M48Z2M1PL [STMICROELECTRONICS]

16 Mb 2Mb x 8 ZEROPOWER SRAM; 16兆的2Mb ×8 ZEROPOWER SRAM
M48Z2M1PL
型号: M48Z2M1PL
厂家: ST    ST
描述:

16 Mb 2Mb x 8 ZEROPOWER SRAM
16兆的2Mb ×8 ZEROPOWER SRAM

静态存储器
文件: 总12页 (文件大小:104K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M48Z2M1  
M48Z2M1Y  
®
16 Mb (2Mb x 8) ZEROPOWER SRAM  
INTEGRATED LOW POWER SRAM,  
POWER-FAIL CONTROL CIRCUIT and  
BATTERIES  
CONVENTIONAL SRAM OPERATION;  
UNLIMITED WRITE CYCLES  
10 YEARS of DATA RETENTION in the  
ABSENCE of POWER  
AUTOMATIC POWER-FAIL CHIP DESELECT  
and WRITE PROTECTION  
36  
WRITE PROTECT VOLTAGES  
(VPFD = Power-fail Deselect Voltage):  
1
PMLDIP36 (PL)  
Module  
– M48Z2M1: 4.5V VPFD 4.75V  
– M48Z2M1Y: 4.2V VPFD 4.50V  
BATTERIES ARE INTERNALLY ISOLATED  
UNTIL POWER IS APPLIED  
PIN and FUNCTION COMPATIBLE with  
JEDEC STANDARD 2Mb x 8 SRAMs  
Figure 1. Logic Diagram  
DESCRIPTION  
The M48Z2M1/2M1Y ZEROPOWER® RAM is a  
non-volatile 16,777,216 bit Static RAM organized  
as 2,097,152 words by 8 bits. Thedevicecombines  
two internal lithium batteries, CMOS SRAMs and a  
control circuit in a plastic 36 pin DIP long Module.  
V
CC  
The ZEROPOWER RAM replaces industry stand-  
ard SRAMs. It provides the nonvolatility of PROMs  
without any requirement for special write timing or  
limitations on the number of writes that can be  
performed.  
21  
8
A0-A20  
W
DQ0-DQ7  
M48Z2M1  
M48Z2M1Y  
Table 1. Signal Names  
E
A0-A20  
Address Inputs  
Data Inputs / Outputs  
Chip Enable  
G
DQ0-DQ7  
E
V
SS  
G
Output Enable  
Write Enable  
Supply Voltage  
Ground  
AI02048  
W
VCC  
VSS  
January 1998  
1/12  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.  
M48Z2M1, M48Z2M1Y  
Table 2. Absolute Maximum Ratings (1)  
Symbol  
TA  
Parameter  
Value  
0 to 70  
Unit  
°C  
°C  
°C  
°C  
V
Ambient Operating Temperature  
Storage Temperature (VCC Off)  
Temperature Under Bias  
TSTG  
TBIAS  
–40 to 85  
–40 to 85  
260  
(2)  
TSLD  
Lead Soldering Temperature for 10 seconds  
Input or Output Voltages  
VIO  
–0.3 to 7  
–0.3 to 7  
VCC  
Supply Voltage  
V
Notes: 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to the absolute maximum rating conditions for extended periods of time may  
affect reliability.  
2. Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds).  
CAUTION: Negative undershoots below –0.3 volts are not allowed on any pin while in the Battery Back-up mode.  
Table 3. Operating Modes  
Mode  
Deselect  
Write  
VCC  
E
VIH  
VIL  
VIL  
VIL  
X
G
X
W
X
DQ0-DQ7  
High Z  
DIN  
Power  
Standby  
4.75V to 5.5V  
or  
4.5V to 5.5V  
X
VIL  
VIH  
VIH  
X
Active  
Read  
VIL  
VIH  
X
DOUT  
Active  
Read  
High Z  
High Z  
High Z  
Active  
Deselect  
Deselect  
VSO to VPFD (min)  
CMOS Standby  
Battery Back-up Mode  
VSO  
X
X
X
Notes: X = VIH or VIL; VSO = Battery Back-up Switchover Voltage.  
Figure 2. DIP Pin Connections  
DESCRIPTION (cont’d)  
The M48Z2M1/2M1Yhas its own Power-fail Detect  
Circuit. The controlcircuitry constantly monitors the  
single 5V supply for an out of tolerance condition.  
When VCC is out of tolerance, the circuit write  
protects the SRAM, providing a highdegree of data  
security in the midst of unpredictable system op-  
erations brought on by low VCC. As VCC falls below  
approximately 3V, the control circuitry connects the  
batteries which sustain data until valid power re-  
turns.  
NC  
A20  
A18  
A16  
A14  
A12  
A7  
1
2
3
4
5
6
7
8
9
36  
V
CC  
35 A19  
34 NC  
33 A15  
32 A17  
31  
W
30 A13  
29 A8  
28 A9  
27 A11  
A6  
M48Z2M1  
M48Z2M1Y  
A5  
READ MODE  
A4 10  
A3 11  
The M48Z2M1/2M1Y is in the Read Mode when-  
ever W (Write Enable) is high and E (Chip Enable)  
is low. The device architecture allows ripple-  
through access of data from eight of 16,777,216  
locations in the static storage array. Thus, the  
unique address specified by the 21 Address Inputs  
