M58LR128FB [STMICROELECTRONICS]

128 Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Flash Memory; 128兆位(8MB X16 ,多银行,多层次,突发) 1.8V供应快闪记忆体
M58LR128FB
型号: M58LR128FB
厂家: ST    ST
描述:

128 Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Flash Memory
128兆位(8MB X16 ,多银行,多层次,突发) 1.8V供应快闪记忆体

文件: 总82页 (文件大小:534K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M58LR128FT  
M58LR128FB  
128 Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst)  
1.8V Supply Flash Memory  
FEATURES SUMMARY  
SUPPLY VOLTAGE  
Figure 1. Package  
VDD = 1.7V to 2.0V for program, erase and  
read  
VDDQ = 1.7V to 2.0V for I/O Buffers  
VPP = 9V for fast program (12V tolerant)  
SYNCHRONOUS / ASYNCHRONOUS READ  
FBGA  
Synchronous Burst Read mode: 54MHz  
Asynchronous Page Read mode  
Random Access: 85, 95ns  
SYNCHRONOUS BURST READ SUSPEND  
PROGRAMMING TIME  
10µs typical Word program time using  
Buffer Program  
VFBGA56 (ZB)  
7.7 x 9mm  
MEMORY ORGANIZATION  
Multiple Bank Memory Array: 8 Mbit  
Banks  
Parameter Blocks (Top or Bottom  
location)  
DUAL OPERATIONS  
ELECTRONIC SIGNATURE  
program/erase in one Bank while read in  
others  
Manufacturer Code: 20h  
Top Device Code: 88C4h.  
Bottom Device Code: 88C5h  
No delay between read and write  
operations  
BLOCK LOCKING  
All blocks locked at power-up  
Any combination of blocks can be locked  
with zero latency  
WP for Block Lock-Down  
Absolute Write Protection with VPP = VSS  
SECURITY  
64 bit unique device number  
2112 bit user programmable OTP Cells  
COMMON FLASH INTERFACE (CFI)  
100,000 PROGRAM/ERASE CYCLES per  
BLOCK  
September 2004  
1/82  
 
 
M58LR128FT, M58LR128FB  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 3. VFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 2. Bank Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 4. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Address Inputs (A0-A22). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Data Input/Output (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Write Protect (WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Reset (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Latch Enable (L). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Clock (K).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Wait (WAIT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
V
V
DD Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
DDQ Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
VPP Program Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
V
VSSQ Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Bus Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Address Latch.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 3. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 4. Command Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Read Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Read Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Read CFI Query Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Clear Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2/82  
M58LR128FT, M58LR128FB  
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Buffer Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Buffer Enhanced Factory Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Setup Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Program and Verify Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Exit Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Protection Register Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Set Configuration Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Block Lock Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Block Unlock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Block Lock-Down Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 5. Standard Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 6. Factory Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 7. Electronic Signature Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 5. Protection Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 8. Protection Register Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Program/Erase Controller Status Bit (SR7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Erase Suspend Status Bit (SR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Erase Status Bit (SR5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Program Status Bit (SR4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
V
PP Status Bit (SR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Program Suspend Status Bit (SR2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Block Protection Status Bit (SR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Bank Write/Multiple Word Program Status Bit (SR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 9. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
CONFIGURATION REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Read Select Bit (CR15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
X-Latency Bits (CR13-CR11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Wait Polarity Bit (CR10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Data Output Configuration Bit (CR9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Wait Configuration Bit (CR8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Burst Type Bit (CR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Valid Clock Edge Bit (CR6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Wrap Burst Bit (CR3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Burst length Bits (CR2-CR0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 10. Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 11. Burst Type Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 6. X-Latency and Data Output Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 7. Wait Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3/82  
M58LR128FT, M58LR128FB  
READ MODES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Asynchronous Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Synchronous Burst Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Synchronous Burst Read Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Single Synchronous Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
DUAL OPERATIONS AND MULTIPLE BANK ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 12. Dual Operations Allowed In Other Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 13. Dual Operations Allowed In Same Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
BLOCK LOCKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Reading a Block’s Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Locked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Unlocked State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Lock-Down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Locking Operations During Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 14. Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
PROGRAM AND ERASE TIMES AND ENDURANCE CYCLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 15. Program, Erase Times and Endurance Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 16. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 17. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 8. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 9. AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 18. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 19. DC Characteristics - Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 20. DC Characteristics - Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 10.Asynchronous Random Access Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 11.Asynchronous Page Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 21. Asynchronous Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 12.Synchronous Burst Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 13.Single Synchronous Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 14.Synchronous Burst Read Suspend AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 15.Clock input AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 22. Synchronous Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 16.Write AC Waveforms, Write Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 23. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 17.Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 24. Write AC Characteristics, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 18.Reset and Power-up AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 25. Reset and Power-up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
4/82  
M58LR128FT, M58LR128FB  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 19.VFBGA56 7.7x9mm - 8x7 ball array, 0.75mm pitch, Bottom View Package Outline. . . . 52  
Table 26. VFBGA56 7.7x9mm - 8x7 ball array, 0.75mm pitch, Package Mechanical Data. . . . . . . 52  
Figure 20.VFBGA56 Daisy Chain - Package Connections (Top view through package) . . . . . . . . 53  
Figure 21.VFBGA56 Daisy Chain - PCB Connection Proposal (Top view through package) . . . . . 54  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 27. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 28. Daisy Chain Ordering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
APPENDIX A.BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 29. Top Boot Block Addresses, M58LR128FT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 30. Bottom Boot Block Addresses, M58LR128FB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
APPENDIX B.COMMON FLASH INTERFACE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 31. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 32. CFI Query Identification String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 33. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 34. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 35. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 36. Protection Register Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 37. Burst Read Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 38. Bank and Erase Block Region Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 39. Bank and Erase Block Region 1 Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 40. Bank and Erase Block Region 2 Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
APPENDIX C.FLOWCHARTS AND PSEUDO CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 22.Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 23.Buffer Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 24.Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 25.Block Erase Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 26.Erase Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 27.Locking Operations Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 28.Protection Register Program Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 29.Buffer Enhanced Factory Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . 75  
APPENDIX D.COMMAND INTERFACE STATE TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Table 41. Command Interface States - Modify Table, Next State . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Table 42. Command Interface States - Modify Table, Next Output State . . . . . . . . . . . . . . . . . . . . 78  
Table 43. Command Interface States - Lock Table, Next State . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Table 44. Command Interface States - Lock Table, Next Output State. . . . . . . . . . . . . . . . . . . . . . 80  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Table 45. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
5/82  
M58LR128FT, M58LR128FB  
SUMMARY DESCRIPTION  
The M58LR128FT/B is a 128 Mbit (8Mbit x16)  
non-volatile Flash memory that may be erased  
electrically at block level and programmed in-sys-  
tem on a Word-by-Word basis using a 1.7V to 2.0V  
VDD supply for the circuitry and a 1.7V to 2.0V  
control the memory is consistent with JEDEC stan-  
dards.  
The device supports Synchronous Burst Read and  
Asynchronous Read from all blocks of the memory  
array; at power-up the device is configured for  
Asynchronous Read. In Synchronous Burst Read  
mode, data is output on each clock cycle at fre-  
quencies of up to 54MHz. The Synchronous Burst  
Read operation can be suspended and resumed.  
The device features an Automatic Standby mode.  
When the bus is inactive during Asynchronous  
Read operations, the device automatically switch-  
es to the Automatic Standby mode. In this condi-  
tion the power consumption is reduced to the  
standby value and the outputs are still driven.  
The M58LR128FT/B features an instant, individual  
block locking scheme that allows any block to be  
locked or unlocked with no latency, enabling in-  
stant code and data protection. All blocks have  
three levels of protection. They can be locked and  
locked-down individually preventing any acciden-  
tal programming or erasure. There is an additional  
hardware protection against program and erase.  
When VPP VPPLK all blocks are protected against  
program or erase. All blocks are locked at power-  
up.  
VDDQ supply for the Input/Output pins. An optional  
9V VPP power supply is provided to speed up fac-  
tory programming.  
The device features an asymmetrical block archi-  
tecture and is based on a multi-level cell technolo-  
gy. M58LR128FT/B has an array of 131 blocks,  
and is divided into 8 Mbit banks. There are 15  
banks each containing 8 main blocks of 64  
KWords, and one parameter bank containing 4 pa-  
rameter blocks of 16 KWords and 7 main blocks of  
64 KWords. The Multiple Bank Architecture allows  
Dual Operations, while programming or erasing in  
one bank, read operations are possible in other  
banks. Only one bank at a time is allowed to be in  
program or erase mode. It is possible to perform  
burst reads that cross bank boundaries. The bank  
architecture is summarized in Table 2., and the  
memory maps are shown in Figure 4. The Param-  
eter Blocks are located at the top of the memory  
address space for the M58LR128FT, and at the  
bottom for the M58LR128FB.  
Each block can be erased separately. Erase can  
be suspended, in order to perform program in any  
other block, and then resumed. Program can be  
suspended to read data in any other block and  
then resumed. Each block can be programmed  
and erased over 100,000 cycles using the supply  
voltage VDD. There is a Buffer Enhanced Factory  
programming command available to speed up pro-  
gramming.  
Program and erase commands are written to the  
Command Interface of the memory. An internal  
Program/Erase Controller takes care of the tim-  
ings necessary for program and erase operations.  
The end of a program or erase operation can be  
detected and any error conditions identified in the  
Status Register. The command set required to  
The device includes 17 Protection Registers and 2  
Protection Register locks, one for the first Protec-  
tion Register and the other for the 16 One-Time-  
Programmable (OTP) Protection Registers of 128  
bits each. The first Protection Register is divided  
into two segments: a 64 bit segment containing a  
unique device number written by ST, and a 64 bit  
segment One-Time-Programmable (OTP) by the  
user. The user programmable segment can be  
permanently protected. Figure 5., shows the Pro-  
tection Register Memory Map.  
The memory is available in a VFBGA56, 7.7x9mm,  
0.75 pitch package and is supplied with all the bits  
erased (set to ’1’).  
6/82  
M58LR128FT, M58LR128FB  
Figure 2. Logic Diagram  
Table 1. Signal Names  
A0-A22  
Address Inputs  
Data Input/Outputs, Command  
Inputs  
DQ0-DQ15  
V
V
V
DD DDQ PP  
E
Chip Enable  
Output Enable  
Write Enable  
Reset  
G
23  
16  
A0-A22  
DQ0-DQ15  
WAIT  
W
RP  
WP  
K
W
E
Write Protect  
Clock  
M58LR128FT  
M58LR128FB  
G
L
Latch Enable  
Wait  
RP  
WP  
L
WAIT  
V
Supply Voltage  
DD  
Supply Voltage for Input/Output  
Buffers  
K
V
V
DDQ  
PP  
Optional Supply Voltage for  
Fast Program & Erase  
V
V
SSQ  
SS  
V
V
Ground  
AI08335  
SS  
Ground Input/Output Supply  
Not Connected Internally  
Do Not Use  
SSQ  
NC  
DU  
7/82  
 
 
M58LR128FT, M58LR128FB  
Figure 3. VFBGA Connections (Top view through package)  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
A11  
A12  
A13  
A15  
A8  
A9  
V
V
V
A18  
A17  
A19  
WP  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
G
SS  
DD  
K
PP  
A20  
A21  
RP  
W
A10  
L
A7  
A14  
WAIT  
DQ6  
DQ13  
DQ5  
A16  
DQ4  
DQ12  
DQ2  
DQ10  
DQ3  
A22  
E
V
DQ15  
DQ14  
DQ1  
DQ9  
DDQ  
V
DQ11  
DQ0  
DQ8  
SS  
G
DQ7  
V
V
V
V
SSQ  
SSQ  
DD  
DDQ  
AI07562  
Table 2. Bank Architecture  
Number  
Bank Size  
8 Mbits  
8 Mbits  
8 Mbits  
8 Mbits  
Parameter Blocks  
Main Blocks  
Parameter Bank  
4 blocks of 16 KWords  
7 blocks of 64 KWords  
8 blocks of 64 KWords  
8 blocks of 64 KWords  
8 blocks of 64 KWords  
Bank 1  
Bank 2  
Bank 3  
-
-
-
Bank 14  
Bank 15  
8 Mbits  
8 Mbits  
-
-
8 blocks of 64 KWords  
8 blocks of 64 KWords  
8/82  
M58LR128FT, M58LR128FB  
Figure 4. Memory Map  
M58LR128FT - Top Boot Block  
M58LR128FB - Bottom Boot Block  
Address lines A22-A0  
Address lines A22-A0  
000000h  
00FFFFh  
000000h  
003FFFh  
64 KWord  
16 KWord  
8 Main  
Blocks  
4 Parameter  
Blocks  
Bank 15  
070000h  
07FFFFh  
00C000h  
00FFFFh  
010000h  
01FFFFh  
64 KWord  
16 KWord  
64 KWord  
Parameter  
Bank  
7 Main  
Blocks  
070000h  
07FFFFh  
080000h  
08FFFFh  
64 KWord  
64 KWord  
600000h  
60FFFFh  
64 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
Bank 3  
Bank 2  
Bank 1  
Bank 1  
Bank 2  
Bank 3  
670000h  
67FFFFh  
680000h  
68FFFFh  
0F0000h  
0FFFFFh  
100000h  
10FFFFh  
64 KWord  
64 KWord  
64 KWord  
64 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
6F0000h  
6FFFFFh  
700000h  
70FFFFh  
170000h  
17FFFFh  
180000h  
18FFFFh  
64 KWord  
64 KWord  
64 KWord  
64 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
770000h  
77FFFFh  
780000h  
78FFFFh  
1F0000h  
1FFFFFh  
64 KWord  
64 KWord  
64 KWord  
7 Main  
Blocks  
7E0000h  
7EFFFFh  
7F0000h  
7F3FFFh  
64 KWord  
16 KWord  
Parameter  
Bank  
780000h  
78FFFFh  
64 KWord  
64 KWord  
4 Parameter  
Blocks  
8 Main  
Blocks  
Bank 15  
7FC000h  
7FFFFFh  
7F0000h  
7FFFFFh  
16 KWord  
AI08336  
9/82  
M58LR128FT, M58LR128FB  
SIGNAL DESCRIPTIONS  
See Figure 2., Logic Diagram and Table 1., Signal  
Names, for a brief overview of the signals connect-  
ed to this device.  
Address Inputs (A0-A22). The Address Inputs  
select the cells in the memory array to access dur-  
ing Bus Read operations. During Bus Write opera-  
tions they control the commands sent to the  
Command Interface of the internal state machine.  
Data Input/Output (DQ0-DQ15). The Data I/O  
outputs the data stored at the selected address  
during a Bus Read operation or inputs a command  
or the data to be programmed during a Bus Write  
operation.  
Chip Enable (E). The Chip Enable input acti-  
vates the memory control logic, input buffers, de-  
coders and sense amplifiers. When Chip Enable is  
at VILand Reset is at VIH the device is in active  
mode. When Chip Enable is at VIH the memory is  
deselected, the outputs are high impedance and  
the power consumption is reduced to the stand-by  
level.  
latch is transparent when Latch Enable is at  
VIL and it is inhibited when Latch Enable is at  
VIH. Latch Enable can be kept Low (also at  
board level) when the Latch Enable function  
is not required or supported.  
Clock (K). The clock input synchronizes the  
memory to the microcontroller during synchronous  
read operations; the address is latched on a Clock  
edge (rising or falling, according to the configura-  
tion settings) when Latch Enable is at VIL. Clock is  
ignored during asynchronous read and in write op-  
erations.  
Wait (WAIT). Wait is an output signal used during  
synchronous read to indicate whether the data on  
the output bus are valid. This output is high imped-  
ance when Chip Enable is at VIH, Output Enable is  
at VIH, or Reset is at VIL. It can be configured to be  
active during the wait cycle or one clock cycle in  
advance.  
V
DD Supply Voltage . VDD provides the power  
supply to the internal core of the memory device.  
It is the main power supply for all operations  
(Read, Program and Erase).  
Output Enable (G). The Output Enable controls  
data outputs during the Bus Read operation of the  
memory.  
VDDQ Supply Voltage. VDDQ provides the power  
supply to the I/O pins and enables all Outputs to  
be powered independently from VDD. VDDQ can be  
tied to VDD or can use a separate supply.  
Write Enable (W). The Write Enable controls the  
Bus Write operation of the memory’s Command  
Interface. The data and address inputs are latched  
on the rising edge of Chip Enable or Write Enable  
whichever occurs first.  
Write Protect (WP). Write Protect is an input  
that gives an additional hardware protection for  
each block. When Write Protect is at VIL, the Lock-  
Down is enabled and the protection status of the  
Locked-Down blocks cannot be changed. When  
Write Protect is at VIH, the Lock-Down is disabled  
and the Locked-Down blocks can be locked or un-  
locked. (refer to Table 14., Lock Status).  
Reset (RP). The Reset input provides a hard-  
ware reset of the memory. When Reset is at VIL,  
the memory is in reset mode: the outputs are high  
impedance and the current consumption is re-  
duced to the Reset Supply Current IDD2. Refer to  
Table 19., DC Characteristics - Currents, for the  
value of IDD2. After Reset all blocks are in the  
Locked state and the Configuration Register is re-  
set. When Reset is at VIH, the device is in normal  
operation. Exiting reset mode the device enters  
asynchronous read mode, but a negative transi-  
tion of Chip Enable or Latch Enable is required to  
ensure valid data outputs.  
VPP Program Supply Voltage. VPP is both a  
control input and a power supply pin. The two  
functions are selected by the voltage range ap-  
plied to the pin.  
If VPP is kept in a low voltage range (0V to VDDQ  
)
VPP is seen as a control input. In this case a volt-  
age lower than VPPLK gives an absolute protection  
against program or erase, while VPP > VPP1 en-  
ables these functions (see Tables 19 and 20, DC  
Characteristics for the relevant values). VPP is only  
sampled at the beginning of a program or erase; a  
change in its value after the operation has started  
does not have any effect and program or erase op-  
erations continue.  
If VPP is in the range of VPPH it acts as a power  
supply pin. In this condition VPP must be stable un-  
til the Program/Erase algorithm is completed.  
VSS Ground. VSS ground is the reference for the  
core supply. It must be connected to the system  
ground.  
VSSQ Ground. VSSQ ground is the reference for  
the input/output circuitry driven by VDDQ. VSSQ  
must be connected to VSS  
The Reset pin can be interfaced with 3V logic with-  
out any additional circuitry. It can be tied to VRPH  
(refer to Table 20., DC Characteristics - Voltages).  
Latch Enable (L). Latch Enable latches the ad-  
dress bits on its rising edge. The address  
Note: Each device in a system should have  
V
DD, VDDQ and VPP decoupled with a 0.1µF ce-  
ramic capacitor close to the pin (high frequen-  
cy, inherently low inductance capacitors  
10/82  
M58LR128FT, M58LR128FB  
should be as close as possible to the pack-  
age). See Figure 9., AC Measurement Load Cir-  
cuit. The PCB trace widths should be sufficient  
to carry the required VPP program and erase  
currents.  
BUS OPERATIONS  
There are six standard bus operations that control  
the device. These are Bus Read, Bus Write, Ad-  
dress Latch, Output Disable, Standby and Reset.  
See Table 3., Bus Operations, for a summary.  
Typically glitches of less than 5ns on Chip Enable  
or Write Enable are ignored by the memory and do  
not affect Bus Write operations.  
the Latch Enable should be tied to VIH during the  
bus write operation.  
See Figures 16 and 17, Write AC Waveforms, and  
Tables 23 and 24, Write AC Characteristics, for  
details of the timing requirements.  
Address Latch. Address latch operations input  
valid addresses. Both Chip enable and Latch En-  
able must be at VIL during address latch opera-  
tions. The addresses are latched on the rising  
edge of Latch Enable.  
Bus Read. Bus Read operations are used to out-  
put the contents of the Memory Array, the Elec-  
tronic Signature, the Status Register and the  
Common Flash Interface. Both Chip Enable and  
Output Enable must be at VIL in order to perform a  
read operation. The Chip Enable input should be  
used to enable the device. Output Enable should  
be used to gate data onto the output. The data  
read depends on the previous command written to  
the memory (see Command Interface section).  
See Figures 10, 11, 12 and 13 Read AC Wave-  
forms, and Tables 21 and 22 Read AC Character-  
istics, for details of when the output becomes  
valid.  
Bus Write. Bus Write operations write Com-  
mands to the memory or latch Input Data to be  
programmed. A bus write operation is initiated  
when Chip Enable and Write Enable are at VIL with  
Output Enable at VIH. Commands, Input Data and  
Addresses are latched on the rising edge of Write  
Enable or Chip Enable, whichever occurs first. The  
addresses can also be latched prior to the write  
operation by toggling Latch Enable. In this case  
Output Disable. The outputs are high imped-  
ance when the Output Enable is at VIH.  
Standby. Standby disables most of the internal  
circuitry allowing a substantial reduction of the cur-  
rent consumption. The memory is in standby when  
Chip Enable and Reset are at VIH. The power con-  
sumption is reduced to the standby level IDD4 and  
the outputs are set to high impedance, indepen-  
dently from the Output Enable or Write Enable in-  
puts. If Chip Enable switches to VIH during a  
program or erase operation, the device enters  
Standby mode when finished.  
Reset. During Reset mode the memory is dese-  
lected and the outputs are high impedance. The  
memory is in Reset mode when Reset is at VIL.  
The power consumption is reduced to the Standby  
level, independently from the Chip Enable, Output  
Enable or Write Enable inputs. If Reset is pulled to  
VSS during a Program or Erase, this operation is  
aborted and the memory content is no longer valid.  
Table 3. Bus Operations  
(4)  
Operation  
Bus Read  
E
G
W
L
RP  
DQ15-DQ0  
Data Output  
Data Input  
WAIT  
(2)  
V
V
V
V
IL  
IL  
IL  
IH  
V
V
IH  
IL  
(2)  
V
V
V
V
V
Bus Write  
IH  
IL  
IH  
IL  
(3)  
V
V
V
V
V
Address Latch  
Output Disable  
Standby  
X
IL  
IL  
IH  
IH  
IL  
IH  
Data Output or Hi-Z  
V
V
V
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
IH  
IH  
V
X
X
IH  
IH  
V
IL  
Reset  
X
X
X
Note: 1. X = Don't care.  
2. L can be tied to V if the valid address has been previously latched.  
IH  
3. Depends on G.  
4. WAIT signal polarity is configured using the Set Configuration Register command.  
11/82  
 
