M41T93SMY6F [STMICROELECTRONICS]

Serial SPI bus RTC with battery switchover; 串行SPI总线RTC,电池切换
M41T93SMY6F
型号: M41T93SMY6F
厂家: ST    ST
描述:

Serial SPI bus RTC with battery switchover
串行SPI总线RTC,电池切换

计时器或实时时钟 电池 微控制器和处理器 外围集成电路 光电二极管
文件: 总49页 (文件大小:418K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M41T93  
Serial SPI bus RTC with battery switchover  
Preliminary Data  
Feature summary  
2.0 to 5.5V clock operating voltage  
Ultra-low battery supply current of 365nA  
Counters for tenths/hundredths of seconds,  
seconds, minutes, hours, day, date, month,  
year, and century  
QFN16, 4mm x 4mm (QA)  
Programmable clock calibration (analog and  
digital)  
18  
Automatic switch-over and reset output  
1
circuitry (fixed reference)  
– M41T93S: V = 3.0V to 5.5V  
CC  
SOX18 (MY, 18-pin, 300mil SOIC  
with Embedded Crystal)  
(2.85V V  
3.00V)  
RST  
– M41T93R: V = 2.7V to 5.5V  
CC  
(2.55V V  
2.70V)  
RST  
– M41T93Z: V = 2.38V to 5.50V  
CC  
(2.25V V  
2.38V)  
RST  
Compatible with SPI Bus serial interface  
Package options include:  
(positive clock SPI modes)  
– a 16-Lead QFN or an 18-Lead Embedded  
Crystal SOIC  
Programmable alarm with interrupt function  
(valid even during battery back-up mode)  
RoHS Compliance: lead-free components are  
nd  
compliant with the RoHS directive.  
Optional 2 programmable alarm available  
Square wave output (defaults to 32kHz on  
power-up)  
RESET (RST) output  
Watchdog timer  
Programmable 8-bit counter/timer  
7 Bytes of battery-backed user SRAM  
Battery low flag  
Power-down time stamp (HT Bit)  
Low operating current of 80µA  
Oscillator stop detection  
Battery or super-cap™ Back-up  
Operating temperature of –40°C to 85°C  
August 2006  
Rev 1  
1/49  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to  
change without notice.  
www.st.com  
49  
Contents  
M41T93  
Contents  
1
Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1  
SPI signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1.1.1  
1.1.2  
1.1.3  
1.1.4  
Serial data output (SDO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Serial data input (SDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Serial clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Chip enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2
3
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.1  
2.2  
2.3  
2.4  
SPI bus characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
READ and WRITE cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data retention and battery switch-over (VSO = VRST) . . . . . . . . . . . . . . . 15  
Power-on reset (trec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Clock operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.1  
3.2  
3.3  
3.4  
Power-down time-stamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Clock/control register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Real time clock accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Clock calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.4.1  
3.4.2  
Digital calibration (periodic counter correction) . . . . . . . . . . . . . . . . . . . 20  
Analog calibration (programmable load capacitance) . . . . . . . . . . . . . . 22  
3.5  
3.6  
3.7  
3.8  
Setting the alarm clock registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Optional second programmable alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8-Bit (countdown) timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.8.1  
3.8.2  
3.8.3  
3.8.4  
3.8.5  
TI/TP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
TF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
TIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
TD1/0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.9  
Square wave output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.10 Battery low warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.11 Century bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
2/49  
M41T93  
Contents  
3.12 Output driver pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.13 Oscillator fail detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.14 Oscillator fail interrupt enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.15 Initial power-on defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3.16 OTP bit operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
4
5
6
7
8
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Package mechanical information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3/49  
List of Figures  
M41T93  
List of Figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
QFN16 (QA) connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SOX18 (MY) connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Hardware hookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Data and clock timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
READ mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
WRITE mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Internal load capacitance adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 10. Crystal accuracy across temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 11. Clock accuracy vs. on-chip load capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 12. Clock divider chain and calibration circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 13. Crystal isolation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 14. Alarm interrupt reset waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 15. Back-up mode alarm waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 16. Measurement AC I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 17. Power down/up mode AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 18. Input timing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 19. Output timing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 20. QFN16 – 16-lead, Quad, Flat Package, No Lead, 4x4mm body size, Outline . . . . . . . . . . 43  
Figure 21. QFN16 – 16-lead, Quad, Flat, No Lead, 4x4mm, recommended footprint . . . . . . . . . . . . . 45  
Figure 22. 32kHz Crystal + QFN16 vs. VSOJ20 mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 23. SOX18 – 18-lead Plastic Small Outline, 300mils, embedded crystal . . . . . . . . . . . . . . . . . 46  
4/49  
M41T93  
List of Tables  
List of Tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Signal name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Function table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Clock/control register map (32 Bytes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Digital calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Analog calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Alarm repeat modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Timer control register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Interrupt operation (Bit TI/TP = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Timer source clock frequency selection (244.1µs to 4.25 hrs) . . . . . . . . . . . . . . . . . . . . . . 30  
Timer countdown value register bits (addr 11h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Square wave output frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Century bits examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Initial power-on default values (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Initial power-up default values (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Crystal electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Power down/up trip points DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
QFN16 – 16-lead, Quad, Flat Package, No Lead, 4x4mm body, Mech. Data . . . . . . . . . . 44  
SOX18 – 18-lead Plastic SO, 300mils, embedded crystal, pkg. mech. data . . . . . . . . . . . 46  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
5/49  
Summary description  
M41T93  
1
Summary description  
The M41T93 is a low power Serial SPI Bus Real Time Clock with a built-in 32.768kHz  
oscillator (external crystal-controlled for the QFN16 package, and embedded crystal for the  
SOX18 package). Eight bytes of the Register Map (see Table 3 on page 18) are used for the  
clock/calendar function and are configured in binary coded decimal (BCD) format. An  
additional 17 bytes of the Register Map provide status/control of the two Alarms, Watchdog,  
