M440T1MV [STMICROELECTRONICS]

3.3V, 32 Mbit (1024 Kbit x 32) TIMEKEEPER SRAM; 3.3V , 32兆位( 1024千位×32 ) TIMEKEEPER SRAM
M440T1MV
型号: M440T1MV
厂家: ST    ST
描述:

3.3V, 32 Mbit (1024 Kbit x 32) TIMEKEEPER SRAM
3.3V , 32兆位( 1024千位×32 ) TIMEKEEPER SRAM

静态存储器
文件: 总26页 (文件大小:456K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M440T1MV  
®
3.3V, 32 Mbit (1024 Kbit x 32) TIMEKEEPER SRAM  
FEATURES SUMMARY  
3.3V ± 10%  
Figure 1. Package  
INTEGRATED ULTRA LOW POWER SRAM,  
REAL TIME CLOCK, POWER-FAIL  
CONTROL CIRCUIT, BATTERY, AND  
CRYSTAL  
PRECISION POWER MONITORING AND  
POWER SWITCHING CIRCUITRY  
AUTOMATIC WRITE-PROTECTION WHEN  
M440T1MV  
V
CC  
IS OUT-OF-TOLERANCE  
POWER-FAIL DESELECT VOLTAGE:  
= 3.0 to 3.6V; 2.8V V 2.97V  
V
CC  
PFD  
BATTERY LOW PIN (BL)  
DUAL BATTERY SNAPHAT HOUSING IS  
REPLACEABLE  
®
85ns SRAM CHIP ENABLE ACCESS (70ns  
ADDRESS ACCESS)  
168-ball PBGA  
Module  
SLEEP MODE FUNCTION  
150ns CLOCK ACCESS  
October 2004  
1/26  
M440T1MV  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. PBGA Connections (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 4. M440T1MV Hardware Hookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 5. M440T1MV PBGA Module Solution (Side/Top). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
OPERATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Memory READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Clock READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 2. Memory Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 3. Clock Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 6. Memory READ Mode AC Waveforms, Chip Enable- or Output Enable-Controlled. . . . . . 9  
Figure 7. Memory READ Mode AC Waveforms, Address-Controlled. . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 8. Clock READ Mode AC Waveforms, Chip Enable- or Output Enable-Controlled. . . . . . . 10  
Figure 9. Clock READ Mode AC Waveforms, Address-Controlled. . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 4. Memory/Clock READ Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Memory WRITE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Clock WRITE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 10.Memory WRITE Mode AC Waveforms, WRITE Enable-Controlled . . . . . . . . . . . . . . . . 11  
Figure 11.Memory WRITE Mode AC Waveforms, Chip Enable-Controlled . . . . . . . . . . . . . . . . . . 12  
Figure 12.Clock WRITE Mode AC Waveforms, WRITE Enable-Controlled . . . . . . . . . . . . . . . . . . 12  
Figure 13.Clock WRITE Mode AC Waveforms, Chip Enable-Controlled. . . . . . . . . . . . . . . . . . . . . 13  
Table 5. Memory/Clock WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
CLOCK OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Clock Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Reading and Setting the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Clock Alarm Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Watchdog Alarm Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 6. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 7. Time of Day Alarm Mask Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Battery Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Sleep Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 8. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2/26  
M440T1MV  
Table 9. DC and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 14.AC Testing Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 10. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 11. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 15.Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 12. Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 13. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 16.PBGA-ZA – 168-ball Plastic Ball Grid Array Package Outline . . . . . . . . . . . . . . . . . . . . 22  
Table 14. PBGA-ZA – 168-ball Plastic Ball Grid Array Package Mechanical Data . . . . . . . . . . . . . 23  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 15. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 16. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3/26  
M440T1MV  
SUMMARY DESCRIPTION  
The M440T1MV TIMEKEEPER RAM is a 16Mbit,  
®
The clock keeps track of tenths/hundredths of sec-  
onds, seconds, minutes, hours, day, date, month,  
and year information. The last day of the month is  
automatically adjusted for months with less than  
31 days, including leap year correction.  
non-volatile static RAM organized as 1,024K by 32  
bits and real time clock organized as 64 bytes by  
8 bits. The special PBGA package provides a fully  
integrated battery back-up memory and real time  
clock solution. In the event of power instability or  
absence, a self-contained battery maintains the  
timekeeping operation and provides power for a  
The clock operates in one of two formats:  
a 12-hour mode with an AM/PM indicator; or  
a 24-hour mode  
CMOS static RAM. Control circuitry monitors V  
CC  
and invokes write protection to prevent data cor-  
ruption in the memory and RTC.  
The M440T1MV is in a 168-ball PBGA module that  
integrates the RTC, the battery, and SRAM in one  
package.  
Figure 2. Logic Diagram  
Table 1. Signal Names  
A0 - A19  
DQ0 - DQ31  
DQC0 - DQC7  
E1 - E4  
EC  
Address Inputs  
NVRAM Data Input/Output  
Clock Data Input/Output  
