M58LW032A11ZA6T [STMICROELECTRONICS]

2MX16 FLASH 3V PROM, 110ns, PBGA64, 10 X 13 MM, 1 MM PITCH, TBGA-64;
M58LW032A11ZA6T
型号: M58LW032A11ZA6T
厂家: ST    ST
描述:

2MX16 FLASH 3V PROM, 110ns, PBGA64, 10 X 13 MM, 1 MM PITCH, TBGA-64

可编程只读存储器 内存集成电路
文件: 总61页 (文件大小:341K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M58LW032A  
32 Mbit (2Mb x16, Uniform Block, Burst)  
3V Supply Flash Memory  
FEATURES SUMMARY  
WIDE x16 DATA BUS for HIGH BANDWIDTH  
SUPPLY VOLTAGE  
Figure 1. Packages  
– V = 2.7 to 3.6V core supply voltage for Pro-  
DD  
gram, Erase and Read operations  
– V  
= 1.8 to V for I/O Buffers  
DD  
DDQ  
SYNCHRONOUS/ASYNCHRONOUS READ  
– Synchronous Burst read  
TSOP56 (N)  
14 x 20 mm  
– Asynchronous Random Read  
– Asynchronous Address Latch Controlled  
Read  
– Page Read  
ACCESS TIME  
TBGA  
– Synchronous Burst Read up to 56MHz  
– Asynchronous PageMode Read 90/25nsand  
110/25ns  
TBGA64 (ZA)  
10 x 13 mm  
– Random Read 90ns, 110ns.  
PROGRAMMING TIME  
– 16 Word Write Buffer  
– 18µs Word effective programming time  
64 UNIFORM 32 KWord MEMORY BLOCKS  
BLOCK PROTECTION/ UNPROTECTION  
PROGRAM and ERASE SUSPEND  
128 bit PROTECTION REGISTER  
COMMON FLASH INTERFACE  
100, 000 PROGRAM/ERASE CYCLES per  
BLOCK  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 20h  
– Device Code M58LW032A: 8816h  
July 2002  
1/61  
M58LW032A  
TABLE OF CONTENTS  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 3. TSOP56 Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 4. TBGA64 Connections (Top view through package). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 5. Block Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Address Inputs (A1-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Data Inputs/Outputs (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Reset/Power-Down (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Latch Enable (L).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Clock (K).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Valid Data Ready (R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Ready/Busy (RB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Program/Erase Enable (V ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
PP  
V
DD  
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Input/Output Supply Voltage (V  
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
DDQ  
Ground (V ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
SS  
Ground (V  
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
SSQ  
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Asynchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Asynchronous Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Asynchronous Latch Controlled Bus Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Asynchronous Page Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Asynchronous Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Asynchronous Latch Controlled Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Automatic Low Power.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power-Down.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 2. Asynchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Synchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Synchronous Burst Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 3. Synchronous Burst Read Bus Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Burst Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Read Select Bit (M15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
X-Latency Bits (M13-M11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Y-Latency Bit (M9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2/61  
M58LW032A  
Valid Data Ready Bit (M8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Burst Type Bit (M7).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Valid Clock Edge Bit (M6).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Burst Length Bit (M2-M0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 4. Burst Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 5. Burst Type Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 6. Burst Configuration X-1-1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 7. Burst Configuration X-2-2-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read Memory Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read Query Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Clear Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Write to Buffer and Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Set Burst Configuration Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Block Protect Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Blocks Unprotect Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 6. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 7. Read Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 8. Read Protection Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 8. Protection Register Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 9. Program, Erase Times and Program Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . 25  
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Program Status (Bit 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
V
PP  
Status (Bit 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Block Protection Status (Bit 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Reserved (Bit 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 10. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 11. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 12. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3/61  
M58LW032A  
Figure 9. AC Measurement Input Output Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 10. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 13. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 14. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 11. Asynchronous Bus Read AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 15. Asynchronous Bus Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 12. Asynchronous Latch Controlled Bus Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . 33  
Table 16. Asynchronous Latch Controlled Bus Read AC Characteristics. . . . . . . . . . . . . . . . . . . 33  
Figure 13. Asynchronous Page Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 17. Asynchronous Page Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 14. Asynchronous Write AC Waveform, Write Enable Controlled . . . . . . . . . . . . . . . . . . . 35  
Figure 15. Asynchronous Latch Controlled Write AC Waveform, Write Enable Controlled. . . . . . 35  
Table 18. Asynchronous Write and Latch Controlled Write AC Characteristics, Write Enable  
Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 16. Asynchronous Write AC Waveforms, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . 37  
Figure 17. Asynchronous Latch Controlled Write AC Waveforms, Chip Enable Controlled . . . . . 37  
Table 19. Asynchronous Write and Latch Controlled Write AC Characteristics, Chip Enable  
Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 18. Synchronous Burst Read AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 19. Synchronous Burst Read - Continuous - Valid Data Ready Output. . . . . . . . . . . . . . . 40  
Table 20. Synchronous Burst Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 20. Reset, Power-Down and Power-up AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 21. Reset, Power-Down and Power-up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 41  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 21. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Outline . . . . . . . 42  
Table 22. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Mechanical Data 42  
Figure 22. TBGA64 10x13mm - 8x8 ball array 1mm pitch, Package Outline . . . . . . . . . . . . . . . . 43  
Table 23. TBGA64 10x13mm - 8x8 ball array, 1mm pitch, Package Mechanical Data. . . . . . . . . 43  
PART NUMBERING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 24. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 25. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
APPENDIX A. BLOCK ADDRESS TABLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 26. Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
APPENDIX B. COMMON FLASH INTERFACE - CFI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 27. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 28. CFI - Query Address and Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 29. CFI - Device Voltage and Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 30. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 31. Block Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 32. Extended Query information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
4/61  
M58LW032A  
APPENDIX C. FLOW CHARTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 23. Write to Buffer and Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 51  
Figure 24. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . 52  
Figure 25. Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 26. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 27. Block Protect Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 28. Block Unprotect Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 29. Protection Register Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 57  
Figure 30. Command Interface and Program Erase Controller Flowchart (a). . . . . . . . . . . . . . . . 58  
Figure 31. Command Interface and Program Erase Controller Flowchart (b). . . . . . . . . . . . . . . . 59  
Figure 32. Command Interface and Program Erase Controller Flowchart (c). . . . . . . . . . . . . . . . 60  
5/61  
M58LW032A  
SUMMARY DESCRIPTION  
The M58LW032 is a 32 Mbit (2Mb x16) non-vola-  
tile memory that can be read, erased and repro-  
grammed. These operations can be performed  
using a single low voltage (2.7V to 3.6V) core sup-  
ply. On power-up the memory defaults to Read  
mode with an asynchronous bus where it can be  
read in the same way as a non-burst Flash mem-  
ory.  
The memory is divided into 64 blocks of 512Kbit  
that can be erased independently so it is possible  
to preserve valid data while old data is erased.  
Program and Erase commands are written to the  
Command Interface of the memory. An on-chip  
Program/Erase Controller simplifies the process of  
programming or erasing the memory by taking  
care of all of the special operations that are re-  
quired to update the memory contents. The end of  
a Programor Erase operation can be detected and  
any error conditions identified in the Status Regis-  
ter. The command set required to control the  
memory is consistent with JEDEC standards.  
protected during power-up. The protection of the  
blocks is non-volatile; after power-up the protec-  
tion status of each block is restored to the state  
when power was last removed. Software com-  
mands are provided to allow protection of some or  
all of the blocks and to cancel all block protection  
bits simultaneously. All Program or Erase opera-  
tions are blocked whenthe Program Erase Enable  
input Vpp is low.  
The Reset/Power-Down pin is used to apply a  
Hardware Reset to the memory and to set the de-  
vice in power-down mode.  
In asynchronous mode Chip Enable, Output En-  
able and Write Enable signals control the bus op-  
eration of the memory. An Address Latch input can  
be used to latch addresses. Together they allow  
simple, yet powerful, connection to most micropro-  
cessors, often without additional logic.  
In synchronous mode all Bus Read operations are  
synchronous with the Clock. Chip Enable and Out-  
put Enable select the Bus Read operation and the  
address is Latched using the Latch Enable input.  
The signals are compatible with most micropro-  
cessor burst interfaces.  
The device includes a 128 bit Protection Register.  
The Protection Register is divided into two 64 bit  
segments, the first one is written by the manufac-  
turer (contact STMicroelectronics to define the  
code to be written here), while the second one is  
programmable by the user. The user programma-  
ble segment can be locked.  
The Write Buffer allows the microprocessor to pro-  
gram from 1 to 16 Words in parallel, both speeding  
up the programming and freeing up the micropro-  
cessor to perform other work. A Word Program  
command is available to program a single word.  
Erase can be suspended in order to perform either  
Read or Program in any other block and then re-  
sumed. Program can be suspended to Read data  
in any other block and then resumed. Each block  
