M58CR064D120ZB6 [STMICROELECTRONICS]

4MX16 FLASH 1.8V PROM, 18ns, PBGA56, 6.50 X 10 MM, 0.75 MM PITCH, TFBGA-56;
M58CR064D120ZB6
型号: M58CR064D120ZB6
厂家: ST    ST
描述:

4MX16 FLASH 1.8V PROM, 18ns, PBGA56, 6.50 X 10 MM, 0.75 MM PITCH, TFBGA-56

可编程只读存储器 内存集成电路 闪存
文件: 总68页 (文件大小:476K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M58CR064C, M58CR064D  
M58CR064P, M58CR064Q  
64 Mbit (4Mb x 16, Dual Bank, Burst )  
1.8V Supply Flash Memory  
FEATURES SUMMARY  
SUPPLY VOLTAGE  
Figure 1. Packages  
– V = 1.65V to 2V for Program, Erase and  
DD  
Read  
– V  
= 1.65V to 3.3V for I/O Buffers  
DDQ  
– V = 12V for fast Program (optional)  
PP  
SYNCHRONOUS / ASYNCHRONOUS READ  
– Synchronous Burst Read mode : 54MHz  
FBGA  
– Asynchronous/ Synchronous Page Read  
mode  
– Random Access: 85, 100, 120ns  
PROGRAMMING TIME  
– 10µs by Word typical  
TFBGA56 (ZB)  
6.5 x 10mm  
– Double/Quadruple Word Program option  
MEMORY BLOCKS  
– Dual Bank Memory Array: 16/48 Mbit  
– Parameter Blocks (Top or Bottom location)  
DUAL OPERATIONS  
ELECTRONIC SIGNATURE  
– Program Erase in one Bank while Read in  
other  
– Manufacturer Code: 20h  
– Top Device Code, M58CR064C: 88CAh  
– Bottom Device Code, M58CR064D: 88CBh  
– Top Device Code, M58CR064P: 8801h  
– Bottom Device Code, M58CR064Q: 8802h  
– No delay between Read and Write operations  
BLOCK LOCKING  
– All blocks locked at Power up  
– Any combination of blocks can be locked  
– WP for Block Lock-Down  
SECURITY  
– 128 bit user programmable OTP cells  
– 64 bit unique device number  
– One parameter block permanently lockable  
COMMON FLASH INTERFACE (CFI)  
100,000 PROGRAM/ERASE CYCLES per  
BLOCK  
August 2002  
1/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
TABLE OF CONTENTS  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 3. TFBGA Connections (Top view through package). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 2. Bank Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 4. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Address Inputs (A0-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Data Input/Output (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Write Protect (WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Reset/Power-Down (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Latch Enable (L). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Clock (K).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Wait (WAIT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
V
V
V
V
V
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
DD  
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
DDQ  
Program Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
PP  
SS  
Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SSQ  
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Bus Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Address Latch.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 3. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 4. Command Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
COMMAND INTERFACE - STANDARD COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Read Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Read Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Read CFI Query Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Clear Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Bank Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Set Configuration Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Block Lock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Block Unlock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Block Lock-Down Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 5. Standard Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 6. Electronic Signature Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 5. Security Block and Protection Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
COMMAND INTERFACE - FACTORY PROGRAM COMMANDS. . . . . . . . . . . . . . . . . . . . . . . . . 19  
Double Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Quadruple Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 7. Factory Program Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Program/Erase Controller Status Bit (SR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Erase Suspend Status Bit (SR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Erase Status Bit (SR5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Program Status Bit (SR4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
V
Status Bit (SR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
PP  
Program Suspend Status Bit (SR2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Block Protection Status Bit (SR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Reserved Bit (SR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 8. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
CONFIGURATION REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Read Select Bit (CR15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
X-Latency Bits (CR13-CR11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Power-Down Bit (CR10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Wait Configuration Bit (CR8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Burst Type Bit (CR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Valid Clock Edge Bit (CR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Wrap Burst Bit (CR3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Burst length Bits (CR2-CR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 9. Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 10. Burst Type Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 6. X-Latency and Data Output Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 7. Wait Configuration Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
READ MODES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Asynchronous Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Synchronous Burst Read Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Single Synchronous Read Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DUAL OPERATIONS AND MULTIPLE BANK ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Table 11. Dual Operations Allowed In Other Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 12. Dual Operations Allowed In Same Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
BLOCK LOCKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 29  
Reading a Block’s Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Locked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Unlocked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Lock-Down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Locking Operations During Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 13. Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
PROGRAM AND ERASE TIMES AND ENDURANCE CYCLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 14. Program, Erase Times and Program, Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . 31  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 15. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 16. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 8. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 9. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 17. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 18. DC Characteristics - Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 19. DC Characteristics - Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 10. Asynchronous Random Access Read AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 11. Asynchronous Page Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 20. Asynchronous Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 12. Synchronous Burst Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 13. Single Synchronous Read AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 21. Synchronous Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 14. Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 22. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 15. Write AC Waveforms, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 23. Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 16. Reset and Power-up AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 24. Reset and Power-up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 17. TFBGA56 6.5x10mm - 8x7 ball array, 0.75 mm pitch, Bottom View Package Outline. . 47  
Table 25. TFBGA56 6.5x10mm - 8x7 ball array, 0.75 mm pitch, Package Mechanical Data . . . . . 47  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 26. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 27. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 49  
4/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
APPENDIX A. BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 28. Top Boot Block Addresses, M58CR064C, M58CR064P. . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 29. Bottom Boot Block Addresses, M58CR064D, M58CR064Q . . . . . . . . . . . . . . . . . . . . . . 52  
APPENDIX B. COMMON FLASH INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 30. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 31. CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 32. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 33. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 34. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 35. Burst Read Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
APPENDIX C. FLOWCHARTS AND PSEUDO CODES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 18. Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 19. Double Word Program Flowchart and Pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 20. Quadruple Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 21. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 61  
Figure 22. Block Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 23. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 24. Locking Operations Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 25. Protection Register Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . 65  
APPENDIX D. COMMAND INTERFACE STATE TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 36. Command Interface States - Lock table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 37. Command Interface States - Modify Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
5/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
SUMMARY DESCRIPTION  
The M58CR064 is a 64 Mbit (4Mbit x16) non-vola-  
tile Flash memory that may be erased electrically  
at block level and programmed in-system on a  
The end of a program or erase operation can be  
detected and any error conditions identified in the  
Status Register. The command set required to  
control the memory is consistent with JEDEC stan-  
dards.  
Word-by-Word basis using a 1.65V to 2V V sup-  
DD  
ply for the circuitry and a 1.65V to 3.3V V  
sup-  
DDQ  
ply for the Input/Output pins. An optional 12V V  
power supply is provided to speed up customer  
programming. In M58CR064C and M58CR064D  
PP  
The device supports synchronous burst read and  
asynchronous read from all blocks of the memory  
array; at power-up the device is configured for  
asynchronous read. In synchronous burst mode,  
data is output on each clock cycle at frequencies  
of up to 54MHz.  
The M58CR064 features an instant, individual  
block locking scheme that allows any block to be  
locked or unlocked with no latency, enabling in-  
stant code and data protection. All blocks have  
three levels of protection. They can be locked and  
locked-down individually preventing any acciden-  
tal programming or erasure. In M58CR064C and  
M58CR064D there is an additional hardware pro-  
the V pin can also be used as a control pin to  
PP  
provide absolute protection against program or  
erase. In M58CR064P and M58CR064Q this fea-  
ture is disabled.  
The device features an asymmetrical block archi-  
tecture. M58CR064 has an array of 135 blocks,  
and is divided into two banks, Banks A and B. The  
Dual Bank Architecture allows Dual Operations,  
while programming or erasing in one bank, Read  
operations are possible in the other bank. Only  
one bank at a time is allowed to be in Program or  
Erase mode. It is possible to perform burst reads  
that cross bank boundaries. The bank architecture  
is summarized in Table 2, and the memory maps  
are shown in Figure 4. The Parameter Blocks are  
located at the top of the memory address space for  
the M58CR064C and M58CR064P, and at the bot-  
tom for the M58CR064D and M58CR064Q.  
tection against program and erase. When V  
PP  
V
all blocks are protected against program or  
PPLK  
erase. All blocks are locked at Power- Up.  
The device includes a Protection Register and a  
Security Block to increase the protection of a sys-  
tem’s design. The Protection Register is divided  
into two segments: a 64 bit segment containing a  
unique device number written by ST, and a 128 bit  
segment One-Time-Programmable (OTP) by the  
user. The user programmable segment can be  
permanently protected. The Security Block, pa-  
rameter block 0, can be permanently protected by  
the user. Figure 5, shows the Security Block and  
Protection Register Memory Map.  
Each block can be erased separately. Erase can  
be suspended, in order to perform program in any  
other block, and then resumed. Program can be  
suspended to read data in any other block and  
then resumed. Each block can be programmed  
and erased over 100,000 cycles using the supply  
voltage V  
.
DD  
Program and Erase commands are written to the  
Command Interface of the memory. An internal  
Program/Erase Controller takes care of the tim-  
ings necessary for program and erase operations.  
The memory is offered in a TFBGA56, 6.5 x  
10mm, 0.75 mm ball pitch package and is supplied  
with all the bits erased (set to ’1’).  
6/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Table 1. Signal Names  
Figure 2. Logic Diagram  
A0-A21  
Address Inputs  
Data Input/Outputs, Command  
Inputs  
DQ0-DQ15  
V
V
V
DD DDQ PP  
E
Chip Enable  
Output Enable  
Write Enable  
Reset/Power-Down  
Write Protect  
Clock  
G
22  
16  
W
A0-A21  
DQ0-DQ15  
WAIT  
RP  
WP  
K
W
E
M58CR064C  
M58CR064D  
M58CR064P  
M58CR064Q  
G
L
Latch Enable  
Wait  
RP  
WP  
L
WAIT  
V
DD  
Supply Voltage  
Supply Voltage for Input/Output  
Buffers  
V
V
K
DDQ  
Optional Supply Voltage for  
Fast Program & Erase  
PP  
V
V
SSQ  
SS  
V
V
Ground  
SS  
AI90000  
Ground Input/Output Supply  
Not Connected Internally  
SSQ  
NC  
7/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Figure 3. TFBGA Connections (Top view through package)  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
A11  
A12  
A13  
A15  
A8  
A9  
V
V
V
A18  
A17  
A19  
WP  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
G
SS  
DD  
K
PP  
A20  
A21  
RP  
W
A10  
L
A7  
A14  
WAIT  
DQ6  
DQ13  
DQ5  
A16  
DQ4  
DQ12  
DQ2  
DQ10  
DQ3  
NC  
E
V
DQ15  
DQ14  
DQ1  
DQ9  
DDQ  
V
DQ11  
DQ0  
DQ8  
SS  
G
DQ7  
V
V
V
V
SSQ  
SSQ  
DD  
DDQ  
AI90001  
Table 2. Bank Architecture  
Bank Size  
16 Mbit  
Parameter Blocks  
Main Blocks  
Bank A  
Bank B  
8 blocks of 4 KWord  
-
31 blocks of 32 KWord  
96 blocks of 32 KWord  
48 Mbit  
8/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Figure 4. Memory Map  
Top Boot Block  
Bottom Boot Block  
Address lines A21-A0  
Address lines A21-A0  
000000h  
007FFFh  
000000h  
64 Kbit or  
512 Kbit or  
32 KWord  
4 KWord  
000FFFh  
Total of 8  
Parameter  
Blocks  
(bottom bank)  
Total of 96  
Main Blocks  
(bottom bank)  
Bank B  
2F8000h  
007000h  
64 Kbit or  
512 Kbit or  
32 KWord  
4 KWord  
2FFFFFh  
300000h  
007FFFh  
Bank A  
008000h  
512 Kbit or  
32 KWord  
512 Kbit or  
32 KWord  
307FFFh  
3F0000h  
00FFFFh  
Total of 31  
Main Blocks  
(bottom bank)  
Total of 31  
Main Blocks  
(top bank)  
0F8000h  
512 Kbit or  
32 KWord  
512 Kbit or  
32 KWord  
3F7FFFh  
3F8000h  
0FFFFFh  
100000h  
Bank A  
64 Kbit or  
4 KWord  
512 Kbit or  
32 KWord  
3F8FFFh  
107FFFh  
Total of 8  
Parameter  
Blocks  
Total of 96  
Main Blocks  
(top bank)  
Bank B  
(top bank)  
3FF000h  
3FFFFFh  
3F8000h  
3FFFFFh  
64 Kbit or  
4 KWord  
512 Kbit or  
32 KWord  
AI90002  
9/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
SIGNAL DESCRIPTIONS  
See Figure 2 Logic Diagram and Table 1,Signal  
Names, for a brief overview of the signals connect-  
ed to this device.  
tied to V  
tics).  
(refer to Table 19, DC Characteris-  
RPH  
Latch Enable (L). Latch Enable latches the ad-  
Address Inputs (A0-A21). The Address Inputs  
select the cells in the memory array to access dur-  
ing Bus Read operations. During Bus Write opera-  
tions they control the commands sent to the  
Command Interface of the internal state machine.  
dress bits on its rising edge. The address latch is  
transparent when Latch Enable is at V and it is in-  
IL  
hibited when Latch Enable is at V . Latch Enable  
IH  
can be kept Low (also at board level) when the  
Latch Enable function is not required or supported.  
Data Input/Output (DQ0-DQ15). The Data I/O  
outputs the data stored at the selected address  
during a Bus Read operation or inputs a command  
or the data to be programmed during a Bus Write  
operation.  
Chip Enable (E). The Chip Enable input acti-  
vates the memory control logic, input buffers, de-  
coders and sense amplifiers. When Chip Enable is  
Clock (K). The clock input synchronizes the  
memory to the microcontroller during synchronous  
read operations; the address is latched on a Clock  
edge (rising or falling, according to the configura-  
tion settings) when Latch Enable is at V . Clock is  
IL  
don't care during asynchronous read and in write  
operations.  
Wait (WAIT). Wait is an output signal used during  
synchronous read to indicate whether the data on  
the output bus are valid. This output is high imped-  
ance when Chip Enable or Output Enable are at  
at V and Reset/Power-Down is at V the device  
IL  
IH  
is in active mode. When Chip Enable is at V the  
IH  
memory is deselected, the outputs are high imped-  
ance and the power consumption is reduced to the  
stand-by level.  
Output Enable (G). The Output Enable controls  
the outputs during the Bus Read operation of the  
memory.  
Write Enable (W). The Write Enable controls the  
Bus Write operation of the memory’s Command  
Interface. The data and address inputs are latched  
on the rising edge of Chip Enable or Write Enable  
whichever occurs first.  
V
or Reset/Power-Down is at V . It can be con-  
IH  
IL  
figured to be active during the wait cycle or one  
clock cycle in advance.  
V
Supply Voltage. V  
provides the power  