NVRAM Chip Enable Inputs  
Clock Chip Enable Input  
NVRAM WRITE Enable Inputs  
Clock WRITE Enable Input  
Output Enable Input  
V
CC  
A0 – A19  
DQ0 – DQ31  
W1 - W4  
WC  
E1 – E4  
DQC0 – DQC7  
EC  
BL  
G
M440T1MV  
W1 – W4  
WC  
GC  
Clock Output Enable Input  
IRQ  
Battery Low Output (Open  
Drain)  
RSV1  
RSV2  
BL  
G
IRQ  
Interrupt Output (Open Drain)  
Reserved  
GC  
RSV1  
RSV2  
NC  
Reserved  
V
SS  
No Connect  
AI04200  
V
Supply Voltage  
Ground  
CC  
V
SS  
4/26  
M440T1MV  
Figure 3. PBGA Connections (Top View)  
1
2
3
4
5
6
7
8
9
A15  
A17  
A13  
A18  
W1  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
E3  
DQ31  
DQ30  
DQ29  
W3  
A16  
A14  
A12  
A7  
DQ28  
DQ27  
DQ24  
DQ25  
DQ26  
M440T1MV  
10  
A6  
11  
12  
13  
14  
15  
A5  
DQ16  
DQ17  
DQ18  
DQ23  
RSV1  
DQ22  
DQ21  
DQ20  
DQ19  
DQ7  
DQ6  
DQ5  
A19  
DQ4  
DQ0  
DQ1  
DQ2  
16  
17  
18  
19  
AI04794  
Note: This diagram is TOP VIEW perspective (view through package).  
5/26  
M440T1MV  
Figure 4. M440T1MV Hardware Hookup  
M48T224W  
3.3V  
V
OUTA  
V
E
V
E
CC  
1M x 8  
CC  
1M x 8  
V
CC  
6
SRAM  
SRAM  
A0-A5  
E1  
E2  
CON  
W
G
W
G
G
CON  
G
W2  
W1  
EC  
E
DQ0 - DQ7  
INTB/INTB  
DQC0 - DQC7  
IRQ  
W
WC  
GC  
E1  
E2  
E3  
E4  
G
E1  
E2  
E3  
E4  
BL  
BL  
V
OUTB  
V
V
E
CC  
CC  
SLEEP  
PAD  
SLEEP  
1M x 8  
SRAM  
1M x 8  
SRAM  
8kΩ  
E3  
E4  
E
CON  
G
W
G
W
V
THS  
OUTA  
CON  
V
SS  
G
W3  
G
W4  
AI04795  
6/26  
M440T1MV  
Figure 5. M440T1MV PBGA Module Solution (Side/Top)  
AI04628b  
7/26  
M440T1MV  
OPERATION MODES  
Memory READ Mode  
Clock READ Mode  
The M440T1MV is in the 32-bit READ Mode when-  
ever W1 - W4 (WRITE Enable Byte 1 to 4) are high  
and E1 - E4 - Chip Enable Bytes 1 to 4 are low  
(see Table 2., page 8). The unique address spec-  
ified by the 20 address inputs defines which one of  
the 1,048,576 long words of data is to be access-  
ed. Valid data will be available at the Data I/O pins  
The clock is in the READ Mode whenever WC  
(Clock WRITE Enable) is high and EC (Clock Chip  
Enable) is low. The unique address specified by  
the 6 Address Inputs defines which one of the 64  
bytes of clock data is to be accessed. Valid data  
will be available at the Data I/O pins (DQC0-7)  
within Address Access Time (t  
) after the last  
AVQV  
within Address Access Time (t  
) after the last  
AVQV  
address input signal is stable, providing the EC  
and GC access times are also satisfied. If the EC  
and GC access times are not met, valid data will  
be available after the latter of the Chip Enable Ac-  
address input signal is stable, providing the E1-4  
and G access times are also satisfied. If the E1-4  
and G access times are not met, valid data will be  
available after the latter of the Chip Enable Access  
cess Times (t  
) or Output Enable Access Time  
ELQV  
Times (t  
) or Output Enable Access Time  
ELQV  
(t  
GLQV  
).  
(t  
).  
GLQV  
The state of the eight three-state Data I/O signals  
is controlled by EC and G. If the outputs are acti-  
The state of the thirty-two three-state Data I/O sig-  
nals is controlled by E1-4 and G. If the outputs are  
vated before t  
, the data lines will be driven to  
AVQV  
activated before t  
to an indeterminate state until t  
, the data lines will be driven  
an indeterminate state until t  
Inputs are changed while EC and G remain active,  
. If the Address  
AVQV  
AVQV  
. If the Ad-  
AVQV  
dress Inputs are changed while E1-4 and G re-  
main active, output data will remain valid for  
output data will remain valid for Output Data Hold  
Time (t  
) but will go indeterminate until the  
AXQX  
Output Data Hold Time (t  
) but will go indeter-  
next Address Access. See section on Reading and  
Setting the Clock under CLOCK OPERATION for  
more details.  
AXQX  
minate until the next Address Access.  
Table 2. Memory Operating Modes  
DQ24- DQ16- DQ8- DQ0-  
DQ31 DQ23 DQ15 DQ7  
V
CC  
Mode  
E4 E3 E2 E1  
G
W4 W3 W2 W1  
Power  
D
Byte WRITE  
Byte WRITE  
Byte WRITE  
Byte WRITE  
Byte WRITE  
Byte WRITE  
Byte WRITE  
Byte WRITE  
H
H
H
L
H
H
L
H
L
L
H
H
H
L
H
H
H
H
H
H
H
H
X
X
X
L
X
X
L
X
L
L
X
X
X
L
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Active  
IN  
D
Hi-Z Active  
Hi-Z Active  
Hi-Z Active  
IN  
D
H
H
X
L
X
X
H
L
Hi-Z  
Hi-Z  
Hi-Z  
IN  
D
H
X
X
L
X
H
H
L
Hi-Z  
Hi-Z  
Hi-Z  
IN  
D
X
X
X
L
H
H
H
L
Hi-Z  
Hi-Z  
Hi-Z  
Active  
IN  
D
X
X
X
H
H
H
Hi-Z Active  
Hi-Z Active  
Hi-Z Active  
IN  
D
X
X
H
H
Hi-Z  
Hi-Z  
IN  
D
X
H
Hi-Z  
IN  
2.97 to 3.6V  
Long Word  
WRITE  
D
D
D
D
IN  
L
L
L
L
H
L
L
L
L
Active  
Active  
IN  
IN  
IN  
D
Byte READ  
Byte READ  
Byte READ  
Byte READ  
H
H
H
L
H
H
L
H
L
L
H
H
H
L
L
L
L
X
X
X
H
X
X
H
X
X
H
X
X
H
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
OUT  
D
Hi-Z Active  
Hi-Z Active  
Hi-Z Active  
OUT  
Hi-Z  
Hi-Z  
D
H
H
OUT  
D
H
Hi-Z  
OUT  
Long Word  
READ  
D
D
D
D
OUT  
L
L
L
L
L
H
X
H
X
H
X
H
X
Active  
Stdby  
OUT  
OUT  
OUT  
Deselect  
H
H
H
H
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
V
to  
SO  
CMOS  
Standby  
Deselect  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
(1)  
V
(min)  
PFD  
Battery  
(1)  
Deselect  
Hi-Z  
Hi-Z Back-up  
Mode  
V  
SO  
Note: X = V or V ; V = Battery Back-up Switchover Voltage.  
IH  
IL  
SO  
1. See Table 12., page 20 for details.  
