M69KB096AB [STMICROELECTRONICS]

64 Mbit (4Mb x 16), 104MHz Clock Rate, 1.8V Supply, Bare Die, Burst PSRAM; 64兆位(4MB ×16 ) , 104MHz的时钟速率, 1.8V电源,裸模,突发PSRAM
M69KB096AB
型号: M69KB096AB
厂家: ST    ST
描述:

64 Mbit (4Mb x 16), 104MHz Clock Rate, 1.8V Supply, Bare Die, Burst PSRAM
64兆位(4MB ×16 ) , 104MHz的时钟速率, 1.8V电源,裸模,突发PSRAM

静态存储器 时钟
文件: 总73页 (文件大小:482K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M69KB096AB  
64 Mbit (4 Mb x16), 104MHz Clock Rate,  
1.8V Supply, Bare Die, Burst PSRAM  
PRELIMINARY DATA  
Features summary  
Supply Voltage  
– VCC = 1.7 to 1.95V core supply voltage  
– VCCQ = 1.7 to 1.95V for I/O buffers  
User-selectable Operating Modes  
– Asynchronous Modes: Random Read, and  
Write, Page Read  
– Synchronous Modes: NOR-Flash, Full  
Synchronous (Burst Read and Write)  
Asynchronous Random Read  
– Access Time: 70ns  
Asynchronous Page Read  
– Page Size: 4, 8 or 16 Words  
– Subsequent Read Within Page: 20ns  
Wafer  
Burst Read  
– Fixed Length (4, 8, 16 or 32 Words) or  
Continuous  
– Maximum Clock Frequency: 104MHz  
– Output delay: 7ns at 104MHz  
Low Power Consumption  
– Active Current: < 25mA  
– Standby Current: 140µA  
– Deep Power-Down Current: < 10µA  
Low Power Features  
– Partial Array Self-Refresh (PASR)  
– Deep Power-Down (DPD) Mode  
– Automatic Temperature-compensated Self-  
Refresh  
Operating Temperature  
– –30°C to +85°C  
The M69KB096AB is only available as part of a multi-chip package Product.  
Rev 1  
1/73  
November 2005  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to  
change without notice.  
www.st.com  
1
M69KB096AB  
Contents  
1
2
Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
Address Inputs (A0-A21) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Data Inputs/Outputs (DQ8-DQ15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Data Inputs/Outputs (DQ0-DQ7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Chip Enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Output Enable (G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Upper Byte Enable (UB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Lower Byte Enable (LB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Clock Input (K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.10 Configuration Register Enable (CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.11 Latch Enable (L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.12 Wait (WAIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.13  
2.14  
2.15  
2.16  
V
V
V
V
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
CC  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
CCQ  
Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
SS  
Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
SSQ  
3
4
Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.1  
4.2  
4.3  
4.4  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Deep Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Partial Array Self Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Automatic Temperature Compensated Self Refresh . . . . . . . . . . . . . . . . . . . 14  
5
Standard Asynchronous operating modes . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.1  
5.2  
5.3  
Asynchronous Read and Write modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Asynchronous Page Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Configuration Registers Asynchronous Read and Write . . . . . . . . . . . . . . . . 16  
2/73  
M69KB096AB  
6
Synchronous Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.1  
6.2  
6.3  
NOR-Flash Synchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Full Synchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Synchronous Burst Read and Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.3.1 Variable Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.3.2 Fixed Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.3.3 Row Boundary Crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.4  
6.5  
6.6  
Synchronous Burst Read Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Synchronous Burst Write Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Synchronous Burst Read and Write Suspend . . . . . . . . . . . . . . . . . . . . . . . 21  
7
Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.1  
Programming and Reading Registers using the CR Controlled Method . . . . 26  
7.1.1 Read Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.1.2 Program Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.2  
7.3  
Programming and Reading the Registers using the Software Method . . . . . 27  
Bus Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.3.1 Operating Mode Bit (BCR15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.3.2 Latency Type (BCR14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.3.3 Latency Counter Bits (BCR13-BCR11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.3.4 WAIT Polarity Bit (BCR10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.3.5 WAIT Configuration Bit (BCR8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.3.6 Driver Strength Bits (BCR5-BCR4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.3.7 Burst Wrap Bit (BCR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.3.8 Burst Length Bits (BCR2-BCR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.4  
7.5  
Refresh Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
7.4.1 Page Mode Operation Bit (RCR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
7.4.2 Deep Power-Down Bit (RCR4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
7.4.3 Partial Array Refresh Bits (RCR2-RCR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
8
Maximum Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Wafer and die specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
9
10  
3/73  
M69KB096AB  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
11  
12  
4/73  
M69KB096AB  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Page Mode Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Standard Asynchronous Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Operating Frequency versus Latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Asynchronous Write Operations (NOR-Flash Synchronous Mode) . . . . . . . . . . . . . . . . . . 22  
Synchronous Read Operations (NOR-Flash Synchronous Mode) . . . . . . . . . . . . . . . . . . . 22  
Full Synchronous Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Register Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Bus Configuration Register Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Burst Type Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Refresh Configuration Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Device ID Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Asynchronous Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Asynchronous Page Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Asynchronous Write AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Clock Related AC Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Synchronous Burst Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Synchronous Burst Write AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Power-Up and Deep Power-Down AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Bond Pad Location and Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Ordering Information Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
5/73  
M69KB096AB  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Latency Configuration (Variable Latency Mode, No Refresh Collision) . . . . . . . . . . . . . . . 24  
Latency Configuration (Fixed Latency Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Switching from Asynchronous to Synchronous Write Operation . . . . . . . . . . . . . . . . . . . . 25  
Refresh Collision during Synchronous Burst Read in Variable Latency Mode . . . . . . . . . . 25  
Set Configuration Register (Software Method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Read Configuration Register (Software Method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
WAIT Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 10. WAIT Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 11. AC Measurement I/O Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 12. AC Input Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 13. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 14. Asynchronous Random Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 15. Latch Enable Controlled, Asynchronous Random Read AC Waveforms . . . . . . . . . . . . . 43  
Figure 16. Asynchronous Page Read AC Waveforms (4 Words) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 17. CR Controlled Configuration Register Read Followed by Read, Asynchronous Mode . . . 45  
Figure 18. Chip Enable Controlled, Asynchronous Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 19. Upper/Lower Byte Enable Controlled, Asynchronous Write AC Waveforms . . . . . . . . . . . 48  
Figure 20. Write Enable Controlled, Asynchronous Write AC Waveforms. . . . . . . . . . . . . . . . . . . . . . 49  
Figure 21. L Controlled, Asynchronous Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 22. CR Controlled Configuration Register Program, Asynchronous Mode. . . . . . . . . . . . . . . . 51  
Figure 23. Clock input AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 24. 4-Word Synchronous Burst Read AC Waveforms (Variable Latency Mode) . . . . . . . . . . . 54  
Figure 25. Synchronous Burst Read Suspend and Resume AC Waveforms . . . . . . . . . . . . . . . . . . . 55  
Figure 26. Burst Read Showing End-of-Row Condition AC Waveforms (No Wrap) . . . . . . . . . . . . . . 56  
Figure 27. Burst Read Interrupted by Burst Read or Write AC Waveforms. . . . . . . . . . . . . . . . . . . . . 57  
Figure 28. CR Controlled Configuration Register Read Followed by Read, Synchronous Mode . . . . 58  
Figure 29. 4-Word Synchronous Burst Write AC Waveforms (Variable Latency Mode) . . . . . . . . . . . 60  
Figure 30. Burst Write Showing End-of-Row Condition AC Waveforms (No Wrap) . . . . . . . . . . . . . . 61  
Figure 31. Synchronous Burst Write Followed by Read AC Waveforms (4 Words) . . . . . . . . . . . . . . 62  
Figure 32. Burst Write Interrupted by Burst Write or Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . 63  
Figure 33. CR Controlled Configuration Register Program, Synchronous Mode. . . . . . . . . . . . . . . . . 64  
Figure 34. Power-Up AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 35. Deep Power-Down Entry and Exit AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 36. Die Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
6/73  
M69KB096AB  
1 Summary description  
1
Summary description  
The M69KB096AB is a 64 Mbit (67,108,864 bit) PSRAM, organized as 4,194,304 Words by 16  
bits. It uses a high-speed CMOS DRAM technology implemented using a one transistor-per-cell  
topology that achieves bigger array sizes. It provides a high-density solution for low-power  
handheld applications.  
The M69KB096AB is supplied by a 1.7 to 1.95V supply voltage range.  
The PSRAM interface supports various operating modes: Asynchronous Random Read and  
Write, Asynchronous Page Read and Synchronous mode that increases read/write speed.  
In Asynchronous Random Read mode, the M69KB096AB is compatible with low power  
SRAMs. In Asynchronous Page mode the device has much shorter access times within the  
page that make it is compatible with the industry standard PSRAMs.  
Two types of Synchronous modes are available:  
Flash-NOR: the device operates in Synchronous mode for read operations and  
Asynchronous mode for write operations.  
Full Synchronous: the device supports Synchronous transfers for both read and write  
operations.  
The M69KB096AB features three configuration registers:  
Two user-programmable registers used to define the device operation: the Bus  
Configuration Register (BCR) and the Refresh Configuration Register (RCR).  
A read-only Device ID Register (DIDR) containing device identification.  
The Bus Configuration Register (BCR) indicates how the device interacts with the system  
memory bus. The Refresh Configuration Register (RCR) is used to control how the memory  
array refresh is performed. At Power-Up, these registers are automatically loaded with default  
settings and can be updated any time during normal operation.  
PSRAMs are based on the DRAM technology, but have a transparent internal self-refresh  
mechanism that requires no additional support from the system memory microcontroller.  
To minimize the value of the Standby current during self-refresh operations, the M69KB096AB  
includes three system-accessible mechanisms configured via the Refresh Configuration  
Register (RCR):  
Partial Array Self Refresh (PASR) performs a limited refresh of the part of the PSRAM  
array that contains essential data.  
Deep Power-Down (DPD) mode completely halts the refresh operation. It is used when no  
essential data is being held in the device.  
Automatic Temperature Compensated Self Refresh (TCSR) adjusts the refresh rate  
according to the operating temperature.  
