M41T81MQ6 [STMICROELECTRONICS]

1 TIMER(S), REAL TIME CLOCK, PDSO16, PLASTIC, SOIC-16;
M41T81MQ6
型号: M41T81MQ6
厂家: ST    ST
描述:

1 TIMER(S), REAL TIME CLOCK, PDSO16, PLASTIC, SOIC-16

时钟 光电二极管 外围集成电路
文件: 总28页 (文件大小:179K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M41T81  
512 Bit (64 bit x 8)  
SERIAL ACCESS RTC SRAM with ALARMS  
PRELIMINARY DATA  
FEATURES SUMMARY  
2.0 TO 5.5V CLOCK OPERATING VOLTAGE  
Figure 1. Packages  
COUNTERS FOR TENTHS/HUNDREDTHS  
OF SECONDS, SECONDS, MINUTES,  
HOURS, DAY, DATE, MONTH, YEAR, and  
CENTURY  
16  
1
AUTOMATIC SWITCH-OVER and DESELECT  
SO16 (MQ)  
CIRCUITRY  
2
SERIAL INTERFACE SUPPORTS I C BUS  
SNAPHAT (SH)  
Battery & Crystal  
(400KHz PROTOCOL)  
44 BYTES OF GENERAL PURPOSE RAM  
PROGRAMMABLE ALARM and INTERRUPT  
FUNCTION (VALID EVEN DURING BATTERY  
BACK-UP MODE)  
WATCHDOG TIMER  
LOW OPERATING CURRENT OF 400µA  
28  
OPERATING TEMPERATURE OF –40 TO  
1
85°C  
SO28 (MH)  
ULTRA-LOW BATTERY SUPPLY CURRENT  
OF 1µA  
March 2001  
1/28  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.  
M41T81  
TABLE OF CONTENTS  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Logic Diagram (Figure 2.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Signal Names (Table 1.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
16-pin SOIC Connections (Figure 3.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
28-pin SOIC Connections (Figure 4.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Block Diagram (Figure 5.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute Maximum Ratings (Table 2.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Operating and AC Measurement Conditions (Table 3.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
AC Measurement I/O Waveform (Figure 6.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Capacitance (Table 4.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
DC Characteristics (Table 5.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Crystal Electrical Characteristics (Table 6.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2-Wire Bus Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Serial Bus Data Transfer Sequence (Figure 7.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Acknowledgement Sequence (Figure 8.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Bus Timing Requirements Sequence (Figure 9.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
AC Characteristics (Table 7.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Write Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Slave Address Location (Figure 10.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Read Mode Sequence (Figure 11.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Alternative Read Mode Sequence (Figure 12.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Write Mode Sequence (Figure 13.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power Down/Up Mode AC Waveforms (Figure 14.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power Down/Up AC Characteristics (Table 8.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power Down/Up Trip Points DC Characteristics (Table 9.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2/28  
M41T81  
CLOCK OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
TIMEKEEPER® Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
TIMEKEEPER® Register Map (Table 10.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Setting Alarm Clock Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Alarm Interrupt Reset Waveforms (Figure 15.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Alarm Repeat Modes (Table 11.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Back-up Mode Alarm Waveform (Figure 16.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Square Wave Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Square Wave Output Frequency (Table 12.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Calibrating the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Century Bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Output Driver Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Initial Power-on Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Crystal Accuracy Across Temperature (Figure 17.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Clock Calibration (Figure 18.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
SNAPHAT Battery/Crystal Table (Table 14.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3/28  
M41T81  
SUMMARY DESCRIPTION  
The M41T81 Serial Access TIMEKEEPER SRAM  
is a low power 512 bit static CMOS SRAM orga-  
nized as 64 words by 8 bits. A built-in 32.768 KHz  
oscillator (external crystal controlled) and 8 bytes  
of the SRAM (see Table 10, page 16) are used for  
the clock/calendar function and are configured in  
binary coded decimal (BCD) format. An additional  
12 bytes of RAM provide status/control of Alarm,  
Watchdog and Square Wave functions. Address-  
es and data are transferred serially via a two line,  
clock address location controls user access to the  
clock information and also stores the clock soft-  
ware calibration setting.  
The M41T81 is supplied in either a 28 lead SOIC  
SNAPHAT package (which integrates both crystal  
and battery in a single SNAPHAT top) or a 16 pin  
SOIC. The 28 pin 330mil SOIC provides sockets  
with gold plated contacts at both ends for direct  
connection to a separate SNAPHAT housing con-  
taining the battery and crystal. The unique design  
allows the SNAPHAT battery/crystal package to  
be mounted on top of the SOIC package after the  
completion of the surface mount process.  
2
bi-directional I C interface. The built-in address  
register is incremented automatically after each  
write or read data byte.  
