t  
F
WPT  
CC  
(see Figure 7., page 6).  
ditions, the conditioned chip enable (E1  
to  
CON  
As V continues to degrade, the internal switch  
CC  
E4  
) output pins follow the chip enable (E) input  
CON  
disconnects V and connects the internal battery  
CC  
pin with timing shown in Figure 7., page 6 and Ta-  
ble 7., page 13. An internal switch connects V  
to V  
. This occurs at the switchover voltage  
OUT  
CC  
(V ). Below the V , the battery provides a volt-  
SO  
SO  
to V  
than 0.3V (I  
. This switch has a voltage drop of less  
OUT  
age V  
to the SRAM and can supply current  
OHB  
).  
OUT1  
I
(see Table 6., page 11).  
OUT2  
CC  
When V  
rises above V , V  
is switched  
CC  
SO  
OUT  
back to the supply voltage. Outputs E1  
to  
CON  
E4  
are held inactive for t  
(120ms maxi-  
CON  
CER  
mum) after the power supply has reached V  
independent of the E input, to allow for processor  
stabilization (see Figure 11., page 12).  
,
PFD  
Two to Four Decode  
The M40Z300AV includes a 2 input (A, B) decoder  
which allows the control of up to 4 independent  
SRAMs. The Truth Table for these inputs is shown  
in Table 2.  
write protecting the SRAM. A power failure during  
Table 2. Truth Table  
Inputs  
Outputs  
E1  
E2  
E3  
E4  
CON  
E
H
L
L
L
L
B
X
L
A
X
L
CON  
CON  
CON  
H
L
H
H
H
H
H
H
L
H
H
L
H
L
H
H
H
L
H
H
H
H
L
H
H
H
Figure 7. Address-Decode Time  
A, B  
tAS  
E
tEDL  
tEDH  
E1  
CON  
- E4  
CON  
AI02551  
Note: During system design, compliance with the SRAM timing parameters must comprehend the propagation delay between E1  
-
CON  
E4  
.
CON  
6/20  
M40Z300AV  
Data Retention Lifetime Calculation  
Most low power SRAMs on the market today can  
be used with the M40Z300AV NVRAM SUPERVI-  
SOR. There are, however some criteria which  
should be used in making the final choice of which  
SRAM to use. The SRAM must be designed in a  
way where the chip enable input disables all other  
inputs to the SRAM. This allows inputs to the  
M40Z300AV and SRAMs to be “Don't care” once  
be chosen to control the rise time. This signal will  
be valid for all voltage conditions, even when V  
CC  
equals V  
.
SS  
Once V  
exceeds the power failure detect volt-  
, an internal timer keeps RST low for  
CC  
age V  
PFD  
t
to allow the power supply to stabilize.  
REC  
Battery Low Pin  
The M40Z300AV automatically performs battery  
voltage monitoring upon power-up, and at factory-  
programmed time intervals of at least 24 hours.  
The Battery Low (BL) pin will be asserted if the  
battery voltage is found to be less than approxi-  
mately 2.5V. The BL pin will remain asserted until  
completion of battery replacement and subse-  
quent battery low monitoring tests, either during  
the next power-up sequence or the next scheduled  
24-hour interval.  
If a battery low is generated during a power-up se-  
quence, this indicates that the battery is below  
2.5V and may not be able to maintain data integrity  
in the SRAM. Data should be considered suspect,  
and verified as correct. A fresh battery should be  
installed.  
V
falls below V  
(min). The SRAM should also  
CC  
PFD  
guarantee data retention down to V = 2.0V. The  
CC  
chip enable access time must be sufficient to meet  
the system needs with the chip enable propaga-  
tion delays included. If the SRAM includes a sec-  
ond chip enable pin (E2), this pin should be tied to  
V
.
OUT  
If data retention lifetime is a critical parameter for  
the system, it is important to review the data reten-  
tion current specifications for the particular  
SRAMs being evaluated. Most SRAMs specify a  
data retention current at 3.0V. Manufacturers gen-  
erally specify a typical condition for room temper-  
ature along with a worst case condition (generally  
at elevated temperatures). The system level re-  
quirements will determine the choice of which val-  
