M48T08Y [STMICROELECTRONICS]

5V, 64Kbit (8 Kb x 8) TIMEKEEPER㈢ SRAM; 5V ,为64Kbit ( 8 KB ×8 ) TIMEKEEPER㈢ SRAM
M48T08Y
型号: M48T08Y
厂家: ST    ST
描述:

5V, 64Kbit (8 Kb x 8) TIMEKEEPER㈢ SRAM
5V ,为64Kbit ( 8 KB ×8 ) TIMEKEEPER㈢ SRAM

静态存储器
文件: 总30页 (文件大小:261K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M48T08  
M48T08Y, M48T18  
5V, 64Kbit (8 Kb x 8) TIMEKEEPER® SRAM  
Features  
Integrated ultra low power sram, real time  
clock, power-fail control circuit, and battery  
BYTEWIDE™ RAM-like clock access  
BCD coded year, month, day, date, hours,  
28  
minutes, and seconds  
1
Typical clock accuracy of 1 minute a month, at  
25°C  
PCDIP28 (PC)  
battery/crystal  
CAPHAT  
Automatic power-fail chip deselect and write  
protection  
Write protect  
V
= Power-fail deselect voltage):  
PFD  
– M48T08: V = 4.75 to 5.5V  
CC  
4.5V V  
4.75V  
PFD  
SNAPHAT (SH)  
battery/crystal  
– M48T18/T08Y: V = 4.5 to 5.5V  
CC  
4.2V V  
4.5V  
PFD  
Software controlled clock calibration for high  
accuracy applications  
Self-contained battery and crystal in the  
CAPHAT™ dip package  
Packaging includes a 28-lead SOIC and  
®
SNAPHAT top (to be ordered separately)  
SOIC package provides direct connection for a  
snaphat top which contains the battery and  
crystal  
28  
1
Pin and function compatible with DS1643 and  
JEDEC standard 8K x8 SRAMs  
SOH28 (MH)  
RoHS compliant  
– Lead-free second level interconnect  
July 2007  
Rev 8  
1/30  
www.st.com  
1
Contents  
M48T08, M48T08Y, M48T18  
Contents  
Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Operation modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Data retention mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Power-fail interrupt pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Clock operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Reading the clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Setting the clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Stopping and starting the oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Calibrating the clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
VCC noise and negative going transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Maximum rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
2/30  
M48T08, M48T08Y, M48T18  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Read mode AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Write mode AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Power down/up AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Power down/up trip points DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
PCDIP28 – 28-pin plastic DIP, battery CAPHAT, package mechanical data . . . . . . . . . . . 23  
SOH28 – 28-lead plastic SO, 4-socket battery SNAPHAT, package mech. data. . . . . . . . 24  
SH – 4-pin SNAPHAT housing for 48mAh battery & crystal, package mech. data. . . . . . . 25  
SH – 4-pin SNAPHAT housing for 120mAh battery & crystal, package mech data.. . . . . . 26  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SNAPHAT battery table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3/30  
List of figures  
M48T08, M48T08Y, M48T18  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
DIP connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
SOIC connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Read mode AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Write enable controlled, write AC waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Chip enable controlled, write AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Crystal accuracy across temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Clock calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 10. Supply voltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 11. AC testing load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 12. Power down/up mode AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 13. PCDIP28 – 28-pin plastic DIP, battery CAPHAT, package outline. . . . . . . . . . . . . . . . . . . 23  
Figure 14. SOH28 – 28-lead plastic small outline, 4-socket battery SNAPHAT, package outline. . . . 24  
Figure 15. SH – 4-pin SNAPHAT housing for 48mAh battery & crystal, package outline . . . . . . . . . . 25  
Figure 16. SH – 4-pin SNAPHAT housing for 120mAh battery & crystal, package outline . . . . . . . . . 26  
4/30  
M48T08, M48T08Y, M48T18  
Summary description  
Summary description  
®
The M48T08/18/08Y TIMEKEEPER RAM is an 8K x 8 non-volatile static RAM and real  
time clock which is pin and functional compatible with the DS1643. The monolithic chip is  
available in two special packages to provide a highly integrated battery backed-up memory  
and real time clock solution.  
The M48T08/18/08Y is a non-volatile pin and function equivalent to any JEDEC standard 8K  
x 8 SRAM. It also easily fits into many ROM, EPROM, and EEPROM sockets, providing the  
non-volatility of PROMs without any requirement for special WRITE timing or limitations on  
the number of WRITEs that can be performed.  
The 28-pin, 600mil DIP CAPHAT™ houses the M48T08/18/08Y silicon with a quartz crystal  
and a long- life lithium button cell in a single package.  
The 28-pin, 330mil SOIC provides sockets with gold plated contacts at both ends for direct  
®
connection to a separate SNAPHAT housing containing the battery and crystal. The  
unique design allows the SNAPHAT battery package to be mounted on top of the SOIC  