The M41T81 has a built-in power sense circuit  
which detects power failures and automatically  
switches to the battery supply when a power fail-  
ure occurs. The energy needed to sustain the  
SRAM and clock operations can be supplied by a  
small lithium button supply when a power failure  
occurs. Functions available to the user include a  
non-volatile, time-of-day clock/calendar, Alarm in-  
terrupts, Watchdog Timer and programmable  
Square Wave output. The eight clock address lo-  
cations contain the century, year, month, date,  
day, hour, minute, second and tenths/hundredths  
of a second in 24 hour BCD format. Corrections  
for 28, 29 (leap year - valid until year 2100), 30 and  
31 day months are made automatically. The ninth  
Insertion of the SNAPHAT housing after reflow  
prevents potential battery and crystal damage due  
to the high temperatures required for device sur-  
face-mounting. The SNAPHAT housing is also  
keyed to prevent reverse insertion.  
The SOIC and battery/crystal packages are  
shipped separately in plastic anti-static tubes or in  
Tape & Reel form. For the 28 lead SOIC, the bat-  
tery/crystal package (i.e. SNAPHAT) part number  
is “M4TXX-BR12SH” (see Table 14, page 22).  
Caution: Do not place the SNAPHAT battery/crys-  
tal top in conductive foam, as this will drain the lith-  
ium button-cell battery.  
Figure 2. Logic Diagram  
Table 1. Signal Names  
(1)  
Oscillator Input  
XI  
(1)  
V
V
CC BAT  
(1)  
Oscillator Output  
XO  
Interrupt / Output Driver / Frequency  
Test (Open Drain)  
Square Wave (CMOS)  
IRQ/OUT/  
FT/SQW  
(1)  
(1)  
XI  
XO  
SDA  
Serial Data Input/Output  
Serial Clock Input  
M41T81  
IRQ/FT/OUT/SQW  
SCL  
SDA  
SCL  
(1)  
Battery Supply Voltage  
V
BAT  
V
Supply Voltage  
Ground  
CC  
V
SS  
V
SS  
Note: 1. For SO16 package only  
AI04613  
Note: 1. For SO16 package only.  
4/28  
M41T81  
Figure 3. 16-pin SOIC Connections  
Figure 4. 28-pin SOIC Connections  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
NC  
NC  
NC  
NC  
CC  
NC  
IRQ/FT/OUT/SQW  
V
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
XI  
XO  
NC  
NC  
NC  
NC  
CC  
NC  
NC  
NC  
NC  
NC  
SCL  
NC  
NC  
NC  
SDA  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
IRQ/FT/OUT/SQW  
NC  
NC  
NC  
SCL  
SDA  
M41T81  
M41T81  
9
V
BAT  
10  
11  
12  
13  
14  
V
SS  
AI04614  
V
SS  
AI04615  
Figure 5. Block Diagram  
REAL TIME CLOCK  
CALENDAR  
SDA  
SCL  
44 BYTES  
USER RAM  
2
I C  
INTERFACE  
AF  
RTC W/ALARM  
& CALIBRATION  
(1)  
IRQ/FT/OUT  
WDF  
WATCHDOG  
32KHz  
OSCILLATOR  
CRYSTAL  
SQW  
SQUARE WAVE  
INTERNAL  
POWER  
V
CC  
V
BAT  
(2)  
V
COMPARE  
SO  
V
= V  
SO  
PFD  
WRITE PROTECT  
COMPARE  
Note 1. Open drain output  
AI04616  
Note 2. V  
= V  
– 0.5V (typ)  
(SO)  
(BAT)  
5/28  
M41T81  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
“Absolute Maximum Ratings” table may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 2. Absolute Maximum Ratings  
Sym  
Parameter  
Value  
Unit  
°C  
SNAPHAT  
-40 to 85  
-55 to 125  
T
Storage Temperature (V Off, Oscillator Off)  
STG  
CC  
SOIC  
°C  
(1)  
SLD  
Lead Solder Temperature for 10 Seconds  
Input or Output Voltages  
Output Current  
260  
°C  
V
T
V
I
-0.3 to Vcc+0.3  
IO  
20  
1
mA  
W
O
P
D
Power Dissipation  
Note: 1. Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds).  
CAUTION: Negative undershoots below -0.3 volts are not allowed on any pin while in the Battery Back-Up Mode  
CAUTION: Do NOT wave solder SOIC to avoid damaging SNAPHAT socket.  
6/28  
M41T81  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, as well as the DC and AC  
characteristics of the device. The parameters in  
the following DC and AC Characteristic tables are  
derived from tests performed under the Measure-  
ment Conditions listed in the relevant tables. De-  
signers should check that the operating conditions  
in their projects match the measurement condi-  
tions when using the quoted parameters.  
Table 3. Operating and AC Measurement Conditions  
Parameter  
Unit  
Supply Voltage (V  
)
-0.3 to 7.0  
-40 to 85  
100  
V
°C  
pF  
ns  
V
CC  
Ambient Operating Temperature (T )  
A
Load Capacitance (C )  
L
Input Rise and Fall Times  
Input Pulse Voltages  
50  
0.2V to 0.8 V  
CC  
CC  
CC  
0.3V to 0.7 V  
Input and Output Timing Ref. Voltages  
V
CC  
Note: Output Hi-Z is defined as the point where data is no longer driven.  
Figure 6. AC Measurement I/O Waveform  
0.8V  
CC  
0.7V  
CC  
0.3V  
CC  
0.2V  
CC  
AI02568  
Table 4. Capacitance  
Symbol  
Parameter  
Min  
Max  
Unit  
C
Input Capacitance  
Output Capacitance  
7
pF  
IN  
(1)  
10  
50  
pF  
ns  
C
OUT  
t
Low-pass filter input time constant (SDA and SCL)  
LP  
Note: Effective capacitance measured with power supply at 5V . Sampled only, not 100% tested.  
1. Outputs deselected.  
7/28  
M41T81  
Table 5. DC Characteristics  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Supply Current  
Test Condition  
Min  
Typ  
Max  
±1  
Unit  
µA  
µA  
µA  
µA  
V
I
0V V V  
LI  
IN  
CC  
I
LO  
0V V  
V  
OUT CC  
±1  
I
Switch Freq = 400kHz  
400  
70  
CC1  
I
SCL,SDA = V -0.3V  
Supply Current (standby)  
Input Low Voltage  
CC2  
CC  
V
IL  
0.3V  
CC  
-0.3  
V
IH  
0.7V  
V
CC  
+ 0.8  
Input High Voltage  
V
CC  
I
= 3.0mA  
= 10mA  
Output Low Voltage  
0.4  
0.4  
V
OL  
V
OL  
Output Low Voltage (Open  
Drain)  
I
V
OL  
(1)  
(2)  
I
= –1.0mA  
Output High Voltage  
2.4  
2
V
V
V
OH  
OH  
(3)  
Battery Supply Voltage  
3
V
BAT  
3.5  
T = 25°C, V = 0V  
A
CC  
I
Battery Supply Current  
0.8  
1
µA  
BAT  
Oscillator ON, V  
= 3V  
BAT  
Note: 1. For SQW output (only).  
2. STMicroelectronics recommends the RAYOVAC BR1225 or BR1632 (or equivalent) as the battery supply.  