defines which one of the 2,097,152 bytes of data is  
to be accessed. Valid data will be available at the  
26  
25 A10  
24  
G
A2 12  
A1 13  
E
A0 14  
23 DQ7  
22 DQ6  
21 DQ5  
20 DQ4  
19 DQ3  
DQ0 15  
DQ1 16  
DQ2 17  
Data I/O pins within Address Access time (tAVQV  
)
V
18  
SS  
after the last address input signal is stable, provid-  
ing that the E (Chip Enable) and G (Output Enable)  
access times are also satisfied. If the E and G  
access times are not met, valid data will be avail-  
AI02049  
Warning: NC = Not Connected.  
2/12  
M48Z2M1, M48Z2M1Y  
Figure 3. Block Diagram  
V
CC  
A0-A20  
DQ0-DQ7  
POWER  
E
2048K x 8  
SRAM ARRAY  
VOLTAGE SENSE  
AND  
E
SWITCHING  
CIRCUITRY  
W
G
INTERNAL  
BATTERIES  
V
SS  
AI02050  
able after the later of Chip Enable Access time  
(tELQV) or Output Enable Access Time (tGLQV). The  
state of the eight three-state Data I/O signals is  
controlled by E and G. If the outputs are activated  
before tAVQV, the data lines will be driven to an  
indeterminate state until tAVQV. If the Address In-  
puts are changed while E and G remain low, output  
data will remain valid for Output Data Hold time  
(tAXQX) but will go indeterminate until the next Ad-  
dress Access.  
Table 4. AC Measurement Conditions  
Input Rise and Fall Times  
5ns  
Input Pulse Voltages  
0 to 3V  
1.5V  
Input and Output Timing Ref. Voltages  
Note that Output Hi-Z is defined as the point where data is no  
longer driven.  
Figure 4. AC Testing Load Circuit  
5V  
WRITE MODE  
The M48Z2M1/2M1Y is in the Write Mode when-  
ever W and E are active. The start of a write is  
referenced from the latter occurring falling edge of  
W or E. A write is terminated by the earlier rising  
edge of W or E.  
1.9k  
DEVICE  
UNDER  
TEST  
OUT  
The addresses must be held valid throughout the  
cycle. Eor W must return high for minimum of tEHAX  
from E or tWHAX from W prior to the initiation of  
another read or write cycle. Data-in must be valid  
tDVEH or tDVWH prior to the end of write and remain  
valid for tEHDX or tWHDX afterward. G should be kept  
high during write cycles to avoid bus contention;  
although, if the output bus has been activated by a  
low on E and G, a low on W will disable the outputs  
tWLQZ after W falls.  
1kΩ  
C
= 100pF or 5pF  
L
C
includes JIG capacitance  
L
AI01030  
3/12  
M48Z2M1, M48Z2M1Y  
Table 5. Capacitance (1, 2)  
(TA = 25 °C, f = 1 MHz )  
Symbol  
Parameter  
Test Condition  
VIN = 0V  
Min  
Max  
40  
Unit  
pF  
CIN  
Input Capacitance  
(3)  
CIO  
Input / Output Capacitance  
VOUT = 0V  
40  
pF  
Notes: 1. Effective capacitance measured with power supply at 5V.  
2. Sampled only, not 100% tested.  
3. Outputs deselected  
Table 6. DC Characteristics  
(TA = 0 to 70°C; VCC = 4.75V to 5.5V or 4.5V to 5.5V)  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Supply Current  
Test Condition  
0V VIN VCC  
0V VOUT VCC  
E = VIL, Outputs open  
E = VIH  
Min  
Max  
Unit  
µA  
µA  
mA  
mA  
mA  
V
(1)  
ILI  
±4  
±4  
(1)  
ILO  
ICC  
140  
10  
ICC1  
ICC2  
VIL  
Supply Current (Standby) TTL  
Supply Current (Standby) CMOS  
Input Low Voltage  
E VCC – 0.2V  
8
–0.3  
2.2  
0.8  
VIH  
Input High Voltage  
VCC + 0.3  
0.4  
V
VOL  
VOH  
Output Low Voltage  
IOL = 2.1mA  
IOH = –1mA  
V
Output High Voltage  
2.4  
V
Note: 1. Outputs deselected.  
Table 7. Power Down/Up Trip Points DC Characteristics (1)  
(TA = 0 to 70°C)  
Symbol  
VPFD  
Parameter  
Power-fail Deselect Voltage (M48Z2M1)  
Power-fail Deselect Voltage (M48Z2M1Y)  
Battery Back-up Switchover Voltage  
Data Retention Time  
Min  
4.5  
4.2  
Typ  
4.6  
4.3  
3
Max  
4.75  
4.5  
Unit  
V
VPFD  
V
V
VSO  
(2)  
tDR  
10  
YEARS  
Notes: 1. All voltages referenced to VSS  
.
2. At 25°C  
4/12  
M48Z2M1, M48Z2M1Y  
Table 8. Power Down/Up Mode AC Characteristics  
