M48T59V-70MH1E [STMICROELECTRONICS]

5.0 or 3.3 V, 64 Kbit (8 Kbit x 8) TIMEKEEPER® SRAM; 5.0或3.3 V , 64千位( 8千位×8 ) TIMEKEEPER® SRAM
M48T59V-70MH1E
型号: M48T59V-70MH1E
厂家: ST    ST
描述:

5.0 or 3.3 V, 64 Kbit (8 Kbit x 8) TIMEKEEPER® SRAM
5.0或3.3 V , 64千位( 8千位×8 ) TIMEKEEPER® SRAM

计时器或实时时钟 微控制器和处理器 外围集成电路 静态存储器 光电二极管 双倍数据速率
文件: 总32页 (文件大小:376K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M48T59  
M48T59Y, M48T59V  
5.0 or 3.3 V, 64 Kbit (8 Kbit x 8) TIMEKEEPER® SRAM  
Not For New Design  
Features  
Integrated ultra low power SRAM, real-time  
clock, power-fail control circuit, and battery  
Frequency test output for real-time clock  
software calibration  
Automatic power-fail chip deselect and WRITE  
28  
protection  
1
WRITE protect voltages  
(V  
= Power-fail deselect voltage):  
PFD  
– M48T59: V = 4.75 to 5.5 V  
CC  
PCDIP28 (PC)  
battery/crystal  
CAPHAT  
4.5 V V  
4.75 V  
PFD  
– M48T59Y: V = 4.5 to 5.5 V  
CC  
4.2 V V  
– M48T59V : V = 3.0 to 3.6 V  
4.5 V  
PFD  
(a)  
CC  
2.7 V V  
3.0 V  
PFD  
SNAPHAT (SH)  
battery/crystal  
Self-contained battery and crystal in the  
CAPHAT™ DIP package  
Packaging includes a 28-lead SOIC and  
®
SNAPHAT top (to be ordered separately)  
SOIC package provides direct connection for a  
SNAPHAT top which contains the battery and  
crystal  
Microprocessor power-on reset (valid even  
during battery back-up moe)  
28  
Programmable alarm otput active in the  
1
battery back-up mode  
Battery low fag  
SOH28 (MH)  
RoHS compliant  
– Lead-free second level interconnect  
a. Contact local ST sales office for availability of 3.3 V  
version.  
April 2008  
Rev 7  
1/32  
This is information on a product still in production but not recommended for new designs.  
www.st.com  
1
Contents  
M48T59, M48T59Y, M48T59V  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Operation modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Data retention mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3
Clock operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Reading the clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Setting the clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Stopping and starting the oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Calibrating the clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Setting the alarm clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Programmable interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Battery low flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.10 Century bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.11 Initial power-on defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.12  
VCC noise and negative going transients . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4
5
6
7
8
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
2/32  
M48T59, M48T59Y, M48T59V  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Read mode AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Write mode AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Alarm repeat mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Default values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Power down/up AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Power down/up trip points DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
PCDIP28 – 28-pin plastic DIP, battery CAPHAT, package mechanical data . . . . . . . . . . . 25  
SOH28 – 28-lead plastic small outline, battery SNAPHAT, pack. mech. data . . . . . . . . . . 26  
SH – 4-pin SNAPHAT housing for 48mAh battery & crystal, package mech. data. . . . . . . 27  
SH – 4-pin SNAPHAT housing for 120mAh battery & crystal, package mech. data. . . . . . 28  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SNAPHAT battery table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3/32  
List of figures  
M48T59, M48T59Y, M48T59V  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
28-pin SOIC connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
PCDIP28 CAPHAT connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Read mode AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Write enable controlled, write mode AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Chip enable controlled, write mode AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Crystal accuracy across temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Clock calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 10. Alarm interrupt reset waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 11. Back-up mode alarm waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 12. Supply voltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 13. AC measurement load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 14. Power down/up mode AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 15. PCDIP28 – 28-pin plastic DIP, battery CAPHAT, package outline. . . . . . . . . . . . . . . . . . . 25  
Figure 16. SOH28 – 28-lead plastic small outline, battery SNAPHAT, package outline . . . . . . . . . . . 26  
Figure 17. SH – 4-pin SNAPHAT housing for 48mAh battery & crystal, package outline . . . . . . . . . . 27  
Figure 18. SH – 4-pin SNAPHAT housing for 120mAh battery & crystal, package outline . . . . . . . . . 28  
4/32  
M48T59, M48T59Y, M48T59V  
Description  
1
Description  
®
The M48T59/Y/V TIMEKEEPER RAM is an 8 Kb x 8 non-volatile static RAM and real-time  
clock. The monolithic chip is available in two special packages to provide a highly integrated  
battery backed-up memory and real-time clock solution.  
The M48T59/Y/V is a non-volatile pin and function equivalent to any JEDEC standard 8 Kb  
x8 SRAM. It also easily fits into many ROM, EPROM, and EEPROM sockets, providing the  
non-volatility of PROMs without any requirement for special write timing or limitations on the  
number of writes that can be performed.  