3. For rechargeable back-up, V (max) may be considered V – 0.5V.  
BAT  
CC  
Table 6. Crystal Electrical Characteristics  
Sym  
Parameter  
Min  
Typ  
Max  
Units  
kHz  
kΩ  
f
Resonant Frequency  
Series Resistance  
Load Capacitance  
32.768  
O
R
60  
S
C
12.5  
pF  
L
Note: Externally supplied if using the SO16 package.  
Load capacitors are integrated within the M41T81. Circuit board layout considerations for the 32.768 kHz crystal of minimum trace  
lengths and isolation from RF generating signals should be taken into account.  
STMicroelectronics recommends the KDS DT-38 Tuning Fork Type (thru-hole) or DMX-26 (SMD) quartz crystal for industrial temper-  
ature conditions.  
KDS can be contacted at kouhou@kdsj.co.jp or http://www.kdsj.co.jp for further information on this crystal type.  
All SNAPHAT battery/crystal tops meet these specifications.  
8/28  
M41T81  
OPERATION  
The M41T81 clock operates as a slave device on  
the serial bus. Access is obtained by implementing  
a start condition followed by the correct slave ad-  
dress (D0h). The 64 bytes contained in the device  
can then be accessed sequentially in the following  
order:  
1. Tenths/Hundredths of a Second Register  
2. Seconds Register  
3. Minutes Register  
– Changes in the data line, while the clock line is  
High, will be interpreted as control signals.  
Accordingly, the following bus conditions have  
been defined:  
Bus not busy. Both data and clock lines remain  
High.  
Start data transfer. A change in the state of the  
data line, from high to Low, while the clock is High,  
defines the START condition.  
4. Century/Hours Register  
5. Day Register  
6. Date Register  
7. Month Register  
8. Year Register  
Stop data transfer. A change in the state of the  
data line, from Low to High, while the clock is High,  
defines the STOP condition.  
Data Valid. The state of the data line represents  
valid data when after a start condition, the data line  
is stable for the duration of the high period of the  
clock signal. The data on the line may be changed  
during the Low period of the clock signal. There is  
one clock pulse per bit of data.  
9. Control Register  
10. Watchdog Register  
11 - 16. Alarm Registers  
17 - 19. Reserved  
20. Square Wave Register  
21 - 64. User RAM  
Each data transfer is initiated with a start condition  
and terminated with a stop condition. The number  
of data bytes transferred between the start and  
stop conditions is not limited. The information is  
transmitted byte-wide and each receiver acknowl-  
edges with a ninth bit.  
By definition a device that gives out a message is  
called “transmitter,” the receiving device that gets  
the message is called “receiver.” The device that  
controls the message is called “master.” The de-  
vices that are controlled by the master are called  
“slaves.”  
Acknowledge. Each byte of eight bits is followed  
by one acknowledge bit. This acknowledge bit is  
a low level put on the bus by the receiver whereas  
the master generates an extra acknowledge relat-  
ed clock pulse. A slave receiver which is ad-  
dressed is obliged to generate an acknowledge  
after the reception of each byte that has been  
clocked out of the slave transmitter.  
The device that acknowledges has to pull down  
the SDA line during the acknowledge clock pulse  
in such a way that the SDA line is a stable Low dur-  
ing the High period of the acknowledge related  
clock pulse. Of course, setup and hold times must  
be taken into account. A master receiver must sig-  
nal an end of data to the slave transmitter by not  
generating an acknowledge on the last byte that  
has been clocked out of the slave. In this case the  
transmitter must leave the data line High to enable  
the master to generate the STOP condition.  
The M41T81 clock continually monitors Vcc for an  
out-of tolerance condition. Should Vcc fall below  
V
, the device terminates an access in progress  
SO  
and resets the device address counter. Inputs to  
the device will not be recognized at this time to  
prevent erroneous data from being written to the  
device from a an out-of-tolerance system. The de-  
vice also automatically switches over to the battery  
and powers down into an ultra low current mode of  
operation to conserve battery life. As system pow-  
er returns and Vcc rises above Vso, the battery is  
disconnected, and the power supply is switched to  
external Vcc.  
For more information on Battery Storage Life refer  
to Application Note AN1012.  
2-Wire Bus Characteristics  
The bus is intended for communication between  
different IC’s. It consists of two lines: a bi-direc-  
tional data signal (SDA) and a clock signal (SCL).  
Both the SDA and SCL lines must be connected to  
a positive supply voltage via a pull-up resistor.  
The following protocol has been defined:  
– Data transfer may be initiated only when the bus  
is not busy.  
– During data transfer, the data line must remain  
stable whenever the clock line is High.  
9/28  
M41T81  
Figure 7. Serial Bus Data Transfer Sequence  
DATA LINE  
STABLE  
DATA VALID  
CLOCK  
DATA  
START  
CHANGE OF  
STOP  
CONDITION  
DATA ALLOWED  
CONDITION  
AI00587  
Figure 8. Acknowledgement Sequence  
CLOCK PULSE FOR  
ACKNOWLEDGEMENT  
START  
SCL FROM  
1
2
8
9
MASTER  
DATA OUTPUT  
MSB  
LSB  
BY TRANSMITTER  
DATA OUTPUT  
BY RECEIVER  
AI00601  
10/28  
M41T81  
Figure 9. Bus Timing Requirements Sequence  
SDA  
tBUF  
tHD:STA  
tR  
tHD:STA  
tF  
SCL  
tHIGH  
tSU:DAT  
tHD:DAT  
tSU:STA  
tSU:STO  
P
S
tLOW  
SR  
P
AI00589  
Table 7. AC Characteristics  
Sym  
Parameter  
Min  
0
Typ  
Max  
Units  
kHz  
µs  
f
SCL Clock Frequency  
Clock Low Period  
Clock High Period  
400  
SCL  
t
1.3  
600  
LOW  
t
ns  
HIGH  
