M41T56M6TR [STMICROELECTRONICS]

512 bit (64 bit x8) Serial Access TIMEKEEPER SRAM; 512位( 64位×8 )串行存取TIMEKEEPER SRAM
M41T56M6TR
型号: M41T56M6TR
厂家: ST    ST
描述:

512 bit (64 bit x8) Serial Access TIMEKEEPER SRAM
512位( 64位×8 )串行存取TIMEKEEPER SRAM

静态存储器
文件: 总24页 (文件大小:349K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M41T56  
512 bit (64 bit x8) Serial Access TIMEKEEPER® SRAM  
FEATURES SUMMARY  
5V ±10% SUPPLY VOLTAGE  
Figure 1. 8-pin SOIC Package  
COUNTERS FOR SECONDS, MINUTES,  
HOURS, DAY, DATE, MONTH, YEARS, AND  
CENTURY  
8
1
YEAR 2000 COMPLIANT  
SOFTWARE CLOCK CALIBRATION  
AUTOMATIC POWER-FAIL DETECT AND  
SWITCH CIRCUITRY  
I2C BUS COMPATIBLE  
56 BYTES OF GENERAL PURPOSE RAM  
ULTRA-LOW BATTERY SUPPLY CURRENT  
OF 450nA  
SO8 (M)  
150mil Width  
Figure 2. 28-pin SOIC Package  
LOW OPERATING CURRENT OF 300µA  
OPERATING TEMPERATURE OF –40 to  
85°C  
SNAPHAT (SH)  
Battery & Crystal  
AUTOMATIC LEAP YEAR COMPENSATION  
SPECIAL SOFTWARE PROGRAMMABLE  
OUTPUT  
PACKAGING OPTIONS INCLUDE:  
28-lead SOIC and SNAPHAT® TOP (to be  
ordered separately)  
28  
SO8  
1
SOH28 (MH)  
June 2004  
1/24  
M41T56  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. 8-pin SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 2. 28-pin SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 4. 8-pin SOIC Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 5. 28-pin SOIC Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 6. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2-Wire Bus Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Bus not busy.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Start data transfer.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Stop data transfer.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Data valid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Acknowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 7. Serial Bus Data Transfer Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 8. Acknowledge Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 9. Bus Timing Requirements Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 2. AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 10.Slave Address Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 11.READ Mode Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 12.Alternative READ Mode Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 13.WRITE Mode Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
CLOCK OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 3. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Clock Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 14.Crystal Accuracy Across Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 15.Clock Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output Driver Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Initial Power-on Defaults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 4. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 5. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2/24  
M41T56  
Figure 16.AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 6. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 7. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 8. Crystal Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 17.Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 9. Power Down/Up Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 10. Power Down/Up Trip Points DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 18.SO8 – 8-pin Plastic Small Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 11. SO8 – 8-pin Plastic Small Outline, Package Mechanical Data . . . . . . . . . . . . . . . . . . . . 18  
Figure 19.SOH28 – 28-lead Plastic Small Outline, 4-socket battery SNAPHAT, Package Outline. 19  
Table 12. SOH28 – 28-lead Plastic Small Outline, 4-socket battery SNAPHAT, Mech. Data. . . . . 19  
Figure 20.SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Outline . . . . . . . 20  
Table 13. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Mech. Data. . . . 20  
Figure 21.SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Outline . . . . . . 21  
Table 14. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Mech. Data. . . 21  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 15. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 16. SNAPHAT Battery/Crystal Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 17. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3/24  