(TA = 0 to 70°C)  
Symbol  
Parameter  
VPFD (max) to VPFD (min) VCC Fall Time  
VPFD (min) to VSO VCC Fall Time  
Write Protect Time from VCC = VPFD  
VSO to VPFD (max) VCC Rise Time  
E Recovery Time  
Min  
300  
10  
40  
0
Max  
Unit  
µs  
(1)  
tF  
(2)  
tFB  
µs  
tWP  
tR  
150  
120  
µs  
µs  
tER  
40  
ms  
Notes: 1. VPFD (max) to VPFD (min) fall time of less than tF may result in deselection/write protection not occurring until 200 µs after  
VCC passes VPFD (min).  
2. VPFD (min) to VSO fall time of less than tFB may cause corruption of RAM data.  
Figure 5. Power Down/Up Mode AC Waveforms  
V
CC  
V
V
V
(max)  
(min)  
PFD  
PFD  
SO  
tF  
tDR  
tR  
tFB  
tWP  
tER  
RECOGNIZED  
RECOGNIZED  
E
DON'T CARE  
HIGH-Z  
OUTPUTS  
VALID  
VALID  
(PER CONTROL INPUT)  
(PER CONTROL INPUT)  
AI01031  
5/12  
M48Z2M1, M48Z2M1Y  
Table 9. Read Mode AC Characteristics  
(TA = 0 to 70°C; VCC = 4.75V to 5.5V or 4.5V to 5.5V)  
M48Z2M1 / M48Z2M1Y  
-70  
Symbol  
Parameter  
Unit  
Min  
Max  
tAVAV  
Read Cycle Time  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(1)  
tAVQV  
Address Valid to Output Valid  
70  
70  
35  
(1)  
tELQV  
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
Chip Enable Low to Output Transition  
Output Enable Low to Output Transition  
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
Address Transition to Output Transition  
(1)  
tGLQV  
(2)  
tELQX  
5
5
(2)  
tGLQX  
(2)  
tEHQZ  
30  
25  
(2)  
tGHQZ  
(1)  
tAXQX  
5
Notes: 1. CL = 100pF (see Figure 4).  
2. CL = 5pF (see Figure 4)  
Figure 6. Address Controlled, Read Mode AC Waveforms  
A0-A20  
tAVAV  
tAVQV  
tAXQX  
DQ0-DQ7  
DATA VALID  
AI02051  
Note: Chip Enable (E) and Output Enable (G) = Low, Write Enable (W) = High.  
6/12  
M48Z2M1, M48Z2M1Y  
Figure 7. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms  
tAVAV  
VALID  
A0-A20  
tAVQV  
tELQV  
tAXQX  
tEHQZ  
E
tELQX  
tGLQV  
tGHQZ  
G
tGLQX  
DQ0-DQ7  
DATA OUT  
AI02052  
Note: Write Enable (W) = High.  
DATA RETENTION MODE  
low VSO, the control circuit switches power to the  
internal energy source which preserves data.  
With valid VCC applied, the M48Z2M1/2M1Y oper-  
ates as a conventional BYTEWIDE static RAM.  
Should the supply voltage decay, the RAM will  
automatically power-fail deselect, write protecting  
itself tWP after VCC falls below VPFD. All outputs  
become high impedance, and all inputs are treated  
as "don’t care."  
If power fail detection occurs during a valid access,  
the memory cycle continues to completion. If the  
memory cycle fails to terminate within the time tWP  
write protection takes place. When VCC drops be-  
The internal coin cells will maintain data in the  
M48Z2M1/2M1Y after the initial application of VCC  
foran accumulated periodof at least 10years when  
VCC is less than VSO. As system power returns and  
VCC rises above VSO, the batteries are discon-  
nected, and the power supply is switched to exter-  
nal Vcc. Write protection continues for tER after VCC  
reaches VPFD to allow for processor stabilization.  
After tER, normal RAM operation can resume.  
,
For more information on Battery Storage life refer  
to the Application Note AN1012.  
7/12  
M48Z2M1, M48Z2M1Y  
Table 10. Write Mode AC Characteristics  
(TA = 0 to 70°C; VCC = 4.75V to 5.5V or 4.5V to 5.5V)  
M48Z2M1 / M48Z2M1Y  
-70  
Symbol  
Parameter  
Unit  
Min  
70  
0
Max  
tAVAV  
tAVWL  
tAVEL  
Write Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Valid to Write Enable Low  
Address Valid to Chip Enable Low  
Write Enable Pulse Width  
0
tWLWH  
tELEH  
tWHAX  
tEHAX  
tDVWH  
tDVEH  
tWHDX  
tEHDX  
55  
55  
5
Chip Enable Low to Chip Enable High  
Write Enable High to Address Transition  
Chip Enable High to Address Transition  
Input Valid to Write Enable High  
Input Valid to Chip Enable High  
15  