The 28-pin, 600 mil DIP CAPHAT™ houses the M48T59/Y/V silicon with a quartz crystal  
and a long life lithium button cell in a single package.  
The 28-pin, 330 mil SOIC provides sockets with gold plated contacts at both ends for direct  
®
connection to a separate SNAPHAT housing containing the battery and crystal. The  
unique design allows the SNAPHAT battery package to be mounted on top of the SOIC  
package after the completion of the surface mount process. Insertion of the SNAPHAT  
housing after reflow prevents potential battery and crystal damage due to the high  
temperatures required for device surface-mounting. The SNAPHAT housing is keyed to  
prevent reverse insertion.  
The SOIC and battery/crystal packages are shipped separately in plastic anti-static tubes or  
in Tape & Reel form. For the 28-lead SOIC, the battery/crystal package (e.g., SNAPHAT)  
part number is “M4T28-BR12SH1” or “M4T32-BR12SHx” (see Table 19 on page 30).  
Caution:  
Do not place the SNAPHAT battery/crystal top in conductive foam, as this will drain the  
lithium button-cell battery.  
Figure 1.  
Logic diagram  
V
CC  
13  
8
A0-A12  
DQ0-DQ7  
M48T59  
M48T59Y  
M48T59V  
W
E
IRQ/FT  
RST  
G
V
SS  
AI01380E  
5/32  
Description  
M48T59, M48T59Y, M48T59V  
Table 1.  
Signal names  
A0-A12  
Address inputs  
DQ0-DQ7  
IRQ/FT  
RST  
E
Data inputs / outputs  
Interrupt / frequency test output (open drain)  
Reset output (open drain)  
Chip enable  
G
Output enable  
W
Write enable  
VCC  
VSS  
Supply voltage  
Ground  
Figure 2.  
28-pin SOIC connections  
RST  
A12  
A7  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC  
W
2
3
IRQ/FT  
A8  
A6  
4
A5  
5
A9  
A4  
6
A11  
G
A3  
7
M48T59Y  
M48T59V  
A2  
8
A10  
E
A1  
9
A0  
10  
11  
12  
13  
14  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ0  
DQ1  
DQ2  
V
SS  
AI01382E  
Figure 3.  
PCDIP28 CAPHAT connections  
RST  
A12  
A7  
1
2
3
4
5
6
7
8
9
28  
27  
V
CC  
W
26 IRQ/FT  
25 A8  
A6  
A5  
24 A9  
A4  
23 A11  
A3  
22  
G
M48T59  
M48T59Y  
A2  
21 A10  
A1  
20  
E
A0 10  
DQ0 11  
DQ1 12  
DQ2 13  
19 DQ7  
18 DQ6  
17 DQ5  
16 DQ4  
15 DQ3  
V
14  
SS  
AI01381D  
6/32  
M48T59, M48T59Y, M48T59V  
Figure 4. Block diagram  
Description  
IRQ/FT  
OSCILLATOR AND  
CLOCK CHAIN  
16 x 8 BiPORT  
SRAM ARRAY  
32,768 Hz  
CRYSTAL  
A0-A12  
POWER  
DQ0-DQ7  
8176 x 8  
SRAM ARRAY  
LITHIUM  
CELL  
E
VOLTAGE SENSE  
AND  
W
G
V
PFD  
SWITCHING  
CIRCUITRY  
V
RST  
V
CC  
SS  
AI01383D  
7/32  
Operation modes  
M48T59, M48T59Y, M48T59V  
2
Operation modes  
As Figure 4 on page 7 shows, the static memory array and the quartz-controlled clock  
oscillator of the M48T59/Y/V are integrated on one silicon chip.  
The two circuits are interconnected at the upper eight memory locations to provide user  
accessible BYTEWIDE™ clock information in the bytes with addresses 1FF8h-1FFFh. The  
clock locations contain the century, year, month, date, day, hour, minute, and second in 24  
hour BCD format (except for the century). Corrections for 28, 29 (leap year - valid until  
2100), 30, and 31 day months are made automatically. Byte 1FF8h is the clock control  
register. This byte controls user access to the clock information and also stores the clock  
calibration setting.  
The eight clock bytes are not the actual clock counters themselves; they are memory  
locations consisting of BiPORT™ READ/WRITE memory cells. The M48T59/Y/V includes a  
clock control circuit which updates the clock bytes with current information once per second.  
The information can be accessed by the user in the same manner as any other location in  
the static memory array.  
The M48T59/Y/V also has its own Power-fail Detect circuit. The control circuitry constantly  
monitors the single 5V/3.3 V supply for an out of tolerance condition. When V is out of  
CC  
tolerance, the circuit write protects the SRAM, providing a high degree of data security in the  
midst of unpredictable system operation brought on by low V . As V falls below the  
CC  
CC  
Battery Back-up Switchover Voltage (V ), the control circuitry connects the battery which  
SO  
maintains data and clock operation until valid power returns.  
Table 2.  
Mode  
Operating modes  
VCC  
E
G
W
DQ7-DQ0  
Power  
Deselect  
WRITE  
READ  
4.75 to 5.5 V  
or  
VIH  
VIL  
VIL  
X
X
X
High Z  
DIN  
Standby  
Active  
VIL  
VIH  
4.5 to 5.5 V  
or  
VIL  
DOUT  
Active  
READ  
VIL  
X
VIH  
X
VIH  
X
High Z  
High Z  
Active  
3.0 to 3.6 V  
VSO to VPFD (min)(1)(1)  
Deselect  
CMOS standby  
Battery back-up  
mode  
(1)  
Deselect  
VSO  
X
X
X
High Z  
1. See Table 13 on page 24 for details.  
Note:  
X = V or V ; V = Battery back-up switchover voltage.  
IH IL SO  
2.1  
Read mode  
The M48T59/Y/V is in the READ Mode whenever W (WRITE Enable) is high and E (Chip  
Enable) is low. The unique address specified by the 13 address inputs defines which one of  
the 8,192 bytes of data is to be accessed. Valid data will be available at the Data I/O pins  
within Address Access time (t  
) after the last address input signal is stable, providing  
AVQV  
that the E and G access times are also satisfied. If the E and G access times are not met,  
valid data will be available after the latter of the Chip Enable Access time (t ) or Output  
ELQV  
Enable Access time (t  
).  
GLQV  
8/32  
M48T59, M48T59Y, M48T59V  
Operation modes  
The state of the eight three-state Data I/O signals is controlled by E and G. If the outputs are  
activated before t , the data lines will be driven to an indeterminate state until t . If  
AVQV  
AVQV  
the Address Inputs are changed while E and G remain active, output data will remain valid  
for Output Data Hold time (t  
) but will go indeterminate until the next Address Access.  
AXQX  
Figure 5.  
Read mode AC waveforms  
tAVAV  
VALID  
A0-A12  
tAVQV  
tELQV  
tAXQX  
tEHQZ  
E
tELQX  
tGLQV  
tGHQZ  
G
tGLQX  
