M48T12-70PC1TR [STMICROELECTRONICS]

5.0V, 16 Kbit (2Kb x 8) TIMEKEEPER㈢ SRAM; 5.0V , 16千位( 2K位×8 ) TIMEKEEPER㈢ SRAM
M48T12-70PC1TR
型号: M48T12-70PC1TR
厂家: ST    ST
描述:

5.0V, 16 Kbit (2Kb x 8) TIMEKEEPER㈢ SRAM
5.0V , 16千位( 2K位×8 ) TIMEKEEPER㈢ SRAM

计时器或实时时钟 微控制器和处理器 静态存储器 光电二极管
文件: 总19页 (文件大小:253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M48T02  
M48T12  
®
5.0V, 16 Kbit (2Kb x 8) TIMEKEEPER SRAM  
FEATURES SUMMARY  
INTEGRATED, ULTRA LOW POWER SRAM,  
REAL TIME CLOCK, and POWER-FAIL  
CONTROL CIRCUIT  
Figure 1. 24-pin PCDIP, CAPHAT™ Package  
BYTEWIDE™ RAM-LIKE CLOCK ACCESS  
BCD CODED YEAR, MONTH, DAY, DATE,  
HOURS, MINUTES, and SECONDS  
TYPICAL CLOCK ACCURACY OF ±1 MINUTE  
A MONTH, AT 25°C  
24  
SOFTWARE CONTROLLED CLOCK  
CALIBRATION FOR HIGH ACCURACY  
APPLICATIONS  
1
PCDIP24 (PC)  
Battery/Crystal  
CAPHAT  
AUTOMATIC POWER-FAIL CHIP DESELECT  
and WRITE PROTECTION  
WRITE PROTECT VOLTAGES  
(V  
= Power-fail Deselect Voltage):  
PFD  
– M48T02: V = 4.75 to 5.5V  
CC  
4.5V V  
4.75V  
PFD  
– M48T12: V = 4.5 to 5.5V  
CC  
4.2V V  
4.5V  
PFD  
SELF-CONTAINED BATTERY and CRYSTAL  
IN THE CAPHAT™ DIP PACKAGE  
PIN and FUNCTION COMPATIBLE WITH  
JEDEC STANDARD 2K x 8 SRAMs  
March 2003  
1/19  
Rev. 3.0  
M48T02, M48T12  
TABLE OF CONTENTS  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Figure 3. DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 2. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 5  
Table 3. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 5. AC Testing Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Table 4. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Table 5. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
OPERATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 6. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 6. READ Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 7. READ Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 7. WRITE Enable Controlled, WRITE AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 8. Chip Enable Controlled, WRITE AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 8. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 9. Checking the BOK Flag Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 10. Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 9. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 10. Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
CLOCK OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Reading the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Setting the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 11. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Stopping and Starting the Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Calibrating the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 11. Crystal Accuracy Across Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 12. Clock Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
V
CC  
Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 13. Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2/19  
M48T02, M48T12  
SUMMARY DESCRIPTION  
®
The M48T02/12 TIMEKEEPER RAM is a 2Kb x 8  
non-volatile static RAM and real time clock which  
is pin and functional compatible with the DS1642.  
tionality for an accumulated time period of at least  
10 years in the absence of power over the operat-  
ing temperature range.  
A special 24-pin, 600mil DIP CAPHAT™ package  
houses the M48T02/12 silicon with a quartz crystal  
and a long life lithium button cell to form a highly  
integrated battery backed-up memory and real  
time clock solution.  
The M48T02/12 button cell has sufficient capacity  
and storage life to maintain data and clock func-  