package after the completion of the surface mount process. Insertion of the SNAPHAT  
housing after reflow prevents potential battery and crystal damage due to the high  
temperatures required for device surface-mounting. The SNAPHAT housing is keyed to  
prevent reverse insertion.  
The SOIC and battery/crystal packages are shipped separately in plastic anti-static tubes or  
in Tape & Reel form. For the 28 lead SOIC, the battery/crystal package (e.g., SNAPHAT)  
part number is “M4T28-BR12SH” or “M4T32-BR12SH” (see Table 17 on page 28).  
Figure 1.  
Logic diagram  
V
CC  
13  
8
A0-A12  
DQ0-DQ7  
INT  
W
E1  
E2  
G
M48T08  
M48T08Y  
M48T18  
V
SS  
AI01020  
5/30  
Summary description  
M48T08, M48T08Y, M48T18  
Table 1.  
Signal names  
A0-A12  
Address inputs  
Data inputs / outputs  
Power fail interrupt (open drain)  
Chip enable 1  
DQ0-DQ7  
INT  
E1  
E2  
Chip enable 2  
G
Output enable  
W
WRITE enable  
VCC  
VSS  
Supply voltage  
Ground  
Figure 2.  
DIP connections  
INT  
A12  
A7  
1
2
3
4
5
6
7
8
9
28  
27  
V
CC  
W
26 E2  
25 A8  
24 A9  
23 A11  
A6  
A5  
A4  
A3  
22  
G
M48T08  
M48T18  
A2  
21 A10  
20 E1  
A1  
A0 10  
DQ0 11  
DQ1 12  
DQ2 13  
19 DQ7  
18 DQ6  
17 DQ5  
16 DQ4  
15 DQ3  
V
14  
SS  
AI01182  
6/30  
M48T08, M48T08Y, M48T18  
Figure 3. SOIC connections  
Summary description  
INT  
A12  
A7  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC  
W
2
3
E2  
A6  
4
A8  
A5  
5
A9  
A4  
6
A11  
G
A3  
7
M48T08Y  
A2  
8
A10  
E1  
A1  
9
A0  
10  
11  
12  
13  
14  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ0  
DQ1  
DQ2  
V
SS  
AI01021B  
Figure 4.  
Block diagram  
OSCILLATOR AND  
CLOCK CHAIN  
8 x 8 BiPORT  
SRAM ARRAY  
32,768 Hz  
CRYSTAL  
A0-A12  
POWER  
DQ0-DQ7  
8184 x 8  
SRAM ARRAY  
LITHIUM  
CELL  
E1  
E2  
W
VOLTAGE SENSE  
AND  
V
PFD  
SWITCHING  
CIRCUITRY  
G
V
INT  
V
CC  
SS  
AI01333  
7/30  
Operation modes  
M48T08, M48T08Y, M48T18  
Operation modes  
As Figure 4 on page 7 shows, the static memory array and the quartz-controlled clock  
oscillator of the M48T08/18/08Y are integrated on one silicon chip. The two circuits are  
interconnected at the upper eight memory locations to provide user accessible  
BYTEWIDE™ clock information in the bytes with addresses 1FF8h-1FFFh.  
The clock locations contain the year, month, date, day, hour, minute, and second in 24 hour  
BCD format. Corrections for 28, 29 (leap year - valid until 2100), 30, and 31 day months are  
made automatically. Byte 1FF8h is the clock control register. This byte controls user access  
to the clock information and also stores the clock calibration setting.  
The eight clock bytes are not the actual clock counters themselves; they are memory  
locations consisting of BiPORT™ READ/WRITE memory cells. The M48T08/18/08Y  
includes a clock control circuit which updates the clock bytes with current information once  
per second. The information can be accessed by the user in the same manner as any other  
location in the static memory array.  
The M48T08/18/08Y also has its own Power-fail Detect circuit. The control circuitry  
constantly monitors the single 5V supply for an out of tolerance condition. When V is out  
CC  
of tolerance, the circuit write protects the SRAM, providing a high degree of data security in  
the midst of unpredictable system operation brought on by low V . As V falls below the  
CC  
CC  
Battery Back-up Switchover Voltage (V ), the control circuitry connects the battery which  
SO  
maintains data and clock operation until valid power returns.  
Table 2.  
Mode  
Operating modes  
VCC  
E1  
E2  
G
W
DQ0-DQ7  
Power  
Deselect  
Deselect  
WRITE  
READ  
VIH  
X
X
X
X
X
High Z  
High Z  
DIN  
Standby  
Standby  
Active  
VIL  
VIH  
VIH  
VIH  
X
4.75 to 5.5V  
or  
VIL  
VIL  
VIL  
X
VIL  
VIH  
VIH  
4.5 to 5.5V  
VIL  
VIH  
DOUT  
High Z  
Active  
READ  
Active  
V
SO to  
Deselect  
Deselect  
X
X
X
X
X
X
X
X
High Z  
High Z  
CMOS Standby  
VPFD(min)(1)  
Battery Back-up  
Mode  
(1)  
VSO  
1. See Table 11 on page 22 for details.  
Note:  
X = V or V ; V = battery back-up switchover voltage.  
IH IL SO  
Read mode  
The M48T08/18/08Y is in the READ Mode whenever W (WRITE Enable) is high, E1 (Chip  
Enable 1) is low, and E2 (Chip Enable 2) is high. The device architecture allows ripple-  
through access of data from eight of 65,536 locations in the static storage array. Thus, the  
unique address specified by the 13 address inputs defines which one of the 8,192 bytes of  
data is to be accessed. Valid data will be available at the Data I/O pins within address  
access time (t  
) after the last address input signal is stable, providing that the E1, E2,  
AVQV  
and G access times are also satisfied. If the E1, E2 and G access times are not met, valid  
8/30  
M48T08, M48T08Y, M48T18  
data will be available after the latter of the Chip Enable Access times (t  
Operation modes  
or t ) or  
E1LQV  
E2HQV  
Output Enable Access time (t  
).  
GLQV  
The state of the eight three-state Data I/O signals is controlled by E1, E2 and G. If the  
outputs are activated before t , the data lines will be driven to an indeterminate state  
AVQV  
until t  
. If the address inputs are changed while E1, E2 and G remain active, output data  
AVQV  
will remain valid for Output Data Hold time (t  
address access.  
) but will go indeterminate until the next  