DQ0-DQ7  
VALID  
AI01385  
Note:  
WRITE enable (W) = High.  
Table 3.  
Read mode AC characteristics  
Parameter(1)  
M48T59/Y/V  
–70  
Symbol  
Unit  
Min  
Max  
tAVAV  
READ cycle time  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
tAVQV  
Address valid to output valid  
70  
70  
35  
(2)  
tELQV  
Chip enable low to output valid  
Output enable low to output valid  
Chip enable low to output transition  
Output enable low to output transition  
Chip enable high to output Hi-Z  
Output enable high to output Hi-Z  
Address transition to output transition  
(2)  
tGLQV  
(3)  
tELQX  
5
5
(3)  
tGLQX  
(3)  
tEHQZ  
25  
25  
(3)  
tGHQZ  
(2)  
tAXQX  
10  
1. Valid for ambient operating temperature: TA = 0 to 70°C; VCC = 4.5 to 5.5 V, 4.75 to 5.5 V, or 3.0 to 3.6 V (except where  
noted).  
2. CL = 100pF (see Figure 13 on page 22).  
3. CL = 5pF (see Figure 13 on page 22).  
9/32  
Operation modes  
M48T59, M48T59Y, M48T59V  
2.2  
Write mode  
The M48T59/Y/V is in the WRITE Mode whenever W and E are low. The start of a WRITE is  
referenced from the latter occurring falling edge of W or E. A WRITE is terminated by the  
earlier rising edge of W or E. The addresses must be held valid throughout the cycle. E or W  
must return high for a minimum of t  
from Chip Enable or t  
from WRITE Enable  
EHAX  
WHAX  
prior to the initiation of another READ or WRITE cycle. Data-in must be valid t  
prior to  
DVWH  
the end of WRITE and remain valid for t  
afterward. G should be kept high during  
WHDX  
WRITE cycles to avoid bus contention; however, if the output bus has been activated by a  
low on E and G a low on W will disable the outputs t after W falls.  
WLQZ  
Figure 6.  
Write enable controlled, write mode AC waveforms  
tAVAV  
A0-A12  
VALID  
tAVWH  
tAVEL  
tWHAX  
E
tWLWH  
tAVWL  
W
tWLQZ  
tWHQX  
tWHDX  
DATA INPUT  
tDVWH  
DQ0-DQ7  
AI01386  
Figure 7.  
Chip enable controlled, write mode AC waveforms  
tAVAV  
A0-A12  
VALID  
tAVEH  
tELEH  
tAVEL  
tEHAX  
E
tAVWL  
W
tEHDX  
DQ0-DQ7  
DATA INPUT  
tDVEH  
AI01387B  
10/32  
M48T59, M48T59Y, M48T59V  
Table 4. Write mode AC characteristics  
Operation modes  
M48T59/Y/V  
–70  
Symbol  
Parameter(1)  
Unit  
Min  
Max  
tAVAV  
tAVWL  
tAVEL  
WRITE cycle time  
70  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address valid to WRITE enable low  
Address valid to chip enable low  
WRITE enable pulse width  
0
tWLWH  
tELEH  
tWHAX  
tEHAX  
tDVWH  
tDVEH  
tWHDX  
tEHDX  
50  
55  
0
Chip enable low to chip enable high  
WRITE enable high to address transition  
Chip enable high to address transition  
Input valid to WRITE enable high  
Input valid to chip enable high  
0
30  
30  
5
WRITE enable high to input transition  
Chip enable high to input transition  
WRITE enable low to output Hi-Z  
Address valid to WRITE enable high  
Address valid to chip enable high  
WRITE enable high to output transition  
5
(2)(3)  
tWLQZ  
tAVWH  
tAVEH  
25  
60  
60  
5
(2)(3)  
tWHQX  
1. Valid for ambient operating temperature: TA = 0 to 70°C; VCC = 4.5 to 5.5 V, 4.75 to 5.5 V, or 3.0 to 3.6 V  
(except where noted).  
2. CL = 5pF (see Figure 13 on page 22).  
3. If E goes low simultaneously with W going low, the outputs remain in the high impedance state.  
2.3  
Data retention mode  
With valid V applied, the M48T59/Y/V operates as a conventional BYTEWIDE™ static  
CC  
RAM. Should the supply voltage decay, the RAM will automatically power-fail deselect, write  
protecting itself when V falls within the V  
(max), V  
(min) window. All outputs  
CC  
PFD  
PFD  
become high impedance, and all inputs are treated as “don't care.”  
Note:  
A power failure during a WRITE cycle may corrupt data at the currently addressed location,  
but does not jeopardize the rest of the RAM's content. At voltages below V  
(min), the  
PFD  
user can be assured the memory will be in a write protected state, provided the V fall time  
CC  
is not less than t . The M48T59/Y/V may respond to transient noise spikes on V that  
F
CC  
reach into the deselect window during the time the device is sampling V . Therefore,  
CC  
decoupling of the power supply lines is recommended.  
When V drops below V , the control circuit switches power to the internal battery which  
CC  
SO  
preserves data and powers the clock. The internal button cell will maintain data in the  
M48T59/Y/V for an accumulated period of at least 7 years when V is less than V . As  
CC  
SO  
system power returns and V rises above V , the battery is disconnected and the power  
CC  
SO  
supply is switched to external V . Deselect continues for t after V reaches V  
CC  
rec  
CC  
PFD  
(max).  
For more information on Battery Storage Life refer to the Application Note AN1012.  
11/32  
Clock operations  
M48T59, M48T59Y, M48T59V  
3
Clock operations  
3.1  
Reading the clock  
®
Updates to the TIMEKEEPER registers should be halted before clock data is read to  
prevent reading data in transition. The BiPORT™ TIMEKEEPER cells in the RAM array are  
only data registers and not the actual clock counters, so updating the registers can be halted  
without disturbing the clock itself.  
Updating is halted when a '1' is written to the READ Bit, D6 in the Control register (1FF8h).  
As long as a '1' remains in that position, updating is halted. After a halt is issued, the  
registers reflect the count; that is, the day, date, and the time that were current at the  
moment the halt command was issued.  
All of the TIMEKEEPER registers are updated simultaneously. A halt will not interrupt an  
update in progress. Updating is within a second after the bit is reset to a '0.'  
3.2  
Setting the clock  
Bit D7 of the Control register (1FF8h) is the WRITE Bit. Setting the WRITE Bit to a '1,' like  
the READ Bit, halts updates to the TIMEKEEPER registers. The user can then load them  