M41T56  
SUMMARY DESCRIPTION  
The M41T56 TIMEKEEPER® is a low power, 512-  
bit static CMOS RAM organized as 64 words by 8  
bits. A built-in 32,768Hz oscillator (external crystal  
controlled) and the first 8 bytes of the RAM are  
used for the clock/calendar function and are con-  
figured in binary coded decimal (BCD) format. Ad-  
dresses and data are transferred serially via a two-  
line, bi-directional bus. The built-in address regis-  
ter is incremented automatically after each WRITE  
or READ data byte.  
The 28-pin, 330mil SOIC provides sockets with  
gold plated contacts at both ends for direct con-  
nection to a separate SNAPHAT housing contain-  
ing the battery and crystal. The unique design  
allows the SNAPHAT battery package to be  
mounted on top of the SOIC package after the  
completion of the surface mount process. Inser-  
tion of the SNAPHAT housing after reflow pre-  
vents potential battery and crystal damage due to  
the high temperatures required for device surface-  
mounting. The SNAPHAT housing is keyed to pre-  
vent reverse insertion. The SOIC and battery/crys-  
tal packages are shipped separately in plastic anti-  
static tubes or in Tape & Reel form.  
For the 28-lead SOIC, the battery/crystal package  
(e.g., SNAPHAT) part number is “M4Txx-  
BR12SH” (see Table 16., page 22).  
Caution: Do not place the SNAPHAT battery/crys-  
tal package “M4Txx-BR12SH” in conductive foam  
as this will drain the lithium button-cell battery.  
The M41T56 clock has a built-in power sense cir-  
cuit which detects power failures and automatical-  
ly switches to the battery supply during power  
failures. The energy needed to sustain the RAM  
and clock operations can be supplied from a small  
lithium coin cell.  
Typical data retention time is in excess of 10 years  
with a 50mAh, 3V lithium cell. The M41T56 is sup-  
plied in an 8-lead Plastic SOIC package or a 28-  
lead SNAPHAT® package.  
Figure 3. Logic Diagram  
Table 1. Signal Names  
OSCI  
Oscillator Input  
V
V
BAT  
CC  
OCSO  
Oscillator Output  
Frequency Test / Output Driver  
(Open Drain)  
FT/OUT  
OSCO  
SDA  
OSCI  
SCL  
M41T56  
SDA  
SCL  
Serial Data Address Input / Output  
Serial Clock  
FT/OUT  
V
Battery Supply Voltage  
Supply Voltage  
BAT  
V
CC  
V
SS  
V
SS  
Ground  
AI02304B  
4/24  
M41T56  
Figure 4. 8-pin SOIC Connections  
Figure 5. 28-pin SOIC Connections  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
1
28  
27  
V
CC  
NC  
2
3
26  
FT/OUT  
NC  
4
25  
5
24  
NC  
M41T56  
6
23  
NC  
OSCI  
1
2
3
4
8
V
CC  
FT/OUT  
7
22  
NC  
OSCO  
7
M41T56  
8
21  
NC  
V
6
5
SCL  
BAT  
9
20  
SCL  
NC  
V
SDA  
SS  
10  
11  
12  
13  
14  
19  
AI02306B  
18  
NC  
17  
NC  
16  
SDA  
NC  
V
15  
SS  
AI03607  
Figure 6. Block Diagram  
1 Hz  
SECONDS  
MINUTES  
OSCI  
OSCILLATOR  
32.768 kHz  
DIVIDER  
CENTURY/HOURS  
DAY  
OSCO  
FT/OUT  
DATE  
MONTH  
VOLTAGE  
SENSE  
V
CC  
YEAR  
CONTROL  
LOGIC  
and  
V
SS  
CONTROL  
SWITCH  
CIRCUITRY  
V
BAT  
RAM  
(56 x 8)  
SCL  
SDA  
SERIAL  
BUS  
INTERFACE  
ADDRESS  
REGISTER  
AI02566  
5/24  
M41T56  
OPERATION  
The M41T56 clock operates as a slave device on  
the serial bus. Access is obtained by implementing  
a start condition followed by the correct slave ad-  
dress (D0h). The 64 bytes contained in the device  
can then be accessed sequentially in the following  
order:  
1. Seconds Register  
2. Minutes Register  
3. Century/Hours Register  
4. Day Register  
Bus not busy. Both data and clock lines remain  
High.  
Start data transfer. A change in the state of the  
data line, from High to Low, while the clock is High,  
defines the START condition.  
Stop data transfer. A change in the state of the  
data line, from Low to High, while the clock is High,  
defines the STOP condition.  
Data valid. The state of the data line represents  
valid data when after a start condition, the data line  
is stable for the duration of the High period of the  
clock signal. The data on the line may be changed  
during the Low period of the clock signal. There is  
5. Date Register  
6. Month Register  
one  
clock  
pulse  
per  
bit  
of  
data.  
7. Years Register  
Each data transfer is initiated with a start condition  