ue to use.  
If a battery low indication is generated during the  
24-hour interval check, this indicates that the bat-  
tery is near end of life. However, data is not com-  
The data retention current value of the SRAMs can  
then be added to the I  
value of the M40Z300AV  
BAT  
promised due to the fact that a nominal V  
is  
CC  
to determine the total current requirements for  
data retention. The available battery capacity for  
supplied. In order to insure data integrity during  
subsequent periods of battery back-up mode, the  
®
the SNAPHAT of your choice can then be divided  
®
battery should be replaced. The SNAPHAT top  
by this current to determine the amount of data re-  
tention available (see Table 13., page 18).  
CAUTION: Take care to avoid inadvertent dis-  
should be replaced with valid V  
applied to the  
CC  
device.  
The M40Z300AV only monitors the battery when a  
nominal V is applied to the device. Thus appli-  
charge through V  
and E1  
- E4  
after  
OUT  
CON  
CON  
CC  
battery has been attached.  
cations which require extensive durations in the  
battery back-up mode should be powered-up peri-  
odically (at least once every few months) in order  
for this technique to be beneficial. Additionally, if a  
battery low is indicated, data integrity should be  
verified upon power-up via a checksum or other  
technique. The BL pin is an open drain output and  
For a further more detailed review of lifetime calcu-  
lations, please see Application Note AN1012.  
Power-on Reset Output  
All microprocessors have a reset input which forc-  
es them to a known state when starting. The  
M40Z300AV has a reset output (RST) pin which is  
guaranteed to be low within t  
of V  
(see Ta-  
an appropriate pull-up resistor to V  
chosen to control the rise time.  
should be  
WPT  
PFD  
CC  
ble 7., page 13). This signal is an open drain con-  
figuration. An appropriate pull-up resistor should  
7/20  
M40Z300AV  
V
Noise And Negative Going Transients  
Figure 8. Supply Voltage Protection  
CC  
I
transients, including those produced by output  
CC  
switching, can produce voltage fluctuations, re-  
sulting in spikes on the V bus. These transients  
CC  
can be reduced if capacitors are used to store en-  
ergy which stabilizes the V  
bus. The energy  
CC  
stored in the bypass capacitors will be released as  
low going spikes are generated or energy will be  
absorbed when overshoots occur. A ceramic by-  
pass capacitor value of 0.1µF (as shown in Figure  
8) is recommended in order to provide the needed  
filtering.  
V
CC  
V
CC  
0.1µF  
DEVICE  
In addition to transients that are caused by normal  
SRAM operation, power cycling can generate neg-  
ative voltage spikes on V  
that drive it to values  
CC  
V
SS  
below V by as much as one volt. These negative  
SS  
spikes can cause data corruption in the SRAM  
while in battery backup mode. To protect from  
these voltage spikes, STMicroelectronics recom-  
AI00622  
mends connecting a schottky diode from V  
to  
CC  
V
(cathode connected to V , anode to V ).  
SS  
CC SS  
Schottky diode 1N5817 is recommended for  
through hole and MBRS120T3 is recommended  
for surface mount.  
8/20  
M40Z300AV  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
“Absolute Maximum Ratings” table may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 3. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
0 to 70  
Unit  
°C  
Grade 1  
Grade 6  
T
A
Ambient Operating Temperature  
–40 to 85  
–40 to 85  
–55 to 125  
°C  
®
°C  
SNAPHAT  
SOIC  
T
Storage Temperature  
STG  
°C  
(1,2,3)  
Lead Solder Temperature for 10 seconds  
260  
°C  
T
SLD  
–0.3 to V  
+ 0.3  
V
Input or Output Voltage  
Supply Voltage  
V
V
IO  
CC  
V
–0.3 to 4.6  
CC  
I
Output Current  
20  
1
mA  
W
O
P
Power Dissipation  
D
Note: 1. Reflow at peak temperature of 215°C to 225°C for < 60 seconds (total thermal budget not to exceed 180°C for between 90 to 120  