with the correct day, date, and time data in 24 hour BCD format (see Table 5 on page 13).  
Resetting the WRITE Bit to a '0' then transfers the values of all time registers (1FF9h-  
1FFFh) to the actual TIMEKEEPER counters and allows normal operation to resume. After  
the WRITE Bit is reset, the next clock update will occur within approximately one second.  
See the Application Note AN923, “TIMEKEEPER Rolling Into the 21st Century” for  
information on Century Rollover.  
Note:  
Upon power-up following a power failure, both the WRITE Bit and the READ Bit will be reset  
to '0.'  
3.3  
Stopping and starting the oscillator  
The oscillator may be stopped at any time. If the device is going to spend a significant  
amount of time on the shelf, the oscillator can be turned off to minimize current drain on the  
battery. The STOP Bit is the MSB of the seconds register. Setting it to a '1' stops the  
oscillator. The M48T59/Y/V in the DIP package is shipped from STMicroelectronics with the  
STOP Bit set to a '1.' When reset to a '0,' the M48T59/Y/V oscillator starts within one  
second.  
Note:  
It is not necessary to set the WRITE Bit when setting or resetting the FREQUENCY TEST  
Bit (FT), the STOP Bit (ST) or the CENTURY ENABLE Bit (CEB).  
12/32  
M48T59, M48T59Y, M48T59V  
Clock operations  
Table 5.  
Address  
Register map  
Data  
D4  
Function/range  
BCD format  
D7  
D6  
D5  
D3  
D2  
Year  
D1 D0  
1FFFh  
1FFEh  
1FFDh  
1FFCh  
1FFBh  
1FFAh  
1FF9h  
1FF8h  
10 Years  
Year  
00-99  
01-12  
0
0
0
0
0
10 M  
Month  
Date  
Month  
Date  
10 date  
01-31  
0
FT  
0
CEB CB  
10 hours  
0
Day  
Century/day  
Hours  
00-01/01-07  
00-23  
0
Hours  
Minutes  
Seconds  
0
10 minutes  
Minutes  
Seconds  
Control  
00-59  
ST  
W
10 seconds  
S
00-59  
R
Calibration  
BMB BMB BMB BMB BMB  
1FF7h  
WDS  
RB1 RB0  
Watchdog  
4
Y
Y
Y
3
2
1
0
1FF6h  
1FF5h  
1FF4h  
1FF3h  
1FF2h  
1FF1h  
1FF0h  
AFE  
RPT4  
RPT3  
ABE  
Y
Y
Y
Y
Y
Interrupts  
Alarm date  
Alarm hours  
Alarm minutes  
Alarm seconds  
Unused  
Al. 10 date  
Alarm date  
Alarm hours  
01-31  
00-23  
00-59  
00-59  
Al. 10 hours  
RPT2 Alarm 10 minutes  
RPT1 Alarm 10 seconds  
Alarm minutes  
Alarm seconds  
Y
Y
Y
Z
Y
Y
Z
Y
Z
Y
Z
Y
Z
WDF  
AF  
BL  
Flags  
Keys:  
S = Sign bit  
FT = Frequency test bit  
R = Read bit  
W = Write bit  
ST = Stop bit  
0 = Must be set to '0'  
Y = '1' or '0'  
Z = '0' and are read only  
AF = Alarm flag (read only)  
BL = Battery low (read only)  
WDS = Watchdog steering bit  
BMB0-BMB4 = Watchdog multiplier bits  
RB0-RB1 = Watchdog resolution bits  
AFE = Alarm flag enable  
ABE = Alarm in battery back-up mode enable  
RPT1-RPT4 = Alarm repeat mode bits  
WDF = Watchdog flag (read only)  
CEB = Century enable bit  
CB = Century bit  
13/32  
Clock operations  
M48T59, M48T59Y, M48T59V  
3.4  
Calibrating the clock  
The M48T59/Y/V is driven by a quartz-controlled oscillator with a nominal frequency of  
32,768 Hz. The devices are tested not to exceed 35 PPM (parts per million) oscillator  
frequency error at 25°C, which equates to about 1.53 minutes per month. With the  
calibration bits properly set, the accuracy of each M48T59/Y/V improves to better than +1/–  
2 PPM at 25°C.  
The oscillation rate of any crystal changes with temperature (see Figure 8 on page 15).  
Most clock chips compensate for crystal frequency and temperature shift error with  
cumbersome “trim” capacitors. The M48T59/Y/V design, however, employs periodic counter  
correction. The calibration circuit adds or subtracts counts from the oscillator divider circuit  
at the divide by 256 stage, as shown in Figure 9 on page 15. The number of times pulses  
are blanked (subtracted, negative calibration) or split (added, positive calibration) depends  
upon the value loaded into the five-bit Calibration byte found in the Control Register. Adding  
counts speeds the clock up, subtracting counts slows the clock down.  
The Calibration Byte occupies the five lower order bits (D4-D0) in the Control register  
(1FF8h). These bits can be set to represent any value between 0 and 31 in binary form. Bit  
D5 is the Sign Bit; '1' indicates positive calibration, '0' indicates negative calibration.  
Calibration occurs within a 64 minute cycle. The first 62 minutes in the cycle may, once per  
minute, have one second either shortened by 128 or lengthened by 256 oscillator cycles. If a  
binary '1' is loaded into the register, only the first 2 minutes in the 64 minute cycle will be  
modified; if a binary 6 is loaded, the first 12 will be affected, and so on.  
Therefore, each calibration step has the effect of adding 512 or subtracting 256 oscillator  
cycles; for every 125,829,120 actual oscillator cycles, that is +4.068 or –2.034 PPM of  
adjustment per calibration step in the calibration register. Assuming that the oscillator is in  
fact running at exactly 32,768 Hz, each of the 31 increments in the Calibration Byte would  
represent +10.7 or –5.35 seconds per month which corresponds to a total range of +5.5 or  
–2.75 minutes per month.  
Two methods are available for ascertaining how much calibration a given M48T59/Y/V may  
require. The first involves simply setting the clock, letting it run for a month and comparing it  
to a known accurate reference (like WWV broadcasts). While that may seem crude, it allows  
the designer to give the end user the ability to calibrate his clock as his environment may  
require, even after the final product is packaged in a non-user serviceable enclosure. All the  
designer has to do is provide a simple utility that accesses the Calibration Byte.  
The second approach is better suited to a manufacturing environment, and involves the use  
of the IRQ/FT pin. The pin will toggle at 512 Hz when the Stop Bit (D7 of 1FF9h) is '0,' the  
FT Bit (D6 of 1FFCh) is '1,' the AFE Bit (D7 of 1FF6h) is '0,' and the Watchdog Steering Bit  