M58LR128FT, M58LR128FB  
COMMAND INTERFACE  
All Bus Write operations to the memory are inter-  
preted by the Command Interface. Commands  
consist of one or more sequential Bus Write oper-  
ations. An internal Program/Erase Controller han-  
dles all timings and verifies the correct execution  
of the program and erase commands. The Pro-  
gram/Erase Controller provides a Status Register  
whose output may be read at any time to monitor  
the progress or the result of the operation.  
The Command Interface is reset to read mode  
when power is first applied, when exiting from Re-  
set or whenever VDD is lower than VLKO. Com-  
mand sequences must be followed exactly. Any  
invalid combination of commands will be ignored.  
Refer to Table 4., Command Codes, Table  
5., Standard Commands, and Table 6., Factory  
Program Command, for a summary of the Com-  
mand Interface.  
Read Array Command  
The Read Array command returns the addressed  
bank to Read Array mode.  
One Bus Write cycle is required to issue the Read  
Array command. Once a bank is in Read Array  
mode, subsequent read operations will output the  
data from the memory array.  
A Read Array command can be issued to any  
banks while programming or erasing in another  
bank.  
If the Read Array command is issued to a bank  
currently executing a program or erase operation,  
the bank will return to Read Array mode but the  
program or erase operation will continue, however  
the data output from the bank is not guaranteed  
until the program or erase operation has finished.  
The read modes of other banks are not affected.  
Read Status Register Command  
The device contains a Status Register that is used  
to monitor program or erase operations.  
The Read Status Register command is used to  
read the contents of the Status Register for the ad-  
dressed bank.  
One Bus Write cycle is required to issue the Read  
Status Register command. Once a bank is in Read  
Status Register mode, subsequent read opera-  
tions will output the contents of the Status Regis-  
ter.  
The Status Register data is latched on the falling  
edge of the Chip Enable or Output Enable signals.  
Either Chip Enable or Output Enable must be tog-  
gled to update the Status Register data  
The Read Status Register command can be is-  
sued at any time, even during program or erase  
operations. The Read Status Register command  
will only change the read mode of the addressed  
bank. The read modes of other banks are not af-  
fected. Only Asynchronous Read and Single Syn-  
chronous Read operations should be used to read  
the Status Register. A Read Array command is re-  
quired to return the bank to Read Array mode.  
Table 4. Command Codes  
Hex Code  
01h  
Command  
Block Lock Confirm  
03h  
Set Configuration Register Confirm  
Alternative Program Setup  
Block Erase Setup  
10h  
20h  
2Fh  
Block Lock-Down Confirm  
Program Setup  
40h  
50h  
Clear Status Register  
Block Lock Setup, Block Unlock Setup,  
Block Lock Down Setup and Set  
Configuration Register Setup  
60h  
70h  
80h  
90h  
98h  
B0h  
C0h  
Read Status Register  
Buffer Enhanced Factory Program  
Read Electronic Signature  
Read CFI Query  
Program/Erase Suspend  
Protection Register Program  
See Table 9. for the description of the Status Reg-  
ister Bits.  
Read Electronic Signature Command  
Program/Erase Resume, Block Erase  
Confirm, Block Unlock Confirm or Buffer  
Program Confirm  
The Read Electronic Signature command is used  
to read the Manufacturer and Device Codes, the  
Lock Status of the addressed bank, the Protection  
Register, and the Configuration Register.  
One Bus Write cycle is required to issue the Read  
Electronic Signature command. Once a bank is in  
Read Electronic Signature mode, subsequent  
read operations in the same bank will output the  
Manufacturer Code, the Device Code, the Lock  
D0h  
E8h  
FFh  
Buffer Program  
Read Array  
12/82  
 
M58LR128FT, M58LR128FB  
Status of the addressed bank, the Protection Reg-  
ister, or the Configuration Register (see Table 7.).  
The Read Electronic Signature command can be  
issued at any time, even during program or erase  
operations, except during Protection Register Pro-  
gram operations.  
The error bits in the Status Register do not auto-  
matically return to ‘0’ when a new command is is-  
sued. The error bits in the Status Register should  
be cleared before attempting a new program or  
erase command.  
Block Erase Command  
If a Read Electronic Signature command is issued  
to a bank that is executing a program or erase op-  
eration the bank will go into Read Electronic Sig-  
nature mode. Subsequent Bus Read cycles will  
output the Electronic Signature data and the Pro-  
gram/Erase controller will continue to program or  
erase in the background.  
The Read Electronic Signature command will only  
change the read mode of the addressed bank. The  
read modes of other banks are not affected. Only  
Asynchronous Read and Single Synchronous  
Read operations should be used to read the Elec-  
tronic Signature. A Read Array command is re-  
quired to return the bank to Read Array mode.  
Read CFI Query Command  
The Read CFI Query command is used to read  
data from the Common Flash Interface (CFI).  
One Bus Write cycle is required to issue the Read  
CFI Query command. Once a bank is in Read CFI  
Query mode, subsequent Bus Read operations in  
the same bank read from the Common Flash Inter-  
face.  
The Block Erase command is used to erase a  
block. It sets all the bits within the selected block  
to ’1’. All previous data in the block is lost.  
If the block is protected then the erase operation  
will abort, the data in the block will not be changed  
and the Status Register will output the error.  
Two Bus Write cycles are required to issue the  
command.  
The first bus cycle sets up the Block Erase  
command.  
The second latches the block address and  
starts the Program/Erase Controller.  
If the second bus cycle is not the Block Erase Con-  
firm code, Status Register bits SR4 and SR5 are  
set and the command is aborted.  
Once the command is issued the bank enters  
Read Status Register mode and any read opera-  
tion within the addressed bank will output the con-  
tents of the Status Register. A Read Array  
command is required to return the bank to Read  
Array mode.  
During Block Erase operations the bank contain-  
ing the block being erased will only accept the  
Read Array, Read Status Register, Read Electron-  
ic Signature, Read CFI Query and the Program/  
Erase Suspend command, all other commands  
will be ignored.  
The Block Erase operation aborts if Reset, RP,  
goes to VIL. As data integrity cannot be guaran-  
teed when the Block Erase operation is aborted,  
the block must be erased again.  
The Read CFI Query command can be issued at  
any time, even during program or erase opera-  
tions.  
If a Read CFI Query command is issued to a bank  
that is executing a program or erase operation the  
bank will go into Read CFI Query mode. Subse-  
quent Bus Read cycles will output the CFI data  
and the Program/Erase controller will continue to  
program or erase in the background.  
The Read CFI Query command will only change  
the read mode of the addressed bank. The read  
modes of other banks are not affected. Only Asyn-  
chronous Read and Single Synchronous Read op-  
erations should be used to read from the CFI. A  
Read Array command is required to return the  
bank to Read Array mode.  
Refer to Dual Operations section for detailed infor-  
mation about simultaneous operations allowed in  
banks not being erased.  
Typical Erase times are given in Table  
15., Program, Erase Times and Endurance Cy-  
cles.  
See APPENDIX C., Figure 25., Block Erase Flow-  
chart and Pseudo Code, for a suggested flowchart  
for using the Block Erase command.  
See APPENDIX B., COMMON FLASH INTER-  
FACE, Tables 31, 32, 33, 34, 35, 37, 38, 39 and 40  
for details on the information contained in the  
Common Flash Interface memory area.  
Program Command  
Clear Status Register Command  
The program command is used to program a sin-  
gle Word to the memory array.  
Two Bus Write cycles are required to issue the  
Program Command.  
The Clear Status Register command can be used  
to reset (set to ‘0’) all error bits (SR1, 3, 4 and 5) in  
the Status Register.  
One Bus Write cycle is required to issue the Clear  
Status Register command. The Clear Status Reg-  
ister command does not change the read mode of  
the addressed bank.  
The first bus cycle sets up the Program  
command.  
13/82  
 
M58LR128FT, M58LR128FB  
The second latches the address and data to  
be programmed and starts the Program/Erase  
Controller.  
Optimum performance is obtained when the  
start address corresponds to a 32 Word  
boundary. If the start address is not aligned to  
a 32 word boundary, the total programming  
time is doubled  
Once the programming has started, read opera-  
tions in the bank being programmed output the  
Status Register content.  
During a Program operation, the bank containing  
the Word being programmed will only accept the  
Read Array, Read Status Register, Read Electron-  
ic Signature, Read CFI Query and the Program/  
Erase Suspend command, all other commands  
will be ignored. A Read Array command is re-  
quired to return the bank to Read Array mode.  
Refer to Dual Operations section for detailed infor-  
mation about simultaneous operations allowed in  
banks not being programmed.  
Typical Program times are given in Table  
15., Program, Erase Times and Endurance Cy-  
cles.  
4. The final Bus Write cycle confirms the Buffer  
Program command and starts the program  
operation.  
All the addresses used in the Buffer Program op-  
eration must lie within the same block.  
Invalid address combinations or failing to follow  
the correct sequence of Bus Write cycles will set  
an error in the Status Register and abort the oper-  
ation without affecting the data in the memory ar-  
ray.  
If the Status Register bits SR4 and SR5 are set to  
'1', the Buffer Program Command is not accepted.  
Clear the Status Register before re-issuing the  
command.  
The Program operation aborts if Reset, RP, goes  
to VIL. As data integrity cannot be guaranteed  
when the Program operation is aborted, the Word  
must be reprogrammed.  
If the block being programmed is protected an er-  
ror will be set in the Status Register and the oper-  
ation will abort without affecting the data in the  
memory array.  
See APPENDIX C., Figure 22., Program Flow-  
chart and Pseudo Code, for the flowchart for using  
the Program command.  
During Buffer Program operations the bank being  
programmed will only accept the Read Array,  
Read Status Register, Read Electronic Signature,  
Read CFI Query and the Program/Erase Suspend  
command, all other commands will be ignored.  
Refer to Dual Operations section for detailed infor-  
mation about simultaneous operations allowed in  
banks not being programmed.  
Buffer Program Command  
The Buffer Program Command makes use of the  
device’s 32-Word Write Buffer to speed up pro-  
gramming. Up to 32 Words can be loaded into the  
Write Buffer. The Buffer Program command dra-  
matically reduces in-system programming time  
compared to the standard non-buffered Program  
command.  
See Appendix C, figure 27, Buffer Program Flow-  
chart and Pseudo Code, for a suggested flowchart  
on using the Buffer Program command.  
Four successive steps are required to issue the  
Buffer Program command.  
1. The first Bus Write cycle sets up the Buffer  
Program command. The setup code can be  
addressed to any location within the targeted  
block.  
After the first Bus Write cycle, read operations in  
the bank will output the contents of the Status  
Register. Status Register bit SR7 should be read  
to check that the buffer is available (SR7 = 1). If  
the buffer is not available (SR7 = 0), re-issue the  
Buffer Program command to update the Status  
Register contents.  
2. The second Bus Write cycle sets up the  
number of Words to be programmed. Value n  
is written to the same block address, where  
n+1 is the number of Words to be  
programmed.  
Buffer Enhanced Factory Program Command  
The Buffer Enhanced Factory Program command  
has been specially developed to speed up pro-  
gramming in manufacturing environments where  
the programming time is critical.  
It is used to program one or more Write Buffer(s)  
of 32 Words to a block. Once the device enters  
Buffer Enhanced Factory Program mode, the  
Write Buffer can be reloaded any number of times  
as long as the address remains within the same  
block. Only one block can be programmed at a  
time.  
The use of the Buffer Enhanced Factory Program  
command requires certain operating conditions:  
VPP must be set to VPPH  
VDD must be within operating range  
Ambient temperature, TA must be 25°C ± 5°C  
The targeted block must be unlocked  
The start address must be aligned with the  
start of a 32 Word buffer boundary  
3. Use n+1 Bus Write cycles to load the address  
and data for each Word into the Write Buffer.  
Addresses must lie within the range from the  
start address to the start address + n.  
14/82  
M58LR128FT, M58LR128FB  
The address must remain the Start Address  
throughout programming.  
3. Once the Write Buffer is full, the data is pro-  
grammed sequentially to the memory array.  
After the program operation the device auto-  
matically verifies the data and reprograms if  
necessary.  
Dual operations are not supported during the Buff-  
er Enhanced Factory Program operation and the  
command cannot be suspended.  
The Program and Verify phase can be repeated,  
without re-issuing the command, to program addi-  
tional 32 Word locations as long as the address re-  
mains in the same block.  
4. Finally, after all Words, or the entire block  
have been programmed, write one Bus Write  
operation to any address outside the block  
containing the Start Address, to terminate  
Program and Verify Phase.  
Status Register bit SR0 must be checked to deter-  
mine whether the program operation is finished.  
The Status Register may be checked for errors at  
any time but it must be checked after the entire  
block has been programmed.  
Exit Phase. Status Register P/E.C. bit SR7 set to  
‘1’ indicates that the device has exited the Buffer  
Enhanced Factory Program operation and re-  
turned to Read Status Register mode. A full Status  
Register check should be done to ensure that the  
block has been successfully programmed. See the  
section on the Status Register for more details.  
For optimum performance the Buffer Enhanced  
Factory Program command should be limited to a  
maximum of 100 program/erase cycles per block.  
If this limit is exceeded the internal algorithm will  
continue to work properly but some degradation in  
performance is possible. Typical program times  
are given in Table 15..  
See APPENDIX C., Figure 29., Buffer Enhanced  
Factory Program Flowchart and Pseudo Code, for  
a suggested flowchart on using the Buffer En-  
hanced Factory Program command.  
The Buffer Enhanced Factory Program Command  
consists of three phases: the Setup Phase, the  
Program and Verify Phase, and the Exit Phase,  
Please refer to Table 7. Factory Program Com-  
mands for detail information.  
Refer to Table 6., Factory Program Command,  
and Figure 29., Buffer Enhanced Factory Program  
Flowchart and Pseudo Code.  
Setup Phase. The Buffer Enhanced Factory Pro-  
gram command requires two Bus Write cycles to  
initiate the command.  
The first Bus Write cycle sets up the Buffer  
Enhanced Factory Program command.  
The second Bus Write cycle confirms the  
command.  
After the confirm command is issued, read opera-  
tions output the contents of the Status Register.  
The read Status Register command must not be  
issued as it will be interpreted as data to program.  
The Status Register P/E.C. Bit SR7 should be  
read to check that the P/E.C. is ready to proceed  
to the next phase.  
If an error is detected, SR4 goes high (set to ‘1’)  
and the Buffer Enhanced Factory Program opera-  
tion is terminated. See Status Register section for  
details on the error.  
Program and Verify Phase. The Program and  
Verify Phase requires 32 cycles to program the 32  
Words to the Write Buffer. The data is stored se-  
quentially, starting at the first address of the Write  
Buffer, until the Write Buffer is full (32 Words). To  
program less than 32 Words, the remaining Words  
should be programmed with FFFFh.  
Three successive steps are required to issue and  
execute the Program and Verify Phase of the com-  
mand.  
1. Use one Bus Write operation to latch the Start  
Address and the first Word to be programmed.  
The Status Register Bank Write Status bit SR0  
should be read to check that the P/E.C. is  
ready for the next Word.  
Program/Erase Suspend Command  
The Program/Erase Suspend command is used to  
pause a Program or Block Erase operation. The  
command can be addressed to any bank.  
The Program/Erase Resume command is re-  
quired to restart the suspended operation.  
One bus write cycle is required to issue the Pro-  
gram/Erase Suspend command. Once the Pro-  
gram/Erase Controller has paused bits SR7, SR6  
and/ or SR2 of the Status Register will be set to ‘1’.  
2. Each subsequent Word to be programmed is  
latched with a new Bus Write operation. The  
address must remain the Start Address as the  
P/E.C. increments the address location.If any  
address that is not in the same block as the  
Start Address is given, the Program and Verify  
Phase terminates. Status Register bit SR0  
should be read between each Bus Write cycle  
to check that the P/E.C. is ready for the next  
Word.  
The following commands are accepted during Pro-  
gram/Erase Suspend:  
Program/Erase Resume  
Read Array (data from erase-suspended  
block or program-suspended Word is not  
valid)  
Read Status Register  
Read Electronic Signature  
15/82  
M58LR128FT, M58LR128FB  
Read CFI Query.  
See APPENDIX C., Figure 24., Program Suspend  
& Resume Flowchart and Pseudo Code, and Fig-  
ure 26., Erase Suspend & Resume Flowchart and  
Pseudo Code, for flowcharts for using the Pro-  
gram/Erase Resume command.  
Additionally, if the suspended operation was erase  
then the following commands are also accepted:  
Clear Status Register  
Program (except in erase-suspended  
block)  
Block Lock  
Block Lock-Down  
Block Unlock.  
Protection Register Program Command  
The Protection Register Program command is  
used to program the user One-Time-Programma-  
ble (OTP) segments of the Protection Register and  
the two Protection Register Locks.  
The device features 16 OTP segments of 128 bits  
and one OTP segment of 64 bits, as shown in Fig-  
ure 5., Protection Register Memory Map.  
The segments are programmed one Word at a  
time. When shipped all bits in the segment are set  
to ‘1’. The user can only program the bits to ‘0’.  
During an erase suspend the block being erased  
can be protected by issuing the Block Lock or  
Block Lock-Down commands. When the Program/  
Erase Resume command is issued the operation  
will complete.  
It is possible to accumulate multiple suspend oper-  
ations. For example: suspend an erase operation,  
start a program operation, suspend the program  
operation, then read the array.  
If a Program command is issued during a Block  
Erase Suspend, the erase operation cannot be re-  
sumed until the program operation has completed.  
The Program/Erase Suspend command does not  
change the read mode of the banks. If the sus-  
pended bank was in Read Status Register, Read  
Electronic signature or Read CFI Query mode the  
bank remains in that mode and outputs the corre-  
sponding data.  
Refer to Dual Operations section for detailed infor-  
mation about simultaneous operations allowed  
during Program/Erase Suspend.  
During a Program/Erase Suspend, the device can  
be placed in standby mode by taking Chip Enable  
to VIH. Program/erase is aborted if Reset, RP,  
goes to VIL.  
See APPENDIX C., Figure 24., Program Suspend  
& Resume Flowchart and Pseudo Code, and Fig-  
ure 26., Erase Suspend & Resume Flowchart and  
Pseudo Code, for flowcharts for using the Pro-  
gram/Erase Suspend command.  
Two Bus Write cycles are required to issue the  
Protection Register Program command.  
The first bus cycle sets up the Protection  
Register Program command.  
The second latches the address and data to  
be programmed to the Protection Register and  
starts the Program/Erase Controller.  
Read operations to the bank being programmed  
output the Status Register content after the pro-  
gram operation has started.  
Attempting to program a previously protected Pro-  
tection Register will result in a Status Register er-  
ror.  
The Protection Register Program cannot be sus-  
pended.  
The two Protection Register Locks are used to  
protect the OTP segments from further modifica-  
tion. The protection of the OTP segments is not re-  
versible. Refer to Figure 5., Protection Register  
Memory Map, and Table 8., Protection Register  
Locks, for details on the Lock bits.  
See APPENDIX C., Figure 28., Protection Regis-  
ter Program Flowchart and Pseudo Code, for a  
flowchart for using the Protection Register Pro-  
gram command.  
Program/Erase Resume Command  
The Program/Erase Resume command is used to  
restart the program or erase operation suspended  
by the Program/Erase Suspend command. One  
Bus Write cycle is required to issue the command.  
The command can be issued to any address.  
The Program/Erase Resume command does not  
change the read mode of the banks. If the sus-  
pended bank was in Read Status Register, Read  
Electronic signature or Read CFI Query mode the  
bank remains in that mode and outputs the corre-  
sponding data.  
Set Configuration Register Command  
The Set Configuration Register command is used  
to write a new value to the Configuration Register.  
Two Bus Write cycles are required to issue the Set  
Configuration Register command.  
The first cycle sets up the Set Configuration  
Register command and the address  
corresponding to the Configuration Register  
content.  
The second cycle writes the Configuration  
Register data and the confirm command.  
If a Program command is issued during a Block  
Erase Suspend, then the erase cannot be re-  
sumed until the program operation has completed.  
The Configuration Register data must be written  
as an address during the bus write cycles, that is  
16/82  
 
