M59BW102N

更新时间:2024-09-18 02:04:20
描述:1 Mbit 64Kb x16, Burst Low Voltage Flash Memory

M59BW102N 概述

1 Mbit 64Kb x16, Burst Low Voltage Flash Memory 1兆位64Kb的X16 ,突发低电压闪存

M59BW102N 数据手册

通过下载M59BW102N数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
M59BW102  
1 Mbit (64Kb x16, Burst) Low Voltage Flash Memory  
PRELIMINARY DATA  
2.7 to 3.6V SUPPLY VOLTAGE for PROGRAM,  
ERASE and READ OPERATIONS  
SEQUENTIAL CYCLE TIME: 25ns  
RANDOM ACCESS TIME  
PROGRAMMING TIME: 10µs typical  
INTERLEAVED ACCESS TIME: 16ns  
CONTINUOUS MEMORY INTERLEAVING  
– Unlimited Linear Access Data Output  
PROGRAM/ERASE CONTROLLER (P/E.C.)  
TSOP40 (N)  
10 x 14mm  
– Program Word-by-Word  
– Status Register bits  
LOW POWER CONSUMPTION  
– Stand-by and Automatic Stand-by  
100,000 PROGRAM/ERASE CYCLES  
20 YEARS DATA RETENTION  
Figure 1. Logic Diagram  
– Defectivity below 1ppm/year  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 20h  
– Device Code: C1h  
V
CC  
DESCRIPTION  
The M59BW102 is a non-volatile memory that may  
be erased electrically at the chip level and pro-  
grammed in-system on a Word-by-Word basis us-  
16  
16  
ing only a single 3V V supply. For Program and  
CC  
A0-A15  
DQ0-DQ15  
Erase operations the necessary high voltages are  
generated internally. The device can also be pro-  
grammed in standard programmers.  
The device can be programmed and erased over  
100,000 cycles.  
Instructions for Read/Reset, Auto Select for read-  
ing the Electronic Signature, Programming and  
Chip Erase are written to the device in cycles of  
commands to a Command Interface using stan-  
dard microprocessor write timings. The  
M59BW102 features an interleaved access mo-  
dality which allows extremely fast access time.  
The device is offered in TSOP40 (10 x 14mm)  
package.  
W
E
M59BW102  
G
ALE  
V
SS  
AI02763B  
March 2000  
1/24  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.  
M59BW102  
Figure 2. TSOP Connections  
Table 1. Signal Names  
A0-A15  
Address Inputs  
DQ0-DQ7  
Data Inputs/Outputs, Command Inputs  
Data Inputs/Outputs  
Chip Enable  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
ALE  
W
1
40  
V
SS  
A8  
DQ8-DQ15  
E
A7  
G
Output Enable  
A6  
A5  
W
Write Enable  
A4  
ALE  
Address Latch Enable  
Supply Voltage  
A3  
V
CC  
A2  
V
Ground  
SS  
A1  
NC  
Not Connected Internally  
V
10  
11  
31  
30  
A0  
CC  
NC  
M59BW102  
G
E
DQ15  
DQ14  
DQ13  
DQ12  
DQ11  
DQ10  
DQ9  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
Command Interface  
Instructions, made up of commands written in cy-  
cles, can be given to the Program/Erase Controller  
through a Command Interface (C.I.). For added  
data protection, program or erase execution starts  
after 4 or 6 cycles. The first, second, fourth and  
fifth cycles are used to input Coded cycles to the  
C.I. This Coded sequence is the same for all Pro-  
gram/Erase Controller instructions. The ’Com-  
mand’ itself and its confirmation, when applicable,  
are given on the third, fourth or sixth cycles. Any  
incorrect command or any improper command se-  
quence will reset the device to Read Array mode.  
DQ8  
20  
21  
V
SS  
AI02764B  
Instructions  
Organization  
Four instructions are defined to perform Read Ar-  
ray, Auto Select (to read the Electronic Signature),  
Program, Chip Erase. The internal P/E.C. auto-  
matically handles all timing and verification of the  
Program and Erase operations. The Status Regis-  
ter Data Polling, Toggle and Error bits may be read  
at any time, during programming or erase, to mon-  
itor the progress of the operation.  
Instructions are composed of up to six cycles. The  
first two cycles input a Coded sequence to the  
Command Interface which is common to all in-  
structions (see Table 7). The third cycle inputs the  
instruction set-up command. Subsequent cycles  
output the addressed data or Electronic Signature  
for Read operations. In order to give additional  
data protection, the instructions for Program and  
Chip Erase require further command inputs. For a  
Program instruction, the fourth command cycle in-  
puts the address and data to be programmed. For  
an Erase instruction, the fourth and fifth cycles in-  
put a further Coded sequence before the com-  
mand confirmation on the sixth cycle.  
The M59BW102 is organized as 64K x16 bits. The  
memory uses the address inputs A0-A15 and the  
Data Inputs/Outputs DQ0-DQ15. Memory control  
is provided by Chip Enable E, Output Enable G,  
Address Latch Enable ALE and Write Enable W in-  
puts.  
Erase and Program operations are controlled by  
an internal Program/Erase Controller (P/E.C.).  
Status Register data output on DQ7 provides a  
Data Polling signal, and DQ6 and DQ2 provide  
Toggle signals to indicate the state of the P/E.C  
operations.  
Bus Operations  
The following operations can be performed using  
the appropriate bus cycles: Read (Array, Electron-  
ic Signature), Write command, Output Disable,  
Standby. See Tables 3 and 4.  