(D7 of 1FF7h) is '1' or the Watchdog Register is reset (1FF7h = 0).  
Any deviation from 512 Hz indicates the degree and direction of oscillator frequency shift at  
the test temperature. For example, a reading of 512.01024 Hz would indicate a +20 PPM  
oscillator frequency error, requiring a –10 (WR001010) to be loaded into the Calibration  
Byte for correction. Note that setting or changing the Calibration Byte does not affect the  
Frequency Test output frequency.  
The IRQ/FT pin is an open drain output which requires a pull-up resistor for proper  
operation. A 500 - 10 kΩ resistor is recommended in order to control the rise time. The FT  
Bit is cleared on power-down.  
For more information on calibration, see Application Note AN934, “TIMEKEEPER  
Calibration.”  
14/32  
M48T59, M48T59Y, M48T59V  
Figure 8. Crystal accuracy across temperature  
Clock operations  
Frequency (ppm)  
20  
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
2
ppm  
C2  
= -0.038  
(T - T0) 10%  
F
T0 = 25 °C  
–160  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature °C  
AI00999  
Figure 9.  
Clock calibration  
NORMAL  
POSITIVE  
CALIBRATION  
NEGATIVE  
CALIBRATION  
AI00594B  
3.5  
Setting the alarm clock  
Registers 1FF5h-1FF2h contain the alarm settings. The alarm can be configured to go off at  
a prescribed time on a specific day of the month or repeat every month, day, hour, minute, or  
second. It can also be programmed to go off while the M48T59/Y/V is in the battery back-up  
mode of operation to serve as a system wake-up call.  
Bits RPT1-RPT4 put the alarm in the repeat mode of operation. Table 6 on page 16 shows  
the possible configurations. Codes not listed in the table default to the once per second  
mode to quickly alert the user of an incorrect alarm setting.  
Note:  
User must transition address (or toggle chip enable) to see Flag Bit change.  
When the clock information matches the alarm clock settings based on the match criteria  
defined by RPT1-RPT4, AF (Alarm Flag) is set. If AFE (Alarm Flag Enable) is also set, the  
15/32  
Clock operations  
M48T59, M48T59Y, M48T59V  
alarm condition activates the IRQ/FT pin. To disable the alarm, write '0' to the Alarm Date  
Register and RPT1-4. The Alarm Flag and the IRQ/FT output are cleared by a READ to the  
Flags Register as shown in Figure 10 on page 16. A subsequent READ of the Flags  
Register is necessary to see that the value of the Alarm Flag has been reset to '0.'  
The IRQ/FT pin can also be activated in the battery back-up mode. The IRQ/FT will go low if  
an alarm occurs and both the ABE (Alarm in Battery Back-up Mode Enable) and the AFE  
are set. The ABE and AFE bits are reset during power-up, therefore an alarm generated  
during power-up will only set AF. The user can read the Flag Register at system boot-up to  
determine if an alarm was generated while the M48T59/Y/V was in the deselect mode  
during power-down. Figure 11 on page 17 illustrates the back-up mode alarm timing.  
Figure 10. Alarm interrupt reset waveform  
15ns Min  
A0-A12  
ADDRESS 1FF0h  
ACTIVE FLAG BIT  
IRQ/FT  
HIGH-Z  
AI01388B  
Table 6.  
RPT4  
Alarm repeat mode  
RPT3  
RPT2  
RPT1  
Alarm activated  
1
1
1
1
0
0
1
1
0
0
0
1
0
0
0
0
Once per second  
Once per minute  
Once per hour  
Once per day  
1
1
1
0
Once per month  
16/32  
M48T59, M48T59Y, M48T59V  
Clock operations  
Figure 11. Back-up mode alarm waveforms  
trec  
V
V
V
CC  
PFD  
PFD  
(max)  
(min)  
V
SO  
ABE, AFE bit in Interrupt Register  
AF bit in Flags Register  
IRQ/FT  
HIGH-Z  
HIGH-Z  
AI03254B  
3.6  
Watchdog timer  
The watchdog timer can be used to detect an out-of-control microprocessor. The user  
programs the watchdog timer by setting the desired amount of time-out into the eight-bit  
Watchdog Register (Address 1FF7h). The five bits (BMB4-BMB0) that store a binary  
multiplier and the two lower order bits (RB1-RB0) select the resolution, where 00 = 1/16  
second, 01 = 1/4 second, 10 = 1 second, and 11 = 4 seconds. The amount of time-out is  
then determined to be the multiplication of the five-bit multiplier value with the resolution.  
(For example: writing 00001110 in the Watchdog Register = 3 x 1 or 3 seconds).  
Note:  
Note:  
Accuracy of timer is within the selected resolution.  
If the processor does not reset the timer within the specified period, the M48T59/Y/V sets  
the WDF (Watchdog Flag) and generates a watchdog interrupt or a microprocessor reset.  
WDF is reset by reading the Flags Register (Address 1FF0h).  
User must transition address (or toggle chip enable) to see Flag Bit change.  
The most significant bit of the Watchdog Register is the Watchdog Steering Bit. When set to  
a '0,' the watchdog will activate the IRQ/FT pin when timed-out. When WDS is set to a '1,'  
the watchdog will output a negative pulse on the RST pin for a duration of t . The  
rec  
Watchdog Register, the FT Bit, and the AFE and ABE Bits will reset to a '0' at the end of a  
watchdog time-out when the WDS bit is set to a '1.'  
The watchdog timer resets when the microprocessor performs a re-write of the Watchdog  
Register. The time-out period then starts over. The watchdog timer is disabled by writing a  
value of 00000000 to the eight bits in the Watchdog Register.  
The watchdog function is automatically disabled upon power-down and the Watchdog  
Register is cleared. If the watchdog function is set to output to the IRQ/FT pin and the  
frequency test function is activated, the watchdog or alarm function prevails and the  
frequency test function is denied.  
17/32  
Clock operations  
M48T59, M48T59Y, M48T59V  
3.7  
Power-on reset  
The M48T59/Y/V continuously monitors V . When V falls to the power fail detect trip  
CC  
CC  
point, the RST pulls low (open drain) and remains low on power-up for t after V passes  
rec  
CC  
V
(max). RST is valid for all V conditions. The RST pin is an open drain output and an  