t
SDA and SCL Rise Time  
SDA and SCL Fall Time  
START Condition Hold Time  
300  
300  
ns  
R
t
ns  
F
t
600  
600  
ns  
ns  
HD:STA  
(after this period the first clock pulse is generated)  
START Condition Setup Time  
(only relevant for a repeated start condition)  
t
SU:STA  
(1)  
Data Setup Time  
100  
0
ns  
µs  
ns  
t
SU:DAT  
t
Data Hold Time  
HD:DAT  
t
STOP Condition Setup Time  
600  
SU:STO  
Time the bus must be free before a new  
transmission can start  
t
1.3  
µs  
BUF  
11/28  
M41T81  
Read Mode  
In this mode the master reads the M41T81 slave  
after setting the slave address (see Figure 11,  
page 13). Following the write mode control bit (R/  
W=0) and the acknowledge bit, the word address  
‘An’ is written to the on-chip address pointer. Next  
the START condition and slave address are re-  
peated followed by the READ mode control bit (R/  
W=1). At this point the master transmitter be-  
comes the master receiver. The data byte which  
was addressed will be transmitted and the master  
receiver will send an acknowledge bit to the slave  
transmitter. The address pointer is only incre-  
mented on reception of an acknowledge bit. The  
M41T81 slave transmitter will now place the data  
byte at address An+1 on the bus, the master re-  
ceiver reads and acknowledges the new byte and  
the address pointer is incremented to “An+2.”  
ther due to a Stop Condition or when the pointer  
increments to a RAM address.  
An alternate READ mode may also be implement-  
ed whereby the master reads the M41T81 slave  
without first writing to the (volatile) address point-  
er. The first address that is read is the last one  
stored in the pointer (see Figure 12, page 13).  
Write Mode  
In this mode the master transmitter transmits to  
the M41T81 slave receiver. Bus protocol is shown  
in Figure 13, page 13. Following the START con-  
dition and slave address, a logic ‘0’ (R/W=0) is  
placed on the bus and indicates to the addressed  
device that word address “An” will follow and is to  
be written to the on-chip address pointer. The  
data word to be written to the memory is strobed in  
next and the internal address pointer is increment-  
ed to the next memory location within the RAM on  
the reception of an acknowledge clock. The  
M41T81 slave receiver will send an acknowledge  
clock to the master transmitter after it has received  
the slave address (see Figure 8, page 10) and  
again after it has received the word address and  
each data byte.  
This cycle of reading consecutive addresses will  
continue until the master receiver sends a STOP  
condition to the slave transmitter.  
The system-to-user transfer of clock data will be  
halted whenever the address being read is a clock  
address (00h to 07h). The update will resume ei-  
Figure 10. Slave Address Location  
R/W  
START  
SLAVE ADDRESS  
A
1
1
0
1
0
0
0
AI00602  
12/28  
M41T81  
Figure 11. Read Mode Sequence  
BUS ACTIVITY:  
MASTER  
WORD  
ADDRESS (n)  
SDA LINE  
S
S
DATA n  
DATA n+1  
BUS ACTIVITY:  
SLAVE  
ADDRESS  
SLAVE  
ADDRESS  
DATA n+X  
P
AI00899  
Figure 12. Alternative Read Mode Sequence  
BUS ACTIVITY:  
MASTER  
SDA LINE  
S
DATA n  
DATA n+1  
DATA n+X  
P
BUS ACTIVITY:  
SLAVE  
ADDRESS  
AI00895  
Figure 13. Write Mode Sequence  
BUS ACTIVITY:  
MASTER  
WORD  
ADDRESS (n)  
SDA LINE  
S
DATA n  
DATA n+1  
DATA n+X  
P
BUS ACTIVITY:  
SLAVE  
ADDRESS  
AI00591  
13/28  
M41T81  
Data Retention Mode  
With valid V  
applied, the M41T81 can be ac-  
from the V  
pin to the battery and the clock reg-  
CC  
CC  
cessed as described above with read or write cy-  
cles. Should the supply voltage decay, the  
M41T81 will automatically deselect, write protect-  
isters and SRAM are maintained from the attached  
battery supply.  
All outputs become high impedance. On power  
up, when Vcc returns to a nominal value, write pro-  
tection continues for t  
For a further more detailed review of lifetime calcu-  
lations, please see Application Note AN1012.  
ing itself when Vcc falls between V  
(max) and  
PFD  
V
(min). This is accomplished by internally in-  
PFD  
.
REC  
hibiting access to the clock registers and SRAM.  
When Vcc falls below the Battery Back-up  
Switchover Voltage (V ), power input is switched  
SO  
Figure 14. Power Down/Up Mode AC Waveforms  
V
CC  
V
SO  
tPD  
tREC  
SDA  
SCL  
DON'T CARE  
AI00596  
Table 8. Power Down/Up AC Characteristics  
Symbol  
Parameter  
Min  
0
Typ  
Max  
Unit  
nS  
t
SCL and SDA at V before Power Down  
PD  
IH  
t
SCL and SDA at V after Power Up  
10  
µS  
REC  
IH  
Note: V fall time should not exceed 5mV/µs.  
CC  
Table 9. Power Down/Up Trip Points DC Characteristics  
Sym  
Parameter  
Min  
Typ  
– 0.50  
Max  
V – 0.20  
BAT  
Unit  
(1)  
V
– 0.70  
V
Battery Back-up Switchover Voltage  
V
V
SO  
BAT  
BAT  
Note: All voltages referenced to V  
.
SS  
1. Switch-over and deselect point  
14/28  
M41T81  
CLOCK OPERATION  
The twenty byte clock register (see Table 10, page  
16) is used to both set the clock and to read the  
date and time from the clock, in a binary coded  
decimal format. Tenths/Hundredths of Seconds,  
Seconds, Minutes, and Hours are contained within  
the first four registers. Bits D6 and D7 of clock  
register 3 (Century/Hours Register) contain the  
CENTURY ENABLE Bit (CEB) and the CENTURY  
Bit (CB). Setting CEB to a ‘1’ will cause CB to tog-  
gle, either from ‘0’ to ‘1’ or from ‘1’ to ‘0’ at the turn  
of the century (depending upon its initial state). If  
CEB is set to a ‘0’, CB will not toggle. Bits D0  
through D2 of register 4 contain the Day (day of  
week). Registers 5, 6 and 7 contain the Date (day  
of month), Month and Years. The ninth clock reg-  
ister is the Control Register (this is described in the  