8-Bit Counter, and Square Wave functions. An additional seven bytes are made available as  
user SRAM.  
Addresses and data are transferred serially via a serial SPI bus-compatible interface. The  
built-in address register is incremented automatically after each WRITE or READ data byte.  
The M41T93 has a built-in power sense circuit which detects power failures and  
automatically switches to the battery supply when a power failure occurs. The energy  
needed to sustain the clock operations can be supplied by a small lithium button battery  
when a power failure occurs.  
Functions available to the user include a non-volatile, time-of-day clock/calendar, Alarm  
interrupt, Watchdog Timer, programmable 8-bit Counter, and Square Wave outputs. The  
eight clock address locations contain the century, year, month, date, day, hour, minute,  
second, and tenths/hundredths of a second in 24 hour BCD format. Corrections for 28, 29  
(leap year), 30, and 31 day months are made automatically. The M41T93 is supplied in  
either a QFN16 or an SOX18 (MY), 300mil SOIC which includes an embedded 32kHz  
crystal. The SOX18 package requires only a user-supplied battery to provide non-volatile  
operation.  
6/49  
M41T93  
Summary description  
Figure 1.  
Logic diagram  
V
V
BAT CC  
(1)  
XI  
(2)  
SQW  
(1)  
XO  
(3)  
IRQ/OUT/FT  
SDI  
SCL  
E
(3)  
RST  
SDO  
V
SS  
AI11818  
1. For QFN16 package only.  
2. Defaults to 32kHz on power-up.  
3. Open drain  
Table 1.  
Signal name  
Symbol  
Description  
XI(1)  
XO(1)  
IRQ/FT/OUT  
SQW(2)  
RST  
32kHz oscillator input  
32kHz oscillator output  
Interrupt /frequency test/output driver (open drain)  
32kHz programmable square wave output  
Power-on reset output (open drain)  
Chip enable  
E
SDI  
Serial data address input  
SDO  
Serial data address output  
SCL  
Serial clock input  
VBAT  
Battery supply voltage (Tie VBAT to VSS if no battery is connected.)  
DU(3)  
Do not use  
Supply voltage  
Ground  
VCC  
VSS  
1. For QFN16 package only.  
2. Defaults to 32kHz on power-up.  
3. DU pin must be allowed to float (remain unconnected)  
7/49  
Summary description  
Figure 2.  
M41T93  
QFN16 (QA) connections  
16  
14  
15  
13  
(1)  
RST  
SDO  
1
2
3
4
12  
11  
(1)  
NC  
IRQ/FT/OUT  
M41T93  
NC  
(2)  
10 SCL  
SDI  
9
SQW  
6
7
5
8
AI11819  
1. Open drain output  
2. Defaults to 32kHz on power-up.  
Figure 3.  
SOX18 (MY) connections  
1
2
3
4
5
6
7
8
9
18  
NC  
NC  
NF(1)  
NF(1)  
NC  
NF(1)  
17  
16  
15  
14  
13  
12  
11  
10  
NF(1)  
V
CC  
RST(2)  
E
M41T93  
DU(3)  
SDO  
SQW(4)  
IRQ/FT/OUT(2)  
V
BAT  
SCL  
SDI  
V
SS  
AI11820  
1. NF pins must be tied to VSS. Pins 2 and 3, and 16 and 17 are internally shorted together.  
2. Open drain output  
3. Do not use (must be allowed to float)  
4. Defaults to 32kHz on power-up.  
8/49  
M41T93  
Summary description  
Figure 4.  
Block diagram  
REAL TIME CLOCK  
CALENDAR  
OSCILLATOR FAIL  
CIRCUIT  
OFIE  
A1IE  
XI  
32kHz  
OSCILLATOR  
XO  
CRYSTAL  
ALARM1  
ALARM2  
E
(1)  
WATCHDOG  
IRQ/FT/OUT  
SDI  
SPI  
INTERFACE  
SCL  
FT  
FREQUENCY TEST  
SDO  
OUT  
TIE  
OUTPUT DRIVER  
8-BIT COUNTER  
SQUARE WAVE  
WRITE  
PROTECT  
V
< V  
CC  
RST  
SQWE  
SQW  
8 BITS OF OTP  
USER SRAM (7 Bytes)  
INTERNAL  
POWER  
V
CC  
V
BAT  
COMPARE  
t
(2)  
RST SO  
rec  
V
/V  
(1)  
RST  
TIMER  
AI11821  
1. Open drain output  
2. VRST = VSO = 2.93V (S), 2.63V (R), and 2.32V (Z).  
9/49  
Summary description  
Figure 5. Hardware hookup  
M41T93  
V
CC  
MCU  
(ST6, ST7, ST9, ST10, Others)  
M41T93  
V
V
CC  
CC  
(1)  
(1)  
INT  
IRQ/FT/OUT  
RST  
XI  
Reset Input  
XO  
V
SCL  
(2)  
SCL  
SPI Interface with  
SDI  
SDO  
SDI  
(CPOL, CPHA) =  
BAT  
(0,0) or (1,1)  
SDO  
V
SS  
CS  
E
32kHz CLKIN  
SQW  
AI11822  
1. Open drain output  
2. CPOL (Clock Polarity) and CPHA (Clock Phase) are bits that may be set in the SPI Control Register of the MCU.  
Table 2.  
Function table  
Mode  
E
SCL  
SDI  
SDO  
Disable Reset  
WRITE  
H
Input Disabled  
Input disabled  
High Z  
L
L
Data bit latch  
X
High Z  
AI04630  
READ  
Next data bit shift (1)  
AI04631  
1. SDO remains at High Z until eight bits of data are ready to be shifted out during a READ.  
Figure 6.  
Data and clock timing  
CPOL  
CPHA  
0
1
0
1
C
C
MSB  
MSB  
LSB  
SDI  
SDO  
LSB  
AI04632  
10/49  
M41T93  
Summary description  
1.1  
SPI signal description  
1.1.1  
Serial data output (SDO)  
The output pin is used to transfer data serially out of the Memory. Data is shifted out on the  
falling edge of the serial clock.  
1.1.2  
1.1.3  
Serial data input (SDI)  
The input pin is used to transfer data serially into the device. Instructions, addresses, and  
the data to be written, are each received this way. Input is latched on the rising edge of the  
serial clock.  
Serial clock (SCL)  
The serial clock provides the timing for the serial interface (as shown in Figure 18 on  
page 40 and Figure 19 on page 40). The W/R Bit, addresses, or data are latched, from the  
input pin, on the rising edge of the clock input. The output data on the SDO pin changes  
state after the falling edge of the clock input.  
The M41T93 can be driven by a microcontroller with its SPI peripheral running in either of  
the two following modes:  
(CPOL, CPHA) = ('0', '0'), or  
(CPOL, CPHA) = ('1', '1').  
For these two modes, input data (SDI) is latched in by the low-to-high transition of clock  
SCL, and output data (SDO) is shifted out on the high-to-low transition of SCL (see Table 2  
on page 10 and <Blue>Figure 6., page 10).  
1.1.4  
Chip enable (E)  
When E is high, the memory device is deselected, and the SDO output pin is held in its high  
impedance state.  
After power-on, a high-to-low transition on E is required prior to the start of any operation.  
11/49  
Operation  
M41T93  
2
Operation  
The M41T93 clock operates as a slave device on the SPI serial bus. Each memory device is  
accessed by a simple serial interface that is SPI bus-compatible. The bus signals are SCL,  
SDI, and SDO (see Table 1 on page 7 and Figure 5 on page 10). The device is selected  
when the Chip Enable input (E) is held low. All instructions, addresses and data are shifted  
serially in and out of the chip. The most significant bit is presented first, with the data input  
(SDI) sampled on the first rising edge of the clock (SCL) after the Chip Enable (E) goes low.  
The 32 bytes contained in the device can then be accessed sequentially in the following  
order:  
1
2
Tenths/hundredths of a second register  
Seconds register  
3
Minutes register  
4
Century/hours register  
Day register  
5
6
Date register  
7
Month register  
8
Year register  
9
Digital calibration register  
Watchdog register  
Alarm1 registers  
10  
11-15  
16  
17  
18  
19  
20  
21-25  
26-32  
Flags register  
Timer value register  
Timer control register  
Analog calibration register  
Square wave register  
Alarm2 registers  
User RAM  
The M41T93 clock continually monitors V for an out-of tolerance condition. Should V  
CC  
CC  
fall below V , the device terminates an access in progress and resets the device address  
RST  
counter. Inputs to the device will not be recognized at this time to prevent erroneous data  
from being written to the device from a an out-of-tolerance system.  
The power input will also be switched from the V pin to the external battery when V falls  
CC  
CC  
below the battery back-up switchover voltage (V = V  
). At this time the clock registers  
SO  
RST  
will be maintained by the battery supply. As system power returns and V rises above V  
,
SO  
CC  
the battery is disconnected, and the power supply is switched to external V  
.
CC  
Write protection continues until V reaches V  
(min) plus t  
(min). For more  
REC  
CC  
PFD  
information on Battery Storage Life refer to Application Note AN1012.  
12/49  
M41T93  
Operation  
2.1  
SPI bus characteristics  
The Serial Peripheral interface (SPI) bus is intended for synchronous communication  
between different ICs. It consists of four signal lines: Serial Data Input (SDI), Serial Data  
Output (SDO), Serial Clock (SCL) and a Chip Enable (E).  
By definition a device that gives out a message is called “transmitter,the receiving device  
that gets the message is called “receiver.The device that controls the message is called  