The M48T02/12 is a non-volatile pin and function  
equivalent to any JEDEC standard 2Kb x 8 SRAM.  
It also easily fits into many ROM, EPROM, and  
EEPROM sockets, providing the non-volatility of  
PROMs without any requirement for special  
WRITE timing or limitations on the number of  
WRITEs that can be performed.  
Figure 2. Logic Diagram  
Table 1. Signal Names  
A0-A10  
Address Inputs  
Data Inputs / Outputs  
Chip Enable  
V
CC  
DQ0-DQ7  
11  
8
E
A0-A10  
DQ0-DQ7  
G
W
Output Enable  
WRITE Enable  
Supply Voltage  
Ground  
W
E
M48T02  
M48T12  
V
CC  
V
SS  
G
V
SS  
AI01027  
Figure 3. DIP Connections  
A7  
A6  
1
2
3
4
5
6
7
8
9
24  
V
CC  
23 A8  
A5  
22 A9  
A4  
21  
20  
W
G
A3  
A2  
M48T02 19 A10  
M48T12  
A1  
18  
E
A0  
17 DQ7  
16 DQ6  
15 DQ5  
14 DQ4  
13 DQ3  
DQ0  
DQ1 10  
DQ2 11  
V
12  
SS  
AI01028  
3/19  
M48T02, M48T12  
Figure 4. Block Diagram  
OSCILLATOR AND  
CLOCK CHAIN  
8 x 8 BiPORT  
SRAM ARRAY  
32,768 Hz  
CRYSTAL  
A0-A10  
POWER  
DQ0-DQ7  
2040 x 8  
SRAM ARRAY  
LITHIUM  
CELL  
E
V
PFD  
VOLTAGE SENSE  
AND  
W
G
SWITCHING  
CIRCUITRY  
BOK  
V
V
CC  
SS  
AI01329  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
“Absolute Maximum Ratings” table may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
0 to 70  
Unit  
°C  
T
A
Ambient Operating Temperature  
T
Storage Temperature (V Off, Oscillator Off)  
–40 to 85  
°C  
STG  
CC  
(2)  
Lead Solder Temperature for 10 seconds  
Input or Output Voltages  
Supply Voltage  
260  
–0.3 to 7  
–0.3 to 7  
20  
°C  
V
T
SLD  
V
IO  
V
V
CC  
I
Output Current  
mA  
W
O
P
Power Dissipation  
1
D
Note: 1. Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds).  
CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode.  
4/19  
M48T02, M48T12  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, as well as the DC and AC  
characteristics of the device. The parameters in  
the following DC and AC Characteristic tables are  
derived from tests performed under the Measure-  
ment Conditions listed in the relevant tables. De-  
signers should check that the operating conditions  
in their projects match the measurement condi-  
tions when using the quoted parameters.  
Table 3. Operating and AC Measurement Conditions  
Parameter  
Supply Voltage (V  
M48T02  
M48T12  
4.5 to 5.5  
0 to 70  
100  
Unit  
V
)
4.75 to 5.5  
0 to 70  
100  
CC  
Ambient Operating Temperature (T )  
°C  
pF  
ns  
V
A
Load Capacitance (C )  
L
Input Rise and Fall Times  
5  
5  
Input Pulse Voltages  
0 to 3  
1.5  
0 to 3  
1.5  
Input and Output Timing Ref. Voltages  
V
Note: Output Hi-Z is defined as the point where data is no longer driven.  
Figure 5. AC Testing Load Circuit  
5V  
1.8kΩ  
DEVICE  
UNDER  
TEST  
OUT  
1kΩ  
C
= 100pF  
L
C
includes JIG capacitance  
L
AI01019  
Table 4. Capacitance  
Symbol  
(1,2)  
Min  
Max  
10  
Unit  
pF  
Parameter  
C
Input Capacitance  
Input / Output Capacitance  
IN  
(3)  
10  
pF  
C
IO  
Note: 1. Effective capacitance measured with power supply at 5V. Sampled only, not 100% tested.  
2. At 25°C, f = 1MHz.  
3. Outputs deselected.  
5/19  
M48T02, M48T12  
Table 5. DC Characteristics  
(1)  
Symbol  
Parameter  
Min  
Max  
±1  
±1  
80  
3
Unit  
µA  
Test Condition  
0V V V  
Input Leakage Current  
I
IN  
CC  
LI  
(2)  
0V V  
V  
CC  
Output Leakage Current  
Supply Current  
µA  
I
OUT  
LO  
I
Outputs open  
mA  
mA  
mA  
CC  
(3)  
E = V  
Supply Current (Standby) TTL  
Supply Current (Standby) CMOS  
I
I
IH  
CC1  
(3)  
E = V – 0.2V  
3
CC  
CC2  
(4)  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.3  
2.2  
0.8  
V
V
V
V
V
IL  
V
V
+ 0.3  
IH  
CC  
V
V
I
= 2.1mA  
= –1mA  
OH  
0.4  
OL  
OL  
I
2.4  