Clock Calibration section). Bit D7 of register 1  
contains the STOP Bit (ST). Setting this bit to a ‘1’  
will cause the oscillator to stop. If the device is ex-  
pected to spend a significant amount of time on  
the shelf, the oscillator may be stopped to reduce  
current drain. When reset to a ‘0’ the oscillator re-  
starts within one second.  
that a clock update does not occur while any of the  
seven clock addresses are being read. If a clock  
address is being read, an update of the clock reg-  
isters will be halted. This will prevent a transition  
of data during the read.  
Note: Upon power-up following a power failure,  
the HT bit will automatically be set to a ‘1’. This will  
prevent the clock from updating the TIMEKEEPER  
registers, and will allow the user to read the exact  
time of the power-down event. Resetting the HT  
bit to a ‘0’ will allow the clock to update the TIME-  
KEEPER registers with the current time.  
TIMEKEEPER® Registers  
The M41T81 offers 20 internal registers which  
contain Clock, Alarm, Watchdog, Flag, Square  
Wave and Control data. These registers are mem-  
ory locations which contain external (user accessi-  
ble) and internal copies of the data (usually  
TM  
referred to as BiPORT  
TIMEKEEPER cells).  
The external copies are independent of internal  
functions except that they are updated periodically  
by the simultaneous transfer of the incremented  
internal copy. TIMEKEEPER and Alarm Registers  
store data in BCD. Control, Watchdog and Square  
Wave Registers store data in Binary Format.  
The eight Clock Registers may be read one byte at  
a time, or in a sequential block. The Control Reg-  
ister (Address location 08h) may be accessed in-  
dependently. Provision has been made to assure  
15/28  
M41T81  
Table 10. TIMEKEEPER® Register Map  
Addr  
Function/Range  
BCD Format  
D7  
D6  
0.1 Seconds  
10 Seconds  
10 Minutes  
D5  
D4  
D3  
D2  
D1  
D0  
00h  
01h  
02h  
0.01 Seconds  
Seconds  
Seconds  
Seconds  
Minutes  
00-99  
00-59  
00-59  
ST  
0
Minutes  
Century/ 0-1/00-  
03h  
CEB  
CB  
10 Hours  
Hours (24 Hour Format)  
Hour  
23  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
0
0
0
0
0
0
0
0
0
Day of Week  
Date: Day of Month  
Month  
Day  
01-7  
10 Date  
Date  
01-31  
01-12  
00-99  
0
10M  
Month  
10 Years  
Year  
Year  
OUT  
0
FT  
S
Calibration  
Control  
Watchdog  
Al Month  
Al Date  
Al Hour  
Al Min  
BMB4  
SQWE  
RPT5  
HT  
BMB3  
ABE  
BMB2  
BMB1  
BMB0  
RB1  
RB0  
AFE  
RPT4  
RPT3  
RPT2  
RPT1  
WDF  
0
Al 10M  
Alarm Month  
01-12  
01-31  
00-23  
00-59  
00-59  
AI 10 Date  
AI 10 Hour  
Alarm Date  
Alarm Hour  
Alarm 10 Minutes  
Alarm Minutes  
Alarm Seconds  
Alarm 10 Seconds  
Al Sec  
Flags  
AF  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
SQW  
0
0
0
0
0
0
RS3  
RS2  
RS1  
RS0  
Keys:  
AFE = Alarm Flag Enable Flag  
S = Sign Bit  
FT = Frequency Test Bit  
ST = Stop Bit  
RB0-RB1 = Watchdog Resolution Bits  
ABE = Alarm in Battery Back-Up Mode Enable Bit  
RPT1-RPT5 = Alarm Repeat Mode Bits  
WDF = Watchdog flag  
0 = Must be set to zero  
BMB0-BMB4 = Watchdog Multiplier Bits  
CEB = Century Enable Bit  
CB = Century Bit  
AF = Alarm flag  
SQWE = Square Wave Enable  
RS0-RS3 = SQW Frequency  
HT = Halt Update Bit  
OUT = Output level  
16/28  
M41T81  
Setting Alarm Clock Registers  
Address locations 0Ah-0Eh contain the alarm set-  
tings. The alarm can be configured to go off at a  
prescribed time on a specific month, date, hour,  
minute, or second or repeat every year, month,  
day, hour, minute, or second. It can also be pro-  
grammed to go off while the M41T81 is in the bat-  
tery back-up to serve as a system wake-up call.  
tion activates the IRQ/FT/OUT/SQW pin. The  
IRQ/FT/OUT/SQW output is cleared by a read to  
the Flags register. This read of the Flags register  
will also reset the Alarm Flag (D6; Register 0Fh).  
The IRQ/FT/OUT/SQW pin can also be activated  
in the battery back-up mode. The IRQ/FT/OUT/  
SQW will go low if an alarm occurs and both ABE  
(Alarm in Battery Back-up Mode Enable) and AFE  
are set. The ABE and AFE bits are reset during  
power-up, therefore an alarm generated during  
power-up will only set AF. The user can read the  
Flag Register at system boot-up to determine if an  
alarm was generated while the M41T81 was in the  
deselect mode during power-up. Figure 16, page  
18 illustrates the back-up mode alarm timing.  
Bits RPT5-RPT1 put the alarm in the repeat mode  
of operation. Table 11, page 17 shows the possi-  
ble configurations. Codes not listed in the table  
default to the once per second mode to quickly  
alert the user of an incorrect alarm setting.  
When the clock information matches the alarm  
clock settings based on the match criteria defined  
by RPT5-RPT1, the AF (Alarm Flag) is set. If AFE  
(Alarm Flag Enable) is also set, the alarm condi-  
Figure 15. Alarm Interrupt Reset Waveforms  
0Eh  
0Fh  
10h  
ACTIVE FLAG  
HIGH-Z  
IRQ/FT/OUT/SQW  
AI04617  
Table 11. Alarm Repeat Modes  
RPT5  
RPT4  
RPT3  
RPT2  
RPT1  
Alarm Setting  
Once per Second  
Once per Minute  
Once per Hour  
Once per Day  
1
1
1
1
1
0
1
1
1
1
0
0
1
1
1
0
0
0
1
1
0
0
0
0
1
0
0
0
0
0
Once per Month  
Once per Year  
17/28  
M41T81  
Figure 16. Back-up Mode Alarm Waveform  
V
V
CC  
PFD  
V
SO  
tREC  
AFE bit  
AF bit in Flags Register  
IRQ/FT/OUT/SQW  
HIGH-Z  
HIGH-Z  
AI04618  
Watchdog Timer  
The watchdog timer can be used to detect an out-  
of-control microprocessor. The user programs the  
watchdog timer by setting the desired amount of  
time-out into the Watchdog Register, address 09h.  
Bits BMB4-BMB0 store a binary multiplier and the  
two lower order bits RB1-RB0 select the resolu-  