and terminated with a stop condition. The number  
of data bytes transferred between the start and  
stop conditions is not limited. The information is  
transmitted byte-wide and each receiver acknowl-  
edges with a ninth bit.  
By definition, a device that gives out a message is  
called “transmitter,” the receiving device that gets  
the message is called “receiver.” The device that  
controls the message is called “master.” The de-  
vices that are controlled by the master are called  
“slaves.”  
Acknowledge. Each byte of eight bits is followed  
by one Acknowledge Bit. This Acknowledge Bit is  
a low level put on the bus by the receiver, whereas  
the master generates an extra acknowledge relat-  
ed clock pulse.  
A slave receiver which is addressed is obliged to  
generate an acknowledge after the reception of  
each byte. Also, a master receiver must generate  
an acknowledge after the reception of each byte  
that has been clocked out of the slave transmitter.  
8. Control Register  
9 to 64.RAM  
The clock continually monitors VCC for an out of  
tolerance condition. Should VCC fall below VPFD  
the device terminates an access in progress and  
resets the device address counter. Inputs to the  
device will not be recognized at this time to pre-  
vent erroneous data from being written to the de-  
vice from an out of tolerance system. When VCC  
falls below VBAT, the device automatically switch-  
es over to the battery and powers down into an ul-  
tra low current mode of operation to conserve  
battery life. Upon power-up, the device switches  
from battery to VCC at VBAT and recognizes inputs  
when VCC goes above VPFD volts.  
,
2-Wire Bus Characteristics  
This bus is intended for communication between  
different ICs. It consists of two lines: one bi-direc-  
tional for data signals (SDA) and one for clock sig-  
nals (SCL). Both the SDA and the SCL lines must  
be connected to a positive supply voltage via a  
pull-up resistor.  
The device that acknowledges has to pull down  
the SDA line during the acknowledge clock pulse  
in such a way that the SDA line is a stable Low dur-  
ing the High period of the acknowledge related  
clock pulse. Of course, setup and hold times must  
be taken into account. A master receiver must sig-  
nal an end-of-data to the slave transmitter by not  
generating an acknowledge on the last byte that  
has been clocked out of the slave. In this case, the  
transmitter must leave the data line High to enable  
the master to generate the STOP condition.  
The following protocol has been defined:  
Data transfer may be initiated only when the  
bus is not busy.  
During data transfer, the data line must remain  
stable whenever the clock line is High.  
Changes in the data line while the clock line is  
High will be interpreted as control signals.  
Accordingly, the following bus conditions have  
been defined:  
6/24  
M41T56  
Figure 7. Serial Bus Data Transfer Sequence  
DATA LINE  
STABLE  
DATA VALID  
CLOCK  
DATA  
START  
CONDITION  
CHANGE OF  
DATA ALLOWED  
STOP  
CONDITION  
AI00587  
Figure 8. Acknowledge Sequence  
CLOCK PULSE FOR  
ACKNOWLEDGEMENT  
START  
SCLK FROM  
MASTER  
1
2
8
9
DATA OUTPUT  
BY TRANSMITTER  
MSB  
LSB  
DATA OUTPUT  
BY RECEIVER  
AI00601  
7/24  
M41T56  
Figure 9. Bus Timing Requirements Sequence  
SDA  
tBUF  
tHD:STA  
tR  
tHD:STA  
tF  
SCL  
tHIGH  
tSU:DAT  
tHD:DAT  
tSU:STA  
tSU:STO  
P
S
tLOW  
SR  
P
AI00589  
Table 2. AC Characteristics  
Symbol  
(1)  
Min  
0
Max  
Unit  
kHz  
µs  
Parameter  
f
SCL Clock Frequency  
Clock Low Period  
100  
SCL  
t
4.7  
4
LOW  
t
Clock High Period  
µs  
HIGH  
t
SDA and SCL Rise Time  
SDA and SCL Fall Time  
1
µs  
R
t
300  
ns  
F
START Condition Hold Time  
(after this period the first clock pulse is generated)  
t
4
µs  
µs  
HD:STA  
START Condition Setup Time  
(only relevant for a repeated start condition)  
t
t
4.7  
SU:STA  
Data Setup Time  
250  
0
ns  
µs  
µs  
µs  
SU:DAT  
(2)  
Data Hold Time  
t
HD:DAT  
t
STOP Condition Setup Time  
4.7  
4.7  
SU:STO  
t
Time the bus must be free before a new transmission can start  
BUF  
Note: 1. Valid for Ambient Operating Temperature: T = –40 to 85°C; V = 4.5 to 5.5V (except where noted).  
A
CC  
2. Transmitter must internally provide a hold time to bridge the undefined region (300ns max.) of the falling edge of SCL.  