DD  
DD  
supply to the internal core of the memory device.  
It is the main power supply for all operations  
(Read, Program and Erase).  
V
Supply Voltage. V  
provides the power  
DDQ  
DDQ  
supply to the I/O pins and enables all Outputs to  
be powered independently from V . V can be  
DD DDQ  
tied to V or can use a separate supply.  
DD  
Write Protect (WP). Write Protect is an input  
that gives an additional hardware protection for  
V
Program Supply Voltage. V  
is both a  
PP  
PP  
each block. When Write Protect is at V , the Lock-  
control input and a power supply pin. In  
M58CR064C/D the two functions are selected by  
the voltage range applied to the pin. In the  
M58CR064P/Q the control feature is disabled.  
IL  
Down is enabled and the protection status of the  
Locked-Down blocks cannot be changed. When  
Write Protect is at V , the Lock-Down is disabled  
IH  
and the Locked-Down blocks can be locked or un-  
locked. (refer to Table 13, Lock Status).  
In M58CR064C/D if V is kept in a low voltage  
PP  
range (0V to V  
) V is seen as a control input.  
DDQ  
PP  
Reset/Power-Down (RP). The  
Reset/Power-  
In this case a voltage lower than V  
gives an  
PPLK  
Down input provides a hardware reset of the mem-  
ory, and/or Power-Down functions, depending on  
the Configuration Register status. When Reset/  
absolute protection against program or erase,  
while V > V enables these functions (see Ta-  
PP  
PP1  
bles 18 and 19, DC Characteristics for the relevant  
Power-Down is at V , the memory is in reset  
values). V is only sampled at the beginning of a  
IL  
PP  
mode: the outputs are high impedance and if the  
Power-Down function is enabled the current con-  
sumption is reduced to the Reset Supply Current  
program or erase; a change in its value after the  
operation has started does not have any effect and  
program or erase operations continue.  
I
. Refer to Table 2, DC Characteristics - Cur-  
DD2  
If V  
is in the range of V  
it acts as a power  
PPH  
PP  
PP  
rents for the value of I  
are in the Locked state and the Configuration Reg-  
ister is reset. When Reset/Power-Down is at V ,  
the device is in normal operation. Exiting reset  
mode the device enters asynchronous read mode,  
but a negative transition of Chip Enable or Latch  
Enable is required to ensure valid data outputs.  
The Reset/Power-Down pin can be interfaced with  
3V logic without any additional circuitry. It can be  
After Reset all blocks  
DD2.  
supply pin. In this condition V must be stable un-  
til the Program/Erase algorithm is completed.  
IH  
V
Ground. V ground is the reference for the  
SS  
SS  
core supply. It must be connected to the system  
ground.  
V
Ground. V  
ground is the reference for  
SSQ  
SSQ  
the input/output circuitry driven by V  
must be connected to V  
. V  
DDQ  
SSQ  
SS  
10/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Note: Each device in a system should have  
, V and V decoupled with a 0.1µF ce-  
ramic capacitor close to the pin (high frequen-  
cy, inherently low inductance capacitors  
should be as close as possible to the pack-  
age). See Figure 9, AC Measurement Load Cir-  
cuit. The PCB trace widths should be sufficient  
V
DD DDQ  
PP  
to carry the required V  
currents.  
program and erase  
PP  
BUS OPERATIONS  
There are six standard bus operations that control  
the device. These are Bus Read, Bus Write, Ad-  
dress Latch, Output Disable, Standby and Reset.  
See Table 3, Bus Operations, for a summary.  
Typically glitches of less than 5ns on Chip Enable  
or Write Enable are ignored by the memory and do  
not affect Bus Write operations.  
the Latch Enable should be tied to V during the  
bus write operation.  
IH  
See Figures 14 and 15, Write AC Waveforms, and  
Tables 22 and 23, Write AC Characteristics, for  
details of the timing requirements.  
Address Latch. Address latch operations input  
valid addresses. Both Chip enable and Latch En-  
Bus Read. Bus Read operations are used to out-  
put the contents of the Memory Array, the Elec-  
tronic Signature, the Status Register and the  
Common Flash Interface. Both Chip Enable and  
able must be at V during address latch opera-  
tions. The addresses are latched on the rising  
edge of Latch Enable.  
IL  
Output Disable. The outputs are high imped-  
Output Enable must be at V in order to perform a  
IL  
ance when the Output Enable is at V .  
IH  
read operation. The Chip Enable input should be  
used to enable the device. Output Enable should  
be used to gate data onto the output. The data  
read depends on the previous command written to  
the memory (see Command Interface section).  
Refer to the Read AC Waveform figures and Char-  
acteristics tables in the DC and AC Parameters  
section for details of when the output becomes val-  
id.  
Standby. Standby disables most of the internal  
circuitry allowing a substantial reduction of the cur-  
rent consumption. The memory is in stand-by  
when Chip Enable and Reset/Power-Down are at  
V . The power consumption is reduced to the  
IH  
stand-by level and the outputs are set to high im-  
pedance, independently from the Output Enable  
or Write Enable inputs. If Chip Enable switches to  
V
during a program or erase operation, the de-  
IH  
Bus Write. Bus Write operations write Com-  
mands to the memory or latch Input Data to be  
programmed. A bus write operation is initiated  
vice enters Standby mode when finished.  
Reset. During Reset mode the memory is dese-  
lected and the outputs are high impedance. The  
memory is in Reset mode when Reset/Power-  
when Chip Enable and Write Enable are at V with  
IL  
Output Enable at V . Commands, Input Data and  
IH  
Down is at V . The power consumption is reduced  
IL  
Addresses are latched on the rising edge of Write  
Enable or Chip Enable, whichever occurs first. The  
addresses can also be latched prior to the write  
operation by toggling Latch Enable. In this case  
to the Standby level, independently from the Chip  
Enable, Output Enable or Write Enable inputs. If  
Reset is pulled to V during a Program or Erase,  
SS  
this operation is aborted and the memory content  
is no longer valid.  
Table 3. Bus Operations  
Operation  
E
G
W
L
RP  
WAIT  
DQ15-DQ0  
(2)  
V
V
V
V
Bus Read  
Data Output  
V
V
IL  
IL  
IH  
IH  
IL  
(2)  
IL  
V
IL  
V
IH  
V
V
V
IH  
Bus Write  
Hi-Z  
Data Input  
IL  
IL  
(3)  
V
V
V
V
V
IH  
Address Latch  
Output Disable  
Standby  
X
IL  
IL  
IH  
IH  
Data Output or Hi-Z  
V
IH  
V
V
IH  
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
V
IH  
X
X
X
X
IH  
V
Reset  
X
X
X
IL  
Note: 1. X = Don’t care.  
2. L can be tied to V if the valid address has been previously latched.  
IH  
3. Depends on G.  
11/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
COMMAND INTERFACE  
All Bus Write operations to the memory are inter-  
preted by the Command Interface. Commands  
consist of one or more sequential Bus Write oper-  
ations. An internal Program/Erase Controller han-  
dles all timings and verifies the correct execution  
of the Program and Erase commands. The Pro-  
gram/Erase Controller provides a Status Register  
whose output may be read at any time to monitor  
the progress or the result of the operation.  
Table 4. Command Codes  
Hex Code  
01h  
Command  
Block Lock Confirm  
03h  
Set Configuration Register Confirm  
Alternative Program Setup  
Block Erase Setup  
10h  
20h  
The Command Interface is reset to read mode  
when power is first applied, when exiting from Re-  
2Fh  
Block Lock-Down Confirm  
Double Word Program Setup  
Program Setup  
30h  
set or whenever V  
is lower than V  
. Com-  
DD  
LKO  
mand sequences must be followed exactly. Any  
invalid combination of commands will reset the de-  
vice to read mode.  
40h  
50h  
Clear Status Register  
Refer to Table 4, Command Codes and Appendix  
D, Tables 36 and 37, Command Interface States -  
Modify and Lock Tables, for a summary of the  
Command Interface.  
The Command Interface is split into two types of  
commands: Standard commands and Factory  
Program commands. The following sections ex-  
plain in detail how to perform each command.  
55h  
Quadruple Word Program Setup  
Block Lock Setup, Block Unlock Setup,  
Block Lock Down Setup and Set  
Configuration Register Setup  
60h  
70h  
80h  
90h  
98h  
B0h  
C0h  
Read Status Register  
Bank Erase Setup  
Read Electronic Signature  
Read CFI Query  
Program/Erase Suspend  
Protection Register Program  
Program/Erase Resume, Block Erase  
Confirm, Bank Erase Confirm, Block  
Unlock Confirm  
D0h  
FFh  
Read Array  
12/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
COMMAND INTERFACE - STANDARD COMMANDS  
The following commands are the basic commands  
used to read, write to and configure the device.  
Refer to Table 5, Standard Commands, in con-  
junction with the following text descriptions.  
Read CFI Query Command  
The Read CFI Query command is used to read  
data from the Common Flash Interface (CFI)  
memory area located in the bottom bank. The  
Read CFI Query Command consists of one Bus  
Write cycle, to an address within the bottom bank.  
Once the command is issued subsequent Bus  
Read operations in the same bank read from the  
Common Flash Interface.  
If a Read CFI Query command is issued in a bank  
that is executing a Program or Erase operation the  
bank will go into Read Status Register mode, sub-  
sequent Bus Read cycles will output the Status  
Register and the Program/Erase controller will  
continue to Program or Erase in the background.  
When the Program or Erase operation has fin-  
ished the device will enter Read CFI Query mode.  
Read Array Command  
The Read Array command returns the addressed  
bank to Read Array mode. One Bus Write cycle is  
required to issue the Read Array command and re-  
turn the addressed bank to Read Array mode.  
Subsequent read operations will read the ad-  
dressed location and output the data. A Read Ar-  
ray command can be issued in one bank while  
programming or erasing in the other bank. Howev-  
er if a Read Array command is issued to a bank  
currently executing a Program or Erase operation  
the command will be ignored.  
Read Status Register Command  
This mode supports asynchronous or single syn-  
chronous reads only, it does not support page  
mode or synchronous burst reads.  
The status of the other banks is not affected by the  
command (see Table 11). After issuing a Read  
CFI Query command, a Read Array command  
should be issued to the addressed bank to return  
the bank to read mode.  
See Appendix C, Common Flash Interface, Tables  
30, 31, 32, 33, 34 and 35 for details on the infor-  
mation contained in the Common Flash Interface  
memory area.  
A Bank’s Status Register indicates when a Pro-  
gram or Erase operation is complete and the suc-  
cess or failure of operation itself. Issue a Read  
Status Register command to read the Status Reg-  
ister content of the addressed Bank. The Read  
Status Register command can be issued at any  
time, even during Program or Erase operations.  
The following Bus Read operations output the con-  
tent of the Status Register of the addressed bank.  
The Status Register is latched on the falling edge  
of E or G signals, and can be read until E or G re-  
turns to V . Either E or G must be toggled to up-  
IH  
date the latched data. See Table 8 for the  
description of the Status Register Bits. This mode  
supports asynchronous or single synchronous  
reads only.  
Clear Status Register Command  
The Clear Status Register command can be used  
to reset (set to ‘0’) error bits 1, 3, 4 and 5 in the Sta-  
tus Register of the addressed bank. One bus write  
cycle is required to issue the Clear Status Register  
command. After the Clear Status Register com-  
mand the bank returns to Read Array mode.  
The error bits in the Status Register do not auto-  
matically return to ‘0’ when a new command is is-  
sued. The error bits in the Status Register should  
be cleared before attempting a new Program or  
Erase command.  
Read Electronic Signature Command  
The Read Electronic Signature command reads  
the Manufacturer and Device Codes, the Block  
Locking Status, the Protection Register, and the  
Configuration Register.  
The Read Electronic Signature command consists  
of one write cycle to an address within the bottom  
bank. A subsequent read operation in the address  
of the bottom bank will output the Manufacturer  
Code, the Device Code, the protection Status of  
Blocks of the bottom bank, the Die Revision Code,  
the Protection Register, or the Read Configuration  
Register (see Table 6).  
If the first write cycle of Read Electronic Signature  
command is issued to an address within the top  
bank, a subsequent read operation in an address  
of the top bank will output the protection Status of  
blocks of the top bank. The status of the other  
bank is not affected by the command (see Table  
11). This mode supports asynchronous or single  
synchronous reads only, it does not support page  
mode or synchronous burst reads.  
Block Erase Command  
The Block Erase command can be used to erase  
a block. It sets all the bits within the selected block  
to ’1’. All previous data in the block is lost. If the  
block is protected then the Erase operation will  
abort, the data in the block will not be changed and  
the Status Register will output the error. The Block  
Erase command can be issued at any moment, re-  
gardless of whether the block has been pro-  
grammed or not.  
Two Bus Write cycles are required to issue the  
command.  
The first bus cycle sets up the Erase command.  
13/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
The second latches the block address in the  
internal state machine and starts the Program/  
Erase Controller.  
If the second bus cycle is not Write Erase Confirm  
(D0h), Status Register bits 4 and 5 are set and the  
command aborts. Erase aborts if Reset turns to  
During Bank Erase operations the bank being  
erased will only accept the Read Status Register  
command, all other commands will be ignored. A  
Bank Erase operation cannot be suspended.  
Refer to Dual Operations section for detailed infor-  
mation about simultaneous operations allowed in  
banks not being erased. Typical Erase times are  
given in Table 14, Program, Erase Times and Pro-  
gram/Erase Endurance Cycles.  
V . As data integrity cannot be guaranteed when  
IL  
the Erase operation is aborted, the block must be  
erased again.  
Once the command is issued the device outputs  
the Status Register data when any address within  
the bank is read. At the end of the operation the  
bank will remain in Read Status Register mode un-  
til a Read Array, Read CFI Query or Read Elec-  
tronic Signature command is issued.  
Program Command  
The memory array can be programmed word-by-  
word. Only one Word in one bank can be pro-  
grammed at any one time. Two bus write cycles  
are required to issue the Program Command.  
The first bus cycle sets up the Program  
During Erase operations the bank containing the  
block being erased will only accept the Read Sta-  
tus Register and the Program/Erase Suspend  
command, all other commands will be ignored.  
Refer to Dual Operations section for detailed infor-  
mation about simultaneous operations allowed in  
banks not being erased. Typical Erase times are  
given in Table 14, Program, Erase Times and Pro-  
gram/Erase Endurance Cycles.  
command.  
The second latches the Address and the Data to  
be written and starts the Program/Erase  
Controller.  
After programming has started, read operations in  
the bank being programmed output the Status  
Register content.  
During Program operations the bank being pro-  
grammed will only accept the Read Status Regis-  
ter and the Program/Erase Suspend command.  
Refer to Dual Operations section for detailed infor-  
mation about simultaneous operations allowed in  
banks not being programmed. Typical Program  
times are given in Table 14, Program, Erase  
Times and Program/Erase Endurance Cycles.  
See Appendix C, Figure 22, Block Erase Flow-  
chart and Pseudo Code, for a suggested flowchart  
for using the Block Erase command.  
Bank Erase Command  
The Bank Erase command can be used to erase a  
bank. It sets all the bits within the selected bank to  
’1’. All previous data in the bank is lost. The Bank  
Erase command will ignore any protected blocks  
within the bank. If all blocks in the bank are pro-  
tected then the Bank Erase operation will abort  
and the data in the bank will not be changed. The  
Status Register will not output any error.  
Programming aborts if Reset goes to V . As data  
IL  
integrity cannot be guaranteed when the program  
operation is aborted, the memory location must be  
reprogrammed.  
See Appendix C, Figure 18, Program Flowchart  
and Pseudo Code, for the flowchart for using the  
Program command.  
Two Bus Write cycles are required to issue the  
command.  
Program/Erase Suspend Command  
The first bus cycle sets up the Bank Erase  
The Program/Erase Suspend command is used to  
pause a Program or Block Erase operation. A  
Bank Erase operation cannot be suspended.  
One bus write cycle is required to issue the Pro-  
gram/Erase Suspend command. Once the Pro-  
gram/Erase Controller has paused bits 7, 6 and/ or  
2 of the Status Register will be set to ‘1’. The com-  
mand must be addressed to the bank containing  
the Program or Erase operation.  
During Program/Erase Suspend the Command In-  
terface will accept the Program/Erase Resume,  
Read Array (cannot read the suspended block),  
Read Status Register, Read Electronic Signature  
and Read CFI Query commands. Additionally, if  
the suspend operation was Erase then the Clear  
status Register, Program, Block Lock, Block Lock-  
Down or Protection Program commands will also  
be accepted. The block being erased may be pro-  
command.  
The second latches the bank address in the  
internal state machine and starts the Program/  
Erase Controller.  
If the second bus cycle is not Write Bank Erase  
Confirm (D0h), Status Register bits b4 and b5 are  
set and the command aborts. Erase aborts if Re-  
set turns to V . As data integrity cannot be guar-  
IL  
anteed when the Erase operation is aborted, the  
bank must be erased again.  
Once the command is issued the device outputs  
the Status Register data when any address within  
the bank is read. At the end of the operation the  
bank will remain in Read Status Register mode un-  
til a Read Array, Read CFI Query or Read Elec-  
tronic Signature command is issued.  
14/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
tected by issuing the Block Lock, Block Lock-  