tion, where 00=1/16 second, 01=1/4 second, 10=1  
second, and 11=4 seconds. The amount of time-  
out is then determined to be the multiplication of  
the five bit multiplier value with the resolution. (For  
example: writing 00001110 in the Watchdog Reg-  
ister = 3*1 or 3 seconds). If the processor does not  
reset the timer within the specified period, the  
M41T81 sets the WDF (Watchdog Flag) and gen-  
erates a watchdog interrupt.  
The watchdog timer can be reset by having the mi-  
croprocessor perform a write of the Watchdog  
Register. The time-out period then starts over.  
Should the watchdog timer time-out, a value of  
00h needs to be written to the Watchdog Register  
in order to clear the IRQ/FT/OUT/SQW pin. This  
will also disable the watchdog function until it is  
again programmed correctly. A read of the Flags  
Register will reset the Watchdog Flag (Bit D7;  
Register 0Fh).  
The watchdog function is automatically disabled  
upon power-up and the Watchdog Register is  
cleared. If the watchdog function is set and the  
frequency test function is activated, the watchdog  
function prevails and the frequency test function is  
denied.  
Note: If the Square Wave function is enabled, the  
accuracy of the Watchdog Timer will be a function  
of the selected resolution.  
18/28  
M41T81  
Square Wave Output  
The M41T81 offers the user a programmable  
square wave function which is output on the SQW  
pin. RS3-RS0 bits located in 13h establish the  
square wave output frequency. These frequen-  
cies are listed in Table 12. Once the selection of  
the SQW frequency has been completed, the IRQ/  
FT/OUT/SQW pin can be turned on and off under  
software control with the Square Wave Enable Bit  
(SQWE) located in Register 0Ah.  
Table 12. Square Wave Output Frequency  
Square Wave Bits  
Square Wave  
RS3  
0
RS2  
0
RS1  
0
RS0  
0
Frequency  
None  
32.768  
8.192  
4.096  
2.048  
1.024  
512  
Units  
-
0
0
0
1
kHz  
kHz  
kHz  
kHz  
kHz  
Hz  
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
256  
Hz  
1
0
0
0
128  
Hz  
1
0
0
1
64  
Hz  
1
0
1
0
32  
Hz  
1
0
1
1
16  
Hz  
1
1
0
0
8
Hz  
1
1
0
1
4
Hz  
1
1
1
0
2
Hz  
1
1
1
1
1
Hz  
19/28  
M41T81  
Calibrating the Clock  
The M41T81 is driven by a quartz controlled oscil-  
lator with a nominal frequency of 32,768 Hz. The  
devices are tested not exceed +/-35 PPM (parts  
environment requires, even if the final product is  
packaged in a non-user serviceable enclosure.  
The designer could provide a simple utility that ac-  
cesses the Calibration byte.  
o
per million) oscillator frequency error at 25 C,  
which equates to about +/-1.53 minutes per month  
(see Figure 17, page 21). When the Calibration  
circuit is properly employed, accuracy improves to  
better than +1/-2 PPM at 25°C.  
The second approach is better suited to a manu-  
facturing environment, and involves the use of the  
IRQ/FT/OUT/SQW pin. The pin will toggle at  
512Hz, when the Stop bit (ST, D7 of 1h) is ‘0’,the  
Frequency Test bit (FT, D6 of 8h) is ‘1’, the Alarm  
Flag Enable bit (AFE, D7 of Ah) is ‘0’, and the  
Square Wave Enable Bit (SQWE, D6 of 0Ah) is 0  
and the Watchdog Register (9h=0) is reset.  
The oscillation rate of crystals changes with tem-  
perature. The M41T81 design employs periodic  
counter correction. The calibration circuit adds or  
subtracts counts from the oscillator divider circuit  
at the divide by 256 stage, as shown in Figure 18,  
page 21. The number of times pulses which are  
blanked (subtracted, negative calibration) or split  
(added, positive calibration) depends upon the  
value loaded into the five Calibration bits found in  
the Control Register. Adding counts speeds the  
clock up, subtracting counts slows the clock down.  
The Calibration bits occupy the five lower order  
bits (D4-D0) in the Control Register 8h. These bits  
can be set to represent any value between 0 and  
31 in binary form. Bit D5 is a Sign bit; ‘1’ indicates  
positive calibration, ‘0’ indicates negative calibra-  
tion. Calibration occurs within a 64 minute cycle.  
The first 62 minutes in the cycle may, once per  
minute, have one second either shortened by 128  
or lengthened by 256 oscillator cycles. If a binary  
‘1’ is loaded into the register, only the first 2 min-  
utes in the 64 minute cycle will be modified; if a bi-  
nary 6 is loaded, the first 12 will be affected, and  
so on.  
Therefore, each calibration step has the effect of  
adding 512 or subtracting 256 oscillator cycles for  
every 125,829,120 actual oscillator cycles, that is  
+4.068 or -2.034 PPM of adjustment per calibra-  
tion step in the calibration register. Assuming that  
the oscillator is running at exactly 32,768 Hz, each  
of the 31 increments in the Calibration byte would  
represent +10.7 or -5.35 seconds per month which  
corresponds to a total range of +5.5 or -2.75 min-  
utes per month.  
Any deviation from 512 Hz indicates the degree  
and direction of oscillator frequency shift at the test  
temperature. For example,  
a
reading of  
512.010124 Hz would indicate a +20 PPM oscilla-  
tor frequency error, requiring a -10 (XX001010) to  
be loaded into the Calibration Byte for correction.  
Note that setting or changing the Calibration Byte  
does not affect the Frequency Test output fre-  
quency.  
The IRQ/FT/OUT/SQW pin is an open drain output  
which requires a pull-up resistor to Vcc for proper  
operation. A 500-10k resistor is recommended in  
order to control the rise time. The FT bit is cleared  
on power-down.  
Century Bit  
Bits D7 and D6 of Clock Register 03h contain the  
CENTURY ENABLE Bit (CEB) and the CENTURY  
Bit (CB). Setting CEB to a “1” will cause CB to tog-  
gle, either from a “0” to “1” or from “1” to “0” at the  