2/24  
M59BW102  
(1)  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
0 to 70  
Unit  
°C  
°C  
°C  
V
T
A
Ambient Operating Temperature  
Temperature Under Bias  
Storage Temperature  
T
–50 to 125  
–65 to 150  
–0.6 to 5  
BIAS  
T
STG  
(2)  
Input or Output Voltage  
Supply Voltage  
V
IO  
V
–0.6 to 5  
V
V
CC  
(A9, E, G)  
(2)  
A9, E, G Voltage  
–0.6 to 13.5  
V
Note: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may  
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions  
above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi-  
tions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant qual-  
ity documents.  
2. Minimum Voltage may undershoot to –2V during transition and for less than 20ns.  
(1))  
Table 3. User Bus Operations  
Operation  
E
G
W
ALE  
A0  
A1  
A6  
A9  
A12  
A15  
DQ15-DQ0  
Non Linear  
Access Mode  
V
V
V
Pulse  
X
X
X
X
X
X
Data Output  
IL  
IL  
IL  
IH  
IH  
Linear Access  
Cycle  
Rising  
Edge  
V
V
V
X
X
X
X
X
X
Data Output  
IL  
V
V
V
V
V
V
V
Write Word  
Output Disable  
Standby  
A0  
X
A1  
X
A6  
X
A9  
X
A12  
X
A15  
X
Data Input  
Hi-Z  
IL  
IL  
IH  
IL  
IH  
V
IH  
V
IH  
IH  
X
X
X
X
X
X
X
X
X
Hi-Z  
IH  
Note: 1. X = V or V  
.
IH  
IL  
Table 4. Read Electronic Signature (following AS instruction or with A9 = V )  
ID  
Other  
Code  
E
G
W
A0  
A1  
DQ15-DQ8 DQ7-DQ0  
Address  
Don't Care  
Don't Care  
V
V
V
IH  
V
IL  
V
IL  
Manufact. Code  
Device Code  
00h  
00h  
20h  
C1h  
IL  
IL  
IL  
IL  
V
V
V
IH  
V
IH  
V
IL  
SIGNAL DESCRIPTIONS  
See Figure 1 and Table 1.  
the Electronic Signature Manufacturer or Device  
codes, the Status register Data Polling bit DQ7,  
the Toggle Bits DQ6 and DQ2, the Error bit DQ5  
or the Erase Timer bit DQ3. Outputs are valid  
when Chip Enable E and Output Enable G are ac-  
tive. The output is high impedance when the chip  
is deselected or the outputs are disabled.  
Chip Enable (E). The Chip Enable input acti-  
vates the memory control logic, input buffers, de-  
coders and sense amplifiers. E High deselects the  
memory and reduces the power consumption to  
the standby level. E can also be used to control  
writing to the command register and to the memo-  
ry array, while W remains at a low level.  
Address Inputs (A0-A15). The address inputs  
for the memory array are latched during a write op-  
eration on the falling edge of Chip Enable E or  
Write Enable W. When A9 is raised to V , either a  
ID  
Read Electronic Signature Manufacturer or Device  
Code is enabled depending on the combination of  
levels on A0 and A1.  
Data Inputs/Outputs (DQ0-DQ15). The input is  
data to be programmed in the memory array or a  
command to be written to the C.I. Both are latched  
on the rising edge of Chip Enable E or Write En-  
able W. The output is data from the Memory Array,  
3/24  
M59BW102  
Table 5. Commands  
Hex Code  
reached by the counters they start again from the  
first memory address and continue. The  
M59BW102 will provide data output during the LA  
cycle determined by G signal.  
Each time ALE signal is pulsed and G signal is  
High, while the current address is loaded into the  
counters, the output buffers are put in Hi-Z condi-  
tion and remain in this condition until the first new  
valid data comes. The M59BW102 operation in LA  
and NLA modes is explained in Figure 3 and the  
block diagram is shown in Figure 4.  
Write. Write operations are used to give Instruc-  
tion Commands to the memory or to latch input  
data to be programmed. A write operation is initi-  
ated when Address Latch Enable (ALE) is high,  
Chip Enable E is Low and Write Enable W is Low  
with Output Enable G High. Addresses are latched  
on the falling edge of W or E whichever occurs  
last. Commands and Input Data are latched on the  
rising edge of W or E whichever occurs first.  
Command  
00h  
10h  
20h  
80h  
90h  
A0h  
F0h  
Invalid/Reserved  
Chip Erase Confirm  
Reserved  
Set-up Erase  
Read Electronic Signature  
Program  
Read Array/Reset  
Output Enable (G). The Output Enable gates the  
outputs through the data buffers during a read op-  
eration. When G and ALE are both High the out-  
puts are High impedance.  
Write Enable (W). This input controls writing to  
the Command Register and Address and Data  
latches.  
Address Latch Enable (ALE). This input con-  
trols the latching of address for reading. When  
pulsed, the device operates in the random or non  
linear access mode.  
Output Disable. The data outputs are high im-  
pedance when the Output Enable G and the Ad-  
dress Latch Enable (ALE) are both High with Write  
Enable W High.  
Standby. The memory is in standby when Chip  
Enable E is High and the P/E.C. is idle. The power  
consumption is reduced to the standby level and  
the outputs are high impedance, independent of  
the Output Enable G, the Address Latch Enable  
(ALE) or the Write Enable W inputs.  
V
Supply Voltage. The power supply for all  
CC  
operations (Read, Program and Erase).  