The segment can be protected by programming bit  
1 of the Protection Lock Register. Bit 1 of the Pro-  
tection Lock Register also protects bit 2 of the Pro-  
tection Lock Register. Programming bit 2 of the  
Protection Lock Register will result in a permanent  
protection of Parameter Block #0 (see Figure 5,  
Security Block and Protection Register Memory  
Map). Attempting to program a previously protect-  
ed Protection Register will result in a Status Reg-  
ister error. The protection of the Protection  
Register and/or the Security Block is not revers-  
ible.  
Down or Protection Register Program commands.  
Only the blocks not being erased may be read or  
programmed correctly. When the Program/Erase  
Resume command is issued the operation will  
complete. Refer to the Dual Operations section for  
detailed information about simultaneous opera-  
tions allowed during Program/Erase Suspend.  
During a Program/Erase Suspend, the device can  
be placed in standby mode by taking Chip Enable  
to V . Program/Erase is aborted if Reset turns to  
IH  
V .  
IL  
The Protection Register Program cannot be sus-  
pended. See Appendix C, Figure 25, Protection  
Register Program Flowchart and Pseudo Code,  
for a flowchart for using the Protection Register  
Program command.  
See Appendix C, Figure 21, Program Suspend &  
Resume Flowchart and Pseudo Code, and Figure  
23, Erase Suspend & Resume Flowchart and  
Pseudo Code for flowcharts for using the Program/  
Erase Suspend command.  
Set Configuration Register Command.  
Program/Erase Resume Command  
The Set Configuration Register command is used  
to write a new value to the Configuration Control  
Register which defines the burst length, type, X la-  
tency, Synchronous/Asynchronous Read mode  
and the valid Clock edge configuration.  
Two Bus Write cycles are required to issue the Set  
Configuration Register command.  
The first cycle writes the setup command and  
the address corresponding to the Configuration  
Register content.  
The Program/Erase Resume command can be  
used to restart the Program/Erase Controller after  
a Program/Erase Suspend command has paused  
it. One Bus Write cycle is required to issue the  
command. The command must be written to the  
bank containing the Program or Erase Suspend.  
The Program/Erase Resume command changes  
the read mode of the target bank to Read Status  
Register mode.  
If a Program command is issued during a Block  
Erase Suspend, then the erase cannot be re-  
sumed until the programming operation has com-  
pleted. It is possible to accumulate suspend  
operations. For example: suspend an erase oper-  
ation, start a programming operation, suspend the  
programming operation then read the array. See  
Appendix C, Figure 21, Program Suspend & Re-  
sume Flowchart and Pseudo Code, and Figure 23,  
Erase Suspend & Resume Flowchart and Pseudo  
Code for flowcharts for using the Program/Erase  
Resume command.  
The second cycle writes the Configuration  
Register data and the confirm command.  
Once the command is issued the memory returns  
to Read mode.  
The value for the Configuration Register is always  
presented on A0-A15. CR0 is on A0, CR1 on A1,  
etc.; the other address bits are ignored.  
Block Lock Command  
The Block Lock command is used to lock a block  
and prevent Program or Erase operations from  
changing the data in it. All blocks are locked at  
power-up or reset.  
Protection Register Program Command  
The Protection Register Program command is  
used to Program the 128 bit user One-Time-Pro-  
grammable (OTP) segment of the Protection Reg-  
ister. The segment is programmed 16 bits at a  
time. When shipped all bits in the segment are set  
to ‘1’. The user can only program the bits to ‘0’.  
Two Bus Write cycles are required to issue the  
Block Lock command.  
The first bus cycle sets up the Block Lock  
command.  
The second Bus Write cycle latches the block  
Two write cycles are required to issue the Protec-  
tion Register Program command.  
The first bus cycle sets up the Protection  
address.  
The lock status can be monitored for each block  
using the Read Electronic Signature command.  
Table. 13 shows the Lock Status after issuing a  
Block Lock command.  
Register Program command.  
The second latches the Address and the Data to  
be written to the Protection Register and starts  
the Program/Erase Controller.  
Read operations output the Status Register con-  
tent after the programming has started.  
The Block Lock bits are volatile, once set they re-  
main set until a hardware reset or power-down/  
power-up. They are cleared by a Block Unlock  
command. Refer to the section, Block Locking, for  
a detailed explanation. See Appendix C, Figure  
15/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
24, Locking Operations Flowchart and Pseudo  
Code, for a flowchart for using the Lock command.  
Block Unlock Command  
The Block Unlock command is used to unlock a  
block, allowing the block to be programmed or  
erased. Two Bus Write cycles are required to is-  
sue the Block Unlock command.  
down block cannot be programmed or erased, or  
have its protection status changed when WP is  
low, V . When WP is high, V the Lock-Down  
function is disabled and the locked blocks can be  
individually unlocked by the Block Unlock com-  
mand.  
IL  
IH,  
Two Bus Write cycles are required to issue the  
Block Lock-Down command.  
The first bus cycle sets up the Block Unlock  
The first bus cycle sets up the Block Lock  
command.  
command.  
The second Bus Write cycle latches the block  
The second Bus Write cycle latches the block  
address.  
address.  
The lock status can be monitored for each block  
using the Read Electronic Signature command.  
Table 13 shows the protection status after issuing  
a Block Unlock command. Refer to the section,  
Block Locking, for a detailed explanation and Ap-  
pendix C, Figure 24, Locking Operations Flow-  
chart and Pseudo Code, for a flowchart for using  
the Unlock command.  
Block Lock-Down Command  
A locked or unlocked block can be locked-down by  
issuing the Block Lock-Down command. A locked-  
The lock status can be monitored for each block  
using the Read Electronic Signature command.  
Locked-Down blocks revert to the locked (and not  
locked-down) state when the device is reset on  
power-down. Table. 13 shows the Lock Status af-  
ter issuing a Block Lock-Down command. Refer to  
the section, Block Locking, for a detailed explana-  
tion and Appendix C, Figure 24, Locking Opera-  
tions Flowchart and Pseudo Code, for a flowchart  
for using the Lock-Down command.  
16/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Table 5. Standard Commands  
Commands  
Bus Operations  
1st Cycle  
Add  
2nd Cycle  
Add  
Op.  
Write  
Write  
Data  
FFh  
70h  
Op.  
Data  
RD  
Read Array  
1+  
1+  
BKA  
WA  
Read  
Read  
(2)  
Read Status Register  
BKA  
SRD  
BKA  
BBKA or  
BBKA or  
(3)  
Read Electronic Signature  
Read CFI Query  
1+  
1+  
Write  
Write  
90h  
98h  
Read  
Read  
ESD  
(3)  
(2,3)  
BKA  
BKA  
(2)  
BBKA  
QD  
BBKA  
Clear Status Register  
Block Erase  
1
2
2
2
1
1
2
2
2
2
2
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
BKA  
BKA  
BKA  
BKA  
BKA  
BKA  
PRA  
CRD  
BKA  
BKA  
BKA  
50h  
20h  
Write  
Write  
Write  
BA  
BKA  
WA  
D0h  
D0h  
PD  
Bank Erase  
80h  
Program  
40h or 10h  
B0h  
Program/Erase Suspend  
Program/Erase Resume  
Protection Register Program  
Set Configuration Register  
Block Lock  
D0h  
C0h  
Write  
Write  
Write  
Write  
Write  
PRA  
CRD  
BA  
PRD  
03h  
01h  
D0h  
2Fh  
60h  
60h  
Block Unlock  
60h  
BA  
Block Lock-Down  
60h  
BA  
Note: 1. X = Don’t Care, WA=Word Address in targeted bank, RD=Read Data, SRD=Status Register Data, ESD=Electronic Signature Data,  
QD=Query Data, BA=Block Address, BKA= Bank Address, BBKA= Bottom Bank Address, PD=Program Data, PRA=Protection  
Register Address, PRD=Protection Register Data, CRD=Configuration Register Data.  
2. Must be same bank as in the first cycle. The signature addresses are listed in Table 6.  
3. When addressed to a block in the Top Bank, reads Block Protection data only.  
17/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Table 6. Electronic Signature Codes  
Code  
Address (h)  
Data (h)  
0020  
88CA  
88CB  
8801  
Manufacturer Code  
Top (M58CR064C)  
Bottom Bank Address + 00  
Bottom (M58CR064D)  
Device Code  
Bottom Bank Address + 01  
Top (M58CR064P)  
Bottom (M58CR064Q)  
Lock  
8802  
0001  
0000  
0003  
0002  
Reserved  
CR  
Unlocked  
Block Protection  
Block Address + 02  
Locked and Locked-Down  
Unlocked and Locked-Down  
Reserved  
Bottom Bank Address + 03  
Bottom Bank Address + 05  
Configuration Register  
ST Factory Default  
xx06  
Security Block Permanently Locked  
xx02  
Protection Register Lock  
Bottom Bank Address + 80  
OTP Area Permanently Locked  
xx04  
Security Block and OTP Area Permanently  
Locked  
xx00  
Bottom Bank Address + 81 Unique Device  
Bottom Bank Address + 84  
Number  
Protection Register  
Bottom Bank Address + 85  
Bottom Bank Address + 8C  
OTP Area  
Note: CR=Configuration Register.  
Figure 5. Security Block and Protection Register Memory Map  
PROTECTION REGISTER  
8Ch  
SECURITY BLOCK  
Parameter Block # 0  
User Programmable OTP  
Unique device number  
85h  
84h  
81h  
80h  
Protection Register Lock  
2
1
0
AI06181  
18/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
COMMAND INTERFACE - FACTORY PROGRAM COMMANDS  
The Factory Program commands are used to  
speed up programming. They require V to be at  
Quadruple Word Program Command  
PP  
The Quadruple Word Program command im-  
proves the programming throughput by writing a  
page of four adjacent words in parallel. The four  
words must differ only for the addresses A0 and  
A1.  
V
. Refer to Table 7, Factory Program Com-  
PPH  
mands, in conjunction with the following text de-  
scriptions.  
Double Word Program Command  
The Double Word Program command improves  
the programming throughput by writing a page of  
two adjacent words in parallel. The two words  
must differ only for the address A0.  
Programming should not be attempted when V  
PP  
is not at V  
. The command can be executed if  
PPH  
V
is below V  
but the result is not guaranteed.  
PP  
PPH  
Five bus write cycles are necessary to issue the  
Quadruple Word Program command.  
Programming should not be attempted when V  
PP  
. The command can be executed if  
PPH  
The first bus cycle sets up the Double Word  
but the result is not guaranteed.  
PPH  
Program Command.  
Three bus write cycles are necessary to issue the  
Double Word Program command.  
The second bus cycle latches the Address and  
the Data of the first word to be written.  
The first bus cycle sets up the Double Word  
The third bus cycle latches the Address and the  
Program Command.  
Data of the second word to be written.  
The second bus cycle latches the Address and  
The fourth bus cycle latches the Address and  
the Data of the first word to be written.  
the Data of the third word to be written.  
The third bus cycle latches the Address and the  
Data of the second word to be written and starts  
the Program/Erase Controller.  
The fifth bus cycle latches the Address and the  
Data of the fourth word to be written and starts  
the Program/Erase Controller.  
Read operations in the bank being programmed  
output the Status Register content after the pro-  
gramming has started.  
Read operations to the bank being programmed  
output the Status Register content after the pro-  
gramming has started.  
During Double Word Program operations the bank  
being programmed will only accept the Read Sta-  
tus Register command, all other commands will be  
ignored. Dual operations are not supported during  
Double Word Program operations. It is not recom-  
mended to suspend the Double Word Program  
command. Typical Program times are given in Ta-  
ble 14, Program, Erase Times and Program/Erase  
Endurance Cycles.  
Programming aborts if Reset goes to V . As data  
IL  
integrity cannot be guaranteed when the program  
operation is aborted, the memory locations must  
be reprogrammed.  
During Quadruple Word Program operations the  
bank being programmed will only accept the Read  
Status Register command, all other commands  
will be ignored.  
Dual operations are not supported during Quadru-  
ple Word Program operations. It is not recom-  
mended to suspend the Quadruple Word Program  
command. Typical Program times are given in Ta-  
ble 14, Program, Erase Times and Program/Erase  
Endurance Cycles.  
See Appendix C, Figure 20, Quadruple Word Pro-  
gram Flowchart and Pseudo Code, for the flow-  
chart for using the Quadruple Word Program  
command.  
Programming aborts if Reset goes to V . As data  
IL  
integrity cannot be guaranteed when the program  
operation is aborted, the memory locations must  
be reprogrammed.  
See Appendix C, Figure 19, Double Word Pro-  
gram Flowchart and Pseudo Code, for the flow-  
chart for using the Double Word Program  
command.  
19/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Table 7. Factory Program Commands  
Bus Write Operations  
3rd  
Command  
Phase  
1st  
2nd  
Add  
4th  
Add  
5th  
Add  
Data  
Data  
Add  
Data  
Data  
Add  
Data  
(2)  
3
5
BKA  
30h  
WA1  
WA1  
PD1  
WA2  
PD2  
Double Word Program  
Quadruple Word  
BKA  
55h  
PD1  
WA2  
PD2  
WA3  
PD3  
WA4  
PD4  
(3)  
Program  
Note: 1. WA=Word Address in targeted bank, BKA= Bank Address, PD=Program Data, WA1 is the Start Address.  
2. Word Addresses 1 and 2 must be consecutive Addresses differing only for A0.  
3. Word Addresses 1,2,3 and 4 must be consecutive Addresses differing only for A0 and A1.  
STATUS REGISTER  
The M58CR064 has two Status Registers, one for  
each bank. The Status Registers provide informa-  
tion on the current or previous Program or Erase  
operations executed in each bank. Issue a Read  
Status Register command to read the contents of  
the Status Register, refer to Read Status Register  
Command section for more details. To output the  
contents, the Status Register is latched and updat-  
ed on the falling edge of the Chip Enable or Output  
Enable signals, and can be read until Chip Enable  
pauses. After the Program/Erase Controller paus-  
es the bit is High.  
During Program, Erase, operations the Program/  
Erase Controller Status bit can be polled to find the  
end of the operation. Other bits in the Status Reg-  
ister should not be tested until the Program/Erase  
Controller completes the operation and the bit is  
High.  
After the Program/Erase Controller completes its  
operation the Erase Status, Program Status, V  
PP  
or Output Enable returns to V . The Status Reg-  
IH  
Status and Block Lock Status bits should be tested  
for errors.  
ister can only be read using single asynchronous  
or single synchronous reads. Bus Read opera-  
tions from any address within the bank, always  
read the Status Register during Program and  
Erase operations.  
The various bits convey information about the sta-  
tus and any errors of the operation. Bits SR7, SR6  
and SR2 give information on the status of the bank  
and are set and reset by the device. Bits SR5,  
SR4, SR3 and SR1 give information on errors,  
they are set by the device but must be reset by is-  
suing a Clear Status Register command or a hard-  
ware reset. If an error bit is set to ‘1’ the Status  
Register should be reset before issuing another  
command.  
Erase Suspend Status Bit (SR6). The  
Erase  
Suspend Status bit indicates that an Erase opera-  
tion has been suspended or is going to be sus-  
pended in the addressed block. When the Erase  
Suspend Status bit is High (set to ‘1’), a Program/  
Erase Suspend command has been issued and  
the memory is waiting for a Program/Erase Re-  
sume command.  
The Erase Suspend Status should only be consid-  
ered valid when the Program/Erase Controller Sta-  
tus bit is High (Program/Erase Controller inactive).  
SR7 is set within 30µs of the Program/Erase Sus-  
pend command being issued therefore the memo-  
ry may still complete the operation rather than  
entering the Suspend mode.  
The bits in the Status Register are summarized in  
Table 8, Status Register Bits. Refer to Table 8 in  
conjunction with the following text descriptions.  
When a Program/Erase Resume command is is-  
sued the Erase Suspend Status bit returns Low.  
Program/Erase Controller Status Bit (SR7). The  
Program/Erase Controller Status bit indicates  
whether the Program/Erase Controller is active or  
inactive in the addressed bank. When the Pro-  
gram/Erase Controller Status bit is Low (set to ‘0’),  
the Program/Erase Controller is active; when the  
bit is High (set to ‘1’), the Program/Erase Control-  
ler is inactive, and the device is ready to process a  
new command.  
Erase Status Bit (SR5). The Erase Status bit  
can be used to identify if the memory has failed to  
verify that the block or bank has erased correctly.  
When the Erase Status bit is High (set to ‘1’), the  
Program/Erase Controller has applied the maxi-  
mum number of pulses to the block or bank and  
still failed to verify that it has erased correctly. The  
Erase Status bit should be read once the Program/  
Erase Controller Status bit is High (Program/Erase  
Controller inactive).  
The Program/Erase Controller Status is Low im-  
mediately after a Program/Erase Suspend com-  
mand is issued until the Program/Erase Controller  
20/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Once set High, the Erase Status bit can only be re-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
set Low by a Clear Status Register command or a  
hardware reset. If set High it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
Program Status Bit (SR4). The Program Status  
bit is used to identify a Program failure. When the  
Program Status bit is High (set to ‘1’), the Pro-  
gram/Erase Controller has applied the maximum  
number of pulses to the byte and still failed to ver-  
ify that it has programmed correctly. The Program  
Status bit should be read once the Program/Erase  
Controller Status bit is High (Program/Erase Con-  
troller inactive).  
Program Suspend Status Bit (SR2). The Pro-  
gram Suspend Status bit indicates that a Program  
operation has been suspended in the addressed  
block. When the Program Suspend Status bit is  
High (set to ‘1’), a Program/Erase Suspend com-  
mand has been issued and the memory is waiting  
for a Program/Erase Resume command. The Pro-  
gram Suspend Status should only be considered  
valid when the Program/Erase Controller Status  
bit is High (Program/Erase Controller inactive).  
SR2 is set within 5µs of the Program/Erase Sus-  