7/73  
1 Summary description  
M69KB096AB  
Figure 1. Logic Diagram  
V
V
CCQ  
CC  
22  
16  
A0-A21  
DQ0-DQ15  
WAIT  
W
E
CR  
G
M69KB096AB  
UB  
LB  
K
L
V
V
SSQ  
SS  
AI11565  
Table 1.  
Signal Names  
Address Inputs  
A0-A21  
DQ0-DQ15  
Data Inputs/Outputs  
Chip Enable Input  
E
CR  
G
Configuration Register Enable Input  
Output Enable Input  
Write Enable Input  
W
UB  
LB  
K
Upper Byte Enable Input  
Lower Byte Enable Input  
Clock Input  
L
Latch Enable Input  
Wait Output  
WAIT  
VCC  
Core Supply Voltage  
VCCQ  
VSS  
Input/Output Buffers Supply Voltage  
Ground  
VSSQ  
Input/Output Buffers Ground  
8/73  
M69KB096AB  
1 Summary description  
Figure 2. Block Diagram  
A21-A0  
Address Decoder  
Column Decoder  
E
W
Bus Configuration  
Register (BCR)  
CR  
DQ0-DQ15  
I/O  
Buffers  
4,096K x 16  
Row  
Decoder  
Memory Array  
Synchronous/  
Asynchronous  
Logic  
K
WAIT  
E
W
G
Control  
Logic  
L
CR  
LB  
UB  
AI11299  
1. This functional block diagram illustrates simplified device operation.  
9/73  
2 Signal descriptions  
M69KB096AB  
2
Signal descriptions  
The signals are summarized in Figure 1: Logic Diagram, and Table 1: Signal Names.  
2.1  
2.2  
Address Inputs (A0-A21)  
The Address Inputs select the cells in the memory array to access during read and write  
operations.  
Data Inputs/Outputs (DQ8-DQ15)  
The Upper Byte Data Inputs/Outputs carry the data to or from the upper part of the selected  
address during a write or read operation, when Upper Byte Enable (UB) is driven Low. When  
disabled, the Data Inputs/Outputs are high impedance.  
2.3  
2.4  
Data Inputs/Outputs (DQ0-DQ7)  
The Lower Byte Data Inputs/Outputs carry the data to or from the lower part of the selected  
address during a write or read operation, when Lower Byte Enable (LB) is driven Low. When  
disabled, the Data Inputs/Outputs are high impedance.  
Chip Enable (E)  
Chip Enable, E, activates the device when driven Low (asserted). When de-asserted (VIH), the  
device is disabled and goes automatically in low-power Standby mode or Deep Power-Down  
mode, according to the RCR settings.  
2.5  
2.6  
Output Enable (G)  
When held Low, VIL, the Output Enable, G, enables the Bus Read operations of the memory.  
Write Enable (W)  
Write Enable, W, controls the Bus Write operation of the memory. When asserted (VIL), the  
device is in write mode and write operations can be performed either to the configuration  
registers or to the memory array.  
2.7  
Upper Byte Enable (UB)  
The Upper Byte Enable, UB, gates the data on the Upper Byte Data Inputs/Outputs (DQ8-  
DQ15) to or from the upper part of the selected address during a write or read operation.  
10/73  
M69KB096AB  
2 Signal descriptions  
2.8  
Lower Byte Enable (LB)  
The Lower Byte Enable, LB, gates the data on the Lower Byte Data Inputs/Outputs (DQ0-DQ7)  
to or from the lower part of the selected address during a write or read operation.  
If both LB and UB are disabled (High), the device will disable the data bus from receiving or  
transmitting data. Although the device will seem to be deselected, it remains in an active mode  
as long as E remains Low.  
2.9  
Clock Input (K)  
The Clock, K, is an input signal to synchronize the memory to the microcontroller or system bus  
frequency during Synchronous Burst Read and Write operations. The Clock input signal  
increments the device internal address counter.  
The addresses are latched on the rising edge of the Clock K, when L is Low during  
Synchronous Bus operations.  
Latency counts are defined from the first Clock rising edge after L falling edge to the first data  
input latched or the first data output valid.  
The Clock input is required during all synchronous operations and must be kept Low during  
asynchronous operations.  
2.10 Configuration Register Enable (CR)  
When this signal is driven High, VIH, bus read or write operations access either the value of the  
Refresh Configuration Register (RCR) or the Bus Configuration Register (BCR) according to  
the value of A19.  
2.11 Latch Enable (L)  
In Synchronous mode, addresses are latched on the rising edge of the Clock K when the Latch  
Enable input, L is Low. In Asynchronous mode, addresses are latched on L rising edge.  
2.12 Wait (WAIT)  
The WAIT output signal provides data-valid feedback during Synchronous Burst Read and  
Write operations. The signal is gated by E. Driving E High while WAIT is asserted may cause  
data corruption.  
Once a read or write operation has been initiated, the WAIT signal goes active to indicate that  
the M69KB096AB device requires additional time before data can be transferred.  
The WAIT signal also is used for arbitration when a Read or Write operation is launched while  
an on-chip refresh is in progress (see Figure 6: Refresh Collision during Synchronous Burst  
Read in Variable Latency Mode).  
Typically, the WAIT pin of the M69KB096AB can be connected to a shared WAIT signal used by  
the processor to coordinate transactions with multiple memories on the synchronous bus.  
See Section 3: Power-up for details on the WAIT signal operation.  
11/73  
2 Signal descriptions  
M69KB096AB  
2.13 V Supply Voltage  
CC  
The VCC Supply Voltage is the core supply voltage.  
2.14 V  
Supply Voltage  
CCQ  
VCCQ provides the power supply for the I/O pins. This allows all Outputs to be powered  
independently from the core power supply, VCC  
.
2.15 V Ground.  
SS  
The VSS Ground is the reference for all voltage measurements.  
2.16 V  
Ground  
SSQ  
VSSQ ground is the reference for the input/output circuitry driven by VCCQ. VSSQ must be  
connected to VSS  
.
12/73  
M69KB096AB  
3 Power-up  
3
Power-up  
To guarantee correct operation, a specific Power-Up sequence must be followed to initialize the  
M69KB096AB. Power must be applied simultaneously to VCC and VCCQ. Once VCC and VCCQ  
have reached a stable level (see Figure 35: Deep Power-Down Entry and Exit AC Waveforms  
and Figure 34: Power-Up AC Waveforms), the device will require tVCHEL to complete its self-  
initialization process. During the initialization period, the E signal must remain High. Once  
initialization has completed, the device is ready for normal operation.  
Initialization will load the Bus Configuration Register (BCR) and the Refresh Configuration  
Register (RCR) with their default settings (see Table 9: Bus Configuration Register Definition,  
and Table 11: Refresh Configuration Register Definition).  
4
Low-power modes  
4.1  
Standby  
When the device is in Standby, the current consumption is reduced to the level necessary to  
perform the memory array refresh operation. The device will enter Standby when a read or  
write operation is completed, depending on the operating mode (Asynchronous, NOR-Flash  
Synchronous or Full Synchronous).  
For details on how to enter Standby, refer to Table 3: Standard Asynchronous Operating  
Modes, Table 5: Asynchronous Write Operations (NOR-Flash Synchronous Mode) and Table 6:  
Synchronous Read Operations (NOR-Flash Synchronous Mode).  
4.2  
Deep Power-Down  
Deep Power-Down (DPD) is used by the system memory microcontroller to disable the PSRAM  
device when its storage capabilities are not needed. All refresh operations are then disabled.  
For the device to enter Deep Power-Down, bit 4 of the RCR must be set to ‘0’ and Chip Enable,  
E, must go High, VIH. When the Deep Power-Down is enabled, the data stored in the device  
may be corrupted and BCR, RCR and DIDR content are saved.  
For the device exits Deep Power-Down by driving Chip Enable, E, Low, VIL. Bit 4 of the RCR will  
be automatically set to ‘1’. Once the Deep Power-Down is exited, the device will be available for  
normal operations after tVCHEL (time to perform an initialization sequence) During this delay, the  
current consumption will be higher than the specified Standby levels, but considerably lower  
than the active current. The content of the registers will be restored after Deep Power-Down.  
For details on how to enter Deep Power-Down, refer to Table 3: Standard Asynchronous  
Operating Modes, Table 5: Asynchronous Write Operations (NOR-Flash Synchronous Mode)  
and Table 6: Synchronous Read Operations (NOR-Flash Synchronous Mode).  
13/73  
4 Low-power modes  
M69KB096AB  
4.3  
Partial Array Self Refresh  
The Partial Array Self Refresh (PASR) performs a limited refresh of part of the PSRAM array.  
This mechanism enables the device to reduce the Standby current by refreshing only the part of  
the memory array that contains essential data. Different refresh options can be defined by  
setting the RCR0 to RCR2 bits of the RCR:  
Full array  
One eighth of the array  
One half of the array  
One quarter of the array  
None of the array.  
These memory areas can be located either at the top or bottom of the memory array.  
The WAIT signal is used for arbitration when a read/write operation is launched while an on-  
chip refresh is in progress. If locations are addressed while they are undergoing refresh, the  
WAIT signal will be asserted for additional clock cycles, until the refresh has completed (see  
Figure 6: Refresh Collision during Synchronous Burst Read in Variable Latency Mode). When  
the refresh operation is completed, the read or write operation will be allowed to continue  
normally.  
4.4  
Automatic Temperature Compensated Self Refresh  
The leakage current of DRAM capacitive storage elements increases with the temperature. At  
lower temperatures, the refresh rate can be decreased to minimize the Standby current.  
The M69KB096AB is based on DRAM architecture, consequently it requires increasingly  
frequent refresh operations to maintain data integrity as the temperature increases. The  
Automatic Temperature Compensated Self Refresh mechanism (TCSR) that the devices  
feature, automatically adjusts the refresh rate depending on the operating temperature.  
14/73  
M69KB096AB  
5 Standard Asynchronous operating modes  
5
Standard Asynchronous operating modes  
The M69KB096AB supports Asynchronous Read and Write modes (Random Read, Page  
Read, Asynchronous Write).  
The device is put in Asynchronous mode by setting bit 15 (BCR15) of the BCR to ‘1’. The Page  
mode is controlled by the Refresh Configuration Register (bit RCR7).  