can be programmed and erased over 100,000 cy-  
cles.  
The memory is available in TSOP56 (14 x 20 mm)  
and TBGA64 (10 x 13mm, 1mm pitch) packages.  
Individual block protection against Program or  
Erase is provided for data security. All blocks are  
6/61  
M58LW032A  
Figure 2. Logic Diagram  
Table 1. Signal Names  
V
V
DD DDQ  
A1-A21  
Address inputs  
DQ0-DQ15  
Data Inputs/Outputs  
Chip Enable  
E
21  
G
Output Enable  
Clock  
A1-A21  
K
V
PP  
16  
L
Latch Enable  
W
E
DQ0-DQ15  
R
Valid Data Ready  
Ready/Busy  
RB  
RP  
M58LW032A  
RB  
R
Reset/Power-Down  
Program/Erase Enable  
Write Enable  
G
V
PP  
RP  
L
W
V
Supply Voltage  
DD  
K
V
V
V
Input/Output Supply Voltage  
Ground  
DDQ  
SS  
Input/Output Ground  
Not Connected Internally  
Do Not Use  
SSQ  
V
V
SS SSQ  
NC  
DU  
AI04320  
7/61  
M58LW032A  
Figure 3. TSOP56 Connections  
NC  
R
1
56  
NC  
W
A21  
A20  
A19  
A18  
A17  
A16  
G
RB  
DQ15  
DQ7  
DQ14  
DQ6  
V
V
DD  
A15  
A14  
A13  
A12  
E
SS  
DQ13  
DQ5  
DQ12  
DQ4  
14  
15  
43  
42  
V
V
DDQ  
SSQ  
M58LW032A  
V
PP  
RP  
A11  
A10  
A9  
DQ11  
DQ3  
DQ10  
DQ2  
A8  
V
DD  
V
DQ9  
DQ1  
DQ8  
DQ0  
SS  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
NC  
K
NC  
L
28  
29  
AI04321  
8/61  
M58LW032A  
Figure 4. TBGA64 Connections (Top view through package)  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
A1  
A2  
A6  
A8  
A9  
V
A13  
A14  
V
A18  
A19  
DU  
R
PP  
E
DD  
V
DU  
DU  
SS  
A3  
A7  
A10  
A11  
DQ9  
DQ10  
DQ2  
A12  
RP  
A15  
A20  
A21  
A17  
RB  
G
A4  
A5  
DQ1  
DQ0  
DU  
DU  
DU  
A16  
DQ8  
K
DQ3  
DQ11  
DQ4  
DQ12  
DQ5  
DQ13  
DU  
DQ15  
DU  
DU  
DU  
G
H
V
DQ6  
DQ14  
DQ7  
W
DDQ  
L
DU  
V
V
V
DU  
DD  
SSQ  
SS  
AI04322  
9/61  
M58LW032A  
Figure 5. Block Addresses  
M58LW032A  
Word (x16) Bus Width  
Address lines A1-A21  
1FFFFFh  
512 Kbit or  
32 KWords  
1F8000h  
1F7FFFh  
512 Kbit or  
32 KWords  
1F0000h  
00FFFFh  
512 Kbit or  
32 KWords  
008000h  
007FFFh  
512 Kbit or  
32 KWords  
000000h  
AI05500  
Note: Also see Appendix A, Table 26 for a full listing of the Block Addresses  
10/61  
M58LW032A  
SIGNAL DESCRIPTIONS  
See Figure 2, Logic Diagram and Table 1, Signal  
Names, for a brief overview of the signals connect-  
ed to this device.  
A Hardware Reset is achieved by holding Reset/  
Power-Down Low, V , for at least t  
. When  
IL  
PLPH  
Reset/Power-Down is Low, V , the Status Regis-  
IL  
ter information is cleared and the power consump-  
tion is reduced to power-down level. The device is  
deselected and outputs are high impedance. If Re-  
Address Inputs (A1-A21). The Address Inputs  
are used to select the cells to access in the mem-  
ory array during Bus Read operations either to  
read or to program data to. During Bus Write oper-  
ations they control the commands sent to the  
Command Interface of the internal state machine.  
Chip Enable and Latch Enable must be low when  
selecting the addresses.  
The address inputs are latched on the rising edge  
of Chip Enable, Write Enable or Latch Enable,  
whichever occurs first in a Write operation. The  
address latch is transparent when Latch Enable is  
set/Power-Down goes low, V ,during a Block  
IL  
Erase, a Write to Buffer and Program or a Block  
Protect/Unprotect the operation is aborted and the  
data may be corrupted. In this case the Ready/  
Busy pin stays low, V , for a maximum timing of  
IL  
t
+ t  
until the completion of the Reset/  
PLPH  
PHRH,  
Power-Down pulse.  
After Reset/Power-Down goes High, V , the  
IH  
memory will be ready for Bus Read and Bus Write  
operations after t  
. Note that Ready/Busy  
PHQV  
low, V . The address is internally latched in an  
IL  
does not fall during a reset, see Ready/Busy Out-  
Erase or Program operation.  
put section.  
Data Inputs/Outputs (DQ0-DQ15). The Data In-  
puts/Outputs output the data stored at the selected  
address during a Bus Read operation, or are used  
to input the data during a program operation. Dur-  
ing Bus Write operations they represent the com-  
mands sent to the Command Interface of the  
internal state machine. When used to input data or  
Write commands they are latched on the rising  
edge of Write Enable or Chip Enable, whichever  
occurs first.  
In an application, it is recommended to associate  
Reset/Power-Down pin, RP, with the reset signal  
of the microprocessor. Otherwise, if a reset opera-  
tion occurs while the memory is performing an  
Erase or Program operation, the memory may out-  
put the Status Register information instead of be-  
ing initialized to the default Asynchronous  
Random Read.  
Latch Enable (L). The Bus Interface is config-  
ured to latch the Address Inputs on the rising edge  
of Latch Enable, L. In synchronous bus operations  
the address is latched on the active edge of the  
When Chip Enable and Output Enable are both  
low, V , the data bus outputs data from the mem-  
IL  
ory array, the Electronic Signature, the Block Pro-  
tection status, the CFI Information or the contents  
of the Status Register. The data bus is high imped-  
ance when the chip is deselected, Output Enable  
Clock when Latch Enable is Low, V or on the ris-  
IL  
ing of Latch Enable, whichever occurs first. Once  
latched, the addresses may change without affect-  
ing the address used by the memory. When Latch  
is high, V or the Reset/Power-Down signal is  
IH,  
Enable is Low, V , the latch is transparent.  
IL  
low, V . When the Program/Erase Controller is  
IL  
active the Ready/Busy status is given on DQ7.  
Clock (K). The Clock, K, is used to synchronize  
the memory with the external bus during Synchro-  
nous Bus Read operations. The Clock can be con-  
figured to have an active rising or falling edge. Bus  
signals are latched on the active edge of the Clock  
during synchronous bus operations. In Synchro-  
nous Burst Read mode the address is latched on  
the first active clock edge when Latch Enable is  
Chip Enable (E). The Chip Enable, E, input acti-  
vates the memory control logic, input buffers, de-  
coders and sense amplifiers. Chip Enable, E, at  
V
deselects the memory and reduces the power  
IH  
consumption to the Standby level, I  
.
DD1  
Output Enable (G). The Output Enable, G, gates  
the outputs through the data output buffers during  
low, V , or on the rising edge of Latch Enable,  
IL  
a readoperation. WhenOutput Enable, G, is at V  
IH  
whichever occurs first.  
the outputs are high impedance. Output Enable,  
G, can be used to inhibit the data output during a  
burst read operation.  
During asynchronous bus operations the Clock is  
not used.  
Valid Data Ready (R). The Valid Data Ready  
output, R, is an open drain output that can be used  
to identify if the memory is ready to output data or  
not. The Valid Data Ready output is only active  
during Synchronous Burst Read operations when  
the Burst Length is set to Continuous. The Valid  
Data Ready output can be configured to be active  
on the clock edge of the invalid data read cycle or  
Write Enable (W). The Write Enable input, W,  
controls writing to the Command Interface, Input  
Address and Data latches. Both addresses and  
data can be latched on the rising edge of Write En-  
able (also see Latch Enable, L).  
Reset/Power-Down (RP). The  
Reset/Power-  
Down pin can be used to apply a Hardware Reset  
to the memory.  
one cycle before. Valid Data Ready Low, V , in-  
OL  
11/61  
M58LW032A  
dicates that the data is not, or will not be valid. Val-  
id DataReady in a high-impedance state indicates  
that valid data is or will be available.  
Unless Synchronous Burst Read has been select-  
ed, Valid Data Ready is high-impedance. It may be  
tied to other components with the same Valid Data  
Ready signal to create a unique System Ready  
signal.  
Program/Erase Enable must be kept High during  
all Program/Erase Controller operations, other-  
wise the operations is not guaranteed to succeed  
and data may become corrupt.  
V
Supply Voltage. The Supply Voltage, V  
,
DD  
DD  
is the core power supply. All internal circuits draw  
their current from the V  
gram/Erase Controller.  
pin, including the Pro-  
DD  
The Valid Data Ready, R, output has an internal  
pull-up resistor of approximately 1 Mpowered  
A 0.1µF capacitor should be connected between  
the Supply Voltage, V , and the Ground, V , to  
DD  
SS  
from V  
, designers should use an external pull-  
decouple the current surges from the power sup-  
ply. The PCB track widths must be sufficient to  
carry the currents required during all operations of  
the parts, see Table 14, DC Characteristics, for  
maximum current supply requirements.  
DDQ  
up resistor of the correct value to meet the external  
timing requirements for Valid Data Ready rising.  
Refer to Figure 19.  
Ready/Busy (RB). The Ready/Busy output, RB,  
is an open-drain output that can be used to identify  
if the Program/Erase Controller is currently active.  
When Ready/Busy is high impedance, the memo-  
ry is ready for any Read, Program or Erase opera-  
Input/Output Supply Voltage (V  
). The In-  
DDQ  
put/Output Supply Voltage, V  
, is the input/out-  
DDQ  
put buffer power supply. All input and output pins  
and voltage references are powered and mea-  
sured relative to the Input/Output Supply Voltage  
tion. Ready/Busy is Low, V , during Program and  
OL  
Erase operations. When the device is busy it will  
not accept any additional Program or Erase com-  
mands exceptProgram/Erase Suspend. When the  
Program/Erase Controller is idle, or suspended,  
Ready Busy can float High through a pull-up resis-  
tor.  
pin, V  
.
DDQ  
The Input/Output Supply Voltage, V  
ways be equal or less than the V  
age, including during Power-Up.  
A 0.1µF capacitor should be connected between  
the Input/Output Supply Voltage, V , and the  
Ground, V  
from the power supply. If V  
nected together then only one decoupling capaci-  
tor is required.  
, must al-  
Supply Volt-  
DDQ  
DD  
DDQ  
The use of an open-drain output allows the Ready/  
Busy pins from several memories to be connected  
to a single pull-up resistor. A Low will then indicate  
that one, or more, of the memories is busy.  
, to decouple the current surges  
SSQ  
and V are con-  
DDQ  
DD  
Ready/Busy is not Low during a reset unless the  
reset was applied when the Program/Erase Con-  
troller was active; Ready/Busy can rise before Re-  
set/Power-Down rises.  
Ground (V ). Ground, V  
is the reference for  
SS,  
SS  
all core power supply voltages.  
Ground (V ). Ground, V  
is the reference  
SSQ,  
SSQ  
for input/output voltage measurements. It is es-  
sential to connect V and V to the same  
Program/Erase Enable (V ). The  
Program/  
PP  
SS  
SSQ  
Erase Enable input, V  
is used to protect all  
PP,  
ground  
.
blocks, preventing Program and Erase operations  
from affecting their data.  
12/61  
M58LW032A  
BUS OPERATIONS  
There are 12 bus operations that control the mem-  
ory. Each of these is described in this section, see  
Tables 2 and 3, Bus Operations, for a summary.  
The bus operation is selected through the Burst  
Configuration Register; the bits in this register are  
described at the end of this section.  
On Power-up or after a Hardware Reset the mem-  
ory defaults to Asynchronous Latch Enable Con-  
trolled Read and Asynchronous Bus Write, no  
other bus operation can be performed until the  
Burst Control Register has been configured.  
The Electronic Signature, CFI or Status Register  
will be read in asynchronous mode or single syn-  
chronous burst mode.  
Typically glitches of less than 5ns on Chip Enable  
or Write Enable are ignored by the memory and do  
not affect bus operations.  
operations can be performed when the memory is  
configured for Asynchronous Latch Enable bus  
operations by holding Latch Enable Low, V  
throughout the bus operation.  
IL  
Asynchronous Page Read. Asynchronous Page  
Read operations are used to read from several ad-  
dresses within the same memory page. Each  
memory page is 4 Words and has the same A3-  
A21, only A1 and A2 may change.  
Valid bus operations are the same as Asynchro-  
nous Bus Read operations but with different tim-  
ings. The first read operation within the page has  
identical timings, subsequent reads within the  
same page have much shorter access times. If the  
page changes then the normal, longer timings ap-  
ply again. See Figure 13, Asynchronous Page  
Read AC Waveforms and Table 17, Asynchro-  
nous Page Read AC Characteristics for details on  
when the outputs become valid.  