pend command being issued therefore the memo-  
ry may still complete the operation rather than  
entering the Suspend mode.  
When a Program/Erase Resume command is is-  
sued the Program Suspend Status bit returns Low.  
Block Protection Status Bit (SR1). The Block  
Protection Status bit can be used to identify if a  
Program or Block Erase operation has tried to  
modify the contents of a locked block.  
Once set High, the Program Status bit can only be  
reset Low by a Clear Status Register command or  
a hardware reset. If set High it should be reset be-  
fore a new command is issued, otherwise the new  
command will appear to fail.  
V
Status Bit (SR3). The V Status bit can be  
PP  
PP  
used to identify an invalid voltage on the V pin  
PP  
during Program and Erase operations. The V  
PP  
pin is only sampled at the beginning of a Program  
or Erase operation. Indeterminate results can oc-  
When the Block Protection Status bit is High (set  
to ‘1’), a Program or Erase operation has been at-  
tempted on a locked block.  
cur if V becomes invalid during an operation.  
PP  
When the V Status bit is Low (set to ‘0’), the volt-  
PP  
Once set High, the Block Protection Status bit can  
only be reset Low by a Clear Status Register com-  
mand or a hardware reset. If set High it should be  
reset before a new command is issued, otherwise  
the new command will appear to fail.  
Reserved Bit (SR0). SR0 is reserved. Its value  
must be masked.  
age on the V pin was sampled at a valid voltage;  
PP  
when the V Status bit is High (set to ‘1’), the V  
PP  
PP  
pin has a voltage that is below the V  
Lockout  
PP  
Voltage, V  
, the memory is protected and Pro-  
PPLK  
gram and Erase operations cannot be performed.  
Once set High, the V Status bit can only be reset  
PP  
Low by a Clear Status Register command or a  
hardware reset. If set High it should be reset be-  
21/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Table 8. Status Register Bits  
Bit  
Name  
Type LogicLevel  
Definition  
’1’  
Ready  
SR7 P/E.C. Status  
Status  
’0’  
Busy  
’1’  
Erase Suspended  
SR6 Erase Suspend Status  
SR5 Erase Status  
Status  
’0’  
Erase In progress or Completed  
Erase Error  
’1’  
Error  
’0’  
Erase Success  
’1’  
Program Error  
SR4 Program Status  
Error  
’0’  
Program Success  
V
V
Invalid, Abort  
OK  
’1’  
PP  
PP  
V
Status  
SR3  
Error  
’0’  
PP  
’1’  
Program Suspended  
SR2 Program Suspend Status Status  
’0’  
’1’  
’0’  
Program In Progress or Completed  
Program/Erase on protected Block, Abort  
No operation to protected blocks  
Reserved  
SR1 Block Protection Status  
Error  
SR0  
Note: Logic level ’1’ is High, ’0’ is Low.  
22/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
CONFIGURATION REGISTER  
The Configuration Register is used to configure  
the type of bus access that the memory will per-  
form. Refer to Read Modes section for details on  
read operations.  
The Configuration Register is set through the  
Command Interface. After a Reset or Power-Up  
the device is configured for asynchronous page  
read (CR15 = 1). The Configuration Register bits  
are described in Table 9. They specify the selec-  
tion of the burst length, burst type, burst X latency  
and the Read operation. Refer to Figures 6 and 7  
for examples of synchronous burst configurations.  
Refer to Figure 6, X-Latency and Data Output  
Configuration Example.  
Power-Down Bit (CR10)  
The Power-Down bit is used to enable or disable  
the power-down function.  
When the Power-Down bit is set to ‘0’ the power-  
down function is disabled. If the Reset/Power-  
Down, RP, pin goes Low, V , the device is reset  
IL  
and the supply current, I  
is reduced to the  
DD,  
standby value, I  
.
DD3  
When the Power-Down bit is set to ‘1’ the power-  
down function is enabled. If the Reset/Power-  
Read Select Bit (CR15)  
Down, RP, pin goes Low, V , the device goes into  
IL  
The Read Select bit, CR15, is used to switch be-  
tween asynchronous and synchronous Bus Read  
operations. When the Read Select bit is set to ’1’,  
read operations are asynchronous; when the  
Read Select bit is set to ’0’, read operations are  
synchronous. Synchronous Burst Read is support-  
ed in both parameter and main blocks and can be  
performed across banks.  
the power-down state and the supply current, I  
DD,  
is reduced to the power-down value, I  
.
DD2  
The recovery time after a Reset/Power-Down, RP,  
pulse is significantly longer when power-down is  
enabled (see Table 24).  
After a reset the Power-Down Bit is set to ‘0’.  
Wait Configuration Bit (CR8)  
On reset or power-up the Read Select bit is set  
to’1’ for asynchronous access.  
X-Latency Bits (CR13-CR11)  
In burst mode the Wait bit controls the timing of the  
Wait output pin, WAIT. When the Wait bit is ’0’ the  
Wait output pin is asserted during the wait state.  
When the Wait bit is ’1’ (default) the Wait output  
pin is asserted one clock cycle before the wait  
state.  
WAIT is asserted during a continuous burst and  
also during a 4 or 8 burst length if no-wrap config-  
uration is selected. WAIT is not asserted during  
asynchronous reads, single synchronous reads or  
during latency in synchronous reads.  
The X-Latency bits are used during Synchronous  
Read operations to set the number of clock cycles  
between the address being latched and the first  
data becoming available. For correct operation the  
X-Latency bits can only assume the values in Ta-  
ble 9, Configuration Register.  
The correspondence between X-Latency settings  
and the maximum sustainable frequency must be  
calculated taking into account some system pa-  
rameters. Two conditions must be satisfied:  
Burst Type Bit (CR7)  
The Burst Type bit is used to configure the se-  
quence of addresses read as sequential or inter-  
leaved. When the Burst Type bit is ’0’ the memory  
outputs from interleaved addresses; when the  
Burst Type bit is ’1’ (default) the memory outputs  
from sequential addresses. See Tables 10, Burst  
Type Definition, for the sequence of addresses  
output from a given starting address in each mode.  
1. Depending on whether t  
or t  
is  
DELAY  
AVK_CPU  
supplied either one of the following two  
equations must be satisfied:  
(n + 1) t t  
- t  
+ t  
K
ACC AVK_CPU QVK_CPU  
(n + 2) t t  
+ t  
+ t  
K
ACC  
DELAY QVK_CPU  
2. and also  
t > t  
+ t  
QVK_CPU  
Valid Clock Edge Bit (CR6)  
K
KQV  
where  
n is the chosen X-Latency configuration code  
t is the clock period  
The Valid Clock Edge bit, CR6, is used to config-  
ure the active edge of the Clock, K, during Syn-  
chronous Burst Read operations. When the Valid  
Clock Edge bit is ’0’ the falling edge of the Clock is  
the active edge; when the Valid Clock Edge bit is  
’1’ the rising edge of the Clock is active.  
K
t
is clock to address valid, L Low, or E  
AVK_CPU  
Low, whichever occurs last  
t
is address valid, L Low, or E Low to clock,  
DELAY  
Wrap Burst Bit (CR3)  
whichever occurs last  
The burst reads can be confined inside the 4 or 8  
Word boundary (wrap) or overcome the boundary  
(no wrap). The Wrap Burst bit is used to select be-  
tween wrap and no wrap. When the Wrap Burst bit  
is set to ‘0’ the burst read wraps; when it is set to  
‘1’ the burst read does not wrap.  
t
is the data setup time required by the  
QVK_CPU  
system CPU,  
t
t
is the clock to data valid time  
is the random access time of the device.  
KQV  
ACC  
23/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Burst length Bits (CR2-CR0)  
If the starting address is aligned to a 4 word  
boundary no wait states are needed and the WAIT  
output is not asserted.  
The Burst Length bits set the number of Words to  
be output during a Synchronous Burst Read oper-  
ation as result of a single address latch cycle.  
They can be set for 4 words, 8 words or continu-  
ous burst, where all the words are read sequential-  
ly.  
In continuous burst mode the burst sequence can  
cross bank boundaries.  
In continuous burst mode or in 4, 8 words no-wrap,  
depending on the starting address, the device as-  
serts the WAIT output to indicate that a delay is  
necessary before the data is output.  
If the starting address is shifted by 1,2 or 3 posi-  
tions from the four word boundary, WAIT will be  
asserted for 1, 2 or 3 clock cycles when the burst  
sequence crosses the first 64 word boundary, to  
indicate that the device needs an internal delay to  
read the successive words in the array. WAIT will  
be asserted only once during a continuous burst  
access. See also Table 10, Burst Type Definition.  
CR14, CR9, CR5 and CR4 are reserved for future  
use.  
Table 9. Configuration Register  
Bit  
Description  
Value  
Description  
0
1
Synchronous Read  
CR15  
CR14  
Read Select  
Asynchronous Read (Default at power-on)  
Reserved  
010  
011  
100  
101  
111  
2 clock latency  
3 clock latency  
4 clock latency  
CR13-CR11  
X-Latency  
5 clock latency  
Reserved  
Other configurations reserved  
0
1
Power-Down disabled  
Power-Down enabled  
Reserved  
CR10  
CR9  
Power-Down  
0
WAIT is active during wait state  
CR8  
CR7  
Wait Configuration  
1
0
1
0
1
WAIT is active one data cycle before wait state (default)  
Interleaved  
Burst Type  
Sequential (default)  
Falling Clock edge  
Rising Clock edge  
Reserved  
CR6  
CR5-CR4  
CR3  
Valid Clock Edge  
0
Wrap  
Wrap Burst  
1
No Wrap  
001  
010  
111  
4 words  
CR2-CR0  
Burst Length  
8 words  
Continuous (CR7 must be set to ‘1’)  
24/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Table 10. Burst Type Definition  
Start  
Address  
4 Words  
8 Words  
Continuous Burst  
Sequential  
Interleaved  
0-1-2-3  
Sequential  
Interleaved  
0-1-2-3-4-5-6-7  
1-0-3-2-5-4-7-6  
2-3-0-1-6-7-4-5  
3-2-1-0-7-6-5-4  
0
1
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
0-1-2-3-4-5-6...  
1-2-3-4-5-6-7...  
2-3-4-5-6-7-8...  
3-4-5-6-7-8-9...  
1-0-3-2  
2
2-3-0-1  
3
3-2-1-0  
...  
7
7-4-5-6  
7-6-5-4  
7-0-1-2-3-4-5-6  
7-6-5-4-3-2-1-0  
7-8-9-10-11-12-13...  
...  
60  
61  
62  
60-61-62-63-64-65-66...  
61-62-63-WAIT-64-65-66...  
62-63-WAIT-WAIT-64-65-66...  
63-WAIT-WAIT-WAIT-64-65-  
66...  
63  
Sequential  
0-1-2-3  
Interleaved  
Sequential  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
2-3-4-5-6-7-8-9...  
3-4-5-6-7-8-9-10  
Interleaved  
0
1
1-2-3-4  
2
2-3-4-5  
3
3-4-5-6  
...  
7
7-8-9-10  
7-8-9-10-11-12-13-14  
Same as for Wrap  
(Wrap /No Wrap  
has no effect on  
Continuous Burst )  
...  
60-61-62-63-64-65-66-  
67  
60  
61  
62  
63  
60-61-62-63  
61-62-63-WAIT-64-65-  
66-67-68  
61-62-63-WAIT-64  
62-63-WAIT-WAIT-  
64-65  
62-63-WAIT-WAIT-64-  
65-66-67-68-69  
63-WAIT-WAIT-  
WAIT-64-65-66  
63-WAIT-WAIT-WAIT-  
64-65-66-67-68-69-70  
25/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Figure 6. X-Latency and Data Output Configuration Example  
X-latency  
1st cycle  
2nd cycle  
3rd cycle  
4th cycle  
K
E
L
A21-A0  
tDELAY  
VALID ADDRESS  
tAVK_CPU  
tQVK_CPU  
tK  
tQVK_CPU  
tACC  
tKQV  
DQ15-DQ0  
VALID DATA VALID DATA  
Note. Settings shown: X-latency = 4, Data Output held for one clock cycle  
AI90005  
Figure 7. Wait Configuration Example  
E
K
L
A21-A0  
VALID ADDRESS  
DQ15-DQ0  
VALID DATA VALID DATA NOT VALID VALID DATA  
WAIT  
CR8 = '0'  
WAIT  
CR8 = '1'  
AI90006  
26/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
READ MODES  
Read operations can be performed in two different  
ways depending on the settings in the Configura-  
tion Register. If the clock signal is ‘don’t care’ for  
the data output, the read operation is Asynchro-  
nous; if the data output is synchronized with clock,  
the read operation is Synchronous.  
The Read mode and data output format are deter-  
mined by the Configuration Register. (See Config-  
uration Register section for details). All banks  
supports both asynchronous and synchronous  
read operations. The Dual Bank architecture al-  
lows read operations in one bank, while write op-  
erations are being executed in the other (see  
Tables 11 and 12).  
In Synchronous Burst Read mode the flow of the  
data output depends on parameters that are con-  
figured in the Configuration Register.  
A burst sequence is started at the first clock edge  
(rising or falling depending on Valid Clock Edge bit  
CR6 in the Configuration Register) after the falling  
edge of Latch Enable. Addresses are internally in-  
cremented and after a delay of 2 to 5 clock cycles  
(X latency bits CR13-CR11) the corresponding  
data are output on each clock cycle.  
The number of Words to be output during a Syn-  
chronous Burst Read operation can be configured  
as 4 or 8 Words or Continuous (Burst Length bits  
CR2-CR0). The data can be configured to remain  
valid for one or two clock cycles (Data Output Con-  
figuration bit CR9).  
The order of the data output can be modified  
through the Burst Type and the Wrap Burst bits in  
the Configuration Register. The burst sequence  
may be configured to be sequential or interleaved  
(CR7). The burst reads can be confined inside the  
4 or 8 Word boundary (Wrap) or overcome the  
boundary (No Wrap). If the starting address is  
aligned to a 4 Word Page the wrapped configura-  
tion has no impact on the output sequence. Inter-  
leaved mode is not allowed in Continuous Burst  
Read mode or with No Wrap sequences.  
Asynchronous Read Mode  
In Asynchronous Read operations the clock signal  
is ‘don’t care’. The device outputs the data corre-  
sponding to the address latched, that is the mem-  
ory array, Status Register, Common Flash  
Interface or Electronic Signature depending on the  
command issued. CR15 in the Configuration Reg-  
ister must be set to ‘1’ for Asynchronous opera-  
tions.  
In Asynchronous Read mode a Page of data is in-  
ternally read and stored in a Page Buffer. The  
Page has a size of 4 Words and is addressed by  
A0 and A1 address inputs. The address inputs A0  
and A1 are not gated by Latch Enable in Asyn-  
chronous Read mode.  
A WAIT signal may be asserted to indicate to the  
system that an output delay will occur. This delay  
will depend on the starting address of the burst se-  
quence; the worst case delay will occur when the  
sequence is crossing a 64 word boundary and the  
starting address was at the end of a four word  
boundary.  
The first read operation within the Page has a  
longer access time (T , Random access time),  
acc  
subsequent reads within the same Page have  
much shorter access times. If the Page changes  
then the normal, longer timings apply again.  
WAIT is asserted during X latency and the Wait  
state and is only deasserted when output data are  
valid. In Continuous Burst Read mode a Wait state  
will occur when crossing the first 64 Word bound-  
ary. If the burst starting address is aligned to a 4  
Word Page, the Wait state will not occur.  
Asynchronous Read operations can be performed  
in two different ways, Asynchronous Random Ac-  
cess Read and Asynchronous Page Read. Only  
Asynchronous Page Read takes full advantage of  
the internal page storage so different timings are  
applied.  
The WAIT signal is active Low. The WAIT signal is  
meaningful only in Synchronous Burst Read  
mode, in other modes, WAIT is not asserted (ex-  
cept for Read Array mode).  
See Table 20, Asynchronous Read AC Character-  
istics, Figure 10, Asynchronous Random Access  
Read AC Waveform and Figure 11, Asynchronous  
Page Read AC Waveform for details.  
See Table 21, Synchronous Read AC Character-  
istics and Figure 12, Synchronous Burst Read AC  
Waveform for details.  
Synchronous Burst Read Mode  
In Synchronous Burst Read mode the data is out-  
put in bursts synchronized with the clock. It is pos-  
sible to perform burst reads across bank  
boundaries.  
Synchronous Burst Read mode can only be used  
to read the memory array. For other read opera-  
tions, such as Read Status Register, Read CFI  
and Read Electronic Signature, Single Synchro-  
nous Read or Asynchronous Random Access  
Read must be used.  
Single Synchronous Read Mode  
Single Synchronous Read operations are similar  
to Synchronous Burst Read operations except that  
only the first data output after the X latency is valid.  
Other Configuration Register parameters have no  
effect on Single Synchronous Read operations.  
Synchronous Single Reads are used to read the  
Electronic Signature, Status Register, CFI, Block  
27/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Protection Status, Configuration Register Status  
or Protection Register. When the addressed bank  
is in Read CFI, Read Status Register or Read  
Electronic Signature mode, the WAIT signal is al-  
ways asserted.  
See Table 21, Synchronous Read AC Character-  
istics and Figure 13, Single Synchronous Read AC  
Waveform for details.  
DUAL OPERATIONS AND MULTIPLE BANK ARCHITECTURE  
The Dual Operations feature simplifies the soft-  
ware management of the device and allows code  
to be executed from one bank while the other bank  
is being programmed or erased.  
The Dual operations feature means that while pro-  
gramming or erasing in one bank, Read opera-  
tions are possible in the other bank with zero  
latency (only one bank at a time is allowed to be in  
Program or Erase mode). If a Read operation is re-  
quired in a bank which is programming or erasing,  
the Program or Erase operation can be suspend-  
ed. Also if the suspended operation was Erase  
then a Program command can be issued to anoth-  
er block, so the device can have one block in  
Erase Suspend mode, one programming and the  
other bank in Read mode. Bus Read operations  
are allowed in the other bank between setup and  
confirm cycles of program or erase operations.  
The combination of these features means that  
read operations are possible at any moment.  
Tables 11 and 12 show the dual operations possi-  
ble in the other bank and in the same bank. Note  
that only the commonly used commands are rep-  
resented in these tables. For a complete list of  
possible commands refer to Appendix D, Com-  
mand Interface State Tables.  
Table 11. Dual Operations Allowed In Other Bank  
Commands allowed in other bank  
Read  
Status  
Register  
Read Read  
Program/ Program/  
Erase Erase  
Suspend Resume  
Status of bank  
Read  
Array  
CFI  
Electronic Program  
Signature  
Erase  
Query  
Idle  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Programming  
Erasing  
Program Suspended  
Erase Suspended  
Yes  
Yes  
Yes  
Table 12. Dual Operations Allowed In Same Bank  
Commands allowed in same bank  
Read  
Status  
Register  
Read  
Program/ Program/  
Erase Erase  
Suspend Resume  
Status of bank  
Read  
Array  
Read  
CFI Query  
Electronic Program  
Signature  
Erase  