8/26  
M440T1MV  
Table 3. Clock Operating Modes  
V
Mode  
Deselect  
EC  
GC  
X
WC  
DQC0 - 7  
CC  
V
IH  
X
Hi-Z  
V
V
D
WRITE  
READ  
READ  
X
IL  
IL  
IN  
2.97 to 3.6V  
V
V
V
IH  
D
OUT  
IL  
IL  
V
V
IH  
V
IH  
Hi-Z  
IL  
V
to  
SO  
Deselect  
X
X
X
X
X
Hi-Z  
Hi-Z  
(1)  
V
(min)  
PFD  
(1)  
Deselect  
X
V  
SO  
Note: X = V or V ; V = Battery Back-up Switchover Voltage.  
IH  
IL  
SO  
1. See Table 12., page 20 for details.  
Figure 6. Memory READ Mode AC Waveforms, Chip Enable- or Output Enable-Controlled  
tAVAV  
A0-A19  
E1 - E4  
VALID  
tAVQV  
tELQV  
tAXQX  
tEHQZ  
tELQX  
tGLQV  
tGHQZ  
G
tGLQX  
DQ0-DQ31  
DATA OUT  
AI05606  
Figure 7. Memory READ Mode AC Waveforms, Address-Controlled  
tAVAV  
A0-A19  
VALID  
tAVQV  
tAXQX  
DQ0-DQ31  
DATA VALID  
DATA VALID  
AI05607  
9/26  
M440T1MV  
Figure 8. Clock READ Mode AC Waveforms, Chip Enable- or Output Enable-Controlled  
tAVAV  
A0-A5  
EC  
VALID  
tAVQV  
tELQV  
tAXQX  
tEHQZ  
tELQX  
tGLQV  
tGHQZ  
GC  
tGLQX  
DQC0-DQC7  
DATA OUT  
AI04653  
Figure 9. Clock READ Mode AC Waveforms, Address-Controlled  
tAVAV  
A0-A5  
VALID  
tAVQV  
tAXQX  
DQC0-DQC7  
DATA VALID  
DATA VALID  
AI04654  
Table 4. Memory/Clock READ Mode AC Characteristics  
M440T1MV  
Memory  
–85  
Clock  
–15  
(1)  
Symbol  
Unit  
Parameter  
Min  
Max  
Min  
Max  
t
t
READ Cycle Time  
85  
150  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RC  
AVAV  
t
t
t
t
Address Valid to Output Valid  
70  
85  
45  
150  
150  
70  
ACC  
AVQV  
ELQV  
t
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
Chip Enable Low to Output Transition  
Output Enable Low to Output Transition  
Chip Enable High to Output Hi-Z  
CO  
t
OE  
GLQV  
t
t
5
5
10  
5
CEL  
OEL  
ELQX  
GLQX  
t
t
t
t
(2)  
40  
30  
50  
50  
CEZ  
t
EHQZ  
(2)  
Output Enable High to Output Hi-Z  
ns  
ns  
OEZ  
t
GHQZ  
t
t
Address Transition to Output Transition  
5
5
OH  
AXQX  
Note: 1. Valid for Ambient Operating Temperature: T = –15 to 75°C; V = 3.0 to 3.6V (except where noted).  
A
CC  
2. C = 5pF.  
L
10/26  
M440T1MV  
Memory WRITE Mode  
Clock WRITE Mode  
The M440T1MV is in the WRITE Mode whenever  
any or all of W1-4 (WRITE Enable Byte 1 to 4) and  
any corresponding E1-4 (Chip Enable Byte 1 to 4)  
are in a low state after the address inputs are sta-  
ble. Thus a Byte WRITE (8-bit), Word WRITE (16-  
bit) or Long Word WRITE (32-bit) may be per-  
formed. The start of a WRITE is referenced from  
the latter occurring falling edge of W1-4 or E1-4. A  
WRITE is terminated by the earlier rising edge of  
W1-4 or E1-4. The addresses must be held valid  
throughout the cycle. E1-4 or W1-4 must return  
The clock is in the WRITE Mode whenever WC  
(Clock WRITE Enable) and EC (Clock Chip En-  
able) are in the low state after the address inputs  
are stable. The start of a WRITE is referenced  
from the latter occurring falling edge of WC or EC.  
A WRITE is terminated by the earlier rising edge of  
WC or EC. The addresses must be held valid  
throughout the cycle. EC or WC must return high  
for a minimum of t  
from Chip Enable Clock or  
EHAX  
t
from WRITE Enable Clock prior to the initi-  
WHAX  
ation of another READ or WRITE cycle. Data-in  
high for a minimum of t  
from Chip Enable or  
must be valid t prior to the end of WRITE and  
EHAX  
DVWH  
t
from WRITE Enable prior to the initiation of  
remain valid for t  
afterward. GC should be  
WHAX  
WHDX  
another READ or WRITE cycle. Data-in must be  
valid t prior to the end of WRITE and remain  
valid for t  
kept high during WRITE cycles to avoid bus con-  
tention; although, if the output bus has been acti-  
vated by a low on EC and GC a low on WC will  
DVWH  
afterward. G should be kept high  
WHDX  
during WRITE cycles to avoid bus contention; al-  
though, if the output bus has been activated by a  
low on E1-4 and G, a low on W1-4 will disable the  
disable the outputs t  
tion on Reading and Setting the Clock under  
CLOCK OPERATION for more details.  
after WC falls. See sec-  
WLQZ  
outputs t  
after W1-4 falls.  
WLQZ  
Figure 10. Memory WRITE Mode AC Waveforms, WRITE Enable-Controlled  
tAVAV  
A0-A19  
E1 - E4  
VALID  
tAVWH  
tAVEL  
tAVWL  
tWHAX  
tWLWH  
W1 - W4  
tWLQZ  
tWHQX  
tWHDX  
DQ0-DQ31  
DATA INPUT  
tDVWH  
AI05608  
Note: Output Enable (G) = Low  
11/26  
M440T1MV  
Figure 11. Memory WRITE Mode AC Waveforms, Chip Enable-Controlled  
tAVAV  
A0-A19  
VALID  
tAVEH  
tELEH  
tAVEL  
tEHAX  
E1 - E4  
W1 - W4  
tAVWL  
tWHDX  
DQ0-DQ31  
DATA INPUT  
tDVWH  
AI05609  
Note: Output Enable (G) = High  
Figure 12. Clock WRITE Mode AC Waveforms, WRITE Enable-Controlled  
tAVAV  
A0-A5  
EC  
VALID  
tAVWH  
tAVEL  
tAVWL  
tWHAX  
tWLWH  
WC  
tWLQZ  
tWHQX  
tWHDX  
DQC0-DQC7  
DATA INPUT  
tDVWH  
AI04651  
Note: Clock Output Enable (GC) = Low  
12/26  
M440T1MV  
Figure 13. Clock WRITE Mode AC Waveforms, Chip Enable-Controlled  
tAVAV  
A0-A5  
VALID  
tAVEH  
tELEH  
tAVEL  
tEHAX  
EC  
tAVWL  
WC  
tWHDX  
DQC0-DQC7  
DATA INPUT  
tDVWH  
AI04652  
Note: Clock Output Enable (GC) = High  
Table 5. Memory/Clock WRITE Mode AC Characteristics  
M440T1MV  
Memory  
–85  
Clock  
–15  
(1)  
Symbol  
Unit  
Parameter  
Min  
Max  
Min  
Max  
t
t
WRITE Cycle Time  
85  
0
150  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WC  
AVAV  