During asynchronous operations, the WAIT signal should be ignored and the Clock input signal  
K should be held Low, VIL.  
Refer to Table 3: Standard Asynchronous Operating Modes for a detailed description of  
asynchronous operating modes.  
5.1  
Asynchronous Read and Write modes  
At Power-Up, the device defaults to Asynchronous Random Read mode (bit BCR15 set to ‘1’).  
This mode uses the industry standard control bus (E, G, W, LB, UB). Read operations are  
initiated by bringing E and G Low, VIL, while keeping W High, VIH. Valid data will be gated  
through the output buffers after the specific access time tELQV has elapsed.  
Write operations occur when E and W are Low. During Asynchronous Random Write  
operations, the G signal is ‘don't care’ and W will override G. The data to be written is latched  
on the rising edge of E, W, LB or UB (whichever occurs first). The write operation is terminated  
by de-asserting E, W, LB or UB.  
The L input can either be used to latch the address or kept Low, VIL, during the entire read/write  
operation.  
See Figures 14 and 15, and Table 17 for details on Asynchronous Read AC waveforms and  
characteristics and Figures 18, 19, 20, and Table 19 for details of Asynchronous Write AC  
waveforms and characteristics.  
5.2  
Asynchronous Page Read mode  
Asynchronous Page Read mode is enabled by setting RCR7 to ‘1’. The Latch Enable, L, and  
the Chip enable E must be held Low, VIL during Asynchronous Page Read operations.  
A Page of data is internally read. A memory page may consist of 4, 8 or 16 Words. During a 4-  
Word page access, all the address bits except A0 to A1 should be fixed. During a 8-Word and  
16-Word page access, all address bits are fixed except A0 to A2 and A0 to A3, respectively  
(see Table 2: Page Mode Characteristics).  
The first read operation within the Page has the normal access time (tAVQV), subsequent reads  
within the same Page have much shorter access times (tAVQV1). If the Page changes then the  
normal, longer timings apply again.  
The Page mode is not available for write operations.  
See Figure 16 and Table 17 for details of the Asynchronous Page Read timing requirements.  
15/73  
5 Standard Asynchronous operating modes  
M69KB096AB  
Table 2.  
Page Mode Characteristics  
Page Size  
Page Read Address  
Page Read Start Address  
Page Read Direction  
4 Words  
A0-A1  
A0-A2  
A0-A3  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
8 Words  
16 Words  
5.3  
Configuration Registers Asynchronous Read and Write  
Programming the registers (BCR and RCR) and reading the registers (BCR, RCR and DIDR)  
can be performed using the CR controlled method in standard Asynchronous mode.  
16/73  
M69KB096AB  
5 Standard Asynchronous operating modes  
Table 3.  
Standard Asynchronous Operating Modes  
Asynchronous  
Modes(1)(2)  
A0-A17  
A20-A21  
Power  
E
W
G
UB LB CR A19 A18  
DQ0-DQ7 DQ8-DQ15  
Output  
Valid  
Output  
Valid  
VIL VIL VIL VIL  
Word Read  
Valid  
Lower Byte  
Read  
Output  
Valid  
VIH VIL VIH VIL VIL  
VIL VIL VIH VIL  
Valid  
High-Z  
Upper Byte  
Read  
Output  
Valid  
Valid  
Valid  
Valid  
High-Z  
VIL VIL VIL  
VIH VIL VIL  
Word Write  
X
X
Input Valid Input Valid  
Lower Byte  
Write  
Input Valid  
Invalid  
Invalid  
VIL  
Active  
Upper Byte  
Write  
(ICC  
)
VIL VIH VIL  
X
Valid  
Input Valid  
VIL  
Read  
Configuration  
Register  
(CR Controlled  
Method)  
00(RCR)  
BCR/  
VIH VIL  
X
X
10(BCR)  
X
RCR/DIDR  
Content  
X1(DIDR)  
VIH  
Program  
Configuration  
Register (CR  
Controlled)(3)  
00(RCR)  
BCR/  
VIL  
X
10(BCR)  
X
X
X
X
X
X
X
RCR Data  
(4)  
Active  
(ICC  
Output Disable/  
No Operation  
VIH VIH  
VIL  
X
X
X
X
X
X
X
X
X
High-Z  
High-Z  
)
Deep  
Power-  
Down  
Deep  
Power-Down(5)  
VIH  
X
X
X
(ICCPD)  
Standby  
VIH  
Standby  
X
X
X
X
X
High-Z  
(IPASR  
)
1. The Clock signal, K, must remain Low in asynchronous operating mode, and to achieve standby power in Standby and  
Deep Power-Down modes.  
2. The device must have been configured to operate in asynchronous mode by setting BCR15 to ‘1’ (default value).  
3. BCR and RCR only.  
4. A18 and A19 are used to select the BCR, RCR or DIDR registers.  
5. Bit 4 of the Refresh Configuration Register must be set to ‘0’ and E must be maintained High, V , during Deep Power-  
IH  
Down mode.  
17/73  
6 Synchronous Operating modes  
M69KB096AB  
6
Synchronous Operating modes  
The synchronous modes allow high-speed read and write operations synchronized with the  
clock.  
The M69KB096AB supports two types of synchronous modes:  
NOR-Flash:- this mode greatly simplifies the interfacing with traditional burst-mode Flash  
memory microcontrollers.  
Full Synchronous: both read and write are performed in Synchronous mode.  
All the options related to the synchronous modes can be configured through the Bus  
Configuration Register, BCR. In particular, the device is put in Synchronous mode, either NOR-  
Flash or Full Synchronous, by setting bit BCR15 of the Bus Configuration Register to ‘0’.  
The device will automatically detect whether the NOR-Flash or the Full Synchronous mode is  
being used by monitoring the Clock, K, and the Latch Enable, L, signals. If a rising edge of the  
Clock K is detected while L is held Low, VIL (active), the device operates in Full Synchronous  
mode.  
6.1  
NOR-Flash Synchronous mode  
In this mode, the device operates in synchronous mode for read operations, and in  
asynchronous mode for write operations.  
Asynchronous write operations are performed at Word level, with LB and UB Low. The data is  
latched on E, W, LB, UB, whichever occurs first. RCR and BCR registers can be programmed in  
NOR-Flash Asynchronous Write mode, using the CR controlled method (see Section 7.1:  
Programming and Reading Registers using the CR Controlled Method). A Program  
Configuration Register operation can only be issued if the device is in idle state and no burst  
operations are in progress. NOR-Flash Asynchronous Write operations are described in  
Table 5: Asynchronous Write Operations (NOR-Flash Synchronous Mode).  
Synchronous read operations are also performed at Word level. They are controlled by the  
state of E, L, G, W, LB and UB signals when a rising edge of the clock signal, K, occurs. The  
initial Burst Read access latches the Burst start address. The number of Words to be output is  
controlled by bits 0 to 2 of the BCR. The first data will be output after a number of clock cycles,  
also called Latency. NOR-Flash Synchronous Burst Read operations are described in Table 6:  
Synchronous Read Operations (NOR-Flash Synchronous Mode).  
When a Burst Write operation is initiated or when switching from NOR-Flash mode to Full  
Synchronous mode, the delay from E Low to Clock High, tELKH, should not exceed 20ns.  
However, when it is not possible to meet these specifications, special care must be taken to  
keep addresses stable after driving the Write Enable signal, W, Low.  
Write operations are considered as Asynchronous operations until the device detects a valid  
clock edge and hence the address setup time of tAVWL must be satisfied (see Figure 5:  
Switching from Asynchronous to Synchronous Write Operation).  
18/73  
M69KB096AB  
6 Synchronous Operating modes  
6.2  
Full Synchronous mode  
In Full Synchronous mode, the device performs read and write operations synchronously.  
Synchronous Read and Write operations are performed at Word level. The initial Burst Read  
and Write access latches the Burst start address. The number of Words to be output or input  
during Synchronous Read and Write operations is controlled by bits 0 to 2 of the BCR.  
During Burst Read and Write operations, the first data will be output after a number of clock  
cycles defined by the Latency value.  
Programming the registers (BCR and RCR) and reading the registers (BCR, RCR and DIDR)  
can be performed using the CR controlled method in Full Synchronous mode.  
Full Synchronous operations are described in Table 7: Full Synchronous Mode.  
6.3  
Synchronous Burst Read and Write  
During Synchronous Burst Read or Write operations, addresses are latched on the rising edge  
of the Clock K when L is Low and data are latched on the rising edge of K. The Write Enable,  
W, signal indicates whether the operation is going to be a read (W=VIH) or a write (W=VIL).  
The WAIT output will be asserted as soon as a Synchronous Burst operation is initiated and will  
be de-asserted to indicate when data are to be transferred to (or from) the memory array.  
The Burst Length is the number of Words to be output or input during a Synchronous Burst  
Read or Write operation. It can be configured as 4, 8, 16 or 32 Words or continuous through bit  
BCR0 to BCR2 or the Burst Configuration Register.  
The Latency defines the number of clock cycles between the beginning of a Burst Read  
operation and the first data output (counting from the first Clock edge where L was detected  
Low) or between the beginning of a Burst Write operation and the first data input. The Latency  
can be set through bits BCR13 to BCR11 of the Bus Configuration Register (see Table 4:  
Operating Frequency versus Latency).  
The latency can also be configured to fixed or variable by programming bit BCR14. By default,  
the Latency Type is set to variable. Synchronous Read operations are performed in both fixed  
and variable latency mode while Synchronous Write operations are only performed with fixed  
latency.  
See Figures 24, 26, and Figures 30, 31, for details on Synchronous Read and Write AC  
waveforms, respectively.  
6.3.1 Variable Latency  
In Variable Latency mode, the latency programmed in the BCR is not guaranteed and is  
maintained only if there is no conflict with a refresh operation. The Latency set in the BCR is  
applicable only for an initial burst read access, when no refresh request is pending. For a given  
latency value, the Variable Latency mode allows higher operating frequencies than the Fixed  
Latency mode (see Table 4: Operating Frequency versus Latency and Figure 3: Latency  
Configuration (Variable Latency Mode, No Refresh Collision)).  