Asynchronous Bus Write. Asynchronous Bus  
Write operations write to the Command Interface  
in order to send commands to the memory or to  
latch addresses and input data to program. Bus  
Write operations are asynchronous, the clock, K,  
is don’t care during Bus Write operations.  
Asynchronous Bus Operations  
For asynchronous bus operations refer to Table 3  
together with the text below.  
Asynchronous Bus Read. Asynchronous Bus  
Read operations read from the memory cells, or  
specific registers (Electronic Signature, Status  
Register, CFI and Block Protection Status) in the  
Command Interface. A valid bus operation in-  
volves setting the desired address on the Address  
A valid Asynchronous Bus Write operation begins  
by setting the desired address on the Address In-  
Inputs, applying a Low signal, V , to Chip Enable,  
IL  
puts and setting Latch Enable Low, V . The Ad-  
IL  
Output Enable and Latch Enable and keeping  
dress Inputs are latched by the Command  
Interface on the rising edge of Chip Enable or  
Write Enable, whichever occurs first. The Data In-  
puts/Outputs are latched by the Command Inter-  
face on the rising edge of Chip Enable or Write  
Enable, whichever occurs first. Output Enable  
Write Enable High, V . The Data Inputs/Outputs  
IH  
will output the value, see Figure 11, Asynchronous  
Bus Read AC Waveforms, and Table 15, Asyn-  
chronous Bus Read AC Characteristics, for details  
of when the output becomes valid.  
Asynchronous Latch Controlled Bus Read.  
must remain High, V , during the whole Asyn-  
IH  
chronous Bus Write operation. See Figures 14,  
and 16, Asynchronous Write AC Waveforms, and  
Tables 18 and 19, Asynchronous Write and Latch  
Controlled Write AC Characteristics, for details of  
the timing requirements.  
Asynchronous Latch Controlled Bus Read opera-  
tions read from the memory cells or specific regis-  
ters in the Command Interface. The address is  
latched in the memory before the value is output  
on the data bus, allowing the address to change  
during the cycle without affecting the address that  
the memory uses.  
Asynchronous Latch Controlled Bus Write.  
Asynchronous Latch Controlled Bus Write opera-  
tions write to the Command Interface in order to  
send commands to the memory or to latch ad-  
dresses and input data to program. Bus Write op-  
erations are asynchronous, the clock, K, is don’t  
care during Bus Write operations.  
A valid bus operation involves setting the desired  
address on the Address Inputs, setting Chip En-  
able and Latch Enable Low, V and keeping Write  
IL  
Enable High, V ; theaddress is latched on the ris-  
IH  
ing edge of Address Latch. Once latched, the Ad-  
dress Inputs can change. Set Output Enable Low,  
A valid Asynchronous Latch Controlled Bus Write  
operation begins by setting the desired address on  
the Address Inputs and pulsing Latch Enable Low,  
V , to read the data on the Data Inputs/Outputs;  
IL  
see Figure 12, Asynchronous Latch Controlled  
Bus Read AC Waveforms and Table 16, Asyn-  
chronous Latch Controlled Bus Read AC Charac-  
teristics for details on when the output becomes  
valid.  
V . The Address Inputs are latched by the Com-  
IL  
mand Interface on the rising edge of Latch Enable,  
Chip Enable or Write Enable, whichever occurs  
first. The Data Inputs/Outputs are latched by the  
Command Interface on the rising edge of Chip En-  
able or Write Enable, whichever occurs first. Out-  
Note that, since the Latch Enable input is transpar-  
ent when set Low, V , Asynchronous Bus Read  
IL  
13/61  
M58LW032A  
put Enable must remain High, V , during the  
Current, I  
, for Program or Erase operations un-  
IH  
DD3  
whole Asynchronous Bus Write operation. See  
Figures 15 and 17 Asynchronous Latch Controlled  
Write AC Waveforms, and Tables 18 and 19,  
Asynchronous Write and Latch Controlled Write  
AC Characteristics, for details of the timing re-  
quirements.  
til the operation completes.  
Automatic Low Power. If there is no change in  
the state of the bus for a short period of time during  
Asynchronous Bus Read operations the memory  
enters Auto Low Power mode where the internal  
Supply Current is reduced to the Auto-Standby  
Supply Current, I  
still output data if a Bus Read operation is in  
progress.  
Output Disable. The Data Inputs/Outputs are in  
the high impedance state when the Output Enable  
is High.  
. The Data Inputs/Outputs will  
DD5  
Standby. When Chip Enable is High, V , the  
Automatic Low Power is only available in Asyn-  
chronous Read modes.  
IH  
memory enters Standby mode and the Data In-  
puts/Outputs pins are placed in the high imped-  
ance state regardless of Output Enable or Write  
Enable. The Supply Current is reduced to the  
Power-Down. The memory is in Power-Down  
mode when Reset/Power-Down, RP, is Low. The  
power consumption is reduced to the Power-Down  
Standby Supply Current, I  
.
DD1  
level, I  
, and the outputs are high impedance,  
DD2  
During Program or Erase operations the memory  
will continue to use the Program/Erase Supply  
independent of Chip Enable, Output Enable or  
Write Enable.  
Table 2. Asynchronous Bus Operations  
Bus Operation  
Step  
E
G
W
RP  
L
A1-A21  
Address  
Address  
X
DQ0-DQ15  
Data Output  
High Z  
V
V
V
V
Asynchronous Bus Read  
High  
High  
High  
High  
High  
IL  
IL  
IL  
IL  
IL  
IL  
IL  
IL  
IL  
IH  
IH  
IH  
IH  
IL  
IL  
V
V
V
V
V
V
V
V
V
V
V
V
V
Address Latch  
Read  
Asynchronous Latch  
Controlled Bus Read  
Data Output  
Data Output  
Data Input  
IH  
V
Asynchronous Page Read  
Asynchronous Bus Write  
Address  
Address  
IL  
IL  
V
V
V
V
V
IH  
IH  
IH  
IL  
IL  
Asynchronous Latch  
Controlled Bus Write  
V
V
V
Address Latch  
High  
Address  
Data Input  
IL  
IL  
IL  
V
V
Output Disable  
Standby  
High  
High  
X
X
X
X
High Z  
High Z  
High Z  
IH  
X
X
X
X
IH  
V
Power-Down  
X
X
X
IL  
Note: 1. X = Don’t Care V or V . High = V or V .  
HH  
IL  
IH  
IH  
14/61  
M58LW032A  
Synchronous Bus Operations  
For synchronous bus operations refer to Table 3  
together with the text below.  
Synchronous Burst Read. Synchronous Burst  
Read operations are used to read from the memo-  
ry at specific times synchronized to an external ref-  
erence clock. The burst type, length and latency  
can be configured. The different configurations for  
Synchronous Burst Read operations are de-  
scribed in the Burst Configuration Register sec-  
tion.  
the X-latency specified in the Burst Control Regis-  
ter has expired. The output buffers are activated  
by setting Output Enable Low, V . See Figures 6  
IL  
and 7 for examples of Synchronous Burst Read  
operations.  
In Continuous Burst mode one Burst Read opera-  
tion can access the entire memory sequentially. If  
the starting address is not associated with a page  
(4 Word) boundary the Valid Data Ready, R, out-  
put goes Low, V , to indicate that the data will not  
IL  
be ready in time and additional wait-states are re-  
quired. The Valid Data Ready output timing (bit  
M8) can be changed in the Burst Configuration  
Register.  
A valid Synchronous Burst Read operation begins  
when the address is set on the Address Inputs,  
Write Enable is High, V , and Chip Enable and  
IH  
The Synchronous Burst Read timing diagrams  
and AC Characteristics are described in the AC  
and DC Parameters section. See Figures 18, 19  
and Table 20.  
Latch Enable are Low, V , during the active edge  
IL  
of the Clock. The address is latched on the first ac-  
tive clock edge when Latch Enable is low, or on  
the rising edge of Latch Enable, whichever occurs  
first. The data becomes available for output after  
Table 3. Synchronous Burst Read Bus Operations  
A1-A21  
(3)  
Bus Operation  
Step  
E
G
RP  
L
K
DQ0-DQ15  
Address Input  
Data Output  
High Z  
V
V
V
IL  
Address Latch  
Synchronous Burst Read Read  
Read Abort  
X
T
IL  
IL  
IH  
V
V
V
V
T
X
X
X
IL  
IH  
V
X
IH  
IH  
Note: 1. X = Don’t Care, V or V  
.
IH  
IL  
2. M15 = 0, Bit M15 is in the Burst Configuration Register.  
3. T = transition, see M6 in the Burst Configuration Register for details on the active edge of K.  
15/61  
M58LW032A  
Burst Configuration Register  
Y-Latency Bit (M9). The Y-Latency bit is used  
during Synchronous Bus Read operations to set  
the number of clock cycles between consecutive  
reads. The Y-Latency value depends on both the  
X-Latency value and the setting in M9.  
When the Y-Latency is 1 the data changes each  
clock cycle; when the Y-Latency is 2 the data  
changes every second clock cycle. See Table 4,  
Burst Configuration Register for valid combina-  
tions of the Y-Latency, the X-Latency and the  
Clock frequency.  
The Burst Configuration Register is used to config-  
ure the type of bus access that the memory will  
perform. The Burst Configuration Register bits are  
described in Table 4. They specify the selection of  
the burst length, burst type, burst X and Y laten-  
cies and the Read operation. See figures 6 and 7  
for examples of Synchronous Burst Read configu-  
rations.  
The Burst Configuration Register is set through  
the Command Interface and will retain its informa-  
tion until it is re-configured, the device is reset, or  
the device goes into Reset/Power-Down mode.  
The Burst Configuration Register is read using the  
Read Electronic Signature Command at address  
05h.  
Valid Data Ready Bit (M8). The  
Valid  
Data  
Ready bit controls the timing of the Valid Data  
Ready output pin, R. When the Valid Data Ready  
bit is ’0’ the Valid Data Ready output pin is driven  
Low for the active clock edge when invalid data is  
output on the bus. When the Valid Data Ready bit  
is ’1’ the Valid Data Ready output pin is driven Low  
one clock cycle prior to invalid data being output  
on the bus.  
Burst Type Bit (M7). The Burst Type bit is used  
to configure the sequence of addresses read as  
sequential or interleaved. When the Burst Type bit  
is ’0’ the memory outputs from interleaved ad-  
dresses; when the Burst Type bit is ’1’ the memory  
outputs from sequential addresses. See Tables 5,  
Burst Type Definition, for the sequence of ad-  
dresses output from a given starting address in  
each mode.  
Valid Clock Edge Bit (M6). The Valid Clock Edge  
bit, M6, is used to configure the active edge of the  
Clock, K, during Synchronous Burst Read opera-  
tions. When the Valid Clock Edge bit is ’0’ the fall-  
ing edge of the Clock is the active edge; when the  
Valid Clock Edge bit is ’1’ the rising edge of the  
Clock is active.  
Burst Length Bit (M2-M0). The Burst Length bits  
set the maximum number of Words that can be  
output during a Synchronous Burst Read opera-  
tion.  
Read Select Bit (M15). The Read Select bit,  
M15, is used to switch between asynchronous and  
synchronous Bus Read operations. When the  
Read Select bit is set to ’1’, Bus Read operations  
are asynchronous; when the Read Select but is  
set to ’0’, Bus Read operations are synchronous.  
On reset or power-up the Read Select bit is set to  
’1’ for asynchronous access.  
X-Latency Bits (M13-M11). The X-Latency bits  
are used during Synchronous Bus Read opera-  
tions to set the number of clock cycles between  
the address being latched and the first data be-  
coming available. For correct operation the X-La-  
tency bits can only assume the values in Table 4,  
Burst Configuration Register.  
Internal Clock Divider Bit (M10). The Internal  
Clock DividerBit is used to divide the internal clock  
by two. When M10 is set to ‘1’ the internal clock is  
divided by two, which effectively means that the X  
and Y-Latency values are multiplied by two, that is  
the number of clock cycles between the address  
being latched and the first data becoming avail-  
able will be twice the value set in M13-M11, and  
the number of clock cycles between consecutive  
reads will be twice the value set in M9. For exam-  
ple 8-1-1-1will become 16-2-2-2. When M10 is set  
to ‘0’ the internal clock runs normally and the X  
and Y-Latency values are those set in M13-M11  
and M9.  
Table 4, Burst Configuration Register gives the  
valid combinations of the Burst Length bits that the  
memory accepts; Tables 5, Burst Type Definition,  
give the sequence of addresses output from a giv-  
en starting address for each length.  
M5 M4 and M3 are reserved for future use.  
16/61  
M58LW032A  
Table 4. Burst Configuration Register  
Address  
Bit  
Reset  
Value  
Mnemonic  
Bit Name  
Value  
Description  
Synchronous Burst Read  
0
1
16  
15  
M15  
M14  
Read Select  
1
Asynchronous Bus Read (default at power-up)  
Reserved  
Reserved  