t
Address Valid to WRITE Enable Low  
Address Valid to Chip Enable Low  
WRITE Enable Pulse Width  
AVWL  
t
t
AW  
t
0
0
AVEL  
t
t
t
t
60  
65  
0
100  
150  
10  
10  
50  
50  
0
WP  
WLWH  
t
t
ELEH  
Chip Enable Low to Chip Enable High  
WRITE Enable High to Address Transition  
Chip Enable High to Address Transition  
Input Valid to WRITE Enable High  
Input Valid to Chip Enable High  
CEW  
WHAX  
t
WR  
t
15  
35  
35  
0
EHAX  
DVWH  
t
DS  
t
DVEH  
WRITE Enable High to Input Transition  
Chip Enable High to Input Transition  
WRITE Enable Low to Output Hi-Z  
Address Valid to WRITE Enable High  
Address Valid to Chip Enable High  
WRITE Enable High to Output Transition  
WHDX  
t
DH  
t
15  
0
EHDX  
(2,3)  
t
WLQZ  
t
30  
50  
WEZ  
t
70  
70  
5
150  
150  
5
AVWH  
t
AVEH  
(3)  
WHQX  
t
t
OEW  
Note: 1. Valid for Ambient Operating Temperature: T = –15 to 75°C; V = 3.0 to 3.6V (except where noted).  
A
CC  
2. C = 5pF.  
L
3. If E1 - E4 and EC goes low simultaneously with W1 - W4 and WC going low, the outputs remain in the high impedance state.  
13/26  
M440T1MV  
CLOCK OPERATION  
Clock Registers  
Registers 00h, 01h, 02h, 04h, 06h, 08h, 09h, and  
0Ah contain the time of day data in BCD. Eleven  
bits within these eight registers are not used and  
will always read '0' regardless of how they are writ-  
ten. Bits 6 and 7 in the Months Register (09h) are  
binary bits. When set to logic '0,' EOSC (Bit 7) en-  
ables the Real Time Clock oscillator. This bit will  
normally be turned on by the user during device  
initialization. However, the oscillator can be turned  
on and off as necessary by setting this bit to the  
appropriate level. Bit 6 of the Hours Register is de-  
fined as the 12- or 24-hour select bit. When set to  
logic '1,' the 12-hour format is selected. In the 12-  
hour format, Bit 5 is the AM/PM bit with logic '1' be-  
ing PM. In the 24-hour mode, Bit 5 is the second  
10-hour bit (20-23 hours). The Clock Registers are  
updated every 0.01 seconds from the Real Time  
Clock, except when the TE Bit (Bit 7 of Register  
0Bh) is set low or the clock oscillator is not running.  
ous results from READ and WRITE cycles has  
been stated, it is worth noting that the probability  
of an incorrect result is kept to a minimum due to  
the redundant structure of the TIMEKEEPER.  
Clock Alarm Registers  
Registers 03h, 05h, and 07h contain the Clock  
Alarm Registers. Bits 3, 4, 5, and 6 of Register 07h  
will always read '0' regardless of how they are writ-  
ten. Bit 7 of Registers 03h, 05h, and 07h are mask  
bits (see Table 6., page 15). When all of the mask  
bits are logic '0,' a Clock Alarm will only occur  
when Registers 02h, 04h, and 06h match the val-  
ues stored in Registers 03h, 05h, and 07h. An  
alarm will be generated every day when Bit 7 of  
Register 07h is set to a logic '1.' Similarly, an alarm  
is generated every hour when Bit 7 of Registers  
07h and 05h is set to a logic '1.' When Bit 7 of Reg-  
isters 07h, 05h, and 03h is set to a logic '1,' an  
alarm will occur every minute when Register 1  
(seconds) rolls from “59” to “00.”  
Reading and Setting the Clock  
The preferred method of synchronizing data ac-  
cess to and from the TIMEKEEPER is to access  
Clock Alarm Registers are written and read in the  
same format as the Clock Registers. The Clock  
Alarm Flag and Interrupt are always cleared when  
alarm Registers are read or written.  
®
the Command Register by doing a WRITE cycle to  
address location 0Bh and setting TE Bit (Transfer  
Enable Bit) to a logic '0.' This will freeze the Exter-  
nal Clock Registers at the present recorded time,  
allowing access to occur without danger of simul-  
taneous update. When the clock registers have  
been read or written, a second WRITE cycle to lo-  
cation 0Bh and setting the TE Bit to a logic '1' will  
put the Clock Registers back to being updated ev-  
ery 0.01 second. No time is lost in the Real Time  
Clock because the internal copy of the Clock Reg-  
ister buffers is continually incremented while the  
external memory registers are frozen. An alternate  
method of reading and writing the Clock Registers  
is to ignore synchronization. However, any single  
READ may give erroneous data as the Real Time  
Clock may be in the process of updating the exter-  
nal memory registers as data is being read. The in-  
ternal copies of seconds through years are  
incremented, and the time of day alarm is checked  
during the period that hundreds of seconds reads  
“99” to “00.” A way of making sure data is valid is  
to do multiple READs and compare. Writing the  
registers can also produce erroneous results for  
the same reasons. A way of making sure that the  
WRITE cycle has caused proper update is to do a  
READ to verify and re-execute the WRITE cycle if  
data is not correct. While the possibility of errone-  
Watchdog Alarm Registers  
Registers 0Ch and 0Dh contain the time for the  
watchdog alarm. The two registers contain a time  
count from 00.01 to 99.99 seconds in BCD. The  
value written into the Watchdog Alarm Registers  
can be written or read in any order. Any access to  
Register 0Ch or 0Dh will cause the watchdog  
alarm to re-initialize and clears the Watchdog Flag  
Bit and the Watchdog Interrupt Output. When a  
new value is entered or the Watchdog Registers  