“master.The devices that are controlled by the master are called “slaves.”  
The E input is used to initiate and terminate a data transfer. The SCL input is used to  
synchronize data transfer between the master (micro) and the slave (M41T93) device.  
The SCL input, which is generated by the microcontroller, is active only during address and  
data transfer to any device on the SPI bus (see Figure 5 on page 10).  
The M41T93 can be driven by a microcontroller with its SPI peripheral running in either of  
the two following modes:  
(CPOL, CPHA) = ('0', '0'), or  
(CPOL, CPHA) = ('1', '1').  
For these two modes, input data (SDI) is latched in by the low-to-high transition of clock  
SCL, and output data (SDO) is shifted out on the high-to-low transition of SCL (see Table 2  
and Figure 6 on page 10).  
There is one clock for each bit transferred. Address and data bits are transferred in groups  
of eight bits. Due to memory size the second most significant address bit is a “Don’t care”  
(address bit 6).  
2.2  
READ and WRITE cycles  
Address and data are shifted MSB first into the Serial Data Input (SDI) and out of the Serial  
Data Output (SDO). Any data transfer considers the first bit to define whether a READ or  
WRITE will occur. This is followed by seven bits defining the address to be read or written.  
Data is transferred out of the SDO for a READ operation and into the SDI for a WRITE  
operation. The address is always the second through the eighth bit written after the Enable  
(E) pin goes low. If the first bit is a '1,' one or more WRITE cycles will occur. If the first bit is a  
'0,' one or more READ cycles will occur (see Figure 7 and Figure 8 on page 14).  
Data transfers can occur one byte at a time or in multiple byte burst mode, during which the  
address pointer will be automatically incremented. For a single byte transfer, one byte is  
read or written and then E is driven high. For a multiple byte transfer all that is required is  
that E continue to remain low. Under this condition, the address pointer will continue to  
increment as stated previously. Incrementing will continue until the device is deselected by  
taking E high. The address will wrap to 00h after incrementing to 3Fh.  
The system-to-user transfer of clock data will be halted whenever the address being read is  
a clock address (00h to 07h). Although the clock continues to maintain the correct time, this  
will prevent updates of time and date during either a READ or WRITE of these address  
locations by the user. The update will resume either due to a deselect condition or when the  
pointer increments to an non-clock or RAM address (08h to 1Fh).  
Note:  
This is true both in READ and WRITE mode.  
13/49  
Operation  
M41T93  
Figure 7.  
READ mode sequence  
E
0
1
2
3
4
5
6
7
8
9
12 13 14 15 16 17  
22  
SCL  
7 BIT ADDRESS  
W/R BIT  
3
2
1
7
4
0
6
5
SDI  
MSB  
DATA OUT  
(BYTE 1)  
DATA OUT  
(BYTE 2)  
3
2
1
0
7
5
4
7
6
5
4
3
2
1
0
6
SDO  
HIGH IMPEDANCE  
MSB  
MSB  
AI04635  
Figure 8.  
WRITE mode sequence  
E
1
3
6
7
8
9
10  
15  
0
2
4
5
SCL  
DATA BYTE  
7 BIT ADDR  
W/R BIT  
SDI  
6
5
4
3
2
1
7
0
7
MSB  
6
5
4
3
2
1
0
7
MSB  
SDO  
HIGH IMPEDANCE  
AI04636  
14/49  
M41T93  
Operation  
2.3  
Data retention and battery switch-over (VSO = VRST)  
Once V falls below the switchover voltage (V = V ), the device automatically  
RST  
CC  
SO  
switches over to the battery and powers down into an ultra low current mode of operation to  
preserve battery life. If V is less than, or greater than V , the device power is switched  
BAT  
RST  
from V to V  
when V drops below V  
(see Figure 17 on page 39). At this time the  
CC  
BAT  
CC  
RST  
clock registers and user RAM will be maintained by the attached battery supply.  
When it is powered back up, the device switches back from battery to V at V  
+
SO  
CC  
hysteresis. When V rises above V , it will recognize the inputs. For more information  
CC  
RST  
on Battery Storage Life refer to Application Note AN1012.  
2.4  
Power-on reset (trec)  
The M41T93 continuously monitors V . When V falls to the power fail detect trip point,  
CC  
CC  
the RST output pulls low (open drain) and remains low after power-up for t (210ms  
rec  
typical) after V rises above V  
(max).  
CC  
RST  
Note:  
The t period does not affect the RTC operation. Write protect only occurs when V is  
rec CC  
below V . When V rises above V , the RTC will be selectable immediately. Only the  
RST  
CC  
RST  
RST output is affected by the t period.  
rec  
The RST pin is an open drain output and an appropriate pull-up resistor to V should be  
CC  
chosen to control the rise time.  
15/49  
Clock operation  
M41T93  
3
Clock operation  
The M41T93 is driven by a quartz-controlled oscillator with a nominal frequency of  
32.768kHz. The accuracy of the Real-Time Clock depends on the frequency of the quartz  
crystal that is used as the time-base for the RTC.  
The 8-byte clock register (see Table 3 on page 18) is used to both set the clock and to read  
the date and time from the clock, in binary coded decimal format. Tenths/Hundredths of  
Seconds, Seconds, Minutes, and Hours are contained within the first four registers.  
Bit D7 of Register 01h contains the STOP Bit (ST). Setting this bit to a '1' will cause the  
oscillator to stop. When reset to a '0' the oscillator restarts within one second (typical).  
Note:  
Upon initial power-up, the user should set the ST Bit to a '1,' then immediately reset the ST  
Bit to '0.' This provides an additional “kick-start” to the oscillator circuit.  
Bits D6 and D7 of Clock Register 03h (Century/ Hours Register) contain the CENTURY Bit 0  
(CB0) and CENTURY Bit 1 (CB1). Bits D0 through D2 of Register 04h contain the Day (day  
of week). Registers 05h, 06h, and 07h contain the Date (day of month), Month, and Years.  
The ninth clock register is the Digital Calibration Register, while the Analog Calibration  
Register is found at address 12h (these are both described in the Clock Calibration section).  
Bit D7 of Register 09h (Watchdog Register) contains the Oscillator Fail Interrupt Enable Bit  
(OFIE). When the user sets this bit to '1,' any condition which sets the Oscillator Fail Bit (OF)  
(see Oscillator fail detection on page 33) will also generate an interrupt output.  
Note:  
A WRITE to ANY location within the first eight bytes of the clock register (00h-07h),  
including the ST Bit and CB0-CB1 Bits will result in an update of the system clock and a  
reset of the divider chain. This could result in an inadvertent change of the current time.  
These non-clock related bits should be written prior to setting the clock, and remain  
unchanged until such time as a new clock time is also written.  
The eight Clock Registers may be read one byte at a time, or in a sequential block. Provision  
has been made to assure that a clock update does not occur while any of the eight clock  
addresses are being read. If a clock address is being read, an update of the clock registers  
will be halted. This will prevent a transition of data during the READ.  
3.1  
Power-down time-stamp  
When a power failure occurs, the Halt Update Bit (HT) will automatically be set to a “1”. This  
will prevent the clock from updating the Clock/Control registers, and will allow the user to  
read the exact time of the power-down event. Resetting the HT Bit to a “0” will allow the  
clock to update the Clock/Registers with the current time. For more information, see  
Application note AN1572.  
16/49  
M41T93  
Clock operation  
3.2  
Clock/control register map  
The M41T93 offers 32 internal registers which contain Clock, Calibration (Digital and  
Analog), Alarm 1 and 2, Watchdog, Flags, Timer, and Square Wave. The Clock registers are  
memory locations which contain external (user accessible) and internal copies of the data  
®
(usually referred to as BiPORT™ TIMEKEEPER cells). The external copies are  
independent of internal functions except that they are updated periodically by the  
simultaneous transfer of the incremented internal copy. The internal divider (or clock) chain  
will be reset upon the completion of a WRITE to any clock address (00h to 07h). The  
system-to-user transfer of clock data will be halted whenever the address being read is a  
clock address (00h to 07h). The update will resume either due to a Stop Condition or when  