OH  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).  
A
CC  
2. Outputs deselected.  
3. Measured with Control Bits set as follows: R = '1'; W, ST, FT = '0.'  
4. Negative spikes of –1V allowed for up to 10ns once per Cycle.  
OPERATION MODES  
As Figure 4, page 4 shows, the static memory ar-  
ray and the quartz controlled clock oscillator of the  
M48T02/12 are integrated on one silicon chip. The  
two circuits are interconnected at the upper eight  
memory locations to provide user accessible  
BYTEWIDE™ clock information in the bytes with  
addresses 7F8h-7FFh. The clock locations con-  
tain the year, month, date, day, hour, minute, and  
second in 24 hour BCD format. Corrections for 28,  
29 (leap year - valid until 2100), 30, and 31 day  
months are made automatically.  
consisting of BiPORT™ READ/WRITE memory  
cells. The M48T02/12 includes a clock control cir-  
cuit which updates the clock bytes with current in-  
formation once per second. The information can  
be accessed by the user in the same manner as  
any other location in the static memory array.  
The M48T02/12 also has its own Power-fail Detect  
circuit. The control circuitry constantly monitors  
the single 5V supply for an out of tolerance condi-  
tion. When V is out of tolerance, the circuit write  
CC  
protects the SRAM, providing a high degree of  
data security in the midst of unpredictable system  
Byte 7F8h is the clock control register. This byte  
controls user access to the clock information and  
also stores the clock calibration setting.  
operation brought on by low V . As V falls be-  
CC  
CC  
low approximately 3V, the control circuitry con-  
nects the battery which maintains data and clock  
operation until valid power returns.  
The eight clock bytes are not the actual clock  
counters themselves; they are memory locations  
Table 6. Operating Modes  
V
Mode  
Deselect  
WRITE  
READ  
E
G
X
X
W
DQ0-DQ7  
Power  
Standby  
Active  
CC  
V
X
High Z  
IH  
4.75 to 5.5V  
or  
4.5 to 5.5V  
V
V
V
V
D
IL  
IL  
IL  
IL  
IH  
IH  
IN  
V
V
V
D
Active  
IL  
OUT  
V
IH  
READ  
High Z  
High Z  
High Z  
Active  
(1)  
Deselect  
X
X
X
CMOS Standby  
V
SO  
to V  
(min)  
PFD  
(1)  
Deselect  
X
X
X
Battery Back-up Mode  
V  
SO  
Note: X = V or V ; V = Battery Back-up Switchover Voltage.  
IH  
IL  
SO  
1. See Table 10, page 11 for details.  
6/19  
M48T02, M48T12  
READ Mode  
The M48T02/12 is in the READ Mode whenever W  
(WRITE Enable) is high and E (Chip Enable) is  
low. The device architecture allows ripple-through  
access of data from eight of 16,384 locations in the  
static storage array. Thus, the unique address  
specified by the 11 Address Inputs defines which  
one of the 2,048 bytes of data is to be accessed.  
Valid data will be available at the Data I/O pins  
available after the latter of the Chip Enable Access  
time (t  
) or Output Enable Access time  
ELQV  
(t  
GLQV  
).  
The state of the eight three-state Data I/O signals  
is controlled by E and G. If the outputs are activat-  
ed before t  
indeterminate state until t  
, the data lines will be driven to an  
AVQV  
. If the Address In-  
AVQV  
puts are changed while E and G remain active,  
output data will remain valid for Output Data Hold  
within Address Access time (t  
) after the last  
AVQV  
address input signal is stable, providing that the E  
and G access times are also satisfied. If the E and  
G access times are not met, valid data will be  
time (t  
) but will go indeterminate until the next  
AXQX  
Address Access.  
Figure 6. READ Mode AC Waveforms  
tAVAV  
VALID  
A0-A10  
tAVQV  
tELQV  
tAXQX  
tEHQZ  
E
tELQX  
tGLQV  
tGHQZ  
G
tGLQX  
DQ0-DQ7  
VALID  
AI01330  
Note: WRITE Enable (W) = High.  