are read, the watchdog timer will start counting  
down from the entered value to zero. When zero is  
reached, the Watchdog Interrupt Output will go to  
the active state. The watchdog timer countdown is  
interrupted and re-initialized back to the entered  
value every time either of the registers are access-  
ed. In this manner, controlled periodic accesses to  
the watchdog timer can prevent the watchdog  
alarm from going to an active level. If access does  
not occur, the countdown alarm will be repetitive.  
The Watchdog Alarm Registers always read the  
entered value. The actual countdown register is in-  
ternal and is not readable. Writing registers 0Ch  
and 0Dh to '0' will disable the watchdog alarm fea-  
ture.  
14/26  
M440T1MV  
Table 6. Register Map  
RANGE  
00-99  
ADDRESS  
0
BIT 0  
BIT 7  
0.1 SECONDS  
0.01 SECONDS  
SECONDS  
MINUTES  
MIN ALARM  
HOURS  
1
2
3
4
0
0
00-59  
00-59  
00-59  
10 SECONDS  
10 MINUTES  
10 MIN ALARM  
M
0
01-12+A/P  
00-23  
10  
10  
10  
12/24  
12/24  
0
HR  
HR  
A/P  
A/P  
01-12+A/P  
00-23  
CLOCK  
5
10  
HOURS ALARM  
DAYS  
M
CALENDAR/  
TIME OF DAY  
ALARM  
REGISTERS  
01-07  
01-07  
01-31  
0
M
0
0
0
0
0
6
0
0
7
8
9
DAY ALARM  
DATE  
0
0
10DATE  
0
10MO  
MONTHS  
YEARS  
01-12  
00-99  
EOSC  
ESQW  
A
10YEARS  
IBH  
COMMAND  
REGISTER  
PU  
B
WAM  
WAF  
TE  
IPSW  
TDM  
TDF  
LO  
LVL  
C
0.1 SECONDS  
10 SECONDS  
0.01 SECONDS  
SECONDS  
00-99  
00-99  
WATCHDOG  
ALARM  
REGISTERS  
D
USER  
REGISTERS  
E - 3F  
SRAM ADDRESS SPACE  
AI04208  
Table 7. Time of Day Alarm Mask Bits  
Register  
(03h) Minutes  
(05h) Hours  
(07h) Days  
1
0
0
0
1
1
0
0
1
1
1
0
Alarm once per minute  
Alarm when minutes match  
Alarm when hours and minutes match  
Alarm when hours, minutes, and days match  
Note: Any other bit combinations of mask bit settings produce an illegal operation.  
15/26  
M440T1MV  
Command Register  
Address location 0Bh is the Command Register  
where mask bits, control bits, and flag bits reside.  
The operation of each bit is as follows:  
day alarm registers. This bit is reset to a logic '0'  
state when any of the time of day registers are ac-  
cessed.  
TE - Bit 7 Transfer Enable. This bit, when set to  
logic '0,' will disable the transfer of data between  
internal and external clock registers. The contents  
in the external clock registers are now frozen and  
READs or WRITEs will not be affected with up-  
dates. This bit must be set to a logic '1' to allow up-  
dates.  
IPSW - Bit 6 Interrupt Switch. When set to a  
logic '1,' IRQ/(IRQ) is the Watchdog Alarm. When  
set to a logic '0,' IRQ/(IRQ) is the time of day alarm  
output.  
When the interrupt is in the pulse mode (see PU/  
LVL - Bit 4 Interrupt Pulse Mode or Level Mode),  
this flag will be in the logic '1' state only during the  
time the interrupt is active.  
Battery Low  
The M440T1MV automatically performs battery  
voltage monitoring upon power-up, and at factory-  
programmed time intervals of at least 24 hours.  
The Battery Low (BL) signal will be asserted if the  
battery voltage is found to be less than approxi-  
mately 2.5V. The BL signal will remain asserted  
until completion of battery replacement and sub-  
sequent battery low monitoring tests, either during  
the next power-up sequence or the next scheduled  
24-hour interval (see application note, “AN1540,  
NVRAM PBGA Dual Battery Hat Mounting and  
Removal” for more information).  
IBH/LO - Bit 5 IRQ Sink or Source Current.  
When this bit is set to a logic '1' and V is applied,  
CC  
IRQ/(IRQ) will source current (see Table  
11., page 19, IOH). When this bit is set to a logic  
'0,' IRQ will sink current (see Table 11., page 19,  
I
OL  
).  
If a battery low is generated during a power-up se-  
quence, this indicates that one of the batteries is  
below 2.5V and may not be able to maintain data  
integrity in the SRAM. Data should be considered  
suspect, and verified as correct. Fresh batteries  
should be installed.  
If a battery low indication is generated during the  
24-hour interval check, this indicates that the bat-  
tery is near end of life. However, data is not com-  
PU/LVL - Bit 4 Interrupt Pulse Mode or Level  
Mode. This bit determines whether the interrupt  
will output a pulse or level signal. When set to a  
logic '0,' IRQ/(IRQ) will be in the level mode. When  
this bit is set to a logic '1,' the pulse mode is select-  
ed. IRQ/(IRQ) will either sink or source current, de-  
pending on the condition of Bit 5, for a minimum of  
3ms and then release. IRQ will only source current  
when there is voltage present on V  
.
CC  
promised due to the fact that a nominal V  
supplied. In order to insure data integrity during  
subsequent periods of battery back-up mode, the  
is  
CC  
WAM - Bit 3 Watchdog Alarm Mask. When this  
bit is set to a logic '0,' the watchdog interrupt output  
will be activated. The activated state is determined  
by bits 1, 4, 5, and 6 of the Command Register.  
when this bit is set to a logic '1,' the watchdog in-  
terrupt output is deactivated.  
®
batteries should be replaced. The SNAPHAT top  
should be replaced with valid V  
device.  
applied to the  
CC  
The M440T1MV only monitors the batteries when  
TDM - Bit 2 Time of Day Alarm Mask. When  
this bit is set to a logic '0,' the time of day alarm in-  