M58LR128FT, M58LR128FB  
A0 = CR0, A1 = CR1, …, A15 = CR15. Addresses  
A16- A22 are ignored.  
The second Bus Write cycle latches the block  
address and unlocks the block.  
Once the Set Configuration Register command  
has been issued, read operations will output the  
array contents.  
The Read Electronic Signature command is re-  
quired to read the updated contents of the Config-  
uration Register.  
The lock status can be monitored for each block  
using the Read Electronic Signature command.  
Table 14. shows the protection status after issuing  
a Block Unlock command.  
Refer to the section, Block Locking, for a detailed  
explanation  
and  
APPENDIX  
C.,  
Figure  
27., Locking Operations Flowchart and Pseudo  
Code, for a flowchart for using the Block Unlock  
command.  
Block Lock-Down Command  
The Block Lock-Down command is used to lock-  
down a locked or unlocked block.  
A locked-down block cannot be programmed or  
erased. The lock status of a locked-down block  
cannot be changed when WP is low, VIL. When  
WP is high, VIH, the lock-down function is disabled  
and the locked blocks can be individually unlocked  
by the Block Unlock command.  
Block Lock Command  
The Block Lock command is used to lock a block  
and prevent program or erase operations from  
changing the data in it. All blocks are locked after  
power-up or reset.  
Two Bus Write cycles are required to issue the  
Block Lock command.  
The first bus cycle sets up the Block Lock  
command.  
The second Bus Write cycle latches the block  
address and locks the block.  
The lock status can be monitored for each block  
using the Read Electronic Signature command.  
Table 14. shows the Lock Status after issuing a  
Block Lock command.  
Once set, the Block Lock bits remain set until a  
hardware reset or power-down/power-up. They  
are cleared by a Block Unlock command.  
Two Bus Write cycles are required to issue the  
Block Lock-Down command.  
The first bus cycle sets up the Block Lock-  
Down command.  
The second Bus Write cycle latches the block  
address and locks-down the block.  
The lock status can be monitored for each block  
using the Read Electronic Signature command.  
Locked-Down blocks revert to the locked (and not  
locked-down) state when the device is reset on  
power-down. Table 14. shows the Lock Status af-  
ter issuing a Block Lock-Down command.  
Refer to the section, Block Locking, for a detailed  
explanation. See APPENDIX C., Figure  
27., Locking Operations Flowchart and Pseudo  
Code, for a flowchart for using the Lock command.  
Block Unlock Command  
The Block Unlock command is used to unlock a  
block, allowing the block to be programmed or  
erased.  
Two Bus Write cycles are required to issue the  
Block Unlock command.  
Refer to the section, Block Locking, for a detailed  
explanation  
and  
APPENDIX  
C.,  
Figure  
27., Locking Operations Flowchart and Pseudo  
Code, for a flowchart for using the Lock-Down  
command.  
The first bus cycle sets up the Block Unlock  
command.  
17/82  
M58LR128FT, M58LR128FB  
Table 5. Standard Commands  
Bus Operations  
Commands  
1st Cycle  
Add  
2nd Cycle  
Add  
Op.  
Write  
Write  
Write  
Write  
Write  
Data  
FFh  
70h  
90h  
98h  
50h  
Op.  
Read  
Read  
Read  
Read  
Data  
RD  
Read Array  
1+  
1+  
1+  
1+  
1
BKA  
WA  
(2)  
Read Status Register  
Read Electronic Signature  
Read CFI Query  
BKA  
BKA  
BKA  
SRD  
ESD  
QD  
BKA  
(2)  
BKA  
(2)  
BKA  
Clear Status Register  
BKA  
BKA or  
Block Erase  
Program  
2
2
Write  
Write  
20h  
Write  
Write  
BA  
D0h  
(3)  
BA  
BKA or  
40h or 10h  
E8h  
WA  
BA  
PD  
n
(3)  
WA  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
BA  
Write  
Write  
Write  
PA  
PD  
PA  
PD  
Buffer Program  
n+4  
1
1
2
2
PA  
PD  
X
D0h  
n+1  
n+1  
Program/Erase Suspend  
Program/Erase Resume  
Protection Register Program  
Set Configuration Register  
1
1
2
2
X
X
B0h  
D0h  
C0h  
60h  
PRA  
CRD  
BKA or  
Write  
Write  
PRA  
CRD  
PRD  
03h  
Block Lock  
2
2
2
Write  
Write  
Write  
60h  
60h  
60h  
Write  
Write  
Write  
BA  
BA  
BA  
01h  
D0h  
2Fh  
(3)  
BA  
BKA or  
Block Unlock  
Block Lock-Down  
(3)  
BA  
BKA or  
(3)  
BA  
Note: 1. X = Don't Care, WA=Word Address in targeted bank, RD=Read Data, SRD=Status Register Data, ESD=Electronic Signature Data,  
QD=Query Data, BA=Block Address, BKA= Bank Address, PD=Program Data, PRA=Protection Register Address, PRD=Protection  
Register Data, CRD=Configuration Register Data.  
2. Must be same bank as in the first cycle. The signature addresses are listed in Table 7.  
3. Any address within the bank can be used.  
4. n+1 is the number of Words to be programmed.  
18/82  
M58LR128FT, M58LR128FB  
Table 6. Factory Program Command  
Bus Write Operations  
3rd  
Add Data Add Data  
Command  
Phase  
1st  
2nd  
Final -1  
Final  
Add  
Data  
Add  
Data  
Add  
Data  
BKA or  
WA  
WA  
Setup  
2
32  
1
80h  
D0h  
1
1
(4)  
WA  
Buffer  
Enhanced  
Factory  
Program/  
WA  
PD  
PD  
WA  
PD  
WA  
PD  
WA  
PD  
1
1
2
1
3
1
31  
1
32  
(3))  
Verify  
Program  
NOT  
Exit  
X
(2)  
BA  
1
Note: 1. WA=Word Address in targeted bank, BKA= Bank Address, PD=Program Data, BA=Block Address, X = Don’t Care.  
2. WA is the Start Address, NOT BA = Not Block Address of WA .  
1
1
1
3. The Program/Verify phase can be executed any number of times as long as the data is to be programmed to the same block.  
4. Any address within the bank can be used.  
Table 7. Electronic Signature Codes  
Code  
Address (h)  
Bank Address + 00  
Bank Address + 01  
Bank Address + 01  
Data (h)  
0020  
88C4  
88C5  
0001  
0000  
0003  
0002  
CR  
Manufacturer Code  
Device Code  
Top  
Bottom  
Locked  
Unlocked  
Block Protection  
Block Address + 02  
Locked and Locked-Down  
Unlocked and Locked-Down  
Configuration Register  
Bank Address + 05  
Bank Address + 80  
ST Factory Default  
0002  
0000  
Protection Register PR0  
Lock  
OTP Area Permanently Locked  
Bank Address + 81  
Bank Address + 84  
Unique Device  
Number  
Protection Register PR0  
Bank Address + 85  
Bank Address + 88  
OTP Area  
PRLD  
Protection Register PR1 through PR16 Lock  
Bank Address + 89  
Bank Address + 8A  
Bank Address + 109  
Protection Registers PR1-PR16  
OTP Area  
Note: CR = Configuration Register, PRLD = Protection Register Lock Data.  
19/82  
 
M58LR128FT, M58LR128FB  
Figure 5. Protection Register Memory Map  
PROTECTION REGISTERS  
109h  
PR16  
User Programmable OTP  
102h  
91h  
PR1  
User Programmable OTP  
8Ah  
89h  
Protection Register Lock  
14  
15 13 121110 9 8 7 6 5 4 3 2 1 0  
88h  
PR0  
User Programmable OTP  
85h  
84h  
Unique device number  
81h  
80h  
Protection Register Lock  
1 0  
AI07563  
20/82  
 