Table 7. READ Mode AC Characteristics  
M48T02/M48T12  
–150  
(1)  
Symbol  
–70  
Max  
–200  
Unit  
Parameter  
Min  
Min  
Max  
Min  
Max  
t
READ Cycle Time  
70  
150  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
Address Valid to Output Valid  
70  
70  
35  
150  
150  
75  
200  
200  
80  
AVQV  
t
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
Chip Enable Low to Output Transition  
Output Enable Low to Output Transition  
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
Address Transition to Output Transition  
ELQV  
t
GLQV  
t
5
5
10  
5
10  
5
ELQX  
t
GLQX  
t
25  
25  
35  
35  
40  
40  
EHQZ  
t
GHQZ  
t
10  
5
5
AXQX  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).  
A
CC  
7/19  
M48T02, M48T12  
WRITE Mode  
The M48T02/12 is in the WRITE Mode whenever  
W and E are active. The start of a WRITE is refer-  
enced from the latter occurring falling edge of W or  
E. A WRITE is terminated by the earlier rising  
edge of W or E. The addresses must be held valid  
throughout the cycle. E or W must return high for  
er READ or WRITE cycle. Data-in must be valid t  
D-  
prior to the end of WRITE and remain valid for  
VWH  
t
afterward. G should be kept high during  
WHDX  
WRITE cycles to avoid bus contention; although, if  
the output bus has been activated by a low on E  
and G, a low on W will disable the outputs t  
after W falls.  
WLQZ  
a minimum of t  
from Chip Enable or t  
EHAX  
WHAX  
from WRITE Enable prior to the initiation of anoth-  
Figure 7. WRITE Enable Controlled, WRITE AC Waveform  
tAVAV  
A0-A10  
VALID  
tAVWH  
tAVEL  
tAVWL  
tWHAX  
E
tWLWH  
W
tWLQZ  
tWHQX  
tWHDX  
DQ0-DQ7  
DATA INPUT  
tDVWH  
AI01331  
Figure 8. Chip Enable Controlled, WRITE AC Waveforms  
tAVAV  
A0-A10  
VALID  
tAVEH  
tELEH  
tAVEL  
tEHAX  
E
tAVWL  
W
tEHDX  
DQ0-DQ7  
DATA INPUT  
tDVEH  
AI01332B  
8/19  
M48T02, M48T12  
Table 8. WRITE Mode AC Characteristics  
M48T02/M48T12  
–150  
(1)  
Symbol  
–70  
–200  
Unit  
Parameter  
Min Max Min Max Min Max  
t
WRITE Cycle Time  
70  
0
150  
0
200  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
Address Valid to WRITE Enable Low  
Address Valid to Chip Enable Low  
WRITE Enable Pulse Width  
AVWL  
t
0
0
0
AVEL  
t
50  
55  
0
90  
90  
10  
10  
40  
40  
5
120  
120  
10  
10  
60  
60  
5
WLWH  
t
Chip Enable Low to Chip Enable High  
WRITE Enable High to Address Transition  
Chip Enable High to Address Transition  
Input Valid to WRITE Enable High  
Input Valid to Chip Enable High  
ELEH  
t
WHAX  
t
0
EHAX  
t
30  
30  
5
DVWH  
t
DVEH  
t
WRITE Enable High to Input Transition  
Chip Enable High to Input Transition  
WRITE Enable Low to Output Hi-Z  
Address Valid to WRITE Enable High  
Address Valid to Chip Enable High  
WRITE Enable High to Output Transition  
WHDX  
t
5
5
5
EHDX  
t
25  
50  
60  
WLQZ  
t
60  
60  
5
120  
120  
10  
140  
140  
10  
AVWH  
t
AVEH  
t
WHQX  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).  
A
CC  
9/19  
M48T02, M48T12  
Data Retention Mode  
Figure 9. Checking the BOK Flag Status  
With valid V  
applied, the M48T02/12 operates  
CC  
as a conventional BYTEWIDE™ static RAM.  
Should the supply voltage decay, the RAM will au-  
tomatically power-fail deselect, write protecting it-  
POWER-UP  
READ DATA  
AT ANY ADDRESS  
self when V  
falls within the V  
(max), V  
PFD PFD  
CC  
(min) window. All outputs become high imped-  
ance, and all inputs are treated as “don't care.”  
Note: A power failure during a WRITE cycle may  
corrupt data at the currently addressed location,  
but does not jeopardize the rest of the RAM's con-  
WRITE DATA  
COMPLEMENT BACK  
TO SAME ADDRESS  
tent. At voltages below V  