V
Ground. V is the reference for all voltage  
SS  
SS  
Electronic Signature. Two codes identifying the  
manufacturer and the device can be read from the  
measurements.  
memory.  
The  
manufacturer’s  
code  
for  
DEVICE OPERATIONS  
STMicroelectronics is 20h, the device code is C1h.  
These codes allow programming equipment or ap-  
plications to automatically match their interface to  
the characteristics of the M59BW102. The Elec-  
tronic Signature is output by a Read operation  
See Tables 3 and 4.  
Read (Non Linear Access Mode and Linear Ac-  
cess Cycle). The device is internally organized in  
two memory banks (named Even and Odd bank).  
A0 address bit is asserted as "priority" bit, so that  
when A0 = 0 the even bank is the current memory  
array under selection and the odd bank is masked.  
When A0 = 1 the odd bank is the current array un-  
der selection and even bank is masked.  
when the voltage applied to A9 is at V and ad-  
ID  
dress inputs A1 is Low. The manufacturer code is  
output when the Address input A0 is Low and the  
device code when this input is High. Other Ad-  
dress inputs are ignored. The codes are output on  
DQ0-DQ7.  
To begin a random (or Non Linear) access mode  
(NLA), ALE is pulsed high and E is asserted low.  
The Electronic Signature can also be read, without  
Two internal 15 bit counters store the current ad-  
dress for the odd and even banks and increment  
alternatively, under the priority bit control, during  
each subsequent cycle called sequential (or Lin-  
ear) address cycle (LA). The linear cycle (LA) can  
be terminated if a new NLA starts or if E is assert-  
ed high, putting the device in stand-by mode. In  
this last case the linear cycle can be resumed if E  
is asserted low again and ALE is low.  
raising A9 to V , by giving the memory the In-  
struction AS. The codes are output on DQ0-DQ7  
with DQ8-DQ15 at 00h.  
ID  
Table 6. Polling and Toggle Bits  
Mode  
Program  
Erase  
DQ7  
DQ7  
0
DQ6  
DQ2  
1
Toggle  
Toggle  
During the LA mode all the memory can be swept,  
as there is no physical limits to the linear access  
output. When the last address of the memory is  
Toggle  
4/24  
M59BW102  
Figure 3. Non Linear and Linear Access Cycle Timing Diagram  
5/24  
M59BW102  
Figure 4. Block Diagram  
DQ0-DQ15  
A1-A15  
A0  
EVEN COUNTER  
OUTPUT BUFFER  
MULTIPLEXER  
ODD COUNTER  
G
LOGIC  
E
ALE  
EVEN MATRIX  
(16 x 32K)  
ODD MATRIX  
(16 x 32K)  
AI02765  
INSTRUCTIONS AND COMMANDS  
DQ2, or Error on DQ5 and Erase Timer DQ3 bits.  
Any read attempt from any address during Pro-  
gram or Erase command execution will automati-  
cally output these five Status Register bits. The P/  
E.C. automatically sets bits DQ2, DQ3, DQ5, DQ6  
and DQ7. Other bits (DQ0, DQ1 and DQ4) are re-  
served for future use and should be masked. See  
Table 8.  
Data Polling Bit (DQ7). When Programming op-  
erations are in progress, this bit outputs the com-  
plement of the bit being programmed on DQ7.  
During Erase operation, it outputs a ’0’. After com-  
pletion of the operation, DQ7 will output the bit last  
programmed or a ’1’ after erasing. Data Polling is  
valid and only effective during P/E.C. operation,  
that is after the fourth W pulse for programming or  
after the sixth W pulse for erase. See Figure 11 for  
the Data Polling waveforms and Figure 12 for the  
Data Polling flowchart. A Valid Address is the ad-  
dress being programmed or any address while  
erasing the chip.  
The Command Interface latches commands writ-  
ten to the memory. Instructions are made up from  
one or more commands to perform Read Memory  
Array, Read Electronic Signature, Program, Chip  
Erase. Commands are made of address and data  
sequences. The instructions require from 1 to 6 cy-  
cles, the first or first three of which are always write  
operations used to initiate the instruction. They are  
followed by either further write cycles to confirm  
the first command or execute the command imme-  
diately. Command sequencing must be followed  
exactly. Any invalid combination of commands will  
reset the device to Read Array. The increased  
number of cycles has been chosen to assure max-  
imum data security. Instructions are initialised by  
two initial Coded cycles which unlock the Com-  
mand Interface. In addition, for Erase, instruction  
confirmation is again preceded by the two Coded  
cycles.  
Status Register Bits  
Toggle Bit (DQ6). When Programming or Eras-  
ing operations are in progress, successive at-  
tempts to read DQ6 will output complementary  
P/E.C. status is indicated during execution by Data  
Polling on DQ7, detection of Toggle on DQ6 and  
6/24  
M59BW102  
(1)  
Table 7. Instructions  
Mne.  
Instr.  
Cyc.  
1st Cyc. 2nd Cyc. 3rd Cyc. 4th Cyc. 5th Cyc. 6th Cyc. 7th Cyc.  
(3,6)  
(3,6)  
(3,6)  
X
Addr.  
Data  
1+  
3+  
3+  
Read Memory Array until a new write cycle is initiated.  
F0h  
Read/Reset  
Memory Array  
(2,4)  
RD  
555h  
AAh  
555h  
AAh  
2AAh  
55h  
X
Addr.  
Data  
Read Memory Array until a new write  
cycle is initiated.  
F0h  
555h  
90h  
2AAh  
55h  
Addr.  
Data  
Read Electronic Signature until a new  
write cycle is initiated. See Note 5.  