M58LR128FT, M58LR128FB  
Table 8. Protection Register Locks  
Lock  
Description  
Number  
Address  
Bits  
preprogrammed to protect Unique Device Number, address 81h to  
84h in PR0  
Bit 0  
Lock 1  
80h  
Bit 1  
Bits 2 to 15  
Bit 0  
protects 64bits of OTP segment, address 85h to 88h in PR0  
reserved  
protects 128bits of OTP segment PR1  
protects 128bits of OTP segment PR2  
protects 128bits of OTP segment PR3  
Bit 1  
Bit 2  
Lock 2  
89h  
Bit 13  
Bit 14  
Bit 15  
protects 128bits of OTP segment PR14  
protects 128bits of OTP segment PR15  
protects 128bits of OTP segment PR16  
21/82  
M58LR128FT, M58LR128FB  
STATUS REGISTER  
The Status Register provides information on the  
current or previous program or erase operations.  
Issue a Read Status Register command to read  
the contents of the Status Register, refer to Read  
Status Register Command section for more de-  
tails. To output the contents, the Status Register is  
latched and updated on the falling edge of the  
Chip Enable or Output Enable signals and can be  
read until Chip Enable or Output Enable returns to  
VIH. The Status Register can only be read using  
single Asynchronous or Single Synchronous  
reads. Bus Read operations from any address  
within the bank, always read the Status Register  
during program and erase operations.  
The various bits convey information about the sta-  
tus and any errors of the operation. Bits SR7, SR6,  
SR2 and SR0 give information on the status of the  
device and are set and reset by the device. Bits  
SR5, SR4, SR3 and SR1 give information on er-  
rors, they are set by the device but must be reset  
by issuing a Clear Status Register command or a  
hardware reset. If an error bit is set to ‘1’ the Status  
Register should be reset before issuing another  
command.  
When a Program/Erase Resume command is is-  
sued the Erase Suspend Status bit returns Low.  
Erase Status Bit (SR5). The Erase Status bit is  
used to identify if there was an error during a block  
or bank erase operation. When the Erase Status  
bit is High (set to ‘1’), the Program/Erase Control-  
ler has applied the maximum number of pulses to  
the block or bank and still failed to verify that it has  
erased correctly.  
The Erase Status bit should be read once the Pro-  
gram/Erase Controller Status bit is High (Program/  
Erase Controller inactive).  
Once set High, the Erase Status bit must be set  
Low by a Clear Status Register command or a  
hardware reset before a new erase command is is-  
sued, otherwise the new command will appear to  
fail.  
Program Status Bit (SR4). The Program Status  
bit is used to identify if there was an error during a  
program operation.  
The Program Status bit should be read once the  
Program/Erase Controller Status bit is High (Pro-  
gram/Erase Controller inactive).  
The bits in the Status Register are summarized in  
Table 9., Status Register Bits. Refer to Table 9. in  
conjunction with the following text descriptions.  
Program/Erase Controller Status Bit (SR7). The  
Program/Erase Controller Status bit indicates  
whether the Program/Erase Controller is active or  
inactive in any bank.  
When the Program/Erase Controller Status bit is  
Low (set to ‘0’), the Program/Erase Controller is  
active; when the bit is High (set to ‘1’), the Pro-  
gram/Erase Controller is inactive, and the device  
is ready to process a new command.  
The Program/Erase Controller Status bit is Low  
immediately after a Program/Erase Suspend com-  
mand is issued until the Program/Erase Controller  
pauses. After the Program/Erase Controller paus-  
es the bit is High.  
When the Program Status bit is High (set to ‘1’),  
the Program/Erase Controller has applied the  
maximum number of pulses to the Word and still  
failed to verify that it has programmed correctly.  
Attempting to program a '1' to an already pro-  
grammed bit while VPP = VPPH will also set the  
Program Status bit High. If VPP is different from  
VPPH, SR4 remains Low (set to '0') and the attempt  
is not shown.  
Once set High, the Program Status bit must be set  
Low by a Clear Status Register command or a  
hardware reset before a new program command is  
issued, otherwise the new command will appear to  
fail.  
V
PP Status Bit (SR3). The VPP Status bit is used  
to identify an invalid voltage on the VPP pin during  
program and erase operations. The VPP pin is only  
sampled at the beginning of a program or erase  
operation. Program and erase operations are not  
guaranteed if VPP becomes invalid during an oper-  
ation.  
Erase Suspend Status Bit (SR6). The  
Erase  
Suspend Status bit indicates that an erase opera-  
tion has been suspended in the addressed block.  
When the Erase Suspend Status bit is High (set to  
‘1’), a Program/Erase Suspend command has  
been issued and the memory is waiting for a Pro-  
gram/Erase Resume command.  
When the VPP Status bit is Low (set to ‘0’), the volt-  
age on the VPP pin was sampled at a valid voltage.  
when the VPP Status bit is High (set to ‘1’), the VPP  
pin has a voltage that is below the VPP Lockout  
Voltage, VPPLK, the memory is protected and pro-  
gram and erase operations cannot be performed.  
Once set High, the VPP Status bit must be set Low  
by a Clear Status Register command or a hard-  
ware reset before a new program or erase com-  
mand is issued, otherwise the new command will  
appear to fail.  
The Erase Suspend Status bit should only be con-  
sidered valid when the Program/Erase Controller  
Status bit is High (Program/Erase Controller inac-  
tive). SR6 is set within the Erase Suspend Latency  
time of the Program/Erase Suspend command be-  
ing issued therefore the memory may still com-  
plete the operation rather than entering the  
Suspend mode.  
22/82  
M58LR128FT, M58LR128FB  
Program Suspend Status Bit (SR2). The Pro-  
gram Suspend Status bit indicates that a program  
operation has been suspended in the addressed  
block. The Program Suspend Status bit should  
only be considered valid when the Program/Erase  
Controller Status bit is High (Program/Erase Con-  
troller inactive).  
When the Program Suspend Status bit is High (set  
to ‘1’), a Program/Erase Suspend command has  
been issued and the memory is waiting for a Pro-  
gram/Erase Resume command.  
SR2 is set within the Program Suspend Latency  
time of the Program/Erase Suspend command be-  
ing issued therefore the memory may still com-  
plete the operation rather than entering the  
Suspend mode.  
When a Program/Erase Resume command is is-  
sued the Program Suspend Status bit returns Low.  
or erase command is issued, otherwise the new  
command will appear to fail.  
Bank Write/Multiple Word Program Status Bit  
(SR0). The Bank Write Status bit indicates wheth-  
er the addressed bank is programming or erasing.  
In Buffer Enhanced Factory Program mode the  
Multiple Word Program bit shows if the device is  
ready to accept a new Word to be programmed to  
the memory array.  
The Bank Write Status bit should only be consid-  
ered valid when the Program/Erase Controller Sta-  
tus SR7 is Low (set to ‘0’).  
When both the Program/Erase Controller Status bit  
and the Bank Write Status bit are Low (set to ‘0’),  
the addressed bank is executing a program or  
erase operation. When the Program/Erase Con-  
troller Status bit is Low (set to ‘0’) and the Bank  
Write Status bit is High (set to ‘1’), a program or  
erase operation is being executed in a bank other  
than the one being addressed.  
In Buffer Enhanced Factory Program mode if Mul-  
tiple Word Program Status bit is Low (set to ‘0’),  
the device is ready for the next Word, if the Multi-  
ple Word Program Status bit is High (set to ‘1’) the  
device is not ready for the next Word.  
Block Protection Status Bit (SR1). The Block  
Protection Status bit is used to identify if a Pro-  
gram or Block Erase operation has tried to modify  
the contents of a locked block.  
When the Block Protection Status bit is High (set  
to ‘1’), a program or erase operation has been at-  
tempted on a locked block.  
For further details on how to use the Status Regis-  
ter, see the Flowcharts and Pseudocodes provid-  
ed in APPENDIX C.  
Once set High, the Block Protection Status bit  
must be set Low by a Clear Status Register com-  
mand or a hardware reset before a new program  
23/82  
M58LR128FT, M58LR128FB  
Table 9. Status Register Bits  
Bit  
Name  
Type LogicLevel  
Definition  
'1'  
Ready  
SR7 P/E.C. Status  
Status  
'0'  
Busy  
'1'  
Erase Suspended  
SR6 Erase Suspend Status  
SR5 Erase Status  
Status  
'0'  
Erase In progress or Completed  
Erase Error  
'1'  
Error  
'0'  
Erase Success  
'1'  
Program Error  
SR4 Program Status  
Error  
'0'  
Program Success  
V
Invalid, Abort  
OK  
'1'  
PP  
PP  
V
PP  
Status  
SR3  
Error  
'0'  
V
'1'  
Program Suspended  
SR2 Program Suspend Status Status  
'0'  
'1'  
'0'  
Program In Progress or Completed  
Program/Erase on protected Block, Abort  
No operation to protected blocks  
SR7 = ‘1’ Not Allowed  
SR1 Block Protection Status  
Bank Write Status  
Error  
'1'  
Program or erase operation in a bank other than  
SR7 = ‘0’  
the addressed bank  
Status  
SR7 = ‘1’ No Program or erase operation in the device  
SR7 = ‘0’ Program or erase operation in addressed bank  
SR7 = ‘1’ Not Allowed  
'0'  
'1'  
'0'  
SR0  
Multiple Word Program  
Status (Buffer Enhanced Status  
Factory Program mode)  
SR7 = ‘0’ the device is NOT ready for the next Word  
SR7 = ‘1’ the device is exiting from BEFP  
SR7 = ‘0’ the device is ready for the next Word  
Note: Logic level '1' is High, '0' is Low.  
24/82  
M58LR128FT, M58LR128FB  
CONFIGURATION REGISTER  
The Configuration Register is used to configure  
the type of bus access that the memory will per-  
form. Refer to Read Modes section for details on  
read operations.  
tQVK_CPU is the data setup time required by  
the system CPU,  
tKQV is the clock to data valid time  
tAVQV is the random access time of the device.  
The Configuration Register is set through the  
Command Interface using the Set Configuration  
Register command. After a reset or power-up the  
device is configured for asynchronous read (CR15  
= 1). The Configuration Register bits are described  
in Table 10. They specify the selection of the burst  
length, burst type, burst X latency and the read op-  
eration. Refer to Figures 6 and 7 for examples of  
synchronous burst configurations.  
Refer to Figure 6., X-Latency and Data Output  
Configuration Example.  
Wait Polarity Bit (CR10)  
The Wait Polarity bit is used to set the polarity of  
the Wait signal used in Synchronous Burst Read  
mode. During Synchronous Burst Read mode the  
Wait signal indicates whether the data output are  
valid or a WAIT state must be inserted.  
Read Select Bit (CR15)  
When the Wait Polarity bit is set to ‘0’ the Wait sig-  
nal is active Low. When the Wait Polarity bit is set  
to ‘1’ the Wait signal is active High (default).  
The Read Select bit, CR15, is used to switch be-  
tween Asynchronous and Synchronous Read op-  
erations.  
Data Output Configuration Bit (CR9)  
When the Read Select bit is set to ’1’, read opera-  
tions are asynchronous; when the Read Select bit  
is set to ’0’, read operations are synchronous.  
The Data Output Configuration bit is used to con-  
figure the output to remain valid for either one or  
two clock cycles during synchronous mode.  
Synchronous Burst Read is supported in both pa-  
rameter and main blocks and can be performed  
across banks.  
On reset or power-up the Read Select bit is set to  
’1’ for asynchronous access (default).  
When the Data Output Configuration Bit is ’0’ the  
output data is valid for one clock cycle, when the  
Data Output Configuration Bit is ’1’ the output data  
is valid for two clock cycles.  
The Data Output Configuration must be config-  
ured using the following condition:  
X-Latency Bits (CR13-CR11)  
tK > tKQV + tQVK_CPU  
The X-Latency bits are used during Synchronous  
Read operations to set the number of clock cycles  
between the address being latched and the first  
data becoming available.  
For correct operation the X-Latency bits can only  
assume the values in Table 10., Configuration  
Register.  
where  
tK is the clock period  
tQVK_CPU is the data setup time required by  
the system CPU  
tKQV is the clock to data valid time.  
If this condition is not satisfied, the Data Output  
Configuration bit should be set to ‘1’ (two clock cy-  
cles). Refer to Figure 6., X-Latency and Data Out-  
put Configuration Example.  
The correspondence between X-Latency settings  
and the maximum sustainable frequency must be  
calculated taking into account some system pa-  
rameters. Two conditions must be satisfied:  
1. Depending on whether tAVK_CPU or tDELAY is  
supplied either one of the following two  
equations must be satisfied:  
(n + 1) tK tAVQV - tAVK_CPU + tQVK_CPU  
(n + 2) tK tAVQV + tDELAY + tQVK_CPU  
2. and also  
Wait Configuration Bit (CR8)  
The Wait Configuration bit is used to control the  
timing of the Wait output pin, WAIT, in Synchro-  
nous Burst Read mode.  
When WAIT is asserted, Data is Not Valid and  
when WAIT is deasserted, Data is Valid.  
When the Wait Configuration bit is Low (set to ’0’)  
the Wait output pin is asserted during the wait  
state. When the Wait Configuration bit is High (set  
to ’1’) (default) the Wait output pin is asserted one  
clock cycle before the wait state.  
Burst Type Bit (CR7)  
The Burst Type bit determines the sequence of ad-  
dresses read during Synchronous Burst Reads.  
The Burst Type bit is High (set to ’1’), as the mem-  
ory outputs from sequential addresses only.  
tK > tKQV + tQVK_CPU  
where  
n is the chosen X-Latency configuration code  
tK is the clock period  
tAVK_CPU is clock to address valid, L Low, or E  
Low, whichever occurs last  
tDELAY is address valid, L Low, or E Low to  
clock, whichever occurs last  
25/82  
M58LR128FT, M58LR128FB  
See Table 11., Burst Type Definition, for the se-  
quence of addresses output from a given starting  
address in sequential mode.  
Read operation as result of a single address latch  
cycle.  
They can be set for 4 Words, 8 Words, 16 Words  
or continuous burst, where all the Words are read  
sequentially. In continuous burst mode the burst  
sequence can cross bank boundaries.  
In continuous burst mode, in 4, 8 or 16 Words no-  
wrap, depending on the starting address, the de-  
vice asserts the WAIT signal to indicate that a de-  
lay is necessary before the data is output.  
If the starting address is aligned to a 4 Word  
boundary no wait states are needed and the WAIT  
output is not asserted.  
If the starting address is shifted by 1, 2 or 3 posi-  
tions from the four word boundary, WAIT will be  
asserted for 1, 2 or 3 clock cycles when the burst  
sequence crosses the first 16 Word boundary, to  
indicate that the device needs an internal delay to  
read the successive Words in the array. WAIT will  
be asserted only once during a continuous burst  
access. See also Table 11., Burst Type Definition.  
Valid Clock Edge Bit (CR6)  
The Valid Clock Edge bit, CR6, is used to config-  
ure the active edge of the Clock, K, during syn-  
chronous read operations. When the Valid Clock  
Edge bit is Low (set to ’0’) the falling edge of the  
Clock is the active edge. When the Valid Clock  
Edge bit is High (set to ’1’) the rising edge of the  
Clock is the active edge.  
Wrap Burst Bit (CR3)  
The Wrap Burst bit, CR3, is used to select be-  
tween wrap and no wrap. Synchronous burst  
reads can be confined inside the 4, 8 or 16 Word  
boundary (wrap) or overcome the boundary (no  
wrap).  
When the Wrap Burst bit is Low (set to ‘0’) the  
burst read wraps. When it is High (set to ‘1’) the  
burst read does not wrap.  
Burst length Bits (CR2-CR0)  
The Burst Length bits are used to set the number  
of Words to be output during a Synchronous Burst  
CR14, CR5 and CR4 are reserved for future use.  
26/82  
M58LR128FT, M58LR128FB  
Table 10. Configuration Register  
Bit  
Description  
Value  
Description  
0
1
Synchronous Read  
CR15  
CR14  
Read Select  
Asynchronous Read (Default at power-on)  
Reserved  
010  
011  
100  
101  
111  
2 clock latency  
3 clock latency  
4 clock latency  
CR13-CR11  
X-Latency  
5 clock latency  
Reserved (default)  
Other configurations reserved  
0
1
0
1
0
1
0
1
0
1
WAIT is active Low  
WAIT is active high (default)  
Data held for one clock cycle  
Data held for two clock cycles (default)  
WAIT is active during wait state  
WAIT is active one data cycle before wait state (default)  
Reserved  
CR10  
CR9  
CR8  
CR7  
Wait Polarity  
Data Output  
Configuration  
Wait Configuration  
Burst Type  
Sequential (default)  
Falling Clock edge  
CR6  
CR5-CR4  
CR3  
Valid Clock Edge  
Rising Clock edge (default)  
Reserved  
0
Wrap  
Wrap Burst  
1
No Wrap (default)  
001  
010  
011  
111  
4 Words  
8 Words  
CR2-CR0  
Burst Length  
16 Words  
Continuous (default)  
27/82  
M58LR128FT, M58LR128FB  
Table 11. Burst Type Definition  
4 Words  
8 Words  
16 Words  
Start  
Add  
Continuous  
Burst  
Sequen-tial  
Sequential  
Sequential  
0-1-2-3-4-5-6-7-8-9-10-11-12-13-  
14-15  
0
1
2
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3-4-5-6-7  
0-1-2-3-4-5-6...  
1-2-3-4-5-6-7-8-9-10-11-12-13-14- 1-2-3-4-5-6-7-...15-WAIT-16-  
15-0 17-18...  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
2-3-4-5-6-7-8-9-10-11-12-13-14- 2-3-4-5-6-7...15-WAIT-WAIT-  
15-0-1  
16-17-18...  
3-4-5-6-7-8-9-10-11-12-13-14-15-  
0-1-2  
3-4-5-6-7...15-WAIT-WAIT-  
WAIT-16-17-18...  
3
...  
7
7-8-9-10-11-12-13-14-15-0-1-2-3-  
4-5-6  
7-8-9-10-11-12-13-14-15-  
WAIT-WAIT-WAIT-16-17...  
7-4-5-6  
7-0-1-2-3-4-5-6  
...  
12  
13  
14  
12-13-14-15-16-17-18...  
13-14-15-WAIT-16-17-18...  
14-15-WAIT-WAIT-16-17-18....  
15-WAIT-WAIT-WAIT-16-17-  
18...  
15  
0
0-1-2-3-4-5-6-7-8-9-10-11-12-13-  
14-15  
0-1-2-3  
1-2-3-4  
2-3-4-5  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
2-3-4-5-6-7-8-9...  
1-2-3-4-5-6-7-8-9-10-11-12-13-14-  
15-WAIT-16  
1
2-3-4-5-6-7-8-9-10-11-12-13-14-  
15-WAIT-WAIT-16-17  
2
3-4-5-6-7-8-9-10-11-12-13-14-15-  
WAIT-WAIT-WAIT-  
16-17-18  
3
3-4-5-6  
3-4-5-6-7-8-9-10  
...  
7
Same as for Wrap  
(Wrap /No Wrap  
has no effect on  
Continuous Burst)  
7-8-9-10-11-12-13-14-15-WAIT-  
WAIT-WAIT-16-17-18-19-20-21-22  
7-8-9-10  
7-8-9-10-11-12-13-14  
...  
12  
12-13-14-15-16-17- 12-13-14-15-16-17-18-19-20-21-  
18-19 22-23-24-25-26-27  
12-13-14-15  
13-14-15-WAIT- 13-14-15-WAIT-16- 13-14-15-WAIT-16-17-18-19-20-  
13  
14  
16  
17-18-19-20  
21-22-23-24-25-26-27-28  
14-15-WAIT-  
WAIT-16-17  
14-15-WAIT-WAIT-  
16-17-18-19-20-21  
14-15-WAIT-WAIT-16-17-18-19-  
20-21-22-23-24-25-26-27-28-29  
15-WAIT-WAIT-  
WAIT-16-17-18-19- 20-21-22-23-24-25-26-27-28-29-  
20-21-22 30  
15-WAIT-WAIT-WAIT-16-17-18-19-  
15-WAIT-WAIT-  
WAIT-16-17-18  
15  
28/82  
M58LR128FT, M58LR128FB  
Figure 6. X-Latency and Data Output Configuration Example  
X-latency  
1st cycle  
2nd cycle  
3rd cycle  
4th cycle  
K
E
L
A22-A0  
tDELAY  
VALID ADDRESS  
tAVK_CPU  
tQVK_CPU  
tK  
tQVK_CPU  
tACC  
tKQV  
DQ15-DQ0  
VALID DATA VALID DATA  
Note. Settings shown: X-latency = 4, Data Output held for one clock cycle  
AI06182  
Figure 7. Wait Configuration Example  
E
K
L
A22-A0  
VALID ADDRESS  
DQ15-DQ0  
VALID DATA VALID DATA NOT VALID VALID DATA  
WAIT  
CR8 = '0'  
CR10 = '0'  
WAIT  
CR8 = '1'  
CR10 = '0'  
WAIT  
CR8 = '0'  
CR10 = '1'  
WAIT  
CR8 = '1'  
CR10 = '1'  
AI06972  
29/82  
M58LR128FT, M58LR128FB  
READ MODES  
Read operations can be performed in two different  
ways depending on the settings in the Configura-  
tion Register. If the clock signal is ‘don’t care’ for  
the data output, the read operation is asynchro-  
nous; if the data output is synchronized with clock,  
the read operation is synchronous.  
Synchronous Burst Read mode can only be used  
to read the memory array. For other read opera-  
tions, such as Read Status Register, Read CFI  
and Read Electronic Signature, Single Synchro-  
nous Read or Asynchronous Random Access  
Read must be used.  
The read mode and format of the data output are  
determined by the Configuration Register. (See  
Configuration Register section for details). All  
banks support both asynchronous and synchro-  
nous read operations.  
In Synchronous Burst Read mode the flow of the  
data output depends on parameters that are con-  
figured in the Configuration Register.  
A burst sequence starts at the first clock edge (ris-  
ing or falling depending on Valid Clock Edge bit  
CR6 in the Configuration Register) after the falling  
edge of Latch Enable or Chip Enable, whichever  
occurs last. Addresses are internally incremented  
and data is output on each data cycle after a delay  
which depends on the X latency bits CR13-CR11  
of the Configuration Register.  
The number of Words to be output during a Syn-  
chronous Burst Read operation can be configured  
as 4 Words, 8 Words, 16 Words or Continuous  
(Burst Length bits CR2-CR0). The data can be  
configured to remain valid for one or two clock cy-  
cles (Data Output Configuration bit CR9).  
The order of the data output can be modified  
through the Wrap Burst bit in the Configuration  
Register. The burst sequence is sequential and  
can be confined inside the 4, 8 or 16 Word bound-  
ary (Wrap) or overcome the boundary (No Wrap).  
The WAIT signal may be asserted to indicate to  
the system that an output delay will occur. This de-  
lay will depend on the starting address of the burst  
sequence and on the burst configuration.  
WAIT is asserted during the X latency, the Wait  
state and at the end of a 4, 8 and 16 Word burst. It  
is only deasserted when output data are valid. In  
Continuous Burst Read mode a Wait state will oc-  
cur when crossing the first 16 Word boundary. If  
the burst starting address is aligned to a 4 Word  
Page, the Wait state will not occur.  
The WAIT signal can be configured to be active  
Low or active High by setting CR10 in the Config-  
uration Register.  
Asynchronous Read Mode  
In Asynchronous Read operations the clock signal  
is ‘don’t care’. The device outputs the data corre-  
sponding to the address latched, that is the mem-  
ory array, Status Register, Common Flash  
Interface or Electronic Signature depending on the  
command issued. CR15 in the Configuration Reg-  
ister must be set to ‘1’ for asynchronous opera-  
tions.  
Asynchronous Read operations can be performed  
in two different ways, Asynchronous Random Ac-  
cess Read and Asynchronous Page Read. Only  
Asynchronous Page Read takes full advantage of  
the internal page storage so different timings are  
applied.  
In Asynchronous Read mode a Page of data is in-  
ternally read and stored in a Page Buffer. The  
Page has a size of 4 Words and is addressed by  
address inputs A0 and A1.  
The first read operation within the Page has a  
longer access time (tAVQV, Random access time),  
subsequent reads within the same Page have  
much shorter access times (tAVQV1, Page access  
time). If the Page changes then the normal, longer  
timings apply again.  
The device features an Automatic Standby mode.  
During Asynchronous Read operations, after a  
bus inactivity of 150ns, the device automatically  
switches to the Automatic Standby mode. In this  
condition the power consumption is reduced to the  
standby value and the outputs are still driven.  
In Asynchronous Read mode, the WAIT signal is  
always deasserted.  
See Table 21., Asynchronous Read AC Charac-  
teristics, Figure 10., Asynchronous Random Ac-  
cess Read AC Waveforms, and Figure  
11., Asynchronous Page Read AC Waveforms, for  
details.  
See Table 22., Synchronous Read AC Character-  
istics, and Figure 12., Synchronous Burst Read  
AC Waveforms, for details.  
Synchronous Burst Read Suspend. A  
Syn-  
chronous Burst Read operation can be suspend-  
ed, freeing the data bus for other higher priority  
devices. It can be suspended during the initial ac-  
cess latency time (before data is output) in which  
case the initial latency time can be reduced to ze-  
ro, or after the device has output data. When the  
Synchronous Burst Read operation is suspended,  
internal array sensing continues and any previous-  
ly latched internal data is retained. A burst se-  
Synchronous Burst Read Mode  
In Synchronous Burst Read mode the data is out-  
put in bursts synchronized with the clock. It is pos-  
sible to perform burst reads across bank  
boundaries.  
30/82  
M58LR128FT, M58LR128FB  
quence can be suspended and resumed as often  
as required as long as the operating conditions of  
the device are met.  
A Synchronous Burst Read operation is suspend-  
ed when Chip Enable, E, is Low and the current  
address has been latched (on a Latch Enable ris-  
ing edge or on a valid clock edge). The Clock sig-  
nal is then halted at VIH or at VIL, and Output  
Enable, G, goes High.  
When Output Enable, G, becomes Low again and  
the Clock signal restarts, the Synchronous Burst  
Read operation is resumed exactly where it  
stopped.  
WAIT will revert to high-impedance when Output  
Enable, G, or Chip Enable, E, goes High.  
Single Synchronous Read Mode  
Single Synchronous Read operations are similar  
to Synchronous Burst Read operations except that  
the memory outputs the same data to the end of  
the operation.  
Synchronous Single Reads are used to read the  
Electronic Signature, Status Register, CFI, Block  
Protection Status, Configuration Register Status  
or Protection Register. When the addressed bank  
is in Read CFI, Read Status Register or Read  
Electronic Signature mode, the WAIT signal is as-  
serted during the X latency, the Wait state and at  
the end of a 4, 8 and 16 Word burst. It is only deas-  
serted when output data are valid.  
See Table 22., Synchronous Read AC Character-  
istics, and Figure 12., Synchronous Burst Read  
AC Waveforms, for details.  
See Table 22., Synchronous Read AC Character-  
istics, and Figure 14., Synchronous Burst Read  
Suspend AC Waveforms, for details.  
31/82  
M58LR128FT, M58LR128FB  
DUAL OPERATIONS AND MULTIPLE BANK ARCHITECTURE  
The Multiple Bank Architecture of the  
M58LR128FT/B gives greater flexibility for soft-  
ware developers to split the code and data spaces  
within the memory array. The Dual Operations fea-  
ture simplifies the software management of the de-  
vice by allowing code to be executed from one  
bank while another bank is being programmed or  
erased.  
Also if the suspended operation was erase then a  
program command can be issued to another  
block, so the device can have one block in Erase  
Suspend mode, one programming and other  
banks in read mode.  
Bus Read operations are allowed in another bank  
between setup and confirm cycles of program or  
erase operations.  
The Dual Operations feature means that while pro-  
gramming or erasing in one bank, read operations  
are possible in another bank with zero latency  
(only one bank at a time is allowed to be in pro-  
gram or erase mode).  
If a read operation is required in a bank, which is  
programming or erasing, the program or erase op-  
eration can be suspended.  
By using a combination of these features, read op-  
erations are possible at any moment in the  
M58LR128FT/B device.  
Tables 12 and 13 show the dual operations possi-  
ble in other banks and in the same bank.  
Table 12. Dual Operations Allowed In Other Banks  
Commands allowed in another bank  
Read  
Status  
Read  
CFI  
Read  
Electronic  
Program/ Program/  
Erase Erase  
Suspend Resume  
Status of bank  
Read  
Array  
Program,  
Buffer Program Erase  
Block  
Register Query Signature  
Idle  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Programming  
Erasing  
Program Suspended  
Erase Suspended  
Yes  
Yes  
Yes  
Table 13. Dual Operations Allowed In Same Bank  
Commands allowed in same bank  
Read  
Status  
Register  
Read  
Electronic  
Signature  
Program,  
Buffer  
Program  
Program/ Program/  
Erase Erase  
Suspend Resume  
Status of bank  
Read  
Array  
Read  
CFI Query  
Block  
Erase  
Idle  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
(2)  
Programming  
(2)  
Erasing  
(1)  
Program Suspended  
Erase Suspended  
Yes  
Yes  
Yes  
(1)  
(1)  
Yes  
Yes  
Note: 1. Not allowed in the Block or Word that is being erased or programmed.  
2. The Read Array command is accepted but the data output is not guaranteed until the Program or Erase has completed.  
32/82  
 