8/24  
M41T56  
READ Mode  
In this mode, the master reads the M41T56 slave  
after setting the slave address (see Figure 10 and  
Figure 11., page 9). Following the WRITE Mode  
Control Bit (R/W = 0) and the Acknowledge Bit, the  
word address An is written to the on-chip address  
pointer. Next the START condition and slave ad-  
dress are repeated, followed by the READ Mode  
Control Bit (R/W = 1). At this point, the master  
transmitter becomes the master receiver. The data  
byte which was addressed will be transmitted and  
the master receiver will send an Acknowledge Bit  
to the slave transmitter. The address pointer is  
only incremented on reception of an Acknowledge  
Bit. The M41T56 slave transmitter will now place  
the data byte at address An + 1 on the bus. The  
master receiver reads and acknowledges the new  
byte and the address pointer is incremented to An  
+ 2. This cycle of reading consecutive addresses  
will continue until the master receiver sends a  
STOP condition to the slave transmitter.  
An alternate READ Mode may also be implement-  
ed, whereby the master reads the M41T56 slave  
without first writing to the (volatile) address point-  
er. The first address that is read is the last one  
stored in the pointer, see Figure 12., page 10.  
Figure 10. Slave Address Location  
R/W  
START  
SLAVE ADDRESS  
A
1
1
0
1
0
0
0
AI00602  
Figure 11. READ Mode Sequence  
BUS ACTIVITY:  
MASTER  
WORD  
ADDRESS (n)  
SDA LINE  
S
S
DATA n  
DATA n+1  
BUS ACTIVITY:  
SLAVE  
ADDRESS  
SLAVE  
ADDRESS  
DATA n+X  
P
AI00899  
9/24  
M41T56  
Figure 12. Alternative READ Mode Sequence  
BUS ACTIVITY:  
MASTER  
SDA LINE  
S
DATA n  
DATA n+1  
DATA n+X  
P
BUS ACTIVITY:  
SLAVE  
ADDRESS  
AI00895  
WRITE Mode  
Data Retention Mode  
In this mode the master transmitter transmits to  
the M41T56 slave receiver. Bus protocol is shown  
in Figure 13., page 10. Following the START con-  
dition and slave address, a logic '0' (R/W = 0) is  
placed on the bus and indicates to the addressed  
device that word address An will follow and is to be  
written to the on-chip address pointer. The data  
word to be written to the memory is strobed in next  
and the internal address pointer is incremented to  
the next memory location within the RAM on the  
reception of an acknowledge clock. The M41T56  
slave receiver will send an acknowledge clock to  
the master transmitter after it has received the  
slave address and again after it has received the  
word address and each data byte (see Figure 10).  
With valid VCC applied, the M41T56 can be ac-  
cessed as described above with READ or WRITE  
cycles. Should the supply voltage decay, the  
M41T56 will automatically deselect, write protect-  
ing itself when VCC falls between VPFD (max) and  
VPFD (min). This is accomplished by internally in-  
hibiting access to the clock registers and SRAM.  
When VCC falls below the Battery Back-up  
Switchover Voltage (VSO), power input is switched  
from the VCC pin to the battery and the clock reg-  
isters and SRAM are maintained from the attached  
battery supply.  
All outputs become high impedance. On power up,  
when VCC returns to a nominal value, write protec-  
tion continues for tREC  
.
For a further more detailed review of battery life-  
time calculations, please see Application Note  
AN1012.  
Figure 13. WRITE Mode Sequence  
BUS ACTIVITY:  
MASTER  
WORD  
ADDRESS (n)  
SDA LINE  
S
DATA n  
DATA n+1  
DATA n+X  
P
BUS ACTIVITY:  
SLAVE  
ADDRESS  
AI00591  
10/24  
M41T56  
CLOCK OPERATION  
The eight byte clock register (see Table 3) is used  
to both set the clock and to read the date and time  
from the clock, in a binary coded decimal format.  
Seconds, Minutes, and Hours are contained within  
the first three registers. Bits D6 and D7 of Clock  
Register 2 (Hours Register) contain the CENTU-  
RY ENABLE Bit (CEB) and the CENTURY Bit  
(CB). Setting CEB to a '1' will cause CB to toggle,  
either from '0' to '1' or from '1' to '0' at the turn of  
the century (depending upon its initial state). If  
CEB is set to a '0,' CB will not toggle. Bits D0  
through D2 of Register 3 contain the Day (day of  
week). Registers 4, 5, and 6 contain the Date (day  
of month), Month, and Years. The final register is  
the Control Register (this is described in the Clock  