30  
30  
0
Write Enable High to Input Transition  
Chip Enable High to Input Transition  
Write Enable Low to Output Hi-Z  
Address Valid to Write Enable High  
Address Valid to Chip Enable High  
Write Enable High to Output Transition  
10  
(1,2)  
tWLQZ  
25  
tAVWH  
tAVEH  
65  
65  
5
(1,2)  
tWHQX  
Notes: 1. CL = 5pF (see Figure 4).  
2. If E goes low simultaneously with W going low, the outputs remain in the high-impedance state.  
Figure 8. Supply Voltage Protection  
POWER SUPPLY DECOUPLING and UNDER-  
SHOOT PROTECTION  
ICC transients, including those produced by output  
switching, can produce voltage fluctuations, result-  
ing in spikes on the VCC bus. These transients can  
be reduced if capacitors are used to store energy,  
which stabilizes the VCC bus. The energy stored in  
the bypass capacitors will be released as low going  
spikes are generated or energy will be absorbed  
when overshoots occur. A bypass capacitor value  
of 0.1µF (as shown in Figure 8) is recommended  
in order to provide the needed filtering.  
In addition to transients that are caused by normal  
SRAM operation, power cycling can generate  
negative voltage spikes on VCC that drive it to  
values below VSS by as much as one Volt. These  
negative spikes can cause data corruption in the  
SRAM while in battery backup mode. To protect  
from these voltage spikes, it is recommeded to  
connect a schottky diode from VCC to VSS (cathode  
connected to VCC, anode to VSS). Schottky diode  
1N5817 is recommended for through hole and  
MBRS120T3 is recommended for surface mount.  
V
CC  
V
V
CC  
0.1µF  
DEVICE  
SS  
AI02169  
8/12  
M48Z2M1, M48Z2M1Y  
Figure 9. Write Enable Controlled, Write AC Waveforms  
tAVAV  
A0-A20  
VALID  
tAVWH  
tAVEL  
tAVWL  
tWHAX  
E
tWLWH  
W
tWLQZ  
tWHQX  
tWHDX  
DQ0-DQ7  
DATA INPUT  
tDVWH  
AI02053  
Note: Output Enable (G) = High.  
Figure 10. Chip Enable Controlled, Write AC Waveforms  
tAVAV  
A0-A20  
VALID  
tAVEH  
tELEH  
tAVEL  
tEHAX  
E
tAVWL  
W
tEHDX  
DQ0-DQ7  
DATA INPUT  
tDVEH  
AI02054  
Note: Output Enable (G) = High.  
9/12  
M48Z2M1, M48Z2M1Y  
ORDERING INFORMATION SCHEME  
Example:  
M48Z2M1Y  
-70  
PL  
1
Supply Voltage and Write  
Protect Voltage  
Speed  
Package  
Temp. Range  
2M1  
VCC = 4.75V to 5.5V  
PFD = 4.5V to 4.75V  
-70  
70ns  
PL  
PMLDIP36  
1
9 (1)  
0 to 70°C  
V
Extended  
2M1Y VCC = 4.5V to 5.5V  
PFD = 4.2V to 4.5V  
Temperature  
V
Note: 1. Contact Sales Offices for availability of Extended Temperature.  
For a list of available options (Speed, Package, etc.) or for further information or any aspect of this device,  
please contact the SGS-THOMSON Sales Office nearest to you.  
10/12  
M48Z2M1, M48Z2M1Y  
PMLDIP36 - 36 pin Plastic DIP Long Module  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
9.52  
Typ  
Max  
0.375  
A
A1  
B
9.27  
0.38  
0.43  
0.20  
52.58  
18.03  
2.30  
38.86  
14.99  
3.05  
4.45  
36  
0.365  
0.015  
0.017  
0.008  
2.070  
0.710  
0.090  
1.530  
0.590  
0.120  
0.175  
36  
0.59  
0.33  
53.34  
18.80  
2.81  
47.50  
16.00  
3.81  
5.33  
0.023  
0.013  
2.100  
0.740  
0.110  
1.870  
0.630  
0.150  
0.210  
C
D
E
e1  
e3  
eA  
L
S
N
PMLDIP36  
A
L
A1  
e1  
C
eA  
S
B
e3  
D
N
1
E
PMDIP  
Drawing is not to scale.  
11/12  
M48Z2M1, M48Z2M1Y  
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No  
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned  
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.  
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express  
written approval of SGS-THOMSON Microelectronics.  
© 1998 SGS-THOMSON Microelectronics - All Rights Reserved  
® ZEROPOWER is a registered trademark of SGS-THOMSON Microelectronics  
BYTEWIDE is a trademark of SGS-THOMSON Microelectronics  
SGS-THOMSON Microelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
12/12  