 
M58LR128FT, M58LR128FB  
BLOCK LOCKING  
The M58LR128FT/B features an instant, individual  
block locking scheme that allows any block to be  
locked or unlocked with no latency. This locking  
scheme has three levels of protection.  
Locked or Locked-Down using the appropriate  
software commands. A locked block can be un-  
locked by issuing the Unlock command.  
Lock-Down State  
Lock/Unlock - this first level allows software  
only control of block locking.  
Blocks that are Locked-Down (state (0,1,x))are  
protected from program and erase operations (as  
for Locked blocks) but their protection status can-  
not be changed using software commands alone.  
A Locked or Unlocked block can be Locked-Down  
by issuing the Lock-Down command. Locked-  
Down blocks revert to the Locked state when the  
device is reset or powered-down.  
The Lock-Down function is dependent on the Write  
Protect, WP, input pin.  
When WP=0 (VIL), the blocks in the Lock-Down  
state (0,1,x) are protected from program, erase  
and protection status changes.  
When WP=1 (VIH) the Lock-Down function is dis-  
abled (1,1,x) and Locked-Down blocks can be in-  
dividually unlocked to the (1,1,0) state by issuing  
the software command, where they can be erased  
and programmed.  
When the Lock-Down function is disabled (WP=1)  
blocks can be locked (1,1,1) and unlocked (1,1,0)  
as desired. When WP=0 blocks that were previ-  
ously Locked-Down return to the Lock-Down state  
(0,1,x) regardless of any changes that were made  
while WP=1.  
Lock-Down - this second level requires  
hardware interaction before locking can be  
changed.  
VPP VPPLK - the third level offers a complete  
hardware protection against program and  
erase on all blocks.  
The protection status of each block can be set to  
Locked, Unlocked, and Locked-Down. Table 14.,  
defines all of the possible protection states (WP,  
DQ1, DQ0), and APPENDIX C., Figure 27., shows  
a flowchart for the locking operations.  
Reading a Block’s Lock Status  
The lock status of every block can be read in the  
Read Electronic Signature mode of the device. To  
enter this mode issue the Read Electronic Signa-  
ture command. Subsequent reads at the address  
specified in Table 7., will output the protection sta-  
tus of that block.  
The lock status is represented by DQ0 and DQ1.  
DQ0 indicates the Block Lock/Unlock status and is  
set by the Lock command and cleared by the Un-  
lock command. DQ0 is automatically set when en-  
tering Lock-Down. DQ1 indicates the Lock-Down  
status and is set by the Lock-Down command.  
DQ1 cannot be cleared by software, only by a  
hardware reset or power-down.  
Device reset or power-down resets all blocks, in-  
cluding those in Lock-Down, to the Locked state.  
Locking Operations During Erase Suspend  
Changes to block lock status can be performed  
during an erase suspend by using the standard  
locking command sequences to unlock, lock or  
lock-down a block. This is useful in the case when  
another block needs to be updated while an erase  
operation is in progress.  
The following sections explain the operation of the  
locking system.  
Locked State  
The default status of all blocks on power-up or af-  
ter a hardware reset is Locked (states (0,0,1) or  
(1,0,1)). Locked blocks are fully protected from  
program or erase operations. Any program or  
erase operations attempted on a locked block will  
return an error in the Status Register. The Status  
of a Locked block can be changed to Unlocked or  
Locked-Down using the appropriate software  
commands. An Unlocked block can be Locked by  
issuing the Lock command.  
To change block locking during an erase opera-  
tion, first write the Erase Suspend command, then  
check the Status Register until it indicates that the  
erase operation has been suspended. Next write  
the desired Lock command sequence to a block  
and the lock status will be changed. After complet-  
ing any desired lock, read, or program operations,  
resume the erase operation with the Erase Re-  
sume command.  
If a block is locked or locked-down during an erase  
suspend of the same block, the locking status bits  
will be changed immediately, but when the erase  
is resumed, the erase operation will complete.  
Locking operations cannot be performed during a  
program suspend.  
Unlocked State  
Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)),  
can be programmed or erased. All unlocked  
blocks return to the Locked state after a hardware  
reset or when the device is powered-down. The  
status of an unlocked block can be changed to  
33/82  
M58LR128FT, M58LR128FB  
Table 14. Lock Status  
Current  
(1)  
Next Protection Status  
(WP, DQ1, DQ0)  
(1)  
Protection Status  
(WP, DQ1, DQ0)  
After  
Block Lock  
Command  
After  
Block Unlock  
Command  
After Block  
Lock-Down  
Command  
Program/Erase  
Current State  
After  
WP transition  
Allowed  
1,0,0  
yes  
1,0,1  
1,0,0  
1,1,1  
0,0,0  
(2)  
no  
yes  
no  
1,0,1  
1,1,1  
1,1,1  
0,0,1  
1,0,0  
1,1,0  
1,1,0  
0,0,0  
1,1,1  
1,1,1  
1,1,1  
0,1,1  
0,0,1  
0,1,1  
0,1,1  
1,0,0  
1,0,1  
1,1,0  
1,1,1  
0,0,0  
yes  
(2)  
no  
no  
0,0,1  
0,1,1  
0,0,0  
0,1,1  
0,1,1  
0,1,1  
1,0,1  
0,0,1  
(3)  
0,1,1  
1,1,1 or 1,1,0  
Note: 1. The lock status is defined by the write protect pin and by DQ1 (‘1’ for a locked-down block) and DQ0 (‘1’ for a locked block) as read  
in the Read Electronic Signature command with A1 = V and A0 = V .  
IH  
IL  
2. All blocks are locked at power-up, so the default configuration is 001 or 101 according to WP status.  
3. A WP transition to V on a locked block will restore the previous DQ0 value, giving a 111 or 110.  
IH  
34/82  
M58LR128FT, M58LR128FB  
PROGRAM AND ERASE TIMES AND ENDURANCE CYCLES  
The Program and Erase times and the number of  
Program/ Erase cycles per block are shown in Ta-  
ble 15. In the M58LR128FT/B the maximum num-  
ber of Program/ Erase cycles depends on the  
voltage supply used.  
Table 15. Program, Erase Times and Endurance Cycles  
Typical after  
100k W/E  
Cycles  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Preprogrammed  
Not Preprogrammed  
Preprogrammed  
Not Preprogrammed  
Word Program  
0.65  
0.8  
1.4  
1.8  
10  
1
2.5  
2.5  
4
s
s
Parameter Block  
(16 KWords)  
Erase  
3
s
Main Block (64  
KWords)  
4
s
100  
µs  
µs  
µs  
µs  
µs  
ms  
µs  
µs  
cycles  
cycles  
s
Single Cell  
Buffer Program  
Word Program  
10  
10  
100  
(3)  
Single Word  
Program  
Buffer Program  
10  
Buffer (32 Words) (Buffer Program)  
Main Block (64 KWords)  
Program  
320  
640  
5
10  
25  
Suspend Latency  
Erase  
5
Main Blocks  
100,000  
100,000  
Program/Erase  
Cycles (per Block)  
Parameter Blocks  
Parameter Block (16 KWords)  
Main Block (64 KWords)  
0.7  
1.2  
10  
2.5  
4
Erase  
s
Single Cell  
Word Program  
100  
100  
µs  
µs  
Word Program  
10  
Single Word  
Buffered Enhanced  
3.5  
320  
100  
640  
200  
5
µs  
µs  
µs  
ms  
ms  
s
(4)  
Factory Program  
Word Program  
Buffer (32  
Words)  
Buffered Enhanced  
(4)  
(3)  
Factory Program  
Program  
Word Program  
Main Block (64  
KWords)  
Buffered Enhanced  
(4)  
Factory Program  
Word Program  
Bank (8 Mbits)  
Buffered Enhanced  
1.6  
s
(4)  
Factory Program  
Main Blocks  
1000 cycles  
2500 cycles  
Program/Erase  
Cycles (per Block)  
Parameter Blocks  
Note: 1. T = –40 to 85°C; V = 1.7V to 2.0V; V = 1.7V to 2.0V.  
DDQ  
A
DD  
2. Values are liable to change with the external system-level overhead (command sequence and Status Register polling execution).  
3. Excludes the time needed to execute the command sequence.  
4. Average on entire device.  
35/82  
 
M58LR128FT, M58LR128FB  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings table may cause per-  
manent damage to the device. These are stress  
ratings only and operation of the device at these or  
any other conditions above those indicated in the  
Operating sections of this specification is not im-  
plied. Exposure to Absolute Maximum Rating con-  
ditions for extended periods may affect device  
reliability. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
Table 16. Absolute Maximum Ratings  
Value  
Symbol  
Parameter  
Unit  
Min  
–25  
–25  
–65  
–0.5  
–0.2  
–0.2  
–0.2  
Max  
85  
T
Ambient Operating Temperature  
Temperature Under Bias  
Storage Temperature  
Input or Output Voltage  
Supply Voltage  
°C  
°C  
°C  
V
A
T
85  
BIAS  
T
125  
3.8  
2.5  
2.5  
14  
STG  
V
IO  
V
DD  
V
V
Input/Output Supply Voltage  
Program Voltage  
V
DDQ  
V
PP  
V
I
Output Short Circuit Current  
Time for V at V  
100  
100  
mA  
hours  
O
t
VPPH  
PP  
PPH  
36/82  
M58LR128FT, M58LR128FB  
DC AND AC PARAMETERS  
This section summarizes the operating measure-  
ment conditions, and the DC and AC characteris-  
tics of the device. The parameters in the DC and  
AC characteristics Tables that follow, are derived  
from tests performed under the Measurement  
Conditions summarized in Table 17., Operating  
and AC Measurement Conditions. Designers  
should check that the operating conditions in their  
circuit match the operating conditions when rely-  
ing on the quoted parameters.  
Table 17. Operating and AC Measurement Conditions  
M58LR128FT, M58LR128FB  
Parameter  
85  
95  
Units  
Min  
1.7  
Max  
2.0  
Min  
1.7  
Max  
2.0  
V
V
V
V
Supply Voltage  
V
V
DD  
Supply Voltage  
1.7  
2.0  
1.7  
2.0  
DDQ  
Supply Voltage (Factory environment)  
Supply Voltage (Application environment)  
8.5  
12.6  
8.5  
12.6  
V
PP  
PP  
V
+0.4  
V
+0.4  
DDQ  
–0.4  
–25  
–0.4  
–25  
V
DDQ  
Ambient Operating Temperature  
85  
85  
5
°C  
pF  
ns  
V
Load Capacitance (C )  
30  
30  
L
Input Rise and Fall Times  
5
0 to V  
0 to V  
Input Pulse Voltages  
DDQ  
DDQ  
V /2  
DDQ  
V
/2  
DDQ  
Input and Output Timing Ref. Voltages  
V
Figure 8. AC Measurement I/O Waveform  
Figure 9. AC Measurement Load Circuit  
V
DDQ  
V
DDQ  
V
V
/2  
DDQ  
DDQ  
V
DD  
0V  
16.7kΩ  
AI06161  
DEVICE  
UNDER  
TEST  
C
L
16.7kΩ  
0.1µF  
0.1µF  
C
includes JIG capacitance  
L
AI06162  
Table 18. Capacitance  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
Min  
Max  
8
Unit  
C
V
IN  
= 0V  
= 0V  
6
8
pF  
pF  
IN  
C
V
OUT  
12  
OUT  
Note: Sampled only, not 100% tested.  
37/82  
 
M58LR128FT, M58LR128FB  
Table 19. DC Characteristics - Currents  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Test Condition  
Min  
Typ  
Max  
±1  
Unit  
µA  
I
LI  
0V V V  
IN  
DDQ  
I
LO  
0V V V  
OUT DDQ  
±1  
µA  
Supply Current  
Asynchronous Read (f=6MHz)  
E = V , G = V  
10  
15  
mA  
IL  
IH  
4 Word  
8 Word  
7
16  
18  
20  
25  
18  
20  
25  
27  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
10  
13  
18  
16  
18  
21  
22  
Supply Current  
Synchronous Read (f=40MHz)  
16 Word  
Continuous  
4 Word  
I
DD1  
8 Word  
Supply Current  
Synchronous Read (f=54MHz)  
16 Word  
Continuous  
Supply Current  
(Reset)  
I
I
I
RP = V ± 0.2V  
25  
25  
25  
70  
70  
70  
µA  
µA  
µA  
DD2  
DD3  
DD4  
SS  
E = V ± 0.2V  
Supply Current (Standby)  
DD  
Supply Current (Automatic  
Standby)  
E = V , G = V  
IL  
IH  
V
= V  
PPH  
8
10  
8
15  
20  
15  
20  
mA  
mA  
mA  
mA  
PP  
Supply Current (Program)  
Supply Current (Erase)  
V
= V  
= V  
PP  
DD  
(1)  
I
DD5  
V
PP  
PPH  
V
= V  
DD  
10  
PP  
Program/Erase in one  
Bank, Asynchronous  
Read in another Bank  
20  
35  
mA  
Supply Current  
(Dual Operations)  
(1,2)  
(1)  
I
DD6  
Program/Erase in one  
Bank, Synchronous  
Read in another Bank  
32  
25  
47  
70  
mA  
µA  
Supply Current Program/ Erase  
Suspended (Standby)  
E = V ± 0.2V  
I
I
DD  
DD7  
V
= V  
PPH  
2
5
5
5
5
5
mA  
µA  
mA  
µA  
µA  
PP  
V
Supply Current (Program)  
Supply Current (Erase)  
PP  
PP  
V
= V  
= V  
0.2  
2
PP  
PP  
DD  
(1)  
PP1  
V
PPH  
V
V
= V  
0.2  
0.2  
PP  
PP  
DD  
I
V
V
Supply Current (Read)  
V
V  
V  
PP2  
PP  
DD  
(1)  
Supply Current (Standby)  
V
PP  
0.2  
5
µA  
I
PP  
DD  
PP3  
Note: 1. Sampled only, not 100% tested.  
2. V Dual Operation current is the sum of read and program or erase currents.  
DD  
38/82  
 
M58LR128FT, M58LR128FB  
Table 20. DC Characteristics - Voltages  
Symbol  
Parameter  
Input Low Voltage  
Test Condition  
Min  
Typ  
Max  
Unit  
V
V
IL  
–0.5  
0.4  
V
V
V
–0.4  
V
+ 0.4  
DDQ  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
V
IH  
DDQ  
V
I
= 100µA  
OL  
0.1  
V
OL  
V
I
= –100µA  
OH  
–0.1  
V
OH  
DDQ  
V
V
Program Voltage-Logic  
Program Voltage Factory  
Program, Erase  
Program, Erase  
1.1  
1.8  
9.0  
3.3  
12.6  
0.4  
V
PP1  
PP  
V
V
PP  
8.5  
V
PPH  
V
Program or Erase Lockout  
V Lock Voltage  
DD  
V
PPLK  
V
LKO  
1
V
V
RP pin Extended High Voltage  
3.3  
V
RPH  
39/82  
 
M58LR128FT, M58LR128FB  
Figure 10. Asynchronous Random Access Read AC Waveforms  
40/82  
M58LR128FT, M58LR128FB  
Figure 11. Asynchronous Page Read AC Waveforms  
A2-A22  
VALID ADDRESS  
tAVAV  
VALID ADDRESS  
tAVLH  
A0-A1  
L
VALID ADD. VALID ADD. VALID ADD.  
tLHAX  
tLLLH  
tLLQV  
tELLH  
E
tELQV  
tELQX  
G
tGLTV  
tELTV  
Hi-Z  
(1)  
WAIT  
tGLQV  
tGLQX  
tAVQV1  
VALID  
DATA  
VALID  
DATA  
VALID  
DATA  
VALID  
DATA  
DQ0-DQ15  
Outputs  
Enabled  
Valid Data  
Valid Address Latch  
Standby  
Note 1. WAIT is active Low.  
AI08334  
41/82  
M58LR128FT, M58LR128FB  
Table 21. Asynchronous Read AC Characteristics  
M58LR128FT/B  
Symbol  
Alt  
Parameter  
Unit  
85  
85  
85  
25  
95  
95  
95  
25  
t
t
Address Valid to Next Address Valid  
Address Valid to Output Valid (Random)  
Address Valid to Output Valid (Page)  
Address Transition to Output Transition  
Chip Enable Low to Wait Valid  
Min  
Max  
Max  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
RC  
t
t
ACC  
AVQV  
t
t
PAGE  
AVQV1  
(1)  
t
0
14  
85  
0
0
17  
95  
0
t
OH  
AXQX  
t
Max  
Max  
ELTV  
(2)  
t
Chip Enable Low to Output Valid  
t
t
CE  
ELQV  
(1)  
t
Chip Enable Low to Output Transition  
Chip Enable High to Wait Hi-Z  
Min  
Max  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LZ  
ELQX  
t
17  
0
20  
0
EHTZ  
(1)  
(1)  
(2)  
(1)  
t
Chip Enable High to Output Transition  
Chip Enable High to Output Hi-Z  
Output Enable Low to Output Valid  
Output Enable Low to Output Transition  
Output Enable Low to Wait Valid  
t
t
t
t
OH  
EHQX  
EHQZ  
GLQV  
t
Max  
Max  
Min  
17  
20  
0
20  
25  
0
HZ  
t
OE  
t
OLZ  
GLQX  
t
Max  
Min  
14  
0
17  
0
GLTV  
(1)  
t
Output Enable High to Output Transition  
t
t
OH  
GHQX  
(1)  
t
Output Enable High to Output Hi-Z  
Output Enable High to Wait Hi-Z  
Max  
Max  
Min  
Min  
Min  
Min  
Max  
17  
17  
7
20  
20  
10  
10  
10  
10  
95  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DF  
GHQZ  
t
GHTZ  
t
t
t
t
Address Valid to Latch Enable High  
Chip Enable Low to Latch Enable High  
Latch Enable High to Address Transition  
Latch Enable Pulse Width  
AVLH  
AVADVH  
t
10  
7
ELLH  
LHAX  
ELADVH  
t
ADVHAX  
t
t
ADVLADVH  
7
LLLH  
t
t
Latch Enable Low to Output Valid (Random)  
85  
LLQV  
ADVLQV  
Note: 1. Sampled only, not 100% tested.  
2. G may be delayed by up to t  
- t  
after the falling edge of E without increasing t  
.
ELQV GLQV  
ELQV  
42/82  
 