terrupt output will be activated. The activated state  
is determined by bits 0, 4, 5, and 6 of the Com-  
mand Register. When this bit is set to a logic '1,'  
the time of day alarm interrupt output is deactivat-  
ed.  
WAF - Bit 1 Watchdog Alarm Flag. This bit is  
set to a logic '1' when a watchdog alarm interrupt  
occurs. This bit is “Read only.” The bit is reset  
when any of the watchdog alarm registers are ac-  
cessed.  
a nominal V is applied to the device. Thus appli-  
CC  
cations which require extensive durations in the  
battery back-up mode should be powered-up peri-  
odically (at least once every few months) in order  
for this technique to be beneficial. Additionally, if a  
battery low is indicated, data integrity should be  
verified upon power-up via a checksum or other  
technique. The BL signal is an open drain output  
and an appropriate pull-up resistor should be cho-  
sen to control the rise time.  
Sleep Mode  
Forcing the sleep pad more positive than +7.5V  
above ground will cause the batteries to be isolat-  
ed from the RAM, preserving the remaining battery  
life. This mode may be used when device opera-  
tion is not necessary for an extended period of  
time.  
When the interrupt is in the pulse mode (see PU/  
LVL - Bit 4 Interrupt Pulse Mode or Level Mode),  
this flag will be in the logic '1' state only during the  
time the interrupt is active.  
TDF - Bit 0 Time of Day Flag. This is a “Read  
only” bit. This bit is set to a logic '1' when a time of  
day alarm has occurred. the time the alarm oc-  
curred can be determined by reading the time of  
Note: Implementation of this Sleep Mode will re-  
sult in complete loss of data.  
16/26  
M440T1MV  
MAXIMUM RATINGS  
Stressing the device above the rating listed in the  
“Absolute Maximum Ratings” table may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 8. Absolute Maximum Ratings  
Symbol  
Parameter  
Operating Temperature  
Value  
–15 to 75  
–40 to 85  
260  
Unit  
°C  
°C  
°C  
V
T
A
T
Storage Temperature (V , Oscillator Off)  
STG  
CC  
T
Lead Solder Temperature for 10 seconds  
Supply Voltage (on any pin relative to Ground)  
Input or Output Voltages  
SLD  
V
CC  
–0.3 to + 4.6  
V
–0.3 to V + 0.3  
V
IO  
CC  
I
Output Current  
20  
1
mA  
W
O
P
Power Dissipation  
D
CAUTION! Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up Mode  
17/26  
M440T1MV  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, as well as the DC and AC  
characteristics of the device. The parameters in  
the following DC and AC Characteristic tables are  
derived from tests performed under the Measure-  
ment Conditions listed in the relevant tables. De-  
signers should check that the operating conditions  
in their projects match the measurement condi-  
tions when using the quoted parameters.  
Table 9. DC and AC Measurement Conditions  
Parameter  
M440T1MV  
3.0 to 3.6V  
–15 to 75°C  
30pF  
V
Supply Voltage  
CC  
Ambient Operating Temperature  
Load Capacitance (C )  
L
Input Rise and Fall Times  
Input Pulse Voltages  
5ns  
0 to 3V  
Input and Output Timing Ref. Voltages  
1.5V  
Note: Output Hi-Z is defined as the point where data is no longer driven.  
Figure 14. AC Testing Load Circuit  
645Ω  
DEVICE  
UNDER  
TEST  
C = 30 pF  
1.75V  
AI05605  
(1,2)  
L
Table 10. Capacitance  
M440T1MV  
Unit  
Symbol  
Parameter  
Min  
Max  
A0 - A5  
50  
pF  
pF  
pF  
C
Input Capacitance  
A6 - A19, G  
All Other Inputs  
40  
IN  
10  
(3)  
Output Capacitance (BL)  
Input / Output Capacitance  
10  
10  
pF  
pF  
C
OUT  
(3)  
C
IO  
Note: 1. Effective capacitance measured with power supply at 3V; sampled only; not 100% tested.  
2. At 25°C, f = 1MHz.  
3. Outputs were deselected.  
18/26  
M440T1MV  
Table 11. DC Characteristics  
M440T1MV  
Typ  
(1)  
Sym  
Parameter  
Unit  
Test Condition  
Min  
Max  
I
0V V V  
Input Leakage Current  
Output Leakage Current  
Supply Current  
±4  
±4  
µA  
µA  
LI  
IN  
CC  
I
LO  
0V V  
V  
OUT CC  
I
210  
mA  
CC1  
E1 - E4,  
EC = V  
I
Supply Current (TTL Standby)  
5
2
12  
mA  
CC2  
IH  
E1 - E4,  
EC = V – 0.2  
I
V
Power Supply Current  
CC  
3
mA  
V
CC3  
CCI  
(2)  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
–0.3  
2.2  
0.6  
V
V
IL  
(2)  
IH  
V
+ 0.3  
V
V
V
V
V
CC  
I
= 2.0mA  
= 10mA  
OL  
0.4  
0.4  
OL  
V
OL  
(3)  
I
Output Low Voltage (Open drain)  
Output High Voltage  
V
I
= –1.0mA  
2.2  
OH  
OH  
(2)  
Power Fail Deselect  
2.80  
2.97  
V
PFD  
(2)  
Battery Back-up Switchover  
2.5  
V
V
SO  
Note: 1. Valid for Ambient Operating Temperature: T = –15 to 75°C; V = 3.0 to 3.6V (except where noted).  
A
CC  
2. All voltages are referenced to Ground.  
3. For BL and IRQ (Open drain); if pulled-up to supply other than V , this supply must be equal to, or less than 3.0V when V = 0V  
CC  
CC  
(during battery back-up mode).  
19/26  
M440T1MV  
Data Retention Mode  
Should the supply voltage decay, the RAM will au-  
tomatically deselect, write protecting itself when  
power supply lines is recommended. When V  
CC  
drops below V , the control circuit switches pow-  
SO  
V
falls between V  
(max), V (min) win-  
er to the internal battery, preserving data and pow-  
ering the clock. The internal energy source will  
maintain data in the M440T1MV for an accumulat-  
ed period of 5 years at 45°C. As system power ris-  