(min), the user can be  
PFD  
assured the memory will be in a write protected  
READ DATA  
AT SAME  
ADDRESS AGAIN  
state, provided the V fall time is not less than t .  
CC  
F
The M48T02/12 may respond to transient noise  
spikes on V that reach into the deselect window  
CC  
during the time the device is sampling V . There-  
CC  
fore, decoupling of the power supply lines is rec-  
ommended.  
IS DATA  
The power switching circuit connects external V  
to the RAM and disconnects the battery when V  
NO (BATTERY LOW)  
CC  
CC  
COMPLEMENT  
OF FIRST  
READ?  
rises above V . As V rises, the battery voltage  
SO  
CC  
is checked. If the voltage is too low, an internal  
Battery Not OK (BOK) flag will be set. The BOK  
flag can be checked after power up. If the BOK flag  
is set, the first WRITE attempted will be blocked.  
The flag is automatically cleared after the first  
WRITE, and normal RAM operation resumes. Fig-  
ure 9 illustrates how a BOK check routine could be  
structured.  
NOTIFY SYSTEM  
OF LOW BATTERY  
(DATA MAY BE  
CORRUPTED)  
(BATTERY OK) YES  
WRITE ORIGINAL  
DATA BACK TO  
SAME ADDRESS  
CONTINUE  
For more information on a Battery Storage Life re-  
fer to the Application Note AN1012.  
AI00607  
10/19  
M48T02, M48T12  
Figure 10. Power Down/Up Mode AC Waveforms  
V
CC  
V
V
V
(max)  
(min)  
PFD  
PFD  
SO  
tF  
tDR  
tR  
tPD  
tFB  
tRB  
tREC  
RECOGNIZED  
NOTE  
RECOGNIZED  
INPUTS  
DON'T CARE  
HIGH-Z  
OUTPUTS  
VALID  
VALID  
(PER CONTROL INPUT)  
(PER CONTROL INPUT)  
AI00606  
Note: Inputs may or may not be recognized at this time. Caution should be taken to keep E high as V rises past V  
(min). Some systems  
PFD  
CC  
may perform inadvertent WRITE cycles after V rises above V  
(min) but before normal system operations begin. Even though a  
CC  
PFD  
power on reset is being applied to the processor, a reset condition may not occur until after the system clock is running.  
Table 9. Power Down/Up AC Characteristics  
(1)  
Symbol  
Min  
0
Max  
Unit  
µs  
Parameter  
t
PD  
E or W at V before Power Down  
IH  
(2)  
V
V
(max) to V  
(min) to V  
(min) V Fall Time  
300  
µs  
t
PFD  
PFD  
CC  
F
(3)  
V
Fall Time  
10  
0
µs  
µs  
µs  
t
PFD  
PFD  
SS CC  
FB  
t
V
V
(min) to V  
(max) V Rise Time  
R
PFD CC  
t
to V  
(min) V Rise Time  
PFD CC  
1
RB  
SS  
E or W at V before Power Up  
2
ms  
t
IH  
REC  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).  
A
CC  
2. V  
(max) to V  
(min) fall time of less than tF may result in deselection/write protection not occurring until 200µs after V pass-  
PFD CC  
PFD  
es V  
(min).  
PFD  
3. V  
(min) to V fall time of less than t may cause corruption of RAM data.  
SS FB  
PFD  
Table 10. Power Down/Up Trip Points DC Characteristics  
(1,2)  
Symbol  
Min  
4.5  
4.2  
Typ  
4.6  
4.3  
3.0  
Max  
4.75  
4.5  
Unit  
V
Parameter  
M48T02  
M48T12  
V
PFD  
Power-fail Deselect Voltage  
V
V
Battery Back-up Switchover Voltage  
Expected Data Retention Time  
V
SO  
(3)  
10  
YEARS  
t
DR  
Note: 1. All voltages referenced to V  
.
SS  
2. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).  
A
CC  
3. At 25°C; V = 0V.  
CC  
11/19  
M48T02, M48T12  
CLOCK OPERATIONS  
Reading the Clock  
Setting the Clock  
®
Updates to the TIMEKEEPER registers should  
be halted before clock data is read to prevent  
reading data in transition. The BiPORT™ TIME-  
KEEPER cells in the RAM array are only data reg-  
isters and not the actual clock counters, so  
updating the registers can be halted without dis-  
turbing the clock itself.  
Updating is halted when a '1' is written to the  
READ Bit, the seventh bit in the control register.  
As long as a '1' remains in that position, updating  