相关型号:

M48Z2M1V

5V or 3.3V, 16 Mbit (2Mb x 8) ZEROPOWER SRAM
STMICROELECTR

M48Z2M1V-701

5V or 3.3V, 16 Mbit (2Mb x 8) ZEROPOWER SRAM
STMICROELECTR

M48Z2M1V-70G

5V or 3.3V, 16 Mbit (2Mb x 8) ZEROPOWER SRAM
STMICROELECTR

M48Z2M1V-70PL1

5 V or 3.3 V, 16 Mbit (2 Mb x 8) ZEROPOWER? SRAM
STMICROELECTR

M48Z2M1V-851

5V or 3.3V, 16 Mbit (2Mb x 8) ZEROPOWER SRAM
STMICROELECTR

M48Z2M1V-85G

5V or 3.3V, 16 Mbit (2Mb x 8) ZEROPOWER SRAM
STMICROELECTR

M48Z2M1V-85PL1

5 V or 3.3 V, 16 Mbit (2 Mb x 8) ZEROPOWER? SRAM
STMICROELECTR

M48Z2M1V-85PL9

2MX8 NON-VOLATILE SRAM MODULE, 85ns, PDIP36, PLASTIC, MODULE, DIP-36
STMICROELECTR

M48Z2M1Y

16 Mb 2Mb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z2M1Y-701

5V or 3.3V, 16 Mbit (2Mb x 8) ZEROPOWER SRAM
STMICROELECTR

M48Z2M1Y-70G

5V or 3.3V, 16 Mbit (2Mb x 8) ZEROPOWER SRAM
STMICROELECTR

M48Z2M1Y-70PL1

16 Mb 2Mb x 8 ZEROPOWER SRAM
STMICROELECTR