001  
010  
011  
(1)  
X-Latency = 4, 4-1-1-1 (use only with Y-Latency = 1)  
X-Latency = 5, 5-1-1-1, 5-2-2-2  
14  
to  
12  
(2)  
M13-M11  
XXX  
X-Latency  
100  
101  
110  
X-Latency = 6, 6-1-1-1, 6-2-2-2  
X-Latency = 7, 7-1-1-1, 7-2-2-2  
X-Latency = 8, 8-1-1-1, 8-2-2-2  
0
1
0
1
0
1
0
1
0
1
X and Y-Latencies remains as set in M13-M11 and M9  
Internal  
Clock Divider  
11  
10  
9
M10  
M9  
X
X
X
X
X
Divides internal clock, X and Y-Latencies multiplied by 2  
Y-Latency = 1  
(3)  
Y-Latency  
Y-Latency = 2  
R valid Low during valid Clock edge  
Valid Data  
Ready  
M8  
R valid Low one cycle before valid Clock edge  
Interleaved  
Sequential  
8
M7  
Burst Type  
Falling Clock edge  
Rising Clock edge  
Reserved  
Valid Clock  
Edge  
7
M6  
6 to 4  
M5-M3  
001  
010  
111  
4 Words  
3
to  
1
M2-M0  
Burst Length  
XXX  
8 Words  
Continuous  
Note: 1. 4 - 2 - 2 - 2 (represents X-Y-Y-Y) is not allowed.  
2. X latencies can be calculated as: (t  
is the clock period).  
– t  
LLKH  
+ t ) + t < (X -1) t (X is an integer number from 4 to 8 and t  
QVKH SYSTEM MARGIN K. K  
AVQV  
3. Y latencies can be calculated as: t  
4. t  
+ t  
+ t  
< Y t  
QVKH K.  
KHQV  
SYSTEM MARGIN  
is the time margin required for the calculation.  
SYSTEM MARGIN  
17/61  
M58LW032A  
Table 5. Burst Type Definition  
Starting  
x4  
x4  
x8  
x8  
Addres  
s
Continuous  
Sequential Interleaved  
Sequential  
Interleaved  
0
1
2
3
4
5
6
7
8
0-1-2-3  
0-1-2-3  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
0-1-2-3-4-5-6-7  
1-0-3-2-5-4-7-6  
2-3-0-1-6-7-4-5  
3-2-1-0-7-6-5-4  
4-5-6-7-0-1-2-3  
5-4-7-6-1-0-3-2  
6-7-4-5-2-3-0-1  
7-6-5-4-3-2-1-0  
0-1-2-3-4-5-6-7-8-9-10..  
1-2-3-4-5-6-7-8-9-10-11..  
2-3-4-5-6-7-8-9-10-11-12..  
3-4-5-6-7-8-9-10-11-12-13..  
4-5-6-7-8-9-10-11-2-13-14..  
5-6-7-8-9-10-11-12-13-14..  
6-7-8-9-10-11-12-13-14-15..  
7-8-9-10-11-12-13-14-15-16..  
8-9-10-11-12-13-14-15-16-17..  
1-2-3-0  
1-0-3-2  
2-3-0-1  
2-3-0-1  
3-0-1-2  
3-2-1-0  
Figure 6. Burst Configuration X-1-1-1  
0
1
2
3
4
5
6
7
8
9
K
ADD  
VALID  
L
DQ  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
4-1-1-1  
5-1-1-1  
DQ  
VALID  
VALID  
DQ  
DQ  
DQ  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
6-1-1-1  
7-1-1-1  
8-1-1-1  
AI05512  
18/61  
M58LW032A  
Figure 7. Burst Configuration X-2-2-2  
0
1
2
3
4
5
6
7
8
9
K
ADD  
VALID  
L
NV  
DQ  
VALID  
NV  
NV  
VALID  
NV  
VALID  
5-2-2-2  
DQ  
DQ  
DQ  
NV  
VALID  
NV  
VALID  
NV  
NV  
VALID  
NV  
VALID  
NV  
6-2-2-2  
7-2-2-2  
8-2-2-2  
VALID  
NV=NOT VALID  
AI05513  
19/61  
M58LW032A  
COMMAND INTERFACE  
All Bus Write operations to the memory are inter-  
preted by the Command Interface. Commands  
consist of one or more sequential Bus Write oper-  
ations. The Commands are summarized in Table  
6, Commands. Refer to Table 6 in conjunction with  
the text descriptions below.  
Register. One Bus Write cycle is required to issue  
the Read Status Register command. Once the  
command is issued subsequent Bus Read opera-  
tions read the Status Register until another com-  
mand is issued.  
The Status Register information is present on the  
output data bus (DQ1-DQ7) when both Chip En-  
After power-up or a Reset operation the memory  
enters Read mode.  
able and Output Enable are low, V .  
IL  
Synchronous Read operations and Latch Con-  
trolled Bus Read operations can only be used to  
read the memory array. The Electronic Signature,  
CFI or Status Register will be read in asynchro-  
nous mode or single synchronous burst mode.  
Once the memory returns to Read Memory Array  
mode the bus will resume the setting in the Burst  
Configuration Register automatically.  
See the section on the Status Register and Table  
10 for details on the definitions of the Status Reg-  
ister bits  
Clear Status Register Command. The Clear Sta-  
tus Register command can be used to reset bits 1,  
3, 4 and 5 in the Status Register to ‘0’. One Bus  
Write is required to issue the Clear Status Register  
command.  
Read Memory Array Command. The Read Mem-  
ory Array command returns the memory to Read  
mode. One Bus Write cycle is required to issue the  
Read Memory Array command and return the  
memory to Read mode. Once the command is is-  
sued the memory remains in Read mode until an-  
other command is issued. From Read mode Bus  
Read commands will access the memory array.  
While the Program/Erase Controller is executing a  
Program, Erase, Block Protect, Blocks Unprotect  
or Protection Register Program operation the  
memory will not accept the Read Memory Array  
command until the operation completes.  
The bits in the Status Register are sticky and do  
not automatically return to ‘0’ when a new Write to  
Buffer and Program, Erase, Block Protect, Block  
Unprotect or Protection Register Program com-  
mand is issued. If any error occurs then it is essen-  
tial to clear any error bits in the Status Register by  
issuing the Clear Status Register command before  
attempting a new Program, Erase or Resume  
command.  
Block Erase Command. The Block Erase com-  
mand can be used to erase a block. It sets all of  
the bits in the block to ‘1’. All previous data in the  
block is lost. If the block is protected then the  
Erase operation will abort, the data in the block will  
not be changed and the Status Register will output  
the error.  
Read Electronic Signature Command. The Read  
Electronic Signature command is used to read the  
Manufacturer Code, the Device Code, the Block  
Protection Status, the Burst Configuration Regis-  
ter and the Protection Register. One Bus Write cy-  
cle is required to issue the Read Electronic  
Signature command. Once the command is is-  
sued subsequent Bus Read operations read the  
Manufacturer Code, the Device Code, the Block  
Protection Status, the Burst Configuration Regis-  
ter or the Protection Register until another com-  
mand is issued. Refer to Table 7, Read Electronic  
Signature, Table 8, Read Protection Register and  
Figure 8, Protection Register Memory Map for in-  
formation on the addresses.  
Read Query Command. The Read Query Com-  
mand is used to read data from the Common Flash  
Interface (CFI) Memory Area. One Bus Write cycle  
is required to issue the Read Query Command.  
Once the command is issued subsequent Bus  
Read operations read from the Common Flash In-  
terface Memory Area. See Appendix B, Tables 27,  
28, 29, 30, 31 and 32 for details on the information  
contained in the Common Flash Interface (CFI)  
memory area.  
Two Bus Write operations are required to issue the  
command; the second Bus Write cycle latches the  
block address in the internal state machine and  
starts the Program/Erase Controller. Once the  
command is issued subsequent Bus Read opera-  
tions read the Status Register. See the section on  
the Status Register for details on the definitions of  
the Status Register bits.  
During the Erase operation the memory will only  
accept the Read Status Register command and  
the Program/Erase Suspend command. All other  
commands will be ignored. Typical Erase times  
are given in Table 9.  
See Appendix C, Figure 25, Block Erase Flow-  
chart and Pseudo Code, for a suggested flowchart  
on using the Block Erase command.  
Word Program Command. The Word Program  
command is used to program a single word in the  
memory array. Two Bus Write operations are re-  
quired to issue the command; the first write cycle  
sets up the Word Program command, the second  
write cycle latches the address and data to be pro-  
grammed in the internal state machine and starts  
the Program/Erase Controller.  
Read Status Register Command. The Read Sta-  
tus Register command is used to read the Status  
20/61  
M58LW032A  
If the block being programmed is protected an er-  
ror will be set in the Status Register and the oper-  
ation will abort without affecting the data in the  
memory array. The block must be unprotected us-  
ing the Blocks Unprotect command.  
Write to Buffer and Program Command. The  
Write to Buffer and Program command is used to  
program the memory array.  
gram or Write to Buffer and Program command if  
the Program/Erase Controller is running.  
One Bus Write cycle is required to issue the Pro-  
gram/Erase Suspend command and pause the  
Program/Erase Controller. Once the command is  
issued it is necessary to poll the Program/Erase  
Controller Status bit (bit 7) to find out when the  
Program/Erase Controller has paused; no other  
commands will be accepted until the Program/  
Erase Controller has paused. After the Program/  
Erase Controller has paused, the memory will con-  
tinue to output the Status Register until another  
command is issued.  
Up to 16 Words can be loaded into the Write Buffer  
and programmed into the memory. Each Write  
Buffer has the same A5-A21 addresses.  
Four successive steps are required to issue the  
command.  
During the polling period between issuing the Pro-  
gram/Erase Suspend command and the Program/  
Erase Controller pausing it is possible for the op-  
eration to complete. Once the Program/Erase  
Controller Status bit (bit 7) indicates that the Pro-  
gram/Erase Controller is no longer active, the Pro-  
gram Suspend Status bit (bit 2) or the Erase  
Suspend Status bit (bit 6) can be used to deter-  
mine if the operation has completed or is suspend-  
ed. For timing on the delay between issuing the  
Program/Erase Suspend command and the Pro-  
gram/Erase Controller pausing see Table 9.  
1. One Bus Write operation is required to set up  
the Write to Buffer and Program Command. Is-  
sue the set up command with the selected  
memory Block Address where the program op-  
eration should occur (any address in the block  
where the values will be programmed can be  
used). AnyBus Read operations will start to out-  
put the Status Register after the 1st cycle.  
2. Use one Bus Write operation to write the same  
block address along with the value N on the  
Data Inputs/Output, where N+1 is the number of  
Words to be programmed.  
During Program/Erase Suspend the Read Memo-  
ry Array, Read Status Register, Read Electronic  
Signature, Read Query and Program/Erase Re-  
sume commands will be accepted by the Com-  
mand Interface. Additionally, if the suspended  
operation was Erase then the Write to Buffer and  
Program, and the Program Suspend commands  
will also be accepted. When a program operation  
is completed inside a Block Erase Suspend the  
Read Memory Array command must be issued to  
reset the device in Read mode, then the Erase Re-  
sume command can be issued to complete the  
whole sequence. Only the blocks not being erased  
may be read or programmed correctly.  
3. Use N+1 Bus Write operations to load the ad-  
dress and data for each Word into the Write  
Buffer. See the constraints on the address com-  
binations listed below. The addresses must  
have the same A5-A21.  
4. Finally, useone Bus Write operation to issue the  
final cycle to confirm the command and start the  
Program operation.  
Invalid address combinations or failing to follow  
the correct sequence of Bus Write cycles will set  
an error in the Status Register and abort the oper-  
ation without affecting the data in the memory ar-  
ray. The Status Register should be cleared before  
re-issuing the command.  
If the block being programmed is protected an er-  
ror will be set in the Status Register and the oper-  
ation will abort without affecting the data in the  
memory array. The block must be unprotected us-  
ing the Blocks Unprotect command.  
See Appendix C, Figure 24, Program Suspend &  
Resume Flowchart and Pseudo Code, and Figure  
26, Erase Suspend & Resume Flowchart and  
Pseudo Code, for suggested flowcharts on using  
the Program/Erase Suspend command.  
Program/Erase Resume Command. The  
gram/Erase Resume command can be used to re-  
start the Program/Erase Controller after  
Pro-  
See Appendix C, Figure 23, Write to Buffer and  
Program Flowchart and Pseudo Code, for a sug-  
gested flowchart on using the Write to Buffer and  
Program command.  
a
Program/Erase Suspend operation has paused it.  
One Bus Write cycle is required to issue the Pro-  
gram/Erase Resume command. Once the com-  
mand is issued subsequent Bus Read operations  
read the Status Register.  
Program/Erase Suspend Command. The  
Pro-  
gram/Erase Suspend command is used to pause a  
Word Program, Write to Buffer and Program or  
Erase operation. The command will only be ac-  
cepted during a Program or an Erase operation. It  
can be issued at any time during an Erase opera-  