Burst Write operations are always performed at fixed latency, even if BCR14 is configured to  
Variable Latency (see Section 6.3.2: Fixed Latency).  
Monitoring of the WAIT signal is recommended for reliable operation in this mode. See Figure  
24. and 31 for details on Synchronous Burst Read and Write AC waveforms in Variable Latency  
mode.  
19/73  
6 Synchronous Operating modes  
M69KB096AB  
6.3.2 Fixed Latency  
The latency programmed in the BCR is the real latency. The number of clock cycles is  
calculated by taking into account the time necessary for a refresh operation and the time  
necessary for an initial Burst access. This limits the operating frequency for a given latency  
value (see Table 4: Operating Frequency versus Latency and Figure 4: Latency Configuration  
(Fixed Latency Mode)).  
It is recommended to use the Fixed Latency mode if the microcontroller cannot monitor the  
WAIT signal.  
6.3.3 Row Boundary Crossing  
The M69KB096AB features 128-Word rows. Row boundary crossings between adjacent rows  
may occur during Burst Read and Write operations. Row boundary crossings are not handled  
automatically by the PSRAM.  
The microcontroller must stop the Burst operation at the row boundary and restart it at the  
beginning of the next row. Burst operations must be stopped by driving the Chip Enable signal,  
E, High, after the WAIT signal falling edge. E must transition:  
before the third Clock cycle after the WAIT signal goes Low if BCR[8] = 0,  
before the fourth Clock cycle after WAIT signal goes Low if BCR[8] = 1.  
Refer to Figure 26 and Figure 30 for details on how to manage row boundary crossings during  
burst operations.  
6.4  
Synchronous Burst Read Interrupt  
Ongoing Burst Read operations can be interrupted to start a new Burst cycle by either of the  
following means:  
Driving E High, VIH, and then Low, VIL on the next clock cycle (recommended). If  
necessary, refresh cycles will be added during the new Burst operation to schedule any  
outstanding refresh. If Variable Latency mode is set, additional wait cycles will be added if  
a refresh operation is scheduled during the Synchronous Burst Read Interrupt. WAIT  
monitoring is mandatory for proper system operation.  
Starting a new Synchronous Burst Read operation without toggling E.  
An ongoing Burst Read operation can be interrupted only after the first valid data is output.  
When a new Burst access starts, I/O signals immediately become high impedance.  
6.5  
Synchronous Burst Write Interrupt  
Ongoing Burst Write operations can be interrupted to start a new Burst cycle by either of the  
following means:  
Driving E High, VIH, and then Low, VIL on the next clock cycle (recommended),  
Starting a new Synchronous Burst Write without toggling E. Considering that Burst Writes  
are always performed in Fixed Latency mode, refresh is never scheduled. A maximum  
Chip Enable, E, low time (tELEH) must be respected for proper device operation.  
An ongoing Burst Write can be interrupted only after the first data is input. When a new Burst  
access starts, I/O signals immediately become high impedance.  
20/73  
M69KB096AB  
6 Synchronous Operating modes  
See Figure 27: Burst Read Interrupted by Burst Read or Write AC Waveforms and Figure 32:  
Burst Write Interrupted by Burst Write or Read AC Waveforms for details on Burst Read and  
Burst Write interrupt AC waveforms, respectively.  
6.6  
Synchronous Burst Read and Write Suspend  
Synchronous Burst Read and Write operations can be suspended by halting the Clock K  
holding it either High or Low. The status of the I/O signals will depend on the status of Output  
enable input, G. The device internal address counter is suspended and data outputs become  
high impedance tGHQZ after the rising edge of the Output Enable signal, G. It is prohibited to  
suspend the first data output at the beginning of a Synchronous Burst Read.  
See Figure 25 for details on the Synchronous Burst Read and Write Suspend mechanisms.  
During Synchronous Burst Read and Synchronous Burst Write Suspend operations, the WAIT  
output will be asserted. Bit BCR8 of the Bus Configuration Register is used to configure when  
the transition of the WAIT output signal between the asserted and the de-asserted state occurs  
with respect to valid data available on the data bus.  
Table 4.  
Operating Frequency versus Latency  
Latency (Clock Cycles)  
Max Input Clock Frequency (MHz)  
Latency  
Mode  
Configured Latency  
(Clock Cycles)  
If Refresh  
Normal  
104 MHz  
66  
80 MHz  
52  
Collision  
2 (3 clock cycles)  
3
4
-
5
7
-
Variable  
Latency  
3 (4 clock cycles)  
(default)  
104  
80  
BCR14 = 0  
(Default)  
All Others  
-
-
2 (3 clock cycles)  
3
4
33  
33  
3 (4 clock cycles)  
(default)  
52  
52  
Fixed Latency  
BCR14 = 1  
4 (5 clock cycles)  
5 (6 clock cycles)  
6 (7 clock cycles)  
All Others  
5
6
7
-
66  
75  
66  
75  
80  
-
104  
-
21/73  
6 Synchronous Operating modes  
M69KB096AB  
Table 5.  
Asynchronous Write Operations (NOR-Flash Synchronous Mode)  
Asynchronous  
UB,  
LB  
DQ0-  
DQ15  
Power  
E
L
W
G
CR A19 A18 A0-A21  
Operations(1)(2)  
VIL VIL VIL  
VIL VIL  
Word Write  
X
Valid  
Input Valid  
Program Configuration  
Register  
(CR Controlled)(3)  
RCR/  
BCR  
Data  
Active (ICC  
)
00(RCR)  
10(BCR)  
VIL VIL VIL  
VIH  
X
X
X
Output Disable/  
No Operation  
Active (ICC  
)
VIL VIH VIH VIH VIL VIL  
VIL  
High-Z  
High-Z  
High-Z  
Standby (IPASR  
)
VIH  
VIH  
VIL  
X
Standby  
X
X
X
X
X
X
X
X
X
X
Deep Power-Down  
(ICCPD)  
Deep Power-Down  
1. The device must have been configured to operate in asynchronous mode by setting BCR15 to ‘1’ (default value).  
2. The Clock signal, K, must remain Low, during asynchronous Write operations and to achieve standby power during  
Standby and Deep Power-Down modes.  
3. BCR and RCR only.  
Table 6.  
Synchronous Read Operations (NOR-Flash Synchronous Mode)  
Synchronous  
Operations(1)  
A0-  
A21(2)  
LB,  
UB  
DQ15-  
DQ0  
Power  
K
E
L
W
VIH  
X
G
CR  
VIL  
VIL  
A19  
A18  
Initial Burst  
Read  
VIL  
VIL  
VIL  
VIH  
VIL  
VIL  
!
!
X
Valid Valid  
X
Valid  
X
Subsequent  
Burst Read(3)  
Data-  
Out  
VIL  
Active (ICC  
)
)
Read  
Configuration  
Register  
RCR/  
BCR/  
DIDR  
00(RCR)  
10(BCR)  
X1(DIDR)  
VIL  
VIL  
VIH  
VIL  
VIH  
!
X
X
(CR Controlled  
Method)  
Content  
Output  
Disable/No  
Operation  
Active (ICC  
Standby  
VIL  
VIH  
VIH  
VIH  
VIL  
X
!
!
X
X
X
X
High-Z  
High-Z  
VIH  
Standby  
X
X
X
(IPASR  
)
Deep  
Power-  
Down  
Deep Power-  
Down  
VIL VIH  
X
X
X
X
X
X
High-Z  
(ICCPD)  
1. The device must have been configured to operate in synchronous mode by setting BCR15 to ‘0’ (default value).  
2. Except A18 and A19.  
3. Burst Read Interrupt and Suspend are described in dedicated paragraph of the Section 6: Synchronous Operating modes.  
22/73  
M69KB096AB  
6 Synchronous Operating modes  
Table 7.  
Full Synchronous Mode  
A0-  
A22(1)  
Synchronous  
Mode  
LB,  
UB  
DQ15-  
DQ0  
Power  
K
E
L
W
G
WAIT  
CR  
A19  
A18  
Initial Burst  
Read  
VIL VIL VIH  
VIL  
VIL  
VIL  
VIL  
VIL  
X
!
!
!
!
X
Valid  
X
Valid  
Valid  
X
Subsequent  
Burst Read(2)  
Output  
Valid  
VIL VIH  
VIL  
X
X
Initial Burst  
Write  
Input  
Valid  
VIL VIL VIL VIH  
VIL VIH VIH  
X
Valid  
X
Valid  
X
Valid  
X
Subsequent  
Burst Write  
Input  
Valid  
VIL  
X
Active  
Program  
Configuration  
Register  
(ICC  
)
RCR/  
BCR  
Data  
00(RCR)  
Low-Z  
VIL VIL VIL VIH  
VIH  
!
X
X
10(BCR)  
(CR  
Controlled)  
Read  
Configuration  
Register  
(CR  
Controlled  
Method)  
RCR/  
BCR/  
00(RCR)  
10(BCR)  
X1(DIDR)  
VIL VIL VIH VIL  
VIL  
VIH  
!
!
X
DIDR  
Content  
Active  
(ICC  
VIL VIH VIH VIH  
VIL  
VIL  
No Operation  
Standby  
X
X
X
X
High-Z  
High-Z  
)
Standby  
VIL VIH  
X
X
X
X
X
X
(IPASR  
)
Deep  
Power-  
Down  
High-Z  
Deep Power-  
Down  
VIL VIH  
X
X
X
High-Z  
(ICCPD)  
1. Except A18 and A19.  
2. Burst Read Interrupt, Suspend, Terminate and Burst Write Interrupt, Suspend and Terminate are described in dedicated  
paragraph of the Section 6: Synchronous Operating modes.  
23/73  
6 Synchronous Operating modes  
M69KB096AB  
Figure 3. Latency Configuration (Variable Latency Mode, No Refresh Collision)  
K
0
1
2
3
4
5
6
7
Address  
Valid  
Addr.  