the pointer increments to a non-clock address. Clock and Alarm Registers store data in BCD  
format. Calibration, Timer, Watchdog, and Square Wave Bits are written in a Binary Format.  
17/49  
Clock operation  
M41T93  
Table 3.  
Addr  
Clock/control register map (32 Bytes)  
Function/Range BCD  
Format  
D7  
D6  
0.1 Seconds  
10 Seconds  
D5  
D4  
D3  
D2  
D1  
D0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0.01 Seconds  
Seconds  
Seconds  
00-99  
00-59  
00-59  
ST  
0
Seconds  
Minutes  
10 Minutes  
Minutes  
CB1  
0
CB0  
10 Hours  
Hours (24 Hour Format)  
Day of Week  
Date: Day of Month  
Month  
Century/Hours 0-3/00-23  
0
0
0
0
0
0
Day  
Date  
Month  
Year  
01-7  
01-31  
01-12  
00-99  
0
10 Date  
0
0
10M  
10 Years  
Year  
OUT  
OFIE  
A1IE  
FT  
DCS  
DC4  
DC3  
DC2  
DC1  
RB1  
DC0 Digital Calibration  
BMB4  
SQWE  
BMB3  
BMB2  
BMB1  
BMB0  
RB0  
Watchdog  
Al1 Month  
Al1 Date  
ABE Al1 10M  
AI1 10 Date  
Alarm 1Month  
Alarm1 Date  
01-12  
01-31  
00-23  
00-59  
00-59  
0Bh RPT14 RPT15  
0Ch RPT13  
0Dh RPT12  
0Eh RPT11  
HT  
AI1 10 Hour  
Alarm1 Hour  
Al1 Hour  
Al1 Min  
Alarm1 10 Minutes  
Alarm1 10 Seconds  
AF1 BL  
AF2(1)  
Alarm1 Minutes  
Alarm1 Seconds  
Al1 Sec  
0Fh  
10h  
11h  
WDF  
TF  
OF  
0
0
Flags  
Timer Countdown Value  
Timer Value  
Timer Control  
TE  
TI/TP  
AC6  
TIE  
0
0
AC3  
0
0
AC2  
0
TD1  
AC1  
TD0  
AC0  
OTP  
Analog  
Calibration  
12h  
ACS  
AC5  
AC4  
13h  
14h  
RS3  
0
RS2  
0
RS1  
0
RS0  
AL2E  
SQW  
Al2 10M  
Alarm2 Month  
Alarm2 Month  
Alarm2 Date  
SRAM/Al2 Month  
SRAM/Al2 Date  
SRAM/Al2 Hour  
SRAM/Al2 Min  
SRAM/Al2 Sec  
01-12  
01-31  
00-23  
00-59  
00-59  
15h RPT24 RPT25  
AI2 10 Date  
AI2 10 Hour  
16h RPT23  
17h RPT22  
18h RPT21  
0
Alarm2 10 Minutes  
Alarm2 10 Seconds  
Alarm2 Minutes  
Alarm2 Seconds  
19h-  
1Fh  
User SRAM (7 Bytes)  
SRAM  
0 = Must be set to zero  
OFIE = Oscillator Fail Interrupt Enable  
OTP = OTP Control Bit  
ABE = Alarm in battery back-up enable Bit  
A1IE = Alarm1 interrupt enable bit  
AC0-AC6 = analog calibration bits  
ACS = analog calibration sign bit  
AF1, AF2 = Alarm flag  
AL2E = Alarm 2 enable bit  
BL = Battery Low Bit  
BMB0-BMB4 = Watchdog Multiplier Bits  
CB0, CB1 = Century Bits  
DC0-DC4 = Digital Calibration Bits  
DCS = Digital Calibration Sign Bit  
FT = Frequency Test Bit  
HT = Halt Update Bit  
OF = Oscillator Fail Bit  
RB0-RB2 = Watchdog Resolution Bits  
RPT11-RPT15 = Alarm 1 Repeat Mode Bits  
RPT21-RPT25 = Alarm 2 Repeat Mode Bits  
RS0-RS3 = SQW Frequency  
SQWE = Square Wave Enable  
SRAM/ALM2 = SRAM/Alarm 2 Bit  
ST = Stop Bit  
TD0, TD1 = Timer Frequency Bits  
TE = Timer Enable Bit  
TF = Timer Flag  
TI/TP = Timer Interrupt or Pulse  
TIE = Timer Interrupt Enable  
WDF = Watchdog flag  
OUT= Output level  
1. AF2 will always read ‘0,’ if the AL2E Bit is set to ‘0.’  
18/49  
M41T93  
Clock operation  
3.3  
Real time clock accuracy  
The M41T93 is driven by a quartz controlled oscillator with a nominal frequency of  
32,768Hz. The accuracy of the Real Time Clock is dependent upon the accuracy of the  
crystal, and the match between the capacitive load of the oscillator circuit and the capacitive  
load for which the crystal was trimmed. Temperature also affects the crystal frequency,  
causing additional error (see Figure 10 on page 23).  
The M41T93 provides the option of clock correction through either manufacturing calibration  
or in-application calibration. The total possible compensation is typically –93 ppm to +156  
ppm. The two compensation circuits that are available are:  
1. An Analog Calibration register (12h) can be used to adjust internal (on-chip) load  
capacitors for oscillator capacitance trimming. The individual load capacitors C and  
XI  
C
(see Figure 9), are selectable from a range of –18pF to +9.75pF in steps of  
XO  
0.25pF. This translates to a calculated compensation of approximately 30 ppm (see  
Analog calibration (programmable load capacitance) on page 22).  
2. A Digital Calibration register (08h) can also be used to adjust the clock counter by  
adding or subtracting a pulse at the 512Hz divider stage. This approach provides  
periodic compensation of approximately –63 ppm to +126 ppm (see Digital calibration  
(periodic counter correction) on page 20).  
Figure 9.  
Internal load capacitance adjustment  
XI  
C
XI  
Crystal Oscillator  
XO  
C
XO  
AI11804  
19/49  
Clock operation  
M41T93  
3.4  
Clock calibration  
The M41T93 oscillator is designed for use with a 12.5pF crystal load capacitance. When the  
calibration circuit is properly employed, accuracy improves to better than 1 ppm at 25°C.  
The M41T93 design provides the following two methods for clock error correction.  
3.4.1  
Digital calibration (periodic counter correction)  
This method employs the use of periodic counter correction by adjusting the ratio of the  
100Hz divider stage to the 512Hz divider stage. Under normal operation, the 100Hz divider  
stage outputs precisely 100 pulses for every 512 pulses of the 512Hz input stage to provide  
the input frequency to the Fraction of Seconds Clock register. By adjusting the number of  
512Hz input pulses used to generate 100 output pulses, the clock can be sped up or slowed  
down, as shown in Figure 12 on page 25.  
When a non-zero value is loaded into the five Calibration Bits (DC4 – DC0) found in the  
Digital Calibration Register (08h) and the sign bit is ‘1,(indicating positive calibration), the  
100Hz stage outputs 100 pulses for every 511 input pulses instead of the normal 512. Since  
the 100 pulses are now being output in a shorter window, this has the effect of speeding up  
the clock by 1/512 seconds for each second the circuit is active. Similarly, when the sign bit  
is ‘0,indicating negative calibration, the block outputs 100 pulses for every 513 input pulses.  
Since the 100 pulses are then being output in a longer window, this has the effect of slowing  
down the clock by 1/512 seconds for each second the circuit is active.  
The amount of calibration is controlled by using the value in the calibration register (N) to  
generate the adjustment in one second increments. This is done N times per minute, for  
every minute, for positive calibration, and N times per minute every other minute for negative  
calibration (see Table 4 on page 21).  
For example, if the Calibration register is set to '100010,' then the adjustment will occur for  
two seconds in every minute. Similarly, if the calibration register is set to '000011,' then the  
adjustment will occur for 3 seconds in every alternating minute.  
The Digital Calibration Bits (DC4 – DC0) occupy the five lower order bits in the Digital  
Calibration Register (08h). These bits can be set to represent any value between 0 and 31 in  
binary form. The sixth bit (DCS) is a Sign Bit; '1' indicates positive calibration, '0' indicates  
negative calibration. Calibration occurs within an 8-minute (positive) or 16-minute (negative)  
cycle. Therefore, each calibration step has an effect on clock accuracy of +4.068 or –2.034  
ppm. Assuming that the oscillator is running at exactly 32,768Hz, each of the 31 increments  
in the Calibration byte would represent +10.7 or –5.35 seconds per month, which  
corresponds to a total range of +5.5 or –2.75 minutes per month.  
Note:  
The modified pulses are not observable on the Frequency Test (FT) output, nor will the  
effect of the calibration be measurable real-time, due to the periodic nature of the error  
compensation.  
20/49  
M41T93  
Clock operation  
Table 4.  
Digital calibration values  
Calibration value rounded to the nearest ppm  
Calibration value (binary)  
DC4 – DC0  
Negative calibration (DCS = 0) Positive calibration (DCS = 1)  
0 (00000)  
1 (00001)  
2 (00010)  
3 (00011)  
4 (00100)  
5 (00101)  
6 (00110)  
7 (00111)  
8 (01000)  
9 (01001)  
10 (01010)  
11 (01011)  
12 (01100)  
13 (01101)  
14 (01110)  
15 (01111)  
16 (10000)  
17 (10001)  
18 (10010)  
19 (10011)  
20 (10100)  
21 (10101)  
22 (10110)  
23 (10111)  
24 (11000)  
25 (11001)  
26 (11010)  
27 (11011)  
28 (11100)  
29 (11101)  
30 (11110)  
31 (11111)  
N
0
0
–2  
4
–4  
8
–6  
12  
–8  
16  
–10  
20  
–12  
24  
–14  
28  
–16  
33  
–18  
37  
–20  
41  
–22  
45  
–24  
49  
–26  
53  
–28  
57  
–31  
61  
–33  
65  
–35  
69  
–37  
73  