AXQX  
Figure 5.  
Read mode AC waveforms  
tAVAV  
A0-A12  
VALID  
tAVQV  
tE1LQV  
tAXQX  
tE1HQZ  
E1  
tE1LQX  
tE2HQV  
tE2LQZ  
E2  
tE2HQX  
tGLQV  
tGHQZ  
G
tGLQX  
DQ0-DQ7  
VALID  
AI00962  
Note:  
WRITE Enable (W) = High.  
9/30  
Operation modes  
Table 3. Read mode AC characteristics  
M48T08, M48T08Y, M48T18  
M48T08/M48T18/T08Y  
–100/–10 (T08Y) –150/–15 (T08Y)  
Symbol  
Parameter(1)  
Unit  
Min  
Max  
Min  
Max  
tAVAV  
tAVQV  
READ Cycle Time  
100  
150  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Valid to Output Valid  
100  
100  
100  
50  
150  
150  
150  
75  
tE1LQV  
tE2HQV  
tGLQV  
tE1LQX  
tE2HQX  
tGLQX  
tE1HQZ  
tE2LQZ  
tGHQZ  
tAXQX  
Chip Enable 1 Low to Output Valid  
Chip Enable 2 High to Output Valid  
Output Enable Low to Output Valid  
Chip Enable 1 Low to Output Transition  
Chip Enable 2 High to Output Transition  
Output Enable Low to Output Transition  
Chip Enable 1 High to Output Hi-Z  
Chip Enable 2 Low to Output Hi-Z  
Output Enable High to Output Hi-Z  
Address Transition to Output Transition  
10  
10  
5
10  
10  
5
50  
50  
40  
75  
75  
60  
5
5
Note:  
Valid for ambient operating temperature: T = 0 to 70°C; V = 4.75 to 5.5V or 4.5 to 5.5V  
A CC  
(except where noted).  
Write mode  
The M48T08/18/08Y is in the WRITE Mode whenever W, E1, and E2 are active. The start of  
a WRITE is referenced from the latter occurring falling edge of W or E1, or the rising edge of  
E2. A WRITE is terminated by the earlier rising edge of W or E1, or the falling edge of E2.  
The addresses must be held valid throughout the cycle. E1 or W must return high or E2 low  
for a minimum of t  
or t  
from Chip Enable or t  
from WRITE Enable prior to  
E1HAX  
E2LAX  
WHAX  
the initiation of another READ or WRITE Cycle. Data-in must be valid t  
prior to the end  
DVWH  
of WRITE and remain valid for t  
afterward. G should be kept high during WRITE  
WHDX  
Cycles to avoid bus contention; however, if the output bus has been activated by a low on  
E1 and G and a high on E2, a low on W will disable the outputs t after W falls.  
WLQZ  
10/30  
M48T08, M48T08Y, M48T18  
Figure 6. Write enable controlled, write AC waveform  
Operation modes  
tAVAV  
VALID  
A0-A12  
tAVWH  
tAVE1L  
tAVE2H  
tWHAX  
E1  
E2  
tWLWH  
tAVWL  
W
tWLQZ  
tWHQX  
tWHDX  
DQ0-DQ7  
DATA INPUT  
tDVWH  
AI00963  
Figure 7.  
Chip enable controlled, write AC waveforms  
tAVAV  
A0-A12  
VALID  
tAVE1H  
tE1LE1H  
tAVE1L  
tE1HAX  
tE2LAX  
E1  
tAVE2L  
tE2HE2L  
tAVE2H  
E2  
tAVWL  
W
tE1HDX  
tE2LDX  
DQ0-DQ7  
DATA INPUT  
tDVE1H  
tDVE2L  
AI00964B  
11/30  
Operation modes  
Table 4. Write mode AC characteristics  
M48T08, M48T08Y, M48T18  
M48T08/M48T18/T08Y  
–100/–10 (T08Y) –150/–15 (T08Y)  
Symbol  
Parameter(1)  
Unit  
Min  
Max  
Min  
Max  
tAVAV  
tAVWL  
WRITE Cycle Time  
100  
0
150  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Valid to WRITE Enable Low  
Address Valid to Chip Enable 1 Low  
Address Valid to Chip Enable 2 High  
WRITE Enable Pulse Width  
tAVE1L  
tAVE2H  
tWLWH  
tE1LE1H  
tE2HE2L  
tWHAX  
tE1HAX  
tE2LAX  
tDVWH  
tDVE1H  
tDVE2L  
tWHDX  
tE1HDX  
tE2LDX  
tWLQZ  
tAVWH  
tAVE1H  
tAVE2L  
tWHQX  
0
0
0
0
80  
80  
80  
10  
10  
10  
50  
50  
50  
5
100  
130  
130  
10  
10  
10  
70  
70  
70  
5
Chip Enable 1 Low to Chip Enable 1 High  
Chip Enable 2 High to Chip Enable 2 Low  
WRITE Enable High to Address Transition  
Chip Enable 1 High to Address Transition  
Chip Enable 2 Low to Address Transition  
Input Valid to WRITE Enable High  
Input Valid to Chip Enable 1 High  
Input Valid to Chip Enable 2 Low  
WRITE Enable High to Input Transition  
Chip Enable 1 High to Input Transition  
Chip Enable 2 Low to Input Transition  
WRITE Enable Low to Output Hi-Z  
Address Valid to WRITE Enable High  
Address Valid to Chip Enable 1 High  
Address Valid to Chip Enable 2 Low  
WRITE Enable High to Output Transition  
5
5
5
5
50  
70  
80  
80  
80  
10  
130  
130  
130  
10  
1. Valid for ambient operating temperature: TA = 0 to 70°C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).  
Data retention mode  
With valid V applied, the M48T08/18/08Y operates as a conventional BYTEWIDE™ static  
CC  
RAM. Should the supply voltage decay, the RAM will automatically power-fail deselect, write  
protecting itself when V falls within the V  
(max), V  
(min) window. All outputs  
CC  
PFD  
PFD  
become high impedance, and all inputs are treated as “Don't care.”  
Note:  
A power failure during a WRITE cycle may corrupt data at the currently addressed location,  
but does not jeopardize the rest of the RAM's content. At voltages below V  
(min), the  
PFD  
user can be assured the memory will be in a write protected state, provided the V fall time  
CC  
is not less than t . The M48T08/18/08Y may respond to transient noise spikes on V that  
F
CC  
reach into the deselect window during the time the device is sampling V . Therefore,  
CC  
decoupling of the power supply lines is recommended.  
12/30  
M48T08, M48T08Y, M48T18  
Operation modes  
When V drops below V , the control circuit switches power to the internal battery which  
CC  
SO  
preserves data and powers the clock. The internal button cell will maintain data in the  
M48T08/18/08Y for an accumulated period of at least 10 years when V is less than V  
.
CC  
SO  
®
Note:  
Requires use of M4T32-BR12SH SNAPHAT top when using the SOH28 package.  