Idle  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Programming  
Erasing  
(1)  
Program Suspended  
Erase Suspended  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
(1)  
(1)  
Yes  
Yes  
Note: 1. Not allowed in the Block or Word that is being erased or programmed.  
28/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
BLOCK LOCKING  
The M58CR064 features an instant, individual  
block locking scheme that allows any block to be  
locked or unlocked with no latency. This locking  
scheme has three levels of protection.  
reset or when the device is powered-down. The  
status of an unlocked block can be changed to  
Locked or Locked-Down using the appropriate  
software commands. A locked block can be un-  
locked by issuing the Unlock command.  
Lock/Unlock - this first level allows software-  
Lock-Down State  
only control of block locking.  
Blocks that are Locked-Down (state (0,1,x))are  
protected from program and erase operations (as  
for Locked blocks) but their protection status can-  
not be changed using software commands alone.  
A Locked or Unlocked block can be Locked-Down  
by issuing the Lock-Down command. Locked-  
Down blocks revert to the Locked state when the  
device is reset or powered-down.  
Lock-Down - this second level requires  
hardware interaction before locking can be  
changed.  
V V  
- the third level offers a complete  
PP  
PPLK  
hardware protection against program and erase  
on all blocks (M58CR064C/D only).  
The first two levels (Lock/Unlock and Lock-Down)  
are available in M58CR064C/D and M58CR064P/  
The Lock-Down function is dependent on the WP  
input pin. When WP=0 (V ), the blocks in the  
IL  
Q. The third level (V V  
) is only available  
PPLK  
PP  
Lock-Down state (0,1,x) are protected from pro-  
gram, erase and protection status changes. When  
for the M58CR064C/D versions, in the  
M58CR064P/Q this feature has been disabled.  
WP=1 (V ) the Lock-Down function is disabled  
IH  
For all devices the protection status of each block  
can be set to Locked, Unlocked, and Lock-Down.  
Table 13, defines all of the possible protection  
states (WP, DQ1, DQ0), and Appendix C, Figure  
24, shows a flowchart for the locking operations.  
(1,1,x) and Locked-Down blocks can be individual-  
ly unlocked to the (1,1,0) state by issuing the soft-  
ware command, where they can be erased and  
programmed. These blocks can then be re-locked  
(1,1,1) and unlocked (1,1,0) as desired while WP  
remains high. When WP is low , blocks that were  
previously Locked-Down return to the Lock-Down  
state (0,1,x) regardless of any changes made  
while WP was high. Device reset or power-down  
resets all blocks , including those in Lock-Down, to  
the Locked state.  
Reading a Block’s Lock Status  
The lock status of every block can be read in the  
Read Electronic Signature mode of the device. To  
enter this mode write 90h to the device. Subse-  
quent reads at the address specified in Table 6,  
will output the protection status of that block. The  
lock status is represented by DQ0 and DQ1. DQ0  
indicates the Block Lock/Unlock status and is set  
by the Lock command and cleared by the Unlock  
command. It is also automatically set when enter-  
ing Lock-Down. DQ1 indicates the Lock-Down sta-  
tus and is set by the Lock-Down command. It  
cannot be cleared by software, only by a hardware  
reset or power-down.  
Locking Operations During Erase Suspend  
Changes to block lock status can be performed  
during an erase suspend by using the standard  
locking command sequences to unlock, lock or  
lock-down a block. This is useful in the case when  
another block needs to be updated while an erase  
operation is in progress.  
To change block locking during an erase opera-  
tion, first write the Erase Suspend command, then  
check the status register until it indicates that the  
erase operation has been suspended. Next write  
the desired Lock command sequence to a block  
and the lock status will be changed. After complet-  
ing any desired lock, read, or program operations,  
resume the erase operation with the Erase Re-  
sume command.  
If a block is locked or locked-down during an erase  
suspend of the same block, the locking status bits  
will be changed immediately, but when the erase  
is resumed, the erase operation will complete.  
Locking operations cannot be performed during a  
program suspend. Refer to Appendix D, Com-  
mand Interface State Table, for detailed informa-  
tion on which commands are valid during erase  
suspend.  
The following sections explain the operation of the  
locking system.  
Locked State  
The default status of all blocks on power-up or af-  
ter a hardware reset is Locked (states (0,0,1) or  
(1,0,1)). Locked blocks are fully protected from  
any program or erase. Any program or erase oper-  
ations attempted on a locked block will return an  
error in the Status Register. The Status of a  
Locked block can be changed to Unlocked or  
Lock-Down using the appropriate software com-  
mands. An Unlocked block can be Locked by issu-  
ing the Lock command.  
Unlocked State  
Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)),  
can be programmed or erased. All unlocked  
blocks return to the Locked state after a hardware  
29/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Table 13. Lock Status  
Current  
(1)  
Next Protection Status  
(WP, DQ1, DQ0)  
(1)  
Protection Status  
(WP, DQ1, DQ0)  
After  
Block Lock  
Command  
After  
Block Unlock  
Command  
After Block  
Lock-Down  
Command  
Program/Erase  
Allowed  
After  
WP transition  
Current State  
1,0,0  
yes  
no  
1,0,1  
1,0,1  
1,1,1  
1,1,1  
0,0,1  
0,0,1  
1,0,0  
1,0,0  
1,1,0  
1,1,0  
0,0,0  
0,0,0  
1,1,1  
1,1,1  
1,1,1  
1,1,1  
0,1,1  
0,1,1  
0,0,0  
0,0,1  
0,1,1  
0,1,1  
1,0,0  
1,0,1  
(2)  
1,0,1  
1,1,0  
1,1,1  
0,0,0  
yes  
no  
yes  
no  
(2)  
0,0,1  
(3)  
0,1,1  
no  
0,1,1  
0,1,1  
0,1,1  
1,1,1 or 1,1,0  
Note: 1. The lock status is defined by the write protect pin and by DQ1 (‘1’ for a locked-down block) and DQ0 (‘1’ for a locked block) as read  
in the Read Electronic Signature command with A1 = V and A0 = V .  
IH  
IL  
2. All blocks are locked at power-up, so the default configuration is 001 or 101 according to WP status.  
3. A WP transition to V on a locked block will restore the previous DQ0 value, giving a 111 or 110.  
IH  
30/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
PROGRAM AND ERASE TIMES AND ENDURANCE CYCLES  
The Program and Erase times and the number of  
Program/ Erase cycles per block are shown in Ta-  
ble 14. In the M58CR064 the maximum number of  
Program/ Erase cycles depends on the voltage  
supply used.  
Table 14. Program, Erase Times and Program, Erase Endurance Cycles  
Typical  
after  
100k W/E  
Cycles  
Parameter  
Condition  
Min  
Typ  
Unit  
Max  
(2)  
0.3  
0.8  
1.1  
11  
18  
33  
54  
40  
1
3
2.5  
4
s
s
Parameter Block (4 KWord) Erase  
Main Block (32 KWord) Erase  
Preprogrammed  
Not Preprogrammed  
Preprogrammed  
4
s
s
Bank A (16Mbit) Erase  
Bank B (48Mbit) Erase  
Not Preprogrammed  
Preprogrammed  
s
s
Not Preprogrammed  
s
(3)  
ms  
Parameter Block (4 KWord) Program  
(3)  
300  
ms  
Main Block (32 KWord) Program  
(3)  
10  
5
10  
100  
10  
µs  
µs  
Word Program  
Program Suspend Latency  
Erase Suspend Latency  
5
20  
µs  
Main Blocks  
100,000  
100,000  
cycles  
cycles  
s
Program/Erase Cycles (per Block)  
Parameter Blocks  
0.3  
0.9  
13  
39  
510  
8
2.5  
4
Parameter Block (4 KWord) Erase  
Main Block (32 KWord) Erase  
Bank A (16Mbit) Erase  
Bank B (48Mbit) Erase  
4Mbit Program  
s
s
s
Quadruple Word  
ms  
µs  
(3)  
100  
Word/ Double Word/ Quadruple Word Program  
Parameter Block (4 KWord)  
Quadruple Word  
8
ms  
(3)  
Program  
Word  
32  
ms  
Quadruple Word  
Word  
64  
ms  
ms  
(3)  
Main Block (32 KWord) Program  
256  
Main Blocks  
Parameter Blocks  
1000 cycles  
2500 cycles  
Program/Erase Cycles (per Block)  
Note: 1. T = –40 to 85°C; V = 1.65V to 2V; V = 1.65V to 3.3V.  
DDQ  
A
DD  
2. The difference between Preprogrammed and not preprogrammed is not significant (‹30ms).  
3. Excludes the time needed to execute the command sequence.  
31/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings table may cause per-  
manent damage to the device. These are stress  
ratings only and operation of the device at these or  
any other conditions above those indicated in the  
Operating sections of this specification is not im-  
plied. Exposure to Absolute Maximum Rating con-  
ditions for extended periods may affect device  
reliability. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
Table 15. Absolute Maximum Ratings  
Value  
Symbol  
Parameter  
Ambient Operating Temperature  
Temperature Under Bias  
Storage Temperature  
Min  
–40  
–40  
–55  
Max  
85  
Unit  
°C  
T
A
T
125  
155  
°C  
BIAS  
T
°C  
STG  
V
DDQ  
+0.5  
Input or Output Voltage  
–0.5  
–0.5  
–0.5  
–0.5  
V
V
V
V
IO  
Supply Voltage  
2.7  
3.6  
13  
DD  
V
Input/Output Supply Voltage  
Program Voltage  
V
DDQ  
V
V
PP  
I
Output Short Circuit Current  
Time for V at V  
100  
100  
mA  
hours  
O
t
VPPH  
PP  
PPH  
32/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
DC AND AC PARAMETERS  
This section summarizes the operating measure-  
ment conditions, and the DC and AC characteris-  
tics of the device. The parameters in the DC and  
AC characteristics Tables that follow, are derived  
from tests performed under the Measurement  
Conditions summarized in Table 16, Operating  
and AC Measurement Conditions. Designers  
should check that the operating conditions in their  
circuit match the operating conditions when rely-  
ing on the quoted parameters.  
Table 16. Operating and AC Measurement Conditions  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
85  
100  
120  
Parameter  
Supply Voltage  
Units  
Min  
1.8  
Max  
2.0  
Min  
1.65  
1.65  
11.4  
Max  
2.0  
Min  
1.65  
1.65  
11.4  
Max  
2.0  
V
V
V
V
V
V
DD  
Supply Voltage  
1.8  
3.3  
3.3  
3.3  
DDQ  
Supply Voltage (Factory environment)  
Supply Voltage (Application environment)  
11.4  
12.6  
12.6  
12.6  
PP  
PP  
V
DDQ  
V
V
DDQ  
+0.4  
DDQ  
V
-0.4  
-0.4  
-0.4  
V
+0.4  
+0.4  
Ambient Operating Temperature  
– 40  
85  
– 40  
85  
– 40  
85  
°C  
pF  
ns  
V
Load Capacitance (C )  
30  
30  
30  
L
Input Rise and Fall Times  
4
4
4
0 to V  
0 to V  
0 to V  
DDQ  
Input Pulse Voltages  
DDQ  
DDQ  
V
/2  
DDQ  
V
DDQ  
/2  
V
/2  
DDQ  
Input and Output Timing Ref. Voltages  
V
Figure 8. AC Measurement I/O Waveform  
Figure 9. AC Measurement Load Circuit  
V
DDQ  
V
DDQ  
V
V
/2  
DDQ  
DDQ  
V
DD  
0V  
16.7kΩ  
AI06161  
DEVICE  
UNDER  
TEST  
C
L
16.7kΩ  
0.1µF  
0.1µF  
C
includes JIG capacitance  
L
AI06162  
Table 17. Capacitance  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
Min  
Max  
8
Unit  
C
V
= 0V  
= 0V  
6
8
pF  
pF  
IN  
IN  
C
OUT  
V
OUT  
12  
Note: Sampled only, not 100% tested.  
33/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Table 18. DC Characteristics - Currents  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Test Condition  
Min  
Typ  
Max  
±1  
Unit  
µA  
I
0V V V  
LI  
IN  
DDQ  
I
LO  
0V V  
V  
OUT DDQ  
±1  
µA  
Supply Current  
Asynchronous Read (f=6MHz)  
E = V , G = V  
3
6
mA  
IL  
IH  
4 Word  
8 Word  
6
8
13  
14  
10  
16  
18  
25  
mA  
mA  
mA  
mA  
mA  
mA  
Supply Current  
Synchronous Read (f=40MHz)  
I
DD1  
Continuous  
4 Word  
6
7
Supply Current  
Synchronous Read (f=54MHz)  
8 Word  
10  
13  
Continuous  
Supply Current  
(Power-Down)  
I
I
RP = V ± 0.2V  
2
10  
µA  
DD2  
DD3  
SS  
E = V ± 0.2V  
Supply Current (Standby)  
10  
8
50  
15  
20  
15  
20  
µA  
mA  
mA  
mA  
mA  
DD  
V
= V  
PPH  
PP  
Supply Current (Program)  
V
= V  
= V  
10  
8
PP  
PP  
DD  
(1)  
I
DD4  
V
PPH  
Supply Current (Erase)  
V
PP  
= V  
DD  
10  
Program/Erase in one  
Bank, Asynchronous  
Read in another Bank  
13  
26  
mA  
Supply Current  
(Dual Operations)  
(1,2)  
(1)  
I
DD5  
Program/Erase in one  
Bank, Synchronous  
Read in another Bank  
16  
10  
30  
50  
mA  
µA  
Supply Current Program/ Erase  
Suspended (Standby)  
E = V ± 0.2V  
I
DD  
DD6  
V
V
V
= V  
PPH  
2
5
5
mA  
µA  
mA  
µA  
µA  
µA  
µA  
PP  
V
V
Supply Current (Program)  
Supply Current (Erase)  
PP  
PP  
V
= V  
= V  
0.2  
2
PP  
DD  
(1)  
I
PP1  
5
PP  
PPH  
V
= V  
DD  
0.2  
100  
0.2  
0.2  
5
PP  
= V  
400  
5
PP  
PPH  
I
V
V
Supply Current (Read)  
PP2  
PP  
PP  
V
V  
V  
PP  
PP  
DD  
DD  
(1)  
Supply Current (Standby)  
V
5
I
PP3  
Note: 1. Sampled only, not 100% tested.  
2. V Dual Operation current is the sum of read and program or erase currents.  
DD  
34/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Table 19. DC Characteristics - Voltages  
Symbol  
Parameter  
Input Low Voltage  
Test Condition  
Min  
Typ  
Max  
Unit  
V
V
–0.5  
0.4  
IL  
V
V
V
–0.4  
V
+ 0.4  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
V
IH  
DDQ  
DDQ  
DDQ  
V
OL  
I
= 100µA  
0.1  
V
OL  
V
OH  
I
= –100µA  
–0.1  
V
OH  
V
V
Program Voltage-Logic  
Program Voltage Factory  
Program, Erase  
Program, Erase  
1
1.8  
12  
1.95  
12.6  
0.9  
V
PP1  
PP  
V
PPH  
11.4  
V
V
PP  
V
Program or Erase Lockout  
V Lock Voltage  
DD  
V
V
V
PPLK  
V
LKO  
1
V
RPH  
RP pin Extended High Voltage  
3.3  
35/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Figure 10. Asynchronous Random Access Read AC Waveforms  
36/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Figure 11. Asynchronous Page Read AC Waveforms  
37/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Table 20. Asynchronous Read AC Characteristics  
M58CR064  
100  
Symbol  
Alt  
Parameter  
Unit  
85  
85  
85  
30  
120  
120  
120  
45  
t
t
Address Valid to Next Address Valid  
Address Valid to Output Valid (Random)  
Address Valid to Output Valid (Page)  
Address Transition to Output Transition  
Chip Enable Low to Wait Valid  
Min  
Max  
Max  
Min  
100  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
RC  
t
t
ACC  
100  
AVQV  
t
t
PAGE  
45  
AVQV1  
(1)  
t
0
14  
85  
0
0
14  
100  
0
0
18  
120  
0
t
OH  
AXQX  
t
Max  
Max  
ELTV  
(2)  
(1)  
t
Chip Enable Low to Output Valid  
t
t
CE  
ELQV  
t
LZ  
Chip Enable Low to Output Transition  
Chip Enable High to Wait Hi-Z  
Min  
Max  
Min  
Max  
Max  
Min  
Max  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQX  
t
20  
0
20  
0
20  
0
EHTZ  
(1)  
(1)  
(2)  
(1)  
t
Chip Enable High to Output Transition  
Chip Enable High to Output Hi-Z  
Output Enable Low to Output Valid  
Output Enable Low to Output Transition  
Output Enable Low to Wait Valid  
Output Enable High to Output Transition  
t
OH  
EHQX  
EHQZ  
GLQV  
t
HZ  
20  
25  
0
20  
25  
0
20  
25  
0
t
t
t
t
OE  
t
OLZ  
GLQX  
t
14  
0
14  
0
18  
0
GLTV  
(1)  
t
t
t
OH  
GHQX  
(1)  
t
DF  
Output Enable High to Output Hi-Z  
Address Valid to Latch Enable High  
Chip Enable Low to Latch Enable High  
Latch Enable High to Address Transition  
Latch Enable Pulse Width  
Max  
Min  
Min  
Min  
Min  
Max  
Min  
20  
10  
10  
10  
10  
85  
10  
20  
10  
20  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
GHQZ  
t
t
t
AVLH  
ELLH  
AVADVH  
t
t
10  
10  
ELADVH  
ADVHAX  
t
10  
10  
LHAX  
t
t
ADVLADVH  
10  
10  
LLLH  
LLQV  
LHGL  
t
t
t
Latch Enable Low to Output Valid (Random)  
Latch Enable High to Output Enable Low  
100  
10  
120  
10  
ADVLQV  
t
ADVHGL  
Note: 1. Sampled only, not 100% tested.  
2. G may be delayed by up to t  
- t  
after the falling edge of E without increasing t  
.
ELQV  
ELQV GLQV  
38/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Figure 12. Synchronous Burst Read AC Waveforms  
39/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Figure 13. Single Synchronous Read AC Waveforms  
40/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Table 21. Synchronous Read AC Characteristics  
M58CR064  
Symbol  
Alt  
Parameter  
Unit  
85  
7
100  
7
120  
7
t
t
t
Address Valid to Clock High  
Chip Enable Low to Clock High  
Chip Enable Low to Wait Valid  
Min  
Min  
Max  
ns  
ns  
ns  
AVKH  
AVCLKH  
t
7
7
7
ELKH  
ELCLKH  
t
14  
14  
18  
ELTV  
EHEL  
EHTZ  
Chip Enable Pulse Width  
(subsequent synchronous reads)  
t
Min  
20  
20  
20  
ns  
t
t
Chip Enable High to Wait Hi-Z  
Clock High to Address Transition  
Max  
Min  
20  
10  
20  
10  
20  
10  
ns  
ns  
t
KHAX  
CLKHAX  
t
t
Clock High to Output Valid  
Clock High to WAIT Valid  
KHQV  
t
t
Max  
Min  
14  
14  
18  
4
ns  
ns  
CLKHQV  
t
KHTV  
Clock High to Output Transition  
Clock High to WAIT Transition  
KHQX  
4
7
4
7
CLKHQX  
t
KHTX  
t
t
Latch Enable Low to Clock High  
Clock Period (f=40MHz)  
Clock Period (f=54MHz)  
Clock High to Clock Low  
Min  
Min  
Min  
Min  
7
ns  
ns  
ns  
ns  
LLKH  
ADVLCLKH  
25  
t
t
CLK  
KHKH  
18  
5
18  
5
t
t
t
5
5
KHKL  
KLKH  
CLKHCLKL  
t
Clock Low to Clock High  
Max  
5
5
ns  
CLKLCLKH  
Note: 1. Sampled only, not 100% tested.  
2. For other timings please refer to Table 20, Asynchronous Read AC Characteristics.  
41/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Figure 14. Write AC Waveforms, Write Enable Controlled  
42/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Table 22. Write AC Characteristics, Write Enable Controlled  
M58CR064  
Symbol  
Alt  
Parameter  
Unit  
85  
85  
10  
60  
40  
10  
0
100  
100  
10  
60  
40  
10  
0
120  
120  
10  
60  
40  
10  
0
t
t
Address Valid to Next Address Valid  
Address Valid to Latch Enable High  
Address Valid to Write Enable High  
Input Valid to Write Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
WC  
t
AVLH  
t
t
AVWH  
WC  
t
t
DVWH  
DS  
t
Chip Enable Low to Latch Enable High  
Chip Enable Low to Write Enable Low  
Chip Enable Low to Output Valid  
ELLH  
t
t
ELWL  
CS  
t
85  
20  
10  
10  
0
100  
20  
10  
10  
0
120  
20  
10  
10  
0
ELQV  
t
Output Enable High to Write Enable Low  
Latch Enable High to Address Transition  
Latch Enable Pulse Width  
GHWL  
t
LHAX  
t
LLLH  
t
Write Enable High to Address Valid  
Write Enable High to Address Transition  
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Write Enable High to Chip Enable Low  
Write Enable High to Output Enable Low  
Write Enable High to Latch Enable Low  
Write Enable High to Clock Valid  
WHAV  
t
t
t
0
0
0
WHAX  
AH  
t
0
0
0
WHDX  
DH  
CH  
t
t
0
0
0
WHEH  
(2)  
50  
0
50  
0
50  
0
t
WHEL  
t
WHGL  
t
0
0
0
WHLL  
t
25  
30  
105  
50  
0
25  
30  
120  
50  
0
25  
30  
140  
50  
0
WHKV  
t
t
WPH  
Write Enable High to Write Enable Low  
Write Enable High to Output Valid  
Write Enable Low to Write Enable High  
WHWL  
t
WHQV  
t
t
WLWH  
WP  
t
Output (Status Register) Valid to V Low  
QVVPL  
PP  
t