M58LR128FT, M58LR128FB  
Figure 12. Synchronous Burst Read AC Waveforms  
43/82  
 
M58LR128FT, M58LR128FB  
Figure 13. Single Synchronous Read AC Waveforms  
A0-A22  
VALID ADDRESS  
tAVKH  
L
tLLKH  
K(2)  
tELKH  
tKHQV  
tELQV  
E
tGLQV  
tGLQX  
G
tELQX  
tGHTZ  
Hi-Z  
Hi-Z  
DQ0-DQ15  
VALID  
tKHTV  
tGLTV  
WAIT(1,2)  
Note 1. The WAIT signal is configured to be active during wait state. WAIT signal is active Low.  
2. Address latched and data output on the rising clock edge. Either the rising or the falling edge of the clock signal, K, can  
be configured as the active edge. Here, the active edge is the rising one.  
AI08312  
44/82  
M58LR128FT, M58LR128FB  
Figure 14. Synchronous Burst Read Suspend AC Waveforms  
45/82  
M58LR128FT, M58LR128FB  
Figure 15. Clock input AC Waveform  
tKHKL  
tKHKH  
tf  
tr  
tKLKH  
AI06981  
Table 22. Synchronous Read AC Characteristics  
M58LR128FT/B  
Symbol  
Alt  
Parameter  
Unit  
85  
7
95  
9
t
t
t
Address Valid to Clock High  
Min  
Min  
Max  
ns  
ns  
ns  
AVKH  
AVCLKH  
t
Chip Enable Low to Clock High  
Chip Enable Low to Wait Valid  
7
9
ELKH  
ELCLKH  
t
t
14  
17  
ELTV  
Chip Enable Pulse Width (subsequent  
synchronous reads)  
Min  
14  
17  
ns  
EHEL  
t
t
Chip Enable High to Wait Hi-Z  
Clock High to Address Transition  
Max  
Min  
17  
7
20  
10  
ns  
ns  
EHTZ  
t
KHAX  
CLKHAX  
t
t
Clock High to Output Valid  
Clock High to WAIT Valid  
KHQV  
t
t
Max  
Min  
14  
17  
4
ns  
ns  
CLKHQV  
KHTV  
t
t
Clock High to Output Transition  
Clock High to WAIT Transition  
KHQX  
3
7
CLKHQX  
KHTX  
t
t
ADVLCLKH  
Latch Enable Low to Clock High  
Clock Period (f=40MHz)  
Clock Period (f=47MHz)  
Clock Period (f=54MHz)  
Min  
Min  
Min  
Min  
9
ns  
ns  
LLKH  
25  
t
t
KHKH  
CLK  
18.5  
3.5  
ns  
ns  
t
t
Clock High to Clock Low  
Clock Low to Clock High  
KHKL  
Min  
5
3
KLKH  
t
f
Clock Fall or Rise Time  
Max  
3
ns  
t
r
Note: 1. Sampled only, not 100% tested.  
2. For other timings please refer to Table 21., Asynchronous Read AC Characteristics.  
46/82  
M58LR128FT, M58LR128FB  
Figure 16. Write AC Waveforms, Write Enable Controlled  
47/82  
M58LR128FT, M58LR128FB  
Table 23. Write AC Characteristics, Write Enable Controlled  
M58LR128FT/B  
Symbol  
Alt  
Parameter  
Unit  
85  
85  
7
95  
95  
10  
t
t
Address Valid to Next Address Valid  
Address Valid to Latch Enable High  
Min  
Min  
ns  
ns  
AVAV  
WC  
t
AVLH  
(3)  
t
Address Valid to Write Enable High  
Data Valid to Write Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
50  
50  
10  
0
50  
50  
10  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
WC  
AVWH  
t
t
DVWH  
DS  
t
Chip Enable Low to Latch Enable High  
Chip Enable Low to Write Enable Low  
Chip Enable Low to Output Valid  
Chip Enable Low to Clock Valid  
ELLH  
t
t
ELWL  
CS  
t
85  
9
95  
9
ELQV  
t
ELKV  
t
Output Enable High to Write Enable Low  
Latch Enable High to Address Transition  
Latch Enable Pulse Width  
17  
9
20  
10  
10  
GHWL  
t
LHAX  
t
9
LLLH  
(3)  
Write Enable High to Address Valid  
Min  
0
0
ns  
t
t
WHAV  
(3)  
t
t
Write Enable High to Address Transition  
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Write Enable High to Chip Enable Low  
Min  
Min  
Min  
Min  
0
0
0
0
ns  
ns  
ns  
ns  
AH  
WHAX  
t
WHDX  
DH  
CH  
t
t
0
0
WHEH  
(2)  
25  
25  
t
WHEL  
t
Write Enable High to Output Enable Low  
Write Enable High to Latch Enable Low  
Write Enable High to Write Enable Low  
Write Enable High to Output Valid  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WHGL  
t
WHLL  
t
t
WPH  
25  
110  
50  
0
25  
120  
50  
0
WHWL  
t
WHQV  
t
t
Write Enable Low to Write Enable High  
WLWH  
WP  
t
Output (Status Register) Valid to V Low  
QVVPL  
PP  
t
Output (Status Register) Valid to Write Protect Low  
0
0
QVWPL  
t
t
V
High to Write Enable High  
PP  
200  
200  
200  
200  
200  
200  
200  
200  
VPHWH  
VPS  
t
Write Enable High to V Low  
WHVPL  
PP  
t
t
Write Enable High to Write Protect Low  
Write Protect High to Write Enable High  
WHWPL  
WPHWH  
Note: 1. Sampled only, not 100% tested.  
2. t has the values shown when reading in the targeted bank. System designers should take this into account and may insert a  
WHEL  
software No-Op instruction to delay the first read in the same bank after issuing a command. If it is a Read Array operation in a  
different bank t is 0ns.  
WHEL  
3. Meaningful only if L is always kept low.  
48/82  
M58LR128FT, M58LR128FB  
Figure 17. Write AC Waveforms, Chip Enable Controlled  
49/82  
M58LR128FT, M58LR128FB  
Table 24. Write AC Characteristics, Chip Enable Controlled  
M58LR128FT/B  
Symbol  
Alt  
Parameter  
Unit  
85  
85  
50  
7
95  
95  
50  
10  
50  
0
t
t
Address Valid to Next Address Valid  
Address Valid to Chip Enable High  
Address Valid to Latch Enable High  
Data Valid to Write Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
WC  
t
t
AVEH  
WC  
t
AVLH  
t
t
50  
0
DVEH  
DS  
AH  
DH  
t
t
t
Chip Enable High to Address Transition  
Chip Enable High to Input Transition  
Chip Enable High to Chip Enable Low  
Chip Enable High to Output Enable Low  
Chip Enable High to Write Enable High  
Chip Enable Low to Clock Valid  
EHAX  
t
0
0
EHDX  
t
t
CPH  
25  
0
25  
0
EHEL  
t
EHGL  
t
t
t
0
0
EHWH  
CH  
t
9
9
ELKV  
ELEH  
t
Chip Enable Low to Chip Enable High  
Chip Enable Low to Latch Enable High  
Chip Enable Low to Output Valid  
50  
10  
85  
17  
9
50  
10  
95  
20  
10  
10  
CP  
t
t
ELLH  
ELQV  
GHEL  
t
Output Enable High to Chip Enable Low  
Latch Enable High to Address Transition  
Latch Enable Pulse Width  
t
LHAX  
t
9
LLLH  
(2)  
Write Enable High to Chip Enable Low  
Write Enable High to Output Valid  
Write Enable Low to Chip Enable Low  
Min  
Min  
Min  
Min  
Min  
Min  
25  
110  
0
25  
120  
0
ns  
ns  
ns  
ns  
ns  
ns  
t
WHEL  
t
WHQV  
t
t
WLEL  
CS  
t
Chip Enable High to V Low  
200  
200  
0
200  
200  
0
EHVPL  
PP  
t
Chip Enable High to Write Protect Low  
EHWPL  
t
Output (Status Register) Valid to V Low  
QVVPL  
PP  
Output (Status Register) Valid to Write Protect  
Low  
t
Min  
0
0
ns  
QVWPL  
t
t
V
High to Chip Enable High  
Min  
Min  
200  
200  
200  
200  
ns  
ns  
VPHEH  
VPS  
PP  
t
Write Protect High to Chip Enable High  
WPHEH  
Note: 1. Sampled only, not 100% tested.  
2. t has the values shown when reading in the targeted bank. System designers should take this into account and may insert a  
WHEL  
software No-Op instruction to delay the first read in the same bank after issuing a command. If it is a Read Array operation in a  
different bank t is 0ns.  
WHEL  
50/82  
M58LR128FT, M58LR128FB  
Figure 18. Reset and Power-up AC Waveforms  
tPHWL  
tPLWL  
tPLEL  
tPLGL  
tPLLL  
W, E, G, L  
tPHEL  
tPHGL  
tPHLL  
RP  
tVDHPH  
tPLPH  
VDD, VDDQ  
Power-Up  
Reset  
AI06976  
Table 25. Reset and Power-up AC Characteristics  
Symbol  
Parameter  
Test Condition  
During Program  
85  
10  
25  
95  
10  
25  
Unit  
µs  
Reset Low to  
Min  
Min  
t
PLWL  
Write Enable Low,  
Chip Enable Low,  
Output Enable Low,  
Latch Enable Low  
t
PLEL  
During Erase  
µs  
t
PLGL  
t
Other Conditions  
Min  
80  
80  
ns  
ns  
PLLL  
Reset High to  
t
PHWL  
Write Enable Low  
Chip Enable Low  
Output Enable Low  
Latch Enable Low  
t
PHEL  
Min  
30  
30  
t
PHGL  
t
PHLL  
(1,2)  
(3)  
RP Pulse Width  
Min  
Min  
50  
50  
50  
50  
ns  
µs  
t
t
PLPH  
Supply Voltages High to Reset  
High  
VDHPH  
Note: 1. The device Reset is possible but not guaranteed if t  
2. Sampled only, not 100% tested.  
< 50ns.  
PLPH  
3. It is important to assert RP in order to allow proper CPU initialization during Power-Up or Reset.  
51/82  
M58LR128FT, M58LR128FB  
PACKAGE MECHANICAL  
Figure 19. VFBGA56 7.7x9mm - 8x7 ball array, 0.75mm pitch, Bottom View Package Outline  
D
D1  
FD  
FE  
SD  
E
E1  
ddd  
BALL "A1"  
e
e
b
A
A2  
A1  
BGA-Z38  
Note: Drawing is not to scale.  
Table 26. VFBGA56 7.7x9mm - 8x7 ball array, 0.75mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.000  
0.0394  
0.200  
0.0079  
0.660  
0.350  
7.700  
5.250  
0.0260  
0.0138  
0.3031  
0.2067  
0.300  
7.600  
0.400  
0.0118  
0.2992  
0.0157  
D
7.800  
0.3071  
D1  
ddd  
e
0.080  
0.0031  
0.750  
9.000  
4.500  
1.225  
2.250  
0.375  
0.0295  
0.3543  
0.1772  
0.0482  
0.0886  
0.0148  
E
8.900  
9.100  
0.3504  
0.3583  
E1  
FD  
FE  
SD  
52/82  
M58LR128FT, M58LR128FB  
Figure 20. VFBGA56 Daisy Chain - Package Connections (Top view through package)  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
G
AI08301  
53/82  
M58LR128FT, M58LR128FB  
Figure 21. VFBGA56 Daisy Chain - PCB Connection Proposal (Top view through package)  
1
2
3
4
5
6
7
8
START POINT  
A
B
C
D
E
F
G
END POINT  
AI07755  
54/82  
M58LR128FT, M58LR128FB  
PART NUMBERING  
Table 27. Ordering Information Scheme  
Example:  
M58LR128FT  
85 ZB  
6
T
Device Type  
M58  
Architecture  
L = Multilevel, Multiple Bank, Burst Mode  
Operating Voltage  
R = V = 1.7V to 2.0V, V  
= 1.7V to 2.0V  
DDQ  
DD  
Device Function  
128FT = 128 Mbit (x16), Top Boot  
128FB = 128 Mbit (x16), Bottom Boot  
Speed  
85 = 85ns  
95 = 95ns  
Package  
ZB = VFBGA56 7.7 x 9mm  
Temperature Range  
6 = –40 to 85°C  
Option  
Blank = Standard Packing  
T = Tape & Reel Packing  
E = Lead-Free Package, Standard Packing  
F = Lead-Free Package, Tape & Reel Packing  
Table 28. Daisy Chain Ordering Scheme  
Example:  
M58LR128F  
-ZB T  
Device Type  
M58LR128F  
Daisy Chain  
ZB = VFBGA56 7.7 x 9mm  
Option  
Blank = Standard Packing  
T = Tape & Reel Packing  
E = Lead-Free Package, Standard Packing  
F = Lead-Free Package, Tape & Reel Packing  
Devices are shipped from the factory with the memory content bits erased to ’1’.  
For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device,  
please contact the ST Sales Office nearest to you.  
55/82  
M58LR128FT, M58LR128FB  
APPENDIX A. BLOCK ADDRESS TABLES  
Table 29. Top Boot Block Addresses,  
M58LR128FT  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
5F0000-5FFFFF  
5E0000-5EFFFF  
5D0000-5DFFFF  
5C0000-5CFFFF  
5B0000-5BFFFF  
5A0000-5AFFFF  
590000-59FFFF  
580000-58FFFF  
570000-57FFFF  
560000-56FFFF  
550000-55FFFF  
540000-54FFFF  
530000-53FFFF  
520000-52FFFF  
510000-51FFFF  
500000-50FFFF  
4F0000-4FFFFF  
4E0000-4EFFFF  
4D0000-4DFFFF  
4C0000-4CFFFF  
4B0000-4BFFFF  
4A0000-4AFFFF  
490000-49FFFF  
480000-48FFFF  
470000-47FFFF  
460000-46FFFF  
450000-45FFFF  
440000-44FFFF  
430000-43FFFF  
420000-42FFFF  
410000-41FFFF  
400000-40FFFF  
3F0000-3FFFFF  
3E0000-3EFFFF  
3D0000-3DFFFF  
3C0000-3CFFFF  
3B0000-3BFFFF  
3A0000-3AFFFF  
390000-39FFFF  
380000-38FFFF  
Size  
Bank  
#
Address Range  
(KWord)  
16  
16  
16  
16  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
0
7FC000-7FFFFF  
7F8000-7FBFFF  
7F4000-7F7FFF  
7F0000-7F3FFF  
7E0000-7EFFFF  
7D0000-7DFFFF  
7C0000-7CFFFF  
7B0000-7BFFFF  
7A0000-7AFFFF  
790000-79FFFF  
780000-78FFFF  
770000-77FFFF  
760000-76FFFF  
750000-75FFFF  
740000-74FFFF  
730000-73FFFF  
720000-72FFFF  
710000-71FFFF  
700000-70FFFF  
6F0000-6FFFFF  
6E0000-6EFFFF  
6D0000-6DFFFF  
6C0000-6CFFFF  
6B0000-6BFFFF  
6A0000-6AFFFF  
690000-69FFFF  
680000-68FFFF  
670000-67FFFF  
660000-66FFFF  
650000-65FFFF  
640000-64FFFF  
630000-63FFFF  
620000-62FFFF  
610000-61FFFF  
600000-60FFFF  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
56/82  
 
 
M58LR128FT, M58LR128FB  
75  
76  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
370000-37FFFF  
360000-36FFFF  
350000-35FFFF  
340000-34FFFF  
330000-33FFFF  
320000-32FFFF  
310000-31FFFF  
300000-30FFFF  
2F0000-2FFFFF  
2E0000-2EFFFF  
2D0000-2DFFFF  
2C0000-2CFFFF  
2B0000-2BFFFF  
2A0000-2AFFFF  
290000-29FFFF  
280000-28FFFF  
270000-27FFFF  
260000-26FFFF  
250000-25FFFF  
240000-24FFFF  
230000-23FFFF  
220000-22FFFF  
210000-21FFFF  
200000-20FFFF  
1F0000-1FFFFF  
1E0000-1EFFFF  
1D0000-1DFFFF  
1C0000-1CFFFF  
1B0000-1BFFFF  
1A0000-1AFFFF  
190000-19FFFF  
180000-18FFFF  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
170000-17FFFF  
160000-16FFFF  
150000-15FFFF  
140000-14FFFF  
130000-13FFFF  
120000-12FFFF  
110000-11FFFF  
100000-10FFFF  
0F0000-0FFFFF  
0E0000-0EFFFF  
0D0000-0DFFFF  
0C0000-0CFFFF  
0B0000-0BFFFF  
0A0000-0AFFFF  
090000-09FFFF  
080000-08FFFF  
070000-07FFFF  
060000-06FFFF  
050000-05FFFF  
040000-04FFFF  
030000-03FFFF  
020000-02FFFF  
010000-01FFFF  
000000-00FFFF  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
Note: There are two Bank Regions: Bank Region 1 contains all the  
banks that are made up of main blocks only; Bank Region 2  
contains the banks that are made up of the parameter and  
main blocks (Parameter Bank).  
99  
100  
101  
102  
103  
104  
105  
106  
57/82  
M58LR128FT, M58LR128FB  
Table 30. Bottom Boot Block Addresses,  
M58LR128FB  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
570000-57FFFF  
560000-56FFFF  
550000-55FFFF  
540000-54FFFF  
530000-53FFFF  
520000-52FFFF  
510000-51FFFF  
500000-50FFFF  
4F0000-4FFFFF  
4E0000-4EFFFF  
4D0000-4DFFFF  
4C0000-4CFFFF  
4B0000-4BFFFF  
4A0000-4AFFFF  
490000-49FFFF  
480000-48FFFF  
470000-47FFFF  
460000-46FFFF  
450000-45FFFF  
440000-44FFFF  
430000-43FFFF  
420000-42FFFF  
410000-41FFFF  
400000-40FFFF  
3F0000-3FFFFF  
3E0000-3EFFFF  
3D0000-3DFFFF  
3C0000-3CFFFF  
3B0000-3BFFFF  
3A0000-3AFFFF  
390000-39FFFF  
380000-38FFFF  
370000-37FFFF  
360000-36FFFF  
350000-35FFFF  
340000-34FFFF  
330000-33FFFF  
320000-32FFFF  
310000-31FFFF  
300000-30FFFF  
Size  
Bank  
#
Address Range  
(KWord)  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
7F0000-7FFFFF  
7E0000-7EFFFF  
7D0000-7DFFFF  
7C0000-7CFFFF  
7B0000-7BFFFF  
7A0000-7AFFFF  
790000-79FFFF  
780000-78FFFF  
770000-77FFFF  
760000-76FFFF  
750000-75FFFF  
740000-74FFFF  
730000-73FFFF  
720000-72FFFF  
710000-71FFFF  
700000-70FFFF  
6F0000-6FFFFF  
6E0000-6EFFFF  
6D0000-6DFFFF  
6C0000-6CFFFF  
6B0000-6BFFFF  
6A0000-6AFFFF  
690000-69FFFF  
680000-68FFFF  
670000-67FFFF  
660000-66FFFF  
650000-65FFFF  
640000-64FFFF  
630000-63FFFF  
620000-62FFFF  
610000-61FFFF  
600000-60FFFF  
5F0000-5FFFFF  
5E0000-5EFFFF  
5D0000-5DFFFF  
5C0000-5CFFFF  
5B0000-5BFFFF  
5A0000-5AFFFF  
590000-59FFFF  
580000-58FFFF  
98  
97  
96  
95  
94  
93  
92  
91  
58/82  
 
M58LR128FT, M58LR128FB  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
2F0000-2FFFFF  
2E0000-2EFFFF  
2D0000-2DFFFF  
2C0000-2CFFFF  
2B0000-2BFFFF  
2A0000-2AFFFF  
290000-29FFFF  
280000-28FFFF  
270000-27FFFF  
260000-26FFFF  
250000-25FFFF  
240000-24FFFF  
230000-23FFFF  
220000-22FFFF  
210000-21FFFF  
200000-20FFFF  
1F0000-1FFFFF  
1E0000-1EFFFF  
1D0000-1DFFFF  
1C0000-1CFFFF  
1B0000-1BFFFF  
1A0000-1AFFFF  
190000-19FFFF  
180000-18FFFF  
170000-17FFFF  
160000-16FFFF  
150000-15FFFF  
140000-14FFFF  
130000-13FFFF  
120000-12FFFF  
110000-11FFFF  
1F0000-1FFFFF  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
16  
16  
16  
16  
0F0000-0FFFFF  
0E0000-0EFFFF  
0D0000-0DFFFF  
0C0000-0CFFFF  
0B0000-0BFFFF  
0A0000-0AFFFF  
090000-09FFFF  
080000-08FFFF  
070000-07FFFF  
060000-06FFFF  
050000-05FFFF  
040000-04FFFF  
030000-03FFFF  
020000-02FFFF  
010000-01FFFF  
00C000-00FFFF  
008000-00BFFF  
004000-007FFF  
000000-003FFF  
8
7
6
5
4
3
2
1
0
Note: There are two Bank Regions: Bank Region 2 contains all the  
banks that are made up of main blocks only; Bank Region 1  
contains the banks that are made up of the parameter and  
main blocks (Parameter Bank).  
59/82  
M58LR128FT, M58LR128FB  
APPENDIX B. COMMON FLASH INTERFACE  
The Common Flash Interface is a JEDEC ap-  
proved, standardized data structure that can be  
read from the Flash memory device. It allows a  
system software to query the device to determine  
various electrical and timing parameters, density  
information and functions supported by the mem-  
ory. The system can interface easily with the de-  
vice, enabling the software to upgrade itself when  
necessary.  
When the Read CFI Query Command is issued  
the device enters CFI Query mode and the data  
structure is read from the memory. Tables 31, 32,  
33, 34, 35, 36, 37, 38, 39 and 40 show the ad-  
dresses used to retrieve the data. The Query data  
is always presented on the lowest order data out-  
puts (DQ0-DQ7), the other outputs (DQ8-DQ15)  
are set to 0.  
The CFI data structure also contains a security  
area where a 64 bit unique security number is writ-  
ten (see Figure 5., Protection Register Memory  
Map). This area can be accessed only in Read  
mode by the final user. It is impossible to change  
the security number after it has been written by  
ST. Issue a Read Array command to return to  
Read mode.  
Table 31. Query Structure Overview  
Offset  
000h  
010h  
01Bh  
027h  
Sub-section Name  
Description  
Reserved for algorithm-specific information  
Command set ID and algorithm data offset  
Device timing & voltage information  
Flash device layout  
Reserved  
CFI Query Identification String  
System Interface Information  
Device Geometry Definition  
Additional information specific to the Primary  
Algorithm (optional)  
P
A
Primary Algorithm-specific Extended Query table  
Alternate Algorithm-specific Extended Query table  
Additional information specific to the Alternate  
Algorithm (optional)  
Lock Protection Register  
Unique device Number and  
User Programmable OTP  
080h  
Security Code Area  
Note: The Flash memory display the CFI data structure when CFI Query command is issued. In this table are listed the main sub-sections  
detailed in Tables 32, 33, 34, and 35. Query data is always presented on the lowest order data outputs.  
Table 32. CFI Query Identification String  
Offset  
Sub-section Name  
Description  
Value  
000h  
0020h  
Manufacturer Code  
Device Code  
ST  
88C4h  
88C5h  
Top  
Bottom  
001h  
002h  
003h  
Reserved  
Reserved  
Reserved  
0051h  
Reserved  
Reserved  
Reserved  
004h-00Fh  
010h  
"Q"  
"R"  
"Y"  
011h  
0052h  
Query Unique ASCII String "QRY"  
012h  
0059h  
013h  
0003h  
Primary Algorithm Command Set and Control Interface ID code 16  
bit ID code defining a specific algorithm  
014h  
0000h  
015h  
offset = P = 000Ah  
0001h  
Address for Primary Algorithm extended Query table (see Table  
34.)  
p = 10Ah  
NA  
016h  
017h  
0000h  
Alternate Vendor Command Set and Control Interface ID Code  
second vendor - specified algorithm supported  
018h  
0000h  
019h  
value = A = 0000h  
0000h  
Address for Alternate Algorithm extended Query table  
NA  
01Ah  
60/82  
 
 
 