CC  
PFD  
PFD  
dow. All outputs become high impedance and all  
inputs are treated as “Don't care.”  
Note: A power failure during a WRITE cycle may  
corrupt data at the current addressed location, but  
does not jeopardize the rest of the RAM's content.  
es above V , the battery is disconnected, and the  
SO  
power supply is switched to external V . Write  
CC  
protection continues until V reaches V  
(min)  
CC  
PFD  
At voltages below V  
in a write protected state, provided the V  
(min), the memory will be  
PFD  
plus t (min). Normal RAM operation can resume  
ER  
fall  
CC  
t
after V exceeds V  
(max). Refer to Appli-  
ER  
CC  
PFD  
time is not less than t . The M440T1MV may re-  
F
cation Note (AN1012) on the ST Web Site for more  
information on battery life.  
spond to transient noise spikes on V  
that cross  
CC  
into the deselect window during the time the de-  
vice is sampling V .Therefore, decoupling of the  
CC  
Figure 15. Power Down/Up Mode AC Waveforms  
V
V
CC  
PFD  
(max)  
(min)  
V
PFD  
V
V
SO  
SS  
tF  
tDR  
tR  
tFB  
tRB  
DON'T CARE  
tREC  
INPUTS  
RECOGNIZED  
RECOGNIZED  
HIGH-Z  
OUTPUTS  
VALID  
VALID  
AI04792  
Table 12. Power Down/Up Trip Points DC Characteristics  
M440T1MV  
(1,2)  
Symbol  
Unit  
Parameter  
Min  
Typ  
2.9  
2.5  
Max  
2.97  
V
PFD  
Power-fail Deselect Voltage  
2.8  
V
V
V
SO  
Battery Back-up Switchover Voltage  
Expected Data Retention Time  
(3)  
5
YEARS  
t
DR  
Note: 1. Valid for Ambient Operating Temperature: T = –15 to 75°C; V = 3.0 to 3.6V (except where noted).  
A
CC  
2. All voltages referenced to V  
.
SS  
3. At 45°C, V = 0V.  
CC  
20/26  
M440T1MV  
Table 13. Power Down/Up AC Characteristics  
(1)  
Symbol  
Min  
Max  
Unit  
Parameter  
(2)  
V
V
(max) to V  
(min) to V  
(min) V Fall Time  
300  
µs  
t
PFD  
PFD  
CC  
F
(3)  
V
Fall Time  
10  
10  
1
µs  
µs  
µs  
ms  
t
PFD  
PFD  
SS CC  
FB  
t
V
V
(min) to V  
(max) V Rise Time  
PFD CC  
R
t
to V (min) V Rise Time  
PFD CC  
RB  
SS  
t
Power-up Deselect Time  
40  
200  
REC  
Note: 1. Valid for Ambient Operating Temperature: T = –15 to 75°C; V = 3.0 to 3.6V (except where noted).  
A
CC  
2. V  
(max) to V  
(min) fall time of less than t may result in deselection/write protection not occurring until 200µs after V pass-  
PFD F CC  
PFD  
es V  
(min).  
PFD  
3. V  
(min) to V fall time of less than t may cause corruption of RAM data.  
SS FB  
PFD  
21/26  
M440T1MV  
PACKAGE MECHANICAL INFORMATION  
Figure 16. PBGA-ZA – 168-ball Plastic Ball Grid Array Package Outline  
A3  
A1  
A
A
B
E
A2  
HE  
B
D B  
45˚  
ddd C  
GD  
B3  
B2  
B1  
GE  
FD  
SIDE VIEW  
TOP VIEW  
Non-plated  
thru holes  
E5  
e
1
BALL 1  
CORNER  
eee  
fff  
S
S
A S B S  
C
C
D3  
b
b
D D1  
D2  
e
SOLDER BALL (Typ)  
DETAIL A  
Fiducial and  
Soldermask  
opening (3X)  
e
E4  
Detail A  
E1  
FE  
E2  
0.20 (4X)  
E3  
E
BOTTOM VIEW  
PBGA-Z04  
Note: Drawing is not to scale.  
22/26  
M440T1MV  
Table 14. PBGA-ZA – 168-ball Plastic Ball Grid Array Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
11.64  
6.60  
Max  
12.04  
6.90  
Typ  
Max  
A
A1  
A2  
A3  
B
11.24  
6.30  
0.458  
0.260  
0.059  
0.364  
1.748  
1.441  
1.112  
0.909  
0.030  
1.752  
1.100  
1.575  
0.809  
0.050  
1.752  
0.900  
1.118  
1.575  
0.620  
0.566  
0.326  
0.426  
0.033  
0.039  
0.052  
0.443  
0.248  
0.055  
0.354  
1.744  
1.437  
1.108  
0.906  
0.028  
1.744  
0.474  
0.272  
0.063  
0.374  
1.752  
1.445  
1.116  
0.913  
0.032  
1.760  
1.50  
1.40  
1.60  
9.25  
9.00  
9.50  
44.40  
36.60  
28.25  
23.10  
0.76  
44.30  
36.50  
28.15  
23.00  
0.71  
44.50  
36.70  
28.35  
23.20  
0.81  
B1  
B2  
B3  
b
D
44.50  
27.94  
40.00  
20.56  
1.27  
44.30  
44.70  
D1  
D2  
D3  
e
39.80  
20.46  
40.20  
20.66  
1.567  
0.806  
1.583  
0.813  
E
44.50  
22.86  
28.40  
40.00  
15.75  
14.38  
8.28  
44.30  
44.70  
1.744  
1.760  
E1  
E2  
E3  
E4  
E5  
FD  
FE  
GD  
GE  
HE  
n
39.80  
15.65  
14.28  
8.08  
40.20  
15.85  
14.48  
8.48  
1.567  
0.616  
0.562  
0.318  
0.422  
0.026  
1.583  
0.624  
0.570  
0.334  
0.430  
0.041  
10.82  
0.85  
10.72  
0.65  
10.92  
1.05  
1.00  
1.32  
1.12  
168  
1.52  
0.044  
168  
0.060  
Tolerance  
0.15  
Tolerance  
0.006  
ddd  
eee  
fff  
0.25  
0.010  
0.10  
0.004  
23/26  
M440T1MV  
PART NUMBERING  
Table 15. Ordering Information Scheme  
Example:  
M440T  
1MV  
–15  
ZA  
9
Device Type  
M440T  
Supply Voltage and Write Protect Voltage  
1MV = V = 3.0 to 3.6V; V  
= 2.8 to 2.97V  
PFD  
CC  
Speed  
–15 = 150ns  
(1)  
Package  
ZA = 168-ball Ball Grid Array  
Temperature Range  
9 = –15 to 75 °C  
Note: 1. Where “Z” is the symbol for PBGA packages and “A” denotes 1.27mm ball pitch  
For other options, or for more information on any aspect of this device, please contact the ST Sales Office  
nearest you.  
24/26  
M440T1MV  
REVISION HISTORY  
Table 16. Document Revision History  
Date  
September 2002  
16-Jan-03  
Version  
1.0  
Revision Details  
First issue  
1.1  
Modify mechanical data (Table 14)  
31-Mar-03  
11-Apr-03  
1.2  
Update test condition (Table 12)  
2.0  
Updated with template v2.2  
05-Oct-04  
3.0  
Reformatted; update mechanical dimensions (Figure 16; Table 14)  
25/26  
M440T1MV  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
26/26  