turn of the century (depending upon its initial  
state). If CEB is set to a “0”, CB will not toggle.  
Output Driver Pin  
When the FT bit, AFE bit, SQWE bit, and watch-  
dog register are not set, the IRQ/FT/OUT/SQW pin  
becomes an output driver that reflects the contents  
of D7 of the Control Register. In other words, when  
D7 (OUT Bit) and D6 (FT Bit) of address location  
08h are a '0,' then the IRQ/FT/OUT/SQW pin will  
be driven low.  
Two methods are available for ascertaining how  
much calibration a given M41T81 may require.  
Note: The IRQ/FT/OUT/SQW pin is an open drain  
which requires an external pull-up resistor (unless  
the SQW function is enabled).  
The first involves setting the clock, letting it run for  
a month and comparing it to a known accurate ref-  
erence and recording deviation over a fixed period  
of time. Calibration values, including the number  
of seconds lost or gained in a given period, can be  
found in Application Note AN934: TIMEKEEPER  
CALIBRATION. This allows the designer to give  
the end user the ability to calibrate the clock as the  
Initial Power-on Defaults  
Upon initial application of power to the device, the  
following register bits are set to a ‘0’ state: Watch-  
dog Register; AFE; ABE and SQWE. The follow-  
ing bits are set to a ‘1’ state: ST; OUT; and HT.  
20/28  
M41T81  
Figure 17. Crystal Accuracy Across Temperature  
Frequency (ppm)  
20  
0
–20  
–40  
–60  
–80  
= -0.038  
(T - T0)2 ± 10%  
F  
F
ppm  
C2  
–100  
–120  
–140  
–160  
T0 = 25 °C  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature °C  
AI00999  
Figure 18. Clock Calibration  
NORMAL  
POSITIVE  
CALIBRATION  
NEGATIVE  
CALIBRATION  
AI00594B  
21/28  
M41T81  
PART NUMBERING  
Table 13. Ordering Information Scheme  
Example:  
M41T  
81  
MH  
6
TR  
Device Type  
M41T  
Supply Voltage and Write Protect Voltage  
81 = V = 2.0 to 5.5V; V  
= 2.7 to 2.8V  
CC  
PFD  
Package  
MQ = SO16  
(1)  
MH = SO28  
Temperature Range  
6 = –40°C to 85°C  
Shipping Method for SOIC  
blank = Tubes  
TR = Tape & Reel  
Note: 1. The 28-pin SOIC package (SOH28) requires the battery/crystal package (SNAPHAT®) which is ordered separately under the part  
number “M4TXX-BR12SHX” in plastic tube or “M4TXX-BR12SHXTR” in Tape & Reel form.  
Caution:Do NOT place the SNAPHAT battery package “M4TXX-BR12SH” in conductive foam as this will drain the lithium button-cell battery.  
For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device,  
please contact the ST Sales Office nearest to you.  
Table 14. SNAPHAT Battery/Crystal Table  
Part Number  
M4T28-BR12SH  
M4T32-BR12SH  
Description  
Package  
SH  
Lithium Battery (48mAh)/Crystal SNAPHAT  
Lithium Battery (120mAh)/Crystal SNAPHAT  
SH  
22/28  
M41T81  
PACKAGE MECHANICAL INFORMATION  
Figure 19. SO16 – 16-lead Plastic Small Package Outline  
A2  
A
C
B
CP  
e
D
N
1
E
H
A1  
α
L
SO-b  
Note: Drawing is not to scale.  
Table 15. SO16 – 16-lead Plastic Small Outline (150 mils body width), Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
1.75  
0.25  
1.60  
0.46  
0.25  
10.00  
4.00  
Typ  
Max  
0.069  
0.010  
0.063  
0.018  
0.010  
0.394  
0.158  
A
A1  
A2  
B
0.10  
0.004  
0.35  
0.19  
9.80  
3.30  
0.014  
0.007  
0.386  
0.150  
C
D
E
e
1.27  
0.050  
H
5.80  
0.40  
0°  
6.20  
1.27  
8°  
0.228  
0.016  
0°  
0.244  
0.050  
8°  
L
a
N
16  
16  
CP  
0.10  
0.004  
23/28  
M41T81  
Figure 20. SO28 – 28-lead Plastic Small Package Outline  
A2  
A
C
eB  
B
e
CP  
D
N
E
H
A1  
α
L
1
SOH-B  
Note: Drawing is not to scale.  
Table 16. SO28 – 28-lead Plastic Small Outline, Package Mechanical Data  
mm  
inches  
Symb  
Typ  
Min  
Max  
3.05  
0.36  
2.69  
0.51  
0.32  
18.49  
8.89  
Typ  
Min  
Max  
0.120  
0.014  
0.106  
0.020  
0.012  
0.728  
0.350  
A
A1  
A2  
B
0.05  
2.34  
0.36  
0.15  
17.71  
8.23  
0.002  
0.092  
0.014  
0.006  
0.697  
0.324  
C
D
E
e
1.27  
0.050  
eB  
H
3.20  
11.51  
0.41  
0°  
3.61  
12.70  
1.27  
8°  
0.126  
0.453  
0.016  
0°  
0.142  
0.500  
0.050  
8°  
L
a
N
28  
28  
CP  
0.10  
0.004  
24/28  
M41T81  
Figure 21. SH – 4-pin SNAPHAT Housing for 48 mAh Battery and Crystal, Package Outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-A  
Note: Drawing is not to scale.  
Table 17. SH – 4-pin SNAPHAT Housing for 48 mAh Battery and Crystal, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
9.78  
7.24  
6.99  
0.38  
0.56  
21.84  
14.99  
Typ  
Max  
0.385  
0.285  
0.275  
0.015  
0.022  
0.860  
0.590  
A
A1  
A2  
A3  
B
0
6.73  
6.48  
0.265  
0.255  
0
0.46  
21.21  
14.22  
0.018  
0.835  
0.560  
D
E
eA  
eB  
L
3.20  
2.03  
3.61  
2.29  
0.126  
0.080  
0.142  
0.090  
25/28  
M41T81  
Figure 22. SH – 4-pin SNAPHAT Housing for 120 mAh Battery and Crystal, Package Outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-A  
Note: Drawing is not to scale.  
Table 18. SH – 4-pin SNAPHAT Housing for 120 mAh Battery and Crystal, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
10.54  
8.51  
8.00  
0.38  
0.56  
21.84  
18.03  
3.61  
2.29  
Typ  
Max  
0.415  
0.335  
0.315  
0.015  
0.022  
0.860  
0.710  
0.142  
0.090  
A
A1  
A2  
A3  
B
0
8.00  
7.24  
0.315  
0.285  
0
0.46  
21.21  
17.27  
3.20  
0.018  
0.835  
0.680  
0.126  
0.080  
D
E
eB  
L
2.03  
26/28  
M41T81  
REVISION HISTORY  
Table 19. Document Revision History  
Date  
Revision Details  
October 2000  
10/9/00  
First Issue  
Markups received October 6 entered  
Reformatted  
12/27/00  
01/30/01  
03/01/01  
Correction of FEATURES SUMMARY, Supply Voltage (Table 13)  
Text corrected in Watchdog, Output Driver pin sections  
27/28  
M41T81  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners.  
© 2001 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
www.st.com  
28/28  