M58LR128FT, M58LR128FB  
Table 33. CFI Query System Interface Information  
Offset  
Data  
Description  
Value  
V
V
V
V
Logic Supply Minimum Program/Erase or Write voltage  
DD  
01Bh  
0017h  
1.7V  
2V  
bit 7 to 4  
bit 3 to 0  
BCD value in volts  
BCD value in 100 millivolts  
Logic Supply Maximum Program/Erase or Write voltage  
DD  
01Ch  
01Dh  
01Eh  
0020h  
0085h  
0095h  
bit 7 to 4  
bit 3 to 0  
BCD value in volts  
BCD value in 100 millivolts  
[Programming] Supply Minimum Program/Erase voltage  
PP  
8.5V  
9.5V  
bit 7 to 4  
bit 3 to 0  
HEX value in volts  
BCD value in 100 millivolts  
[Programming] Supply Maximum Program/Erase voltage  
PP  
bit 7 to 4  
bit 3 to 0  
HEX value in volts  
BCD value in 100 millivolts  
n
01Fh  
020h  
021h  
022h  
023h  
024h  
025h  
026h  
0004h  
0009h  
000Bh  
0000h  
0003h  
0001h  
0001h  
0000h  
16µs  
512µs  
2s  
Typical time-out per single byte/word program = 2 µs  
n
Typical time-out for Buffer Program = 2 µs  
n
Typical time-out per individual block erase = 2 ms  
n
NA  
Typical time-out for full chip erase = 2 ms  
n
128µs  
1024µs  
4s  
Maximum time-out for word program = 2 times typical  
n
Maximum time-out for Buffer Program = 2 times typical  
n
Maximum time-out per individual block erase = 2 times typical  
n
NA  
Maximum time-out for chip erase = 2 times typical  
61/82  
M58LR128FT, M58LR128FB  
Table 34. Device Geometry Definition  
Offset Word  
Data  
Description  
Value  
Mode  
n
027h  
0018h  
16 MBytes  
Device Size = 2 in number of bytes  
028h  
029h  
0001h  
0000h  
x16  
Async.  
Flash Device Interface Code description  
02Ah  
02Bh  
0006h  
0000h  
n
64 Bytes  
Maximum number of bytes in multi-byte program or page = 2  
02Ch  
0002h  
Number of identical sized erase block regions within the device  
bit 7 to 0 = x = number of Erase Block Regions  
2
127  
02Dh  
02Eh  
007Eh  
0000h  
Region 1 Information  
Number of identical-size erase blocks = 007Eh+1  
02Fh  
030h  
0000h  
0002h  
Region 1 Information  
Block size in Region 1 = 0200h * 256 Byte  
128 KByte  
4
031h  
032h  
0003h  
0000h  
Region 2 Information  
Number of identical-size erase blocks = 0003h+1  
033h  
034h  
0080h  
0000h  
Region 2 Information  
Block size in Region 2 = 0080h * 256 Byte  
32 KByte  
NA  
035h  
038h  
Reserved Reserved for future erase block region information  
02Dh  
02Eh  
0003h  
0000h  
Region 1 Information  
Number of identical-size erase block = 0003h+1  
4
02Fh  
030h  
0080h  
0000h  
Region 1 Information  
Block size in Region 1 = 0080h * 256 bytes  
32 KBytes  
127  
031h  
032h  
007Eh  
0000h  
Region 2 Information  
Number of identical-size erase block = 007Eh+1  
033h  
034h  
0000h  
0002h  
Region 2 Information  
Block size in Region 2 = 0200h * 256 bytes  
128 KBytes  
NA  
035h  
038h  
Reserved Reserved for future erase block region information  
62/82  
M58LR128FT, M58LR128FB  
Table 35. Primary Algorithm-Specific Extended Query Table  
Offset  
Data  
0050h  
0052h  
0049h  
0031h  
0033h  
00E6h  
0003h  
0000h  
0000h  
Description  
Value  
(P)h = 10Ah  
"P"  
Primary Algorithm extended Query table unique ASCII string “PRI”  
"R"  
"I"  
(P+3)h = 10Dh  
(P+4)h = 10Eh  
(P+5)h = 10Fh  
Major version number, ASCII  
Minor version number, ASCII  
"1"  
"3"  
Extended Query table contents for Primary Algorithm. Address (P+5)h  
contains less significant byte.  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
bit 8  
bit 9  
Chip Erase supported  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
No  
Yes  
Yes  
No  
(P+7)h = 111h  
(P+8)h = 112h  
Erase Suspend supported  
Program Suspend supported  
Legacy Lock/Unlock supported  
Queued Erase supported  
Instant individual block locking supported (1 = Yes, 0 = No)  
Protection bits supported  
Page mode read supported  
Synchronous read supported  
Simultaneous operation supported  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
bit 10 to 31Reserved; undefined bits are ‘0’. If bit 31 is ’1’ then another 31  
bit field of optional features follows at the end of the bit-30  
field.  
(P+9)h = 113h  
0001h  
Supported Functions after Suspend  
Read Array, Read Status Register and CFI Query  
Yes  
bit 0  
Program supported after Erase Suspend (1 = Yes, 0 = No)  
bit 7 to 1 Reserved; undefined bits are ‘0’  
(P+A)h = 114h  
(P+B)h = 115h  
0003h  
0000h  
Block Protect Status  
Defines which bits in the Block Status Register section of the Query are  
implemented.  
bit 0 Block protect Status Register Lock/Unlock  
bit active  
(1 = Yes, 0 = No)  
Yes  
Yes  
bit 1 Block Lock Status Register Lock-Down bit active (1 = Yes, 0 = No)  
bit 15 to 2 Reserved for future use; undefined bits are ‘0’  
V
V
Logic Supply Optimum Program/Erase voltage (highest performance)  
DD  
(P+C)h = 116h  
(P+D)h = 117h  
0018h  
0090h  
1.8V  
9V  
bit 7 to 4  
bit 3 to 0  
HEX value in volts  
BCD value in 100 mV  
Supply Optimum Program/Erase voltage  
PP  
bit 7 to 4  
bit 3 to 0  
HEX value in volts  
BCD value in 100 mV  
63/82  
M58LR128FT, M58LR128FB  
Table 36. Protection Register Information  
Offset  
Data  
Description  
Value  
Number of protection register fields in JEDEC ID space. 0000h indicates that  
256 fields are available.  
(P+E)h = 118h  
0002h  
2
(P+F)h = 119h  
(P+10)h = 11Ah  
(P+11)h = 11Bh  
(P+12)h = 11Ch  
(P+13)h = 11Dh  
(P+14)h = 11Eh  
(P+15)h = 11Fh  
(P+16)h = 120h  
(P+17)h = 121h  
(P+18)h = 122h  
(P+19)h = 123h  
(P+1A)h = 124h  
(P+1B)h = 125h  
(P+1C)h = 126h  
0080h  
0000h  
0003h  
0003h  
0089h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0010h  
0000h  
0004h  
80h  
00h  
8 Bytes  
8 Bytes  
89h  
00h  
00h  
00h  
0
Protection Field 1: Protection Description  
Bits 0-7 Lower byte of protection register address  
Bits 8-15 Upper byte of protection register address  
n
Bits 16-23 2 bytes in factory pre-programmed region  
n
Bits 24-31 2 bytes in user programmable region  
Protection Register 2: Protection Description  
Bits 0-31 protection register address  
Bits 32-39 n number of factory programmed regions (lower byte)  
Bits 40-47 n number of factory programmed regions (upper byte)  
n
Bits 48-55 2 bytes in factory programmable region  
Bits 56-63 n number of user programmable regions (lower byte)  
Bits 64-71 n number of user programmable regions (upper byte)  
n
Bits 72-79 2 bytes in user programmable region  
0
0
16  
0
16  
Table 37. Burst Read Information  
Offset  
Data  
Description  
Value  
(P+1D)h = 127h  
0003h  
Page-mode read capability  
8 Bytes  
n
bits 0-7  
’n’ such that 2 HEX value represents the number of read-  
page bytes. See offset 28h for device word width to  
determine page-mode data output width.  
(P+1E)h = 128h  
(P+1F)h = 129h  
0004h  
0001h  
Number of synchronous mode read configuration fields that follow.  
Synchronous mode read capability configuration 1  
4
4
bit 3-7  
Reserved  
n+1  
bit 0-2  
’n’ such that 2  
HEX value represents the maximum  
number of continuous synchronous reads when the device is  
configured for its maximum word width. A value of 07h  
indicates that the device is capable of continuous linear  
bursts that will output data until the internal burst counter  
reaches the end of the device’s burstable address space.  
This field’s 3-bit value can be written directly to the read  
configuration register bit 0-2 if the device is configured for its  
maximum word width. See offset 28h for word width to  
determine the burst data output width.  
(P+20)h = 12Ah  
(P-21)h = 12Bh  
(P+22)h = 12Ch  
0002h  
0003h  
0007h  
Synchronous mode read capability configuration 2  
Synchronous mode read capability configuration 3  
Synchronous mode read capability configuration 4  
8
16  
Cont.  
64/82  
 
M58LR128FT, M58LR128FB  
Table 38. Bank and Erase Block Region Information  
Flash memory (top)  
Flash memory (bottom)  
Description  
Offset  
Data  
Offset  
Data  
(P+23)h = 12Dh  
02h  
(P+23)h = 12Dh  
02h  
Number of Bank Regions within the device  
Note: 1. The variable P is a pointer which is defined at CFI offset 15h.  
2. Bank Regions. There are two Bank Regions, see Table 29. and Table 30.  
Table 39. Bank and Erase Block Region 1 Information  
Flash memory (top)  
Flash memory (bottom)  
Description  
Offset  
Data  
0Fh  
00h  
Offset  
Data  
01h  
00h  
(P+24)h = 12Eh  
(P+25)h = 12Fh  
(P+24)h = 12Eh  
(P+25)h = 12Fh  
Number of identical banks within Bank Region 1  
Number of program or erase operations allowed in Bank  
Region 1:  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
(P+26)h = 130h  
(P+27)h = 131h  
(P+28)h = 132h  
11h  
00h  
00h  
(P+26)h = 130h  
(P+27)h = 131h  
(P+28)h = 132h  
11h  
00h  
00h  
Number of program or erase operations allowed in other banks  
while a bank in same region is programming  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
Number of program or erase operations allowed in other banks  
while a bank in this region is erasing  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
Types of erase block regions in Bank Region 1  
n = number of erase block regions with contiguous same-size  
(P+29)h = 133h  
01h  
(P+29)h = 133h  
02h  
erase blocks.  
(2)  
Symmetrically blocked banks have one blocking region  
.
(P+2A)h = 134h  
(P+2B)h = 135h  
(P+2C)h = 136h  
(P+2D)h = 137h  
(P+2E)h = 138h  
(P+2F)h = 139h  
77h  
00h  
00h  
02h  
64h  
00h  
(P+2A)h = 134h  
(P+2B)h = 135h  
(P+2C)h = 136h  
(P+2D)h = 137h  
(P+2E)h = 138h  
(P+2F)h = 139h  
03h  
00h  
80h  
00h  
64h  
00h  
Bank Region 1 Erase Block Type 1 Information  
Bits 0-15: n+1 = number of identical-sized erase blocks  
Bits 16-31: n×256 = number of bytes in erase block region  
Bank Region 1 (Erase Block Type 1)  
Minimum block erase cycles × 1000  
Bank Region 1 (Erase Block Type 1): BIts per cell, internal  
ECC  
(P+30)h = 13Ah  
(P+31)h = 13Bh  
02h  
03h  
(P+30)h = 13Ah  
(P+31)h = 13Bh  
02h  
03h  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved  
Bank Region 1 (Erase Block Type 1): Page mode and  
Synchronous mode capabilities  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
65/82  
M58LR128FT, M58LR128FB  
Flash memory (top)  
Offset Data  
Flash memory (bottom)  
Description  
Offset  
Data  
06h  
00h  
00h  
02h  
64h  
00h  
(P+32)h = 13Ch  
(P+33)h = 13Dh  
(P+34)h = 13Eh  
(P+35)h = 13Fh  
(P+36)h = 140h  
(P+37)h = 141h  
Bank Region 1 Erase Block Type 2 Information  
Bits 0-15: n+1 = number of identical-sized erase blocks  
Bits 16-31: n×256 = number of bytes in erase block region  
Bank Region 1 (Erase Block Type 2)  
Minimum block erase cycles × 1000  
Bank Regions 1 (Erase Block Type 2): BIts per cell, internal  
ECC  
(P+38)h = 142h  
(P+39)h = 143h  
02h  
03h  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved  
Bank Region 1 (Erase Block Type 2): Page mode and  
Synchronous mode capabilities  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
Note: 1. The variable P is a pointer which is defined at CFI offset 15h.  
2. Bank Regions. There are two Bank Regions, There are two Bank Regions, see Table 29. and Table 30.  
Table 40. Bank and Erase Block Region 2 Information  
Flash memory (top)  
Flash memory (bottom)  
Description  
Offset  
Data  
01h  
00h  
Offset  
Data  
0Fh  
00h  
(P+32)h = 13Ch  
(P+33)h = 13Dh  
(P+3A)h = 144h  
(P+3B)h = 145h  
Number of identical banks within Bank Region 2  
Number of program or erase operations allowed in Bank  
Region 2:  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
(P+34)h = 13Eh  
(P+35)h = 13Fh  
(P+36)h = 140h  
(P+37)h = 141h  
11h  
00h  
00h  
02h  
(P+3C)h = 146h  
(P+3D)h = 147h  
(P+3E)h = 148h  
(P+3F)h = 149h  
11h  
00h  
00h  
01h  
Number of program or erase operations allowed in other  
banks while a bank in this region is programming  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
Number of program or erase operations allowed in other  
banks while a bank in this region is erasing  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
Types of erase block regions in Bank Region 2  
n = number of erase block regions with contiguous same-size  
erase blocks.  
(2)  
Symmetrically blocked banks have one blocking region.  
(P+38)h = 142h  
(P+39)h = 143h  
(P+3A)h = 144h  
(P+3B)h = 145h  
06h  
00h  
00h  
02h  
(P+40)h = 14Ah  
(P+41)h = 14Bh  
(P+42)h = 14Ch  
(P+43)h = 14Dh  
77h  
00h  
00h  
02h  
Bank Region 2 Erase Block Type 1 Information  
Bits 0-15: n+1 = number of identical-sized erase blocks  
Bits 16-31: n×256 = number of bytes in erase block region  
66/82  
M58LR128FT, M58LR128FB  
Flash memory (top)  
Flash memory (bottom)  
Description  
Offset  
Data  
64h  
00h  
Offset  
Data  
64h  
00h  
(P+3C)h = 146h  
(P+3D)h = 147h  
(P+44)h = 14Eh  
(P+45)h = 14Fh  
Bank Region 2 (Erase Block Type 1)  
Minimum block erase cycles × 1000  
Bank Region 2 (Erase Block Type 1): BIts per cell, internal  
ECC  
(P+3E)h = 148h  
(P+3F)h = 149h  
02h  
03h  
(P+46)h = 150h  
(P+47)h = 151h  
02h  
03h  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved  
Bank Region 2 (Erase Block Type 1):Page mode and  
Synchronous mode capabilities (defined in Table 37.)  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
(P+40)h = 14Ah  
(P+41)h = 14Bh  
(P+42)h = 14Ch  
(P+43)h = 14Dh  
(P+44)h =14Eh  
(P+45)h = 14Fh  
03h  
00h  
80h  
00h  
64h  
00h  
Bank Region 2 Erase Block Type 2 Information  
Bits 0-15: n+1 = number of identical-sized erase blocks  
Bits 16-31: n×256 = number of bytes in erase block region  
Bank Region 2 (Erase Block Type 2)  
Minimum block erase cycles × 1000  
Bank Region 2 (Erase Block Type 2): BIts per cell, internal  
ECC  
(P+46)h = 150h  
(P+47)h = 151h  
02h  
03h  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved  
Bank Region 2 (Erase Block Type 2): Page mode and  
Synchronous mode capabilities (defined in Table 37.)  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
(P+48)h = 152h  
(P+49)h = 153h  
(P+48)h = 152h  
(P+43)h = 153h  
Feature Space definitions  
Reserved  
Note: 1. The variable P is a pointer which is defined at CFI offset 15h.  
2. Bank Regions. There are two Bank Regions, There are two Bank Regions, see Table 29. and Table 30.  
67/82  
M58LR128FT, M58LR128FB  
APPENDIX C. FLOWCHARTS AND PSEUDO CODES  
Figure 22. Program Flowchart and Pseudo Code  
Start  
program_command (addressToProgram, dataToProgram) {:  
writeToFlash (addressToProgram, 0x40);  
/*writeToFlash (addressToProgram, 0x10);*/  
/*see note (3)*/  
Write 40h or 10h (3)  
writeToFlash (addressToProgram, dataToProgram) ;  
/*Memory enters read status state after  
the Program Command*/  
Write Address  
& Data  
do {  
Read Status  
Register (3)  
status_register=readFlash (addressToProgram);  
"see note (3)";  
/* E or G must be toggled*/  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
NO  
V
Invalid  
if (status_register.SR3==1) /*V  
invalid error */  
PP  
PP  
SR3 = 0  
YES  
Error (1, 2)  
error_handler ( ) ;  
NO  
NO  
Program  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
SR4 = 0  
YES  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06170b  
Note: 1. Status check of SR1 (Protected Block), SR3 (V Invalid) and SR4 (Program Error) can be made after each program operation or  
PP  
after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.  
3. Any address within the bank can equally be used.  
68/82  
M58LR128FT, M58LR128FB  
Figure 23. Buffer Program Flowchart and Pseudo Code  
Start  
Buffer Program E8h  
Command,  
Block Address  
Write n(1)  
,
Block Address  
Write Buffer Data,  
Start Address  
X = 0  
YES  
X = n  
NO  
Write Next Buffer Data,  
(2)  
Next Program Address  
X = X + 1  
Program  
Buffer to Flash  
Confirm D0h  
Read Status  
Register  
NO  
SR7 = 1  
YES  
Full Status  
Register Check(3)  
End  
AI07301b  
69/82  
M58LR128FT, M58LR128FB  
Figure 24. Program Suspend & Resume Flowchart and Pseudo Code  
Start  
program_suspend_command ( ) {  
writeToFlash (any_address, 0xB0) ;  
Write B0h  
Write 70h  
writeToFlash (bank_address, 0x70) ;  
/* read status register to check if  
program has already completed */  
do {  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
Read Status  
Register  
NO  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
SR2 = 1  
Program Complete  
Write FFh  
if (status_register.SR2==0) /*program completed */  
{ writeToFlash (bank_address, 0xFF) ;  
read_data ( ) ;  
/*The device returns to Read Array  
(as if program/erase suspend was not issued).*/  
Read Data  
YES  
}
else  
Write FFh  
{ writeToFlash (bank_address, 0xFF) ;  
Read data from  
another address  
read_data ( ); /*read data from another address*/  
writeToFlash (any_address, 0xD0) ;  
/*write 0xD0 to resume program*/  
Write D0h  
writeToFlash (bank_address, 0x70) ;  
/*read status register to check if program has completed */  
Write 70h(1)  
}
Program Continues with  
Bank in Read Status  
Register Mode  
}
AI10117b  
Note: The Read Status Register command (Write 70h) can be issued just before or just after the Program Resume command.  
70/82  
 
M58LR128FT, M58LR128FB  
Figure 25. Block Erase Flowchart and Pseudo Code  
Start  
erase_command ( blockToErase ) {  
writeToFlash (blockToErase, 0x20) ;  
/*see note (2) */  
Write 20h (2)  
writeToFlash (blockToErase, 0xD0) ;  
/* only A12-A22 are significant */  
/* Memory enters read status state after  
the Erase Command */  
Write Block  
Address & D0h  
do {  
Read Status  
Register (2)  
status_register=readFlash (blockToErase) ;  
/* see note (2) */  
/* E or G must be toggled*/  
NO  
SR7 = 1  
} while (status_register.SR7== 0) ;  
YES  
NO  
YES  
NO  
NO  
V
Invalid  
if (status_register.SR3==1) /*VPP invalid error */  
error_handler ( ) ;  
PP  
Error (1)  
SR3 = 0  
YES  
if ( (status_register.SR4==1) && (status_register.SR5==1) )  
/* command sequence error */  
Command  
Sequence Error (1)  
SR4, SR5 = 1  
NO  
error_handler ( ) ;  
if ( (status_register.SR5==1) )  
/* erase error */  
SR5 = 0  
YES  
Erase Error (1)  
error_handler ( ) ;  
Erase to Protected  
Block Error (1)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI10524  
Note: 1. If an error is found, the Status Register must be cleared before further Program/Erase operations.  
2. Any address within the bank can equally be used.  
71/82  
 
M58LR128FT, M58LR128FB  
Figure 26. Erase Suspend & Resume Flowchart and Pseudo Code  
Start  
erase_suspend_command ( ) {  
Write B0h  
Write 70h  
writeToFlash (bank_address, 0xB0) ;  
writeToFlash (bank_address, 0x70) ;  
/* read status register to check if  
erase has already completed */  
do {  
Read Status  
Register  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
NO  
NO  
} while (status_register.SR7== 0) ;  
SR7 = 1  
YES  
SR6 = 1  
Erase Complete  
Write FFh  
if (status_register.SR6==0) /*erase completed */  
{ writeToFlash (bank_address, 0xFF) ;  
read_data ( ) ;  
Read Data  
/*The device returns to Read Array  
(as if program/erase suspend was not issued).*/  
YES  
}
else  
Write FFh  
{ writeToFlash (bank_address, 0xFF) ;  
read_program_data ( );  
Read data from another block  
or  
Program/Protection Register Program  
or  
/*read or program data from another block*/  
Block Lock/Unlock/Lock-Down  
writeToFlash (bank_address, 0xD0) ;  
/*write 0xD0 to resume erase*/  
Write D0h  
writeToFlash (bank_address, 0x70) ;  
/*read status register to check if erase has completed */  
Write 70h(1)  
}
}
Erase Continues with  
Bank in Read Status  
Register Mode  
AI10116b  
Note: The Read Status Register command (Write 70h) can be issued just before or just after the Erase Resume command.  
72/82  
 