相关型号:

M440T1MV-15ZA9

3.3V, 32 Mbit (1024 Kbit x 32) TIMEKEEPER SRAM
STMICROELECTR

M440T513Y

5.0V, 16 Mbit (512 Kbit x 32) TIMEKEEPER-R SRAM
STMICROELECTR

M440T513Y-15ZA9

5.0V, 16 Mbit (512 Kbit x 32) TIMEKEEPER-R SRAM
STMICROELECTR

M44C090

Low-Current Microcontroller for Wireless Communication
ATMEL

M44C090-H

Low-Current Microcontroller for Wireless Communication
ATMEL

M44C090-V

Microcontroller, 4-Bit, MROM, MARC4 CPU, 2MHz, CMOS, PDSO20, SSO-20
ATMEL

M44C090-XXX-DIT

Microcontroller, 4-Bit, MROM, 4MHz, CMOS, CHIP
TEMIC

M44C090-XXX-FB16

Microcontroller, 8-Bit, MROM, 16MHz, CMOS, PDSO16,
TEMIC

M44C092

Microcontroller, 4-Bit, MROM, MARC4 CPU, 4MHz, CMOS, PDSO20, SSO-20
TEMIC

M44C092-H

Microcontroller, 4-Bit, MROM, MARC4 CPU, 1MHz, CMOS, PDSO20,
TEMIC

M44C092-V

Microcontroller, 4-Bit, MROM, MARC4 CPU, 4MHz, CMOS, PDSO20, SSO-20
ATMEL

M44C260-XXX-DIT

Microcontroller, 4-Bit, MROM, 4.2MHz, CMOS, CHIP
TEMIC