–39  
77  
–41  
81  
–43  
85  
–45  
90  
–47  
94  
–49  
98  
–51  
102  
–53  
106  
–55  
110  
–57  
114  
–59  
118  
–61  
–63  
122  
126  
N/491520 (per minute)  
N/245760 (per minute)  
21/49  
Clock operation  
M41T93  
3.4.2  
Analog calibration (programmable load capacitance)  
A second method of calibration employs the use of programmable internal load capacitors to  
adjust (or trim) the oscillator frequency.  
By design, the oscillator is intended to be 0 ppm crystal accuracy at room temperature  
(25°C, see Figure 10 on page 23). For a 12.5pF crystal, the default loading on each side of  
the crystal will be 25pF. For incrementing or decrementing the calibration value, capacitance  
will be added or removed in increments of 0.25pF to each side of the crystal.  
Internally, C  
of the oscillator is changed via two digitally controlled capacitors, C and  
XI  
LOAD  
C
, connected from the XI and XO pins to ground (see Figure 9 on page 19). The effective  
XO  
on-chip series load capacitance, C  
of 12.5pF (AC0-AC6 = ‘0’).  
, ranges from 3.5pF to 17.4pF, with a nominal value  
LOAD  
The effective series load capacitance (C  
) is the combination of C and C  
:
XO  
LOAD  
XI  
C
= 1 ⁄ (1 C + 1 C  
)
XO  
LOAD  
XI  
Seven analog calibration bits, AC0 to AC6, are provided in order to adjust the on-chip load  
capacitance value for frequency compensation of the RTC. Each bit has a different weight  
for capacitance adjustment. An Analog Calibration Sign (ACS) bit determines if capacitance  
is added (ACS Bit = ‘0,negative calibration) or removed (ACS Bit = ‘1,positive calibration).  
The majority of the calibration adjustment is positive (i.e. to increase the oscillator frequency  
by removing capacitance) due to the typical characteristic of quartz crystals to slow down  
due to changes in temperature, but negative calibration is also available.  
Since the Analog Calibration Register adjustment is essentially “pulling” the frequency of the  
oscillator, the resulting frequency changes will not be linear with incremental capacitance  
changes. The equations which govern this mechanism indicate that smaller capacitor values  
of Analog Calibration adjustment will provide larger increments. Thus, the larger values of  
Analog Calibration adjustment will produce smaller incremental frequency changes. These  
values typically vary from 6-10 ppm/bit at the low end to <1 ppm/bit at the highest  
capacitance settings. The range provided by the Analog Calibration Register adjustment  
with a typical surface mount crystal is approximately 30 ppm around the AC6-AC0 = 0  
default setting because of this property (see Table 5 on page 23).  
22/49  
M41T93  
Clock operation  
Figure 10. Crystal accuracy across temperature  
Frequency (ppm)  
20  
0
–20  
–40  
–60  
2
F  
F
= K x (T – TO)  
–80  
–100  
–120  
–140  
–160  
= –0.036 ppm/°C2 0.006 ppm/°C2  
O = 25°C 5°C  
K
T
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature °C  
AI07888  
Table 5.  
Addr  
Analog calibration values  
Analog  
(1)  
Calibration  
Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CXI, CXO CLOAD  
ACS  
( )  
AC6  
AC5  
AC4  
AC3  
AC2  
AC1  
AC0  
(16pF) (8pF) (4pF) (2pF) (1pF) (0.5pF) (0.25pF)  
0pF  
3pF  
x
0
0
1
0
1
0
0
0
0
0
1
0
0
0
0
1
0
0
0
1
1
0
0
0
1
0
1
0
1
0
1
1
1
1
0
0
0
0
0
1
0
0
0
0
0
1
0
25pF  
28pF  
30pF  
18pF  
12.5pF  
14pF  
15pF  
9pF  
5pF  
12h  
–7pF  
9.75pF(2)  
–18pF(3)  
34.75pF 17.4pF  
7pF 3.5pF  
1. CLOAD = 1/(1/CXI + 1/CXO  
)
2. Maximum negative calibration value  
3. Maximum positive calibration value  
23/49  
Clock operation  
M41T93  
The on-chip capacitance can be calculated as follows:  
= [( AC6AC0 value, decimal) × 0,25pF] + 7pF  
C
LOAD  
For example:  
C
C
C
(12h = x0000000) = 12.5pF,  
(12h =11001000) = 3.5pF, and  
(12h = 00100111) = 17.4pF.  
LOAD  
LOAD  
LOAD  
The oscillator sees a minimum of 3.5pF with no programmable load capacitance selected.  
Note:  
These are typical values, and the total load capacitance seen by the crystal will include  
approximately 1-2pF of package and board capacitance in addition to the Analog Calibration  
register value.  
Any invalid value of Analog Calibration will result in the default capacitance of 25pF.  
The combination of analog and digital trimming can give up to –93 to +156 ppm of the total  
adjustment.  
Figure 11 on page 24 represents a typical curve of clock ppm adjustment versus the Analog  
Calibration value. This curve may vary with different crystals, so it is good practice to  
evaluate the crystal to be used with an M41T93 device before establishing the adjustment  
values for the application in question.  
Figure 11. Clock accuracy vs. on-chip load capacitors  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
–10.0  
–20.0  
–10.0  
–5.0  
0.0  
5.0  
10.0  
15.0  
20.0  
Analog Calibration Value  
AI12293  
24/49  
M41T93  
Clock operation  
Two methods are available for ascertaining how much calibration a given M41T93 may  
require:  
The first involves setting the clock, letting it run for a month and comparing it to a known  
accurate reference and recording deviation over a fixed period of time. This allows the  
designer to give the end user the ability to calibrate the clock as the environment  
requires, even if the final product is packaged in a non-user serviceable enclosure. The  
designer could provide a simple utility that accesses either or both of the Calibration  
bytes.  
The second approach is better suited to a manufacturing environment, and involves the  
use of the IRQ/FT/OUT pin. The IRQ/FT/ OUT pin will toggle at 512Hz when FT and  
OUT Bits = '1' and ST = '0.' Any deviation from 512Hz indicates the degree and  
direction of oscillator frequency shift at the test temperature. For example, a reading of  
512.010124Hz would indicate a +20 ppm oscillator frequency error, requiring either a –  
10 (xx001010) to be loaded into the Digital Calibration byte, or +6pF (00011000) into  
the Analog Calibration byte for correction.  
Note:  
Setting or changing the Digital Calibration Byte does not affect the Frequency Test, Square  
Wave, or Watchdog Timer frequency, but changing the Analog Calibration byte DOES affect  
all functions derived from the low current oscillator (see Figure 12).  
Figure 12. Clock divider chain and calibration circuits  
512Hz Output  
Frequency Test  
Remainder of  
Divider Circuit  
Square Wave  
Watchdog Timer  
8-Bit Timer  
÷2  
÷8  
÷2  
÷2  
÷2  
÷2  
C
XI  
Low Current  
Oscillator  
32kHz  
Digital Calibration Circuitry  
(divide by 511/512/513)  
Clock  
Registers  
C
XO  
1Hz Signal  
Analog Calibration  
Circuitry  
AI11806a  
25/49  
Clock operation  
Figure 13. Crystal isolation example  
M41T93  
Crystal  
Local Grounding  
Plane (Layer 2)  
XO  
XI  
V
SS  
AI11814  
Note:  
The substrate pad should be tied to V  
.
SS  
3.5  
Setting the alarm clock registers  
Address locations 0Ah-0Eh (Alarm 1) and 14h-18h (Alarm 2) contain the alarm settings.  
Either alarm can be configured independently to go off at a prescribed time on a specific  
month, date, hour, minute, or second, or repeat every year, month, day, hour, minute, or  
second. Bits RPT15–RPT11 and RPT25-RPT21 put the alarms in the repeat mode of  
operation. Table 6 on page 27 shows the possible bit configurations.  
Codes not listed in the table default to the once-per-second mode to quickly alert the user of  
an incorrect alarm setting. When the clock information matches the alarm clock settings  
based on the match criteria defined by RPT15–RPT11 and/or RPT25-RPT21, AF1 (Alarm 1  
Flag) or AF2 (Alarm 2 Flag) is set. If A1IE (Alarm 1 Interrupt Enable) is set, the alarm  
condition activates the IRQ/FT/OUT output pin. To disable either of the alarms, write a '0' to  
the Alarm Date Registers and to the RPTx5–RPTx1 Bits.  
Note:  
If the address pointer is allowed to increment to the Flag Register address, or the last  
address written is “Alarm Seconds,the address pointer will increment to the Flag address,  
and an alarm condition will not cause the Interrupt/Flag to occur until the address pointer is  
moved to a different address.  
The IRQ output is cleared by a READ to the Flags Register (0Fh) as shown in Figure 14. A  
subsequent READ of the Flags Register is necessary to see that the value of the Alarm Flag  
has been reset to '0.'.  