Calibration section). Bit D7 of Register 0 contains  
the STOP Bit (ST). Setting this bit to a '1' will cause  
the oscillator to stop.  
If the device is expected to spend a significant  
amount of time on the shelf, the oscillator may be  
stopped to reduce current drain. When reset to a  
'0' the oscillator restarts within one second.  
The seven Clock Registers may be read one byte  
at a time, or in a sequential block. The Control  
Register (Address location 7) may be accessed in-  
dependently. Provision has been made to assure  
that a clock update does not occur while any of the  
seven clock addresses are being read. If a clock  
address is being read, an update of the clock reg-  
isters will be delayed by 250ms to allow the READ  
to be completed before the update occurs. This  
will prevent a transition of data during the READ.  
Note: This 250ms delay affects only the clock reg-  
ister update and does not alter the actual clock  
time.  
Table 3. Register Map  
Data  
Function/Range  
BCD Format  
Address  
D7  
ST  
X
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
2
10 Seconds  
10 Minutes  
Seconds  
Seconds  
Minutes  
00-59  
00-59  
Minutes  
Hours  
(1)  
CB  
10 Hours  
Century/Hours 0-1/00-23  
CEB  
X
3
4
5
6
7
X
X
X
X
X
S
X
X
Day  
Day  
Date  
01-07  
01-31  
01-12  
00-99  
X
10 Date  
10 M.  
Date  
Month  
Years  
X
Month  
Year  
10 Years  
OUT  
FT  
Calibration  
Control  
Keys:  
S = SIGN Bit  
X = Don't care  
FT = FREQUENCY TEST Bit  
ST = STOP Bit  
CEB = Century Enable Bit  
CB = Century Bit  
OUT = Output level  
Note: 1. When CEB is set to '1,' CB will toggle from '0' to '1' or from '1' to '0' every 100 years (dependent upon the initial value set).  
2. When CEB is set to '0,' CB will not toggle.  
11/24  
M41T56  
Clock Calibration  
The M41T56 is driven by a quartz-controlled oscil-  
lator with a nominal frequency of 32,768Hz. The  
devices are tested not to exceed 35 ppm (parts per  
million) oscillator frequency error at 25°C, which  
equates to about ±1.53 minutes per month. With  
the calibration bits properly set, the accuracy of  
each M41T56 improves to better than ±2 ppm at  
25°C.  
The oscillation rate of any crystal changes with  
temperature (see Figure 14., page 13). Most clock  
chips compensate for crystal frequency and tem-  
perature shift error with cumbersome “trim” capac-  
itors. The M41T56 design, however, employs  
periodic counter correction. The calibration circuit  
adds or subtracts counts from the oscillator divider  
circuit at the divide by 256 stage, as shown in Fig-  
ure 14., page 13. The number of times pulses are  
blanked (subtracted, negative calibration) or split  
(added, positive calibration) depends upon the  
value loaded into the five-bit Calibration Byte  
found in the Control Register. Adding counts  
speeds the clock up, subtracting counts slows the  
clock down.  
The Calibration Byte occupies the five lower order  
bits (D4-D0) in the Control Register (Addr 7). This  
byte can be set to represent any value between 0  
and 31 in binary form. Bit D5 is the Sign Bit; '1' in-  
dicates positive calibration, '0' indicates negative  
calibration. Calibration occurs within a 64 minute  
cycle. The first 62 minutes in the cycle may, once  
per minute, have one second either shortened by  
128 or lengthened by 256 oscillator cycles. If a bi-  
nary '1' is loaded into the register, only the first 2  
minutes in the 64 minutes cycle will be modified; if  
a binary 6 is loaded, the first 12 will be affected,  
and so on.  
Therefore, each calibration step has the effect of  
adding 512 or subtracting 256 oscillator cycles for  
every 125,829,120 actual oscillator cycles, that is  
+4.068 or –2.034 ppm of adjustment per calibra-  
tion step in the calibration register. Assuming that  
the oscillator is in fact running at exactly 32,768Hz,  
each of the 31 increments in the Calibration Byte  
would represent +10.7 or –5.35 seconds per  
month which corresponds to a total range of +5.5  
or –2.75 minutes per month.  
Two methods are available for ascertaining how  
much calibration a given M41T56 may require.  
The first involves simply setting the clock, letting it  
run for a month and comparing it to a known accu-  
rate reference (like WWV broadcasts). While that  
may seem crude, it allows the designer to give the  