(4)  
Auto Select  
Program  
AS  
Program  
(3,6)  
(3,6)  
555h  
AAh  
2AAh  
55h  
555h  
A0h  
Addr.  
Data  
Address  
Read Data Polling or Toggle  
PG  
4
6
Bit until Program completes.  
Program  
Data  
555h  
AAh  
2AAh  
55h  
555h  
80h  
555h  
AAh  
2AAh  
55h  
555h  
10h  
Addr.  
Data  
CE  
Chip Erase  
Note 7  
Note: 1. Commands not interpreted in this table will default to read array mode.  
2. A wait of 10µs is necessary after a Read/Reset command if the memory was in an Erase or Program mode before starting any new  
operation.  
3. X = Don't Care.  
4. The first cycles of the RD or AS instructions are followed by read operations. Any number of read cycles can occur after the com-  
mand cycles.  
5. Signature Address bits A0, A1, at V will output Manufacturer code (20h). Address bits A0 at V and A1, at V will output Device  
IL  
IH  
IL  
code.  
6. For Coded cycles address inputs A11-A16 are don't care.  
7. Read Data Polling, Toggle bits until Erase completes.  
data. DQ6 will toggle following toggling of either G,  
or E when G is low. The operation is completed  
when two successive reads yield the same output  
data. The next read will output the bit last pro-  
grammed or a ’1’ after erasing. The toggle bit DQ6  
is valid only during P/E.C. operations, that is after  
the fourth W pulse for programming or after the  
sixth W pulse for Erase. See Figure 13 for Toggle  
Bit flowchart and Figure 14 for Toggle Bit wave-  
forms.  
Toggle Bit (DQ2). This toggle bit, together with  
DQ6, can be used to determine the device status  
during the Erase operations. During Chip Erase a  
read operation will cause DQ2 to toggle since chip  
is being erased. DQ2 will be set to ’1’ during pro-  
gram operation and when erase is complete.  
previously programmed to ’0’. The error bit resets  
after a Read/Reset (RD) instruction. In case of  
success of Program or Erase, the error bit will be  
set to ’0’.  
Erase Timer Bit (DQ3). This bit is set to ’0’ by the  
P/E.C. when the Erase command has been en-  
tered to the Command Interface and it is awaiting  
the Erase start. When the erase timeout period is  
finished, after 50µs to 120µs, DQ3 returns to '1'.  
Coded Cycles  
The two Coded cycles unlock the Command Inter-  
face. They are followed by an input command or a  
confirmation command. The Coded cycles consist  
of writing the data AAh at address 555h during the  
first cycle. During the second cycle the Coded cy-  
cles consist of writing the data 55h at address  
2AAh. Address lines A0 to A10 are valid; other ad-  
dress lines are 'don't care'. The Coded cycles hap-  
pen on first and second cycles of the command  
write or on the fourth and fifth cycles.  
Error Bit (DQ5). This bit is set to ’1’ by the P/E.C.  
when there is a failure of programming or chip  
erase that results in invalid data in the memory. In  
case of an error in program, the chip must be dis-  
carded. The DQ5 failure condition will also appear  
if a user tries to program a ’1’ to a location that is  
7/24  
M59BW102  
Table 8. Status Register Bits  
DQ  
Name  
Logic Level  
Definition  
Erase Complete  
Note  
’1’  
’0’  
Indicates the P/E.C. status, check during  
Program or Erase, and on completion before  
checking bits DQ5 for Program or Erase  
Success.  
Erase On-going  
Data  
Polling  
7
DQ  
DQ  
Program Complete  
Program On-going  
’-1-0-1-0-1-0-1-’ Erase or Program On-going  
DQ Program Complete  
Successive reads output complementary  
data on DQ6 while Programming or Erase  
operations are on-going. DQ6 remains at  
constant level when P/E.C. operations are  
completed.  
6
Toggle Bit  
’-1-1-1-1-1-1-1-’ Erase Complete  
’1’  
’0’  
Program or Erase Error  
Program or Erase On-going  
This bit is set to ’1’ in the case of  
Programming or Erase failure.  
5
4
Error Bit  
Reserved  
’1’  
’0’  
Erase Timeout Period Expired P/E.C. Erase operation has started.  
Erase  
Time Bit  
3
2
Erase Timeout Period On-  
going  
’-1-0-1-0-1-0-1-’ Chip Erase  
Program On-going or Erase  
Toggle Bit  
Indicates the erase status.  
’1’  
Complete  
1
0
Reserved  
Reserved  
Note: Logic level ’1’ is High, ’0’ is Low. -0-1-0-0-0-1-1-1-0- represent bit value in successive Read operations.  
Instructions  
See Table 7.  
lines A0 and A1 are Low, the device code, C1h is  
output when A0 is High with A1 Low.  
Program (PG) Instruction. This instruction uses  
four write cycles. The Program command A0h is  
written to address 555h on the third cycle after two  
Coded cycles. A fourth write operation latches the  
Address on the falling edge of W or E and the Data  
to be written on the rising edge and starts the P/  
E.C. Read operations output the Status Register  
bits after the programming has started. Memory  
programming is made only by writing ’0’ in place of  
’1’. Status bits DQ6 and DQ7 determine if pro-  
gramming is on-going and DQ5 allows verification  
of any possible error.  
Read/Reset (RD) Instruction. The Read/Reset  
instruction consists of one write cycle giving the  
command F0h. It can be optionally preceded by  
the two Coded cycles. Subsequent read opera-  
tions will read the memory array addressed and  
output the data read. Read/Reset is not accepted  
in Program/Erase operation unless a fail occurred.  