The IRQ/FT/OUT pin can also be activated in the battery back-up mode (see Figure 15 on  
page 27).  
26/49  
M41T93  
Clock operation  
3.6  
Optional second programmable alarm  
When the Alarm 2 Enable (AL2E) Bit (D1 of address 13h) is set to a logic ‘1,registers 14h  
through 18h provide control for a second programmable alarm which operates in the same  
manner as the alarm function described above.  
The AL2E Bit defaults on initial power-up to a logic ‘0’ (Alarm 2 disabled). In this mode, the  
five address bytes (14h-18h) function as additional user SRAM, for a total of 12 bytes of  
user SRAM.  
Figure 14. Alarm interrupt reset waveform  
0Eh  
0Fh  
00h  
ALARM FLAG BITS (AF )  
x
HIGH-Z  
IRQ/FT/OUT  
AI11823  
Figure 15. Back-up mode alarm waveform  
V
CC  
V
PFD  
V
SO  
trec  
AF Bits in Flags  
x
Register  
IRQ/FT/OUT  
HIGH-Z  
AI11824  
Note:  
ABE and A1IE Bits = 1.  
Table 6.  
RPT5  
Alarm repeat modes  
RPT4  
RPT3  
RPT2  
RPT1  
Alarm setting  
1
1
1
1
1
0
1
1
1
1
0
0
1
1
1
0
0
0
1
1
0
0
0
0
1
0
0
0
0
0
Once per Second  
Once per Minute  
Once per Hour  
Once per Day  
Once per Month  
Once per Year  
27/49  
Clock operation  
M41T93  
3.7  
Watchdog timer  
The watchdog timer can be used to detect an out-of-control microprocessor. The user  
programs the watchdog timer by setting the desired amount of time-out into the Watchdog  
Register, address 09h. Bits BMB4-BMB0 store a binary multiplier and the two lower order  
bits RB1-RB0 select the resolution, where 00 = 1/16 second, 01 = 1/4 second, 10 = 1  
second, and 11 = 4 seconds. The amount of time-out is then determined to be the  
multiplication of the five-bit multiplier value with the resolution. (For example: writing  
00001110 in the Watchdog Register = 3*1, or 3 seconds). If the processor does not reset  
the timer within the specified period, the M41T93 sets the WDF (Watchdog Flag) and  
generates a watchdog interrupt.  
The watchdog timer can be reset by having the microprocessor perform a WRITE of the  
Watchdog Register. The time-out period then starts over.  
Should the watchdog timer time-out, a value of 00h needs to be written to the Watchdog  
Register in order to clear the IRQ/FT/OUT pin. This will also disable the watchdog function  
until it is again programmed correctly. A READ of the Flags Register will reset the Watchdog  
Flag (Bit D7; Register 0Fh).  
The watchdog function is automatically disabled upon power-up and the Watchdog Register  
is cleared. If the watchdog function is set, the frequency test function is activated, and the  
SQWE Bit is '0,' the watchdog function prevails and the frequency test function is denied.  
3.8  
8-Bit (countdown) timer  
The Timer Value Register is an 8-bit binary countdown timer. It is enabled and disabled via  
the Timer Control Register (11h) TE Bit. Other timer properties such as the source clock, or  
interrupt generation are also selected in the Timer Control Register (see Table 7). For  
accurate read back of the countdown value, the serial clock (SCL) must be operating at a  
frequency of at least twice the selected timer clock.  
The Timer Control register selects one of four source clock frequencies for the timer (4096,  
64, 1, or 1/60Hz), and enables/disables the timer. The timer counts down from a software-  
loaded 8-bit binary value. At the end of every countdown, the timer sets the Timer Flag (TF)  
Bit. The TF Bit can only be cleared by software. When asserted, the timer flag (TF) can also  
be used to generate an interrupt (IRQ/FT/OUT) on the M41T93. The interrupt may be  
generated as a pulsed signal every countdown period or as a permanently active signal  
which follows the condition of TF. The Timer Interrupt/Timer Pulse (TI/TP) Bit is used to  
control this mode selection. When reading the timer, the current countdown value is  
returned.  
Table 7.  
Addr  
Timer control register map  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Function  
0Fh  
10h  
11h  
WDF  
AF1  
AF2  
BL  
TF  
OF  
0
0
Flags  
Timer Countdown Value  
TIE  
Timer Value  
Timer Control  
TE  
TI/TP  
0
0
0
TD1  
TD0  
Note:  
Bit positions labeled with ‘0’ should always be written with logic '0.'  
28/49  
M41T93  
Clock operation  
3.8.1  
TI/TP  
TI/TP = 0  
IRQ/FT/OUT is active when TF is logic '1' (subject to the status of the Timer Interrupt  
Enable Bit (TIE).  
TI/TP = 1  
IRQ/FT/OUT pulses active according to Table 8 (subject to the status of the TIE Bit).  
Note:  
If an alarm condition, watchdog time-out, oscillator failure, or OUT = 0 cause IRQ/FT/OUT to  
be asserted low, then IRQ/FT/OUT will remain asserted even if TI/TP is set to '1.' When in  
pulse mode (TI/TP = 1), clearing the TF Bit will not stop the pulses on IRQ/FT/OUT. The  
output pulses will only stop if TE, TIE, or TI/TP are reset to '0.'  
Table 8.  
Interrupt operation (Bit TI/TP = 1)  
IRQ(1) Period(s)  
Source clock (Hz)  
n(2) = 1  
n > 1  
4096  
64  
1/8192  
1/128  
1/64  
1/4096  
1/64  
1
1/64  
1/60  
1/64  
1/64  
1. TF and IRQ/FT/OUT become active simultaneously.  
2. n = loaded countdown timer value. The timer is stopped when n = 0.  
3.8.2  
TF  
At the end of a timer countdown, TF is set to logic '1.' If both timer and alarm interrupts are  
required in the application, the source of the interrupt can be determined by reading the flag  
bits. The timer will auto-reload and continue to count down regardless of the state of TF Bit  
(or TI/TP Bit). The TF Bit is cleared by reading the Flags Register.  
3.8.3  
3.8.4  
TIE  
In Level mode (TI/TP = 0), when TF is asserted, the interrupt is asserted (if TIE = 1). To  
clear the interrupt, the TF Bit or the TIE Bit must be reset.  
TE  
TE = 0  
When the Timer Register (10h) is set to ‘0,the timer is disabled.  
TE = 1  
The timer is enabled. TE is reset (disabled) on power-down. When re-enabled, the  
counter will begin from the same value as when it was disabled.  
29/49  
Clock operation  
M41T93  
3.8.5  
TD1/0  
These are the timer source clock frequency selection bits (see Table 9). These bits  
determine the source clock for the countdown timer (see Table 10). When not in use, the  
TD1 and TD0 Bits should be set to ‘11’ (1/60Hz) for power saving.  
Table 9.  
Timer source clock frequency selection (244.1µs to 4.25 hrs)  
TD1  
TD0  
Timer source clock frequency (Hz)  
0
0
1
1
0
1
0
1
4096 (244.1µs)  
64 (15.6ms)  
1 (1s)  
1/60 (60s)  
Table 10. Timer countdown value register bits (addr 11h)  
Bit  
Symbol  
Description  
This register holds the loaded countdown value ‘n.’  
Countdown Period = n / Source Clock frequency.  
<timer countdown  
value>  
7 - 0  
Note:  
Writing to the timer register will not reset the TF Bit or clear the interrupt.  
30/49  
M41T93  
Clock operation  
3.9  
Square wave output  
The M41T93 offers the user a programmable square wave function which is output on the  
SQW pin. RS3-RS0 bits located in 13h establish the square wave output frequency. These  
frequencies are listed in Table 4. Once the selection of the SQW frequency has been  
completed, the SQW pin can be turned on and off under software control with the Square  
Wave Enable Bit (SQWE) located in Register 0Ah.  
Note:  
If the SQWE Bit is set to '1', and V falls below the switchover (V ) voltage, the  
CC SO  
squarewave output will be disabled.  
Table 11. Square wave output frequency  
Square Wave Bits  
Square Wave  
RS3  
RS2  
RS1  
RS0  
Frequency  
Units  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
None  
32.768  
8.192  
4.096  
2.048  
1.024  
512  
256  
128  
64  
kHz  
kHz  
kHz  
kHz  
kHz  
Hz  
Hz  
Hz  
Hz  
32  
Hz  
16  
Hz  
8
Hz  
4
Hz  
2
Hz  
1
Hz  
31/49  
Clock operation  
M41T93  
3.10  
Battery low warning  
The M41T93 automatically performs battery voltage monitoring upon power-up and at  
factory-programmed time intervals of approximately 24 hours. The Battery Low (BL) Bit, Bit  
D4 of Flags Register 0Fh, will be asserted if the battery voltage is found to be less than  
approximately 2.5V. The BL Bit will remain asserted until completion of battery replacement  
and subsequent battery low monitoring tests, either during the next power-up sequence or  
the next scheduled 24-hour interval.  
If a battery low is generated during a power-up sequence, this indicates that the battery is  
below approximately 2.5 volts and may not be able to maintain data integrity. Clock data  