Output (Status Register) Valid to Write Protect Low Min  
0
0
0
QVWPL  
t
t
V
High to Write Enable High  
PP  
Min  
Min  
Min  
Min  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
VPHWH  
VPS  
t
Write Enable High to V Low  
WHVPL  
PP  
t
t
Write Enable High to Write Protect Low  
Write Protect High to Write Enable High  
WHWPL  
WPHWH  
Note: 1. Sampled only, not 100% tested.  
2. t has the values shown when reading in the targeted bank. System designers should take this into account and may insert a  
WHEL  
software No-Op instruction to delay the first read in the same bank after issuing a command. If the read operation is in a different  
bank t is 0ns.  
WHEL  
43/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Figure 15. Write AC Waveforms, Chip Enable Controlled  
44/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Table 23. Write AC Characteristics, Chip Enable Controlled  
M58CR064  
Symbol  
Alt  
Parameter  
Unit  
85  
85  
60  
10  
40  
0
100  
100  
60  
10  
40  
0
120  
120  
60  
10  
40  
0
t
t
Address Valid to Next Address Valid  
Address Valid to Chip Enable High  
Address Valid to Latch Enable High  
Input Valid to Write Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
WC  
t
t
AVEH  
WC  
t
t
AVLH  
t
DVEH  
EHAX  
EHDX  
DS  
AH  
DH  
t
t
t
Chip Enable High to Address Transition  
Chip Enable High to Input Transition  
Chip Enable High to Chip Enable Low  
Chip Enable High to Output Enable Low  
Chip Enable High to Write Enable High  
Chip Enable Low to Chip Enable High  
Chip Enable Low to Latch Enable High  
Latch Enable Low to Output Valid  
Output Enable High to Chip Enable Low  
Latch Enable High to Address Transition  
Latch Enable Pulse Width  
t
0
0
0
t
t
t
WPH  
30  
0
30  
0
30  
0
EHEL  
EHGL  
t
t
0
0
0
EHWH  
CH  
t
t
60  
10  
85  
20  
10  
10  
60  
10  
100  
20  
10  
10  
60  
10  
120  
20  
10  
10  
ELEH  
WP  
t
ELLH  
ELQV  
GHEL  
t
t
t
LHAX  
t
LLLH  
(2)  
Write Enable High to Chip Enable Low  
Write Enable High to Clock Valid  
50  
25  
0
50  
25  
0
50  
25  
0
t
WHEL  
t
WHKV  
t
t
Write Enable Low to Chip Enable Low  
WLEL  
CS  
t
Chip Enable High to V Low  
200  
200  
0
200  
200  
0
200  
200  
0
EHVPL  
PP  
t
Chip Enable High to Write Protect Low  
EHWPL  
t
Output (Status Register) Valid to V Low  
QVVPL  
PP  
t
Output (Status Register) Valid to Write Protect Low Min  
0
0
0
QVWPL  
t
t
V
PP  
High to Chip Enable High  
Min  
Min  
200  
200  
200  
200  
200  
200  
VPHEH  
VPS  
t
Write Protect High to Chip Enable High  
WPHEH  
Note: 1. Sampled only, not 100% tested.  
2. t has the values shown when reading in the targeted bank. System designers should take this into account and may insert a  
WHEL  
software No-Op instruction to delay the first read in the same bank after issuing a command. If the read operation is in a different  
bank t is 0ns.  
WHEL  
45/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Figure 16. Reset and Power-up AC Waveforms  
tPLWL  
tPLEL  
tPLGL  
tPLLL  
L
W, E, G,  
RP  
tVDHPH  
tPLPH  
VDD, VDDQ  
Power-Up  
Reset  
AI90013c  
Table 24. Reset and Power-up AC Characteristics  
Symbol  
Parameter  
Test Condition  
During Program  
85  
10  
20  
100  
10  
120  
10  
Unit  
µs  
Reset Low to  
Min  
t
PLWL  
Write Enable Low,  
Chip Enable Low,  
Output Enable Low,  
Latch Enable Low  
t
PLEL  
During Erase  
Min  
Min  
20  
20  
µs  
t
PLGL  
t
Other Conditions  
80  
50  
80  
50  
80  
50  
ns  
ns  
PLLL  
(1,2)  
(3)  
RP Pulse Width  
Min  
Min  
t
PLPH  
Supply Voltages High to Reset  
High  
50  
50  
50  
µs  
t
VDHPH  
Note: 1. The device Reset is possible but not guaranteed if t  
2. Sampled only, not 100% tested.  
< 50ns.  
PLPH  
3. It is important to assert RP in order to allow proper CPU initialization during Power-Up or Reset.  
46/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
PACKAGE MECHANICAL  
Figure 17. TFBGA56 6.5x10mm - 8x7 ball array, 0.75 mm pitch, Bottom View Package Outline  
D
D1  
FD  
SD  
FE  
E
E1  
BALL "A1"  
A
e
ddd  
e
b
A2  
A1  
BGA-Z20  
Note: Drawing is not to scale.  
Table 25. TFBGA56 6.5x10mm - 8x7 ball array, 0.75 mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
1.200  
0.400  
Typ  
Max  
A
A1  
A2  
b
1.010  
0.0398  
0.0098  
0.0472  
0.0157  
0.250  
0.790  
0.400  
6.500  
5.250  
0.0311  
0.0157  
0.2559  
0.2067  
0.350  
6.400  
0.450  
0.0138  
0.2520  
0.0177  
D
6.600  
0.2598  
D1  
ddd  
E
0.100  
0.0039  
10.000  
4.500  
0.750  
0.625  
2.750  
0.375  
9.900  
10.100  
0.3937  
0.1772  
0.0295  
0.0246  
0.1083  
0.0148  
0.3898  
0.3976  
E1  
e
FD  
FE  
SD  
47/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
PART NUMBERING  
Table 26. Ordering Information Scheme  
Example:  
M58CR064C  
85 ZB  
6
T
Device Type  
M58  
Architecture  
C = Dual Bank, Burst Mode  
Operating Voltage  
R = V = 1.65V to 2.0V, V  
= 1.65V to 3.3V  
DD  
DDQ  
Device Function  
064C = 64 Mbit (x16), Dual Bank: 1/4-3/4 partitioning, Top Boot  
064D = 64 Mbit (x16), Dual Bank: 1/4-3/4 partitioning, Bottom Boot  
064P = 64 Mbit (x16), Dual Bank: 1/4-3/4 partitioning, Top Boot,  
V
PP  
protection feature disabled  
064Q = 64 Mbit (x16), Dual Bank: 1/4-3/4 partitioning, Bottom Boot,  
protection feature disabled  
V
PP  
Speed  
85 = 85 ns  
100 = 100 ns  
120 = 120 ns  
Package  
ZB = TFBGA56: 6.5 x 10mm, 0.75 mm pitch  
Temperature Range  
6 = –40 to 85°C  
Option  
T = Tape & Reel packing  
Devices are shipped from the factory with the memory content bits erased to ’1’.  
For a list of available options (Speed, Package, etc....) or for further information on any aspect of this de-  
vice, please contact the ST Sales Office nearest to you.  
48/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
REVISION HISTORY  
Table 27. Document Revision History  
Date  
Version  
-01  
Revision Details  
November 2000  
12/20/00  
First Issue  
-02  
Protection/Security clarification  
Memory Map diagram clarification (Figure 4)  
Single Synchronous Read clarification (Figure 6)  
Identifier Codes clarification (Table 6)  
X-Latency configuration clarification  
CFI Query Identification String change (Table 31)  
Synchronous Burst Read Waveforms change (Figure 12)  
Reset AC Characteristics clarification (Table 24)  
Program Time clarification (Table )  
1/08/01  
3/02/01  
-03  
-04  
Reset AC Characteristics clarification (Table 24)  
Reset AC Waveforms diagram change (Figure 1)  
Document type: from Target Specification to Product Preview  
Read Status Register clarification  
Read Electronic Signature clarification  
Protection Register Program clarification  
Write Configuration Register clarification  
Wait Configuration Sequence change (Figure 7)  
CFI Query System Interface clarification (Table 32)  
CFI Device Geometry change (Table 33)  
Asynchronous Read AC Waveforms change (Figure 10)  
Page Read AC Waveforms added (Figure 11)  
Write AC Waveforms W Contr. and E Contr. change (Figure 14, 15)  
Reset and Power-up AC Characteristics and Waveform change (Table 24, Figure 1)  
TFBGA Package Mechanical Data and Outline added (Table 25, Figure 17)  
4/05/01  
-05  
TFBGA Connections change  
X-Latency Configuration Sequence change  
Reset and Power-up AC Characteristics clarification  
V
clarification  
DDQ  
23-Jul-2001  
23-Oct-2001  
15-Mar-2002  
-06  
-07  
-08  
Complete rewrite and restructure  
85ns speed class added, document classified as Preliminary Data  
Part numbers M58CR064P/Q added. CFI information clarified: Table 31,data  
modified at Offset 13h. Table 32, data modified at Offsets 20h, 23h, 24h and 25h.  
Table 35, Offset addresses modified. DC Characteristics table modified, Program,  
Erase Times and Program, Erase Endurance Cycles table modified.  
23-May-2002  
27-Aug-2002  
-09  
9.1  
Document changed to new structure  
Revision numbering modified: a minor revision will be indicated by incrementing the  
digit after the dot, and a major revision, by incrementing the digit before the dot.  
(revision version 09 equals 9.0).  
Document status changed from Preliminary Data to Datasheet.  
Minimum V  
and V  
supply voltages for 85ns speed class changed to 1.8V in  
DD  
DDQ  
Table16, Operating and AC Measurement Conditions.  
49/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
APPENDIX A. BLOCK ADDRESS TABLES  
Table 28. Top Boot Block Addresses,  
39  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
2F8000-2FFFFF  
2F0000-2F7FFF  
2E8000-2EFFFF  
2E0000-2E7FFF  
2D8000-2DFFFF  
2D0000-2D7FFF  
2C8000-2CFFFF  
2C0000-2C7FFF  
2B8000-2BFFFF  
2B0000-2B7FFF  
2A8000-2AFFFF  
2A0000-2A7FFF  
298000-29FFFF  
290000-297FFF  
288000-28FFFF  
280000-287FFF  
278000-27FFFF  
270000-277FFF  
268000-26FFFF  
260000-267FFF  
258000-25FFFF  
250000-257FFF  
248000-24FFFF  
240000-247FFF  
238000-23FFFF  
230000-237FFF  
228000-22FFFF  
220000-227FFF  
218000-21FFFF  
210000-217FFF  
208000-20FFFF  
200000-207FFF  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
M58CR064C, M58CR064P  
Size  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
Bank  
#
Address Range  
(KWord)  
0
4
3FF000-3FFFFF  
3FE000-3FEFFF  
3FD000-3FDFFF  
3FC000-3FCFFF  
3FB000-3FBFFF  
3FA000-3FAFFF  
3F9000-3F9FFF  
3F8000-3F8FFF  
3F0000-3F7FFF  
3E8000-3EFFFF  
3E0000-3E7FFF  
3D8000-3DFFFF  
3D0000-3D7FFF  
3C8000-3CFFFF  
3C0000-3C7FFF  
3B8000-3BFFFF  
3B0000-3B7FFF  
3A8000-3AFFFF  
3A0000-3A7FFF  
398000-39FFFF  
390000-397FFF  
388000-38FFFF  
380000-387FFF  
378000-37FFFF  
370000-377FFF  
368000-36FFFF  
360000-367FFF  
358000-35FFFF  
350000-357FFF  
348000-34FFFF  
340000-347FFF  
338000-33FFFF  
330000-337FFF  
328000-32FFFF  
320000-327FFF  
318000-31FFFF  
310000-317FFF  
308000-30FFFF  
300000-307FFF  
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
50/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
79  
80  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
0F8000-0FFFFF  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
0C0000-0C7FFF  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
000000-007FFF  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
51/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Table 29. Bottom Boot Block Addresses,  
M58CR064D, M58CR064Q  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
2B8000-2BFFFF  
2B0000-2B7FFF  
2A8000-2AFFFF  
2A0000-2A7FFF  
298000-29FFFF  
290000-297FFF  
288000-28FFFF  
280000-287FFF  
278000-27FFFF  
270000-277FFF  
268000-26FFFF  
260000-267FFF  
258000-25FFFF  
250000-257FFF  
248000-24FFFF  
240000-247FFF  
238000-23FFFF  
230000-237FFF  
228000-22FFFF  
220000-227FFF  
218000-21FFFF  
210000-217FFF  
208000-20FFFF  
200000-207FFF  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
Size  
Bank  
#
Address Range  
(KWord)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
134  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
3F8000-3FFFFF  
3F0000-3F7FFF  
3E8000-3EFFFF  
3E0000-3E7FFF  
3D8000-3DFFFF  
3D0000-3D7FFF  
3C8000-3CFFFF  
3C0000-3C7FFF  
3B8000-3BFFFF  
3B0000-3B7FFF  
3A8000-3AFFFF  
3A0000-3A7FFF  
398000-39FFFF  
390000-397FFF  
388000-38FFFF  
380000-387FFF  
378000-37FFFF  
370000-377FFF  
368000-36FFFF  
360000-367FFF  
358000-35FFFF  
350000-357FFF  
348000-34FFFF  
340000-347FFF  
338000-33FFFF  
330000-337FFF  
328000-32FFFF  
320000-327FFF  
318000-31FFFF  
310000-317FFF  
308000-30FFFF  
300000-307FFF  
2F8000-2FFFFF  
2F0000-2F7FFF  
2E8000-2EFFFF  
2E0000-2E7FFF  
2D8000-2DFFFF  
2D0000-2D7FFF  
2C8000-2CFFFF  
2C0000-2C7FFF  
98  
97  
96  
95  
52/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
0F8000-0FFFFF  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
007000-007FFF  
006000-006FFF  
005000-005FFF  
004000-004FFF  
003000-003FFF  
002000-002FFF  
001000-001FFF  
000000-000FFF  
8
7
6
4
5
4
4
4
3
4
2
4
1
4
0
4
53/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
APPENDIX B. COMMON FLASH INTERFACE  
The Common Flash Interface is a JEDEC ap-  
proved, standardized data structure that can be  
read from the Flash memory device. It allows a  
system software to query the device to determine  
various electrical and timing parameters, density  
information and functions supported by the mem-  
ory. The system can interface easily with the de-  
vice, enabling the software to upgrade itself when  
necessary.  
32, 33, 34 and 35 show the addresses used to re-  
trieve the data. The Query data is always present-  
ed on the lowest order data outputs (DQ0-DQ7),  
the other outputs (DQ8-DQ15) are set to 0.  
The CFI data structure also contains a security  
area where a 64 bit unique security number is writ-  
ten (see Table , Security Code area). This area  
can be accessed only in Read mode by the final  
user. It is impossible to change the security num-  
ber after it has been written by ST. Issue a Read  
Array command to return to Read mode.  
When the Read CFI Query Command is issued  
the device enters CFI Query mode and the data  
structure is read from the memory. Tables 30, 31,  
Table 30. Query Structure Overview  
Offset  
00h  
Sub-section Name  
Description  
Reserved for algorithm-specific information  
Command set ID and algorithm data offset  
Device timing & voltage information  
Flash device layout  
Reserved  
10h  
CFI Query Identification String  
System Interface Information  
Device Geometry Definition  
1Bh  
27h  
Additional information specific to the Primary  
Algorithm (optional)  
P
A
Primary Algorithm-specific Extended Query table  
Alternate Algorithm-specific Extended Query table  
Additional information specific to the Alternate  
Algorithm (optional)  
Lock Protection Register  
Unique device Number and  
User Programmable OTP  
80h  
Security Code Area  
Note: The Flash memory display the CFI data structure when CFI Query command is issued. In this table are listed the main sub-sections  
detailed in Tables 31, 32, 33, 34 and 35. Query data is always presented on the lowest order data outputs.  
Table 31. CFI Query Identification String  
Offset  
Sub-section Name  
Description  
Value  
00h  
0020h  
Manufacturer Code  
ST  
88CAh  
88CBh  
8801h  
8802h  
Top  
Bottom  
01h  
Device Code (M58CR064C/D/P/Q)  
02h  
03h  
reserved  
reserved  
reserved  
0051h  
Reserved  
Reserved  
Reserved  
04h-0Fh  
10h  
"Q"  
"R"  
"Y"  
11h  
0052h  
Query Unique ASCII String "QRY"  
12h  
0059h  
13h  
0003h  
Primary Algorithm Command Set and Control Interface ID code 16  
bit ID code defining a specific algorithm  
14h  
0000h  
15h  
offset = P = 0039h  
0000h  
Address for Primary Algorithm extended Query table (see Table 33)  
p = 39h  
NA  
16h  
17h  
0000h  
Alternate Vendor Command Set and Control Interface ID Code  
second vendor - specified algorithm supported  
18h  
0000h  
54/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Offset  
19h  
Sub-section Name  
value = A = 0000h  
0000h  
Description  
Value  
Address for Alternate Algorithm extended Query table  
NA  
1Ah  
Table 32. CFI Query System Interface Information  
Offset  
Data  
Description  
Value  
V
DD  
V
DD  
V
PP  
V
PP  
Logic Supply Minimum Program/Erase or Write voltage  
1Bh  
0017h  
1.7V  
bit 7 to 4  
bit 3 to 0  
BCD value in volts  
BCD value in 100 millivolts  
Logic Supply Maximum Program/Erase or Write voltage  
1Ch  
1Dh  
1Eh  
0020h  
0017h  
00C0h  
2.0V  
1.7V  
12V  
bit 7 to 4  
bit 3 to 0  
BCD value in volts  
BCD value in 100 millivolts  
[Programming] Supply Minimum Program/Erase voltage  
bit 7 to 4  
bit 3 to 0  
HEX value in volts  
BCD value in 100 millivolts  
[Programming] Supply Maximum Program/Erase voltage  
bit 7 to 4  
bit 3 to 0  
HEX value in volts  
BCD value in 100 millivolts  
n
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0004h  
0003h  
000Ah  
0000h  
0003h  
0004h  
0002h  
0000h  
16µs  
8µs  
Typical time-out per single byte/word program = 2 µs  
n
Typical time-out for quadruple word program = 2 µs  
n
1s  
Typical time-out per individual block erase = 2 ms  
n
NA  
Typical time-out for full chip erase = 2 ms  
n
128µs  
128µs  
4s  
Maximum time-out for word program = 2 times typical  
n
Maximum time-out for quadruple word = 2 times typical  
n
Maximum time-out per individual block erase = 2 times typical  
n
NA  
Maximum time-out for chip erase = 2 times typical  
Table 33. Device Geometry Definition  
Offset Word  
Data  
Description  
Value  
Mode  
n
27h  
0017h  
8 MByte  
Device Size = 2 in number of bytes  
28h  
29h  
0001h  
0000h  
x16  
Async.  
Flash Device Interface Code description  
2Ah  
2Bh  
0003h  
0000h  
n
8 Byte  
2
Maximum number of bytes in multi-byte program or page = 2  
2Ch  
0002h  
Number of identical sized erase block regions within the device  
bit 7 to 0 = x = number of Erase Block Regions  
55/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Offset Word  
Data  
Description  
Value  
127  
Mode  
2Dh  
2Eh  
007Eh  
0000h  
Region 1 Information  
Number of identical-size erase blocks = 007Eh+1  
2Fh  
30h  
0000h  
0001h  
Region 1 Information  
Block size in Region 1 = 0100h * 256 byte  
64 KByte  
8
31h  
32h  
0007h  
0000h  
Region 2 Information  
Number of identical-size erase blocks = 000Eh+1  
33h  
34h  
0020h  
0000h  
Region 2 Information  
Block size in Region 2 = 0020h * 256 byte  
8 KByte  
NA  
35h  
38h  
0000h  
Reserved for future erase block region information  
2Dh  
2Eh  
0007h  
0000h  
Region 1 Information  
Number of identical-size erase block = 0007h+1  
8
2Fh  
30h  
0020h  
0000h  
Region 1 Information  
Block size in Region 1 = 0020h * 256 byte  
8 KByte  
127  
31h  
32h  
007Eh  
0000h  
Region 2 Information  
Number of identical-size erase block = 007Eh+1  
33h  
34h  
0000h  
0001h  
Region 2 Information  
Block size in Region 2 = 0100h * 256 byte  
64 KByte  
NA  
35h  
38h  
0000h  
Reserved for future erase block region information  
Table 34. Primary Algorithm-Specific Extended Query Table  
Offset  
Data  
0050h  
0052h  
0049h  
0031h  
0030h  
00E6h  
0003h  
0000h  
0000h  
Description  
Value  
"P"  
"R"  
"I"  
(P)h = 39h  
Primary Algorithm extended Query table unique ASCII string “PRI”  
(P+3)h = 3Ch  
(P+4)h = 3Dh  
(P+5)h = 3Eh  
Major version number, ASCII  
Minor version number, ASCII  
"1"  
"0"  
Extended Query table contents for Primary Algorithm. Address (P+5)h  
contains less significant byte.  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
bit 8  
bit 9  
Chip Erase supported  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
No  
Yes  
Yes  
No  
(P+7)h = 40h  
(P+8)h = 41h  
Erase Suspend supported  
Program Suspend supported  
Legacy Lock/Unlock supported  
Queued Erase supported  
Instant individual block locking supported (1 = Yes, 0 = No)  
Protection bits supported  
Page mode read supported  
Synchronous read supported  
Simultaneous operation supported  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