PFD  
CC  
appropriate resistor to V should be chosen to control rise time.  
CC  
3.8  
Programmable interrupts  
The M48T59/Y/V provides two programmable interrupts; an alarm and a watchdog. When  
an interrupt condition occurs, the M48T59/Y/V sets the appropriate flag bit in the Flag  
Register 1FF0h. The interrupt enable bits in (AFE and ABE) in 1FF6h and the Watchdog  
Steering (WDS) Bit in 1FF7h allow the interrupt to activate the IRQ/FT pin.  
The Alarm flag and the IRQ/FT output are cleared by a READ to the Flags Register. An  
interrupt condition reset will not occur unless the addresses are stable at the flag location for  
at least 15ns while the device is in the READ Mode as shown in Figure 10 on page 16.  
The IRQ/FT pin is an open drain output and requires a pull-up resistor (10 kΩ  
recommended) to V . The pin remains in the high impedance state unless an interrupt  
CC  
occurs or the Frequency Test Mode is enabled.  
3.9  
Battery low flag  
The M48T59/Y/V automatically performs periodic battery voltage monitoring upon power-up  
and at factory-programmed time intervals of 24 hours (at day rollover) as long as the device  
is powered and the oscillator is running. The Battery Low Flag (BL), Bit D4 of the Flags  
®
Register 1FF0h, will be asserted high if the internal or SNAPHAT battery is found to be  
less than approximately 2.5 V. The BL Flag will remain active until completion of battery  
replacement and subsequent battery low monitoring tests, either during the next power-up  
sequence or the next scheduled 24-hour interval.  
If a battery low is generated during a power-up sequence, this indicates that the battery  
voltage is below 2.5 V (approximately), which may be insufficient to maintain data integrity.  
Data should be considered suspect and verified as correct. A fresh battery should be  
installed.  
If a battery low indication is generated during the 24-hour interval check, this indicates the  
battery is near end of life. However, data has not been compromised due to the fact that a  
nominal V is supplied. In order to insure data integrity during subsequent periods of  
CC  
battery back-up mode, it is recommended that the battery be replaced. The SNAPHAT top  
may be replaced while V is applied to the device.  
CC  
Note:  
Note:  
This will cause the clock to lose time during the interval the battery/crystal is removed.  
Battery monitoring is a useful technique only when performed periodically. The M48T59/Y/V  
only monitors the battery when a nominal V is applied to the device. Thus applications  
CC  
which require extensive durations in the battery back-up mode should be powered-up  
periodically (at least once every few months) in order for this technique to be beneficial.  
Additionally, if a battery low is indicated, data integrity should be verified upon power-up via  
a checksum or other technique.  
18/32  
M48T59, M48T59Y, M48T59V  
Clock operations  
3.10  
Century bit  
Bit D5 and D4 of Clock Register 1FFCh contain the CENTURY ENABLE Bit (CEB) and the  
CENTURY Bit (CB). Setting CEB to a '1' will cause CB to toggle, either from a '0' to '1' or  
from '1' to '0' at the turn of the century (depending upon its initial state). If CEB is set to a '0,'  
CB will not toggle.  
Note:  
The WRITE Bit must be set in order to write to the CENTURY Bit.  
3.11  
Initial power-on defaults  
Upon application of power to the device, the following register bits are set to a '0' state:  
WDS; BMB0-BMB4; RB0-RB1; AFE; ABE; W; R; FT (see Table 7).  
Table 7.  
Default values  
Condition  
Watchdog  
register(1)  
W
R
FT  
AFE  
ABE  
Initial power-up  
(Battery attach for SNAPHAT)(2)  
0
0
0
0
0
0
Subsequent power-up / RESET(3)  
Power-down(4)  
0
0
0
0
0
0
0
1
0
1
0
0
1. WDS, BMB0-BMB4, RBO, RB1.  
2. State of other control bits undefined.  
3. State of other control bits remains unchanged.  
4. Assuming these bits set to '1' prior to power-down.  
3.12  
VCC noise and negative going transients  
I
transients, including those produced by output switching, can produce voltage  
CC  
fluctuations, resulting in spikes on the V bus. These transients can be reduced if  
CC  
capacitors are used to store energy which stabilizes the V bus. The energy stored in the  
CC  
bypass capacitors will be released as low going spikes are generated or energy will be  
absorbed when overshoots occur. A ceramic bypass capacitor value of 0.1 µF (as shown in  
Figure 12 on page 20) is recommended in order to provide the needed filtering.  
In addition to transients that are caused by normal SRAM operation, power cycling can  
generate negative voltage spikes on V that drive it to values below V by as much as  
CC  
SS  
one volt. These negative spikes can cause data corruption in the SRAM while in battery  
backup mode. To protect from these voltage spikes, it is recommended to connect a  
schottky diode from V to V (cathode connected to V , anode to V ). Schottky diode  
CC  
SS  
CC  
SS  
1N5817 is recommended for through hole and MBRS120T3 is recommended for surface  
mount.  
19/32  
Clock operations  
Figure 12. Supply voltage protection  
M48T59, M48T59Y, M48T59V  
V
CC  
V
V
CC  
0.1μF  
DEVICE  
SS  
AI02169  
20/32  
M48T59, M48T59Y, M48T59V  
Maximum ratings  
4
Maximum ratings  
Stressing the device above the rating listed in the “Absolute Maximum Ratings” table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the Operating sections of  
this specification is not implied. Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE  
Program and other relevant quality documents.  
Table 8.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
TA  
Ambient operating temperature  
0 to 70  
–40 to 85  
260  
°C  
°C  
°C  
V
TSTG  
Storage temperature (VCC off, oscillator off)  
Lead solder temperature for 10 seconds  
Input or output voltages  
(1)(2)(3)  
TSLD  
VIO  
–0.3 to 7  
–0.3 to 7  
–0.3 to 4.6  