end user the ability to calibrate his clock as his en-  
vironment may require, even after the final product  
is packaged in a non-user serviceable enclosure.  
All the designer has to do is provide a simple utility  
that accessed the Calibration Byte.  
The second approach is better suited to a manu-  
facturing environment, and involves the use of  
some test equipment. When the Frequency Test  
(FT) Bit, the seventh-most significant bit in the  
Control Register, is set to a '1,' and the oscillator is  
running at 32,768Hz, the FT/OUT pin of the device  
will toggle at 512Hz. Any deviation from 512Hz in-  
dicates the degree and direction of oscillator fre-  
quency shift at the test temperature.  
For example, a reading of 512.01024Hz would in-  
dicate a +20ppm oscillator frequency error, requir-  
ing a –10(XX001010) to be loaded into the  
Calibration Byte for correction.  
Note: Setting or changing the Calibration Byte  
does not affect the Frequency Test output fre-  
quency.  
12/24  
M41T56  
Figure 14. Crystal Accuracy Across Temperature  
Frequency (ppm)  
20  
0
–20  
–40  
–60  
–80  
F  
F
= K x (T –TO)2  
–100  
–120  
–140  
–160  
K = –0.036 ppm/°C2 ± 0.006 ppm/°C2  
TO = 25°C ± 5°C  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature °C  
AI00999b  
Figure 15. Clock Calibration  
NORMAL  
POSITIVE  
CALIBRATION  
NEGATIVE  
CALIBRATION  
AI00594B  
13/24  
M41T56  
Output Driver Pin  
Initial Power-on Defaults  
When the FT Bit is not set, the FT/OUT pin be-  
comes an output driver that reflects the contents of  
D7 of the Control Register. In other words, when  
D6 of location 7 is a '0' and D7 of location 7 is a '0'  
and then the FT/OUT pin will be driven low.  
Upon initial application of power to the device, the  
FT Bit will be set to a '0' and the OUT Bit will be set  
to a '1.' All other Register bits will initially power-on  
in a random state.  
Note: The FT/OUT pin is open drain which re-  
quires an external pull-up resistor.  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
“Absolute Maximum Ratings” table may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 4. Absolute Maximum Ratings  
Symbol  
Parameter  
Ambient Operating Temperature  
Value  
Unit  
T
A
–40 to 85  
–40 to 85  
–55 to 125  
°C  
SNAPHAT  
SOIC  
T
Storage Temperature (V Off, Oscillator Off)  
°C  
STG  
CC  
(1,2)  
Lead Solder Temperature for 10 seconds  
Input or Output Voltages  
Supply Voltage  
260  
–0.3 to 7  
–0.3 to 7  
20  
°C  
V
T
SLD  
V
IO  
V
V
CC  
I
Output Current  
mA  
W
O
P
Power Dissipation  
0.25  
D
Note: 1. For SO package, standard (SnPb) lead finish: Reflow at peak temperature of 225°C (total thermal budget not to exceed 180°C for  
between 90 to 150 seconds).  
2. For SO package, Lead-free (Pb-free) lead finish: Reflow at peak temperature of 260°C (total thermal budget not to exceed 245°C  
for greater than 30 seconds).  
CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode.  
CAUTION: Do NOT wave solder SOIC to avoid damaging SNAPHAT sockets.  
14/24  
M41T56  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, as well as the DC and AC  
characteristics of the device. The parameters in  
the following DC and AC Characteristic tables are  
derived from tests performed under the Measure-  
ment Conditions listed in the relevant tables. De-  
signers should check that the operating conditions  
in their projects match the measurement condi-  
tions when using the quoted parameters.  
Table 5. Operating and AC Measurement Conditions  
Parameter  
Value  
4.5 to 5.5  
–40 to 85  
100  
Unit  
V
Supply Voltage (V  
)
CC  
Ambient Operating Temperature (T )  
°C  
pF  
ns  
V
A
Load Capacitance (C )  
L
Input Rise and Fall Times  
Input Pulse Voltages  
5  
0 to 3  
1.5  
Input and Output Timing Ref. Voltages  
V
Note: Output Hi-Z is defined as the point where data is no longer driven.  
Figure 16. AC Measurement I/O Waveform  
0.8V  
CC  
0.7V  
CC  
0.3V  
CC  
0.2V  
CC  
AI02568  
Table 6. Capacitance  
(1,2)  
Symbol  
Min  
Max  
7
Unit  
Parameter  
Input Capacitance (SCL)  
C
pF  
pF  
µs  
IN  
(3)  
Output Capacitance (SDA, FT/OUT)  
10  
1
C
OUT  
t
LP  
Low-pass filter input time constant (SDA and SCL)  
0.25  
Note: 1. Effective capacitance measured with power supply at 5V; sampled, not 100% tested.  
2. At 25°C, f = 1MHz.  