ADV  
Latency = 3 Clock Cycles  
Hi Z  
Hi Z  
Q
DQ0-DQ15  
Q
Q
Q
Q
Q
4
5
1
2
3
Latency = 4 Clock Cycles  
Q
Q
Q
3
DQ0-DQ15  
4
1
2
AI11280  
Figure 4. Latency Configuration (Fixed Latency Mode)  
N-1  
Cycle  
N
Cycle  
K
tAVQV  
Address  
Valid  
Addr.  
tLLQV  
tELQV  
ADV  
E
tKHQV2  
Hi Z  
Q
DQ0-DQ15  
OUT  
Q
Q
Q
Q
4
5
1
2
3
AI11281b  
1. See Table 21: Synchronous Burst Read AC Characteristics for details on the synchronous read AC Characteristics shown  
in the above waveforms.  
24/73  
M69KB096AB  
6 Synchronous Operating modes  
Figure 5. Switching from Asynchronous to Synchronous Write Operation  
K
VALID  
Addr.  
tAVWL  
L
tELKH  
E
W
AI10203  
Figure 6. Refresh Collision during Synchronous Burst Read in Variable Latency Mode  
K
Address  
A0-A22  
Valid  
L
E
G
W
LB/UB  
Hi Z  
Hi Z  
WAIT  
DQ0-DQ15  
Q0  
Q1  
Q2  
Q3  
Additional WAIT states inserted  
to allow Refresh completion  
AI11275b  
1. Additional Wait states are inserted to allow Refresh completion.  
The latency is set to 3 clock cycles (BCR13-BCR11 = 010). The WAIT must be active Low, V , (BCR10 = 0) and asserted  
IL  
during delay (BCR8= 0).  
25/73  
7 Configuration Registers  
M69KB096AB  
7
Configuration Registers  
The M69KB096AB features three registers:  
The Bus Configuration Register (BCR)  
The Refresh Configuration Register (RCR)  
The Device ID Register (DIDR).  
BCR and RCR are user-programmable registers that define the device operating mode. They  
are automatically loaded with default settings during Power-Up, and selected by address bits  
A18 and A19 (see Table 8: Register Selection).  
DIDR is a read-only register that contains information about the device identification. It is  
selected by setting address bit A18 to ‘1’ with A19 ‘don’t care’.  
The configuration registers (only BCR and RCR) can be programmed and read using two  
methods:  
The CR Controlled Method (or Hardware Method)  
The Software Method.  
7.1  
Programming and Reading Registers using the CR Controlled  
Method  
7.1.1 Read Configuration Register  
The content of a register is read by issuing a read operation with Configuration Register Enable  
signal, CR, High, VIH. Address bits A18 and A19 select the register to be read (see Table 8:  
Register Selection). The value contained in the register is then available on data bits DQ0 to  
DQ15.  
The BCR, RCR and DIDR can be read either in normal asynchronous or synchronous mode.  
The CR pin has to be driven high prior to any access.  
See Tables 6 and 7 for a detailed description of Configuration register Read by the CR  
Controlled methods and Figures 17 and 28, CR Controlled Configuration Register Read  
waveforms in asynchronous and synchronous mode.  
7.1.2 Program Configuration Register  
BCR and RCR registers can be programmed by issuing a bus write operation, in asynchronous  
or synchronous mode (NOR-Flash or Full Synchronous), with Configuration Register Enable  
signal, CR, High, VIH. Address bits A18 and A19 allow to select between BCR and RCR (see  
Table 8: Register Selection).  
In synchronous mode, the values placed on address lines A0 to A15 are latched on the rising  
edge of L, E, or W, whichever occurs first.  
In asynchronous mode, a register is programmed by toggling L signal.  
LB and UB are ‘don’t care’. The CR pin has to be driven high prior to any access.  
26/73  
M69KB096AB  
7 Configuration Registers  
Refer to Tables 5 and 7 for a detailed description of Configuration Register Program by the CR  
Controlled method and to Figures 22 and 33, showing CR controlled Configuration Register  
Program waveforms in asynchronous and synchronous mode.  
Table 8.  
Register Selection  
Register  
Read or Write Operation  
A18  
A19  
RCR  
BCR  
DIDR  
Read/Write  
Read/Write  
Read-Only  
0
0
1
0
1
X
7.2  
Programming and Reading the Registers using the Software  
Method  
All registers (BCR, RCR, DIDR) can be read by issuing a Read Configuration Register  
sequence (see Figure 8: Read Configuration Register (Software Method).  
BCR and RCR can be programmed by issuing a Set Configuration Register sequence (see  
Figure 7: Set Configuration Register (Software Method).  
The timings will be identical to those described in Table 17: Asynchronous Read AC  
Characteristics. The Configuration Register Enable input, CR, is ‘don’t care’.  
Read Configuration Register and Set Configuration Register sequences both require 4 read  
and write cycles. These cycles are performed in asynchronous mode, whatever the device  
operating mode:  
1. 2 bus read and one bus write cycles to a unique address location, 7FFFFFh, indicate that  
the next operation will read or write to a configuration register. The data written during the  
third cycle must be ‘0000h’ to access the RCR, ‘0001h’ to access the BCR and ‘0002h’ to  
access the DIDR during the next cycle.  
2. The fourth cycle reads from or writes to the configuration register.  
The timings for programming and reading the registers by the software method are identical to  
the asynchronous write and read timings.  
27/73  
7 Configuration Registers  
M69KB096AB  
Figure 7. Set Configuration Register (Software Method)  
Addr.  
7FFFFFh  
7FFFFFh  
7FFFFFh  
7FFFFFh  
E
tEHEL2  
tEHEL2  
tEHEL2  
G
W
LB, UB  
Configuration  
DQ0-DQ15  
(2)  
Register Data  
AI09469f  
1. Only the Bus Configuration Register (BCR) and the Refresh Configuration Register (RCR) can be modified.  
2. To program the BCR or the RCR on last bus write cycle, DQ0-DQ15 must be set to ‘0001h’ and ‘0000’ respectively.  
3. The highest order address location is not modified during this operation.  
4. The control signals E, G, W, LB and UB, must be toggled as shown in the above figure.  
Figure 8. Read Configuration Register (Software Method)  
Addr.  
7FFFFFh  
7FFFFFh  
tEHEL2  
7FFFFFh  
tEHEL2  
7FFFFFh  
E
tEHEL2  
G
W
LB, UB  
Configuration  
Register Data  
DQ0-DQ15  
(1)  
AI09470f  
1. To read the BCR, RCR or DIDR on last bus read cycle, DQ0-DQ15 must be set to ‘0001h’, ‘0000’ and ‘0002’ respectively.  
2. The highest order address location is not modified during this operation.  
3. The control signals E, G, W, LB and UB, must be toggled as shown in the above figure.  
28/73  
M69KB096AB  
7 Configuration Registers  
7.3  
Bus Configuration Register  
The Bus Configuration Register (BCR) defines how the PSRAM interacts with the system  
memory bus. All the device operating modes are configured through the BCR, except the Page  
mode which is configured through the RCR.  
Refer to Table 9 for the description of the Bus Configuration Register Bits.  
7.3.1 Operating Mode Bit (BCR15)  
The Operating Mode bit allows the Synchronous mode or the Asynchronous mode (default  
setting) to be selected. Selecting the Synchronous mode will allow the device to operate either  
in NOR Flash mode or in full Synchronous Burst mode.  
The device will automatically detect that the NOR Flash mode is being used by monitoring a  
rising edge of the Clock signal, K, when L is Low. If this should not be the case, the device  
operates in full Synchronous mode.  
7.3.2 Latency Type (BCR14)  
The Latency Type bit is used to configure the latency type. When the Latency Type bit is set to  
‘0’, the device operates in variable latency mode (only available for Synchronous Read mode).  
When it is ‘1’, the fixed latency mode is selected and the latency is defined by the values of bits  
BCR13 to BCR11.  
Refer to Figures 3 and 4 for examples of fixed and variable latency configuration.  
7.3.3 Latency Counter Bits (BCR13-BCR11)  
The Latency Counter bits are used to set the number of clock cycles between the beginning of  
a read or write operation and the first data output or input.  
The Latency Counter bits can only assume the values shown in Table 9: Bus Configuration  
Register Definition (see also Figures 3 and 4).  
7.3.4 WAIT Polarity Bit (BCR10)  
The WAIT Polarity bit indicates whether the WAIT output signal is active High or Low. As a  
consequence, it also determines whether the WAIT signal requires a pull-up or pull-down  
resistor to maintain the de-asserted state (see Figure 10: WAIT Polarity).  
By default, the WAIT output signal is active High.  
29/73  
7 Configuration Registers  
M69KB096AB  
7.3.5 WAIT Configuration Bit (BCR8)  
The system memory microcontroller uses the WAIT signal to control data transfer during  
Synchronous Burst Read and Write operations.  
The WAIT Configuration bit is used to determine when the transition of the WAIT output signal  
between the asserted and the de-asserted state occurs with respect to valid data available on  
the data bus.  
When the Wait Configuration bit is set to ‘0’, data is valid or invalid on the first Clock rising edge  
immediately after the WAIT signal transition to the de-asserted or asserted state.  
When the Wait Configuration bit is set to ‘1’ (default settings), the WAIT signal transition occurs  
one clock cycle prior to the data bus going valid or invalid.  
See Figure 9: WAIT Configuration Example for an example of WAIT configuration.  
7.3.6 Driver Strength Bits (BCR5-BCR4)  
The Driver Strength bits allow to set the output drive strength to adjust to different data bus  
loading. Normal driver strength (full drive) and reduced driver strength (half drive and a quarter  
drive) are available.  
By default, outputs are configured at ‘half drive” strength.  
7.3.7 Burst Wrap Bit (BCR3)  
Burst Read operations can be confined inside the 4, 8, 16 or 32 Word boundary (wrap mode). If  
the wrap mode is not enabled, the device outputs data sequentially up to the end of the row,  
regardless of burst boundaries.  
The Burst Wrap bit is used to select between ‘wrap’ and ‘no wrap’ mode.  
7.3.8 Burst Length Bits (BCR2-BCR0)  
The Burst Length bits set the number of Words to be output or input during a Synchronous  
Burst Read or Write operation. They can be set for 4 Words, 8 Words, 16 Words, 32 Words or  
Continuous Burst (default settings), where all the Words are output or input sequentially  
regardless of address boundaries (see also Table 10: Burst Type Definition).  