tion but will only be accepted during a Word Pro-  
Set Burst Configuration Register Command.  
The Set Burst Configuration Register command is  
used to write a new value to the Burst Configura-  
tion Control Register which defines the burst  
length, type, X and Y latencies, Synchronous/  
21/61  
M58LW032A  
Asynchronous Read mode and the valid Clock  
edge configuration.  
definitions of the Status Register bits. Typical  
Block Protection times are given in Table 9.  
Two Bus Write cycles are required to issue the Set  
Burst Configuration Register command. Once the  
command is issued the memory returns to Read  
mode as if a Read Memory Array command had  
been issued.  
The value for the Burst Configuration Register is  
presented on A1-A16. M0 is on A1, M1 on A2, etc.;  
the other address bits are ignored.  
See Appendix C, Figure 28, Block Unprotect Flow-  
chart and Pseudo Code, for a suggested flowchart  
on using the Block Unprotect command.  
Protection Register Program Command. The  
Protection Register Program command is used to  
Program the 64 bit user segment of the Protection  
Register. The segment is programmed 16 bits at a  
time. The memory must be reset by issuing the  
Read Memory Array command before the Protec-  
tion Register Program command can be issued.  
Two write cycles are required to issue the Protec-  
tion Register Program command.  
Block Protect Command. The Block Protect  
command is used to protect a block and prevent  
Program or Erase operations from changing the  
data in it. Two Bus Write cycles are required to is-  
sue the Block Protect command; the second Bus  
Write cycle latches the block address in the inter-  
nal state machine and starts the Program/Erase  
Controller. Once the command is issued subse-  
quent Bus Read operations read the Status Reg-  
ister. See the section on the Status Register for  
details on the definitions of the Status Register  
bits. Typical Block Protection times are given in  
Table 9.  
The Block Protection bits are non-volatile, once  
set they remain set through reset and power-  
down/power-up. They are cleared by a Blocks Un-  
protect command.  
See Appendix C, Figure 27, Block Protect Flow-  
chart and Pseudo Code, for a suggested flowchart  
on using the Block Protect command.  
The first bus cycle sets up the Protection  
Register Program command.  
The secondlatches theAddress and the Data to  
be written to the Protection Register and starts  
the Program/Erase Controller.  
Read operations output the Status Register con-  
tent after the programming has started.  
The user-programmable segment can be locked  
by programming bit 1 of the Protection Register  
Lock location to ‘0’ (see Table 8). Bit 0 of the Pro-  
tection Register Lock location locks the factory  
programmed segment and is programmed to ‘0’ in  
the factory. The locking of the Protection Register  
is not reversible, once the lock bits are pro-  
grammed no further changes can be made to the  
values stored in the Protection Register, see Fig-  
ure 8, Protection Register Memory Map. Attempt-  
ing to program a previously protected Protection  
Register will result in a Status Register error.  
Blocks Unprotect Command. The Blocks Un-  
protect command is used to unprotect all of the  
blocks. Two Bus Write cycles are required to issue  
the Blocks Unprotect command; the second Bus  
Write cycle starts the Program/Erase Controller.  
Once the command is issued subsequent Bus  
Read operations read the Status Register. See the  
section on the Status Register for details on the  
The Protection Register Program cannot be sus-  
pended. See Appendix C, Figure 29, Protection  
Register Program Flowchart and Pseudo Code,  
for the flowchart for using the Protection Register  
Program command.  
22/61  
M58LW032A  
Table 6. Commands  
Command  
Bus Operations  
1st Cycle  
2nd Cycle  
Addr.  
Subsequent  
Final  
Op. Addr. Data Op.  
Data Op. Addr. Data Op. Addr. Data  
Read Memory Array  
2 Write  
X
X
X
X
FFh Read  
90h Read  
70h Read  
98h Read  
RA  
RD  
(3)  
(3)  
Read Electronic Signature 2 Write  
IDA  
IDD  
Read Status Register  
Read Query  
2
Write  
X
SRD  
(4)  
(4)  
2 Write  
QA  
QD  
Clear Status Register  
Block Erase  
1
2
Write  
Write  
X
X
50h  
20h Write  
BA  
PA  
D0  
PD  
40h  
Word Program  
2
Write  
X
Write  
10h  
Write to Buffer and  
Program  
4 + N Write BA  
E8h Write  
BA  
N
Write PA PD Write  
X
D0h  
Program/Erase Suspend  
Program/Erase Resume  
1
1
Write  
Write  
X
X
B0h  
D0h  
Set Burst Configuration  
Register  
2
Write  
X
60h Write  
BCR  
03h  
Block Protect  
2
2
Write BA  
60h Write  
60h Write  
BA  
X
01h  
D0h  
Blocks Unprotect  
Write  
Write  
X
X
Protection Register  
Program  
2
C0h Write  
PRA  
PRD  
Note: 1. X Don’t Care; RA Read Address, RD Read Data, IDA Identifier Address, IDD Identifier Data, SRD Status Register Data, PA Program  
Address; PD Program Data, QA Query Address, QD Query Data, BA Any address in the Block, BCR Burst Configuration Register  
value.  
2. Base Address, refer to Figure 8 and Table 8 for more information.  
3. For Identifier addresses and data refer to table 7, Read Electronic Signature.  
4. For Query Address and Data refer to Appendix B, CFI.  
Table 7. Read Electronic Signature  
Code  
Manufacturer Code  
Address (A21-A1)  
000000h  
Data (DQ15-DQ0)  
0020h  
Device Code  
000001h  
8816h  
0000h (Block Unprotected)  
0001h (Block Protected)  
Block Protection Status  
SBA+02h  
000005h  
Burst Configuration Register  
Protection Register  
BCR  
PRD  
(2)  
000080h  
Note: 1. SBA is the Start Base Address of each block, BCR is Burst Configuration Register data, PRD is Protection Register Data.  
2. Base Address, refer to Figure 8 and Table 8 for more information.  
23/61  
M58LW032A  
Table 8. Read Protection Register  
Word  
Use  
Factory, User  
Factory (Unique ID)  
Factory (Unique ID)  
Factory (Unique ID)  
Factory (Unique ID)  
User  
A8  
1
A7  
0
A6  
0
A5  
0
A4  
0
A3  
0
A2  
0
A1  
0
Lock  
0
1
2
3
4
5
6
7
1
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
0
0
1
0
1
User  
1
0
0
0
0
1
1
0
User  
1
0
0
0
0
1
1
1
User  
1
0
0
0
1
0
0
0
Figure 8. Protection Register Memory Map  
WORD  
ADDRESS  
88h  
User Programmable  
85h  
84h  
Unique device number  
81h  
80h  
Protection Register Lock  
1
0
AI05501  
24/61  
M58LW032A  
Table 9. Program, Erase Times and Program Erase Endurance Cycles  
M58LW032A  
Parameters  
Unit  
Typical after  
100k W/E Cycles  
Min  
Typ  
Max  
Block (521Kb) Erase  
Chip Program  
1.1  
s
s
(2)  
t.b.a.  
Program Write Buffer  
290  
µs  
µs  
Program Suspend Latency Time  
Erase Suspend Latency Time  
Block Protect Time  
20  
25  
µs  
18  
µs  
Blocks Unprotect Time  
0.75  
s
Program/Erase Cycles (per block)  
100,000  
Note: 1. (T = 0 to 70°C; V = 2.7V to 3.6V; V =1.8V)  
DDQ  
cycles  
A
DD  
2. t.b.a. to be announced  
25/61  
M58LW032A  
STATUS REGISTER  
The Status Register provides information on the  
current or previous Program, Erase, Block Protect  
or Blocks Unprotect operation. The various bits in  
the Status Register convey information and errors  
on the operation. They are output on DQ7-DQ0.  
inactive); after a Program/Erase Suspend com-  
mand is issued the memory may still complete the  
operation rather than entering the Suspend mode.  
When the Erase Suspend Status bit is Low, V  
,
OL  
the Program/Erase Controller isactive or has com-  
To read the Status Register the Read Status Reg-  
ister commandcan be issued. The Status Register  
is automatically read after Program, Erase, Block  
Protect, Blocks Unprotect and Program/Erase Re-  
sume commands. The Status Register can be  
read from any address.  
pleted its operation; when the bit is High, V , a  
OH  
Program/Erase Suspend command has been is-  
sued and the memory is waiting for a Program/  
Erase Resume command.  
When a Program/Erase Resume command is is-  
sued the Erase Suspend Status bit returns Low.  
The Status Register can only be read using Asyn-  
chronous Bus Read operations. Once the memory  
returns to Read Memory Array mode the bus will  
resume the setting in the Burst Configuration Reg-  
ister automatically.  
Erase Status (Bit 5). The EraseStatus bit can be  
used to identify if the memory has failed to verify  
that the block has erased correctly or that all  
blocks have been unprotected successfully. The  
Erase Status bit should be read once the Program/  
Erase Controller Status bit is High (Program/Erase  
Controller inactive).  
The contents of the Status Register can be updat-  
ed during an Erase or Program operation by tog-  
gling the Output Enable pin or by dis-activating  
When the Erase Status bit is Low, V , the mem-  
OL  
(Chip Enable, V ) and then reactivating (Chip En-  
IH  
ory has successfully verified that the block has  
erased correctly or all blocks have been unprotect-  
ed successfully. When the Erase Status bit is  
able and Output Enable, V ) the device.  
IL  
Status Register bits 5, 4, 3 and 1 are associated  
with various error conditions and can only be reset  
with the Clear Status Register command. The Sta-  
tus Register bits are summarized in Table 10, Sta-  
tus Register Bits. Refer to Table 10 in conjunction  
with the following text descriptions.  
High, V , the erase operation has failed. De-  
OH  
pending on the cause of the failure other Status  
Register bits may also be set to High, V  
.
OH  
If only the Erase Status bit (bit 5) is set High,  
, then the Program/Erase Controller has  
V
OH  
Program/Erase Controller Status (Bit 7). ThePro-  
gram/Erase Controller Status bit indicates whether  
the Program/Erase Controller is active or inactive.  
When the Program/Erase Controller Status bit is  
applied the maximum number of pulses to the  
block and still failed to verify that the block has  
erased correctly or that all the blocks have been  
unprotected successfully.  
Low, V , the Program/Erase Controller is active  
OL  
If the failure is due to an erase or blocks  
and all other Status Register bits are High Imped-  
unprotect with V low, V , then V Status bit  
PP  
OL  
PP  
ance; when the bit is High, V , the Program/  
OH  
(bit 3) is also set High, V  
.
OH  
Erase Controller is inactive.  
If the failure is due to an erase on a protected  
The Program/Erase Controller Status is Low im-  
mediately after a Program/Erase Suspend com-  
mand is issued until the Program/Erase Controller  
pauses. After the Program/Erase Controller paus-  
es the bit is High.  
block then Block Protection Status bit (bit 1) is  
also set High, V  
.
OH  
If the failure is due to a program or erase  
incorrect command sequence then Program  
Status bit (bit 4) is also set High, V  
.
OH  
During Program, Erase, Block Protect and Blocks  
Unprotect operations the Program/Erase Control-  
ler Status bit can be polled to find the end of the  
operation. The other bits in the Status Register  
should not be tested until the Program/Erase Con-  
troller completes the operation and the bit is High.  
After the Program/Erase Controller completes its  
operation the Erase Status, Program Status and  
Block Protection Status bits should be tested for  
errors.  
Erase Suspend Status (Bit 6). The Erase Sus-  
pend Status bit indicates that an Erase operation  
has been suspended and is waiting to be re-  
sumed. The Erase Suspend Status should only be  
considered valid when the Program/Erase Con-  
troller Status bit is High (Program/Erase Controller  
Once set High, the Erase Status bit can only be re-  
set Low by a Clear Status Register command or a  
hardware reset. If set High it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
Program Status (Bit 4). The Program Status bit  
is used to identify a Program or Block Protect fail-  
ure. The Program Status bit should be read once  
the Program/Erase Controller Status bit is High  
(Program/Erase Controller inactive).  
When the Program Status bit is Low, V , the  
OL  
memory has successfully verified that the Write  
Buffer has programmed correctly or the block is  
protected. When the Program Status bit is High,  
V
, the program or block protect operation has  
OH  
26/61  
M58LW032A  
failed. Depending on the cause of the failure other  
Status Register bits may also be set to High, V  
Unprotection command is issued, otherwise the  
new command will appear to fail.  
.
OH  
If only the Program Status bit (bit 4) is set High,  
, then the Program/Erase Controller has  
Program Suspend Status (Bit 2). The Program  
Suspend Status bit indicates that a Program oper-  
ation has been suspended and is waiting to be re-  