3. Outputs deselected.  
15/24  
M41T56  
Table 7. DC Characteristics  
(1)  
Symbol  
Parameter  
Min  
Typ  
Max  
±1  
Unit  
µA  
µA  
µA  
µA  
V
Test Condition  
I
0V V V  
Input Leakage Current  
Output Leakage Current  
Supply Current  
LI  
IN  
CC  
I
0V V  
V  
OUT CC  
±1  
LO  
I
Switch Frequency = 100kHz  
300  
CC1  
I
SCL, SDA = V – 0.3V  
Supply Current (Standby)  
Input Low Voltage  
100  
CC2  
CC  
V
–0.3  
3
1.5  
IL  
V
V
+ 0.8  
CC  
Input High Voltage  
V
IH  
V
I = 5mA, V = 4.5V  
OL CC  
Output Low Voltage  
Battery Supply Voltage  
0.4  
3.5  
V
OL  
(2)  
2.5  
3
V
V
BAT  
T = 25°C, V = 0V,  
A
CC  
I
Battery Supply Current  
450  
550  
nA  
BAT  
Oscillator ON, V  
= 3V  
BAT  
Note: 1. Valid for Ambient Operating Temperature: T = –40 to 85°C; V = 4.5 to 5.5V (except where noted).  
A
CC  
2. STMicroelectronics recommends the RAYOVAC BR1225 or BR1632 (or equivalent) as the battery supply.  
Table 8. Crystal Electrical Characteristics  
(1,2,3)  
Symbol  
Min  
Typ  
Max  
Unit  
kHz  
kΩ  
Parameter  
Resonant Frequency  
f
32.768  
O
R
Series Resistance  
Load Capacitance  
60  
S
C
12.5  
pF  
L
Note: 1. These values are externally supplied if using the SO8 package. STMicroelectronics recommends the KDS DT-38: 1TA/  
1TC252E127, Tuning Fork Type (thru-hole) or the DMX-26S: 1TJS125FH2A212, (SMD) quartz crystal for industrial temperature  
operations. KDS can be contacted at kouhou@kdsj.co.jp or http://www.kdsj.co.jp for further information on this crystal type.  
2. Load capacitors are integrated within the M41T56. Circuit board layout considerations for the 32.768 kHz crystal of minimum trace  
lengths and isolation from RF generating signals should be taken into account.  
3. All SNAPHAT battery/crystal tops meet these specifications.  
16/24  
M41T56  
Figure 17. Power Down/Up Mode AC Waveforms  
V
CC  
V
V
PFD  
SO  
tPD  
tFB  
tRB  
tREC  
SDA  
SCL  
I
BAT  
DATA RETENTION TIME  
AI00595  
Table 9. Power Down/Up Mode AC Characteristics  
(1)  
Symbol  
Min  
0
Max  
Unit  
ns  
Parameter  
t
SCL and SDA at V before Power Down  
PD  
IH  
t
V
(min) to V  
V
Fall Time  
300  
100  
10  
µs  
FB  
PFD  
SS CC  
t
V
SS  
to V  
(min) V Rise Time  
PFD CC  
µs  
RB  
t
SCL and SDA at V after Power Up  
IH  
µs  
REC  
Note: 1. Valid for Ambient Operating Temperature: T = –40 to 85°C; V = 4.5 to 5.5V (except where noted).  
A
CC  
Table 10. Power Down/Up Trip Points DC Characteristics  
(1,2)  
Symbol  
Min  
1.2 V  
Typ  
Max  
Unit  
V
Parameter  
V
1.25 V  
1.285 V  
BAT  
Power-fail Deselect Voltage  
Battery Back-up Switchover Voltage  
PFD  
BAT  
BAT  
V
SO  
V
BAT  
V
Note: 1. All voltages referenced to V  
.
SS  
2. Valid for Ambient Operating Temperature: T = –40 to 85°C; V = 4.5 to 5.5V (except where noted).  
A
CC  
17/24  
M41T56  
PACKAGE MECHANICAL INFORMATION  
Figure 18. SO8 – 8-pin Plastic Small Package Outline  
h x 45˚  
C
A
B
CP  
e
D
N
E
H
1
A1  
α
L
SO-a  
Note: Drawing is not to scale.  
Table 11. SO8 – 8-pin Plastic Small Outline, Package Mechanical Data  
mm  
inches  
Min  
Symb  
Typ  
Min  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
Max  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
Typ  
Max  
0.069  
0.010  
0.020  
0.010  
0.197  
0.157  
A
A1  
B
0.053  
0.004  
0.013  
0.007  
0.189  
0.150  
C
D
E
e
1.27  
0.050  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
0.90  
8°  
0.228  
0.010  
0.016  
0°  
0.244  
0.020  
0.035  
8°  
L
α
N
CP  
8
8
0.10  
0.004  
18/24  
M41T56  
Figure 19. SOH28 – 28-lead Plastic Small Outline, 4-socket battery SNAPHAT, Package Outline  
A2  
A
C
eB  
B
e
CP  
D
N
E
H
A1  
α
L
1
SOH-A  
Note: Drawing is not to scale.  
Table 12. SOH28 – 28-lead Plastic Small Outline, 4-socket battery SNAPHAT, Mech. Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
3.05  
0.36  
2.69  
0.51  
0.32  
18.49  
8.89  
Typ  
Max  
0.120  
0.014  
0.106  
0.020  
0.012  
0.728  
0.350  
A
A1  
A2  
B
0.05  
2.34  
0.36  
0.15  
17.71  
8.23  
0.002  
0.092  
0.014  
0.006  
0.697  
0.324  
C
D
E
e
1.27  
0.050  
eB  
H
3.20  
11.51  
0.41  
0°  
3.61  
12.70  
1.27  
8°  
0.126  
0.453  
0.016  
0°  
0.142  
0.500  
0.050  
8°  
L
α
N
28  
28  
CP  
0.10  
0.004  
19/24  
M41T56  
Figure 20. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-A  
Note: Drawing is not to scale.  