is halted. After a halt is issued, the registers reflect  
the count; that is, the day, date, and the time that  
were current at the moment the halt command was  
issued.  
The eighth bit of the control register is the WRITE  
Bit. Setting the WRITE Bit to a '1,' like the READ  
Bit, halts updates to the TIMEKEEPER registers.  
The user can then load them with the correct day,  
date, and time data in 24 hour BCD format (on Ta-  
ble 11). Resetting the WRITE Bit to a '0' then trans-  
fers the values of all time registers (7F9-7FF) to  
the actual TIMEKEEPER counters and allows nor-  
mal operation to resume. The FT Bit and the bits  
marked as '0' in Table 11 must be written to '0' to  
allow for normal TIMEKEEPER and RAM opera-  
tion.  
®
See the Application Note AN923, “TIMEKEEPER  
Rolling Into the 21 Century” for information on  
st  
Century Rollover.  
All of the TIMEKEEPER registers are updated si-  
multaneously. A halt will not interrupt an update in  
progress. Updating is within a second after the bit  
is reset to a '0.'  
Table 11. Register Map  
Data  
Function/Range  
BCD Format  
Address  
D7  
D6  
D5  
D4  
10 M  
0
D3  
D2  
D1  
D0  
7FF  
7FE  
7FD  
7FC  
7FB  
7FA  
7F9  
7F8  
10 Years  
Year  
Month  
Date  
Year  
Month  
Date  
00-99  
01-12  
01-31  
01-07  
00-23  
00-59  
00-59  
0
0
0
0
0
10 Date  
0
FT  
0
0
0
Day  
Hours  
Day  
0
10 Hours  
Hours  
Minutes  
Seconds  
Control  
0
10 Minutes  
10 Seconds  
S
Minutes  
ST  
W
Seconds  
R
Calibration  
Keys: S = SIGN Bit  
FT = FREQUENCY TEST Bit (Set to '0' for normal clock operation)  
R = READ Bit  
W = WRITE Bit  
ST = STOP Bit  
0 = Must be set to '0'  
12/19  
M48T02, M48T12  
Stopping and Starting the Oscillator  
The oscillator may be stopped at any time. If the  
device is going to spend a significant amount of  
time on the shelf, the oscillator can be turned off to  
minimize current drain on the battery. The STOP  
Bit is the MSB of the seconds register. Setting it to  
a '1' stops the oscillator. The M48T02/12 is  
shipped from STMicroelectronics with the STOP  
Bit set to a '1.' When reset to a '0,' the M48T02/12  
oscillator starts within one second.  
tion step in the calibration register. Assuming that  
the oscillator is in fact running at exactly 32,768Hz,  
each of the 31 increments in the Calibration Byte  
would represent +10.7 or –5.35 seconds per  
month which corresponds to a total range of +5.5  
or –2.75 minutes per month.  
Two methods are available for ascertaining how  
much calibration a given M48T02/12 may require.  
The first involves simply setting the clock, letting it  
run for a month and comparing it to a known accu-  
rate reference (like WWV broadcasts). While that  
may seem crude, it allows the designer to give the  
end user the ability to calibrate his clock as his en-  
vironment may require, even after the final product  
is packaged in a non-user serviceable enclosure.  
All the designer has to do is provide a simple utility  
that accesses the Calibration Byte.  
Calibrating the Clock  
The M48T02/12 is driven by a quartz-controlled  
oscillator with a nominal frequency of 32,768 Hz.  
A typical M48T02/12 is accurate within 1 minute  
per month at 25°C without calibration. The devices  
are tested not to exceed ± 35 PPM (parts per mil-  
lion) oscillator frequency error at 25°C, which  
equates to about ±1.53 minutes per month.  
The second approach is better suited to a manu-  
facturing environment, and involves the use of  
some test equipment. When the Frequency Test  
(FT) Bit, the seventh-most significant bit in the Day  
Register, is set to a '1,' and the oscillator is running  
at 32,768 Hz, the LSB (DQ0) of the Seconds Reg-  