sumed. The Program Suspend Status should only  
be considered valid when the Program/Erase  
Controller Status bit is High (Program/Erase Con-  
troller inactive); after a Program/Erase Suspend  
command is issued the memory may still complete  
the operation rather than entering the Suspend  
mode.  
V
OH  
applied the maximum number of pulses to the  
byte and still failed to verify that the Write Buffer  
has programmed correctly or that the Block is  
protected.  
If the failure is due to a program or block protect  
with V low, V , then V Status bit (bit 3) is  
PP  
OL  
PP  
also set High, V  
.
OH  
If the failure is due to a program on a protected  
When the Program Suspend Status bit is Low,  
block then Block Protection Status bit (bit 1) is  
V
, the Program/Erase Controller is active or has  
OL  
also set High, V  
.
OH  
completed its operation; when the bit is High, V  
,
OH  
If the failure is due to a program or erase  
a Program/Erase Suspend command has been is-  
sued and the memory is waiting for a Program/  
Erase Resume command.  
incorrect command sequence then Erase  
Status bit (bit 5) is also set High, V  
.
OH  
Once set High, the Program Status bit can only be  
reset Low by a Clear Status Register command or  
a hardware reset. If set High it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
When a Program/Erase Resume command is is-  
sued theProgram Suspend Status bit returns Low.  
Block Protection Status (Bit 1). The Block Pro-  
tection Status bit can be used to identify if a Pro-  
gram or Erase operation has tried to modify the  
contents of a protected block.  
V
Status (Bit 3). The V  
Status bit can be  
PP  
PP  
used to identify if a Word Program, Erase, Block  
When the Block Protection Status bit is Low, V  
,
OL  
Protection or Block Unprotection operation has  
no Program or Erase operations have been at-  
tempted to protected blocks since the last Clear  
Status Register command or hardware reset;  
been attempted when V  
is Low, V . The V  
IL PP  
PP  
Status bit cannot be used during a Write to Buffer  
and Program operation.  
when the Block Protection Status bit is High, V  
,
OH  
When theV Status bit is Low, V , no Word Pro-  
PP  
OL  
a Program (Program Status bit 4 set High) or  
Erase (Erase Status bit 5 set High) operation has  
been attempted on a protected block.  
Once set High, the Block Protection Status bit can  
only be reset Low by a Clear Status Register com-  
mand or a hardware reset. If set High it should be  
reset before a new Program or Erase command is  
issued, otherwise the new command will appear to  
fail.  
gram, Erase, Block Protection or Block Unprotec-  
tion operations have been attempted with V  
PP  
Low, V , since the last Clear Status Register com-  
IL  
mand, or hardware reset. When the V Status bit  
PP  
is High, V , a Word Program, Erase, Block Pro-  
OH  
tection or Block Unprotection operation has been  
attempted with V Low, V .  
PP  
IL  
Once setHigh, the V Status bit can only be reset  
PP  
by a Clear Status Register command or a hard-  
ware reset. If set High it should be reset before a  
new Program, Erase, Block Protection or Block  
Reserved (Bit 0). Bit 0 of the Status Register is  
reserved. Its value should be masked.  
27/61  
M58LW032A  
Table 10. Status Register Bits  
OPERATION  
Result  
(Hex)  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2 Bit 1  
RB  
V
V
V
V
V
V
V
V
Program/Erase Controller active  
Write Buffer not ready  
0
0
1
1
1
1
N/A  
N/A  
80h  
C0h  
84h  
C4h  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
V
OL  
V
OL  
V
V
OL  
V
OL  
V
OL  
OL  
Write Buffer ready  
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Write Buffer ready in Erase Suspend  
Program suspended  
Program suspended in Erase Suspend  
Program/Block Protect completed  
successfully  
1
1
1
1
1
0
1
0
1
0
0
0
1
1
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
80h  
C0h  
B0h  
F0h  
98h  
Program completed successfully in Erase  
Suspend  
Program/Block protect failure due to  
incorrect command sequence  
Program failure due to incorrect command  
sequence in Erase Suspend  
Word Program/Block Protect failure due to  
V
error  
PP  
Word Program failure due to V error in  
Erase Suspend  
PP  
1
1
1
1
0
1
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
Hi-Z  
Hi-Z  
Hi-Z  
D8h  
92h  
D2h  
Program failure due to Block Protection  
Program failure due to Block Protection in  
Erase Suspend  
Program/Block Protect failure due to cell  
failure  
1
0
0
1
0
0
0
Hi-Z  
90h  
Program failure due to cell failure in Erase  
Suspend  
1
1
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
Hi-Z  
Hi-Z  
Hi-Z  
D0h  
C0h  
80h  
Erase Suspended  
Erase/Blocks Unprotect completed  
successfully  
Erase/Blocks Unprotect failure due to  
incorrect command sequence  
1
0
1
1
0
0
0
Hi-Z  
B0h  
Erase/Blocks Unprotect failure due to V  
error  
PP  
1
1
1
0
0
0
1
1
1
0
0
0
1
0
0
0
0
0
0
1
0
Hi-Z  
Hi-Z  
Hi-Z  
A8h  
A2h  
A0h  
Erase failure due to Block Protection  
Erase/Blocks Unprotect failure due to  
failed cells in Block  
28/61  
M58LW032A  
MAXIMUM RATING  
Stressing the device above the ratings listed in Ta-  
ble 11, Absolute Maximum Ratings, may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 11. Absolute Maximum Ratings  
Value  
Symbol  
Parameter  
Temperature Under Bias  
Unit  
Min  
–40  
–55  
–0.6  
–0.6  
Max  
125  
150  
T
BIAS  
°C  
°C  
V
T
STG  
Storage Temperature  
Input or Output Voltage  
Supply Voltage  
V
V
+0.6  
DDQ  
IO  
V
, V  
DD DDQ  
5.0  
V
29/61  
M58LW032A  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, and the DC and AC charac-  
teristics of the device. The parameters in the DC  
and AC characteristics Tables that follow, are de-  
rived from tests performed under the Measure-  
ment Conditions summarized in Table 12,  
Operating and AC Measurement Conditions. De-  
signers should check that the operating conditions  
in their circuit match the measurement conditions  
when relying on the quoted parameters.  
Table 12. Operating and AC Measurement Conditions  
M58LW032A  
Units  
Parameter  
90  
110  
Min  
Max  
Min  
2.7  
1.8  
0
Max  
Supply Voltage (V  
)
2.7  
1.8  
0
3.6  
V
3.6  
V
V
DD  
Input/Output Supply Voltage (V  
)
V
DDQ  
DD  
DD  
Grade 1  
Grade 6  
70  
85  
70  
85  
°C  
°C  
pF  
ns  
ns  
V
Ambient Temperature (T )  
A
–40  
–40  
Load Capacitance (C )  
30  
30  
L
Clock Rise and Fall Times  
Input Rise and Fall Times  
Input Pulses Voltages  
3
4
3
4
0 to V  
0.5 V  
0 to V  
0.5 V  
DDQ  
DDQ  
Input and Output Timing Ref. Voltages  
V
DDQ  
DDQ  
Figure 9. AC Measurement Input Output  
Waveform  
Figure 10. AC Measurement Load Circuit  
1.3V  
1N914  
V
DDQ  
V
DD  
3.3kΩ  
V
DDQ  
0.5 V  
DDQ  
DEVICE  
UNDER  
TEST  
DQ  
S
0V  
C
L
AI00610  
0.1µF  
0.1µF  
C
includes JIG capacitance  
L
AI03459  
Table 13. Capacitance  
Symbol  
Parameter  
Test Condition  
Typ  
6
Max  
8
Unit  
pF  
pF  
C
V
= 0V  
= 0V  
Input Capacitance  
IN  
IN  
C
V
OUT  
Output Capacitance  
8
12  
OUT  
Note: 1. T = 25°C, f = 1 MHz  
A
2. Sampled only, not 100% tested.  
30/61  
M58LW032A  
Table 14. DC Characteristics  
Symbol  
Parameter  
Test Condition  
Min  
Max  
±1  
±5  
20  
Unit  
µA  
I
0VV V  
Input Leakage Current  
LI  
IN  
DDQ  
I
I
Output Leakage Current  
0VV  
V  
DDQ  
µA  
LO  
OUT  
E = V , G = V , f  
= 6MHz  
Supply Current (Random Read)  
Supply Current (Burst Read)  
Supply Current (Standby)  
mA  
mA  
µA  
DD  
IL  
IH add  
I
E = V , G = V , f = 50MHz  
IH clock  
30  
DDB  
IL  
I
E = V , RP = V  
40  
DD1  
DD5  
DD2  
IH  
IH  
IH  
I
I
E = V , RP = V  
Supply Current (Auto Low-Power)  
Supply Current (Reset/Power-Down)  
40  
µA  
IL  
RP = V  
40  
µA  
IL  
Supply Current (Program or Erase,  
Block Protect, Block Unprotect)  
Program or Erase operation in  
progress  
I
I
30  
mA  
DD3  
DD4  
Supply Current  
(Erase/Program Suspend)  
E = V  
40  
µA  
IH  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.5  
2
0.8  
V
V
V
V
IL  
V
V
V
+ 0.5  
DDQ  
IH  
I
= 100µA  
OL  
0.2  
2
OL  
V
OH  
I
= –100µA  
V
–0.2  
DDQ  
OH  
V
Supply Voltage (Erase and  
DD  
V
V
LKO  
Program lockout)  
31/61  
M58LW032A  
Figure 11. Asynchronous Bus Read AC Waveforms  
tAVAV  
A1-A21  
VALID  
tELQV  
tELQX  
tAXQX  
E
L
tGLQV  
tGLQX  
tEHQZ  
tEHQX  
G
tAVQV  
tGHQZ  
tGHQX  
DQ0-DQ15  
OUTPUT  
AI05502  
Note: Asynchronous Read M15 = 1  
Table 15. Asynchronous Bus Read AC Characteristics.  
M58LW032A  
90 110  
Symbol  
Parameter  
Test Condition  
Unit  
t
E = V , G = V  
IL  
Address Valid to Address Valid  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Min  
Min  
Max  
Max  
90  
90  
0
110  
110  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
IL  
IL  
t
E = V , G = V  
Address Valid to Output Valid  
AVQV  
IL  
t
G = V  
Chip Enable Low to Output Transition  
Chip Enable Low to Output Valid  
Output Enable Low to Output Transition  
Output Enable Low to Output Valid  
Chip Enable High to Output Transition  
Output Enable High to Output Transition  
Address Transition to Output Transition  
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
ELQX  
IL  
t
G = V  
90  
0
110  
0
ELQV  
IL  
t
t
t
t
E = V  
E = V  
GLQX  
GLQV  
EHQX  
IL  
IL  
25  
0
25  
0
G = V  
E = V  
IL  
0
0
GHQX  
IL  
t
E = V , G = V  
0
0
AXQX  
EHQZ  
IL  
IL  
t
t
G = V  
25  
20  
25  
20  
IL  
E = V  
GHQZ  
IL  
32/61  
M58LW032A  
Figure 12. Asynchronous Latch Controlled Bus Read AC Waveforms  
A1-A21  
VALID  
tAVLH  
tLHAX  
tAVLL  
L
tLHLL  
tLLLH  
tEHLX  
tELLH  
tELLL  
E
tGLQV  
tGLQX  
tEHQZ  
tEHQX  
G
tLLQX  
tLLQV  
tGHQZ  
tGHQX  
DQ0-DQ15  
OUTPUT  
AI05503  
Note: Asynchronous Read M15 = 1  
Table 16. Asynchronous Latch Controlled Bus Read AC Characteristics  
M58LW032A  
Symbol  
Parameter  
Test Condition  
E = V  
Unit  
90  
0
110  
0
t
t
Address Valid to Latch Enable Low  
Address Valid to Latch Enable High  
Latch Enable High to Latch Enable Low  
Latch Enable Low to Latch Enable High  
Chip Enable Low to Latch Enable Low  
Chip Enable Low to Latch Enable High  
Latch Enable Low to Output Transition  
Latch Enable Low to Output Valid  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVLL  
IL  
E = V  
10  
10  
10  
0
10  
10  
10  
0
AVLH  
IL  
t
LHLL  
LLLH  
t
E = V  
IL  
t
ELLL  
t
t
10  
0
10  
0
ELLH  
E = V , G = V  
LLQX  
IL  
IL  
IL  
t
E = V , G = V  
90  
6
110  
6
LLQV  
LHAX  
IL  
t
E = V  
Latch Enable High to Address Transition  
Output Enable Low to Output Transition  
Output Enable Low to Output Valid  
Chip Enable High to Latch Enable Transition  
IL  
t
t
E = V  
0
0
GLQX  
GLQV  
IL  
E = V  
25  
0
25  
0
IL  
t
EHLX  
Note: For other timings see Table 15, Asynchronous Bus Read Characteristics.  
33/61  
M58LW032A  
Figure 13. Asynchronous Page Read AC Waveforms  
A1-A2  
VALID  
VALID  
A3-A21  
VALID  
tAVQV  
tELQV  
tELQX  
tAXQX  
E
L
tAVQV1  
tAXQX1  
tEHQZ  
tEHQX  
tGLQV  
tGLQX  
G
tGHQZ  
tGHQX  
DQ0-DQ15  
OUTPUT  
OUTPUT  
AI05504  
Note: Asynchronous Read M15 = 1  
Table 17. Asynchronous Page Read AC Characteristics  
M58LW032A  
90 110  
Symbol  
Parameter  
Test Condition  
Unit  
t
E = V , G = V  
IL  
Address Transition to Output Transition  
Address Valid to Output Valid  
Min  
6
6
ns  
ns  
AXQX1  
IL  
t
E = V , G = V  
IL IL  
Max  
25  
25  
AVQV1  
Note: For other timings see Table 15, Asynchronous Bus Read Characteristics.  
34/61  
M58LW032A  
Figure 14. Asynchronous Write AC Waveform, Write Enable Controlled  
A1-A21  
VALID  
tAVWH  
tWHAX  
E
L
tELWL  
tGHWL  
tWHEH  
G
tWHGL  
tWLWH  
tWHWL  
W
tDVWH  
INPUT  
DQ0-DQ15  
tWHDX  
RB  
tVPHWH  
tWHBL  
V
PP  
AI05505  
Figure 15. Asynchronous Latch Controlled Write AC Waveform, Write Enable Controlled  
A1-A21  
VALID  
tAVLH  
tLHAX  
L
tELLL  
tLLLH  
tWLLH  
tLHGL  
tLHWH  
E
tELWL  
tGHWL  
tWHEH  
G
tWHGL  
tWLWH  
tDVWH  
tWHWL  
W
DQ0-DQ15  
INPUT  
tWHDX  
tWHBL  
RB  
tVPHWH  
V
PP  
AI05506  
35/61  
M58LW032A  
Table 18. Asynchronous Write and Latch Controlled Write AC Characteristics, Write Enable  
Controlled.  
M58LW032A  
Symbol  
Parameter  
Test Condition  
Unit  
90  
10  
50  
50  
0
110  
10  
50  
50  
0
t
Address Valid to Latch Enable High  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVLH  
t
E = V  
E = V  
Address Valid to Write Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
AVWH  
IL  
IL  
t
Data Input Valid to Write Enable High  
Chip Enable Low to Write Enable Low  
Chip Enable Low to Latch Enable Low  
Latch Enable High to Address Transition  
Latch Enable High to Output Enable Low  
Latch Enable High to Write Enable High  