30/73  
M69KB096AB  
Table 9. Bus Configuration Register Definition  
Address  
7 Configuration Registers  
Bus  
Configuration  
Register Bits  
Name  
Value  
Description  
Bits  
A15  
A14  
Synchronous Mode (NOR Flash or Full  
Synchronous Mode)  
0
Operating Mode  
Bit  
BCR15  
BCR14  
1
Asynchronous Mode (Default)  
Variable Latency (Default)  
Fixed Latency  
0
Latency Type  
1
010  
011  
100  
101  
110  
3 Clock Cycles  
4 Clock Cycles (Default)  
5 Clock Cycles  
BCR13-  
BCR11  
Latency Counter  
Bits  
A13-A11  
6 Clock Cycles  
7 Clock Cycles  
Other Configurations Reserved(1)  
0
WAIT Active Low  
A10  
A9  
BCR10  
-
WAIT Polarity Bit  
-
WAIT Active High (default).See Figure 10:  
WAIT Polarity.  
1
Reserved(1)  
Must be set to ‘0’  
0
WAIT Asserted During Delay (see Figure 9:  
WAIT Configuration Example).  
Wait  
Configuration Bit  
A8  
BCR8  
-
WAIT Asserted One Clock Cycle Before Delay  
(Default)  
1
Reserved(1)  
Full Drive  
A7-A6  
-
Must be set to ‘0’  
00  
01  
1/2 Drive (Default)  
1/4 Drive  
Driver Strength  
Bits  
A5-A4  
A3  
BCR5-BCR4  
BCR3  
10  
Reserved(1)  
Wrap  
11  
0
Burst Wrap Bit  
1
No Wrap (default)  
4 Words  
001  
010  
011  
100  
111  
8 Words  
16 Words  
A2-A0  
BCR2-BCR0  
Burst Length Bit  
32 Words  
Continuous Burst (default)  
Other Configurations Reserved(1)  
1. Programming the BCR with reserved value will force the device to use the default register settings.  
31/73  
7 Configuration Registers  
M69KB096AB  
Table 10. Burst Type Definition  
4 Words  
(Sequential)  
BCR2-  
8 Words  
(Sequential)  
BCR2-BCR0=010b  
16 Words  
(Sequential)  
BCR2-BCR0=011b  
32 Words  
(Sequential) BCR2-  
BCR0=100b  
Start  
Add  
Continuous Burst  
BCR2-BCR0=111b  
BCR0=001b  
0
1
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
...  
0-1-2-3-...-14-15  
1-2-3-4-...-14-15-0  
2-3-4-5-...-15-0-1  
3-4-5-...-15-0-1-2  
4-5-...-15-0-1-2-3  
5-6-7-...-15-0-1-...-4  
6-7-8-...-15-0-1-...-5  
7-8-9-...15-0-1-...-6  
...  
0-1-2-3-...-30-31  
1-2-3-...-30-31-0  
2-3-4-...-31-0-1  
3-4-5-...-31-0-1-2  
4-5-6-...-31-0-1-2-3  
5-6-7-..-31-0-1-..-4  
6-7-8-...-31-0-1-...-5  
7-8-9-...-31-0-1-...-6  
...  
0-1-2-3-..-511-.  
1-2-3-4-...-510-511-  
2-3-4-5-6-...-511-  
3-4-5-...-511-  
4-5-...-511-  
2
3
4
5
5-6-7-...-511-  
6-7-8-...-511-  
7-8-9-...-511-  
...  
6
7
...  
14  
15  
...  
30  
31  
0
...  
...  
14-15-0-1-2-...-13  
15-0-1-2-...-14  
...  
14-15-...-31-0-...-13  
15-0-1-...-31-0-...-14  
...  
14-...511-  
15-...511-  
...  
...  
30-31-0-...-28-29  
31-0-1-...-29-30  
0-1-2-3-...-30-31  
1-2-3-4-...-32  
30-...-511-  
31-...-511-  
0-1-2-3  
1-2-3-4  
2-3-4-5  
3-4-5-6  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
0-1-2-3-...-14-15  
1-2-3-..-15-16  
2-3-4-...-17  
3-4-5-...-18  
0-1-2-3-..-511-.  
1-2-3-4-...-512-  
2-3-4-5-...-513-  
3-4-5-...-514-  
4-5-6-...-515-  
5-6-7-...-516-  
6-7-8-...-517-  
1
2
2-3-4-5-6-7-8-9  
2-3-4-...-33  
3
3-4-5-6-7-8-9-10  
4-5-6-7-8-9-10-11  
5-6-7-8-9-10-11-12  
6-7-8-9-10-11-12-13  
3-4-5-...-34  
4
4-5-6-...-19  
4-5-6-...-35  
5
5-6-7-...-20  
5-6-7-...-36  
6
6-7-8-...-21  
6-7-8-...-37  
7-8-9-10-11-12-13-  
14  
7
7-8-9-...-22  
7-8-9-...-38  
7-8-9-...-518-  
...  
14  
15  
...  
...  
...  
...  
14-15-...-29  
14-15-16-...-46  
15-16-17-...-47  
14-...-525-  
15-...-526-  
...  
15-16-17-...-30  
30  
31  
30-31-0-...-28-62  
31-0-1-...-29-63  
30-...-541-  
31-...-542-  
32/73  
M69KB096AB  
7 Configuration Registers  
Figure 9. WAIT Configuration Example  
K
WAIT  
DQ0-DQ15  
Hi-Z  
Hi-Z  
BCR8='0', BCR10='1'  
Data[0] Data[1]  
Data[0]  
Data Valid During Current Cycle  
DQ0-DQ15  
BCR8='1', BCR10='1'  
Data Valid During Next Cycle  
AI06795b  
Figure 10. WAIT Polarity  
K
WAIT  
Hi-Z  
Hi-Z  
DQ0-DQ15  
Data[0] Data[1]  
Data[0] Data[1]  
WAIT  
DQ0-DQ15  
AI09963  
33/73  
7 Configuration Registers  
M69KB096AB  
7.4  
Refresh Configuration Register  
The role of the Refresh Configuration Register (RCR) is:  
to define how the self refresh of the PSRAM array is performed,  
to select the Deep Power-Down mode,  
to enable Page Read operations.  
Refer to Table 11 for the description of the Refresh Configuration Register Bits.  
7.4.1 Page Mode Operation Bit (RCR7)  
The Page Mode operation bit determines whether the Asynchronous Page Read mode is  
enabled. At power-up, the RCR7 bit is set to ‘0’, and the Asynchronous Page Read mode is  
disabled.  
7.4.2 Deep Power-Down Bit (RCR4)  
The Deep Power-Down bit enables or disables all refresh-related operations. Deep Power-  
Down mode is enabled when the RCR4 bit is set to ‘0’, and remains enabled until this bit is set  
to ‘1’. When E goes high, the device enters Deep-Power Down mode and remains in this mode  
until the E mean time goes low and stays low for at least 10µs. At power-up, the Deep Power-  
Down mode is disabled.  
See the Section 4.2: Deep Power-Down for more details.  
7.4.3 Partial Array Refresh Bits (RCR2-RCR0)  
The Partial Array Refresh bits allow refresh operations to be restricted to a portion of the total  
PSRAM array. The refresh options can be full array, one half, one quarter, one eighth or none of  
the array. These memory areas can be located either at the top or bottom of the memory array.  
By default, the full memory array is refreshed.  
34/73  
M69KB096AB  
7 Configuration Registers  
Table 11. Refresh Configuration Register Definition  
Refresh  
Address  
Configuration  
Register Bits  
Name  
Value  
Description  
Bits  
A15-A8  
A7  
-
-
Must be set to ‘0’ Reserved  
0
1
Page Read Mode Disabled (Default)  
Page Read Mode Enabled  
Page Mode  
Operation Bit  
RCR7  
A6-A5  
A4  
-
RCR4  
-
-
Must be set to ‘0’ Reserved  
0
1
Deep Power-Down Enabled  
Deep Power-Down Disabled (Default)  
Deep Power-  
Down Bit  
A3  
-
Must be set to ‘0’ Reserved  
000  
001  
010  
011  
100  
101  
110  
111  
Full Array Refresh (Default)  
Refresh of the Bottom Half of the Array  
Refresh of the Bottom Quarter of the Array  
Refresh of the Bottom Eighth of the Array  
None of the Array  
Partial Array  
Refresh Bits  
A2-A0  
RCR2-RCR0  
Refresh of the Top Half of the Array  
Refresh of the Top Quarter of the Array  
Refresh of the Top Eighth of the Array  
35/73  
7 Configuration Registers  
M69KB096AB  
7.5  
Device ID Register  
The Device ID Register (DIDR) is a read-only register that contains the Manufacturer code. It is  
preprogrammed by STMicroelectronics and cannot be modified by the user.  
Refer to Table 12 for the description of the Bus Configuration Register Bits.  
Table 12. Device ID Register Definition  
Address  
Bits  
Device ID  
Register Bits  
Name  
Value  
Description  
A15  
DIDR15  
Row Length  
0
128 Words  
0000  
0001  
0010  
0011  
1111  
A
B
C
D
P
A14-A11  
DIDR14-DIDR11  
Design Version  
Other Configurations Reserved  
000  
001  
010  
011  
100  
16 Mbits  
32 Mbits  
64 Mbits  
128 Mbits  
256 Mbits  
A10-A8  
A7-A5  
A4-A0  
DIDR10-DIDR8  
DIDR7-DIDR5  
DIDR4-DIDR0  
Device Density  
PSRAM Generation  
Device ID  
Other Configurations Reserved  
001  
010  
011  
1.0  
1.5  
2.0  
Other Configurations Reserved  
00001  
00010  
00011  
00100  
01111  
Cypress  
Infineon  
Micron  
Renesas  
STMicroelectronics  
Other Configurations Reserved  
36/73  
M69KB096AB  
8 Maximum Rating  
8
Maximum Rating  
Stressing the device above the rating listed in the Absolute Maximum Ratings table may cause  
permanent damage to the device. Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability. These are stress ratings only and operation of  
the device at these or any other conditions above those indicated in the Operating sections of  
this specification is not implied. Refer also to the STMicroelectronics SURE Program and other  
relevant quality documents.  