Auto Select (AS) Instruction. This  
instruction  
uses the two Coded cycles followed by one write  
cycle giving the command 90h to address 555h for  
command set-up. A subsequent read will output  
the manufacturer code and the device code de-  
pending on the levels of A0 and A1. The manufac-  
turer code, 20h, is output when the addresses  
Chip Erase (CE) Instruction. This instruction uses  
six write cycles. The Set-up command 80h is writ-  
8/24  
M59BW102  
Table 9. AC Measurement Conditions  
Figure 6. AC Testing Load Circuit  
Load Capacitance (C )  
30pF  
10ns  
0 to 3V  
1.5V  
L
1.3V  
Input Rise and Fall Times  
1N914  
Input Pulse Voltages  
Input and Output Timing Ref. Voltages  
3.3kΩ  
Figure 5. AC Testing Input Output Waveform  
DEVICE  
UNDER  
TEST  
OUT  
C
= 30pF  
L
3V  
1.5V  
0V  
AI01417  
C
includes JIG capacitance  
AI01119  
L
(1)  
Table 10. Capacitance  
(T = 25 °C, f = 1 MHz)  
A
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
Min  
Max  
6
Unit  
pF  
C
IN  
V
IN  
= 0V  
= 0V  
C
V
OUT  
12  
pF  
OUT  
Note: 1. Sampled only, not 100% tested.  
ten to address 555h on the third cycle after the two  
Coded cycles. The Chip Erase Confirm command  
10h is similarly written on the sixth cycle after an-  
other two Coded cycles. If the second command  
given is not an erase confirm or if the Coded cy-  
cles are wrong, the instruction aborts and the de-  
vice is reset to Read Array. It is not necessary to  
program the array with 0000h first as the P/E.C.  
will automatically do this before erasing it to  
FFFFh. Read operations after the sixth rising edge  
of W or E output the Status Register bits. During  
the execution of the erase by the P/E.C., Data  
Polling bit DQ7 returns '0', then '1' on completion.  
The Toggle bits DQ2 and DQ6 toggle during erase  
operation and stop when erase is completed. After  
completion the Status Register bit DQ5 returns '1'  
if there has been an Erase Failure.  
POWER SUPPLY  
Power Up  
The memory Command Interface is reset on pow-  
er up to Read Array. Either E or W must be tied to  
V
during Power Up to allow maximum security  
IH  
and the possibility to write a command on the first  
rising edge of E and W. Any write cycle initiation is  
blocked when V is below V  
.
CC  
LKO  
Supply Rails  
Normal precautions must be taken for supply volt-  
age decoupling; each device in a system should  
have the V rail decoupled with a 0.1µF capacitor  
CC  
close to the V  
and V  
pins. The PCB trace  
CC  
SS  
widths should be sufficient to carry the V  
gram and erase currents required.  
pro-  
CC  
9/24  
M59BW102  
Table 11. DC Characteristics  
(T = 0 to 70°C; V = 3.0V to 3.6V)  
A
CC  
Symbol  
Parameter  
Test Condition  
Min  
Max  
±1  
Unit  
µA  
I
0V V V  
Input Leakage Current  
Output Leakage Current  
Supply Current (Read)  
Supply Current (Standby)  
LI  
IN  
CC  
I
LO  
0V V V  
OUT CC  
±1  
µA  
I
E = V , G = V , f = 6MHz  
10  
mA  
µA  
CC1  
IL  
IH  
I
ALE, E = V  
± 0.2V  
CC  
100  
CC2  
Byte program or  
Chip Erase in progress  
(1)  
Supply Current (Program or Erase)  
20  
mA  
I
CC3  
V
Input Low Voltage  
–0.5  
2
0.8  
V
V
IL  
V
V
V
+ 0.3  
CC  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
A9, E, G High Voltage  
A9, E, G High Current  
IH  
I
= 1.8mA  
0.45  
V
OL  
OL  
V
OH  
I
= –100µA  
V
– 0.4V  
V
Oh  
CC  
V
ID  
11.5  
1.8  
12.5  
100  
V
I
ID  
A9, E, G = V  
µA  
ID  
Supply Voltage (Erase and Program  
lock-out)  
(1)  
2.3  
V
V
LKO  
Note: 1. Sampled only, not 100% tested.  
Table 12. Sequential Read Mode AC Characteristics  
(T = 0 to 70°C)  
A
M59BW102  
25  
Symbol  
Alt  
Parameter  
Test Condition  
Unit  
V
= 3.0V to 3.6V  
CC  
Min  
25  
13  
12  
–2  
–2  
Typ  
Max  
t
t
E = V , ALE = V  
Sequential Cycle  
ns  
ns  
ns  
ns  
ns  
CYCLE  
CY  
IL  
IL  
t
t
GW  
Output Enable High to Output Enable Low  
Output Enable Low to Output Enable High  
Output Enable High to Chip Enable Low  
Output Enable High to Chip Enable High  
G = Pulse  
G = Pulse  
GHGL  
t
t
GL  
GLGH  
t
t
ATT  
GHEL  
t
t
SBY  
GHEH  
Chip Enable High to Address Latch Enable  
High  
t
t
3
0
ns  
EHALH  
AV  
Output Enable High to Address Latch  
Enable High (following cycle)  
t
t
GS  
ns  
ns  
GHALH  
(1)  
t
Output Enable High to Output Valid  
20  
t
GACC  
GHQV  
(1)  
t
Chip Enable Low to Output Valid  
Chip Enable High to Output Hi-Z  
20  
12  
20  
ns  
ns  
ns  
t
EACC  
ELQV  
t
t
EHQZ  
EDF  
t
t
Address Latch Enable High to Output Hi-Z  
ALHQZ  
ADF  
Note: 1. This timing refers to a Load Capacitance (C ) of 30pF. If C is higher, add 1 ns for each extra 10pF.  