Latch Enable low to Latch Enable High  
Latch Enable Low to Write Enable High  
Program/Erase Enable High to Write Enable High  
Write Enable High to Address Transition  
Write Enable High to Ready/Busy low  
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Output Enable High to Write Enable Low  
Write Enable High to Output Enable Low  
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
Write Enable Low to Latch Enable High  
DVWH  
t
ELWL  
t
0
0
ELLL  
LHAX  
LHGL  
t
t
6
6
95  
0
95  
0
t
LHWH  
t
10  
50  
0
10  
50  
0
LLLH  
t
LLWH  
t
VPHWH  
t
E = V  
E = V  
10  
500  
10  
0
10  
500  
10  
0
WHAX  
IL  
IL  
t
WHBL  
t
WHDX  
t
t
t
t
WHEH  
GHWL  
WHGL  
20  
35  
30  
70  
10  
20  
35  
30  
70  
10  
WHWL  
t
E = V  
E = V  
WLWH  
IL  
IL  
t
WLLH  
36/61  
M58LW032A  
Figure 16. Asynchronous Write AC Waveforms, Chip Enable Controlled  
A1-A21  
VALID  
tAVEH  
tEHAX  
W
G
tWLEL  
tEHWH  
tGHEL  
tELEH  
tEHEL  
tEHGL  
E
L
tDVEH  
INPUT  
DQ0-DQ15  
RB  
tEHDX  
tEHBL  
tVPHEH  
V
PP  
AI05507  
Figure 17. Asynchronous Latch Controlled Write AC Waveforms, Chip Enable Controlled  
A1-A21  
VALID  
tAVLH  
tAVEH  
tLHAX  
tEHAX  
L
tLLLH  
tELLH  
tWLLL  
tLHEH  
tLHGL  
W
G
tWLEL  
tGHEL  
tEHWH  
tELEH  
tEHEL  
tEHGL  
E
tDVEH  
INPUT  
DQ0-DQ15  
tEHDX  
RB  
tVPHEH  
tEHBL  
V
PP  
AI05508  
37/61  
M58LW032A  
Table 19. Asynchronous Write and Latch Controlled Write AC Characteristics, Chip Enable  
Controlled  
M58LW032A  
Symbol  
Parameter  
Test Condition  
Min  
Unit  
90  
10  
50  
50  
0
110  
10  
50  
50  
0
t
Address Valid to Latch Enable High  
Address Valid to Chip Enable High  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVLH  
t
W = V  
W = V  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
AVEH  
IL  
IL  
t
Data Input Valid to Chip Enable High  
Write Enable Low to Chip Enable Low  
Write Enable Low to Latch Enable Low  
Latch Enable High to Address Transition  
Latch Enable High to Output Enable Low  
Latch Enable High to Chip Enable High  
Latch Enable low to Latch Enable High  
Latch Enable Low to Chip Enable High  
Program/Erase Enable High to Chip Enable High  
Chip Enable High to Address Transition  
Chip Enable High to Ready/Busy low  
Chip Enable High to Input Transition  
Chip Enable High to Write Enable High  
Output Enable High to Chip Enable Low  
Chip Enable High to Output Enable Low  
Chip Enable High to Chip Enable Low  
Chip Enable Low to Chip Enable High  
Chip Enable Low to Latch Enable High  
DVEH  
t
WLEL  
t
t
t
t
0
0
WLLL  
LHAX  
LHGL  
6
6
35  
0
35  
0
LHEH  
t
10  
50  
0
10  
50  
0
LLLH  
t
LLEH  
t
VPHEH  
t
W = V  
W = V  
10  
500  
10  
0
10  
500  
10  
0
EHAX  
IL  
IL  
t
EHBL  
t
EHDX  
t
EHWH  
t
20  
35  
30  
70  
10  
20  
35  
30  
70  
10  
GHEL  
t
EHGL  
t
EHEL  
ELEH  
t
W = V  
W = V  
IL  
IL  
t
ELLH  
38/61  
M58LW032A  
Figure 18. Synchronous Burst Read AC Waveform  
Note: Valid Clock Edge = Rising (M6 = 1)  
39/61  
M58LW032A  
Figure 19. Synchronous Burst Read - Continuous - Valid Data Ready Output  
K
(2)  
Output  
R
V
V
V
NV  
NV  
V
V
tRLKH  
(3)  
AI05510  
Note: 1. Valid Data Ready = Valid Low during valid clock edge (M8 = 0)  
2. V= Valid output, NV= Not Valid output.  
3. R is an open drain output with an internal pull up resistor of 1MΩ. Depending on the Valid Data Ready pin capacitance load an  
external pull up resistor must be chosen according to the system clock period.  
Table 20. Synchronous Burst Read AC Characteristics  
M58LW032A  
Unit  
Symbol  
Parameter  
Test Condition  
90  
7
110  
7
t
E = V  
Address Valid to Active Clock Edge  
Address Valid to Latch Enable High  
Chip Enable Low to Active Clock Edge  
Chip Enable Low to Latch Enable High  
Output Enable Low to Valid Clock Edge  
Valid Clock Edge to Address Transition  
Valid Clock Edge to Latch Enable Low  
Valid Clock Edge to Latch Enable High  
Valid Clock Edge to Output Transition  
Latch Enable Low to Valid Clock Edge  
Latch Enable Low to Latch Enable High  
Valid Clock Edge to Output Valid  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVKH  
IL  
t
E = V  
10  
10  
10  
20  
5
10  
10  
10  
20  
5
AVLH  
IL  
t
E = V  
ELKH  
IL  
t
E = V  
ELLH  
IL  
t
E = V , L = V  
GLKH  
IL  
IH  
t
E = V  
E = V  
E = V  
KHAX  
IL  
IL  
IL  
t
0
0
KHLL  
t
0
0
KHLH  
t
E = V , G = V , L = V  
3
3
KHQX  
IL  
IL  
IL  
IL  
IH  
t
E = V  
E = V  
6
6
LLKH  
t
6
6
LLLH  
t
E = V , G = V , L = V  
IL IL  
10  
5
10  
5
KHQV  
IH  
IH  
IH  
t
E = V , G = V , L = V  
IL IL  
Output Valid to Active Clock Edge  
QVKH  
t
E = V , G = V , L = V  
IL IL  
Valid Data Ready Low to Valid Clock Edge  
5
5
RLKH  
Note: For other timings see Table 15, Asynchronous Bus Read Characteristics.  
40/61  
M58LW032A  
Figure 20. Reset, Power-Down and Power-up AC Waveform  
W
E, G  
DQ0-DQ15  
tPHQV  
RB  
RP  
tPLRH  
tVDHPH  
tPLPH  
VDD, VDDQ  
Power-Up  
and Reset  
Reset during  
Program or Erase  
AI05521  
Table 21. Reset, Power-Down and Power-up AC Characteristics  
M58LW032A  
110  
Symbol  
Parameter  
Unit  
90  
150  
100  
30  
t
Reset/Power-Down High to Data Valid  
Max  
Min  
Max  
Min  
150  
100  
30  
ns  
ns  
µs  
µs  
PHQV  
t
Reset/Power-Down Low to Reset/Power-Down High  
Reset/Power-Down Low to Ready High  
PLPH  
t
PLRH  
t
Supply Voltages High to Reset/Power-Down High  
0
0
VDHPH  
41/61  
M58LW032A  
PACKAGE MECHANICAL  
Figure 21. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
A1  
α
L
Note: Drawing is not to scale.  
Table 22. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Mechanical Data  
mm  
inches  
Symbol  
Typ  
Min  
Max  
1.20  
0.15  
1.05  
0.27  
0.21  
20.20  
18.50  
14.10  
Typ  
Min  
Max  
0.0472  
0.0059  
0.0413  
0.0106  
0.0083  
0.7953  
0.7283  
0.5551  
A
A1  
A2  
B
0.05  
0.95  
0.17  
0.10  
19.80  
18.30  
13.90  
0.0020  
0.0374  
0.0067  
0.0039  
0.7795  
0.7205  
0.5472  
C
D
D1  
E
e
0.50  
0.0197  
L
0.50  
0°  
0.70  
5°  
0.0197  
0°  
0.0276  
5°  
α
N
56  
56  
CP  
0.10  
0.0039  
42/61  
M58LW032A  
Figure 22. TBGA64 10x13mm - 8x8 ball array 1mm pitch, Package Outline  
D
D1  
FD  
FE  
SD  
SE  
E
E1  
ddd  
BALL ”A1”  
A
e
b
A2  
A1  
BGA-Z23  
Note: Drawing is not to scale.  
Table 23. TBGA64 10x13mm - 8x8 ball array, 1mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
1.200  
0.350  
0.850  
0.500  
10.100  
Typ  
Max  
A
A1  
A2  
b
0.0472  
0.300  
0.200  
0.0118  
0.0079  
0.0138  
0.0335  
0.400  
9.900  
0.0157  
0.3898  
0.0197  
D
10.000  
7.000  
0.3937  
0.2756  
0.3976  
D1  
ddd  
e
0.100  
0.0039  
1.000  
13.000  
7.000  
1.500  
3.000  
0.500  
0.500  
0.0394  
0.5118  
0.2756  
0.0591  
0.1181  
0.0197  
0.0197  
E
12.900  
13.100  
0.5079  
0.5157  
E1  
FD  
FE  
SD  
SE  
43/61  
M58LW032A  
PART NUMBERING  
Table 24. Ordering Information Scheme  
Example:  
M58LW032A  
90  
N
1
T
Device Type  
M58  
Architecture  
L = Multi-Bit Cell Compatible Technology, Burst Mode,  
Page Mode  
Operating Voltage  
W = V = 2.7V to 3.6V; V  
= 1.8 to V  
DD  
DD  
DDQ  
Device Function  
032A = 32 Mbit (x16), Uniform Block  
Speed  
90 = 90ns  
11 = 110ns  
Package  
N = TSOP56: 14 x 20 mm  
ZA = TBGA64: 10 x 13 mm, 1mm pitch  
Temperature Range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Option  
T = Tape & Reel Packing  
Note: Devices are shipped from the factory with the memory content bits erased to ’1’.  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the ST Sales Office nearest to you.  
44/61  
M58LW032A  
REVISION HISTORY  
Table 25. Document Revision History  
Date  
Version  
-01  
Revision Details  
February 2001  
17-Sep-2001  
First Issue (Data Brief)  
-02  
Expanded to full Product Preview.  
Changes on Table 18, Asynchronous Write and Latch Controlled Write AC  
Characteristics, Write Enable Controlled  
Changes on Table 20, Synchronous Burst Read AC Characteristics  
27-Sep-2001  
1-Feb-2002  
-03  
-04  
Status Register section and Table clarified, Burst Configuration Register Table  
clarified, Block Protect, Block Unprotect and Protection Register Program flowcharts  
added, Reset, Power-Down and Power-up AC Characteristics Table modified.  
Document Status changed to Preliminary Data. Table 18, tWHGL timing modified,  
Table 19, tLHGL and tEHGL timings modified. I  
modified in DC Characteristics  
DD5  
12-Mar-2002  
-05  
table, T  
removed from Absolute Maximum Ratings table. TFBGA64 Not  
LEAD  
Connected pins changed to Do Not Use.  
Reference to Temporary Unprotect removed from Word Program Command section,  
TFBGA package dimensions added to description. Block Protect and Block  
Unprotect Flowcharts clarified, Protection Register Program description and  
07-May-2002  
04-Jul-2002  
-06  
-07  
Flowchart clarified, Status Register V Status bit description clarified. Document  
PP  
Status changed to Datasheet.  
110ns speed class added.  
45/61  
M58LW032A  
APPENDIX A. BLOCK ADDRESS TABLE  
Table 26. Block Addresses  
Address Range  
(x16 Bus Width)  
Block Number  
Address Range  
Block Number  
(x16 Bus Width)  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
0F8000h-0FFFFFh  
0F0000h-0F7FFFh  
0E8000h-0EFFFFh  
0E0000h-0E7FFFh  
0D8000h-0DFFFFh  
0D0000h-0D7FFFh  
0C8000h-0CFFFFh  
0C0000h-0C7FFFh  
0B8000h-0BFFFFh  
0B0000h-0B7FFFh  
0A8000h-0AFFFFh  
0A0000h-0A7FFFh  
098000h-09FFFFh  
090000h-097FFFh  
088000h-08FFFFh  
080000h-087FFFh  
078000h-07FFFFh  
070000h-077FFFh  
068000h-06FFFFh  
060000h-067FFFh  
058000h-05FFFFh  
050000h-057FFFh  
048000h-04FFFFh  
040000h-047FFFh  
038000h-03FFFFh  
030000h-037FFFh  
028000h-02FFFFh  
020000h-027FFFh  
018000h-01FFFFh  
010000h-017FFFh  
008000h-00FFFFh  
000000h-007FFFh  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1F8000h-1FFFFFh  
1F0000h-1F7FFFh  
1E8000h-1EFFFFh  
1E0000h-1E7FFFh  
1D8000h-1DFFFFh  
1D0000h-1D7FFFh  
1C8000h-1CFFFFh  
1C0000h-1C7FFFh  
1B8000h-1BFFFFh  
1B0000h-1B7FFFh  
1A8000h-1AFFFFh  
1A0000h-1A7FFFh  
198000h-19FFFFh  
190000h-197FFFh  
188000h-18FFFFh  
180000h-187FFFh  
178000h-17FFFFh  
170000h-177FFFh  
168000h-16FFFFh  
160000h-167FFFh  
158000h-15FFFFh  
150000h-157FFFh  
148000h-14FFFFh  
140000h-147FFFh  
138000h-13FFFFh  
130000h-137FFFh  
128000h-12FFFFh  
120000h-127FFFh  
118000h-11FFFFh  
110000h-117FFFh  
108000h-10FFFFh  
100000h-107FFFh  
8
7
6
5
4
3
2
1
46/61  
M58LW032A  
APPENDIX B. COMMON FLASH INTERFACE - CFI  
The Common Flash Interface is a JEDEC ap-  
proved, standardized data structure that can be  
read from the Flash memory device. It allows a  
system software to query the device to determine  
various electrical and timing parameters, density  
information and functions supported by the mem-  
ory. The system can interface easily with the de-  
vice, enabling the software to upgrade itself when  
necessary.  
When the CFI Query Command (RCFI) is issued  
the device enters CFI Query mode and the data  
structure is read from the memory. Tables 27, 28,  
29, 30, 31 and 32 show the addresses used to re-  
trieve the data.  
Table 27. Query Structure Overview  
Offset  
00h  
Sub-section Name  
Description  
Manufacturer Code  
01h  
Device Code  
10h  
CFI Query Identification String  
Command set ID and algorithm data offset  
Device timing and voltage information  
Flash memory layout  
1Bh  
27h  
System Interface Information  
Device Geometry Definition  
Additional information specific to the Primary  
Algorithm (optional)  
(1)  
Primary Algorithm-specific Extended Query Table  
P(h)  
Additional information specific to the Alternate  
Algorithm (optional)  
(2)  
Alternate Algorithm-specific Extended Query Table  
A(h)  
(SBA+02)h Block Status Register  
Block-related Information  
Note: 1. Offset 15h defines P which points to the Primary Algorithm Extended Query Address Table.  
2. Offset 19h defines A which points to the Alternate Algorithm Extended Query Address Table.  
3. SBA is the Start Base Address for each block.  
Table 28. CFI - Query Address and Data Output  
Data  
Instruction  
Address A21-A1  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
51h  
52h  
59h  
”Q”  
”R”  
”Y”  
51h; ”Q”  
52h; ”R”  
59h; ”Y”  
Query ASCII String  
Primary Vendor:  
01h  
00h  
31h  
00h  
00h  
00h  
00h  
Command Set and Control Interface ID Code  
Primary algorithm extended Query Address Table: P(h)  
Alternate Vendor:  
Command Set and Control Interface ID Code  
Alternate Algorithm Extended Query address Table  
(2)  
00h  
1Ah  
Note: 1. Query Data are always presented on DQ7-DQ0. DQ15-DQ8 are set to ’0’.  
2. Offset 19h defines A which points to the Alternate Algorithm Extended Query Address Table.  
47/61  
M58LW032A  
Table 29. CFI - Device Voltage and Timing Specification  