ister will toggle at 512 Hz. Any deviation from 512  
Hz indicates the degree and direction of oscillator  
frequency shift at the test temperature. For exam-  
ple, a reading of 512.01024 Hz would indicate a  
+20 PPM oscillator frequency error, requiring a –  
10 (WR001010) to be loaded into the Calibration  
Byte for correction.  
Note: Setting or changing the Calibration Byte  
does not affect the Frequency Test output fre-  
quency. The device must be selected and ad-  
dresses must be stable at Address 7F9 when  
reading the 512 Hz on DQ0.  
The FT Bit must be set using the same method  
used to set the clock: using the WRITE Bit. The  
LSB of the Seconds Register is monitored by hold-  
ing the M48T02/12 in an extended READ of the  
Seconds Register, but without having the READ  
Bit set. The FT Bit MUST be reset to '0' for normal  
clock operations to resume.  
The oscillation rate of any crystal changes with  
temperature. Figure 11, page 14 shows the fre-  
quency error that can be expected at various tem-  
peratures. Most clock chips compensate for  
crystal frequency and temperature shift error with  
cumbersome “trim” capacitors. The M48T02/12  
design, however, employs periodic counter cor-  
rection. The calibration circuit adds or subtracts  
counts from the oscillator divider circuit at the di-  
vide by 256 stage, as shown in Figure 12, page 14.  
The number of times pulses are blanked (subtract-  
ed, negative calibration) or split (added, positive  
calibration) depends upon the value loaded into  
the five-bit Calibration Byte found in the Control  
Register. Adding counts speeds the clock up, sub-  
tracting counts slows the clock down.  
The Calibration Byte occupies the five lower order  
bits in the Control register. This byte can be set to  
represent any value between 0 and 31 in binary  
form. The sixth bit is the Sign Bit; '1' indicates pos-  
itive calibration, '0' indicates negative calibration.  
Calibration occurs within a 64 minute cycle. The  
first 62 minutes in the cycle may, once per minute,  
have one second either shortened by 128 or  
lengthened by 256 oscillator cycles. If a binary '1'  
is loaded into the register, only the first 2 minutes  
in the 64 minute cycle will be modified; if a binary  
6 is loaded, the first 12 will be affected, and so on.  
Note: It is not necessary to set the WRITE Bit  
when setting or resetting the Frequency Test Bit  
(FT) or the Stop Bit (ST).  
Therefore, each calibration step has the effect of  
adding 512 or subtracting 256 oscillator cycles for  
every 125,829,120 actual oscillator cycles; that is  
+4.068 or –2.034 PPM of adjustment per calibra-  
For more information on calibration, see the Appli-  
cation Note AN924, “TIMEKEEPER Calibration.”  
®
13/19  
M48T02, M48T12  
Figure 11. Crystal Accuracy Across Temperature  
ppm  
20  
0
-20  
-40  
2
F  
F
ppm  
C2  
= -0.038  
(T - T0) ± 10%  
-60  
-80  
T0 = 25 °C  
-100  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
°C  
AI02124  
Figure 12. Clock Calibration  
NORMAL  
POSITIVE  
CALIBRATION  
NEGATIVE  
CALIBRATION  
AI00594B  
14/19  
M48T02, M48T12  
V
Noise And Negative Going Transients  
Figure 13. Supply Voltage Protection  
CC  
I
transients, including those produced by output  
CC  
switching, can produce voltage fluctuations, re-  
sulting in spikes on the V bus. These transients  
CC  
can be reduced if capacitors are used to store en-  
ergy which stabilizes the V  
bus. The energy  
CC  
stored in the bypass capacitors will be released as  
low going spikes are generated or energy will be  
absorbed when overshoots occur. A ceramic by-  
pass capacitor value of 0.1µF (as shown in Figure  