M58LR128FT, M58LR128FB  
Figure 27. Locking Operations Flowchart and Pseudo Code  
Start  
locking_operation_command (address, lock_operation) {  
writeToFlash (address, 0x60) ; /*configuration setup*/  
Write 60h (1)  
/* see note (1) */  
if (lock_operation==LOCK) /*to protect the block*/  
writeToFlash (address, 0x01) ;  
else if (lock_operation==UNLOCK) /*to unprotect the block*/  
writeToFlash (address, 0xD0) ;  
Write  
01h, D0h or 2Fh  
else if (lock_operation==LOCK-DOWN) /*to lock the block*/  
writeToFlash (address, 0x2F) ;  
writeToFlash (address, 0x90) ;  
/*see note (1) */  
Write 90h (1)  
Read Block  
Lock States  
if (readFlash (address) ! = locking_state_expected)  
error_handler () ;  
NO  
Locking  
change  
/*Check the locking state (see Read Block Signature table )*/  
confirmed?  
YES  
writeToFlash (address, 0xFF) ; /*Reset to Read Array mode*/  
/*see note (1) */  
Write FFh (1)  
}
End  
AI06176b  
Note: 1. Any address within the bank can equally be used.  
73/82  
M58LR128FT, M58LR128FB  
Figure 28. Protection Register Program Flowchart and Pseudo Code  
Start  
protection_register_program_command (addressToProgram, dataToProgram) {:  
Write C0h (3)  
writeToFlash (addressToProgram, 0xC0) ;  
/*see note (3) */  
writeToFlash (addressToProgram, dataToProgram) ;  
/*Memory enters read status state after  
the Program Command*/  
Write Address  
& Data  
do {  
Read Status  
Register (3)  
status_register=readFlash (addressToProgram) ;  
/* see note (3) */  
/* E or G must be toggled*/  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
NO  
V
Invalid  
if (status_register.SR3==1) /*VPP invalid error */  
error_handler ( ) ;  
PP  
SR3 = 0  
YES  
Error (1, 2)  
NO  
NO  
Program  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
SR4 = 0  
YES  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06177b  
Note: 1. Status check of SR1 (Protected Block), SR3 (V Invalid) and SR4 (Program Error) can be made after each program operation or  
PP  
after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.  
3. Any address within the bank can equally be used.  
74/82  
M58LR128FT, M58LR128FB  
Figure 29. Buffer Enhanced Factory Program Flowchart and Pseudo Code  
SETUP PHASE Buffer_Enhanced_Factory_Program_Command  
(start_address, DataFlow[]) {  
Start  
Write 80h to  
Address WA1  
writeToFlash (start_address, 0x80) ;  
Write D0h to  
Address WA1  
writeToFlash (start_address, 0xD0) ;  
do{  
do {  
Read Status  
Register  
status_register = readFlash (start_address);  
if (status_register.SR4==1) { /*error*/  
if (status_register.SR3==1) /*VPP error */  
error_handler ( ) ;  
NO  
SR7 = 0  
YES  
if (status_register.SR1==1) /* Locked Block */  
NO  
error_handler ( ) ;  
PROGRAM AND  
VERIFY PHASE  
Initialize count  
X = 0  
SR4 = 1  
}
while (status_register.SR7==1)  
x=0; /* initialize count */  
Write PDX  
Address WA1  
Read Status Register  
SR3 and SR1for errors  
Increment Count  
X = X + 1  
do {  
Exit  
writeToFlash (start_address, DataFlow[x]);  
x++;  
}while (x<32)  
NO  
X = 32  
YES  
do {  
status_register = readFlash (start_address);  
}while (status_register.SR0==1)  
Read Status  
Register  
NO  
NO  
SR0 = 0  
YES  
Last data?  
} while (not last data)  
YES  
Write FFFFh to  
Address = NOT WA1  
writeToFlash (another_block_address, FFFFh)  
do {  
EXIT PHASE  
Read Status  
Register  
status_register = readFlash (start_address)  
}while (status_register.SR7==0)  
full_status_register_check();  
NO  
SR7 = 1  
YES  
Full Status Register  
Check  
End  
AI07302B  
75/82  
 
M58LR128FT, M58LR128FB  
APPENDIX D. COMMAND INTERFACE STATE TABLES  
Table 41. Command Interface States - Modify Table, Next State  
Command Input  
Erase Confirm  
Buffer  
Program,  
Program/  
Erase  
Suspend  
(B0h)  
Read  
Block  
Erase,  
Setup  
(3,4)  
P/E Resume,  
Block Unlock  
confirm,  
BEFP Confirm  
(3,4)  
Clear  
status  
Register  
(5)  
Read  
Status  
Register  
(70h)  
Electronic  
Signature,  
Read CFI  
Query  
Program Buffer  
Setup Program  
Read  
BEFP  
Setup  
(80h)  
Current CI State  
(2)  
Array  
(FFh)  
(3,4)  
(3,4)  
(10/40h)  
(E8h)  
(20h)  
(50h)  
(90h, 98h)  
(D0h)  
Buffer  
Program  
Setup  
Program  
Setup  
Erase  
Setup  
BEFP  
Setup  
Ready  
Ready  
Ready  
Ready  
(unlock block)  
Lock/CR Setup  
Ready (Lock Error)  
Ready (Lock Error)  
Setup  
OTP  
OTP Busy  
Busy  
Setup  
Program Busy  
Program  
Suspend  
Program  
Busy  
Program Busy  
Program Suspend  
Program Busy  
Program Suspend  
Suspend  
Setup  
Program Busy  
Buffer Program Load 1 (give word count load (N-1));  
Buffer  
Load 1  
if N=0 go to Buffer Program Confirm. Else (N not =0) go to Buffer Program Load 2 (data load)  
Buffer  
Load 2  
Buffer Program Confirm when count =0; Else Buffer Program Load 2  
(note: Buffer Program will fail at this point if any block address is different from the first address)  
Buffer Program  
Buffer  
Program  
Confirm  
Ready (error)  
Ready (error)  
Busy  
Buffer  
Busy  
Buffer Program Busy  
Program  
Suspend  
Buffer Program Busy  
Buffer Program  
Busy  
Suspend  
Setup  
Buffer Program Suspend  
Ready (error)  
Buffer Program Suspend  
Ready (error)  
Erase Busy  
Erase  
Suspend  
Busy  
Erase Busy  
Erase Busy  
Buffer  
Program Program  
Erase  
Erase  
Suspend  
Suspend  
in Erase  
Suspend  
Setup in  
Erase  
Erase Suspend  
Erase Busy  
Erase Suspend  
Suspend  
Setup  
Busy  
Program Busy in Erase Suspend  
Program  
Suspend in  
Erase  
Program  
in Erase  
Suspend  
Program Busy in Erase Suspend  
Program Busy in Erase Suspend  
Suspend  
Program Busy  
in Erase  
Suspend  
Program Suspend in Erase Suspend  
Program Suspend in Erase Suspend  
Suspend  
76/82  
M58LR128FT, M58LR128FB  
Command Input  
Erase Confirm  
P/E Resume,  
Block Unlock  
confirm,  
BEFP Confirm  
(3,4)  
Buffer  
Program,  
Program/  
Erase  
Suspend  
(B0h)  
Read  
Block  
Erase,  
Setup  
(3,4)  
Clear  
status  
Register  
(5)  
Read  
Status  
Register  
(70h)  
Electronic  
Signature,  
Read CFI  
Query  
Program Buffer  
Setup Program  
Read  
BEFP  
Setup  
(80h)  
Current CI State  
(2)  
Array  
(FFh)  
(3,4)  
(3,4)  
(10/40h)  
(E8h)  
(20h)  
(50h)  
(90h, 98h)  
(D0h)  
Buffer Program Load 1 in Erase Suspend (give word count load (N-1)); if N=0 go to Buffer Program confirm. Else (N  
not =0) go to Buffer Program Load 2  
Setup  
Buffer  
Load 1  
Buffer Program Load 2 in Erase Suspend (data load)  
Buffer  
Load 2  
Buffer Program Confirm in Erase Suspend when count =0; Else Buffer Program Load 2 in Erase Suspend (note:  
Buffer Program will fail at this point if any block address is different from the first address)  
Buffer Program  
Busy in Erase  
Suspend  
Buffer  
Program  
in Erase  
Suspend  
Confirm  
Ready (error)  
Ready (error)  
Buffer  
Program  
Suspend in  
Erase  
Buffer Program Busy in Erase  
Suspend  
Busy  
Buffer Program Busy in Erase Suspend  
Suspend  
Buffer Program  
Suspend  
Buffer Program Suspend in Erase Suspend  
Busy in Erase Buffer Program Suspend in Erase Suspend  
Suspend  
Lock/CR Setup  
in Erase Suspend  
Erase Suspend (Lock Error)  
Ready (error)  
Erase Suspend  
BEFP Busy  
Erase Suspend (Lock Error)  
Ready (error)  
Setup  
Busy  
Buffer  
EFP  
(6)  
BEFP Busy  
Note: 1. CI = Command Interface, CR = Configuration Register, BEFP = Buffer Enhanced Factory Program, P/E. C. = Program/Erase Con-  
troller.  
2. At Power-Up, all banks are in Read Array mode. Issuing a Read Array command to a busy bank, results in undetermined data out-  
put.  
3. The two cycle command should be issued to the same bank address.  
4. If the P/E.C. is active, both cycles are ignored.  
5. The Clear Status Register command clears the Status Register error bits except when the P/E.C. is busy or suspended.  
6. BEFP is allowed only when Status Register bit SR0 is set to ‘0’. BEFP is busy if Block Address is first BEFP Address. Any other  
commands are treated as data.  
77/82  
M58LR128FT, M58LR128FB  
Table 42. Command Interface States - Modify Table, Next Output State  
Command Input  
Erase  
Confirm  
P/E  
Resume,  
Block  
Unlock  
confirm,  
BEFP  
Confirm  
(4,5)  
Read  
Block  
Erase,  
Setup  
(4,5)  
(20h)  
Program/ Read  
Erase Status  
Suspend Register Register  
Clear  
status  
Electronic  
signature,  
Read CFI  
Query  
Read Program  
Buffer  
Program  
(E8h)  
BEFP  
Setup  
(80h)  
Current CI State  
Array  
(3)  
Setup  
(4,5)  
(FFh) (10/40h)  
(B0h)  
(70h)  
(50h)  
(90h, 98h)  
(D0h)  
Program Setup  
Erase Setup  
OTP Setup  
Program in Erase Suspend  
BEFP Setup  
BEFP Busy  
Buffer Program Setup  
Buffer Program Load 1  
Buffer Program Load 2  
Buffer Program Confirm  
Status Register  
Buffer Program Setup in  
Erase Suspend  
Buffer Program Load 1 in  
Erase Suspend  
Buffer Program Load 2 in  
Erase Suspend  
Buffer Program Confirm in  
Erase Suspend  
Lock/CR Setup  
Lock/CR Setup in Erase  
Suspend  
Status  
Register  
OTP Busy  
Ready  
Program Busy  
Erase Busy  
Buffer Program Busy  
Program/Erase Suspend  
Buffer Program Suspend  
Status  
Register Unchanged  
Output  
Array  
Status Register  
Output Unchanged  
Electronic  
Signature/  
CFI  
Program Busy in Erase  
Suspend  
Buffer Program Busy in  
Erase Suspend  
Program Suspend in Erase  
Suspend  
Buffer Program Suspend in  
Erase Suspend  
Note: 1. The output state shows the type of data that appears at the outputs if the bank address is the same as the command address. A  
bank can be placed in Read Array, Read Status Register, Read Electronic Signature or Read CFI mode, depending on the com-  
mand issued. Each bank remains in its last output state until a new command is issued to that bank. The next state does not depend  
on the bank output state.  
2. CI = Command Interface, CR = Configuration Register, BEFP = Buffer Enhanced Factory Program, P/E. C. = Program/Erase Con-  
troller.  
3. At Power-Up, all banks are in Read Array mode. Issuing a Read Array command to a busy bank, results in undetermined data out-  
put.  
4. The two cycle command should be issued to the same bank address.  
5. If the P/E.C. is active, both cycles are ignored.  
78/82  
M58LR128FT, M58LR128FB  
Table 43. Command Interface States - Lock Table, Next State  
Command Input  
Block  
Block  
Lock/CR  
OTP Setup Block Lock  
Set CR  
Confirm  
(03h)  
Illegal  
Command Operation  
WSM  
Current CI State  
Address  
Lock-Down  
Confirm  
(2Fh)  
(2)  
(2)  
Confirm  
(01h)  
Setup  
(60h)  
(3)  
(WA0)  
(C0h)  
(5)  
Completed  
(XXXXh)  
Lock/CR  
Setup  
Ready  
OTP Setup  
Ready  
N/A  
Lock/CR Setup  
Ready (Lock error)  
Ready  
Ready (Lock error)  
N/A  
N/A  
Setup  
OTP  
OTP Busy  
Busy  
Ready  
N/A  
Setup  
Program Busy  
Program Busy  
Program  
Busy  
Suspend  
Setup  
Ready  
N/A  
Program Suspend  
Buffer Program Load 1 (give word count load (N-1));  
N/A  
Buffer  
Load 1  
(6)  
(6)  
Exit  
N/A  
N/A  
Buffer Program Load 2  
see note  
Buffer  
Load 2  
Buffer Program Confirm when count =0; Else Buffer Program Load 2 (note: Buffer Program will fail  
at this point if any block address is different from the first address)  
Buffer  
Program  
Confirm  
Busy  
Ready (error)  
N/A  
Ready  
N/A  
Buffer Program Busy  
Suspend  
Setup  
Buffer Program Suspend  
Ready (error)  
N/A  
Busy  
Erase Busy  
Ready  
Lock/CR  
Erase  
Setup in  
Suspend  
Erase Suspend  
Erase  
N/A  
Suspend  
Setup  
Busy  
Program Busy in Erase Suspend  
N/A  
Program in  
Erase  
Suspend  
Erase  
Suspend  
Program Busy in Erase Suspend  
Suspend  
Setup  
Program Suspend in Erase Suspend  
Buffer Program Load 1 in Erase Suspend (give word count load (N-1))  
Buffer  
Load 1  
(7)  
(7)  
Exit  
Buffer Program Load 2 in Erase Suspend  
see note  
Buffer  
Program in  
Erase  
Buffer Program Confirm in Erase Suspend when count =0; Else Buffer Program Load 2 in Erase  
Suspend (note: Buffer Program will fail at this point if any block address is different from the first  
address)  
Buffer  
Load 2  
N/A  
Suspend  
Confirm  
Busy  
Ready (error)  
Buffer Program Busy in Erase Suspend  
Buffer Program Suspend in Erase Suspend  
Erase Suspend  
Suspend  
Lock/CR Setup  
in Erase Suspend  
Erase Suspend (Lock error)  
Erase Suspend  
N/A  
N/A  
N/A  
(Lock error)  
Setup  
Ready (error)  
BEFP  
Busy  
BEFP  
(4)  
Exit  
BEFP Busy  
(4)  
Busy  
Note: 1. CI = Command Interface, CR = Configuration Register, BEFP = Buffer Enhanced Factory Program, P/E. C. = Program/Erase Con-  
troller, WA0 = Address in a block different from first BEFP address.  
2. If the P/E.C. is active, both cycles are ignored.  
3. BEFP Exit when Block Address is different from first Block Address and data are FFFFh.  
4. BEFP is allowed only when Status Register bit SR0 is set to ‘0’. BEFP is busy if Block Address is first BEFP Address. Any other  
commands are treated as data.  
5. Illegal commands are those not defined in the command set.  
6. if N=0 go to Buffer Program Confirm. Else (N 0) go to Buffer Program Load 2 (data load).  
7. if N=0 go to Buffer Program Confirm in Erase Suspend. Else (N 0) go to Buffer Program Load 2 in Erase Suspend.  
79/82  
 
M58LR128FT, M58LR128FB  
Table 44. Command Interface States - Lock Table, Next Output State  
Command Input  
Block  
Lock/CR  
OTP  
Block Lock  
Confirm  
(01h)  
Set CR  
Confirm  
(03h)  
WSM  
Operation  
Completed  
Illegal  
Command  
(5)  
(4)  
Current CI State  
Lock-Down  
Confirm  
(2Fh)  
BEFP Exit  
(FFFFh)  
(3)  
(3)  
Setup  
(60h)  
Setup  
(C0h)  
Program Setup  
Erase Setup  
OTP Setup  
Program in Erase  
Suspend  
BEFP Setup  
BEFP Busy  
Buffer Program  
Setup  
Buffer Program  
Load 1  
Buffer Program  
Load 2  
Status Register  
Buffer Program  
Confirm  
Buffer Program  
Setup in Erase  
Suspend  
Buffer Program  
Load 1 in Erase  
Suspend  
Buffer Program  
Load 2 in Erase  
Suspend  
Buffer Program  
Confirm in Erase  
Suspend  
Output  
Unchanged  
Lock/CR Setup  
Status Register  
Array  
Status Register  
Lock/CR Setup in  
Erase Suspend  
OTP Busy  
Ready  
Program Busy  
Erase Busy  
Buffer Program  
Busy  
Program/Erase  
Suspend  
Buffer Program  
Suspend  
Status  
Register  
Output  
Unchanged  
Output Unchanged  
Array  
Program Busy in  
Erase Suspend  
Buffer Program  
Busy in Erase  
Suspend  
Program Suspend in  
Erase Suspend  
Buffer Program  
Suspend in Erase  
Suspend  
Note: 1. The output state shows the type of data that appears at the outputs if the bank address is the same as the command address. A  
bank can be placed in Read Array, Read Status Register, Read Electronic Signature or Read CFI mode, depending on the com-  
mand issued. Each bank remains in its last output state until a new command is issued to that bank. The next state does not depend  
on the bank's output state.  
2. CI = Command Interface, CR = Configuration Register, BEFP = Buffer Enhanced Factory Program, P/E. C. = Program/Erase Con-  
troller, WA0 = Address in a block different from first BEFP address.  
3. If the P/E.C. is active, both cycles are ignored.  
4. BEFP Exit when Block Address is different from first Block Address and data are FFFFh.  
5. Illegal commands are those not defined in the command set.  
80/82  
M58LR128FT, M58LR128FB  
REVISION HISTORY  
Table 45. Document Revision History  
Date  
Version  
Revision Details  
07-May-2003  
0.1  
First Issue  
Clear Status Register Command and Set Configuration Register Command clarified.  
Table 15., Program, Erase Times and Endurance Cycles reformatted, and Buffer  
Enhanced Factory Program timings added.  
In Table 19., DC Characteristics - Currents, I  
, I  
, I  
, I  
, I  
and I  
,
DD1 DD2 DD3 DD4 DD6  
DD  
values changed and 16 Word burst values added. V  
and V  
values modified  
PPLK  
PP1  
in Table 20., DC Characteristics - Voltages.  
08-Mar-2004  
0.2  
APPENDIX A., BLOCK ADDRESS TABLES reformatted. In APPENDIX  
B., COMMON FLASH INTERFACE, 0 added in front of 2-digit offset values. Data  
modified at address offset (P + 1D)h = 127h in Table 37., Burst Read Information.  
Figure 29., Buffer Enhanced Factory Program Flowchart and Pseudo Code modified.  
APPENDIX D., COMMAND INTERFACE STATE TABLES added.  
Document promoted from Target Specification to Preliminary Data status.  
I
values changed in Table 19., DC Characteristics - Currents.  
DD6  
Sub-section Name and Description at address offset 003h modified in Table 32., CFI  
Query Identification String.  
Figure 24., Program Suspend & Resume Flowchart and Pseudo Code and Figure  
26., Erase Suspend & Resume Flowchart and Pseudo Code modified. Write to  
Buffer and Program command renamed Buffer Program. Duplicate timings removed  
10-Sep-2004  
24-Sep-2004  
0.3  
1.0  
from Figure 12., Synchronous Burst Read AC Waveforms and t  
timing line  
KHTX  
modified. Table 43., Command Interface States - Lock Table, Next State modified.  
Document status promoted from Preliminary Data to full Datasheet.  
Figure 24., Program Suspend & Resume Flowchart and Pseudo Code, Figure  
25., Block Erase Flowchart and Pseudo Code and Figure 26., Erase Suspend &  
Resume Flowchart and Pseudo Code modified. Small text changes.  
81/82  
M58LR128FT, M58LR128FB  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
82/82  

相关型号:

M58LR128FB85ZB6

128 Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58LR128FB85ZB6E

128 Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58LR128FB85ZB6F

128 Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58LR128FB85ZB6T

128 Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58LR128FB95ZB6

128 Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58LR128FB95ZB6E

128 Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58LR128FB95ZB6F

128 Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58LR128FB95ZB6T

128 Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58LR128FT

128 Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58LR128FT85ZB6

128 Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58LR128FT85ZB6E

128 Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58LR128FT85ZB6F

128 Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Flash Memory
STMICROELECTR