As system power returns and V rises above V , the battery is disconnected and the  
CC  
SO  
power supply is switched to external V  
.
CC  
Write protection continues until V reaches V  
(min) plus t (min). E1 should be kept  
rec  
CC  
PFD  
high or E2 low as V rises past V  
(min) to prevent inadvertent WRITE cycles prior to  
CC  
PFD  
system stabilization. Normal RAM operation can resume t after V exceeds V (max).  
rec  
CC  
PFD  
For more information on Battery Storage Life refer to the Application Note AN1012.  
Power-fail interrupt pin  
The M48T08/18/08Y continuously monitors V . When V falls to the power-fail detect trip  
CC  
CC  
point, an interrupt is immediately generated. An internal clock provides a delay of between  
10µs and 40µs before automatically deselecting the M48T08/18/08Y. The INT pin is an  
open drain output and requires an external pull up resistor, even if the interrupt output  
function is not being used.  
13/30  
Clock operations  
M48T08, M48T08Y, M48T18  
Clock operations  
Reading the clock  
®
Updates to the TIMEKEEPER registers should be halted before clock data is read to  
prevent reading data in transition. The BiPORT™ TIMEKEEPER cells in the RAM array are  
only data registers and not the actual clock counters, so updating the registers can be  
halted without disturbing the clock itself.  
Updating is halted when a '1' is written to the READ Bit, the seventh bit in the control  
register. As long as a '1' remains in that position, updating is halted. After a halt is issued,  
the registers reflect the count; that is, the day, date, and the time that were current at the  
moment the halt command was issued.  
All of the TIMEKEEPER registers are updated simultaneously. A halt will not interrupt an  
update in progress. Updating is within a second after the bit is reset to a '0.'  
Setting the clock  
The eighth bit of the control register is the WRITE Bit. Setting the WRITE Bit to a '1,' like the  
READ Bit, halts updates to the TIMEKEEPER registers. The user can then load them with  
the correct day, date, and time data in 24 hour BCD format (on Table 5). Resetting the  
WRITE Bit to a '0' then transfers the values of all time registers (1FF9h-1FFFh) to the actual  
TIMEKEEPER counters and allows normal operation to resume. The FT Bit and the bits  
marked as '0' in Table 5 must be written to '0' to allow for normal TIMEKEEPER and RAM  
operation.  
®
st  
See the Application Note AN923, “TIMEKEEPER Rolling Into the 21 Century” for  
information on Century Rollover.  
14/30  
M48T08, M48T08Y, M48T18  
Clock operations  
Table 5.  
Address  
Register map  
Data  
D4  
Function/range  
BCD format  
D7  
D6  
D5  
D3  
D2  
D1  
Year  
D0  
1FFFh  
1FFEh  
1FFDh  
1FFCh  
1FFBh  
1FFAh  
1FF9h  
1FF8h  
10 Years  
Year  
00-99  
01-12  
01-31  
01-07  
00-23  
00-59  
00-59  
0
0
0
0
0
10 M  
0
Month  
Date  
Month  
Date  
10 Date  
0
FT  
0
0
0
Day  
Day  
0
10 Hours  
10 Minutes  
Hours  
Minutes  
Seconds  
Hours  
Minutes  
Seconds  
Control  
0
ST  
W
10 Seconds  
S
R
Calibration  
Note:  
S = SIGN Bit  
FT = FREQUENCY TEST Bit (Set to '0' for normal clock operation)  
R = READ Bit  
W = WRITE Bit  
ST = STOP Bit  
0 = Must be set to '0'  
Stopping and starting the oscillator  
The oscillator may be stopped at any time. If the device is going to spend a significant  
amount of time on the shelf, the oscillator can be turned off to minimize current drain on the  
battery. The STOP Bit (ST) is the MSB of the seconds register. Setting it to a '1' stops the  
oscillator. The M48T08/18/08Y (in the PCDIP28 package) is shipped from  
STMicroelectronics with the STOP Bit set to a '1.' When reset to a '0,' the M48T08/18/08Y  
oscillator starts within one second.  
Note:  
To guarantee oscillator start-up after initial power-up, first write the STOP Bit (ST) to '1,'  
then reset to '0.'  
Calibrating the clock  
The M48T08/18/08Y is driven by a quartz-controlled oscillator with a nominal frequency of  
32,768 Hz. A typical M48T08/18/08Y is accurate within 1 minute per month at 25°C without  
calibration. The devices are tested not to exceed 35 ppm (parts per million) oscillator  
frequency error at 25°C, which equates to about 1.53 minutes per month. With the  
calibration bits properly set, the accuracy of each M48T08/18/08Y improves to better than  
+1/–2 ppm at 25°C.  
The oscillation rate of any crystal changes with temperature. Figure 8 on page 17 shows the  
frequency error that can be expected at various temperatures. Most clock chips compensate  
for crystal frequency and temperature shift error with cumbersome “trim” capacitors. The  
M48T08/18/08Y design, however, employs periodic counter correction. The calibration  
circuit adds or subtracts counts from the oscillator divider circuit at the divide by 256 stage,  
as shown in Figure 9 on page 17. The number of times pulses are blanked (subtracted,  
negative calibration) or split (added, positive calibration) depends upon the value loaded  
15/30  
Clock operations  
M48T08, M48T08Y, M48T18  
into the five-bit Calibration Byte found in the Control Register. Adding counts speeds the  
clock up, subtracting counts slows the clock down.  
The Calibration Byte occupies the five lower order bits in the Control register. This byte can  
be set to represent any value between 0 and 31 in binary form. The sixth bit is the Sign Bit;  