Table 13. Absolute Maximum Ratings  
Symbol  
TA  
Parameter  
Min  
–30  
–55  
Max  
+85  
150  
Unit  
°C  
°C  
V
Ambient Operating Temperature  
Storage Temperature  
TSTG  
VCC  
VCCQ  
VIO  
Core Supply Voltage  
–0.2  
–0.2  
–0.2  
2.45  
2.45  
2.45  
Input/Output Buffer Supply Voltage  
Input or Output Voltage  
V
V
37/73  
9 DC and AC parameters  
M69KB096AB  
9
DC and AC parameters  
This section summarizes the operating measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristics Tables that  
follow, are derived from tests performed under the Measurement Conditions summarized in  
Table 14: Operating and AC Measurement Conditions. Designers should check that the  
operating conditions in their circuit match the operating conditions when relying on the quoted  
parameters.  
Table 14. Operating and AC Measurement Conditions  
M69KB096AB  
Min  
Parameter(1)  
Unit  
Max  
1.95  
1.95  
VCC Supply Voltage  
1.7  
1.7  
V
V
V
CCQ Input/Output Buffer Supply Voltage  
Load Capacitance (CL)  
30  
50  
pF  
V
Output Circuit Protection Resistance (R)  
Input Pulse Voltages(2)(3)  
VCC  
0
Input and Output Timing Ref. Voltages(2)(3)  
Input Rise Time tr and Fall Time tf(2)(3)  
VCC/2  
V
1
V/ns  
1. All voltages are referenced to V  
.
SS  
2. Referenced to V  
.
SS  
3.  
V
=V  
CC CCQ  
Figure 11. AC Measurement I/O Waveform  
I/O Timing Reference Voltage  
V
CCQ  
V
/2  
CCQ  
V
SSQ  
AI09484c  
1. Logic states ‘1’ and ‘0’ correspond to AC test inputs driven at V  
and V respectively. Input timings begin at V  
/2 and  
CCQ  
SS  
CCQ  
output timings end at V  
/2.  
CCQ  
Figure 12. AC Input Transitions  
VCCTyp  
90%  
90%  
10%  
10%  
tr  
VSS  
tf  
ai10122  
38/73  
M69KB096AB  
9 DC and AC parameters  
Figure 13. AC Measurement Load Circuit  
V
/2  
CCQ  
R
DEVICE  
UNDER  
TEST  
OUT  
C
L
AI11289  
Table 15. Capacitance  
Symbol  
CIN  
Parameter  
Test Condition  
Min  
2
Max  
6
Unit  
pF  
Input Capacitance  
Data Input/Output Capacitance  
TA = 25°C, f = 1MHz,  
VIN = 0V  
CIO  
3.5  
6
pF  
39/73  
9 DC and AC parameters  
M69KB096AB  
Table 16. DC Characteristics  
Refreshed  
Array  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ  
Max.  
Unit  
(1)  
IOH = –0.2mA  
IOL = 0.2mA  
0.8VCCQ  
Output High Voltage  
Output Low Voltage  
V
V
VOH  
(1)  
0.2VCCQ  
VOL  
VCCQ  
0.2  
+
(2)  
VCCQ 0.4  
Input High Voltage  
V
VIH  
(3)  
Input Low Voltage  
0.2  
0.4  
1
V
VIL  
ILI  
VIN = 0 to VCCQ  
Input Leakage Current  
Output Leakage Current  
µA  
µA  
ILO  
G = VIH or E = VIH  
1
V
IN = 0V or VCCQ  
IOUT = 0mA, E = VIL  
IN = 0V or VCCQ  
IOUT = 0mA, E = VIL  
,
Asynchronous Read/Write  
Random at tRC min  
(4)  
25  
15  
mA  
mA  
ICC1  
V
(4)  
Asynchronous Page Read  
ICC2  
104MHz  
80MHz  
104MHz  
80MHz  
104MHz  
80MHz  
35  
30  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
V
IN = 0V or VCCQ  
Burst, Initial Read/Write  
Access  
(4)  
ICC3  
IOUT = 0mA, E = VIL  
30  
V
IN = 0V or VCCQ  
IOUT = 0mA, E = VIL  
IN = 0V or VCCQ  
IOUT = 0mA, E = VIL  
(4)  
Continuous Burst Read  
ICC4R  
25  
35  
V
(4)  
Continuous Burst Write  
Full Array  
ICC4W  
30  
140  
120  
110  
105  
95  
1/2 Array  
µA  
Partial Array  
VIN = 0V or VCCQ  
(4)  
Refresh Standby 1/4 Array  
µA  
IPASR  
E = VCCQ  
Current  
1/8 Array  
µA  
None  
µA  
V
IN = 0V or VCCQ  
(5)  
Standby Current  
140  
10  
µA  
µA  
ISB  
E = VCCQ  
VIN = 0V or VCCQ,  
ICCPD  
Deep-Power Down Current  
3
VCC, VCCQ = 1.95V; TA= +85°C  
1. BCR5-BCR4 = 01 (default settings).  
2. Input signals may overshoot to V  
+ 1.0V for periods of less than 2ns during transitions.  
CCQ  
3. Output signals may undershoot to V – 1.0V for periods of less than 2ns during transitions.  
SS  
4. This parameter is specified with all outputs disabled to avoid external loading effects. The user must add the current  
required to drive output capacitance expected for the actual system.  
5.  
I
maximum value is measured at +85°C with PAR set to Full Array. In order to achieve low standby current, all inputs must  
SB  
be driven either to V  
mode.  
or V  
. I might be slightly higher for up to 500ms after Power-up, or when entering Standby  
SSQ SB  
CCQ  
40/73  
M69KB096AB  
9 DC and AC parameters  
Table 17. Asynchronous Read AC Characteristics  
Parameter(1)  
Symbol  
Alt.  
Min  
Max  
Unit  
tAVQV  
tLLQV  
tLHAX  
tLHRL  
tAVLH  
tRHLH  
tAA  
Address Valid to Output Valid  
70  
70  
ns  
ns  
tAADV  
Latch Enable Low to Output Valid  
Latch Enable High to Address Transition  
tAVH  
2
5
ns  
ns  
Latch Enable High to Configuration Register Low  
Address Valid to L High  
tAVS  
Configuration Register High to L High  
tBLQV  
tBA  
Upper/Lower Byte Enable Low to Output Valid  
Upper/Lower Byte Enable High to Output Hi-Z  
70  
8
ns  
ns  
(2)  
tBHZ  
tBHQZ  
(3)  
tBLZ  
tCEW  
tCO  
Upper/Lower Byte Enable Low to Output Transition  
Chip Enable Low to WAIT Valid  
10  
1
ns  
ns  
ns  
ns  
tBLQX  
tELTV  
tELQV  
tELLH  
7.5  
70  
Chip Enable Low to Output Valid  
Chip Enable Low to L High  
tCVS  
7
5
Chip Enable High between Subsequent Asynchronous  
Operations  
tEHEL  
tCPH  
ns  
ns  
Output Enable High to Output Hi-Z  
Chip Enable High to Output Hi-Z  
(2)  
tHZ  
tLZ  
tOE  
8
tEHQZ  
(3)  
Chip Enable Low to Output Transition  
Output Enable Low to Output Valid  
Output Enable Low to Output Hi-Z  
10  
ns  
ns  
ns  
tELQX  
tGLQV  
20  
8
(2)  
tOHZ  
tGHQZ  
(3)  
tOLZ  
tRC  
tVP  
Output Enable Low to Output Transition  
Read Cycle Time  
3
70  
5
ns  
ns  
ns  
tGLQX  
tAVAX  
tLLLH  
Latch Enable Low Pulse Width  
1. These timings have been obtained in the measurement conditions described in Table 14: Operating and AC Measurement  
Conditions and Figure 13: AC Measurement Load Circuit.  
2. The Hi-Z timings measure a 100mV transition from either V or V to V /2.  
CCQ  
OH  
OL  
3. The Low-Z timings measure a 100mV transition from the Hi-Z (V  
/2) level to either V or V  
.
OL  
CCQ  
OH  
Table 18. Asynchronous Page Read AC Characteristics  
Parameter(1)  
Symbol  
Alt.  
Min  
Max  
Unit  
tAVQV1  
tAVAV  
tELEH  
tAVQX  
tAPA  
tPC  
tCEM  
tOH  
Page Access Time  
Page Cycle Time  
20  
20  
ns  
ns  
µs  
ns  
Maximum Chip Enable Pulse Width  
Data Hold from Address Change  
4
5
1. These timings have been obtained in the measurement conditions described in Figure 14: Operating and AC Measurement  
Conditions and Figure 13: AC Measurement Load Circuit.  
41/73  
9 DC and AC parameters  
M69KB096AB  
Figure 14. Asynchronous Random Read AC Waveforms  
tAVAX  
Addr.  
VALID ADDRESS  
tAVQV  
L
tEHEL  
tEHQZ  
tBHQZ  
tGHQZ  
E
tELQV  
LB/UB  
tBLQV  
G
tGLQV  
W
tGLQX  
tBLQX  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
VALID  
OUTPUT  
DQ0-DQ15  
tELQX  
tELTV  
WAIT  
AI11276c  
42/73  
M69KB096AB  
9 DC and AC parameters  
Figure 15. Latch Enable Controlled, Asynchronous Random Read AC Waveforms  
VALID  
ADDRESS  
Addr.  
tAVQV  
tAVLH  
tLLLH  
tLHAX  
L
tEHQZ  
tEHEL  
tLLQV  
E
tELQV  
tELLH  
G
tGHQZ  
tGLQV  
tGLQX  
LB/UB  
tBLQV  
tBLQX  
tBHQZ  
Hi-Z  
Hi-Z  
VALID  
OUTPUT  
DQ0-DQ15  
tELQX  
AI11567  
43/73  
9 DC and AC parameters  
M69KB096AB  
Figure 16. Asynchronous Page Read AC Waveforms (4 Words)  
tAVAX  
VALID ADDRESS  
A2-A22  
Page Address  
A0-A1  
X
Y
Z
A
tAVAV  
tAVAV  
tAVAV  
L
tELEH  
E
tELQV  
tBHQZ,  
tEHQZ,  
tGHQZ  
tGLQV, tBLQV  
G, LB,UB  
tAVQV  
tAVQV1  
Hi-Z  
DQ0-DQ15  
DQN+X  
DQN+Y  
DQN+Z  
DQN+A  
tAVQX  
AI11568  
1. Any address can be used as starting address.  
44/73  
M69KB096AB  
9 DC and AC parameters  
Figure 17. CR Controlled Configuration Register Read Followed by Read, Asynchronous Mode  
Addr.  