seconds).  
2. For SO package, standard lead finish: Reflow at peak temperature of 225°C (total thermal budget not to exceed 180°C for between  
90 to 150 seconds).  
3. For SO package, Lead-free (Pb-free) lead finish: Reflow at peak temperature of 260°C (total thermal budget not to exceed 245°C  
for greater than 30 seconds).  
CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode.  
CAUTION: Do NOT wave solder SOIC to avoid damaging SNAPHAT sockets.  
9/20  
M40Z300AV  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, as well as the DC and AC  
characteristics of the device. The parameters in  
the following DC and AC Characteristic tables are  
derived from tests performed under the Measure-  
ment Conditions listed in the relevant tables. De-  
signers should check that the operating conditions  
in their projects match the measurement condi-  
tions when using the quoted parameters.  
Table 4. DC and AC Measurement Conditions  
Parameter  
M40Z300AV  
V
Supply Voltage  
3.0 to 3.6V  
CC  
Grade 1  
Grade 6  
0 to 70°C  
–40 to 85°C  
50pF  
Ambient Operating Temperature  
Load Capacitance (C )  
L
Input Rise and Fall Times  
Input Pulse Voltages  
5ns  
0 to 3V  
1.5V  
Input and Output Timing Ref. Voltages  
Note: Output High Z is defined as the point where data is no longer driven.  
Figure 9. AC Testing Load Circuit  
333Ω  
DEVICE  
UNDER  
TEST  
1.73V  
C
= 50pF  
L
C
includes JIG capacitance  
L
AI08897  
Table 5. Capacitance  
Symbol  
(1,2)  
Min  
Max  
8
Unit  
pF  
Parameter  
C
Input Capacitance  
Input/Output Capacitance  
IN  
(3)  
10  
pF  
C
OUT  
Note: 1. Sampled only, not 100% tested.  
2. At 25°C, f = 1MHz.  
3. Outputs deselected.  
10/20  
M40Z300AV  
Table 6. DC Characteristics  
(1)  
Sym  
Parameter  
Min  
Typ  
Max  
Unit  
Test Condition  
(2)  
0V V V  
Input Leakage Current  
Supply Current  
±1  
4
µA  
mA  
V
I
IN  
CC  
LI  
I
Outputs open  
2
CC  
V
IL  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
–0.3  
2.0  
0.8  
V
V
+ 0.3  
V
IH  
CC  
I
= 4.0mA  
= 10mA  
0.4  
0.4  
V
OL  
V
V
OL  
(3)  
I
V
OL  
Output Low Voltage (open drain)  
I
= –2.0mA  
= –1.0µA  
OUT2  
Output High Voltage  
2.4  
2.0  
V
OH  
OH  
(4)  
V
I
V
V
2.9  
3.6  
150  
100  
V
V
V
V
Battery Back-up  
OHB  
OH  
> V –0.3  
mA  
mA  
µA  
nA  
OUT  
OUT  
CC  
I
I
Current (Active)  
OUT1  
OUT2  
OUT  
OUT  
> V –0.2  
CC  
Current (Battery Back-up)  
V
> V  
–0.3  
BAT  
100  
OUT  
(5)  
I
100  
CCDR  
Data Retention Mode Current  
(6)  
V
2.8  
2.7  
2.0  
2.9  
2.8  
2.9  
3.0  
2.9  
3.6  
V
V
V
Power-fail Deselect Voltage (THS = V  
Battery Back-up Switchover Voltage  
Battery Voltage  
)
PFD  
SS  
V
SO  
V
BAT  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 3.0 to 3.6V (except where noted).  
A
CC  
2. Outputs deselected.  
3. For RST & BL pins (Open Drain).  
4. Chip Enable outputs (E1  
- E4  
) can only sustain CMOS leakage currents in the battery back-up mode.  
CON  
CON  
Higher leakage currents will reduce battery life.  
5. Measured with V and E1 - E4 open.  
OUT  
CON  
CON  
6. THS pin must ben tied to V  
.
SS  
11/20  
M40Z300AV  
Figure 10. Power Down Timing  
V
CC  
V
V
V
V
(max)  
(min)  
PFD  
PFD  
PFD  
SO  
tF  
tFB  
E
tWPT  
V
OHB  
E1  
E4  
CON  
CON  
-
RST  
AI02398B  
Figure 11. Power Up Timing  
V
CC  
V
V
V
(max)  
(min)  
PFD  
PFD  
PFD  
V
SO  
tR  
tRB  
tCER  
E
tEDH  
tEDL  
V
OHB  
E1  
E4  
CON  
CON  
-
tREC  
RST  
AI02399B  
12/20  
M40Z300AV  
Table 7. Power Down/Up Mode AC Characteristics  
(1)  
Symbol  
Min  
300  
150  
10  
Max  
Unit  
Parameter  
(2)  
V
V
V
(max) to V  
(min) to V  
(min) V Fall Time  
µs  
t
F
PFD  
PFD  
CC  
(3)  
V
Fall Time  
µs  
µs  
ns  
ns  
ns  
ms  
ms  
µs  
µs  
t
PFD  
PFD  
SS CC  
FB  
t
R
(min) to V  
(max) V Rise Time  
PFD CC  
t
Chip Enable Propagation Delay Low  