20  
M48T59/M48T59Y  
M48T59V  
VCC  
Supply voltage  
V
IO  
Output current  
mA  
W
PD  
Power dissipation  
1
1. For DIP package: Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to  
exceed 150°C for longer than 30 seconds).  
2. For SO package, standard (SnPb) lead finish: Reflow at peak temperature of 225°C (total thermal budget  
not to exceed 180°C for between 90 to 150 seconds).  
3. For SO package, Lead-free (Pb-free) lead finish: Reflow at peak temperature of 260°C (total thermal  
budget not to exceed 245°C for greater than 30 seconds).  
Caution:  
Caution:  
Negative undershoots below –0.3 V are not allowed on any pin while in the Battery Back-up  
mode.  
Do NOT wave solder SOIC to avoid damaging SNAPHAT sockets.  
21/32  
DC and AC parameters  
M48T59, M48T59Y, M48T59V  
5
DC and AC parameters  
This section summarizes the operating and measurement conditions, as well as the DC and  
AC characteristics of the device. The parameters in the following DC and AC Characteristic  
tables are derived from tests performed under the Measurement Conditions listed in Table 9.  
Designers should check that the operating conditions in their projects match the  
measurement conditions when using the quoted parameters.  
Table 9.  
Operating and AC measurement conditions  
Parameter  
Supply voltage (VCC  
M48T59  
M48T59Y  
M48T59V  
Unit  
)
4.75 to 5.5  
0 to 70  
100  
4.5 to 5.5  
0 to 70  
100  
3.0 to 3.6  
0 to 70  
50  
V
°C  
pF  
ns  
V
Ambient operating temperature (TA)  
Load capacitance (CL)  
Input rise and fall times  
5  
5  
5  
Input pulse voltages  
0 to 3  
1.5  
0 to 3  
1.5  
0 to 3  
1.5  
Input and output timing ref. voltages  
V
Note:  
Output Hi-Z is defined as the point where data is no longer driven.  
Figure 13. AC measurement load circuit  
645Ω  
DEVICE  
UNDER  
TEST  
(1)  
1.75V  
C
= 100pF  
L
C
includes JIG capacitance  
L
AI02325  
1. 50pF for M48T59V.  
Note:  
Excluding open-drain output pins  
Table 10. Capacitance  
Symbol  
Parameters(1)(2)  
Min  
Max  
Unit  
CIN  
Input capacitance  
10  
10  
pF  
pF  
(3)  
CIO  
Input / output capacitance  
1. Effective capacitance measured with power supply at 5 V; sampled only, not 100% tested.  
2. At 25°C, f = 1 MHz.  
3. Outputs deselected.  
22/32  
M48T59, M48T59Y, M48T59V  
Table 11. DC characteristics  
DC and AC parameters  
M48T59/Y  
M48T59V  
Unit  
Symbol  
Parameter  
Test condition(1)  
Min  
Max  
Min  
Max  
ILI  
Input leakage current  
Output leakage current  
Supply current  
0V VIN VCC  
0V VOUT VCC  
Outputs open  
E = VIH  
1
1
µA  
µA  
mA  
mA  
mA  
V
(2)  
ILO  
1
1
ICC  
ICC1  
ICC2  
VIL  
50  
30  
Supply current (standby) TTL  
Supply current (standby) CMOS  
Input low voltage  
3
3
2
1
E = VCC – 0.2 V  
–0.3  
2.2  
0.8  
–0.3  
2
0.8  
VIH  
Input high voltage  
VCC + 0.3  
0.4  
VCC + 0.3  
0.4  
V
Output low voltage  
IOL = 2.1 mA  
IOL = 10 mA  
IOH = –1 mA  
V
VOL  
Output low voltage (IRQ/FT and  
RST)(3)  
0.4  
0.4  
V
V
VOH  
Output high voltage  
2.4  
2.4  
1. Valid for ambient operating temperature: TA = 0 to 70°C; VCC = 4.5 to 5.5 V, 4.75 to 5.5 V, or 3.0 to 3.6 V (except where  
noted).  
2. Outputs deselected.  
3. The IRQ/FT and RST pins are open drain.  
Figure 14. Power down/up mode AC waveforms  
V
CC  
V
V
V
(max)  
(min)  
PFD  
PFD  
SO  
tF  
tR  
tPD  
tFB  
tRB  
tDR  
trec  
RST  
RECOGNIZED  
RECOGNIZED  
INPUTS  
DON'T CARE  
HIGH-Z  
OUTPUTS  
VALID  
VALID  
(PER CONTROL INPUT)  
(PER CONTROL INPUT)  
AI03258  
23/32  
DC and AC parameters  
Table 12. Power down/up AC characteristics  
M48T59, M48T59Y, M48T59V  
Symbol  
Parameter(1)  
Min  
Max  
Unit  
tPD  
E or W at VIH before power down  
VPFD (max) to VPFD (min) VCC fall time  
VPFD (min) to VSS VCC fall time  
VPFD (min) to VPFD (max) VCC rise time  
VSS to VPFD (min) VCC rise time  
VPFD (max) to RST high  
0
300  
10  
10  
1
µs  
µs  
µs  
µs  
µs  
ms  
(2)  
tF  
(3)  
tFB  
tR  
tRB  
trec  
40  
200  
1. Valid for ambient operating temperature: TA = 0 to 70°C; VCC = 4.5 to 5.5 V, 4.75 to 5.5 V, or 3.0 to 3.6 V  
(except where noted).  
2. VPFD (max) to VPFD (min) fall time of less than tF may result in deselection/write protection not occurring  
until 200µs after VCC passes VPFD (min).  
3. VPFD (min) to VSS fall time of less than tFB may cause corruption of RAM data.  
Table 13. Power down/up trip points DC characteristics  
Symbol  
Parameter(1)(2)  
Min  
Typ  
Max  
Unit  
M48T59  
M48T59Y  
M48T59V  
M48T59/Y  
M48T59V  
4.5  
4.2  
2.7  
4.6  
4.35  
4.75  
4.5  
V
VPFD  
Power-fail deselect voltage  
V
2.9  
3.0  
V
3.0  
V
V
Battery back-up switchover  
voltage  
VSO  
VPFD –100mV  
(3)  
tDR  
Expected data retention time  
7
YEARS  
1. Valid for ambient operating temperature: TA = 0 to 70°C; VCC = 4.5 to 5.5 V, 4.75 to 5.5 V, or 3.0 to 3.6 V  
(except where noted).  
2. All voltages referenced to VSS  
3. At 25°C, VCC = 0 V.  
.
24/32  
M48T59, M48T59Y, M48T59V  
Package mechanical data  
6
Package mechanical data  
®
In order to meet environmental requirements, ST offers these devices in ECOPACK  
packages. These packages have a Lead-free second level interconnect. The category of  
second Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at: www.st.com.  
Figure 15. PCDIP28 – 28-pin plastic DIP, battery CAPHAT, package outline  
A2  
A
L
A1  
e1  
C
B1  
B
eA  
e3  
D
N
1
E
PCDIP  
Note:  
Drawing is not to scale.  
Table 14. PCDIP28 – 28-pin plastic DIP, battery CAPHAT, package mechanical data  
mm  
inches  
Symb  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
B
8.89  
0.38  
8.38  
0.38  
1.14  
0.20  
39.37  
17.83  
2.29  
29.72  
15.24  
3.05  
28  
9.65  
0.76  
0.350  
0.015  
0.330  
0.015  
0.045  
0.008  
1.550  
0.702  
0.090  
1.170  
0.600  
0.120  
28  
0.380  
0.030  
0.350  
0.021  
0.070  
0.012  
1.570  
0.722  
0.110  
1.430  
0.630  
0.150  
8.89  
0.53  
B1  
C
1.78  