13) is recommended in order to provide the need-  
ed filtering.  
V
CC  
V
V
CC  
0.1µF  
DEVICE  
In addition to transients that are caused by normal  
SRAM operation, power cycling can generate neg-  
ative voltage spikes on V  
that drive it to values  
CC  
SS  
below V by as much as one volt. These negative  
SS  
spikes can cause data corruption in the SRAM  
while in battery backup mode. To protect from  
these voltage spikes, it is recommended to con-  
AI02169  
nect a schottky diode from V  
to V  
(cathode  
CC  
SS  
connected to V , anode to V ). Schottky diode  
CC  
SS  
1N5817 is recommended for through hole and  
MBRS120T3 is recommended for surface mount.  
15/19  
M48T02, M48T12  
PACKAGE MECHANICAL INFORMATION  
Figure 14. PCDIP24 – 24-pin Plastic DIP, battery CAPHAT, Package Outline  
A2  
A
L
A1  
e1  
C
B1  
B
eA  
e3  
D
N
1
E
PCDIP  
Note: Drawing is not to scale.  
Table 12. PCDIP24 – 24-pin Plastic DIP, battery CAPHAT, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
9.65  
0.76  
8.89  
0.53  
1.78  
0.31  
34.80  
18.34  
2.79  
30.73  
16.00  
3.81  
Typ  
Max  
A
A1  
A2  
B
8.89  
0.38  
8.38  
0.38  
1.14  
0.20  
34.29  
17.83  
2.29  
25.15  
15.24  
3.05  
24  
0.350  
0.015  
0.330  
0.015  
0.045  
0.008  
1.350  
0.702  
0.090  
0.990  
0.600  
0.120  
24  
0.380  
0.030  
0.350  
0.021  
0.070  
0.012  
1.370  
0.722  
0.110  
1.210  
0.630  
0.150  
B1  
C
D
E
e1  
e3  
eA  
L
N
16/19  
M48T02, M48T12  
PART NUMBERING  
Table 13. Ordering Information Scheme  
Example:  
M48T  
02  
–70  
PC  
1
TR  
Device Type  
M48T  
Supply Voltage and Write Protect Voltage  
02 = V = 4.75 to 5.5V; V  
= 4.5 to 4.75V  
CC  
PFD  
12 = V = 4.5 to 5.5V; V  
= 4.2 to 4.5V  
PFD  
CC  
Speed  
–70 = 100ns (M48T02/12)  
–150 = 150ns (M48T02/12)  
–200 = 200ns (M48T02/12)  
Package  
PC = PCDIP24  
Temperature Range  
1 = 0 to 70°C  
Shipping Method for SOIC  
blank = Tubes  
TR = Tape & Reel  
For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device,  
please contact the ST Sales Office nearest you.  
17/19  
M48T02, M48T12  
REVISION HISTORY  
Table 14. Document Revision History  
Date  
Rev. #  
1.0  
Revision Details  
July 2000  
13-Jul-00  
07-May-01  
14-May-01  
16-Jul-01  
20-May-02  
26-Jun-02  
28-Mar-03  
First issue  
change (Table 9)  
t
1.1  
REC  
2.0  
Reformatted; temp. / voltage info. added to tables (Tables 4, 5, 7, 8, 9, 10)  
Note added to Clock Calibration section; table footnote correction (Table 6)  
Basic formatting / content changes (Figure 1, Tables 4, 5, 10)  
Add countries to disclaimer  
2.1  
2.2  
2.3  
2.4  
Add footnote to table (Table 10)  
3.0  
v2.2 template applied; test conditions updated (Table 9)  
18/19  
M48T02, M48T12  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners.  
© 2003 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia -  
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
www.st.com  
19/19  

相关型号:

M48T128

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T128V

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T128V-70PM1

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T128V-70PM1TR

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T128V-80PM1

5.0 or 3.3 V, 1 Mbit (128 Kb x 8) TIMEKEEPER® SRAM
STMICROELECTR

M48T128V-85PM1

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T128V-85PM1TR

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T128VPM

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T128Y

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T128Y-70PM1

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T128Y-70PM1TR

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T128Y-80PM1

5.0 or 3.3 V, 1 Mbit (128 Kb x 8) TIMEKEEPER® SRAM
STMICROELECTR