Chip Enable Propagation Delay High  
A, B set up to E  
20  
20  
EDL  
t
EDH  
t
0
AS  
t
Chip Enable Recovery  
40  
40  
40  
1
120  
120  
250  
CER  
(4)  
V
PFD  
(max) to RST High  
t
REC  
t
Write Protect Time  
V to V (min) V Rise Time  
SS  
WPT  
t
RB  
PFD  
CC  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 3.0 to 3.6V (except where noted).  
A
CC  
2. V  
(max) to V  
(min) fall time of less than tF may result in deselection/write protection not occurring until 200 µs after V  
PFD CC  
PFD  
passes V  
(min).  
PFD  
3. V  
4. t  
(min) to V fall time of less than t may cause corruption of RAM data.  
(min) = 20ms for industrial temperature Grade 6 device.  
PFD  
REC  
SS FB  
13/20  
M40Z300AV  
PACKAGE MECHANICAL INFORMATION  
Figure 12. SOH28 – 28-lead Plastic Small Outline, 4-socket battery SNAPHAT, Package Outline  
A2  
A
C
eB  
B
e
CP  
D
N
E
H
A1  
α
L
1
SOH-A  
Note: Drawing is not to scale.  
Table 8. SOH28 – 28-lead Plastic Small Outline, battery SNAPHAT, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symbol  
Typ  
Max  
3.05  
0.36  
2.69  
0.51  
0.32  
18.49  
8.89  
Typ  
Max  
0.120  
0.014  
0.106  
0.020  
0.012  
0.728  
0.350  
A
A1  
A2  
B
0.05  
2.34  
0.36  
0.15  
17.71  
8.23  
0.002  
0.092  
0.014  
0.006  
0.697  
0.324  
C
D
E
e
1.27  
0.050  
eB  
H
3.20  
11.51  
0.41  
0°  
3.61  
12.70  
1.27  
8°  
0.126  
0.453  
0.016  
0°  
0.142  
0.500  
0.050  
8°  
L
α
N
28  
28  
CP  
0.10  
0.004  
14/20  
M40Z300AV  
Figure 13. SH – 4-pin SNAPHAT Housing for 48mAh Battery, Package Outline  
A2  
A1  
A
A3  
eA  
D
B
L
eB  
E
SHZP-A  
Note: Drawing is not to scale.  
Table 9. SH – 4-pin SNAPHAT Housing for 48mAh Battery, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symbol  
Typ  
Max  
9.78  
7.24  
6.99  
0.38  
0.56  
21.84  
14.99  
15.95  
3.61  
2.29  
Typ  
Max  
A
A1  
A2  
A3  
B
0.385  
0.285  
0.275  
0.015  
0.022  
0.860  
0.590  
0.628  
0.142  
0.090  
6.73  
6.48  
0.265  
0.255  
0.46  
21.21  
14.22  
15.55  
3.20  
0.018  
0.835  
0.560  
0.612  
0.126  
0.080  
D
E
eA  
eB  
L
2.03  
15/20  
M40Z300AV  
Figure 14. SH – 4-pin SNAPHAT Housing for 120mAh Battery, Package Outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHZP-A  
Note: Drawing is not to scale.  
Table 10. SH – 4-pin SNAPHAT Housing for 120mAh Battery, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symbol  
Typ  
Max  
10.54  
8.51  
Typ  
Max  
A
A1  
A2  
A3  
B
0.415  
.0335  
0.315  
0.015  
0.022  
0.860  
0.710  
0.628  
0.142  
0.090  
8.00  
7.24  
0.315  
0.285  
8.00  
0.38  
0.46  
21.21  
17.27  
15.55  
3.20  
0.56  
0.018  
0.835  
0.680  
0.612  
0.126  
0.080  
D
21.84  
18.03  
15.95  
3.61  
E
eA  
eB  
L
2.03  
2.29  
16/20  
M40Z300AV  
Figure 15. SO16 – 16-lead Plastic Small Outline, 150 mils body width, Package Outline  
A2  
A
C
B
CP  
e
D
N
1
E
H
A1  
α
L
SO-b  
Note: Drawing is not to scale.  
Table 11. SO16 – 16-lead Plastic Small Outline, 150 mils body width, Package Mechanical Data  
mm  
inches  
Min.  
Symbol  
Typ.  
Min.  
Max.  
1.75  
0.25  
1.60  
0.46  
0.25  
10.00  
4.00  
Typ.  
Max.  
0.069  
0.010  
0.063  
0.018  
0.010  
0.394  
0.158  
A
A1  
A2  
B
0.10  
0.004  
0.35  
0.19  
9.80  
3.80  
0.014  
0.007  
0.386  
0.150  
C
D
E
e
1.27  
0.050  
H
5.80  
0.40  
0°  
6.20  
1.27  
8°  
0.228  
0.016  
0°  
0.244  
0.050  
8°  
L
α
N
16  
16  
CP  
0.10  
0.004  
17/20  
M40Z300AV  
PART NUMBERING  
Table 12. Ordering Information Example  
Example:  
M40Z  
300AV  
MQ  
6
F
Device Type  
M40Z  
Supply and Write Protect Voltage  
300AV = V = 3.0 to 3.6V  
CC  
THS = V ; 2.8V V  
3.0V  
SS  
PFD  
Package  
MQ = SO16  
(1,2)  
MH  
= SOH28  
Temperature Range  
1 = 0 to 70°C  
6 = –40 to 85°C  
Shipping Method for SOIC  
®
E = Lead-free Package (ECO PACK ), Tubes  
®
F = Lead-free Package (ECO PACK ), Tape & Reel  
®