0.31  
D
39.88  
18.34  
2.79  
E
e1  
e3  
eA  
L
36.32  
16.00  
3.81  
N
25/32  
Package mechanical data  
M48T59, M48T59Y, M48T59V  
Figure 16. SOH28 – 28-lead plastic small outline, battery SNAPHAT, package outline  
A2  
A
C
eB  
B
e
CP  
D
N
E
H
A1  
α
L
1
SOH-A  
Note:  
Drawing is not to scale.  
Table 15. SOH28 – 28-lead plastic small outline, battery SNAPHAT, pack. mech. data  
mm  
inches  
Symb  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
B
3.05  
0.36  
2.69  
0.51  
0.32  
18.49  
8.89  
0.120  
0.014  
0.106  
0.020  
0.012  
0.728  
0.350  
0.05  
2.34  
0.36  
0.15  
17.71  
8.23  
0.002  
0.092  
0.014  
0.006  
0.697  
0.324  
C
D
E
e
1.27  
0.050  
eB  
H
3.20  
11.51  
0.41  
0°  
3.61  
12.70  
1.27  
8°  
0.126  
0.453  
0.016  
0°  
0.142  
0.500  
0.050  
8°  
L
a
N
28  
28  
CP  
0.10  
0.004  
26/32  
M48T59, M48T59Y, M48T59V  
Package mechanical data  
Figure 17. SH – 4-pin SNAPHAT housing for 48mAh battery & crystal, package  
outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-A  
Note:  
Drawing is not to scale.  
Table 16. SH – 4-pin SNAPHAT housing for 48mAh battery & crystal, package mech.  
data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
A3  
B
9.78  
7.24  
6.99  
0.38  
0.56  
21.84  
14.99  
15.95  
3.61  
2.29  
0.385  
0.285  
0.275  
0.015  
0.022  
0.860  
0.590  
0.628  
0.142  
0.090  
6.73  
6.48  
0.265  
0.255  
0.46  
21.21  
14.22  
15.55  
3.20  
0.018  
0.835  
0.560  
0.612  
0.126  
0.080  
D
E
eA  
eB  
L
2.03  
27/32  
Package mechanical data  
M48T59, M48T59Y, M48T59V  
Figure 18. SH – 4-pin SNAPHAT housing for 120mAh battery & crystal, package  
outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-A  
Note:  
Drawing is not to scale.  
Table 17. SH – 4-pin SNAPHAT housing for 120mAh battery & crystal, package mech.  
data  
mm  
inches  
Symb  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
A3  
B
10.54  
8.51  
0.415  
0.335  
0.315  
0.015  
0.022  
0.860  
0.710  
0.628  
0.142  
0.090  
8.00  
7.24  
0.315  
0.285  
8.00  
0.38  
0.46  
21.21  
17.27  
15.55  
3.20  
0.56  
0.018  
0.835  
0.680  
0.612  
0.126  
0.080  
D
21.84  
18.03  
15.95  
3.61  
E
eA  
eB  
L
2.03  
2.29  
28/32  
M48T59, M48T59Y, M48T59V  
Part numbering  
7
Part numbering  
Table 18. Ordering information scheme  
Example:  
M48T  
59Y  
–70  
MH  
1
E
Device type  
M48T  
Supply voltage and write protect voltage  
59(1) = VCC = 4.75 to 5.5 V; VPFD = 4.5 to 4.75 V  
59Y = VCC = 4.5 to 5.5 V; VPFD = 4.2 to 4.5 V  
59V(2) = VCC = 3.0 to 3.6 V; VPFD = 2.7 to 3.0 V  
Speed  
–70 = 70 ns  
Package  
PC = PCDIP28  
MH(3) = SOH28  
Temperature range  
1 = 0 to 70°C  
Shipping method  
For SOH28:  
E = Lead-free package (ECOPACK®), tubes  
F = Lead-free package (ECOPACK®), tape & reel  
For PCDIP28:  
blank = tubes  
1. The M48T59 part is offered with the PCDIP28 (e.g., CAPHAT™) package only.  
2. Contact local ST sales office for availability of 3.3 V version.  
3. The SOIC package (SOH28) requires the SNAPHAT® battery/crystal package which is ordered  
separately under the part number “M4TXX-BR12SH” in plastic tube or “M4TXX-BR12SHTR” in  
tape & reel form (see Table 19).  
Caution:  
Do not place the SNAPHAT battery package “M4TXX-BR12SH” in conductive foam as it will  
drain the lithium button-cell battery.  
For other options, or for more information on any aspect of this device, please contact the  
ST sales office nearest you.  
29/32  
Part numbering  
Table 19. SNAPHAT battery table  
M48T59, M48T59Y, M48T59V  
Package  
Part number  
Description  
M4T28-BR12SH1  
M4T32-BR12SHx  
Lithium battery (48mAh) SNAPHAT  
Lithium battery (120mAh) SNAPHAT  
SH  
SH  
30/32  
M48T59, M48T59Y, M48T59V  
Revision history  
8
Revision history  
Table 20. Document revision history  
Date  
Revision  
Changes  
Oct-1999  
22-Mar-2000  
13-Jul-2000  
1.0  
1.1  
2.0  
First Issue  
Century Bit Paragraph added; tFB value changed (Table 12)  
From Preliminary Data to Data Sheet  
Reformatted, Ind. Temp. added (Table 9), SNAPHAT table added  
14-May-2001  
3.0  
(Table 19), temp/voltage info. added to tables (Table 10, 11, 3, 4, 12,  
13)  
31-Jul-2001  
06-Aug-2001  
20-May-2002  
07-Aug-2002  
01-Apr-2003  
02-Apr-2004  
3.1  
3.2  
3.3  
3.4  
4.0  
5.0  
Formatting changes from recent document review findings  
Fix text for Setting the Alarm Clock (Figure 10)  
Modify reflow time and temperature footnotes (Table 8)  
Add marketing status note (Table 18)  
v2.2 template applied; test condition updated (Table 13)  
Reformatted; update Lead-free package information (Table 8, 18)  
Remove all Industrial temperature references (Table 3, 4, 8, 9, 11, 12,  
13, 18)  
25-Nov-2004  
6.0  
Product status is “Not for New Design”; reformatted document; added  
lead-free second level interconnect information to cover page and  
Section 6: Package mechanical data; updated Table 11, 19.  
01-Apr-2008  
7.0  
31/32  
M48T59, M48T59Y, M48T59V  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
32/32  

相关型号:

M48T59V-70MH1F

5.0 or 3.3 V, 64 Kbit (8 Kbit x 8) TIMEKEEPER® SRAM
STMICROELECTR

M48T59V-70MH1TR

64 Kbit 8Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T59V-70MH6

64 Kbit 8Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T59V-70MH6E

REAL TIME CLOCK, PDSO28, 0.330 INCH, LEAD FREE, PLASTIC, SOH-28
STMICROELECTR

M48T59V-70MH6F

暂无描述
STMICROELECTR

M48T59V-70MH6TR

64 Kbit 8Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T59V-70PC1

64 Kbit 8Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T59V-70PC1E

5.0 or 3.3 V, 64 Kbit (8 Kbit x 8) TIMEKEEPER® SRAM
STMICROELECTR

M48T59V-70PC1F

5.0 or 3.3 V, 64 Kbit (8 Kbit x 8) TIMEKEEPER® SRAM
STMICROELECTR

M48T59V-70PC1TR

64 Kbit 8Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T59V-70PC6

64 Kbit 8Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T59V-70PC6TR

64 Kbit 8Kb x8 TIMEKEEPER SRAM
STMICROELECTR