Data  
Description  
Address A21-A1  
(1)  
V
V
V
V
Min, 2.7V  
1Bh  
DD  
DD  
PP  
PP  
27h  
36h  
00h  
00h  
(1)  
(2)  
(2)  
max, 3.6V  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
min – Not Available  
max – Not Available  
n
04h  
2 µs typical time-out for Word, DWord prog – Not Available  
n
08h  
0Ah  
2 µs, typical time-out for max buffer write  
n
2 ms, typical time-out for Erase Block  
(3)  
n
00h  
2 ms, typical time-out for chip erase – Not Available  
n
04h  
04h  
2 x typical for Word Dword time-out max – Not Available  
n
2 x typical for buffer write time-out max  
n
04h  
2 x typical for individual block erase time-out maximum  
(3)  
n
00h  
2 x typical for chip erase max time-out – Not Available  
Note: 1. Bits are coded in Binary Code Decimal, bit7 to bit4 are scaled in Volts and bit3 to bit0 in mV.  
2. Bit7 to bit4 are coded in Hexadecimal and scaled in Volts while bit3 to bit0 are in Binary Code Decimal and scaled in 100mV.  
3. Not supported.  
Table 30. Device Geometry Definition  
Data  
Description  
Address A21-A1  
n
27h  
16h  
n where 2 is number of bytes memory Size  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
01h  
00h  
05h  
00h  
01h  
3Fh  
00h  
00h  
01h  
Device Interface  
Organization Sync./Async.  
n
Maximum number of bytes in Write Buffer, 2  
Bit7-0 = number of Erase Block Regions in device  
Number (n-1) of Erase Blocks of identical size; n=64  
Erase Block Region Information  
x 256 bytes per Erase block (128K bytes)  
48/61  
M58LW032A  
Table 31. Block Status Register  
Address A21-A1  
Data  
Selected Block Information  
Block Unlocked  
Block Locked  
0
1
0
bit0  
(2)  
(1)  
Last erase operation ended successfully  
(BA+2)h  
bit1  
(2)  
1
0
Last erase operation not ended successfully  
Reserved for future features  
bit7-2  
Note: 1. BA specifies the block address location, A21-A17.  
2. Not Supported.  
49/61  
M58LW032A  
Table 32. Extended Query information  
Address  
offset  
Address  
A21-A2  
Data (Hex)  
x16 Bus Width  
Description  
(P)h  
31h  
32h  
33h  
34h  
35h  
50h  
”P”  
”R”  
”Y”  
(P+1)h  
(P+2)h  
(P+3)h  
(P+4)h  
52h  
49h  
Query ASCII string - Extended Table  
31h  
31h  
Major version number  
Minor version number  
Optional Feature: (1=yes, 0=no)  
bit0, Chip Erase Supported (0=no)  
bit1, Suspend Erase Supported (1=yes)  
bit2, Suspend Program Supported (1=yes)  
bit3, Lock/Unlock Supported (1=yes)  
bit4, Queue Erase Supported (0=no)  
bit5, Instant Individual Block locking  
bit6, Protection bits supported  
(P+5)h  
36h  
CEh  
bit7, Page Read supported  
bit8, Synchronous Read supported  
Bit 31-9 reserved for future use  
(P+6)h  
(P+7)h  
(P+8)h  
37h  
38h  
39h  
01h  
00h  
00h  
Synchronous Read supported  
Optional Features  
Function allowed after Suspend:  
(P+9)h  
3Ah  
01h  
Program allowed after Erase Suspend (1=yes)  
Bit 7-1 reserved for future use  
(2)  
(P+A)h  
(P+B)h  
(P+C)h  
(P+D)h  
(P+E)h  
(P+F)h  
(P+10)h  
(P+11)h  
3Bh  
3Ch  
3Dh  
3Eh  
3Fh  
40h  
41h  
42h  
Block Status Register Mask  
Lock bit, no lock down  
01h  
00h  
33h  
00h  
01h  
80h  
00h  
03h  
V
V
OPTIMUM Program/Erase voltage conditions  
OPTIMUM Program/Erase voltage conditions  
DD  
PP  
OTP protection: No. of protection register fields  
Lock bit’s physical low address  
Lock bit’s physical high address  
n
n where 2 is number of factory reprogrammed bytes  
n
(P+12)h  
43h  
03h  
n where 2 is number user programmable bytes  
n
(P+13)h  
(P+14)h  
(P+15)h  
(P+16)h  
(P+17)h  
44h  
45h  
46h  
47h  
48h  
04h  
03h  
01h  
02h  
07h  
Page Read: 2 Bytes (n = bits 0-7)  
Synchronous mode configuration fields  
Burst Length = 4  
Burst length = 8  
Burst Continuous  
Note: 1. Bit7 to bit4 are coded in Hexadecimal and scaled in Volt while bit3 to bit0 are in Binary Code Decimal and scaled in mV.  
2. Not supported.  
50/61  
M58LW032A  
APPENDIX C. FLOW CHARTS  
Figure 23. Write to Buffer and Program Flowchart and Pseudo Code  
Start  
Write to Buffer E8h  
Command, Block Address  
Read Status  
Register  
NO  
NO  
YES  
Write to Buffer  
Timeout  
b7 = 1  
YES  
(1)  
Note 1: N+1 is number of Words  
to be programmed  
Write N  
,
Block Address  
Try Again Later  
Write Buffer Data,  
Start Address  
X = 0  
YES  
X = N  
NO  
Write Next Buffer Data,  
NextProgram Address  
Note 2: Next Program Address must  
have same A5-A21.  
(2)  
X = X + 1  
Program Buffer to Flash  
Confirm D0h  
Read Status  
Register  
NO  
b7 = 1  
YES  
Note 3: A full Status Register Check must be  
done to check the program operation’s  
success.  
Full Status  
Register Check  
(3)  
End  
AI05511  
51/61  
M58LW032A  
Figure 24. Program Suspend & Resume Flowchart and Pseudo Code  
Start  
Write B0h  
Program/Erase Suspend Command:  
– write B0h  
– write 70h  
Write 70h  
do:  
Read Status  
Register  
– read status register  
NO  
NO  
b7 = 1  
YES  
while b7 = 1  
If b2 = 0, Program completed  
b2 = 1  
YES  
Program Complete  
Read Memory Array instruction:  
– write FFh  
Write FFh  
– one or more data reads  
from other blocks  
Read data from  
another block  
Program Erase Resume Command:  
– write D0h  
to resume erasure  
– if the program operation completed  
then this is not necessary. The device  
returns to Read Array as normal  
(as if the Program/Erase Suspend  
command was not issued).  
Write D0h  
Write FFh  
Read Data  
Program Continues  
AI00612  
52/61  
M58LW032A  
Figure 25. Erase Flowchart and Pseudo Code  
Start  
Erase command:  
– write 20h  
Write 20h  
– write D0h to Block Address  
(A12-A17)  
(memory enters read Status  
Register after the Erase command)  
Write D0h to  
Block Address  
NO  
do:  
Read Status  
– read status register  
– if Program/Erase Suspend command  
given execute suspend erase loop  
Register  
Suspend  
YES  
NO  
Suspend  
Loop  
b7 = 1  
while b7 = 1  
YES  
NO  
NO  
NO  
NO  
V
Invalid  
If b3 = 1, V  
invalid error:  
PP  
Error (1)  
PP  
– error handler  
b3 = 0  
YES  
Command  
Sequence Error  
If b4, b5 = 1, Command Sequence error:  
– error handler  
b4, b5 = 0  
YES  
Erase  
Error (1)  
If b5 = 1, Erase error:  
– error handler  
b5 = 0  
YES  
Erase to Protected  
Block Error  
If b1 = 1, Erase to Protected Block Error:  
– error handler  
b1 = 0  
YES  
End  
AI00613B  
Note: 1. If an error is found, the Status Register must be cleared (Clear Status Register Command) before further Program or Erase oper-  
ations.  
53/61  
M58LW032A  
Figure 26. Erase Suspend & Resume Flowchart and Pseudo Code  
Start  
Write B0h  
Program/Erase Suspend Command:  
– write B0h  
– write 70h  
Write 70h  
do:  
Read Status  
Register  
– read status register  
NO  
NO  
b7 = 1  
YES  
while b7 = 1  
If b6 = 0, Erase completed  
b6 = 1  
YES  
Erase Complete  
Read Memory Array command:  
– write FFh  
Write FFh  
– one or more data reads  
from other blocks  
Read data from  
another block  
or Program  
Program/Erase Resume command:  
– write D0h to resume the Erase  
operation  
Write D0h  
Write FFh  
– if the Program operation completed  
then this is not necessary. The device  
returns to Read mode as normal  
(as if the Program/Erase suspend  
was not issued).  
Read Data  
Erase Continues  
AI00615  
54/61  
M58LW032A  
Figure 27. Block Protect Flowchart and Pseudo Code  
Start  
Write 60h  
Block Address  
Block Protect Command  
– write 60h, Block Adress  
– write 01h, Block Adress  
Write 01h  
Block Address  
do:  
Read Status Register  
(toggle G or E )  
– read status register ( toggle G or E,  
do not use the Read Status Register command)  
NO  
b7 = 1  
while b7 = 1  
YES  
YES  
Invalid Voltage  
b3 = 1  
If b3 = 1, Invalid Voltage Error  
Error  
NO  
YES  
Invalid Command  
b4, b5 = 1,1  
If b4 = 1, b5 = 1 Invalid Command Sequence  
Error  
Sequence Error  
NO  
YES  
Block Protect  
If b4 = 1, Block Protect Error  
b4 = 1  
Error  
NO  
Block Protect  
Sucessful  
Read Memory Array Command:  
– write FFh  
Write FFh  
End  
AI06157b  
55/61  
M58LW032A  
Figure 28. Block Unprotect Flowchart and Pseudo Code  
Start  
Write 60h  
Block Unprotect Command  
– write 60h, Block Adress  
– write D0h, Block Adress  
Write D0h  
do:  
Read Status Register  
(toggle G or E )  
– read status register ( toggle G or E,  
do not use the Read Status Register command)  
NO  
b7 = 1  
while b7 = 1  
YES  
YES  
Invalid Voltage  
b3 = 1  
If b3 = 1, Invalid Voltage Error  
Error  
NO  
YES  
Invalid Command  
b4, b5 = 1,1  
If b4 = 1, b5 = 1 Invalid Command  
Sequence Error  
Sequence Error  
NO  
YES  
Block Unprotect  
If b5 = 1, Block Unprotect Error  
b5 = 1  
Error  
NO  
Block Unprotect  
Sucessful  
Read Memory Array Command:  
– write FFh  
Write FFh  
End  
AI06158b  
56/61  
M58LW032A  
Figure 29. Protection Register Program Flowchart and Pseudo Code  
Start  
Read Memory Array Command  
– write FFh  
Write FFh  
Write C0h  
Protection Register Program Command  
– write C0h  
– write Protection Register Address,  
Protection Register Data  
Write  
PR Address, PR Data  
do:  
Read Status Register  
(toggle G or E )  
– read status register (toggle G or E,  
do not use the Read Status Register command)  
NO  
b7 = 1  
YES  
while b7 = 1  
YES  
YES  
If b3 = 1, b4 = 1 Invalid Voltage Error  
Invalid Voltage  
Error  
b3, b4 = 1,1  
NO  
Protection Register  
Program Error  
If b1 = 0, b4 = 1 Protection Register  
Program Error  
b1, b4 = 0,1  
NO  
YES  
Block Unprotect  
Error  
If b1 = 1, b4 = 1 Program Error due to  
Protection Register Protection  
b1, b4 = 1,1  
NO  
PR Program  
Sucessful  
Read Memory Array Command:  
– write FFh  
Write FFh  
End  
AI06159b  
Note: PR = Protection Register  
57/61  
M58LW032A  
Figure 30. Command Interface and Program Erase Controller Flowchart (a)  
WAIT FOR  
COMMAND  
WRITE  
NO  
90h  
YES  
READ  
SIGNATURE  
NO  
98h  
YES  
CFI  
QUERY  
NO  
70h  
YES  
READ  
ARRAY  
READ  
STATUS  
NO  
50h  
YES  
CLEAR  
STATUS  
NO  
E8h  
YES  
PROGRAM  
BUFFER  
LOAD  
NO  
(1)  
20h  
YES  
ERASE  
NO  
FFh  
YES  
SET-UP  
NO  
D0h  
NO  
YES  
C
PROGRAM  
COMMAND  
ERROR  
D0h  
YES  
ERASE  
COMMAND  
ERROR  
A
B
AI03618  
Note 1. The Erase command (20h) can only be issued if the flash is not already in Erase Suspend.  
58/61  
M58LW032A  
Figure 31. Command Interface and Program Erase Controller Flowchart (b)  
A
B
ERASE  
(READ STATUS)  
Program/Erase Controller  
Status bit in the Status  
Register  
YES  
READ  
STATUS  
READY  
?
NO  
READ  
ARRAY  
NO  
B0h  
YES  
YES  
READ  
STATUS  
NO  
FFh  
ERASE  
SUSPEND  
NO  
YES  
ERASE  
SUSPENDED  
READY  
?
NO  
READ  
STATUS  
YES  
WAIT FOR  
COMMAND  
WRITE  
YES  
YES  
YES  
YES  
READ  
STATUS  
70h  
NO  
READ  
SIGNATURE  
90h  
NO  
CFI  
QUERY  
98h  
NO  
PROGRAM  
BUFFER  
LOAD  
E8h  
NO  
NO  
PROGRAM  
COMMAND  
ERROR  
YES  
READ  
STATUS  
D0h  
D0h  
NO  
(ERASE RESUME)  
YES  
READ  
ARRAY  
c
AI03619  
59/61  
M58LW032A  
Figure 32. Command Interface and Program Erase Controller Flowchart (c).  
B
C
PROGRAM  
(READ STATUS)  
YES  
Program/Erase Controller  
Status bit in the Status  
Register  
READ  
STATUS  
READY  
?
NO  
READ  
ARRAY  
NO  
B0h  
YES  
YES  
NO  
READ  
STATUS  
FFh  
PROGRAM  
SUSPEND  
NO  
YES  
PROGRAM  
SUSPENDED  
READY  
?
NO  
YES  
WAIT FOR  
COMMAND  
WRITE  
READ  
STATUS  
YES  
YES  
YES  
NO  
READ  
STATUS  
70h  
NO  
READ  
SIGNATURE  
90h  
NO  
CFI  
QUERY  
98h  
NO  
YES  
READ  
ARRAY  
READ  
STATUS  
D0h  
(PROGRAM RESUME)  
AI00618  
60/61  
M58LW032A  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners  
2002 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta -  
Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
61/61  

相关型号:

M58LW032A90N1T

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR

M58LW032A90N6

2MX16 FLASH 3V PROM, 90ns, PDSO56, 14 X 20 MM, PLASTIC, TSOP-56
STMICROELECTR

M58LW032A90N6T

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR

M58LW032A90ZA1

2MX16 FLASH 3V PROM, 90ns, PBGA64, 10 X 13 MM, 1 MM PITCH, TBGA-64
STMICROELECTR

M58LW032A90ZA1T

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR

M58LW032A90ZA6

2MX16 FLASH 3V PROM, 90ns, PBGA64, 10 X 13 MM, 1 MM PITCH, TBGA-64
STMICROELECTR

M58LW032A90ZA6T

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR

M58LW032AN

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR

M58LW032AZA

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR

M58LW032C

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR

M58LW032C110N1

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR

M58LW032C110N1E

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR