M58LW032C110N6F [STMICROELECTRONICS]

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory; 32兆位的2Mb X16 ,统一座,突发3V电源快闪记忆体
M58LW032C110N6F
型号: M58LW032C110N6F
厂家: ST    ST
描述:

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
32兆位的2Mb X16 ,统一座,突发3V电源快闪记忆体

闪存 存储 内存集成电路 光电二极管
文件: 总61页 (文件大小:796K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M58LW032C  
32 Mbit (2Mb x16, Uniform Block, Burst)  
3V Supply Flash Memory  
FEATURES SUMMARY  
WIDE x16 DATA BUS for HIGH BANDWIDTH  
SUPPLY VOLTAGE  
Figure 1. Packages  
– V = 2.7 to 3.6V core supply voltage for Pro-  
DD  
gram, Erase and Read operations  
– V  
= 1.8 to V for I/O Buffers  
DD  
DDQ  
SYNCHRONOUS/ASYNCHRONOUS READ  
– Synchronous Burst read  
TSOP56 (N)  
14 x 20 mm  
– Asynchronous Random Read  
– Asynchronous Address Latch Controlled  
Read  
– Page Read  
TBGA  
ACCESS TIME  
– Synchronous Burst Read up to 56MHz  
– Asynchronous Page Mode Read 90/25ns,  
110/25ns  
TBGA64 (ZA)  
10 x 13 mm  
– Random Read 90ns, 110ns  
PROGRAMMING TIME  
– 16 Word Write Buffer  
– 12µs Word effective programming time  
32 UNIFORM 64 KWord MEMORY BLOCKS  
ENHANCED SECURITY  
– Block Protection/ Unprotection  
– Smart Protection: irreversible block locking  
system  
– V  
signal for Program Erase Enable  
PEN  
– 128 bit Protection Register with 64 bit Unique  
Code in OTP area  
PROGRAM and ERASE SUSPEND  
COMMON FLASH INTERFACE  
100,000 PROGRAM/ERASE CYCLES per  
BLOCK  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 0020h  
– Device Code M58LW032C : 8822h  
April 2003  
1/61  
M58LW032C  
TABLE OF CONTENTS  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 3. TSOP56 Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 4. TBGA64 Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 5. Block Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Address Inputs (A1-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Data Inputs/Outputs (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Reset/Power-Down (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Latch Enable (L). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Clock (K).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Valid Data Ready (R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Status/(Ready/Busy) (STS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Program/Erase Enable (VPEN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
V
V
V
V
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
DD  
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
DDQ  
Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
SS  
Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
SSQ  
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Address Latch.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Bus Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power-Down.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 2. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
READ MODES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Asynchronous Read Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Asynchronous Latch Controlled Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Asynchronous Random Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Asynchronous Page Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Synchronous Read Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Synchronous Burst Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Single Synchronous Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2/61  
M58LW032C  
CONFIGURATION REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Read Select Bit (CR15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
X-Latency Bits (CR13-CR11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Internal Clock Divider Bit (CR10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Y-Latency Bit (CR9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Valid Data Ready Bit (CR8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Burst Type Bit (CR7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Valid Clock Edge Bit (CR6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Burst Length Bit (CR2-CR0).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 3. Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 4. Burst Type Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 6. Burst Configuration X-1-1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 7. Burst Configuration X-2-2-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read Memory Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read Query Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Clear Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Write to Buffer and Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Set Configuration Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Block Protect Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Blocks Unprotect Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Configure STS Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 5. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 6. Configuration Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 7. Read Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 8. Read Protection Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 8. Protection Register Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 9. Program, Erase Times and Program Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . 25  
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Program/Erase Controller Status Bit (SR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Erase Suspend Status Bit ( SR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Erase Status Bit (SR5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Program Status Bit (SR4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
V
Status Bit (SR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
PEN  
Program Suspend Status Bit (SR2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Block Protection Status Bit (SR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3/61  
M58LW032C  
Reserved (SR0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 10. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 11. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 12. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 9. AC Measurement Input Output Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 10. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 13. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 14. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 11. Asynchronous Bus Read AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 15. Asynchronous Bus Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 12. Asynchronous Latch Controlled Bus Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . 33  
Table 16. Asynchronous Latch Controlled Bus Read AC Characteristics . . . . . . . . . . . . . . . . . . . 33  
Figure 13. Asynchronous Page Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 17. Asynchronous Page Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 14. Asynchronous Write AC Waveform, Write Enable Controlled . . . . . . . . . . . . . . . . . . . 35  
Figure 15. Asynchronous Latch Controlled Write AC Waveform, Write Enable Controlled. . . . . . 35  
Table 18. Asynchronous Write and Latch Controlled Write AC Characteristics, Write Enable  
Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 16. Asynchronous Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . 37  
Figure 17. Asynchronous Latch Controlled Write AC Waveforms, Chip Enable Controlled . . . . . 37  
Table 19. Asynchronous Write and Latch Controlled Write AC Characteristics, Chip Enable  
Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 18. Synchronous Burst Read AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 19. Synchronous Burst Read - Continuous - Valid Data Ready Output . . . . . . . . . . . . . . . 40  
Table 20. Synchronous Burst Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 20. Reset, Power-Down and Power-up AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 21. Reset, Power-Down and Power-up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 41  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 21. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Outline . . . . . . . 42  
Table 22. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Mechanical Data 42  
Figure 22. TBGA64 10x13mm - 8x8 ball array, 1mm pitch, Package Outline . . . . . . . . . . . . . . . . 43  
Table 23. TBGA64 10x13mm - 8x8 ball array, 1mm pitch, Package Mechanical Data. . . . . . . . . 43  
PART NUMBERING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 24. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
APPENDIX A. BLOCK ADDRESS TABLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 25. Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
APPENDIX B. COMMON FLASH INTERFACE - CFI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 26. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
4/61  
M58LW032C  
Table 27. CFI - Query Address and Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 28. CFI - Device Voltage and Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 29. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 30. Block Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 31. Extended Query information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
APPENDIX C. FLOW CHARTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 23. Write to Buffer and Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 50  
Figure 24. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . 51  
Figure 25. Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 26. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 27. Block Protect Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 28. Blocks Unprotect Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 29. Protection Register Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 56  
Figure 30. Command Interface and Program Erase Controller Flowchart (a) . . . . . . . . . . . . . . . . 57  
Figure 31. Command Interface and Program Erase Controller Flowchart (b) . . . . . . . . . . . . . . . . 58  
Figure 32. Command Interface and Program Erase Controller Flowchart (c). . . . . . . . . . . . . . . . 59  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 32. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
5/61  
M58LW032C  
SUMMARY DESCRIPTION  
M58LW032C is a 32 Mbit (2Mb x16) non-volatile  
memory that can be read, erased and repro-  
grammed. These operations can be performed us-  
ing a single low voltage (2.7V to 3.6V) core supply.  
On power-up the memory defaults to Read mode  
with an asynchronous bus where it can be read in  
the same way as a non-burst Flash memory.  
Block Protection, where each block can be  
individually protected against program or erase  
operations. All blocks are protected during  
power-up. The protection of the blocks is non-  
volatile; after power-up the protection status of  
each block is restored to the state when power  
was last removed.  
The memory is divided into 32 blocks of 1Mbit that  
can be erased independently so it is possible to  
preserve valid data while old data is erased. Pro-  
gram and Erase commands are written to the  
Command Interface of the memory. An on-chip  
Program/Erase Controller simplifies the process of  
programming or erasing the memory by taking  
care of all of the special operations that are re-  
quired to update the memory contents. The end of  
a Program or Erase operation can be detected and  
any error conditions identified in the Status Regis-  
ter. The command set required to control the  
memory is consistent with JEDEC standards.  
Program Erase Enable input V  
, program or  
PEN  
erase operations are not possible when the  
Program Erase Enable input V is low.  
PEN  
Smart Protection, which allows protected blocks  
to be permanently locked. This feature is not  
described in the datasheet for security reasons.  
Please contact STMicroelectronics for further  
details.  
128 bit Protection Register, divided into two 64  
bit segments: the first contains a unique device  
number written by ST, the second is user  
programmable. The user programmable  
segment can be protected.  
The device supports synchronous burst read and  
asynchronous read from all blocks of the memory  
array; at power-up the device is configured for  
asynchronous read. In asynchronous mode an  
Address Latch input can be used to latch address-  
es in Latch Controlled mode. In synchronous burst  
mode, data is output on each clock cycle at fre-  
quencies of up to 56MHz.  
The Write Buffer allows the microprocessor to pro-  
gram from 1 to 16 Words in parallel, both speeding  
up the programming and freeing up the micropro-  
cessor to perform other work. A Word Program  
command is available to program a single Word.  
Erase can be suspended in order to perform either  
Read or Program in any other block and then re-  
sumed. Program can be suspended to Read data  
in any other block and then resumed. Each block  
can be programmed and erased over 100,000 cy-  
cles.  
The Reset/Power-Down pin is used to apply a  
Hardware Reset to the memory and to set the de-  
vice in power-down mode.  
The device features an Auto Low Power mode. If  
the bus becomes inactive during Asynchronous  
Read operations, the device automatically enters  
Auto Low Power mode. In this mode the power  
consumption is reduced to the Auto Low Power  
supply current.  
The STS signal is an open drain output that can be  
used to identify the Program/Erase Controller sta-  
tus. It can be configured in two modes: Ready/  
Busy mode where a static signal indicates the sta-  
tus of the P/E.C, and Status mode where a pulsing  
signal indicates the end of a Program or Block  
Erase operation. In Status mode it can be used as  
a system interrupt signal, useful for saving CPU  
time.  
The memory is available in TSOP56 (14 x 20 mm)  
and TBGA64 (10 x 13mm, 1mm pitch) packages.  
The M58LW032C has several security features to  
increase data protection.  
6/61  
M58LW032C  
Figure 2. Logic Diagram  
Table 1. Signal Names  
A1-A21  
Address inputs  
V
V
DD DDQ  
DQ0-DQ15  
Data Inputs/Outputs  
Chip Enable  
E
G
Output Enable  
Clock  
21  
K
A1-A21  
L
Latch Enable  
V
PEN  
R
Valid Data Ready  
Status/(Ready/Busy)  
Reset/Power-Down  
Program/Erase Enable  
Write Enable  
16  
STS  
RP  
W
E
DQ0-DQ15  
M58LW032C  
STS  
V
PEN  
G
W
R
RP  
L
V
DD  
Supply Voltage  
V
DDQ  
Input/Output Supply Voltage  
Ground  
K
V
SS  
V
Input/Output Ground  
Not Connected Internally  
SSQ  
NC  
V
V
SS SSQ  
AI06208  
7/61  
M58LW032C  
Figure 3. TSOP56 Connections  
NC  
R
1
56  
NC  
W
A21  
A20  
A19  
A18  
A17  
A16  
G
STS  
DQ15  
DQ7  
DQ14  
DQ6  
V
V
DD  
A15  
A14  
A13  
A12  
E
SS  
DQ13  
DQ5  
DQ12  
DQ4  
14  
15  
43  
42  
V
V
DDQ  
SSQ  
M58LW032C  
V
PEN  
RP  
DQ11  
DQ3  
A11  
A10  
A9  
DQ10  
DQ2  
A8  
V
DD  
V
DQ9  
DQ1  
DQ8  
DQ0  
NC  
SS  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
K
NC  
L
28  
29  
AI06209  
8/61  
M58LW032C  
Figure 4. TBGA64 Connections (Top view through package)  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
A1  
A2  
A3  
A4  
DQ8  
K
A6  
A8  
A9  
V
A13  
A14  
V
A18  
A19  
NC  
R
PEN  
E
DD  
V
NC  
NC  
SS  
A7  
A10  
A11  
DQ9  
DQ10  
DQ2  
A12  
RP  
A15  
A20  
A21  
A17  
STS  
G
A5  
DQ1  
DQ0  
NC  
NC  
NC  
A16  
DQ3  
DQ11  
DQ4  
DQ12  
DQ5  
DQ13  
NC  
DQ15  
NC  
NC  
G
H
NC  
L
V
DQ6  
DQ14  
DQ7  
W
DDQ  
NC  
V
V
V
SSQ  
NC  
DD  
SS  
AI06210b  
9/61  
M58LW032C  
Figure 5. Block Addresses  
Word (x16) Bus Width  
1FFFFFh  
1 Mbit or  
64 KWords  
1F0000h  
1EFFFFh  
1 Mbit or  
64 KWords  
1E0000h  
Total of 32  
1 Mbit Blocks  
01FFFFh  
1 Mbit or  
64 KWords  
010000h  
00FFFFh  
1 Mbit or  
64 KWords  
000000h  
AI06254  
Note: Also see Appendix A, Table 25 for a full listing of the Block Addresses.  
10/61  
M58LW032C  
SIGNAL DESCRIPTIONS  
See Figure 2, Logic Diagram and Table 11, Signal  
Names, for a brief overview of the signals connect-  
ed to this device.  
A Hardware Reset is achieved by holding Reset/  
Power-Down Low, V , for at least t  
. When  
PLPH  
IL  
Reset/Power-Down is Low, V , the Status Regis-  
IL  
ter information is cleared and the power consump-  
tion is reduced to power-down level. The device is  
deselected and outputs are high impedance. If Re-  
Address Inputs (A1-A21). The Address Inputs  
are used to select the cells to access in the mem-  
ory array during Bus Read operations either to  
read or to program data to. During Bus Write oper-  
ations they control the commands sent to the  
Command Interface of the internal state machine.  
Chip Enable and Latch Enable must be low when  
selecting the addresses.  
The address inputs are latched on the rising edge  
of Chip Enable, Write Enable or Latch Enable,  
whichever occurs first in a Write operation. The  
address latch is transparent when Latch Enable is  
set/Power-Down goes low, V ,during a Block  
IL  
Erase, a Write to Buffer and Program or a Block  
Protect/Unprotect the operation is aborted and the  
data may be corrupted. In this case the Ready/  
Busy pin stays low, V , for a maximum timing of  
IL  
t
+ t  
until the completion of the Reset/  
PLPH  
PHRH,  
Power-Down pulse.  
After Reset/Power-Down goes High, V , the  
IH  
memory will be ready for Bus Read and Bus Write  
operations after t  
. Note that Ready/Busy  
PHQV  
low, V . The address is internally latched in an  
IL  
does not fall during a reset, see Ready/Busy Out-  
put section.  
Erase or Program operation.  
Data Inputs/Outputs (DQ0-DQ15). The Data In-  
puts/Outputs output the data stored at the selected  
address during a Bus Read operation, or are used  
to input the data during a program operation. Dur-  
ing Bus Write operations they represent the com-  
mands sent to the Command Interface of the  
internal state machine. When used to input data or  
Write commands they are latched on the rising  
edge of Write Enable or Chip Enable, whichever  
occurs first.  
In an application, it is recommended to associate  
Reset/Power-Down pin, RP, with the reset signal  
of the microprocessor. Otherwise, if a reset opera-  
tion occurs while the memory is performing an  
Erase or Program operation, the memory may out-  
put the Status Register information instead of be-  
ing initialized to the default Asynchronous  
Random Read.  
Latch Enable (L). The Bus Interface is config-  
ured to latch the Address Inputs on the rising edge  
of Latch Enable, L. In synchronous bus operations  
the address is latched on the active edge of the  
When Chip Enable and Output Enable are both  
low, V , the data bus outputs data from the mem-  
IL  
ory array, the Electronic Signature, the Block Pro-  
tection status, the CFI Information or the contents  
of the Status Register. The data bus is high imped-  
ance when the chip is deselected, Output Enable  
Clock when Latch Enable is Low, V or on the ris-  
IL  
ing of Latch Enable, whichever occurs first. Once  
latched, the addresses may change without affect-  
ing the address used by the memory. When Latch  
is high, V  
or the Reset/Power-Down signal is  
IH,  
Enable is Low, V , the latch is transparent.  
IL  
low, V . When the Program/Erase Controller is  
IL  
active the Ready/Busy status is given on DQ7.  
Clock (K). The Clock, K, is used to synchronize  
the memory with the external bus during Synchro-  
nous Bus Read operations. The Clock can be con-  
figured to have an active rising or falling edge. Bus  
signals are latched on the active edge of the Clock  
during synchronous bus operations. In Synchro-  
nous Burst Read mode the address is latched on  
the first active clock edge when Latch Enable is  
Chip Enable (E). The Chip Enable, E, input acti-  
vates the memory control logic, input buffers, de-  
coders and sense amplifiers. Chip Enable, E, at  
V
deselects the memory and reduces the power  
IH  
consumption to the Standby level, I  
.
DD1  
Output Enable (G). The Output Enable, G, gates  
the outputs through the data output buffers during  
a read operation. When Output Enable, G, is at V  
the outputs are high impedance. Output Enable,  
G, can be used to inhibit the data output during a  
burst read operation.  
low, V , or on the rising edge of Latch Enable,  
IL  
IH  
whichever occurs first.  
During asynchronous bus operations the Clock is  
not used.  
Valid Data Ready (R). The Valid Data Ready  
output, R, is an open drain output that can be used  
to identify if the memory is ready to output data or  
not. The Valid Data Ready output is only active  
during Synchronous Burst Read operations when  
the Burst Length is set to Continuous. The Valid  
Data Ready output can be configured to be active  
on the clock edge of the invalid data read cycle or  
Write Enable (W). The Write Enable input, W,  
controls writing to the Command Interface, Input  
Address and Data latches. Both addresses and  
data can be latched on the rising edge of Write En-  
able (also see Latch Enable, L).  
Reset/Power-Down (RP). The  
Reset/Power-  
Down pin can be used to apply a Hardware Reset  
to the memory.  
one cycle before. Valid Data Ready Low, V , in-  
OL  
11/61  
M58LW032C  
dicates that the data is not, or will not be valid. Val-  
id Data Ready in a high-impedance state indicates  
that valid data is or will be available.  
Unless Synchronous Burst Read has been select-  
ed, Valid Data Ready is high-impedance. It may be  
tied to other components with the same Valid Data  
Ready signal to create a unique System Ready  
signal.  
STS is not Low during a reset unless the reset was  
applied when the Program/Erase controller was  
active. Ready/Busy can rise before Reset/Power-  
Down rises.  
Program/Erase Enable (V  
). The Program/  
is used to protect all  
PEN  
Erase Enable input, V  
PEN,  
blocks, preventing Program and Erase operations  
from affecting their data.  
The Valid Data Ready, R, output has an internal  
pull-up resistor of approximately 1 Mpowered  
Program/Erase Enable must be kept High during  
all Program/Erase Controller operations, other-  
wise the operations is not guaranteed to succeed  
and data may become corrupt.  
from V  
, designers should use an external pull-  
DDQ  
up resistor of the correct value to meet the external  
timing requirements for Valid Data Ready rising.  
Refer to Figure 19.  
Status/(Ready/Busy) (STS). The STS signal is  
an open drain output that can be used to identify  
the Program/Erase Controller status. It can be  
configured in two modes:  
V
Supply Voltage. V  
provides the power  
DD  
DD  
supply to the internal core of the memory device.  
It is the main power supply for all operations  
(Read, Program and Erase).  
V
Supply Voltage. V  
provides the power  
DDQ  
DDQ  
supply to the I/O pins and enables all Outputs to  
be powered independently from V . V can be  
Ready/Busy - the pin is Low, V , during  
OL  
DD DDQ  
Program and Erase operations and high  
impedance when the memory is ready for any  
Read, Program or Erase operation.  
tied to V or can use a separate supply.  
DD  
It is recommended to power-up and power-down  
and V together to avoid any condition that  
V
DD  
DDQ  
Status - the pin gives a pulsing signal to indicate  
would result in data corruption.  
the end of a Program or Block Erase operation.  
V
Ground. Ground, V is the reference for  
SS  
SS,  
After power-up or reset the STS pin is configured  
in Ready/Busy mode. The pin can be configured  
for Status mode using the Configure STS com-  
mand.  
the core power supply. It must be connected to the  
system ground.  
V
Ground. V  
the input/output circuitry driven by V  
ground is the reference for  
SSQ  
SSQ  
. V  
DDQ  
SSQ  
When the Program/Erase Controller is idle, or sus-  
pended, STS can float High through a pull-up re-  
sistor. The use of an open-drain output allows the  
STS pins from several memories to be connected  
to a single pull-up resistor (a Low will indicate that  
one, or more, of the memories is busy).  
must be connected to V  
.
SS  
Note: Each device in a system should have  
and V decoupled with a 0.1µF ceramic  
V
DD  
DDQ  
capacitor close to the pin (high frequency, in-  
herently low inductance capacitors should be  
as close as possible to the package). See Fig-  
ure 10, AC Measurement Load Circuit.  
12/61  
M58LW032C  
BUS OPERATIONS  
There are six standard bus operations that control  
the device. These are Address Latch, Bus Read,  
Bus Write, Output Disable, Power-Down and  
Standby. See Table 2, Bus Operations, for a sum-  
mary.  
Typically glitches of less than 5ns on Chip Enable  
or Write Enable are ignored by the memory and do  
not affect Bus Write operations.  
Address Latch. Address latch operations input  
valid addresses.  
A valid bus operation involves setting the desired  
address on the Address Inputs, setting Chip En-  
A valid Bus Write operation begins by setting the  
desired address on the Address Inputs and setting  
Latch Enable Low, V . The Address Inputs are  
IL  
latched by the Command Interface on the rising  
edge of Chip Enable or Write Enable, whichever  
occurs first. The Data Inputs/Outputs are latched  
by the Command Interface on the rising edge of  
Chip Enable or Write Enable, whichever occurs  
first. Output Enable must remain High, V , during  
IH  
the Bus Write operation.  
See Figures 14, 15, 16 and 17, Write AC Wave-  
forms, and Tables 18 and 19, Write AC Character-  
istics, for details of the timing requirements.  
Output Disable. The The Data Inputs/Outputs  
are high impedance when the Output Enable is at  
able and Latch Enable Low, V and keeping Write  
IL  
Enable High, V ; the address is latched on the ris-  
IH  
ing edge of Address Latch.  
V .  
IH  
Bus Read. Bus Read operations are used to out-  
put the contents of the Memory Array, the Elec-  
tronic Signature, the Status Register, the Common  
Flash Interface and the Block Protection Status.  
A valid bus operation involves setting the desired  
address on the Address Inputs, applying a Low  
Power-Down. The memory is in Power-Down  
mode when Reset/Power-Down, RP, is Low. The  
power consumption is reduced to the Power-Down  
level, I  
, and the outputs are high impedance,  
DD2  
independent of Chip Enable, Output Enable or  
Write Enable.  
Standby. Standby disables most of the internal  
circuitry, allowing a substantial reduction of the  
current consumption. The memory is in standby  
signal, V , to Chip Enable, Output Enable and  
IL  
Latch Enable and keeping Write Enable High, V .  
IH  
The data read depends on the previous command  
written to the memory (see Command Interface  
section). See Figures 11, 12, 13, 18 and 19 Read  
AC Waveforms, and Tables 15, 16, 17 and 20  
Read AC Characteristics, for details of when the  
output becomes valid.  
when Chip Enable is at V . The power consump-  
IH  
tion is reduced to the standby level I  
and the  
DD1  
outputs are set to high impedance, independently  
from the Output Enable or Write Enable inputs.  
If Chip Enable switches to V during a program or  
erase operation, the device enters Standby mode  
when finished.  
IH  
Bus Write. Bus Write operations write Com-  
mands to the memory or latch addresses and input  
data to be programmed.  
Table 2. Bus Operations  
Operation  
Address Latch  
Bus Read  
E
G
W
RP  
L
A1-A21  
Address  
Address  
Address  
X
DQ0-DQ15  
(2)  
V
V
IH  
V
IH  
V
X
IL  
IL  
IL  
IL  
IL  
IL  
IL  
Data Output or Hi-Z  
Data Output  
Data Input  
High Z  
V
V
V
V
V
IH  
V
IH  
V
V
IL  
IH  
IH  
V
V
V
V
V
IH  
Bus Write  
IL  
V
IH  
Output Disable  
Power-Down  
Standby  
X
IH  
V
X
X
X
X
X
X
High Z  
IL  
V
IH  
V
IH  
X
X
X
High Z  
Note: 1. X = Don’t Care V or V  
.
IL  
IH  
2. Depends on G  
13/61  
M58LW032C  
READ MODES  
Read operations can be performed in two different  
ways depending on the settings in the Configura-  
tion Register. If the clock signal is ‘don’t care’ for  
the data output, the read operation is asynchro-  
nous; if the data output is synchronized with clock,  
the read operation is synchronous.  
The read mode and format of the data output are  
determined by the Configuration Register. (See  
Configuration Register section for details).  
Asynchronous Random Read. As the Latch En-  
able input is transparent when set Low, V , Asyn-  
IL  
chronous Random Read operations can be  
performed by holding Latch Enable Low, V  
IL  
throughout the bus operation.  
See Figures 11, Asynchronous Random Read AC  
Waveforms, and Table 15, Asynchronous Ran-  
dom Read AC Characteristics, for details.  
Asynchronous Page Read. In  
Asynchronous  
On Power-up or after a Hardware Reset the mem-  
ory defaults to Asynchronous Read mode.  
Asynchronous Read Modes  
In Asynchronous Read operations the clock signal  
is ‘don’t care’. The device outputs the data corre-  
sponding to the address latched, that is the mem-  
ory array, Status Register, Common Flash  
Interface, Electronic Signature or Block Protection  
Status depending on the command issued. CR15  
in the Configuration Register must be set to ‘1’ for  
asynchronous operations.  
Page Read mode a Page of data is internally read  
and stored in a Page Buffer. Each memory page is  
4 Words and has the same A3-A22, only A1 and  
A2 may change.  
The first read operation within the Page has the  
normal access time (t  
), subsequent reads  
AVQV  
within the same Page have much shorter access  
times (t ). If the Page changes then the nor-  
AVQV1  
mal, longer timings apply again.  
See Figures 13, Asynchronous Page Read AC  
Waveforms, and Table 17, Asynchronous Page  
Read AC Characteristics, for details.  
During Asynchronous Read operations, if the bus  
is inactive for a time equivalent to t  
, the de-  
Synchronous Read Modes  
AVQV  
vice automatically enters Auto Low Power mode.  
In this mode the internal supply current is reduced  
In Synchronous Read mode the data output is syn-  
chronized with the clock. CR15 in the Configura-  
tion Register must be set to ‘0’ for synchronous  
operations.  
to the Auto Low Power supply current, I  
. The  
DD5  
Data Inputs/Outputs will still output data if a Bus  
Read operation is in progress.  
Automatic Low Power is only available in Asyn-  
chronous Read modes.  
Asynchronous Read operations can be performed  
in three different ways, Asynchronous Latch Con-  
trolled Read, Asynchronous Random Read and  
Asynchronous Page Read.  
Synchronous Burst Read. In  
Synchronous  
Burst Read mode the data is output in bursts syn-  
chronized with the clock. It is possible to perform  
burst reads across bank boundaries.  
Synchronous Burst Read mode can only be used  
to read the memory array. For other read opera-  
tions, such as Read Status Register, Read CFI,  
Read Electronic Signature and Block Protection  
Status, Single Synchronous Read or Asynchro-  
nous Read must be used.  
Asynchronous Latch Controlled Read.  
In Asynchronous Latch Controlled Read opera-  
tions read the address is latched in the memory  
before the value is output on the data bus, allowing  
the address to change during the cycle without af-  
fecting the address that the memory uses.  
In Synchronous Burst Read mode the flow of the  
data output depends on parameters that are con-  
figured in the Configuration Register.  
A valid bus operation involves setting the desired  
address on the Address Inputs, setting Chip En-  
A valid Synchronous Burst Read operation begins  
when the address is set on the Address Inputs,  
able and Latch Enable Low, V and keeping Write  
Write Enable is High, V , and Chip Enable and  
IL  
IH  
Enable High, V ; the address is latched on the ris-  
ing edge of Address Latch. Once latched, the Ad-  
dress Inputs can change. Set Output Enable Low,  
Latch Enable are Low, V , during the active edge  
IH  
IL  
of the Clock. The address is latched on the first ac-  
tive clock edge when Latch Enable is low, or on  
the rising edge of Latch Enable, whichever occurs  
first. The data becomes available for output after  
the X-latency specified in the Burst Control Regis-  
ter has expired. The output buffers are activated  
V , to read the data on the Data Inputs/Outputs;  
IL  
see Figure 12, Asynchronous Latch Controlled  
Read AC Waveforms and Table 16, Asynchro-  
nous Latch Controlled Read AC Characteristics for  
details on when the output becomes valid.  
by setting Output Enable Low, V . See Figures 6  
IL  
and 7 for examples of Synchronous Burst Read  
operations.  
The number of Words to be output during a Syn-  
chronous Burst Read operation can be configured  
as 4 Words, 8 Words or Continuous (Burst Length  
See Figures 12, Asynchronous Latch Controlled  
Read AC Waveforms, and Table 16, Asynchro-  
nous Latch Controlled Read AC Characteristics,  
for details.  
14/61  
M58LW032C  
bits CR2-CR0). In Synchronous Continuous Burst  
Read mode one Burst Read operation can access  
the entire memory sequentially. If the starting ad-  
dress is not associated with a page (4 Word)  
boundary the Valid Data Ready, R, output goes  
Register. The burst sequence can be sequential or  
interleaved.  
See Table 20, Synchronous Read AC Character-  
istics and Figure 18 and 19, Synchronous Burst  
Read AC Waveform for details.  
Low, V , to indicate that the data will not be ready  
IL  
Single Synchronous Read. Single  
Synchro-  
in time and additional wait-states are required. The  
Valid Data Ready output timing (bit CR8) can be  
changed in the Configuration Register.  
The order of the data output can be modified  
through the Burst Type bit in the Configuration  
nous Read operations are similar to Synchronous  
Burst Read operations except that only the first  
data output after the X latency is valid. Single Syn-  
chronous Reads are used to read the Status Reg-  
ister, CFI, Electronic Signature and Block  
Protection Status.  
15/61  
M58LW032C  
CONFIGURATION REGISTER  
The Configuration Register is used to configure  
the type of bus access that the memory will per-  
form. The Configuration Register bits are de-  
scribed in Table 3. They specify the selection of  
the burst length, burst type, burst X and Y laten-  
cies and the Read operation. See figures 6 and 7  
for examples of Synchronous Burst Read configu-  
rations.  
The Configuration Register is set through the  
Command Interface and will retain its information  
until it is re-configured, the device is reset, or the  
device goes into Reset/Power-Down mode. The  
Configuration Register is read using the Read  
Electronic Signature Command at address 05h.  
Read Select Bit (CR15). The Read Select bit,  
CR15, is used to switch between asynchronous  
and synchronous Bus Read operations. When the  
Read Select bit is set to ’1’, Bus Read operations  
are asynchronous; when the Read Select but is  
set to ’0’, Bus Read operations are synchronous.  
the number of clock cycles between consecutive  
reads. The Y-Latency value depends on both the  
X-Latency value and the setting in CR9.  
When the Y-Latency is 1 the data changes each  
clock cycle; when the Y-Latency is 2 the data  
changes every second clock cycle. See Table 3,  
Configuration Register for valid combinations of  
the Y-Latency, the X-Latency and the Clock fre-  
quency.  
Valid Data Ready Bit (CR8). The Valid Data  
Ready bit controls the timing of the Valid Data  
Ready output pin, R. When the Valid Data Ready  
bit is ’0’ the Valid Data Ready output pin is driven  
Low for the active clock edge when invalid data is  
output on the bus. When the Valid Data Ready bit  
is ’1’ the Valid Data Ready output pin is driven Low  
one clock cycle prior to invalid data being output  
on the bus.  
Burst Type Bit (CR7). The Burst Type bit is used  
to configure the sequence of addresses read as  
sequential or interleaved. When the Burst Type bit  
is ’0’ the memory outputs from interleaved ad-  
dresses; when the Burst Type bit is ’1’ the memory  
outputs from sequential addresses. See Tables 4,  
Burst Type Definition, for the sequence of ad-  
dresses output from a given starting address in  
each mode.  
Valid Clock Edge Bit (CR6). The Valid Clock  
Edge bit, CR6, is used to configure the active edge  
of the Clock, K, during Synchronous Burst Read  
operations. When the Valid Clock Edge bit is ’0’  
the falling edge of the Clock is the active edge;  
when the Valid Clock Edge bit is ’1’ the rising edge  
of the Clock is active.  
Burst Length Bit (CR2-CR0). The Burst Length  
bits set the maximum number of Words that can  
be output during a Synchronous Burst Read oper-  
ation.  
Table 3, Configuration Register gives the valid  
combinations of the Burst Length bits that the  
memory accepts; Tables 4, Burst Type Definition,  
give the sequence of addresses output from a giv-  
en starting address for each length.  
On reset or power-up the Read Select bit is set to  
’1’ for asynchronous access.  
X-Latency Bits (CR13-CR11). The  
X-Latency  
bits are used during Synchronous Bus Read oper-  
ations to set the number of clock cycles between  
the address being latched and the first data be-  
coming available. For correct operation the X-La-  
tency bits can only assume the values in Table 3,  
Configuration Register.  
Internal Clock Divider Bit (CR10). The Internal  
Clock Divider Bit is used to divide the internal clock  
by two. When CR10 is set to ‘1’ the internal clock  
is divided by two, which effectively means that the  
X and Y-Latency values are multiplied by two, that  
is the number of clock cycles between the address  
being latched and the first data becoming avail-  
able will be twice the value set in CR13-CR11, and  
the number of clock cycles between consecutive  
reads will be twice the value set in CR9. For exam-  
ple 8-1-1-1 will become 16-2-2-2. When CR10 is  
set to ‘0’ the internal clock runs normally and the X  
and Y-Latency values are those set in CR13-CR11  
and CR9.  
Y-Latency Bit (CR9). The Y-Latency bit is used  
during Synchronous Bus Read operations to set  
CR5 CR4 and CR3 are reserved for future use.  
16/61  
M58LW032C  
Table 3. Configuration Register  
Address  
Reset  
Value  
Mnemonic  
Bit Name  
Value  
Description  
Synchronous Burst Read  
Bit  
16  
15  
0
1
CR15  
CR14  
Read Select  
1
Asynchronous Bus Read (default at power-up)  
Reserved  
Reserved  
001  
010  
011  
100  
101  
110  
(1)  
X-Latency = 4, 4-1-1-1 (use only with Y-Latency = 1)  
14  
to  
12  
X-Latency = 5, 5-1-1-1, 5-2-2-2  
(2)  
CR13-CR11  
XXX  
X-Latency  
X-Latency = 6, 6-1-1-1, 6-2-2-2  
X-Latency = 7, 7-1-1-1, 7-2-2-2  
X-Latency = 8, 8-1-1-1, 8-2-2-2  
X and Y-Latencies remains as set in CR13-CR11 and  
CR9  
0
Internal  
Clock Divider  
11  
CR10  
X
1
0
1
0
1
0
1
0
1
Divides internal clock, X and Y-Latencies multiplied by 2  
Y-Latency = 1  
(3)  
10  
9
CR9  
CR8  
CR7  
X
X
X
X
Y-Latency  
Y-Latency = 2  
R valid Low during valid Clock edge  
Valid Data  
Ready  
R valid Low one cycle before valid Clock edge  
Interleaved  
Sequential  
8
Burst Type  
Falling Clock edge  
Rising Clock edge  
Reserved  
Valid Clock  
Edge  
7
CR6  
6 to 4  
CR5-CR3  
001  
010  
111  
4 Words  
3
to  
1
CR2-CR0 Burst Length  
XXX  
8 Words  
Continuous  
Note: 1. 4 - 2 - 2 - 2 (represents X-Y-Y-Y) is not allowed.  
2. X latencies can be calculated as: (t  
– t  
LLKH  
+ t  
) + t < (X -1) t (X is an integer number from 4 to 8 and t  
QVKH SYSTEM MARGIN K. K  
AVQV  
is the clock period).  
3. Y latencies can be calculated as: t  
+ t  
+ t < Y t  
QVKH K.  
KHQV  
SYSTEM MARGIN  
4. t  
is the time margin required for the calculation.  
SYSTEM MARGIN  
17/61  
M58LW032C  
Table 4. Burst Type Definition  
Starting  
x4  
x4  
x8  
x8  
Continuous  
Address Sequential Interleaved  
Sequential  
Interleaved  
0
1
2
3
4
5
6
7
8
0-1-2-3  
0-1-2-3  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
0-1-2-3-4-5-6-7  
1-0-3-2-5-4-7-6  
2-3-0-1-6-7-4-5  
3-2-1-0-7-6-5-4  
4-5-6-7-0-1-2-3  
5-4-7-6-1-0-3-2  
6-7-4-5-2-3-0-1  
7-6-5-4-3-2-1-0  
0-1-2-3-4-5-6-7-8-9-10..  
1-2-3-4-5-6-7-8-9-10-11..  
1-2-3-0  
1-0-3-2  
2-3-0-1  
2-3-0-1  
2-3-4-5-6-7-8-9-10-11-12..  
3-4-5-6-7-8-9-10-11-12-13..  
4-5-6-7-8-9-10-11-2-13-14..  
5-6-7-8-9-10-11-12-13-14..  
6-7-8-9-10-11-12-13-14-15..  
7-8-9-10-11-12-13-14-15-16..  
8-9-10-11-12-13-14-15-16-17..  
3-0-1-2  
3-2-1-0  
Figure 6. Burst Configuration X-1-1-1  
0
1
2
3
4
5
6
7
8
9
K
ADD  
VALID  
L
DQ  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
4-1-1-1  
5-1-1-1  
DQ  
VALID  
VALID  
VALID  
VALID  
DQ  
DQ  
DQ  
VALID  
VALID  
VALID  
VALID  
VALID  
6-1-1-1  
7-1-1-1  
8-1-1-1  
VALID  
VALID  
AI05512  
18/61  
M58LW032C  
Figure 7. Burst Configuration X-2-2-2  
0
1
2
3
4
5
6
7
8
9
K
ADD  
VALID  
L
DQ  
NV  
VALID  
NV  
NV  
VALID  
NV  
VALID  
5-2-2-2  
DQ  
DQ  
DQ  
NV  
VALID  
NV  
VALID  
NV  
NV  
VALID  
NV  
VALID  
NV  
6-2-2-2  
7-2-2-2  
8-2-2-2  
VALID  
NV=NOT VALID  
AI05513  
19/61  
M58LW032C  
COMMAND INTERFACE  
All Bus Write operations to the memory are inter-  
preted by the Command Interface. Commands  
consist of one or more sequential Bus Write oper-  
ations. The Commands are summarized in Table  
5, Commands. Refer to Table 5 in conjunction with  
the text descriptions below.  
Register. One Bus Write cycle is required to issue  
the Read Status Register command. Once the  
command is issued subsequent Bus Read opera-  
tions read the Status Register until another com-  
mand is issued.  
The Status Register information is present on the  
output data bus (DQ1-DQ7) when both Chip En-  
After power-up or a Reset operation the memory  
enters Read mode.  
able and Output Enable are low, V .  
IL  
Synchronous Read operations and Latch Con-  
trolled Bus Read operations can only be used to  
read the memory array. The Electronic Signature,  
CFI or Status Register will be read in asynchro-  
nous mode or single synchronous burst mode.  
Once the memory returns to Read Memory Array  
mode the bus will resume the setting in the Config-  
uration Register automatically.  
See the section on the Status Register and Table  
10 for details on the definitions of the Status Reg-  
ister bits  
Clear Status Register Command. The Clear Sta-  
tus Register command can be used to reset bits  
SR1, SR3, SR4 and SR5 in the Status Register to  
‘0’. One Bus Write is required to issue the Clear  
Status Register command.  
Read Memory Array Command. The Read Mem-  
ory Array command returns the memory to Read  
mode. One Bus Write cycle is required to issue the  
Read Memory Array command and return the  
memory to Read mode. Once the command is is-  
sued the memory remains in Read mode until an-  
other command is issued. From Read mode Bus  
Read commands will access the memory array.  
While the Program/Erase Controller is executing a  
Program, Erase, Block Protect, Blocks Unprotect  
or Protection Register Program operation the  
memory will not accept the Read Memory Array  
command until the operation completes.  
Read Electronic Signature Command. The Read  
Electronic Signature command is used to read the  
Manufacturer Code, the Device Code, the Block  
Protection Status, the Configuration Register and  
the Protection Register. One Bus Write cycle is re-  
quired to issue the Read Electronic Signature  
command. Once the command is issued subse-  
quent Bus Read operations read the Manufacturer  
Code, the Device Code, the Block Protection Sta-  
tus, the Configuration Register or the Protection  
Register until another command is issued. Refer to  
Table 7, Read Electronic Signature, Table 8, Read  
Protection Register and Figure 8, Protection Reg-  
ister Memory Map for information on the address-  
es.  
Read Query Command. The Read Query Com-  
mand is used to read data from the Common Flash  
Interface (CFI) Memory Area. One Bus Write cycle  
is required to issue the Read Query Command.  
Once the command is issued subsequent Bus  
Read operations read from the Common Flash In-  
terface Memory Area. See Appendix B, Tables 26,  
27, 28, 29, 30 and 31 for details on the information  
contained in the Common Flash Interface (CFI)  
memory area.  
The bits in the Status Register are sticky and do  
not automatically return to ‘0’ when a new Write to  
Buffer and Program, Erase, Block Protect, Block  
Unprotect or Protection Register Program com-  
mand is issued. If any error occurs then it is essen-  
tial to clear any error bits in the Status Register by  
issuing the Clear Status Register command before  
attempting a new Program, Erase or Resume  
command.  
Block Erase Command. The Block Erase com-  
mand can be used to erase a block. It sets all of  
the bits in the block to ‘1’. All previous data in the  
block is lost. If the block is protected then the  
Erase operation will abort, the data in the block will  
not be changed and the Status Register will output  
the error.  
Two Bus Write operations are required to issue the  
command; the second Bus Write cycle latches the  
block address in the internal state machine and  
starts the Program/Erase Controller. Once the  
command is issued subsequent Bus Read opera-  
tions read the Status Register. See the section on  
the Status Register for details on the definitions of  
the Status Register bits.  
During the Erase operation the memory will only  
accept the Read Status Register command and  
the Program/Erase Suspend command. All other  
commands will be ignored. Typical Erase times  
are given in Table 9.  
See Appendix C, Figure 25, Block Erase Flow-  
chart and Pseudo Code, for a suggested flowchart  
on using the Block Erase command.  
Word Program Command. The Word Program  
command is used to program a single word in the  
memory array. Two Bus Write operations are re-  
quired to issue the command; the first write cycle  
sets up the Word Program command, the second  
write cycle latches the address and data to be pro-  
grammed in the internal state machine and starts  
the Program/Erase Controller.  
Read Status Register Command. The Read Sta-  
tus Register command is used to read the Status  
20/61  
M58LW032C  
If the block being programmed is protected an er-  
ror will be set in the Status Register and the oper-  
ation will abort without affecting the data in the  
memory array. The block must be unprotected us-  
ing the Blocks Unprotect command.  
Write to Buffer and Program Command. The  
Write to Buffer and Program command is used to  
program the memory array.  
gram or Write to Buffer and Program command if  
the Program/Erase Controller is running.  
One Bus Write cycle is required to issue the Pro-  
gram/Erase Suspend command and pause the  
Program/Erase Controller. Once the command is  
issued it is necessary to poll the Program/Erase  
Controller Status bit (SR7) to find out when the  
Program/Erase Controller has paused; no other  
commands will be accepted until the Program/  
Erase Controller has paused. After the Program/  
Erase Controller has paused, the memory will con-  
tinue to output the Status Register until another  
command is issued.  
Up to 16 Words can be loaded into the Write Buffer  
and programmed into the memory. Each Write  
Buffer has the same A5-A21 addresses.  
Four successive steps are required to issue the  
command.  
During the polling period between issuing the Pro-  
gram/Erase Suspend command and the Program/  
Erase Controller pausing it is possible for the op-  
eration to complete. Once the Program/Erase  
Controller Status bit (SR7) indicates that the Pro-  
gram/Erase Controller is no longer active, the Pro-  
gram Suspend Status bit (SR2) or the Erase  
Suspend Status bit (SR6) can be used to deter-  
mine if the operation has completed or is suspend-  
ed. For timing on the delay between issuing the  
Program/Erase Suspend command and the Pro-  
gram/Erase Controller pausing see Table 9.  
1. One Bus Write operation is required to set up  
the Write to Buffer and Program Command. Is-  
sue the set up command with the selected  
memory Block Address where the program op-  
eration should occur (any address in the block  
where the values will be programmed can be  
used). Any Bus Read operations will start to out-  
put the Status Register after the 1st cycle.  
2. Use one Bus Write operation to write the same  
block address along with the value N on the  
Data Inputs/Output, where N+1 is the number of  
Words to be programmed.  
During Program/Erase Suspend the Read Memo-  
ry Array, Read Status Register, Read Electronic  
Signature, Read Query and Program/Erase Re-  
sume commands will be accepted by the Com-  
mand Interface. Additionally, if the suspended  
operation was Erase then the Write to Buffer and  
Program, and the Program Suspend commands  
will also be accepted. When a program operation  
is completed inside a Block Erase Suspend the  
Read Memory Array command must be issued to  
reset the device in Read mode, then the Erase Re-  
sume command can be issued to complete the  
whole sequence. Only the blocks not being erased  
may be read or programmed correctly.  
3. Use N+1 Bus Write operations to load the ad-  
dress and data for each Word into the Write  
Buffer. See the constraints on the address com-  
binations listed below. The addresses must  
have the same A5-A21.  
4. Finally, use one Bus Write operation to issue the  
final cycle to confirm the command and start the  
Program operation.  
Invalid address combinations or failing to follow  
the correct sequence of Bus Write cycles will set  
an error in the Status Register and abort the oper-  
ation without affecting the data in the memory ar-  
ray. The Status Register should be cleared before  
re-issuing the command.  
If the block being programmed is protected an er-  
ror will be set in the Status Register and the oper-  
ation will abort without affecting the data in the  
memory array. The block must be unprotected us-  
ing the Blocks Unprotect command.  
See Appendix C, Figure 23, Write to Buffer and  
Program Flowchart and Pseudo Code, for a sug-  
gested flowchart on using the Write to Buffer and  
Program command.  
See Appendix C, Figure 24, Program Suspend &  
Resume Flowchart and Pseudo Code, and Figure  
26, Erase Suspend & Resume Flowchart and  
Pseudo Code, for suggested flowcharts on using  
the Program/Erase Suspend command.  
Program/Erase Resume Command. The  
gram/Erase Resume command can be used to re-  
start the Program/Erase Controller after  
Pro-  
a
Program/Erase Suspend operation has paused it.  
One Bus Write cycle is required to issue the Pro-  
gram/Erase Resume command. Once the com-  
mand is issued subsequent Bus Read operations  
read the Status Register.  
Program/Erase Suspend Command. The  
Pro-  
gram/Erase Suspend command is used to pause a  
Word Program, Write to Buffer and Program or  
Erase operation. The command will only be ac-  
cepted during a Program or an Erase operation. It  
can be issued at any time during an Erase opera-  
tion but will only be accepted during a Word Pro-  
Set Configuration Register Command. The  
Set Configuration Register command is used to  
write a new value to the Burst Configuration Con-  
trol Register which defines the burst length, type,  
X and Y latencies, Synchronous/Asynchronous  
21/61  
M58LW032C  
Read mode and the valid Clock edge configura-  
tion.  
time. Two write cycles are required to issue the  
Protection Register Program command.  
Two Bus Write cycles are required to issue the Set  
Configuration Register command. Once the com-  
mand is issued the memory returns to Read mode  
as if a Read Memory Array command had been is-  
sued.  
The first bus cycle sets up the Protection  
Register Program command.  
The second latches the Address and the Data to  
be written to the Protection Register and starts  
the Program/Erase Controller.  
The value for the Configuration Register is pre-  
sented on A1-A16. CR0 is on A1, CR1 on A2, etc.;  
the other address bits are ignored.  
Read operations output the Status Register con-  
tent after the programming has started.  
The user-programmable segment can be locked  
by programming bit 1 of the Protection Register  
Lock location to ‘0’ (see Table 8). Bit 0 of the Pro-  
tection Register Lock location locks the factory  
programmed segment and is programmed to ‘0’ in  
the factory. The locking of the Protection Register  
is not reversible, once the lock bits are pro-  
grammed no further changes can be made to the  
values stored in the Protection Register, see Fig-  
ure 8, Protection Register Memory Map. Attempt-  
ing to program a previously protected Protection  
Register will result in a Status Register error.  
The Protection Register Program cannot be sus-  
pended. See Appendix C, Figure 29, Protection  
Register Program Flowchart and Pseudo Code,  
for the flowchart for using the Protection Register  
Program command.  
Block Protect Command. The Block Protect  
command is used to protect a block and prevent  
Program or Erase operations from changing the  
data in it. Two Bus Write cycles are required to is-  
sue the Block Protect command; the second Bus  
Write cycle latches the block address in the inter-  
nal state machine and starts the Program/Erase  
Controller. Once the command is issued subse-  
quent Bus Read operations read the Status Reg-  
ister. See the section on the Status Register for  
details on the definitions of the Status Register  
bits.  
During the Block Protect operation the memory will  
only accept the Read Status Register command.  
All other commands will be ignored. Typical Block  
Protection times are given in Table 9.  
The Block Protection bits are non-volatile, once  
set they remain set through reset and power-  
down/power-up. They are cleared by a Blocks Un-  
protect command.  
See Appendix C, Figure 27, Block Protect Flow-  
chart and Pseudo Code, for a suggested flowchart  
on using the Block Protect command.  
Configure STS Command.  
The Configure STS command is used to configure  
the Status/(Ready/Busy) pin. After power-up or re-  
set the STS pin is configured in Ready/Busy  
mode. The pin can be configured in Status mode  
using the Configure STS command (refer to Sta-  
tus/(Ready/Busy) section for more details.  
Blocks Unprotect Command. The Blocks Un-  
protect command is used to unprotect all of the  
blocks. Two Bus Write cycles are required to issue  
the Blocks Unprotect command; the second Bus  
Write cycle starts the Program/Erase Controller.  
Once the command is issued subsequent Bus  
Read operations read the Status Register. See the  
section on the Status Register for details on the  
definitions of the Status Register bits.  
Two write cycles are required to issue the Config-  
ure STS command.  
The first bus cycle sets up the Configure STS  
command.  
The second specifies one of the four possible  
configurations (refer to Table 6, Configuration  
Codes):  
– Ready/Busy mode  
During the Block Unprotect operation the memory  
will only accept the Read Status Register com-  
mand. All other commands will be ignored. Typical  
Block Protection times are given in Table 9.  
– Pulse on Erase complete mode  
– Pulse on Program complete mode  
– Pulse on Erase or Program complete mode  
See Appendix C, Figure 28, Block Unprotect Flow-  
chart and Pseudo Code, for a suggested flowchart  
on using the Block Unprotect command.  
Protection Register Program Command. The  
Protection Register Program command is used to  
Program the 64 bit user segment of the Protection  
Register. The segment is programmed 16 bits at a  
The device will not accept the Configure STS com-  
mand while the Program/Erase controller is busy  
or during Program/Erase Suspend. When STS pin  
is pulsing it remains Low for a typical time of  
250ns. Any invalid Configuration Code will set an  
error in the Status Register.  
22/61  
M58LW032C  
Table 5. Commands  
Command  
Bus Operations  
1st Cycle  
2nd Cycle  
Addr.  
Subsequent  
Final  
Op. Addr. Data Op.  
Data Op. Addr. Data Op. Addr. Data  
Read Memory Array  
2 Write  
X
X
X
X
FFh Read  
90h Read  
70h Read  
98h Read  
RA  
RD  
(3)  
(3)  
Read Electronic Signature 2 Write  
IDA  
IDD  
Read Status Register  
Read Query  
2
Write  
X
SRD  
(4)  
(4)  
2 Write  
QA  
QD  
Clear Status Register  
Block Erase  
1
2
Write  
Write  
X
X
50h  
20h Write  
BA  
PA  
D0  
PD  
40h  
Word Program  
2
Write  
X
Write  
10h  
Write to Buffer and  
Program  
4 + N Write BA E8h Write  
BA  
N
Write PA  
PD Write  
X
D0h  
Program/Erase Suspend  
Program/Erase Resume  
Set Configuration Register  
Block Protect  
1
1
2
2
2
Write  
Write  
Write  
Write  
Write  
X
X
X
X
X
B0h  
D0h  
60h Write  
60h Write  
60h Write  
BCR  
BA  
X
03h  
01h  
D0h  
Blocks Unprotect  
Protection Register  
Program  
2
2
Write  
Write  
X
X
C0h Write  
B8h Write  
PRA  
X
PRD  
CC  
Configure STS command  
Note: 1. X Don’t Care; RA Read Address, RD Read Data, IDA Identifier Address, IDD Identifier Data, SRD Status Register Data, PA Program  
Address; PD Program Data, QA Query Address, QD Query Data, BA Any address in the Block, BCR Configuration Register value,  
CC Configuration Code.  
2. Base Address, refer to Figure 8 and Table 8 for more information.  
3. For Identifier addresses and data refer to table 7, Read Electronic Signature.  
4. For Query Address and Data refer to Appendix B, CFI.  
23/61  
M58LW032C  
Table 6. Configuration Codes  
Configuration  
DQ1 DQ2  
Code  
Mode  
STS Pin  
Description  
V
during P/E  
The STS pin is Low during Program and  
Erase operations and high impedance when  
the memory is ready for any Read, Program  
or Erase operation.  
OL  
operations  
Hi-Z when the  
memory is ready  
00h  
0
0
Ready/Busy  
Pulse on Erase  
complete  
Supplies a system interrupt pulse at the end  
of a Block Erase operation.  
01h  
02h  
0
1
1
0
Pulse Low then  
High when  
Pulse on  
Program  
complete  
Supplies a system interrupt pulse at the end  
of a Program operation.  
operation  
(2)  
completed  
Pulse on Erase  
or Program  
complete  
Supplies a system interrupt pulse at the end  
of a Block Erase or Program operation.  
03h  
1
1
Note: 1. DQ2-DQ7 are reserved  
2. When STS pin is pulsing it remains Low for a typical time of 250ns.  
Table 7. Read Electronic Signature  
Code  
Manufacturer Code  
Address (A21-A1)  
000000h  
Data (DQ15-DQ0)  
0020h  
Device Code  
000001h  
8822h  
0000h (Block Unprotected)  
0001h (Block Protected)  
Block Protection Status  
SBA+02h  
000005h  
Configuration Register  
Protection Register  
BCR  
PRD  
(2)  
000080h  
Note: 1. SBA is the Start Base Address of each block, BCR is Configuration Register data, PRD is Protection Register Data.  
2. Base Address, refer to Figure 8 and Table 8 for more information.  
Table 8. Read Protection Register  
Word  
Use  
Factory, User  
Factory (Unique ID)  
Factory (Unique ID)  
Factory (Unique ID)  
Factory (Unique ID)  
User  
A8  
1
A7  
0
A6  
0
A5  
0
A4  
0
A3  
0
A2  
0
A1  
0
Lock  
0
1
2
3
4
5
6
7
1
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
0
0
1
0
1
User  
1
0
0
0
0
1
1
0
User  
1
0
0
0
0
1
1
1
User  
1
0
0
0
1
0
0
0
24/61  
M58LW032C  
Figure 8. Protection Register Memory Map  
WORD  
ADDRESS  
88h  
User Programmable  
85h  
84h  
Unique device number  
81h  
80h  
Protection Register Lock  
1
0
AI05501  
Table 9. Program, Erase Times and Program Erase Endurance Cycles  
M58LW032C  
Parameters  
Unit  
(1,2)  
(2)  
Min  
Typ  
Max  
(4)  
Block (1Mb) Erase  
1.2  
s
s
4.8  
(4)  
Chip Program (Write to Buffer)  
Chip Erase Time  
24  
37  
72  
110  
576  
(4)  
(4)  
s
(3)  
Program Write Buffer  
µs  
192  
Word/Byte Program Time  
(Word/Byte Program command)  
(4)  
16  
µs  
48  
(5)  
(5)  
(5)  
(5)  
Program Suspend Latency Time  
Erase Suspend Latency Time  
Block Protect Time  
1
1
µs  
µs  
µs  
20  
25  
30  
1.2  
18  
0.75  
Blocks Unprotect Time  
Program/Erase Cycles (per block)  
Data Retention  
s
100,000  
20  
cycles  
years  
Note: 1. Typical values measured at room temperature and nominal voltages.  
2. Sampled, but not 100% tested.  
3. Effective byte programming time 6µs, effective word programming time 12µs.  
4. Maximum value measured at worst case conditions for both temperature and V after 100,000 program/erase cycles.  
DD  
5. Maximum value measured at worst case conditions for both temperature and V  
.
DD  
25/61  
M58LW032C  
STATUS REGISTER  
The Status Register provides information on the  
current or previous Program, Erase, Block Protect  
or Blocks Unprotect operation. The various bits in  
the Status Register convey information and errors  
on the operation. They are output on DQ7-DQ0.  
inactive); after a Program/Erase Suspend com-  
mand is issued the memory may still complete the  
operation rather than entering the Suspend mode.  
When the Erase Suspend Status bit is Low, V  
,
OL  
the Program/Erase Controller is active or has com-  
To read the Status Register the Read Status Reg-  
ister command can be issued. The Status Register  
is automatically read after Program, Erase, Block  
Protect, Blocks Unprotect and Program/Erase Re-  
sume commands. The Status Register can be  
read from any address.  
pleted its operation; when the bit is High, V , a  
OH  
Program/Erase Suspend command has been is-  
sued and the memory is waiting for a Program/  
Erase Resume command.  
When a Program/Erase Resume command is is-  
sued the Erase Suspend Status bit returns Low.  
The Status Register can only be read using Asyn-  
chronous Bus Read or Single Synchronous Read  
operations. Once the memory returns to Read  
Memory Array mode the bus will resume the set-  
ting in the Configuration Register automatically.  
The contents of the Status Register can be updat-  
ed during an Erase or Program operation by tog-  
gling the Output Enable pin or by dis-activating  
Erase Status Bit (SR5). The Erase Status bit  
can be used to identify if the memory has failed to  
verify that the block has erased correctly or that all  
blocks have been unprotected successfully. The  
Erase Status bit should be read once the Program/  
Erase Controller Status bit is High (Program/Erase  
Controller inactive).  
When the Erase Status bit is Low, V , the mem-  
OL  
(Chip Enable, V ) and then reactivating (Chip En-  
IH  
ory has successfully verified that the block has  
erased correctly or all blocks have been unprotect-  
ed successfully. When the Erase Status bit is  
able and Output Enable, V ) the device.  
IL  
Status Register bits SR5, SR4, SR3 and SR1 are  
associated with various error conditions and can  
only be reset with the Clear Status Register com-  
mand. The Status Register bits are summarized in  
Table 10, Status Register Bits. Refer to Table 10  
in conjunction with the following text descriptions.  
High, V , the erase operation has failed. De-  
OH  
pending on the cause of the failure other Status  
Register bits may also be set to High, V  
.
OH  
If only the Erase Status bit (SR5) is set High,  
, then the Program/Erase Controller has  
V
OH  
Program/Erase Controller Status Bit (SR7). The  
Program/Erase Controller Status bit indicates  
whether the Program/Erase Controller is active or  
inactive. When the Program/Erase Controller Sta-  
applied the maximum number of pulses to the  
block and still failed to verify that the block has  
erased correctly or that all the blocks have been  
unprotected successfully.  
tus bit is Low, V , the Program/Erase Controller  
is active and all other Status Register bits are High  
OL  
If the failure is due to an erase or blocks  
unprotect with V  
bit (SR3) is also set High, V  
low, V , then V  
Status  
PEN  
OL  
PEN  
Impedance; when the bit is High, V , the Pro-  
OH  
.
OH  
gram/Erase Controller is inactive.  
If the failure is due to an erase on a protected  
The Program/Erase Controller Status is Low im-  
mediately after a Program/Erase Suspend com-  
mand is issued until the Program/Erase Controller  
pauses. After the Program/Erase Controller paus-  
es the bit is High.  
During Program, Erase, Block Protect and Blocks  
Unprotect operations the Program/Erase Control-  
ler Status bit can be polled to find the end of the  
operation. The other bits in the Status Register  
should not be tested until the Program/Erase Con-  
troller completes the operation and the bit is High.  
block then Block Protection Status bit (SR1) is  
also set High, V  
.
OH  
If the failure is due to a program or erase  
incorrect command sequence then Program  
Status bit (SR4) is also set High, V  
.
OH  
Once set High, the Erase Status bit can only be re-  
set Low by a Clear Status Register command or a  
hardware reset. If set High it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
Program Status Bit (SR4). The Program Status  
bit is used to identify a Program or Block Protect  
failure. The Program Status bit should be read  
once the Program/Erase Controller Status bit is  
High (Program/Erase Controller inactive).  
After the Program/Erase Controller completes its  
operation the Erase Status, Program Status and  
Block Protection Status bits should be tested for  
errors.  
Erase Suspend Status Bit ( SR6). The  
Erase  
When the Program Status bit is Low, V , the  
OL  
Suspend Status bit indicates that an Erase opera-  
tion has been suspended and is waiting to be re-  
sumed. The Erase Suspend Status should only be  
considered valid when the Program/Erase Con-  
troller Status bit is High (Program/Erase Controller  
memory has successfully verified that the Write  
Buffer has programmed correctly or the block is  
protected. When the Program Status bit is High,  
V
, the program or block protect operation has  
OH  
26/61  
M58LW032C  
failed. Depending on the cause of the failure other  
Status Register bits may also be set to High, V  
Program Suspend Status Bit (SR2). The Pro-  
gram Suspend Status bit indicates that a Program  
operation has been suspended and is waiting to  
be resumed. The Program Suspend Status should  
only be considered valid when the Program/Erase  
Controller Status bit is High (Program/Erase Con-  
troller inactive); after a Program/Erase Suspend  
command is issued the memory may still complete  
the operation rather than entering the Suspend  
mode.  
.
OH  
If only the Program Status bit (SR4) is set High,  
, then the Program/Erase Controller has  
V
OH  
applied the maximum number of pulses to the  
byte and still failed to verify that the Write Buffer  
has programmed correctly or that the Block is  
protected.  
If the failure is due to a program or block protect  
with V  
is also set High, V  
low, V , then V  
Status bit (SR3)  
PEN  
OL  
PEN  
When the Program Suspend Status bit is Low,  
.
OH  
V
, the Program/Erase Controller is active or has  
OL  
If the failure is due to a program on a protected  
completed its operation; when the bit is High, V  
,
OH  
block then Block Protection Status bit (SR1) is  
a Program/Erase Suspend command has been is-  
sued and the memory is waiting for a Program/  
Erase Resume command.  
When a Program/Erase Resume command is is-  
sued the Program Suspend Status bit returns Low.  
also set High, V  
.
OH  
If the failure is due to a program or erase  
incorrect command sequence then Erase  
Status bit (SR5) is also set High, V  
.
OH  
Once set High, the Program Status bit can only be  
reset Low by a Clear Status Register command or  
a hardware reset. If set High it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
Block Protection Status Bit (SR1). The Block  
Protection Status bit can be used to identify if a  
Program or Erase operation has tried to modify the  
contents of a protected block.  
When the Block Protection Status bit is Low, V  
,
OL  
V
Status Bit (SR3). The V  
Status bit can  
PEN  
PEN  
no Program or Erase operations have been at-  
tempted to protected blocks since the last Clear  
Status Register command or hardware reset;  
be used to identify if a Program, Erase, Block Pro-  
tection or Block Unprotection operation has been  
attempted when V  
is Low, V .  
PEN  
IL  
when the Block Protection Status bit is High, V  
,
OH  
When the V  
Status bit is Low, V , no Pro-  
OL  
PEN  
a Program (Program Status bit SR4 set High) or  
Erase (Erase Status bit SR5 set High) operation  
has been attempted on a protected block.  
Once set High, the Block Protection Status bit can  
only be reset Low by a Clear Status Register com-  
mand or a hardware reset. If set High it should be  
reset before a new Program or Erase command is  
issued, otherwise the new command will appear to  
fail.  
gram, Erase, Block Protection or Block Unprotec-  
tion operations have been attempted with V  
PEN  
Low, V , since the last Clear Status Register com-  
IL  
mand, or hardware reset. When the V  
Status  
PEN  
bit is High, V , a Program, Erase, Block Protec-  
OH  
tion or Block Unprotection operation has been at-  
tempted with V  
Low, V .  
PEN  
IL  
Once set High, the V  
Status bit can only be re-  
PEN  
set by a Clear Status Register command or a hard-  
ware reset. If set High it should be reset before a  
new Program, Erase, Block Protection or Block  
Unprotection command is issued, otherwise the  
new command will appear to fail.  
Reserved (SR0). SR0 of the Status Register is  
reserved. Its value should be masked.  
27/61  
M58LW032C  
Table 10. Status Register Bits  
OPERATION  
Result  
(Hex)  
SR7  
SR6  
SR5  
SR4  
SR3  
SR2  
SR1  
RB  
V
Program/Erase Controller active  
Write Buffer not ready  
0
0
1
1
1
1
Hi-Z  
Hi-Z  
N/A  
N/A  
80h  
C0h  
84h  
C4h  
OL  
V
OL  
Write Buffer ready  
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Write Buffer ready in Erase Suspend  
Program suspended  
Program suspended in Erase Suspend  
Program/Block Protect completed  
successfully  
1
1
1
1
1
0
1
0
1
0
0
0
1
1
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
80h  
C0h  
B0h  
F0h  
98h  
Program completed successfully in Erase  
Suspend  
Program/Block protect failure due to  
incorrect command sequence  
Program failure due to incorrect command  
sequence in Erase Suspend  
Program/Block Protect failure due to  
V
error  
PEN  
Program failure due to V  
Suspend  
error in Erase  
PEN  
1
1
1
1
0
1
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
Hi-Z  
Hi-Z  
Hi-Z  
D8h  
92h  
D2h  
Program failure due to Block Protection  
Program failure due to Block Protection in  
Erase Suspend  
Program/Block Protect failure due to cell  
failure  
1
0
0
1
0
0
0
Hi-Z  
90h  
Program failure due to cell failure in Erase  
Suspend  
1
1
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
Hi-Z  
Hi-Z  
Hi-Z  
D0h  
C0h  
80h  
Erase Suspended  
Erase/Blocks Unprotect completed  
successfully  
Erase/Blocks Unprotect failure due to  
incorrect command sequence  
1
0
1
1
0
0
0
Hi-Z  
B0h  
Erase/Blocks Unprotect failure due to  
1
1
1
0
0
0
1
1
1
0
0
0
1
0
0
0
0
0
0
1
0
Hi-Z  
Hi-Z  
Hi-Z  
A8h  
A2h  
A0h  
V
PEN  
error  
Erase failure due to Block Protection  
Erase/Blocks Unprotect failure due to  
failed cells in Block  
28/61  
M58LW032C  
MAXIMUM RATING  
Stressing the device above the ratings listed in Ta-  
ble 11, Absolute Maximum Ratings, may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 11. Absolute Maximum Ratings  
Value  
Symbol  
Parameter  
Temperature Under Bias  
Unit  
Min  
–40  
–55  
–0.6  
–0.6  
Max  
125  
150  
T
BIAS  
°C  
°C  
V
T
Storage Temperature  
Input or Output Voltage  
Supply Voltage  
STG  
V
V
+0.6  
DDQ  
IO  
V
, V  
DD DDQ  
5.0  
V
29/61  
M58LW032C  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, and the DC and AC charac-  
teristics of the device. The parameters in the DC  
and AC characteristics Tables that follow, are de-  
rived from tests performed under the Measure-  
ment Conditions summarized in Table 12,  
Operating and AC Measurement Conditions. De-  
signers should check that the operating conditions  
in their circuit match the measurement conditions  
when relying on the quoted parameters.  
Table 12. Operating and AC Measurement Conditions  
Parameter  
M58LW032C  
90, 110  
Units  
Min  
Max  
Supply Voltage (V  
)
2.7  
1.8  
0
3.6  
V
V
DD  
Input/Output Supply Voltage (V  
)
V
DDQ  
DD  
Grade 1  
70  
°C  
°C  
pF  
ns  
ns  
V
Ambient Temperature (T )  
A
Grade 6  
–40  
85  
Load Capacitance (C )  
30  
L
Clock Rise and Fall Times  
Input Rise and Fall Times  
Input Pulses Voltages  
3
4
0 to V  
DDQ  
0.5 V  
Input and Output Timing Ref. Voltages  
V
DDQ  
Figure 9. AC Measurement Input Output  
Waveform  
Figure 10. AC Measurement Load Circuit  
1.3V  
1N914  
V
DDQ  
V
DD  
3.3kΩ  
V
DDQ  
0.5 V  
DDQ  
DEVICE  
UNDER  
TEST  
DQ  
S
0V  
C
L
AI00610  
0.1µF  
0.1µF  
C
includes JIG capacitance  
L
AI03459  
Table 13. Capacitance  
Symbol  
Parameter  
Test Condition  
Typ  
6
Max  
8
Unit  
pF  
pF  
C
V
IN  
= 0V  
= 0V  
Input Capacitance  
Output Capacitance  
IN  
C
OUT  
V
OUT  
8
12  
Note: 1. T = 25°C, f = 1 MHz  
A
2. Sampled only, not 100% tested.  
30/61  
M58LW032C  
Table 14. DC Characteristics  
Symbol  
Parameter  
Test Condition  
Min  
Max  
±1  
±5  
20  
Unit  
µA  
I
0VV V  
Input Leakage Current  
LI  
IN  
DDQ  
I
0VV  
V  
Output Leakage Current  
µA  
LO  
OUT DDQ  
I
E = V , G = V , f  
= 6MHz  
Supply Current (Random Read)  
Supply Current (Burst Read)  
Supply Current (Standby)  
mA  
mA  
µA  
DD  
IL  
IH add  
I
E = V , G = V , f = 50MHz  
IH clock  
30  
DDB  
IL  
I
E = V , RP = V  
40  
DD1  
IH  
IH  
I
E = V , RP = V  
Supply Current (Auto Low-Power)  
Supply Current (Reset/Power-Down)  
40  
µA  
DD5  
IL  
IH  
I
RP = V  
40  
µA  
DD2  
IL  
Supply Current (Program or Erase,  
Block Protect, Block Unprotect)  
Program or Erase operation in  
progress  
I
30  
40  
mA  
µA  
DD3  
Supply Current  
(Erase/Program Suspend)  
I
E = V  
DD4  
IH  
V
V
x 0.3  
DDQ  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.5  
V
V
V
V
IL  
V
IH  
V
x 0.7  
V + 0.5  
DDQ  
DDQ  
V
OL  
I
= 100µA  
OL  
0.2  
V
OH  
I
= –100µA  
V
–0.2  
OH  
DDQ  
V
Supply Voltage (Erase and  
DD  
V
2
V
LKO  
Program lockout)  
31/61  
M58LW032C  
Figure 11. Asynchronous Bus Read AC Waveforms  
tAVAV  
A1-A21  
VALID  
tELQV  
tELQX  
tAXQX  
E
L
tGLQV  
tGLQX  
tEHQZ  
tEHQX  
G
tAVQV  
tGHQZ  
tGHQX  
DQ0-DQ15  
OUTPUT  
AI06255  
Note: Asynchronous Read CR15 = 1  
Table 15. Asynchronous Bus Read AC Characteristics.  
M58LW032C  
Symbol  
Parameter  
Unit  
90  
110  
110  
110  
0
t
Address Valid to Address Valid  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Min  
Min  
Max  
Max  
90  
90  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
Address Valid to Output Valid  
AVQV  
t
Chip Enable Low to Output Transition  
Chip Enable Low to Output Valid  
Output Enable Low to Output Transition  
Output Enable Low to Output Valid  
Chip Enable High to Output Transition  
Output Enable High to Output Transition  
Address Transition to Output Transition  
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
ELQX  
t
90  
0
110  
0
ELQV  
t
GLQX  
t
25  
0
25  
0
GLQV  
t
EHQX  
t
0
0
GHQX  
t
0
0
AXQX  
t
25  
20  
25  
20  
EHQZ  
t
GHQZ  
32/61  
M58LW032C  
Figure 12. Asynchronous Latch Controlled Bus Read AC Waveforms  
A1-A21  
VALID  
tAVLH  
tLHAX  
tAVLL  
L
tLHLL  
tLLLH  
tELLH  
tEHLX  
tELLL  
E
tGLQV  
tEHQZ  
tEHQX  
tGLQX  
G
tLLQX  
tLLQV  
tGHQZ  
tGHQX  
DQ0-DQ15  
OUTPUT  
AI06256b  
Note: Asynchronous Read CR15 = 1  
Table 16. Asynchronous Latch Controlled Bus Read AC Characteristics  
M58LW032C  
Symbol  
Parameter  
Unit  
90  
110  
0
t
Address Valid to Latch Enable Low  
Address Valid to Latch Enable High  
Latch Enable High to Latch Enable Low  
Latch Enable Low to Latch Enable High  
Chip Enable Low to Latch Enable Low  
Chip Enable Low to Latch Enable High  
Latch Enable Low to Output Transition  
Latch Enable Low to Output Valid  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
0
10  
10  
10  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVLL  
t
10  
10  
10  
0
AVLH  
t
LHLL  
t
LLLH  
t
ELLL  
t
10  
0
10  
0
ELLH  
t
LLQX  
t
90  
6
110  
6
LLQV  
t
Latch Enable High to Address Transition  
Output Enable Low to Output Transition  
Output Enable Low to Output Valid  
Chip Enable High to Latch Enable Transition  
LHAX  
t
0
0
GLQX  
t
25  
0
25  
0
GLQV  
t
EHLX  
Note: For other timings see Table 15, Asynchronous Bus Read Characteristics.  
33/61  
M58LW032C  
Figure 13. Asynchronous Page Read AC Waveforms  
A1-A2  
VALID  
VALID  
A3-A21  
VALID  
tAVQV  
tELQV  
tELQX  
tAXQX  
E
L
tAVQV1  
tEHQZ  
tEHQX  
tGLQV  
tGLQX  
tAXQX1  
G
tGHQZ  
tGHQX  
DQ0-DQ15  
OUTPUT  