should be considered suspect and verified as correct. A fresh battery should be installed.  
If a battery low indication is generated during the 24-hour interval check, this indicates that  
the battery is near end of life. However, data is not compromised due to the fact that a  
nominal V is supplied. In order to insure data integrity during subsequent periods of  
CC  
battery back-up mode, the battery should be replaced.  
The M41T93 only monitors the battery when a nominal V is applied to the device. Thus  
CC  
applications which require extensive durations in the battery back-up mode should be  
powered-up periodically (at least once every few months) in order for this technique to be  
beneficial. Additionally, if a battery low is indicated, data integrity should be verified upon  
power-up via a checksum or other technique.  
3.11  
Century bits  
These two bits will increment in a binary fashion at the turn of the century, and handle all  
leap years correctly. See Table 12 for additional explanation.  
Table 12. Century bits examples  
CB0  
CB1  
Leap Year?  
Example(1)  
0
0
1
1
0
1
0
1
Yes  
No  
No  
No  
2000  
2100  
2200  
2300  
1. Leap year occurs every four years (for years evenly divisible by four), except for years evenly divisible by  
100. The only exceptions are those years evenly divisible by 400 (the year 2000 was a leap year, year  
2100 is not).  
3.12  
Output driver pin  
When the OFIE Bit, A1IE Bit, and Watchdog Register are not set to generate an interrupt,  
the IRQ/FT/OUT pin becomes an output driver that reflects the contents of D7 of register  
08h. In other words, when D7 (OUT Bit) is a '0,' then the IRQ/FT/OUT pin will be driven low.  
Note:  
The IRQ/FT/OUT pin is an open drain which requires an external pull-up resistor.  
32/49  
M41T93  
Clock operation  
3.13  
Oscillator fail detection  
If the Oscillator Fail (OF) Bit is internally set to a '1,' this indicates that the oscillator has  
either stopped, or was stopped for some period of time and can be used to judge the validity  
of the clock and date data. This bit will be set to '1' any time the oscillator stops.  
In the event the OF Bit is found to be set to '1' at any time other than the initial power-up, the  
STOP Bit (ST) should be written to a '1,' then immediately reset to '0.' This will restart the  
oscillator. The following conditions can cause the OF Bit to be set:  
The first time power is applied (defaults to a '1' on power-up).  
Note:  
If the OF Bit cannot be written to '1' four seconds after the initial power-up, the STOP Bit  
(ST) should be written to a '1,' then immediately reset to '0.'  
The voltage present on VCC or battery is insufficient to support oscillation.  
The ST Bit is set to '1.'  
External interference of the crystal  
For the M41T93, if the Oscillator Fail Interrupt Enable Bit (OFIE) is set to a '1,' the  
IRQ/FT/OUT pin will also be activated. The IRQ/FT/OUT output is cleared by resetting the  
OFIE or OF Bit to '0' (NOT by reading the Flag Register).  
The OF Bit will remain set to '1' until written to logic '0.' The oscillator must start and have  
run for at least 4 seconds before attempting to reset the OF Bit to '0.' If the trigger event  
occurs during a power down condition, this bit will be set correctly.  
3.14  
Oscillator fail interrupt enable  
If the Oscillator Fail Interrupt Bit (OFIE) is set to a '1,' the IRQ/FT/OUT pin will also be  
activated. The IRQ/FT/OUT output is cleared by resetting the OFIE or OF Bit to '0' (not be  
reading the Flags Register).  
33/49  
Clock operation  
M41T93  
3.15  
Initial power-on defaults  
Upon initial application of power to the device, the register bits will initially power-on in the  
state indicated in Table 13 and Table 14.  
Table 13. Initial power-on default values (part 1)  
DCS  
ACS  
Digital Analog  
Calib. Calib.  
Watchdog  
Condition(1) ST CB1 CB0 OUT FT  
OFIE  
A1IE SQWE ABE  
(3)  
Initial  
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
Power-up  
Subsequent  
Power-up(2,4)  
UC UC UC UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
1. All other control bits power-up in an undetermined state.  
2. With battery back-up  
3. BMB0-BMB4, RB0, RB1  
4. UC = Unchanged  
Table 14. Initial power-up default values (part 2)  
RPT21-  
Condition(1) RPT11-15 HT OF TE TI/TP TIE TD1 TD0 RS0 RS1-3 OTP  
AL2E  
25  
Initial  
0
1
1
1
0
0
0
0
1
1
1
0
0
0
0
Power-up  
Subsequent  
Power-up(2,3)  
UC  
UC  
UC  
UC UC UC UC  
UC  
UC  
UC  
UC  
1. All other control bits power-up in an undetermined state.  
2. With battery back-up  
3. UC = Unchanged  
3.16  
OTP bit operation  
When the OTP (One Time Programmable) Bit is set to a '1,' the value in the internal OTP  
registers will be transferred to the analog calibration register (12h) and are “Read only.” The  
OTP value is programmed by the manufacturer, and will contain the calibration value  
necessary to achieve 5 ppm at room temperature.  
If the OTP Bit is set to '0,' the analog calibration register will become a WRITE/READ  
register and function like standard SRAM memory cells, allowing the user to implement any  
desired value of analog calibration.  
When the user sets the OTP Bit, they need to wait for approximately 3 to 4ms before the  
analog registers transfer the value from the OTP to the analog registers due to the OTP  
Read operation.  
34/49  
M41T93  
Maximum rating  
4
Maximum rating  
Stressing the device above the rating listed in the “Absolute Maximum Ratings” table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the Operating sections of  
this specification is not implied. Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE  
Program and other relevant quality documents.  
Table 15. Absolute maximum ratings  
Symbol  
Parameter  
Value(1)  
Unit  
TSTG  
VCC  
Storage temperature (VCC Off, Oscillator Off)  
Supply voltage  
–55 to 125  
°C  
V
–0.3 to 7.0  
(2)  
TSLD  
Lead solder temperature for 10 seconds  
Input or output voltages  
Output current  
260  
°C  
V
VIO  
IO  
–0.2 to Vcc+0.3  
20  
1
mA  
W
PD  
Power dissipation  
1. Data based on characterization results, not tested in production.  
2. Reflow at peak temperature of 260°C (total thermal budget not to exceed 245°C for greater than 30  
seconds).  
35/49  
DC and AC parameters  
M41T93  
5
DC and AC parameters  
This section summarizes the operating and measurement conditions, as well as the DC and  
AC characteristics of the device. The parameters in the following DC and AC Characteristic  
tables are derived from tests performed under the Measurement Conditions listed in the  
relevant tables. Designers should check that the operating conditions in their projects match  
the measurement conditions when using the quoted parameters.  
Table 16. Operating and AC measurement conditions  
Parameter  
M41T93  
Supply Voltage (VCC  
)
2.38V to 5.5V  
–40 to 85°C  
30pF  
Ambient operating temperature (TA)  
Load capacitance (CL, typical)  
Input rise and fall times  
50ns  
Input pulse voltages  
0.2VCC to 0.8 VCC  
0.3VCC to 0.7 VCC  
Input and output timing ref. voltages  
Note:  
Output Hi-Z is defined as the point where data is no longer driven.  
Figure 16. Measurement AC I/O waveform  
0.8V  
CC  
0.7V  
CC  
0.3V  
CC  
0.2V  
CC  
AI02568  
Table 17. Capacitance  
Symbol  
Parameter(1,2)  
Min  
Max  
Unit  
CIN  
Input capacitance  
Output capacitance  
7
pF  
pF  
(3)  
COUT  
10  
1. Effective capacitance measured with power supply at 3.6V; sampled only, not 100% tested.  
2. At 25°C, f = 1MHz.  
3. Outputs deselected.  
36/49  
M41T93  
DC and AC parameters  
Table 18. DC Characteristics  
Sym  
Parameter  
Test condition(1)  
Min  
Typ  
Max  
Unit  
Operating voltage (S)  
–40 to 85°C  
–40 to 85°C  
3.00  
2.70  
2.38  
5.50  
5.50  
5.50  
1
V
V
VCC Operating voltage (R)  
Operating voltage (Z)  
–40 to 85°C  
V
ILI  
Input leakage current  
Output leakage current  
0V VIN VCC  
0V VOUT VCC  
fSCL = 2MHz  
fSCL = 5MHz  
fSCL = 10MHz  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
V
ILO  
1
tbd  
tbd  
tbd  
10  
Supply current  
ICC1 SCL = 0.1VCC/0.9VCC  
SDO = Open  
5.5V  
3.0V  
7
E = VCC  
;
All inputs VCC – 0.2V;  
VSS + 0.2V  
ICC2 Supply current (standby)  
TBD  
TBD  
2.5V (Z only)  
VIL  
VIH  
Input low voltage  
Input high voltage  
–0.3  
0.3VCC  
0.7VCC  
VCC+0.3  
V
VCC/VBAT = 3.0V,  