L
L
10/24  
M59BW102  
Table 13. Random Read Mode AC Characteristics  
(T = 0 to 70°C)  
A
M59BW102  
25  
Symbol  
Alt  
Parameter  
Test Condition  
Unit  
V
= 3.0V to 3.6V  
CC  
Min  
Typ  
Max  
Address Latch Enable High to Address  
Latch Enable Low  
t
t
ALE = Pulse  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ALHALL  
ALW  
Chip Enable Low to Address Latch Enable  
Low  
t
t
E
10  
6
ELALL  
Address Transition to Address Latch  
Enable Low  
t
t
AXALL  
AS  
Chip Enable High to Address Latch Enable  
High  
t
t
ELV  
3
EHALH  
Address Latch Enable Low to Output  
Enable Low  
t
t
7.5  
0
ALLGL  
AG  
Output Enable High to Address Latch  
Enable High  
t
t
GHALH  
QP  
t
t
GW  
Output Enable High to Output Enable Low  
Output Enable Low to Output Enable High  
G = Pulse  
14  
48  
ns  
ns  
GHGL  
t
t
GL  
GLGH  
(1)  
t
Output Enable Low to Output Valid  
30  
55  
ns  
t
GACC  
GLQV  
(1)  
t
Chip Enable Low to Output Valid  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
EACC  
ELQV  
t
t
Output Enable High to Chip Enable Low  
Chip Enable High to Output Hi-Z  
–2  
GHEL  
GE  
t
t
12  
20  
EHQZ  
EDF  
t
t
Address Latch Enable High to Output Hi-Z  
Output Valid to Output Enable High  
Output Enable High to Chip Enable High  
Chip Enable Low to Output Enable Low  
Chip Enable High to Data Hold  
ALHQZ  
ADF  
t
t
10  
0
QVGH  
GHEH  
QV  
t
t
GE  
t
t
13  
0
ELGL  
EGL  
t
EHQV  
Address Latch Enable Low to Address  
Transition  
t
30  
ns  
ALLAX  
Note: 1. This timing refers to a Load Capacitance (C ) of 30pF. If C is higher, add 1ns for each extra 10pF.  
L
L
11/24  
M59BW102  
Figure 7. Sequential Cycle Waveforms  
tCYCLE  
tGHALH  
ALE  
tEHALH  
tGHEL  
tGHEH  
tEHQZ  
E
tGHGL  
tGLGH  
tEHQV  
G
tELQV  
A0-A15  
tGHQV  
tALHQZ  
DQ0-DQ15  
AI02767B  
Figure 8. Random Mode Waveforms  
tALLAX  
tALHALL  
ALE  
tALLGL  
tGLGH  
tEHALH  
tEHQZ  
tEHQV  
E
tGHGL  
tELGL  
tGLQV  
G
tGHALH  
tGHEL  
tELALL  
tGHEH  
tQVGH  
A0-A15  
tAXALL  
tELQV  
tALHQZ  
DQ0-DQ15  
AI02768B  
12/24  
M59BW102  
Table 14. Write AC Characteristics, Write Enable Controlled  
(T = 0 to 70°C)  
A
M59BW102  
25  
Symbol  
Alt  
Parameter  
Unit  
V
= 3.0V to 3.6V  
CC  
Min  
55  
Max  
t
t
t
Address Valid to Next Address Valid  
Chip Enable Low to Write Enable Low  
Write Enable Low to Write Enable High  
Input Valid to Write Enable High  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
AVAV  
WC  
t
t
0
30  
25  
0
ELWL  
CS  
t
WLWH  
WP  
t
t
DVWH  
DS  
DH  
CH  
t
t
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Write Enable High to Write Enable Low  
Address Valid to Write Enable Low  
Write Enable Low to Address Transition  
Output Enable High to Write Enable Low  
WHDX  
t
t
0
WHEH  
t
t
20  
0
WHWL  
WPH  
t
t
AVWL  
AS  
t
t
35  
0
WLAX  
AH  
t
GHWL  
t
t
V
CC  
High to Chip Enable Low  
50  
VCHEL  
VCS  
t
Write Enable High to Output Enable Low  
0
ns  
t
OEH  
WHGL  
Figure 9. Write AC Waveforms, W Controlled  
tAVAV  
VALID  
A0-A15  
tWLAX  
tAVWL  
tWHEH  
E
tELWL  
tWHGL  
G
tGHWL  
tWLWH  
W
tWHWL  
tWHDX  
tDVWH  
VALID  
DQ0-DQ15  
V
CC  
tVCHEL  
AI02769  
Note: Address are latched on the falling edge of W, Data is latched on the rising edge of W; ALE must be High.  