bit 10 to 31 Reserved; undefined bits are ‘0’. If bit 31 is ’1’ then another 31  
bit field of optional features follows at the end of the bit-30  
field.  
56/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Offset  
Data  
Description  
Supported Functions after Suspend  
Value  
(P+9)h = 42h  
0001h  
Read Array, Read Status Register and CFI Query  
Yes  
bit 0  
Program supported after Erase Suspend (1 = Yes, 0 = No)  
Reserved; undefined bits are ‘0’  
bit 7 to 1  
(P+A)h = 43h  
(P+B)h = 44h  
0003h  
0000h  
Block Protect Status  
Defines which bits in the Block Status Register section of the Query are  
implemented.  
bit 0 Block protect Status Register Lock/Unlock  
bit active  
(1 = Yes, 0 = No)  
bit 1 Block Lock Status Register Lock-Down bit active (1 = Yes, 0 = No)  
bit 15 to 2 Reserved for future use; undefined bits are ‘0’  
Yes  
Yes  
V
V
Logic Supply Optimum Program/Erase voltage (highest performance)  
bit 7 to 4HEX value in volts  
bit 3 to 0BCD value in 100 mV  
DD  
(P+C)h = 45h  
(P+D)h = 46h  
0018h  
1.8V  
12V  
Supply Optimum Program/Erase voltage  
bit 7 to 4HEX value in volts  
bit 3 to 0BCD value in 100 mV  
PP  
00C0h  
0000h  
(P+E)h = 47h  
(P+F)h = 48h  
(P+10)h = 49h  
(P+11)h = 4Ah  
(P+12)h = 4Bh  
Reserved  
Table 35. Burst Read Information  
Data  
Description  
Value  
Offset  
(P+13)h = 4Ch  
0003h  
Page-mode read capability  
8 Bytes  
n
bits 0-7  
’n’ such that 2 HEX value represents the number of read-  
page bytes. See offset 28h for device word width to  
determine page-mode data output width.  
(P+14)h = 4Dh  
(P+15)h = 4Eh  
0003h  
0001h  
Number of synchronous mode read configuration fields that follow.  
Synchronous mode read capability configuration 1  
3
4
bit 3-7  
Reserved  
n+1  
bit 0-2  
’n’ such that 2  
HEX value represents the maximum  
number of continuous synchronous reads when the device is  
configured for its maximum word width. A value of 07h  
indicates that the device is capable of continuous linear bursts  
that will output data until the internal burst counter reaches  
the end of the device’s burstable address space. This field’s  
3-bit value can be written directly to the read configuration  
register bit 0-2 if the device is configured for its maximum  
word width. See offset 28h for word width to determine the  
burst data output width.  
(P+16)h = 4Fh  
(P+17)h = 50h  
(P+18)h = 51h  
(P+19)h = 52h  
0002h  
0007h  
0036h  
0001h  
Synchronous mode read capability configuration 2  
Synchronous mode read capability configuration 3  
Max operating clock frequency (MHz)  
8
Cont.  
54 MHz  
Supported handshaking signal (WAIT pin)  
bit 0 during synchronous read (1 = Yes, 0 = No)  
bit 1 during asynchronous read (1 = Yes, 0 = No)  
Yes  
No  
57/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
APPENDIX C. FLOWCHARTS AND PSEUDO CODES  
Figure 18. Program Flowchart and Pseudo Code  
Start  
program_command (addressToProgram, dataToProgram) {:  
Write 40h or 10h  
writeToFlash (bank_address, 0x40) ;  
/*or writeToFlash (bank_address, 0x10) ; */  
writeToFlash (addressToProgram, dataToProgram) ;  
/*Memory enters read status state after  
the Program Command*/  
Write Address  
& Data  
do {  
Read Status  
Register  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
NO  
V
Invalid  
if (status_register.SR3==1) /*VPP invalid error */  
error_handler ( ) ;  
PP  
SR3 = 0  
YES  
Error (1, 2)  
NO  
NO  
Program  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
SR4 = 0  
YES  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06170  
Note: 1. Status check of SR1 (Protected Block), SR3 (V Invalid) and SR4 (Program Error) can be made after each program operation or  
PP  
after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.  
58/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Figure 19. Double Word Program Flowchart and Pseudo code  
Start  
Write 30h  
double_word_program_command (addressToProgram1, dataToProgram1,  
addressToProgram2, dataToProgram2)  
{
writeToFlash (bank_address, 0x30) ;  
writeToFlash (addressToProgram1, dataToProgram1) ;  
/*see note (3) */  
Write Address 1  
& Data 1 (3)  
writeToFlash (addressToProgram2, dataToProgram2) ;  
/*see note (3) */  
/*Memory enters read status state after  
the Program command*/  
Write Address 2  
& Data 2 (3)  
do {  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
Read Status  
Register  
NO  
NO  
NO  
NO  
SR7 = 1  
YES  
} while (status_register.b7== 0) ;  
V
Invalid  
if (status_register.SR3==1) /*VPP invalid error */  
error_handler ( ) ;  
PP  
SR3 = 0  
YES  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
Program  
SR4 = 0  
YES  
Error (1, 2)  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06171  
Note: 1. Status check of b1 (Protected Block), b3 (V Invalid) and b4 (Program Error) can be made after each program operation or after  
PP  
a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.  
3. Address 1 and Address 2 must be consecutive addresses differing only for bit A0.  
59/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Figure 20. Quadruple Word Program Flowchart and Pseudo Code  
Start  
quadruple_word_program_command (addressToProgram1, dataToProgram1,  
Write 55h  
addressToProgram2, dataToProgram2,  
addressToProgram3, dataToProgram3,  
addressToProgram4, dataToProgram4)  
{
Write Address 1  
& Data 1 (3)  
writeToFlash (bank_address, 0x55) ;  
writeToFlash (addressToProgram1, dataToProgram1) ;  
/*see note (3) */  
Write Address 2  
& Data 2 (3)  
writeToFlash (addressToProgram2, dataToProgram2) ;  
/*see note (3) */  
writeToFlash (addressToProgram3, dataToProgram3) ;  
/*see note (3) */  
Write Address 3  
& Data 3 (3)  
writeToFlash (addressToProgram4, dataToProgram4) ;  
/*see note (3) */  
Write Address 4  
& Data 4 (3)  
/*Memory enters read status state after  
the Program command*/  
do {  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
Read Status  
Register  
NO  
NO  
NO  
NO  
SR7 = 1  
YES  
} while (status_register.b7== 0) ;  
V
Invalid  
if (status_register.SR3==1) /*VPP invalid error */  
error_handler ( ) ;  
PP  
SR3 = 0  
YES  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
Program  
SR4 = 0  
YES  
Error (1, 2)  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06172  
Note: 1. Status check of SR1 (Protected Block), SR3 (V Invalid) and SR4 (Program Error) can be made after each program operation or  
PP  
after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.  
3. Address 1 to Address 4 must be consecutive addresses differing only for bits A0 and A1.  
60/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Figure 21. Program Suspend & Resume Flowchart and Pseudo Code  
Start  
program_suspend_command ( ) {  
writeToFlash (any_address, 0xB0) ;  
Write B0h  
writeToFlash (bank_address, 0x70) ;  
/* read status register to check if  
program has already completed */  
Write 70h  
do {  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
Read Status  
Register  
NO  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
SR2 = 1  
YES  
Program Complete  
if (status_register.SR2==0) /*program completed */  
{ writeToFlash (bank_address, 0xFF) ;  
read_data ( ) ; /*read data from another block*/  
/*The device returns to Read Array  
(as if program/erase suspend was not issued).*/  
Write FFh  
}
Read data from  
another address  
else  
{ writeToFlash (bank_address, 0xFF) ;  
read_data ( ); /*read data from another address*/  
writeToFlash (any_address, 0xD0) ;  
/*write 0xD0 to resume program*/  
Write D0h  
Write FFh  
Read Data  
}
}
Program Continues  
AI06173  
61/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Figure 22. Block Erase Flowchart and Pseudo Code  
Start  
erase_command ( blockToErase ) {  
writeToFlash (bank_address, 0x20) ;  
Write 20h  
writeToFlash (blockToErase, 0xD0) ;  
/* only A12-A20 are significannt */  
/* Memory enters read status state after  
the Erase Command */  
Write Block  
Address & D0h  
do {  
Read Status  
Register  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
NO  
YES  
NO  
NO  
V
Invalid  
if (status_register.SR3==1) /*VPP invalid error */  
error_handler ( ) ;  
PP  
Error (1)  
SR3 = 0  
YES  
if ( (status_register.SR4==1) && (status_register.SR5==1) )  
/* command sequence error */  
Command  
Sequence Error (1)  
SR4, SR5 = 1  
NO  
error_handler ( ) ;  
if ( (status_register.SR5==1) )  
/* erase error */  
SR5 = 0  
YES  
Erase Error (1)  
error_handler ( ) ;  
Erase to Protected  
Block Error (1)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06174  
Note: If an error is found, the Status Register must be cleared before further Program/Erase operations.  
62/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Figure 23. Erase Suspend & Resume Flowchart and Pseudo Code  
Start  
erase_suspend_command ( ) {  
Write B0h  
writeToFlash (bank_address, 0xB0) ;  
writeToFlash (bank_address, 0x70) ;  
/* read status register to check if  
erase has already completed */  
Write 70h  
do {  
Read Status  
Register  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
NO  
NO  
} while (status_register.SR7== 0) ;  
SR7 = 1  
YES  
if (status_register.SR6==0) /*erase completed */  
{ writeToFlash (bank_address, 0xFF) ;  
SR6 = 1  
YES  
Erase Complete  
read_data ( ) ;  
/*read data from another block*/  
/*The device returns to Read Array  
(as if program/erase suspend was not issued).*/  
Write FFh  
Read data from  
another block  
or  
Program/Protection Program  
or  
Block Protect/Unprotect/Lock  
}
else  
{ writeToFlash (bank_address, 0xFF) ;  
read_program_data ( );  
Write D0h  
Write FFh  
Read Data  
/*read or program data from another address*/  
writeToFlash (bank_address, 0xD0) ;  
/*write 0xD0 to resume erase*/  
}
}
Erase Continues  
AI06175  
63/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Figure 24. Locking Operations Flowchart and Pseudo Code  
Start  
locking_operation_command (address, lock_operation) {  
Write 60h  
writeToFlash (bank_address, 0x60) ; /*configuration setup*/  
if (lock_operation==LOCK) /*to protect the block*/  
writeToFlash (address, 0x01) ;  
else if (lock_operation==UNLOCK) /*to unprotect the block*/  
writeToFlash (address, 0xD0) ;  
Write  
01h, D0h or 2Fh  
else if (lock_operation==LOCK-DOWN) /*to lock the block*/  
writeToFlash (address, 0x2F) ;  
writeToFlash (bank_address, 0x90) ;  
Write 90h  
Read Block  
Lock States  
if (readFlash (address) ! = locking_state_expected)  
error_handler () ;  
NO  
Locking  
change  
/*Check the locking state (see Read Block Signature table )*/  
confirmed?  
YES  
writeToFlash (bank_address, 0xFF) ; /*Reset to Read Array mode*/  
Write FFh  
}
End  
AI06176  
64/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Figure 25. Protection Register Program Flowchart and Pseudo Code  
Start  
protection_register_program_command (addressToProgram, dataToProgram) {:  
writeToFlash (bank_address, 0xC0) ;  
Write C0h  
writeToFlash (addressToProgram, dataToProgram) ;  
/*Memory enters read status state after  
the Program Command*/  
Write Address  
& Data  
do {  
Read Status  
Register  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
NO  
V
Invalid  
if (status_register.SR3==1) /*VPP invalid error */  
error_handler ( ) ;  
PP  
SR3 = 0  
YES  
Error (1, 2)  
NO  
NO  
Program  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
SR4 = 0  
YES  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06177  
Note: 1. Status check of SR1 (Protected Block), SR3 (V Invalid) and SR4 (Program Error) can be made after each program operation or  
PP  
after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.  
65/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
APPENDIX D. COMMAND INTERFACE STATE TABLES  
Table 36. Command Interface States - Lock table  
Current State of the  
Current Bank  
Command Input to the Current Bank (and Next State of the Current Bank)  
Erase  
Confirm  
P/E  
Resume  
Unlock  
Confirm  
(D0h)  
Current  
State of  
Other  
Block Lock  
Unlock  
Lock-Down  
setup  
Set CR  
setup (60h)  
Block  
Lock-  
Down  
Confirm  
(2Fh)  
Read  
Status  
Register  
(70h)  
Clear  
Status  
Register Signature  
(50h)  
Read  
Electronic  
Read  
Array  
(FFH)  
Read  
CFI Query  
(98h)  
Block lock  
Confirm  
(01h)  
Set CR  
Confirm  
(03h)  
Mode  
State  
Others  
Bank  
(90h)  
Array  
CFI  
Block Lock,  
Unlock,  
SEE  
Read  
Read  
Elect.  
Sign.  
Any State  
Read  
MODIFY Read Array Read Array Status ReadArray  
TABLE  
Read CFI Lock-Down, Read Array Read Array Read Array  
Electronic  
Signature  
Register  
Set CR  
Setup  
Status  
Setup  
Error  
Block Lock Block lock  
Unlock  
Lock-Down Lock-Down  
Error, Set Error, Set  
CR Error CR Error  
Block Lock Block Lock Block Lock Block Lock Block Lock  
Block Lock  
Unlock  
Lock-Down  
Block  
Block Lock Block Lock  
Unlock Unlock  
Lock-Down Lock-Down  
Block Block  
Unlock  
Unlock  
Unlock  
Unlock  
Unlock  
Unlock  
Lock-Down Lock-Down Lock-Down Lock-Down Lock-Down  
Error, Set Error, Set Error, Set Error, Set Error, Set  
Set CR  
Lock  
Unlock  
Lock-Down  
CR  
CR Error CR Error CR Error CR Error  
CR Error  
Any State  
Block LocK  
Unlock  
Lock  
Unlock  
Lock-Down  
Block  
SEE  
Read  
Read  
Elect.  
Sign.  
MODIFY Read Array Read Array Status Read Array  
TABLE  
Read CFI Lock-Down Read Array Read Array Read Array  
Register  
Setup, Set  
CR Setup  
Set CR  
Block LocK  
SEE  
Read  
Read  
Elect.  
Sign.  
Unlock  
Protection  
Register  
Any State  
Any State  
Done  
MODIFY Read Array Read Array Status Read Array  
TABLE  
Read CFI Lock-Down Read Array Read Array Read Array  
Register  
Setup, Set  
CR Setup  
Block LocK  
Unlock  
Program-  
Double/  
Quadruple  
Program  
SEE  
Read  
Read  
Elect.  
Sign.  
Done  
MODIFY Read Array Read Array Status Read Array  
TABLE  
Read CFI Lock-Down Read Array Read Array Read Array  
Register  
Setup, Set  
CR Setup  
Setup  
Idle  
Read  
Array, CFI,  
Elect.  
Sign.,  
Status  
SEE  
MODIFY  
TABLE  
PS Read  
Status  
Register  
PS Read  
Elect.  
Sign.  
Program  
Suspend  
PS Read Program  
PS Read  
Array  
PS Read  
CFI  
PS Read  
Array  
PS Read PS Read PS Read  
Array  
(Busy)  
Array  
Array  
Array  
Erase  
Suspend  
Erase  
Error  
Erase  
Error  
Erase  
(Busy)  
Erase  
Error  
Erase  
Error  
Erase  
Error  
Erase  
Error  
Erase  
Error  
Erase  
Error  
Erase  
Error  
Idle  
Setup  
Error  
Erase Error  
Block/  
Bank  
Erase  
Block LocK  
Unlock  
SEE  
Read  
Read  
Elect.  
Sign.  
Any State  
MODIFY Read Array Read Array Status Read Array  
TABLE  
Read CFI Lock-Down Read Array Read Array Read Array  
Done  
Register  
Setup, Set  
CR Setup  
Erase  
(Busy)  
Setup  
Busy  
Idle  
Read  
Array, CFI,  
Elect.  
Sign.,  
Status  
Block LocK  
Unlock  
Lock-Down  
Setup, Set  
CR Setup  
ES Read  
Array  
SEE  
MODIFY  
TABLE  
ES Read  
Status  
Register  
ES Read  
Elect.  
Sign.  
Erase  
Suspend  
ES Read  
Array  
ES Read  
Array  
ES Read  
CFI  
ES Read ES Read ES Read  
Array Array Array  
Erase  
(Busy)  
Program  
Suspend  
ES Read  
Array  
Note: PS = Program Suspend, ES = Erase Suspend.  
66/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Table 37. Command Interface States - Modify Table  
Current State of the Current  
Bank  
Command Input to the Current Bank (and Next State of the Current Bank)  
Current State  
of the Other  
Bank  
Protection  
Register  
Double/  
Quadruple  
Program Setup Block Erase Program-Erase  
Bank Erase  
Setup (80h)  
Mode  
State  
Others  
(10h/40h)  
Setup (20h) Suspend (B0h) ProgramSetup ProgramSetup  
(C0h)  
(30h/55h)  
Setup  
Busy  
Read Array  
Read Array  
Read Array  
Read Array  
Read Array  
Array, CFI,  
Electronic  
Signature,  
Block Erase  
Setup  
Protection  
Register Setup  
Bank Erase  
Setup  
Double/  
Quadruple  
Program Setup  
Idle  
SEE LOCK  
TABLE  
Read  
Read Array  
Program setup  
Erase Suspend  
Status Register  
Read Array  
Read Array  
Read Array  
Read Array  
Program  
Suspend  
Read Array  
Read Array  
Read Array  
Read Array  
Setup  
Busy  
Read Array  
Read Array  
Error,  
Lock Unlock  
Lock-Down  
Block,  
Block Erase  
Setup  
Protection  
Register Setup  
Bank Erase  
Setup  
Double/  
Quadruple  
Program Setup  
Idle  
Lock Unlock  
Lock-Down CR  
SEE LOCK  
TABLE  
Read Array  
Protection  
Program setup  
Erase Suspend  
Set CR  
Read Array  
Read Array  
Read Array  
Program  
Suspend  
Read Array  
Protection  
Read Array  
Protection  
Idle  
Setup  
Busy  
Setup  
Busy  
Protection  
Protection  
Protection  
Protection  
Register (Busy) Register (Busy) Register (Busy) Register (Busy) Register (Busy) Register (Busy) Register (Busy)  
Read Array  
Read Array  
Read Array  
Read Array  
Read Array  
Protection  
Register  
Block Erase  
Setup  
Protection  
Register Setup  
Bank Erase  
Setup  
Double/  
Quadruple  
Program Setup  
Idle  
SEE LOCK  
TABLE  
Program Setup  
Done  
Read Array  
Erase Suspend  
Read Array  
Read Array  
Read Array  
Program  
Suspend  
Read Array  
Read Array  
Any State  
Setup  
Busy  
Program(Busy)  
Program(Busy) Program(Busy) Program(Busy)  
Program(Busy) Program (Busy) Program (Busy)  
PS Read Status  
Register  
Idle  
Setup  
Busy  
Program  
Double/  
Quadruple  
Word Program  
Read Array  
Program Setup  
Read Array  
Read Array  
Read Array  
Read Array  
Read Array  
Block Erase  
Setup  
Protection  
Register Setup  
Bank Erase  
Setup  
Double/  
Quadruple  
Program Setup  
Idle  
SEE LOCK  
TABLE  
Done  
Read Array  
Erase Suspend  
Read Array  
Read Array  
Read Array  
Program  
Suspend  
Read Array  
Setup  
Idle  
Read Array,  
CFI, Elect.  
Sign., Status  
Register  
Program  
Suspend  
SEE LOCK  
TABLE  
PS Read Array PS Read Array PS Read Array PS Read Array PS Read Array PS Read Array  
Erase Suspend  
SEE LOCK  
TABLE  
Setup  
Busy  
Erase Error  
Erase Error  
Erase Error  
Erase Error  
Erase Error  
Erase Error  
Block/ Bank  
Erase  
Idle  
ES Read Status  
Register  
Erase (Busy)  
Erase (Busy)  
Erase (Busy)  
Erase (Busy)  
Erase (Busy)  
Erase (Busy)  
Setup  
Busy  
ES Read Array  
Program Setup  
ES Read Array  
ES Read Array  
Read Array,  
CFI, Elect.  
Sign., Status  
Register  
Double/  
Quadruple  
Program Setup  
SEE LOCK  
TABLE  
Erase Suspend  
ES Read Array ES Read Array ES Read Array  
ES Read Array  
Idle  
Program  
Suspend  
ES Read Array  
Note: PS = Program Suspend, ES = Erase Suspend.  
67/68  
M58CR064C, M58CR064D, M58CR064P, M58CR064Q  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners  
© 2002 STMicroelectronics - All Rights Reserved  
STMicroelectronics group of companies  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong -  
India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.  
www.st.com  
68/68  