'1' indicates positive calibration, '0' indicates negative calibration. Calibration occurs within a  
64 minute cycle. The first 62 minutes in the cycle may, once per minute, have one second  
either shortened by 128 or lengthened by 256 oscillator cycles. If a binary '1' is loaded into  
the register, only the first 2 minutes in the 64 minute cycle will be modified; if a binary 6 is  
loaded, the first 12 will be affected, and so on.  
Therefore, each calibration step has the effect of adding 512 or subtracting 256 oscillator  
cycles for every 125,829,120 actual oscillator cycles; that is +4.068 or –2.034 ppm of  
adjustment per calibration step in the calibration register. Assuming that the oscillator is in  
fact running at exactly 32,768Hz, each of the 31 increments in the Calibration Byte would  
represent +10.7 or –5.35 seconds per month which corresponds to a total range of +5.5 or –  
2.75 minutes per month.  
Two methods are available for ascertaining how much calibration a given M48T08/18/08Y  
may require. The first involves simply setting the clock, letting it run for a month and  
comparing it to a known accurate reference (like WWV broadcasts). While that may seem  
crude, it allows the designer to give the end user the ability to calibrate his clock as his  
environment may require, even after the final product is packaged in a non-user serviceable  
enclosure. All the designer has to do is provide a simple utility that accesses the Calibration  
Byte.  
The second approach is better suited to a manufacturing environment, and involves the use  
of standard test equipment. When the Frequency Test (FT) Bit, the seventh-most significant  
bit in the Day Register, is set to a '1,' and the oscillator is running at 32,768 Hz, the LSB  
(DQ0) of the Seconds Register will toggle at 512 Hz. Any deviation from 512 Hz indicates  
the degree and direction of oscillator frequency shift at the test temperature. For example, a  
reading of 512.01024 Hz would indicate a +20 ppm oscillator frequency error, requiring a –  
10 (WR001010) to be loaded into the Calibration Byte for correction.  
Note:  
Setting or changing the Calibration Byte does not affect the Frequency Test output  
frequency. The device must be selected and addresses must be stable at Address 1FF9h  
when reading the 512 Hz on DQ0.  
The LSB of the Seconds Register is monitored by holding the M48T08/18/08Y in an  
extended READ of the Seconds Register, but without having the READ Bit set. The FT Bit  
MUST be reset to '0' for normal clock operations to resume.  
®
For more information on calibration, see the Application Note AN934, “TIMEKEEPER  
Calibration.”  
16/30  
M48T08, M48T08Y, M48T18  
Figure 8. Crystal accuracy across temperature  
Clock operations  
ppm  
20  
0
-20  
-40  
-60  
-80  
2
ΔF  
F
ppm  
C2  
= -0.038  
(T - T0) 10%  
T0 = 25 °C  
-100  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
°C  
AI02124  
Figure 9.  
Clock calibration  
NORMAL  
POSITIVE  
CALIBRATION  
NEGATIVE  
CALIBRATION  
AI00594B  
VCC noise and negative going transients  
I
transients, including those produced by output switching, can produce voltage  
CC  
fluctuations, resulting in spikes on the V bus. These transients can be reduced if  
CC  
capacitors are used to store energy which stabilizes the V bus. The energy stored in the  
CC  
bypass capacitors will be released as low going spikes are generated or energy will be  
absorbed when overshoots occur. A ceramic bypass capacitor value of 0.1µF (as shown in  
Figure 10) is recommended in order to provide the needed filtering.  
In addition to transients that are caused by normal SRAM operation, power cycling can  
generate negative voltage spikes on V that drive it to values below V by as much as  
CC  
SS  
one volt. These negative spikes can cause data corruption in the SRAM while in battery  
backup mode. To protect from these voltage spikes, it is recommended to connect a  
schottky diode from V to V (cathode connected to V , anode to V ). Schottky diode  
CC  
SS  
CC  
SS  
17/30  
Clock operations  
M48T08, M48T08Y, M48T18  
1N5817 is recommended for through hole and MBRS120T3 is recommended for surface  
mount.  
Figure 10. Supply voltage protection  
V
CC  
V
CC  
0.1μF  
DEVICE  
V
SS  
AI02169  
18/30  
M48T08, M48T08Y, M48T18  
Maximum rating  
Maximum rating  
Stressing the device above the rating listed in the “Absolute Maximum Ratings” table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the Operating sections of  
this specification is not implied. Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE  
Program and other relevant quality documents.  
Table 6.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
TA  
Ambient Operating Temperature  
Storage Temperature (VCC Off, Oscillator Off)  
Lead Solder Temperature for 10 seconds  
Input or Output Voltages  
0 to 70  
–40 to 85  
260  
°C  
°C  
°C  
V
TSTG  
(1) (2) (3)  
TSLD  
VIO  
VCC  
IO  
–0.3 to 7  
–0.3 to 7  
20  
Supply Voltage  
V
Output Current  
mA  
W
PD  
Power Dissipation  
1
1. For DIP package: Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to  
exceed 150°C for longer than 30 seconds).  
2. For SO package, standard (SnPb) lead finish: Reflow at peak temperature of 225°C (total thermal budget  
not to exceed 180°C for between 90 to 150 seconds).  
3. For SO package, Lead-free (Pb-free) lead finish: Reflow at peak temperature of 260°C (total thermal  