13/24  
M59BW102  
Table 15. Write AC Characteristics, Chip Enable Controlled  
(T = 0 to 70°C)  
A
M59BW102  
25  
Symbol  
Alt  
Parameter  
Unit  
V
= 3.0V to 3.6V  
CC  
Min  
55  
Max  
t
t
t
Address Valid to Next Address Valid  
Write Enable Low to Chip Enable Low  
Chip Enable Low to Chip Enable High  
Input Valid to Chip Enable High  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
AVAV  
WC  
t
0
30  
25  
0
WLEL  
WS  
t
t
ELEH  
CP  
DS  
DH  
t
t
DVEH  
t
t
Chip Enable High to Input Transition  
Chip Enable High to Write Enable High  
Chip Enable High to Chip Enable Low  
Address Valid to Chip Enable Low  
Chip Enable Low to Address Transition  
Output Enable High to Chip Enable Low  
EHDX  
t
t
WH  
0
EHWH  
t
t
CPH  
20  
0
EHEL  
t
t
AVEL  
AS  
t
t
35  
0
ELAX  
AH  
t
GHEL  
t
t
V
CC  
High to Write Enable Low  
50  
VCHWL  
VCS  
t
Chip Enable High to Output Enable Low  
0
ns  
t
OEH  
EHGL  
Figure 10. Write AC Waveforms, E Controlled  
tAVAV  
VALID  
A0-A15  
tELAX  
tAVEL  
tEHWH  
W
tWLEL  
tEHGL  
G
tGHEL  
tELEH  
E
tEHEL  
tEHDX  
tDVEH  
VALID  
DQ0-DQ15  
V
CC  
tVCHWL  
AI02770  
Note: Address are latched on the falling edge of E, Data is latched on the rising edge of E; ALE must be High.  
14/24  
M59BW102  
Table 16. Write AC Characteristics, Write Enable Controlled and Address Latch Enable Pulsed  
(T = 0 to 70°C)  
A
M59BW102  
25  
Symbol  
Alt  
Parameter  
Unit  
V
= 3.0V to 3.6V  
CC  
Min  
55  
Max  
t
t
t
Address Valid to Next Address Valid  
Chip Enable Low to Write Enable Low  
Write Enable Low to Write Enable High  
Input Valid to Write Enable High  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
WC  
t
t
0
30  
25  
0
ELWL  
CS  
t
WLWH  
WP  
t
t
DVWH  
DS  
DH  
CH  
t
t
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Write Enable High to Write Enable Low  
Output Enable High to Write Enable Low  
WHDX  
t
t
0
WHEH  
(1)  
t
20  
0
t
WPH  
WHWL  
t
GHWL  
t
t
V
CC  
High to Chip Enable Low  
50  
0
VCHEL  
VCS  
t
t
Write Enable High to Output Enable Low  
WHGL  
OEH  
t
Address Latch Enable High to Write Enable Low  
Address Valid to Address Latch Enable Low  
Chip Enable Low to Address Latch Enable Low  
Address Latch Enable Low to Address Transition  
Write Enable High to Address Latch Enable Low  
Chip Enable High to Output Enable Low  
10  
5
ALHWL  
t
AVALL  
t
10  
35  
50  
10  
ELALL  
t
ALLAX  
(1)  
t
WHALL  
t
EHGL  
Note: 1. These parameters are applicable only if the following cycle is for the same device.  
Figure 11. Write AC Waveforms, W Controlled and Address Latch Enable Pulsed  
tAVAV  
A0-A15  
VALID  
tALLAX  
tAVALL  
tWHEH  
tWHGL  
tEHGL  
E
tELWL  
G
W
tGHWL  
tWLWH  
tWHWL  
tWHDX  
tDVWH  
VALID  
DQ0-DQ15  
V
CC  
tVCHEL  
tELALL  
tALHWL  
tWHALL  
ALE  
AI03041B  
Note: Address are latched on the falling edge of W, Data is latched on the rising edge of W.  
15/24  
M59BW102  
Table 17. Suspend and Resume Last Linear Cycle Characteristics  
(T = 0 to 70°C)  
A
M59BW102  
25  
Symbol  
Alt  
Parameter  
Unit  
V
= 3.0V to 3.6V  
CC  
Min  
15  
Max  
t
Address Latch Enable Low to Chip Enable Low  
ns  
ALLEL  
Figure 12. Suspend and Resume Linear Cycle Waveforms with Bus Idle  
ALE  
tEHALH  
tALLEL  
E
tGHEH  
G
Fetch  
Idle  
Fetch  
Idle  
Fetch  
Idle  
A0-A15  
DQ0-DQ15  
Even  
Odd  
Odd  
Even  
AI03248  
16/24  
M59BW102  
Table 18. Suspend and Resume Next Linear Cycle Characteristics  
(T = 0 to 70°C)  
A
M59BW102  
25  
Symbol  
Alt  
Parameter  
Unit  
V
= 3.0V to 3.6V  
CC  
Min  
15  
Max  
t
Address Latch Enable Low to Chip Enable Low  
ns  
ALLEL  
Figure 13. Suspend and Resume Linear Cycle Waveforms without Bus Idle  
ALE  
tEHALH  
tALLEL  
E
tGHEH  
G
Fetch  
Even  
Idle  
Fetch  
Idle  
Fetch  
Idle  
Fetch  
A0-A15  
DQ0-DQ15  
Odd  
Even  
Odd  
AI03249  
17/24  
M59BW102  
(1)  
Table 19. Data Polling and Toggle Bit AC Characteristics  
(T = 0 to 70°C)  
A
M59BW102  
25  
Symbol  
Parameter  
Unit  
V
= 3.0V to 3.6V  
CC  
Min  
10  
1
Max  
2400  
30  
Write Enable High to DQ7 Valid (Program, W Controlled)  
Write Enable High to DQ7 Valid (Chip Erase, W Controlled)  
Chip Enable High to DQ7 Valid (Program, E Controlled)  
Chip Enable High to DQ7 Valid (Chip Erase, E Controlled)  
DQ7 Valid to Output Valid (Data Polling)  
µs  
sec  
µs  
t
WHQ7V  
10  
1
2400  
30  
t
EHQ7V  
sec  
ns  
t
25  
Q7VQV  
Write Enable High to Output Valid (Program)  
10  
1
2400  
30  
µs  
t
WHQV  
Write Enable High to Output Valid (Chip Erase)  
Chip Enable High to Output Valid (Program)  
sec  
µs  
10  
1
2400  
30  
t
EHQV  
Chip Enable High to Output Valid (Chip Erase)  
sec  
Note: 1. All other timings are defined in Read AC Characteristics table.  