Note: 1. The SOIC package (SOH28) requires the battery package (SNAPHAT ) which is ordered separately under the part number  
“M4Zxx-BR00SH” in plastic tube or “M4Zxx-BR00SHTR” in Tape & Reel form.  
Caution: Do not place the SNAPHAT battery package “M4Zxx-BR00SH” in conductive foam as it will drain the lithium button-cell  
battery.  
2. Contact Local Sales Office for availability of SNAPHAT (MH) package.  
For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device,  
please contact the ST Sales Office nearest to you.  
®
Table 13. SNAPHAT Battery Table  
Part Number  
M4Z28-BR00SH  
M4Z32-BR00SH  
Description  
Package  
SH  
Lithium Battery (48mAh) SNAPHAT  
Lithium Battery (120mAh) SNAPHAT  
SH  
18/20  
M40Z300AV  
REVISION HISTORY  
Table 14. Document Revision History  
Date  
November 14, 2003  
19-Nov-03  
Version  
1.0  
Revision Details  
First Issue  
1.1  
Correct shipping information (Table 12)  
09-Mar-04  
2.0  
Reformatted; updated Lead-free information (Table 3, 12)  
M40Z300AV, 40Z300AV, Z300AV, ZEROPOWER, ZEROPOWER, ZEROPOWER, ZEROPOWER, ZEROPOWER, ZEROPOWER, ZE-  
ROPOWER, ZEROPOWER, ZEROPOWER, ZEROPOWER, ZEROPOWER, ZEROPOWER, ZEROPOWER, ZEROPOWER, ZEROPOW-  
ER, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR,  
SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, NVRAM, NVRAM, NVRAM,  
NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM,  
NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM,  
NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM,  
NVRAM, NVRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM,  
LPSRAM, LPSRAM, LPSRAM, LPSRAM, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC,  
RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC,  
RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC,  
RTC, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor,  
Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Micro-  
processor, Microprocessor, Microprocessor, Microprocessor, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI,  
PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFO, PFO, PFO,  
PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, Battery, Battery, Battery, Battery, Battery,  
Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Bat-  
tery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery,  
Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Bat-  
tery, Battery, Battery, Battery,Battery, Battery, Backup, Backup, Backup, Backup, Backup, Backup, Backup, Backup, Backup, Backup, Back-  
up, Backup, Backup, Backup, Backup, Backup, Backup, Backup, Backup, Backup, Power-fail, Power-fail, Power-fail, Power-fail, Power-fail,  
Power-fail, Power-fail, Power-fail, Power-fail, Power-fail, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator,  
Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Com-  
parator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator,  
Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, SNAPHAT, SNAPHAT,  
SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT,  
SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT,  
SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SOIC,  
SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, THS, THS, THS, THS, THS, THS, THS, THS,  
THS, THS, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V,  
5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V, 3V,  
19/20  
M40Z300AV  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequ  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is g  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are s  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products a  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectron  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners.  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany -  
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore -  
Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
20/20  