budget not to exceed 245°C for greater than 30 seconds).  
Caution:  
Caution:  
Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up  
mode.  
Do NOT wave solder SOIC to avoid damaging SNAPHAT sockets.  
19/30  
DC and AC parameters  
M48T08, M48T08Y, M48T18  
DC and AC parameters  
This section summarizes the operating and measurement conditions, as well as the DC and  
AC characteristics of the device. The parameters in the following DC and AC Characteristic  
tables are derived from tests performed under the Measurement Conditions listed in the  
relevant tables. Designers should check that the operating conditions in their projects match  
the measurement conditions when using the quoted parameters.  
Table 7.  
Operating and AC measurement conditions  
Parameter  
Supply Voltage (VCC  
M48T08  
M48T18/T08Y  
Unit  
)
4.75 to 5.5  
0 to 70  
100  
4.5 to 5.5  
0 to 70  
100  
V
°C  
pF  
ns  
V
Ambient Operating Temperature (TA)  
Load Capacitance (CL)  
Input Rise and Fall Times  
5  
5  
Input Pulse Voltages  
0 to 3  
1.5  
0 to 3  
1.5  
Input and Output Timing Ref. Voltages  
V
Note:  
Output Hi-Z is defined as the point where data is no longer driven.  
Figure 11. AC testing load circuit  
5V  
1.8kΩ  
DEVICE  
UNDER  
TEST  
OUT  
1kΩ  
C
= 100pF  
L
C
includes JIG capacitance  
L
AI01019  
Table 8.  
Symbol  
CIN  
Capacitance  
Parameter(1)(2)  
Min  
Max  
Unit  
Input Capacitance  
10  
10  
pF  
pF  
(3)  
CIO  
Input / Output Capacitance  
1. Effective capacitance measured with power supply at 5V; sampled only, not 100% tested.  
2. At 25°C, f = 1MHz.  
3. Outputs deselected.  
20/30  
M48T08, M48T08Y, M48T18  
DC and AC parameters  
Table 9.  
Symbol  
ILI  
DC characteristics  
Parameter  
M48T08/M48T18/T08Y  
Test condition(1)  
Unit  
Min  
Max  
Input Leakage Current  
Output Leakage Current  
Supply Current  
0V VIN VCC  
0V VOUT VCC  
Outputs open  
1
1
µA  
µA  
(2)  
ILO  
ICC  
80  
3
mA  
mA  
(3)  
ICC1  
Supply Current (Standby) TTL  
E1 = VIH, E2 = VIL  
E1 = VCC – 0.2V,  
E2 = VSS + 0.2V  
(3)  
ICC2  
Supply Current (Standby) CMOS  
3
mA  
VIL  
VIH  
Input Low Voltage  
–0.3  
2.2  
0.8  
VCC + 0.3  
0.4  
V
V
V
V
V
Input High Voltage  
Output Low Voltage  
Output Low Voltage (INT)(4)(4)  
Output High Voltage  
IOL = 2.1mA  
IOL = 0.5mA  
IOH = –1mA  
VOL  
VOH  
0.4  
2.4  
1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).  
2. Outputs deselected.  
3. Measured with Control Bits set as follows: R = '1'; W, ST, FT = '0.'  
4. The INT pin is open drain.  
Figure 12. Power down/up mode AC waveforms  
V
CC  
V
V
V
(max)  
(min)  
PFD  
PFD  
SO  
tF  
tDR  
tR  
tPD  
tFB  
tPFX  
tRB  
tPFH  
INT  
trec  
RECOGNIZED  
NOTE  
RECOGNIZED  
INPUTS  
DON'T CARE  
HIGH-Z  
OUTPUTS  
VALID  
VALID  
(PER CONTROL INPUT)  
(PER CONTROL INPUT)  
AI00566  
Note:  
Inputs may or may not be recognized at this time. Caution should be taken to keep E1 high  
or E2 low as V rises past V (min). Some systems may perform inadvertent WRITE  
CC  
PFD  
cycles after V rises above V  
(min) but before normal system operations begin. Even  
CC  
PFD  
though a power on reset is being applied to the processor, a reset condition may not occur  
until after the system clock is running.  
21/30  
DC and AC parameters  
Table 10. Power down/up AC characteristics  
M48T08, M48T08Y, M48T18  
Symbol  
Parameter(1)  
Min  
Max  
Unit  
E1 or W at VIH or E2 at VIL before Power  
Down  
tPD  
0
µs  
(2)  
tF  
VPFD (max) to VPFD (min) VCC Fall Time  
VPFD (min) to VSS VCC Fall Time  
VPFD (min) to VPFD (max) VCC Rise Time  
VSS to VPFD (min) VCC Rise Time  
E1 or W at VIH or E2 at VIL before Power Up  
INT Low to Auto Deselect  
300  
10  
0
µs  
µs  
µs  
µs  
ms  
µs  
µs  
(3)  
tFB  
tR  
tRB  
1
trec  
1
tPFX  
tPFH  
10  
40  
VPFD (max) to INT High  
120  
1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (except where  
noted).  
2. VPFD (max) to VPFD (min) fall time of less than tF may result in deselection/write protection not occurring  
until 200µs after VCC passes VPFD (min).  
3. VPFD (min) to VSS fall time of less than tFB may cause corruption of RAM data.  
Table 11. Power down/up trip points DC characteristics  
Symbol  
Parameter(1)(2)  
Min  
Typ  
Max  
Unit  
M48T08  
4.5  
4.2  
4.6  
4.3  
3.0  
4.75  
4.5  
V
VPFD  
Power-fail Deselect Voltage  
M48T18/T08Y  
V
V
VSO  
tDR  
Battery Back-up Switchover Voltage  
Expected Data Retention Time  
10(3)  
YEARS  
1. All voltages referenced to VSS  
.
2. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (except  
where noted).  
3. At 55°C, VCC = 0V; tDR = 8.5 years (typ) at 70°C. Requires use of M4T32-BR12SH SNAPHAT® top when  
using the SOH28 package.  
22/30  
M48T08, M48T08Y, M48T18  
Package mechanical data  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in ECOPACK®  
packages. These packages have a Lead-free second level interconnect. The category of  
second Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at: www.st.com.  
Figure 13. PCDIP28 – 28-pin plastic DIP, battery CAPHAT, package outline  
A2  
A
L
A1  
e1  
C
B1  
B
eA  
e3  
D
N
1
E
PCDIP  
Note:  
Drawing is not to scale.  
Table 12. PCDIP28 – 28-pin plastic DIP, battery CAPHAT, package mechanical data  
mm  
inches  
Symb  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
B
8.89  
0.38  
8.38  
0.38  
1.14  
0.20  
39.37  
17.83  
2.29  
29.72  
15.24  
3.05  
28  
9.65  
0.76  
0.350  
0.015  
0.330  
0.015  
0.045  
0.008  