Table 13. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Mech. Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
9.78  
7.24  
6.99  
0.38  
0.56  
21.84  
14.99  
15.95  
3.61  
2.29  
Typ  
Max  
A
A1  
A2  
A3  
B
0.385  
0.285  
0.275  
0.015  
0.022  
0.860  
0.590  
.6280  
0.142  
0.090  
6.73  
6.48  
0.265  
0.255  
0.46  
21.21  
14.22  
15.55  
3.20  
0.018  
0.835  
0.560  
.6122  
0.126  
0.080  
D
E
eA  
eB  
L
2.03  
20/24  
M41T56  
Figure 21. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-B  
Note: Drawing is not to scale.  
Table 14. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Mech. Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
10.54  
8.51  
Typ  
Max  
A
A1  
A2  
A3  
B
0.415  
0.335  
0.315  
0.015  
0.022  
0.860  
0.710  
.6280  
0.142  
0.090  
8.00  
7.24  
0.315  
0.285  
8.00  
0.38  
0.46  
21.21  
17.27  
15.55  
3.20  
0.56  
0.018  
0.835  
0.680  
.6122  
0.126  
0.080  
D
21.84  
18.03  
15.95  
3.61  
E
eA  
eB  
L
2.03  
2.29  
21/24  
M41T56  
PART NUMBERING  
Table 15. Ordering Information Scheme  
Example:  
M41T  
56  
M
6
E
Device Type  
M41T  
Supply Voltage and Write Protect Voltage  
56 = V  
= 4.5 to 5.5V  
CC  
Package  
M = SO8  
(1)  
MH = SOH28  
Temperature Range  
6 = –40 to 85°C  
Shipping Method  
For SO8:  
blank = Tubes (Not for New Design - Use E)  
®
E = Lead-free Package (ECO PACK ), Tubes  
®
F = Lead-free Package (ECO PACK ), Tape & Reel  
TR = Tape & Reel (Not for New Design - Use F)  
For SOH28:  
blank = Tubes (Not for New Design - Use E)  
®
E = Lead-free Package (ECO PACK ), Tubes  
®
F = Lead-free Package (ECO PACK ), Tape & Reel  
TR = Tape & Reel (Not for New Design - Use F)  
®
Note: 1. The SOIC package (SOH28) requires the SNAPHAT battery package which is ordered separately under the part number  
“M4Txx-BR12SHx” in plastic tube or “M4Txx-BR12SHxTR” in Tape & Reel form (see Table 16).  
Caution: Do not place the SNAPHAT battery package “M4TXX-BR12SH” in conductive foam as it will drain the lithium button-cell bat-  
tery.  
For other options, or for more information on any aspect of this device, please contact the ST Sales Office  
nearest you.  
Table 16. SNAPHAT Battery/Crystal Table  
Part Number  
M4T28-BR12SH  
M4T32-BR12SH  
Description  
Package  
SH  
Lithium Battery (48mAh)/Crystal SNAPHAT  
Lithium Battery (120mAh)/Crystal SNAPHAT  
SH  
22/24  
M41T56  
REVISION HISTORY  
Table 17. Document Revision History  
Date  
March 1999  
12/23/99  
03/21/00  
11/30/00  
01/25/01  
02/16/01  
Rev. #  
1.0  
Revision Details  
First Issue  
1.1  
SOH28 package added  
1.2  
Series Resistance Max Value Changed (Table 8)  
Added PSDIP8 package  
1.3  
1.4  
Corrected graphic, measurements of PSDIP8 (Figure 20, Table 14)  
Reformatted, table added (Table 16)  
2.0  
Add temp./voltage information to characteristics (Tables 7, 2); correct Series Resistance  
(Table 8)  
04/06/01  
07/17/01  
08/02/02  
2.1  
2.2  
2.3  
Basic formatting changes  
Modify reflow time and temperature footnote (Table 4); modify Crystal Electrical  
Characteristics table footnotes (Table 8); removed PSDIP8 package  
11/07/02  
2.4  
3.0  
Correct figure name (Figure 1)  
15-Jun-04  
Reformatted; add Lead-free information; update characteristics (Figure 14; Table 4, 15)  
23/24  
M41T56  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners.  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany -  
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore -  
Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
24/24  

相关型号:

M41T56MH

512 bit 64b x8 Serial Access TIMEKEEPER SRAM
STMICROELECTR

M41T56MH6

512 bit (64 bit x8) Serial Access TIMEKEEPER SRAM
STMICROELECTR

M41T56MH6E

512 bit (64 bit x8) Serial Access TIMEKEEPER SRAM
STMICROELECTR

M41T56MH6F

512 bit (64 bit x8) Serial Access TIMEKEEPER SRAM
STMICROELECTR

M41T56MH6TR

512 bit (64 bit x8) Serial Access TIMEKEEPER SRAM
STMICROELECTR

M41T56SH

512 bit 64b x8 Serial Access TIMEKEEPER SRAM
STMICROELECTR

M41T56_07

Serial real-time clock with 56 bytes NVRAM
STMICROELECTR

M41T56_11

Serial real-time clock (RTC) with 56 bytes NVRAM
STMICROELECTR

M41T60

Serial Access Real-Time Clock
STMICROELECTR

M41T60Q6F

Serial Access Real-Time Clock
STMICROELECTR

M41T60_05

Serial access real-time clock
STMICROELECTR

M41T60_10

Serial access real-time clock
STMICROELECTR