IOL = 1.0mA  
RST, FT/RST  
SQW, IRQ/FT/OUT  
SDO  
0.4  
0.4  
0.4  
V
V
VCC = 3.0V,  
IOL = 1.0mA  
VOL Output low voltage  
VCC = 3.0V,  
V
V
IOL = 3.0mA  
VOH Output high voltage  
VCC = 3.0V, IOH = –1.0mA (push-pull)  
IRQ/FT/OUT  
2.4  
1.8  
Pull-up supply voltage  
(open drain)  
5.5  
5.5  
V
VBAT Back-up supply voltage  
V
25°C; VCC = 0V; OSC On; VBAT = 3V;  
32kHz Off  
IBAT Battery supply current  
365  
450  
nA  
1. Valid for Ambient Operating Temperature: TA = –40 to 85°C; VCC = 2.38V to 5.5V (except where noted).  
37/49  
DC and AC parameters  
M41T93  
Units  
Table 19. Crystal electrical characteristics  
Symbol  
Parameter(1,2)  
Min  
Typ  
Max  
fO  
RS  
CL  
Resonant frequency  
32.768  
kHz  
kΩ  
pF  
Series resistance  
Load capacitance  
65(3)  
12.5  
Note:  
1
Externally supplied if using the QFN16 package. STMicroelectronics recommends the  
Citizen CFS-145 (1.5x5mm) and the KDS DT-38 (3x8mm) for thru-hole, or the KDS DMX-  
26S (3.2x8mm) for surface-mount, tuning fork-type quartz crystals.  
KDS can be contacted at kouhou@kdsj.co.jp or http://www.kdsj.co.jp.  
Citizen can be contacted at csd@citizen-america.com or http://www.citizencrystal.com.  
2
3
Load capacitors are integrated within the M41T93. Circuit board layout considerations for  
the 32.768kHz crystal of minimum trace lengths and isolation from RF generating signals  
should be taken into account.  
Guaranteed by design.  
Table 20. Oscillator characteristics  
Symbol  
Parameter(1,2)  
Conditions  
Min  
Typ  
Max  
Units  
VSTA  
tSTA  
Oscillator start voltage  
4s  
2.0  
V
s
Oscillator start time  
VCC = VSO  
1
(1)  
CXI, CXO  
Capacitor Input, capacitor output  
IC-to-IC frequency variation(2,3)  
25  
pF  
ppm  
–10  
+10  
1. With default Analog Calibration value ( = 0).  
2. Reference value  
3. TA = 25°C, VCC = 5.0V.  
38/49  
M41T93  
DC and AC parameters  
Figure 17. Power down/up mode AC waveforms  
V
CC  
V
SO  
tPD  
trec  
SCL  
SDI  
DON'T CARE  
AI11839  
Table 21. Power down/up trip points DC characteristics  
Sym  
Parameter(1,2)  
Min  
Typ  
Max  
Unit  
S
R
Z
2.85  
2.55  
2.25  
VRST  
25  
2.93  
2.63  
2.32  
3.0  
2.7  
V
V
VRST Reset threshold voltage  
2.38  
V
Battery back-up switchover  
V
VSO  
Hysteresis  
mV  
ms  
Reset pulse Width (VCC Rising)  
trec  
140  
280  
VCC to Reset Delay, VCC = (VRST + 100mV), falling to  
(VRST – 100mV; for VCC slew rate of 10mV/µs  
2.5  
µs  
1. All voltages referenced to VSS  
.
2. Valid for Ambient Operating Temperature: TA = –40 to 85°C; VCC = 2.38 to 5.5V (except where noted).  
39/49  
DC and AC parameters  
M41T93  
Figure 18. Input timing requirements  
tEHEL  
E
tCHEL  
tELCH  
tCHEH  
tEHCH  
SCL  
tDVCH  
tCHCL  
tCHDX  
tCLCH  
MSB IN  
LSB IN  
SDI  
tDLDH  
tDHDL  
HIGH IMPEDANCE  
SDO  
AI12295  
Figure 19. Output timing requirements  
E
tCH  
SCL  
tCLQV  
tCL  
tEHQZ  
tCLQX  
MSB OUT  
LSB OUT  
SDO  
tQLQH  
tQHQL  
SDIADDR. LSB IN  
AI04634  
40/49  
M41T93  
DC and AC parameters  
Table 22. AC characteristics  
VCC < 2.7V  
VCC 2.7V  
Sym  
Parameter(1)  
Units  
Min  
Max  
Min  
Max  
fSCL  
SCL clock frequency  
E Active setup time  
E Not active setup time  
E Deselect time  
D.C.  
90  
5
D.C.  
30  
30  
40  
30  
30  
40  
40  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tELCH  
tEHCH  
tEHEL  
tCHEH  
tCHEL  
90  
100  
90  
E Active hold time  
E Not active hold time  
Clock high time  
90  
(2)  
tCH  
90  
(2)  
tCL  
Clock low time  
90  
(3)  
tCLCH  
Clock rise time  
1
1
2
2
(3)  
tCHCL  
tDVCH  
tCHDX  
Clock fall time  
Data in setup time  
Data in hold time  
Output disable time  
Clock low to output valid  
Output hold time  
Output rise time  
20  
30  
10  
10  
(3)  
tEHQZ  
tCLQV  
tCLQX  
100  
60  
40  
40  
0
0
(3)  
tQLQH  
50  
50  
40  
40  
(3)  
tQHQL  
Output fall time  
1. Valid for Ambient Operating Temperature: TA = –40 to 85°C; VCC = 2.38 to 5.5V (except where noted).  
2. tCH and tCL must never be lower than the shortest possible clock period, 1/fC(max)  
3. Value guaranteed by characterization, not 100% tested in production.  
41/49  
Package mechanical information  
M41T93  
6
Package mechanical information  
®
In order to meet environmental requirements, ST offers these devices in ECOPACK  
packages. These packages have a Lead-free second level interconnect . The category of  
second Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at www.st.com.  
42/49  
M41T93  
Package mechanical information  
Figure 20. QFN16 – 16-lead, Quad, Flat Package, No Lead, 4x4mm body size, Outline  
D
E
A3  
A
A1  
ddd C  
e
b
L
K
1
2
3
(2)  
Ch  
E2  
K
D2  
QFN16-A2  
1. Drawing is not to scale.  
2. Substrate pad should be tied to VSS  
.
43/49  
Package mechanical information  
M41T93  
Max  
Table 23. QFN16 – 16-lead, Quad, Flat Package, No Lead, 4x4mm body, Mech. Data  
mm  
Min  
inches  
Min  
Sym  
Typ  
Max  
Typ  
A
A1  
A3  
b
0.90  
0.02  
0.20  
0.30  
4.00  
0.80  
0.00  
1.00  
0.05  
0.035  
0.001  
0.008  
0.010  
0.118  
0.067  
0.118  
0.067  
0.020  
0.008  
0.016  
0.032  
0.000  
0.039  
0.002  
0.25  
3.90  
2.50  
3.90  
2.50  
0.35  
4.10  
2.80  
4.10  
2.80  
0.007  
0.114  
0.061  
0.114  
0.061  
0.012  
0.122  
0.071  
0.122  
0.071  
D
D2  
E
4.00  
E2  
e
0.65  
0.20  
0.40  
K
L
0.30  
0.08  
0.33  
16  
0.50  
0.012  
0.003  
0.013  
16  
0.020  
ddd  
Ch  
N
44/49  
M41T93  
Package mechanical information  
Figure 21. QFN16 – 16-lead, Quad, Flat, No Lead, 4x4mm, recommended footprint  
2.70  
0.70  
0.20  
(2)  
4.50  
2.70  
0.35  
0.325  
0.65  
AI11815  
1. Dimensions shown are in millimeters (mm).  
2. Substrate pad should be tied to VSS  
.
Figure 22. 32kHz Crystal + QFN16 vs. VSOJ20 mechanical data  
6.0 0.2  
3.2  
VSOJ20  
SMT  
CRYSTAL  
1.5  
3.9  
7.0 0.3  
1
2
3
4
ST QFN16  
3.9  
AI11816  
Note:  
Dimensions shown are in millimeters (mm).  
45/49  
Package mechanical information  
M41T93  
Figure 23. SOX18 – 18-lead Plastic Small Outline, 300mils, embedded crystal  
D
9
1
h x 45°  
C
E
H
A
10  
18  
A2  
ddd  
A1  
B
e
A1  
α
L
SO-J  
Note:  
Drawing is not to scale.  
Table 24. SOX18 – 18-lead Plastic SO, 300mils, embedded crystal, pkg. mech. data  
mm  
Min  
inches  
Min  
Sym  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
B
2.44  
0.15  
2.29  
0.41  
0.20  
11.56  
2.69  
0.31  
2.39  
0.51  
0.31  
11.66  
0.10  
7.67  
0.096  
0.006  
0.090  
0.016  
0.008  
0.455  
0.106  
0.012  
0.094  
0.020  
0.012  
0.459  
0.004  
0.302  
C
D
11.61  
0.457  
ddd  
E
7.57  
0.298  
e
1.27  
0.050  
H
10.16  
0.51  
0°  
10.52  
0.81  
8°  
0.400  
0.020  
0°  
0.414  
0.032  
8°  
L
α
N
18  
18  
46/49  
M41T93  
Part numbering  
7
Part numbering  
Table 25. Ordering information  
Example:  
M41T  
93  
R
QA  
6
E
Device Family  
M41T  
Device Type  
93  
Operating Voltage  
S = VCC = 3.00 to 5.5V  
R = VCC = 2.70 to 5.5V  
Z = VCC = 2.38 to 5.5V  
Package  
QA = QFN16 (4mm x 4mm)  
MY(1) = SOX18  
Temperature Range  
6 = –40°C to 85°C  
Shipping Method  
E = ECOPACK Package, Tubes  
F = ECOPACK Package, Tape & Reel  
1. The SOX18 package includes an embedded 32,768Hz crystal. Contact local ST sales office for availability.  
For other options, or for more information on any aspect of this device, please contact the ST Sales  
Office nearest you.  
47/49  
Revision history  
M41T93  
8
Revision history  
Table 26. Revision history  
Date  
Revision  
Changes  
07-Aug-2006  
1
Initial release.  
48/49  
M41T93  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
49/49  

相关型号:

M41T93SQA6E

Serial SPI bus RTC with battery switchover
STMICROELECTR

M41T93SQA6F

Serial SPI bus RTC with battery switchover
STMICROELECTR

M41T93ZMY6E

Serial SPI bus RTC with battery switchover
STMICROELECTR

M41T93ZMY6F

Serial SPI bus RTC with battery switchover
STMICROELECTR

M41T93ZQA6E

Serial SPI bus RTC with battery switchover
STMICROELECTR

M41T93ZQA6F

Serial SPI bus RTC with battery switchover
STMICROELECTR

M41T93_07

Serial SPI bus RTC with battery switchover
STMICROELECTR

M41T93_08

Serial SPI bus RTC with battery switchover
STMICROELECTR

M41T93_11

Serial SPI bus real-time clock with battery switchover
STMICROELECTR

M41T94

512 Bit 64 bit x8 SERIAL RTC SPI SRAM
STMICROELECTR

M41T94MH

512 Bit 64 bit x8 SERIAL RTC SPI SRAM
STMICROELECTR

M41T94MH6

512 Bit 64 bit x8 SERIAL RTC SPI SRAM
STMICROELECTR