1.550  
0.702  
0.090  
1.170  
0.600  
0.120  
28  
0.380  
0.030  
0.350  
0.021  
0.070  
0.012  
1.570  
0.722  
0.110  
1.430  
0.630  
0.150  
8.89  
0.53  
B1  
C
1.78  
0.31  
D
39.88  
18.34  
2.79  
E
e1  
e3  
eA  
L
36.32  
16.00  
3.81  
N
23/30  
Package mechanical data  
M48T08, M48T08Y, M48T18  
Figure 14. SOH28 – 28-lead plastic small outline, 4-socket battery SNAPHAT, package  
outline  
A2  
A
C
eB  
B
e
CP  
D
N
E
H
A1  
α
L
1
SOH-A  
Note:  
Drawing is not to scale.  
Table 13. SOH28 – 28-lead plastic SO, 4-socket battery SNAPHAT, package mech. data  
mm  
inches  
Symb  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
B
3.05  
0.36  
2.69  
0.51  
0.32  
18.49  
8.89  
0.120  
0.014  
0.106  
0.020  
0.012  
0.728  
0.350  
0.05  
2.34  
0.36  
0.15  
17.71  
8.23  
0.002  
0.092  
0.014  
0.006  
0.697  
0.324  
C
D
E
e
1.27  
0.050  
eB  
H
3.20  
11.51  
0.41  
0°  
3.61  
12.70  
1.27  
8°  
0.126  
0.453  
0.016  
0°  
0.142  
0.500  
0.050  
8°  
L
a
N
28  
28  
CP  
0.10  
0.004  
24/30  
M48T08, M48T08Y, M48T18  
Package mechanical data  
Figure 15. SH – 4-pin SNAPHAT housing for 48mAh battery & crystal, package outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-A  
Note:  
Drawing is not to scale.  
Table 14. SH – 4-pin SNAPHAT housing for 48mAh battery & crystal, package mech.  
data  
mm  
inches  
Symb  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
A3  
B
9.78  
7.24  
6.99  
0.38  
0.56  
21.84  
14.99  
15.95  
3.61  
2.29  
0.385  
0.285  
0.275  
0.015  
0.022  
0.860  
0.590  
0.628  
0.142  
0.090  
6.73  
6.48  
0.265  
0.255  
0.46  
21.21  
14.22  
15.55  
3.20  
0.018  
0.835  
0.560  
0.612  
0.126  
0.080  
D
E
eA  
eB  
L
2.03  
25/30  
Package mechanical data  
M48T08, M48T08Y, M48T18  
Figure 16. SH – 4-pin SNAPHAT housing for 120mAh battery & crystal, package  
outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-A  
Note:  
Drawing is not to scale.  
Table 15. SH – 4-pin SNAPHAT housing for 120mAh battery & crystal, package mech  
data.  
mm  
inches  
Symb  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
A3  
B
10.54  
8.51  
0.415  
.0335  
0.315  
0.015  
0.022  
0.860  
.0710  
0.628  
0.142  
0.090  
8.00  
7.24  
0.315  
0.285  
8.00  
0.38  
0.46  
21.21  
17.27  
15.55  
3.20  
0.56  
0.018  
0.835  
0.680  
0.612  
0.126  
0.080  
D
21.84  
18.03  
15.95  
3.61  
E
eA  
eB  
L
2.03  
2.29  
26/30  
M48T08, M48T08Y, M48T18  
Part numbering  
Part numbering  
Table 16. Ordering information scheme  
Example:  
M48T  
18  
–100  
PC  
1
E
Device type  
M48T  
Supply Voltage and Write Protect Voltage  
08(1) = VCC = 4.75 to 5.5V; VPFD = 4.5 to 4.75V  
18/08Y = VCC = 4.5 to 5.5V; VPFD = 4.2 to 4.5V  
Speed  
–100 = 100ns  
–150 = 150ns  
–10 = 100ns (M48T08Y)  
Package  
PC(1) = PCDIP28  
MH(2) = SOH28  
Temperature Range  
1 = 0 to 70°C  
Shipping Method  
For SOH28:  
blank = Tubes (Not for New Design - Use E)  
E = ECOPACK Package, Tubes  
F = ECOPACK Package, Tape & Reel  
TR = Tape & Reel (Not for New Design - Use F)  
For PCDIP28:  
blank = ECOPACK Package, Tubes  
1. The M48T08/18 part is offered with the PCDIP28 (e.g., CAPHAT™) package only.  
2. The SOIC package (SOH28) requires the SNAPHAT® battery/crystal package which is ordered separately  
under the part number“M4TXX-BR12SH” in plastic tube or “M4TXX-BR12SHTR” in Tape & Reel form (see  
Table 17). The M48T08Y part is offered in the SOH28 (SNAPHAT) package only.  
Caution:  
Do not place the SNAPHAT battery package “M4TXX-BR12SH” in conductive foam as it will  
drain the lithium button-cell battery.  
For other options, or for more information on any aspect of this device, please contact the  
ST sales office nearest you.  
27/30  
Part numbering  
Table 17. SNAPHAT battery table  
M48T08, M48T08Y, M48T18  
Package  
Part Number  
Description  
M4T28-BR12SH  
M4T32-BR12SH  
Lithium Battery (48mAh) SNAPHAT  
Lithium Battery (120mAh) SNAPHAT  
SH  
SH  
28/30  
M48T08, M48T08Y, M48T18  
Revision history  
Revision history  
Table 18. Document revision history  
Date  
Revision  
Changes  
Dec-1999  
1.0  
First Issue  
From Preliminary Data to Data Sheet; Battery Low Flag paragraph  
changed; 100ns speed class identifier changed (Table 3, 4)  
07-Feb-2000  
11-Jul-2000  
16-Jul-2001  
2.0  
2.1  
3.0  
tFB changed (Table 10); Watchdog Timer paragraph changed  
Reformatted; SNAPHAT battery table added (Table 17); added  
temp./voltage info. to tables (Table 8, 9, 3, 4, 10, 11).  
01-Aug-2001  
21-Dec-2001  
06-Mar-2002  
20-May-2002  
29-Aug-2002  
28-Mar-2003  
10-Dec-2003  
3.1  
3.2  
3.3  
3.4  
3.5  
4.0  
5.0  
Reference to App. Note corrected in “Calibrating the Clock” section  
Changes to text in document to reflect addition of M48T08Y option  
Fix Ordering Information table and add to footnote (Table 16)  
Modify reflow time and temperature footnotes (Table 6)  
tDR specification temperature updated (Table 11)  
v2.2 template applied; updated test conditions (Table 10)  
Reformatted  
Reformatted; Lead-free (Pb-free) information package update (Table 6,  
16)  
30-Mar-2004  
13-Dec-2005  
04-Jul-2007  
6.0  
7.0  
8.0  
Updated template, Lead-free information, removed footnote (Table 9, 16)  
Reformatted; added lead-free second level interconnect information to  
cover page and Section : Package mechanical data.  
29/30  
M48T08, M48T08Y, M48T18  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
30/30  