相关型号:

M40Z300AVMH1F

3V NVRAM Supervisor for Up to 8 LPSRAMs
STMICROELECTR

M40Z300AVMH6E

3V NVRAM Supervisor for Up to 8 LPSRAMs
STMICROELECTR

M40Z300AVMH6F

3V NVRAM Supervisor for Up to 8 LPSRAMs
STMICROELECTR

M40Z300AVMQ1E

3V NVRAM Supervisor for Up to 8 LPSRAMs
STMICROELECTR

M40Z300AVMQ1F

3V NVRAM Supervisor for Up to 8 LPSRAMs
STMICROELECTR

M40Z300AVMQ6E

3V NVRAM Supervisor for Up to 8 LPSRAMs
STMICROELECTR

M40Z300AVMQ6F

3V NVRAM Supervisor for Up to 8 LPSRAMs
STMICROELECTR

M40Z300MH

NVRAM CONTROLLER for up to EIGHT LPSRAM
STMICROELECTR

M40Z300MH1

NVRAM CONTROLLER for up to EIGHT LPSRAM
STMICROELECTR

M40Z300MH1E

5V or 3V NVRAM supervisor for up to 8 LPSRAMs
STMICROELECTR

M40Z300MH1F

5V or 3V NVRAM supervisor for up to 8 LPSRAMs
STMICROELECTR

M40Z300MH1TR

NVRAM CONTROLLER for up to EIGHT LPSRAM
STMICROELECTR