OUTPUT  
AI06257  
Note: Asynchronous Read CR15 = 1  
Table 17. Asynchronous Page Read AC Characteristics  
M58LW032C  
Symbol  
Parameter  
Unit  
90, 110  
t
Address Transition to Output Transition  
Address Valid to Output Valid  
Min  
6
ns  
ns  
AXQX1  
t
Max  
25  
AVQV1  
Note: For other timings see Table 15, Asynchronous Bus Read Characteristics.  
34/61  
M58LW032C  
Figure 14. Asynchronous Write AC Waveform, Write Enable Controlled  
A1-A21  
VALID  
tAVWH  
tWHAX  
E
L
tELWL  
tGHWL  
tWHEH  
G
tWHGL  
tWLWH  
tWHWL  
W
tDVWH  
INPUT  
DQ0-DQ15  
tWHDX  
RB  
tVPHWH  
tWHBL  
V
PEN  
AI06258  
Figure 15. Asynchronous Latch Controlled Write AC Waveform, Write Enable Controlled  
A1-A21  
VALID  
tAVLH  
tLHAX  
L
tELLL  
tLLLH  
tWLLH  
tLHGL  
tLHWH  
E
tELWL  
tGHWL  
tWHEH  
G
tWLWH  
tDVWH  
tWHWL  
tWHGL  
W
DQ0-DQ15  
INPUT  
tWHDX  
tWHBL  
RB  
tVPHWH  
V
PEN  
AI06259  
35/61  
M58LW032C  
Table 18. Asynchronous Write and Latch Controlled Write AC Characteristics, Write Enable  
Controlled.  
M58LW032C  
Symbol  
Parameter  
Address Valid to Latch Enable High  
Unit  
90, 110  
10  
50  
50  
0
t
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVLH  
t
Address Valid to Write Enable High  
AVWH  
t
Data Input Valid to Write Enable High  
Chip Enable Low to Write Enable Low  
Chip Enable Low to Latch Enable Low  
Latch Enable High to Address Transition  
Latch Enable High to Output Enable Low  
Latch Enable High to Write Enable High  
Latch Enable low to Latch Enable High  
Latch Enable Low to Write Enable High  
Program/Erase Enable High to Write Enable High  
Write Enable High to Address Transition  
Write Enable High to Ready/Busy low  
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Output Enable High to Write Enable Low  
Write Enable High to Output Enable Low  
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
Write Enable Low to Latch Enable High  
DVWH  
t
ELWL  
t
0
ELLL  
t
6
LHAX  
t
95  
0
LHGL  
t
LHWH  
t
10  
50  
0
LLLH  
t
LLWH  
t
VPHWH  
t
0
WHAX  
t
500  
0
WHBL  
t
WHDX  
t
0
WHEH  
t
20  
35  
30  
70  
10  
GHWL  
t
WHGL  
t
WHWL  
t
WLWH  
t
WLLH  
36/61  
M58LW032C  
Figure 16. Asynchronous Write AC Waveforms, Chip Enable Controlled  
A1-A21  
VALID  
tAVEH  
tEHAX  
W
G
tWLEL  
tEHWH  
tGHEL  
tELEH  
tEHEL  
tEHGL  
E
L
tDVEH  
INPUT  
DQ0-DQ15  
RB  
tEHDX  
tEHBL  
tVPHEH  
V
PEN  
AI06260  
Figure 17. Asynchronous Latch Controlled Write AC Waveforms, Chip Enable Controlled  
A1-A21  
VALID  
tAVLH  
tAVEH  
tLHAX  
tEHAX  
L
tLLLH  
tELLH  
tWLLL  
tLHEH  
tLHGL  
W
G
tWLEL  
tGHEL  
tEHWH  
tELEH  
tEHEL  
tEHGL  
E
tDVEH  
INPUT  
DQ0-DQ15  
tEHDX  
RB  
tVPHEH  
tEHBL  
V
PEN  
AI06261  
37/61  
M58LW032C  
Table 19. Asynchronous Write and Latch Controlled Write AC Characteristics, Chip Enable  
Controlled  
M58LW032C  
Symbol  
Parameter  
Address Valid to Latch Enable High  
Unit  
90, 110  
10  
50  
50  
0
t
Min  
Min  
Min  
Min  
Max  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVLH  
t
Address Valid to Chip Enable High  
AVEH  
t
Data Input Valid to Chip Enable High  
Chip Enable High to Address Transition  
Chip Enable High to Ready/Busy low  
Chip Enable High to Input Transition  
Chip Enable High to Write Enable High  
Chip Enable High to Output Enable Low  
Chip Enable High to Chip Enable Low  
Chip Enable Low to Chip Enable High  
Chip Enable Low to Latch Enable High  
Output Enable High to Chip Enable Low  
Latch Enable High to Address Transition  
Latch Enable High to Output Enable Low  
Latch Enable High to Chip Enable High  
Latch Enable low to Latch Enable High  
Latch Enable Low to Chip Enable High  
Program/Erase Enable High to Chip Enable High  
Write Enable Low to Chip Enable Low  
Write Enable Low to Latch Enable Low  
DVEH  
t
EHAX  
t
500  
0
EHBL  
t
EHDX  
t
0
EHWH  
t
35  
30  
70  
10  
20  
6
EHGL  
t
EHEL  
t
ELEH  
t
ELLH  
t
GHEL  
t
LHAX  
t
35  
0
LHGL  
t
LHEH  
t
10  
50  
0
LLLH  
t
LLEH  
t
VPHEH  
t
0
WLEL  
t
0
WLLL  
38/61  
M58LW032C  
Figure 18. Synchronous Burst Read AC Waveform  
Note: Valid Clock Edge = Rising (CR6 = 1)  
39/61  
M58LW032C  
Figure 19. Synchronous Burst Read - Continuous - Valid Data Ready Output  
K
(2)  
Output  
R
V
V
V
NV  
NV  
V
V
tRLKH  
(3)  
AI05510  
Note: 1. Valid Data Ready = Valid Low during valid clock edge (CR8 = 0)  
2. V= Valid output, NV= Not Valid output.  
3. R is an open drain output with an internal pull up resistor of 1MΩ. Depending on the Valid Data Ready pin capacitance load an  
external pull up resistor must be chosen according to the system clock period.  
Table 20. Synchronous Burst Read AC Characteristics  
M58LW032C  
Unit  
Symbol  
Parameter  
90, 110  
t
Address Valid to Active Clock Edge  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
Min  
7
10  
10  
10  
20  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVKH  
t
Address Valid to Latch Enable High  
Chip Enable Low to Active Clock Edge  
Chip Enable Low to Latch Enable High  
Output Enable Low to Valid Clock Edge  
Valid Clock Edge to Address Transition  
Valid Clock Edge to Latch Enable Low  
Valid Clock Edge to Latch Enable High  
Valid Clock Edge to Output Transition  
Latch Enable Low to Valid Clock Edge  
Latch Enable Low to Latch Enable High  
Valid Clock Edge to Output Valid  
AVLH  
t
ELKH  
t
ELLH  
t
GLKH  
t
KHAX  
t
0
KHLL  
t
0
KHLH  
t
3
KHQX  
t
6
LLKH  
t
7
LLLH  
t
15  
5
KHQV  
t
Output Valid to Active Clock Edge  
QVKH  
t
Valid Data Ready Low to Valid Clock Edge  
5
RLKH  
Note: For other timings see Table 15, Asynchronous Bus Read Characteristics.  
40/61  
M58LW032C  
Figure 20. Reset, Power-Down and Power-up AC Waveform  
W
E, G  
DQ0-DQ15  
tPHQV  
RB  
RP  
tPLRH  
tVDHPH  
tPLPH  
VDD, VDDQ  
Power-Up  
and Reset  
Reset during  
Program or Erase  
AI05521  
Table 21. Reset, Power-Down and Power-up AC Characteristics  
M58LW032C  
Symbol  
Parameter  
Reset/Power-Down High to Data Valid  
Unit  
90  
110  
150  
100  
30  
t
Max  
Min  
Max  
Min  
130  
100  
30  
ns  
ns  
µs  
µs  
PHQV  
t
Reset/Power-Down Low to Reset/Power-Down High  
Reset/Power-Down Low to Ready High  
PLPH  
t
PLRH  
t
Supply Voltages High to Reset/Power-Down High  
0
0
VDHPH  
41/61  
M58LW032C  
PACKAGE MECHANICAL  
Figure 21. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
A1  
α
L
Note: Drawing is not to scale.  
Table 22. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symbol  
Typ  
Max  
1.20  
0.15  
1.05  
0.27  
0.21  
20.20  
18.50  
14.10  
Typ  
Max  
0.0472  
0.0059  
0.0413  
0.0106  
0.0083  
0.7953  
0.7283  
0.5551  
A
A1  
A2  
B
0.05  
0.95  
0.17  
0.10  
19.80  
18.30  
13.90  
0.0020  
0.0374  
0.0067  
0.0039  
0.7795  
0.7205  
0.5472  
C
D
D1  
E
e
0.50  
0.0197  
L
0.50  
0°  
0.70  
5°  
0.0197  
0°  
0.0276  
5°  
α
N
56  
56  
CP  
0.10  
0.0039  
42/61  
M58LW032C  
Figure 22. TBGA64 10x13mm - 8x8 ball array, 1mm pitch, Package Outline  
D
D1  
FD  
FE  
SD  
SE  
E
E1  
ddd  
BALL "A1"  
A
e
b
A2  
A1  
BGA-Z23  
Note: Drawing is not to scale.  
Table 23. TBGA64 10x13mm - 8x8 ball array, 1mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
1.200  
0.350  
0.850  
0.500  
10.100  
Typ  
Max  
A
A1  
A2  
b
0.0472  
0.300  
0.200  
0.0118  
0.0079  
0.0138  
0.0335  
0.400  
9.900  
0.0157  
0.3898  
0.0197  
D
10.000  
7.000  
0.3937  
0.3976  
D1  
ddd  
e
0.2756  
0.100  
0.0039  
1.000  
13.000  
7.000  
1.500  
3.000  
0.500  
0.500  
0.0394  
0.5118  
0.2756  
0.0591  
0.1181  
0.0197  
0.0197  
E
12.900  
13.100  
0.5079  
0.5157  
E1  
FD  
FE  
SD  
SE  
43/61  
M58LW032C  
PART NUMBERING  
Table 24. Ordering Information Scheme  
Example:  
M58LW032C  
110 N  
1
T
Device Type  
M58  
Architecture  
L = Page Mode, Burst  
Operating Voltage  
W = V = 2.7V to 3.6V; V  
= 1.8 to V  
DD  
DD  
DDQ  
Device Function  
032C = 32 Mbit (x16), Uniform Block  
Speed  
90 = 90ns  
110 = 110ns  
Package  
N = TSOP56: 14 x 20 mm  
ZA = TBGA64: 10 x 13mm, 1mm pitch  
Temperature Range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Option  
Blank = Standard Packing  
T = Tape & Reel Packing  
E = Lead-free Package, Standard Packing  
F = Lead-free Package, Tape & Reel Packing  
Note: Devices are shipped from the factory with the memory content bits erased to ’1’.  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the ST Sales Office nearest to you.  
44/61  
M58LW032C  
APPENDIX A. BLOCK ADDRESS TABLE  
Table 25. Block Addresses  
Block  
Number  
Address Range  
(x16 Bus Width)  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
1F0000h-1FFFFFh  
1E0000h-1EFFFFh  
1D0000h-1DFFFFh  
1C0000h-1CFFFFh  
1B0000h-1BFFFFh  
1A0000h-1AFFFFh  
190000h-19FFFFh  
180000h-18FFFFh  
170000h-17FFFFh  
160000h-16FFFFh  
150000h-15FFFFh  
140000h-14FFFFh  
130000h-13FFFFh  
120000h-12FFFFh  
110000h-11FFFFh  
100000h-10FFFFh  
0F0000h-0FFFFFh  
0E0000h-0EFFFFh  
0D0000h-0DFFFFh  
0C0000h-0CFFFFh  
0B0000h-0BFFFFh  
0A0000h-0AFFFFh  
090000h-09FFFFh  
080000h-08FFFFh  
070000h-07FFFFh  
060000h-06FFFFh  
050000h-05FFFFh  
040000h-04FFFFh  
030000h-03FFFFh  
020000h-02FFFFh  
010000h-01FFFFh  
000000h-00FFFFh  
8
7
6
5
4
3
2
1
45/61  
M58LW032C  
APPENDIX B. COMMON FLASH INTERFACE - CFI  
The Common Flash Interface is a JEDEC ap-  
proved, standardized data structure that can be  
read from the Flash memory device. It allows a  
system software to query the device to determine  
various electrical and timing parameters, density  
information and functions supported by the mem-  
ory. The system can interface easily with the de-  
vice, enabling the software to upgrade itself when  
necessary.  
When the CFI Query Command (RCFI) is issued  
the device enters CFI Query mode and the data  
structure is read from the memory. Tables 26, 27,  
28, 29, 30 and 31 show the addresses used to re-  
trieve the data.  
Table 26. Query Structure Overview  
Offset  
00h  
Sub-section Name  
Description  
Manufacturer Code  
01h  
Device Code  
10h  
CFI Query Identification String  
Command set ID and algorithm data offset  
Device timing and voltage information  
Flash memory layout  
1Bh  
27h  
System Interface Information  
Device Geometry Definition  
Additional information specific to the Primary  
Algorithm (optional)  
(1)  
Primary Algorithm-specific Extended Query Table  
P(h)  
Additional information specific to the Alternate  
Algorithm (optional)  
(2)  
Alternate Algorithm-specific Extended Query Table  
A(h)  
(SBA+02)h Block Status Register  
Block-related Information  
Note: 1. Offset 15h defines P which points to the Primary Algorithm Extended Query Address Table.  
2. Offset 19h defines A which points to the Alternate Algorithm Extended Query Address Table.  
3. SBA is the Start Base Address for each block.  
Table 27. CFI - Query Address and Data Output  
Data  
Instruction  
Address A21-A1  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
51h  
52h  
59h  
"Q"  
"R"  
"Y"  
51h; "Q"  
52h; "R"  
59h; "Y"  
Query ASCII String  
Primary Vendor:  
01h  
00h  
31h  
00h  
00h  
00h  
00h  
00h  
Command Set and Control Interface ID Code  
Primary algorithm extended Query Address Table: P(h)  
Alternate Vendor:  
Command Set and Control Interface ID Code  
Alternate Algorithm Extended Query address Table  
(2)  
1Ah  
Note: 1. Query Data are always presented on DQ7-DQ0. DQ15-DQ8 are set to ’0’.  
2. Offset 19h defines A which points to the Alternate Algorithm Extended Query Address Table.  
46/61  
M58LW032C  
Table 28. CFI - Device Voltage and Timing Specification  
Data  
Description  
Address A21-A1  
(1)  
V
V
V
V
Min, 2.7V  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
DD  
DD  
PP  
PP  
27h  
36h  
00h  
00h  
(1)  
(2)  
(2)  
max, 3.6V  
min – Not Available  
max – Not Available  
n
04h  
2 µs typical time-out for Word, DWord prog – Not Available  
n
08h  
0Ah  
2 µs, typical time-out for max buffer write  
n
2 ms, typical time-out for Erase Block  
(3)  
n
00h  
2 ms, typical time-out for chip erase – Not Available  
n
04h  
04h  
04h  
2 x typical for Word Dword time-out max – Not Available  
n
2 x typical for buffer write time-out max  
n
2 x typical for individual block erase time-out maximum  
(3)  
n
00h  
2 x typical for chip erase max time-out – Not Available  
Note: 1. Bits are coded in Binary Code Decimal, bit7 to bit4 are scaled in Volts and bit3 to bit0 in mV.  
2. Bit7 to bit4 are coded in Hexadecimal and scaled in Volts while bit3 to bit0 are in Binary Code Decimal and scaled in 100mV.  
3. Not supported.  
Table 29. Device Geometry Definition  
Data  
Description  
Address A21-A1  
n
27h  
16h  
n where 2 is number of bytes memory Size  
Device Interface  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
01h  
00h  
05h  
00h  
01h  
1Fh  
00h  
00h  
02h  
Organization Sync./Async.  
n
Maximum number of bytes in Write Buffer, 2  
Bit7-0 = number of Erase Block Regions in device  