相关型号:

M48T08Y-100MH1

64 Kbit 8Kb x 8 TIMEKEEPER SRAM
STMICROELECTR

M48T08Y-100MH1E

64 Kbit 8Kb x 8 TIMEKEEPER SRAM
STMICROELECTR

M48T08Y-100MH1F

64 Kbit 8Kb x 8 TIMEKEEPER SRAM
STMICROELECTR

M48T08Y-100MH1TR

64 Kbit 8Kb x 8 TIMEKEEPER SRAM
STMICROELECTR

M48T08Y-100PC1

64 Kbit 8Kb x 8 TIMEKEEPER SRAM
STMICROELECTR

M48T08Y-100PC1E

64 Kbit 8Kb x 8 TIMEKEEPER SRAM
STMICROELECTR

M48T08Y-100PC1F

64 Kbit 8Kb x 8 TIMEKEEPER SRAM
STMICROELECTR

M48T08Y-100PC1TR

64 Kbit 8Kb x 8 TIMEKEEPER SRAM
STMICROELECTR

M48T08Y-10MH1

64 Kbit 8Kb x 8 TIMEKEEPER SRAM
STMICROELECTR

M48T08Y-10MH1E

64 Kbit 8Kb x 8 TIMEKEEPER SRAM
STMICROELECTR

M48T08Y-10MH1F

64 Kbit 8Kb x 8 TIMEKEEPER SRAM
STMICROELECTR

M48T08Y-10MH1TR

64 Kbit 8Kb x 8 TIMEKEEPER SRAM
STMICROELECTR