相关型号:

M58CR064D120ZB6T

4MX16 FLASH 1.8V PROM, 18ns, PBGA56, 6.50 X 10 MM, 0.75 MM PITCH, TFBGA-56
STMICROELECTR

M58CR064D12ZB6

4MX16 FLASH 1.8V PROM, 120ns, PBGA56, 6.50 X 10 MM, 0.75 MM PITCH, TFBGA-56
STMICROELECTR

M58CR064D12ZB6

4MX16 FLASH 1.8V PROM, 120ns, PBGA56, 6.50 X 10 MM, 0.75 MM PITCH, TFBGA-56
NUMONYX

M58CR064D12ZB6T

64 Mbit 4Mb x 16, Dual Bank, Burst 1.8V Supply Flash Memory
STMICROELECTR

M58CR064D12ZB6T

Flash, 4MX16, 120ns, PBGA56, 6.50 X 10 MM, 0.75 MM PITCH, TFBGA-56
NUMONYX

M58CR064D200ZB6

4MX16 FLASH 1.8V PROM, 200ns, PBGA56, 0.75 MM PITCH, TFBGA-56
STMICROELECTR

M58CR064D200ZB6T

4MX16 FLASH 1.8V PROM, 200ns, PBGA56, 0.75 MM PITCH, TFBGA-56
STMICROELECTR

M58CR064D85ZB6

4MX16 FLASH 1.8V PROM, 85ns, PBGA56, 6.50 X 10 MM, 0.75 MM PITCH, TFBGA-56
NUMONYX

M58CR064D85ZB6T

64 Mbit 4Mb x 16, Dual Bank, Burst 1.8V Supply Flash Memory
STMICROELECTR

M58CR064D85ZB6T

Flash, 4MX16, 85ns, PBGA56, 6.50 X 10 MM, 0.75 MM PITCH, TFBGA-56
NUMONYX

M58CR064D90ZB6

4MX16 FLASH 1.8V PROM, 90ns, PBGA56, 6.50 X 10 MM, 0.75 MM PITCH, TFBGA-56
STMICROELECTR

M58CR064D90ZB6

Flash, 4MX16, 90ns, PBGA56, 6.50 X 10 MM, 0.75 MM PITCH, TFBGA-56
NUMONYX