相关型号:

M41T81MX

SERIAL ACCESS RTC WITH ALARMS
STMICROELECTR

M41T81MX6

SERIAL ACCESS RTC WITH ALARMS
STMICROELECTR

M41T81MX6F

1 TIMER(S), REAL TIME CLOCK, PDSO28, 0.300 INCH, LEAD FREE, PLASTIC, SO-28
STMICROELECTR

M41T81MX6TR

SERIAL ACCESS RTC WITH ALARMS
STMICROELECTR

M41T81MY

SERIAL ACCESS RTC WITH ALARMS
STMICROELECTR

M41T81MY6

SERIAL ACCESS RTC WITH ALARMS
STMICROELECTR

M41T81MY6E

1 TIMER(S), REAL TIME CLOCK, PDSO18, 0.300 INCH, LEAD FREE, PLASTIC, SO-18
STMICROELECTR

M41T81MY6F

1 TIMER(S), REAL TIME CLOCK, PDSO18, 0.300 INCH, LEAD FREE, PLASTIC, SO-18
STMICROELECTR

M41T81MY6TR

SERIAL ACCESS RTC WITH ALARMS
STMICROELECTR

M41T81S

Serial Access Real-Time Clock with Alarms
STMICROELECTR

M41T81SM6

1 TIMER(S), REAL TIME CLOCK, PDSO8, 0.150 INCH, PLASTIC, SO-8
STMICROELECTR

M41T81SM6E

Serial Access Real-Time Clock with Alarms
STMICROELECTR