18/24  
M59BW102  
Figure 14. Data Polling DQ7 AC Waveform  
19/24  
M59BW102  
Figure 15. Data Polling Flowchart  
Figure 16. Data Toggle Flowchart  
START  
START  
READ  
DQ2, DQ5 & DQ6  
READ DQ5 & DQ7  
at VALID ADDRESS  
NO  
DQ2, DQ6  
=
DQ7  
=
DATA  
YES  
TOGGLE  
NO  
YES  
NO  
NO  
DQ5  
= 1  
DQ5  
= 1  
YES  
YES  
READ DQ7  
READ DQ2, DQ6  
DQ7  
=
DATA  
YES  
NO  
DQ2, DQ6  
=
TOGGLE  
NO  
YES  
FAIL  
PASS  
FAIL  
PASS  
AI01369B  
AI01873  
Table 20. Program, Erase Times and Program, Erase Endurance Cycles  
(T = 0 to 70°C; V = 3.0V to 3.6V)  
A
CC  
M59BW102  
Typ  
Parameter  
Unit  
Typical after  
100k W/E Cycles  
Min  
Chip Erase (Preprogrammed)  
Chip Erase  
0.7  
1.5  
0.7  
10  
0.7  
1.5  
0.7  
10  
sec  
sec  
Chip Program  
sec  
Word Program  
µs  
Program/Erase Cycles  
100,000  
cycles  
20/24  
M59BW102  
Figure 17. Data Toggle DQ6, DQ2 AC Waveforms  
21/24  
M59BW102  
Table 21. Ordering Information Scheme  
Example:  
M59BW102  
25  
N
1
T
Device Type  
M59  
Architecture  
B = Burst Mode  
Operating Voltage  
W = V = 2.7 to 3.6V  
CC  
Device Function  
102 = 1 Mbit (64Kb x16)  
Speed  
25 = 25 ns sequential cycle time, 55 ns random access time  
Package  
N = TSOP40: 10 x 14 mm  
Temperature Range  
1 = 0 to 70 °C  
Option  
T = Tape & Reel Packing  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the ST Sales Office nearest to you.  
22/24  
M59BW102  
Table 22. TSOP40 - 40 lead Plastic Thin Small Outline, 10 x 14 mm, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
1.20  
0.15  
1.05  
0.27  
0.21  
14.20  
12.50  
10.10  
Typ  
Max  
0.0472  
0.0059  
0.0413  
0.0106  
0.0083  
0.5591  
0.4921  
0.3976  
A
A1  
A2  
B
0.05  
0.95  
0.17  
0.10  
13.80  
12.30  
9.90  
0.0020  
0.0374  
0.0067  
0.0039  
0.5433  
0.4843  
0.3898  
C
D
D1  
E
e
0.50  
0.0197  
L
0.50  
0°  
0.70  
5°  
0.0197  
0°  
0.0276  
5°  
α
N
40  
40  
CP  
0.10  
0.0039  
Figure 18. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20 mm, Package Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
Drawing is not to scale.  
A1  
α
L
23/24  
M59BW102  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
2000 STMicroelectronics - All Rights Reserved  
All other names are the property of their respective owners.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
24/24  

M59BW102N 相关器件

型号 制造商 描述 价格 文档
M59DR008 STMICROELECTRONICS 8 Mbit 512Kb x16, Dual Bank, Page Low Voltage Flash Memory 获取价格
M59DR008E STMICROELECTRONICS 8 Mbit 512Kb x16, Dual Bank, Page Low Voltage Flash Memory 获取价格
M59DR008E100N1T STMICROELECTRONICS 8 Mbit 512Kb x16, Dual Bank, Page Low Voltage Flash Memory 获取价格
M59DR008E100N6 STMICROELECTRONICS 512KX16 FLASH 1.8V PROM, 100ns, PDSO48, 12 X 20 MM, PLASTIC, TSOP-48 获取价格
M59DR008E100N6T STMICROELECTRONICS 8 Mbit 512Kb x16, Dual Bank, Page Low Voltage Flash Memory 获取价格
M59DR008E100ZB1T STMICROELECTRONICS 8 Mbit 512Kb x16, Dual Bank, Page Low Voltage Flash Memory 获取价格
M59DR008E100ZB6T STMICROELECTRONICS 8 Mbit 512Kb x16, Dual Bank, Page Low Voltage Flash Memory 获取价格
M59DR008E120N1 STMICROELECTRONICS 512KX16 FLASH 1.8V PROM, 120ns, PDSO48, 12 X 20 MM, PLASTIC, TSOP-48 获取价格
M59DR008E120N1T STMICROELECTRONICS 8 Mbit 512Kb x16, Dual Bank, Page Low Voltage Flash Memory 获取价格
M59DR008E120N6T STMICROELECTRONICS 8 Mbit 512Kb x16, Dual Bank, Page Low Voltage Flash Memory 获取价格

M59BW102N 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6