Number (n-1) of Erase Blocks of identical size; n=64  
Erase Block Region Information  
x 256 bytes per Erase block (128K bytes)  
47/61  
M58LW032C  
Table 30. Block Status Register  
Address A21-A1  
Data  
Selected Block Information  
Block UnProtected  
0
1
0
bit0  
Block Protected  
(2)  
(1)  
Last erase operation ended successfully  
(BA+2)h  
bit1  
(2)  
1
0
Last erase operation not ended successfully  
Reserved for future features  
bit7-2  
Note: 1. BA specifies the block address location, A21-A17.  
2. Not Supported.  
48/61  
M58LW032C  
Table 31. Extended Query information  
Address  
offset  
Address  
A21-A2  
Data (Hex)  
x16 Bus Width  
Description  
(P)h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
50h  
"P"  
"R"  
"I"  
(P+1)h  
(P+2)h  
(P+3)h  
(P+4)h  
(P+5)h  
(P+6)h  
(P+7)h  
52h  
49h  
Query ASCII string - Extended Table  
31h  
31h  
CEh  
01h  
00h  
Major version number  
Minor version number  
Optional Feature: (1=yes, 0=no)  
bit0, Chip Erase Supported (0=no)  
bit1, Suspend Erase Supported (1=yes)  
bit2, Suspend Program Supported (1=yes)  
bit3, Protect/UnProtect Supported (1=yes)  
bit4, Queue Erase Supported (0=no)  
bit5, Instant Individual Block locking (0=no)  
bit6, Protection bits supported (1=yes)  
bit7, Page Read supported (1=yes)  
bit8, Synchronous Read supported (1=yes)  
bits 9 to 31 reserved for future use  
(P+8)h  
39h  
00h  
Function allowed after Suspend:  
(P+9)h  
3Ah  
01h  
Program allowed after Erase Suspend (1=yes)  
Bit 7-1 reserved for future use  
Block Status Register  
(P+A)h  
(P+B)h  
3Bh  
3Ch  
01h  
00h  
bit0, Block Protect Bit status active (1=yes)  
bit1, Block Lock-Down Bit status active (not available)  
bits 2 to 15 reserved for future use  
V
V
OPTIMUM Program/Erase voltage conditions  
OPTIMUM Program/Erase voltage conditions  
(P+C)h  
(P+D)h  
(P+E)h  
(P+F)h  
(P+10)h  
(P+11)h  
3Dh  
3Eh  
3Fh  
40h  
41h  
42h  
33h  
00h  
01h  
80h  
00h  
03h  
DD  
PP  
OTP protection: No. of protection register fields  
Protection Register’s start address, least significant bits  
Protection Register’s start address, most significant bits  
n
n where 2 is number of factory reprogrammed bytes  
n
(P+12)h  
(P+13)h  
(P+14)h  
(P+15)h  
(P+16)h  
(P+17)h  
43h  
44h  
45h  
46h  
47h  
48h  
03h  
03h  
03h  
01h  
02h  
07h  
n where 2 is number user programmable bytes  
n
Page Read: 2 Bytes (n = bits 0-7)  
Synchronous mode configuration fields  
n+1  
n where 2  
is the number of Words for the burst Length = 4  
is the number of Words for the burst Length = 8  
n+1  
n where 2  
Burst Continuous  
Note: 1. Bit7 to bit4 are coded in Hexadecimal and scaled in Volt while bit3 to bit0 are in Binary Code Decimal and scaled in mV.  
49/61  
M58LW032C  
APPENDIX C. FLOW CHARTS  
Figure 23. Write to Buffer and Program Flowchart and Pseudo Code  
Start  
Write to Buffer E8h  
Command, Block Address  
Read Status  
Register  
NO  
NO  
YES  
Write to Buffer  
Timeout  
SR7 = 1  
YES  
(1)  
Note 1: N+1 is number of Words  
to be programmed  
Write N  
,
Block Address  
Try Again Later  
Write Buffer Data,  
Start Address  
X = 0  
YES  
X = N  
NO  
Write Next Buffer Data,  
Next Program Address  
Note 2: Next Program Address must  
have same A5-A21.  
(2)  
X = X + 1  
Program Buffer to Flash  
Confirm D0h  
Read Status  
Register  
NO  
SR7 = 1  
YES  
Note 3: A full Status Register Check must be  
done to check the program operation's  
success.  
Full Status  
Register Check  
(3)  
End  
AI06263b  
50/61  
M58LW032C  
Figure 24. Program Suspend & Resume Flowchart and Pseudo Code  
Start  
Write B0h  
Program/Erase Suspend Command:  
– write B0h  
– write 70h  
Write 70h  
do:  
Read Status  
Register  
– read status register  
NO  
NO  
SR7 = 1  
YES  
while SR7 = 1  
If SR2 = 0, Program completed  
SR2 = 1  
YES  
Program Complete  
Read Memory Array command:  
– write FFh  
Write FFh  
– one or more data reads  
from other blocks  
Read data from  
another block  
Program Erase Resume Command:  
– write D0h  
to resume erasure  
– if the program operation completed  
then this is not necessary. The device  
returns to Read Array as normal  
(as if the Program/Erase Suspend  
command was not issued).  
Write D0h  
Write FFh  
Read Data  
Program Continues  
AI00612b  
51/61  
M58LW032C  
Figure 25. Erase Flowchart and Pseudo Code  
Start  
Erase command:  
– write 20h  
Write 20h  
– write D0h to Block Address  
(A12-A17)  
(memory enters read Status  
Register after the Erase command)  
Write D0h to  
Block Address  
NO  
do:  
Read Status  
– read status register  
– if Program/Erase Suspend command  
given execute suspend erase loop  
Register  
Suspend  
YES  
NO  
Suspend  
Loop  
SR7 = 1  
while SR7 = 1  
YES  
NO  
NO  
NO  
NO  
V
Invalid  
Error (1)  
If SR3 = 1, V  
invalid error:  
PEN  
PEN  
– error handler  
SR3 = 0  
YES  
Command  
Sequence Error  
If SR4, SR5 = 1, Command Sequence error:  
– error handler  
SR4, SR5 = 0  
YES  
Erase  
Error (1)  
If SR5 = 1, Erase error:  
– error handler  
SR5 = 0  
YES  
Erase to Protected  
Block Error  
If SR1 = 1, Erase to Protected Block Error:  
– error handler  
SR1 = 0  
YES  
End  
AI00613C  
Note: 1. If an error is found, the Status Register must be cleared (Clear Status Register Command) before further Program or Erase oper-  
ations.  
52/61  
M58LW032C  
Figure 26. Erase Suspend & Resume Flowchart and Pseudo Code  
Start  
Write B0h  
Program/Erase Suspend Command:  
– write B0h  
– write 70h  
Write 70h  
do:  
Read Status  
Register  
– read status register  
NO  
NO  
SR7 = 1  
YES  
while SR7 = 1  
If SR6 = 0, Erase completed  
SR6 = 1  
YES  
Erase Complete  
Read Memory Array command:  
– write FFh  
Write FFh  
– one or more data reads  
from other blocks  
Read data from  
another block  
or Program  
Program/Erase Resume command:  
– write D0h to resume the Erase  
operation  
– if the Program operation completed  
then this is not necessary. The device  
returns to Read mode as normal  
(as if the Program/Erase suspend  
was not issued).  
Write D0h  
Write FFh  
Read Data  
Erase Continues  
AI00615b  
53/61  
M58LW032C  
Figure 27. Block Protect Flowchart and Pseudo Code  
Start  
Write 60h  
Block Address  
Block Protect Command  
– write 60h, Block Adress  
– write 01h, Block Adress  
Write 01h  
Block Address  
do:  
Read Status Register  
– read status register  
NO  
SR7 = 1  
while SR7 = 1  
YES  
YES  
SR3 = 1  
NO  
V
Invalid Error  
If SR3 = 1, V  
Invalid Error  
PEN  
PEN  
YES  
YES  
Invalid Command  
Sequence Error  
If SR4 = 1, SR5 = 1 Invalid Command Sequence  
Error  
SR4, SR5 = 1,1  
NO  
Block Protect  
Error  
If SR4 = 1, Block Protect Error  
SR4 = 1  
NO  
Write FFh  
Read Memory Array Command:  
– write FFh  
Block Protect  
Sucessful  
AI06157b  
54/61  
M58LW032C  
Figure 28. Blocks Unprotect Flowchart and Pseudo Code  
Start  
Write 60h  
Blocks Unprotect Command  
– write 60h, Block Adress  
– write D0h, Block Adress  
Write D0h  
do:  
Read Status Register  
– read status register  
NO  
SR7 = 1  
while SR7 = 1  
YES  
YES  
SR3 = 1  
NO  
V
Invalid Error  
PEN  
If SR3 = 1, V  
Invalid Error  
PEN  
YES  
YES  
Invalid Command  
Sequence Error  
If SR4 = 1, SR5 = 1 Invalid Command  
Sequence Error  
SR4, SR5 = 1,1  
NO  
Blocks Unprotect  
Error  
If SR5 = 1, Blocks Unprotect Error  
SR5 = 1  
NO  
Write FFh  
Read Memory Array Command:  
– write FFh  
Blocks Unprotect  
Sucessful  
AI06158b  
55/61  
M58LW032C  
Figure 29. Protection Register Program Flowchart and Pseudo Code  
Start  
Write C0h  
Protection Register Program Command  
– write C0h  
– write Protection Register Address,  
Protection Register Data  
Write  
PR Address, PR Data  
do:  
Read Status Register  
– read status register  
NO  
SR7 = 1  
YES  
while SR7 = 1  
YES  
YES  
If SR3 = 1, SR4 = 1 V  
Invalid Error  
PEN  
V
Invalid Error  
SR3, SR4 = 1,1  
NO  
PEN  
Protection Register  
Program Error  
If SR1 = 0, SR4 = 1 Protection Register  
Program Error  
SR1, SR4 = 0,1  
NO  
YES  
Protection Register  
Program Error  
If SR1 = 1, SR4 = 1 Program Error due to  
Protection Register Protection  
SR1, SR4 = 1,1  
NO  
Write FFh  
Read Memory Array Command:  
– write FFh  
PR Program  
Sucessful  
AI06159b  
Note: PR = Protection Register  
56/61  
M58LW032C  
Figure 30. Command Interface and Program Erase Controller Flowchart (a)  
WAIT FOR  
COMMAND  
WRITE  
NO  
90h  
YES  
READ  
SIGNATURE  
NO  
98h  
YES  
CFI  
QUERY  
NO  
70h  
YES  
READ  
ARRAY  
READ  
STATUS  
NO  
50h  
YES  
CLEAR  
STATUS  
NO  
E8h  
YES  
PROGRAM  
BUFFER  
LOAD  
NO  
(1)  
20h  
YES  
ERASE  
NO  
FFh  
YES  
SET-UP  
NO  
D0h  
NO  
YES  
C
PROGRAM  
COMMAND  
ERROR  
D0h  
YES  
ERASE  
COMMAND  
ERROR  
A
B
AI03618  
Note 1. The Erase command (20h) can only be issued if the flash is not already in Erase Suspend.  
57/61  
M58LW032C  
Figure 31. Command Interface and Program Erase Controller Flowchart (b)  
A
B
ERASE  
(READ STATUS)  
Program/Erase Controller  
Status bit in the Status  
Register  
YES  
READ  
STATUS  
READY  
?
NO  
READ  
NO  
ARRAY  
B0h  
YES  
YES  
READ  
STATUS  
NO  
FFh  
ERASE  
SUSPEND  
NO  
YES  
ERASE  
SUSPENDED  
READY  
?
NO  
READ  
STATUS  
YES  
WAIT FOR  
COMMAND  
WRITE  
YES  
YES  
YES  
YES  
READ  
STATUS  
70h  
NO  
READ  
SIGNATURE  
90h  
NO  
CFI  
QUERY  
98h  
NO  
PROGRAM  
BUFFER  
LOAD  
E8h  
NO  
NO  
PROGRAM  
COMMAND  
ERROR  
YES  
READ  
STATUS  
D0h  
D0h  
NO  
(ERASE RESUME)  
YES  
READ  
ARRAY  
c
AI03619  
58/61  
M58LW032C  
Figure 32. Command Interface and Program Erase Controller Flowchart (c).  
B
C
PROGRAM  
(READ STATUS)  
YES  
Program/Erase Controller  
Status bit in the Status  
Register  
READ  
STATUS  
READY  
?
NO  
READ  
ARRAY  
NO  
B0h  
YES  
YES  
NO  
READ  
STATUS  
FFh  
PROGRAM  
SUSPEND  
NO  
YES  
PROGRAM  
SUSPENDED  
READY  
?
NO  
YES  
WAIT FOR  
COMMAND  
WRITE  
READ  
STATUS  
YES  
YES  
YES  
NO  
READ  
STATUS  
70h  
NO  
READ  
SIGNATURE  
90h  
NO  
CFI  
QUERY  
98h  
NO  
YES  
READ  
ARRAY  
READ  
STATUS  
D0h  
(PROGRAM RESUME)  
AI00618  
59/61  
M58LW032C  
REVISION HISTORY  
Table 32. Document Revision History  
Date  
Version  
-01  
Revision Details  
11-Mar-2002  
10-Jul-2002  
First Issue (Data Brief)  
-02  
Document expanded to full Product Preview  
Revision numbering modified: a minor revision will be indicated by incrementing the  
digit after the dot, and a major revision, by incrementing the digit before the dot  
(revision version 02 equals 2.0).  
06-Aug-2002  
02-Sep-2002  
16-Dec-2002  
2.1  
2.2  
2.3  
Word Effective Programming Time modified. Program Write Buffer and Block Erase  
Time parameters modified in Table 9. Speed Class 90ns added. V , V  
, V and  
DD DDQ  
SS  
V
SSQ  
signal descriptions modified.  
Figure 12, Asynchronous Latch Controlled Bus Read AC Waveforms, modified.  
REVISION HISTORY moved to after the appendices. Table 9, Program, Erase Times  
and Program Erase Endurance Cycles table modified. All DU connections changed to  
NC in Table 4, TBGA64 Connections (Top view through package). V max and V  
IL  
IH  
min modified in Table 14, DC Characteristics. Block Protect setup command address  
modified in Table 5, Commands. Data and Descriptions clarified in CFI Table 31,  
Extended Query information.  
Document promoted to full datasheet. Summary Description clarified, Bus Operations  
clarified, Smart Protection added, Read Modes section added, Status Register and  
29-Apr-2003  
3.0  
Configuration Register bit nomenclature modified, V  
Invalid Error clarified in  
PEN  
Flowcharts. Lead-free packing options added to Ordering Information Scheme.  
60/61  
M58LW032C  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners  
© 2003 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta -  
Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
61/61  

相关型号:

M58LW032C110N6T

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR

M58LW032C110ZA1

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR

M58LW032C110ZA1E

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR

M58LW032C110ZA1F

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR

M58LW032C110ZA1T

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR

M58LW032C110ZA6

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR

M58LW032C110ZA6E

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR

M58LW032C110ZA6F

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR

M58LW032C110ZA6T

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR

M58LW032C90N1

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR

M58LW032C90N1E

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR

M58LW032C90N1F

32 Mbit 2Mb x16, Uniform Block, Burst 3V Supply Flash Memory
STMICROELECTR