(Except A18-A19)  
ADDRESS  
tRHLH  
ADDRESS  
A18-19  
tLHRL  
Select Configuration Register  
tAVQV  
CR  
L
tLLLH  
tEHEL  
tLLQV  
Initiate Configuration Register Access  
E
tEHQZ  
tELQV  
G
W
tGLQX  
tELQX  
LB/UB  
Configuration Register  
Data Valid  
Data Valid  
DQ0-DQ15  
AI11566  
1. A18-A19 must be set to ‘00b’ to select RCR, ‘01b’ to select the BCR and ‘1Xb’ to select the DIDR.  
45/73  
9 DC and AC parameters  
M69KB096AB  
Table 19. Asynchronous Write AC Characteristics  
Parameter(1)  
Symbol  
Alt.  
Min Max  
Unit  
tAVBL  
tAVEL  
tAVWL  
tLLWL  
tAS  
Address Set-up to Beginning of Write Operation  
0
ns  
tLHAX  
tLHRL  
tAVLH  
tRHLH  
Latch Enable High to Address Transition or  
tAVH  
2
5
ns  
ns  
Latch Enable High to Configuration Register Low  
Address Valid to Latch Enable High  
tAVS  
Configuration Register High to Latch Enable High  
tAVWH  
tAVEH  
tAVBH  
tAW  
Address Set-up to End of Write Operation  
70  
70  
ns  
ns  
tBLBH  
tBLEH  
tBLWH  
tBW  
Upper/Lower Byte Enable Low to End of Write Operation  
tELTV  
tEHEL  
tELLH  
tCEW  
tCPH  
tCVS  
Chip Enable Low to WAIT Valid  
1
5
7
7.5  
ns  
ns  
ns  
Chip Enable High between Subsequent Asynchronous Operations  
Chip Enable Low to L High  
tELWH  
tELEH  
tELBH  
tCW  
Chip Enable Low to End of Write Operation  
Input Hold from Write  
70  
0
ns  
ns  
tEHDX  
tWHDX  
tBHDX  
tDH  
tELWH  
tDVBH  
tDVEH  
tDVWH  
tDW  
Input Valid to Write Setup Time  
20  
ns  
ns  
Chip Enable High to WAIT Hi-Z  
LB/UB High to WAIT Hi-Z  
tEHTZ  
tHZ  
8
(2)  
tBHTZ  
Write Enable High to WAIT Hi-Z  
tLLWH  
tAVAX  
tVS  
tWC  
tOW  
Latch Enable Low to Write Enable High  
Write Cycle Time  
70  
70  
5
ns  
ns  
ns  
tWHQZ  
End of Write to Input Low-Z  
tWLBH  
tWLEH  
tWP  
Write Pulse Width  
45  
ns  
(3)  
tWLWH  
46/73  
M69KB096AB  
9 DC and AC parameters  
Parameter(1)  
Write Enable Pulse Width High  
Symbol  
Alt.  
Min Max  
Unit  
tWHWL  
tWPH  
10  
ns  
tWHAX  
tEHAX  
tBHAX  
tWR  
Write Recovery Time  
0
ns  
1. These timings have been obtained in the measurement conditions described in Table 14: Operating and AC Measurement  
Conditions and Figure 13: AC Measurement Load Circuit.  
2. The Hi-Z timings measure a 100mV transition from either V or V to V /2. The Low-Z timings measure a 100mV  
CCQ  
OH  
.
OL  
transition from the Hi-Z (V  
/2) level to either V  
or V  
CCQ  
OH  
OL  
3. W Low time must be limited to t  
.
EHEL  
Figure 18. Chip Enable Controlled, Asynchronous Write AC Waveforms  
tAVAX  
Addr.  
VALID ADDRESS  
tAVEH  
tEHAX  
L
tAVEL,  
tAVBL  
tELEH  
tBLEH  
tEHEL  
E
LB/UB  
G
tWHWL  
tLLWL  
tWLEH  
W
tEHDX  
tDVEH  
DQ0-DQ15  
Hi-Z  
VALID INPUT  
tELTV  
tEHTZ  
Hi-Z  
WAIT  
Hi-Z  
AI11284b  
1. Data Inputs are Hi-Z if E is High, V  
.
IH  
47/73  
9 DC and AC parameters  
M69KB096AB  
Figure 19. Upper/Lower Byte Enable Controlled, Asynchronous Write AC Waveforms  
tAVAX  
Addr.  
L
VALID ADDRESS  
tAVBH  
tBHAX  
tELBH  
tBLBH  
E
LB/UB  
G
tWHWL  
tLLWL  
tWLBH  
tDVBH  
W
tBHDX  
Hi-Z  
DQ0-DQ15  
IN  
VALID INPUT  
tELQX  
Hi-Z  
tWLQZ  
DQ0-DQ15  
OUT  
DON'T CARE  
tELTV  
tBHTZ  
Hi-Z  
WAIT  
Hi-Z  
AI11285b  
1. Data Inputs are Hi-Z if E is High, V  
.
IH  
48/73  
M69KB096AB  
9 DC and AC parameters  
Figure 20. Write Enable Controlled, Asynchronous Write AC Waveforms  
tAVAX  
Addr.  
VALID ADDRESS  
tAVWH  
tWHAX  
L
tELWH  
tBLWH  
E
LB/UB  
G
tWLWH  
tWHWL  
W
tAVWL  
tWHDZ  
tWHDX  
tDVWH  
tLLWL  
Hi-Z  
DQ0-DQ15  
VALID INPUT  
tELTV  
Hi-Z  
WAIT  
Hi-Z  
AI11569  
1. Data Inputs are Hi-Z if E is High, V  
.
IH  
49/73  
9 DC and AC parameters  
M69KB096AB  
Figure 21. L Controlled, Asynchronous Write AC Waveforms  
Addr.  
VALID ADDRESS  
tAVLH  
tLHAX  
tLLWH  
tLLLH  
L
tAVWH  
tELWH  
E
tBLWH  
LB/UB  
G
tWLWH  
tDVWH  
tWHWL  
W
tLLWL  
tEHDX  
DQ0-DQ15  
Hi-Z  
tELTV  
VALID INPUT  
WAIT  
Hi-Z  
Hi-Z  
AI11570  
1. Data Inputs are Hi-Z if E is High, V  
.
IH  
50/73  
M69KB096AB  
9 DC and AC parameters  
Figure 22. CR Controlled Configuration Register Program, Asynchronous Mode  
(3)  
OPCODE  
Addr.  
(Except A18-A19)  
tAVLH  
tLHAX  
A18-A19  
L
00(RCR), 01 (BCR)  
tLLLH  
E
Access to Configuration Register  
G
W
tWLWH  
A0-A15 Latched  
into Register  
CR  
tRHLH  
tLHRL  
LB, UB  
AI11571  
1. Only the content of the Bus Configuration Register (BCR) and Refresh Configuration Register (RCR) can be modified.  
2. Data Inputs/Outputs are not used.  
3. The Opcode is the value to be written the configuration register.  
4. W must go High after L goes High  
5. CR is latched on the rising edge of L. There is no setup requirement of CR with respect to E.  
51/73  
9 DC and AC parameters  
M69KB096AB  
Table 20. Clock Related AC Timings  
104MHz  
80MHz  
Symbol  
Alt.  
Parameter  
Unit  
Min  
Max  
Min  
Max  
fCLk  
fCLk  
tCLK  
tKHKL  
Clock frequency  
Clock Period  
104  
1.6  
80  
MHz  
ns  
tKHKH  
9.62  
12.5  
tR  
tF  
Clock Rise Time  
Clock Fall Time  
1.8  
ns  
ns  
tKHKL  
tKLKH  
Clock High to Clock Low  
Clock Low to Clock High  
tKP  
3
4
Table 21. Synchronous Burst Read AC Characteristics  
104MHz  
80MHz  
Min  
Parameter(1)  
Symbol  
Alt.  
Unit  
Min  
Max  
Max  
70  
70  
46  
9
tAVQV  
tLLQV  
tKHQV1  
tKHQV2  
tAA  
Address Valid to Output Valid (Fixed Latency)  
Latch Enable Low to Output Valid (Fixed Latency)  
Burst to Read Access Time (Variable Latency)  
Clock High to Output Delay  
70  
70  
35  
7
ns  
ns  
ns  
ns  
tAADV  
tABA  
tACLK  
Delay From Output Enable Low to Output Valid in  
Burst mode  
tGLQV  
tBOE  
20  
20  
ns  
Chip Enable High between Subsequent Operations  
in Full-Synchronous or NOR-Flash mode.  
(2)  
tCBPH  
tCEM  
5
6
ns  
µs  
tEHEL  
(2)  
Chip Enable Pulse Width  
4
4
tELEH  
tELTV  
tLLTV  
Chip Enable Low to WAIT Valid  
Latch Enable Low to WAIT Valid  
tCEW  
1
3
7.5  
70  
1
4
7.5  
70  
ns  
tELQV  
tELKH  
tKHAX  
tCO  
Chip Enable Low to Output Valid  
Chip Enable Low to Clock High  
ns  
ns  
tCSP  
tKHBH  
tKHWL  
tHD  
Hold Time From Active Clock Edge  
2
2
ns  
tKHEH  
tKHLH  
tKHQX  
tEHQZ  
tHZ  
Chip Enable High to Output Hi-Z or WAIT Hi-Z  
8
8
ns  
(3)  
tEHTZ  
tKHTX  
tKHTV  
tKHTL  
tOHZ  
Clock High to WAIT Valid  
7
8
9
8
ns  
ns  
(3)  
Output Enable High to Output Hi-Z  
tGHQZ  
52/73  
M69KB096AB  
9 DC and AC parameters  
104MHz  
Min Max  
80MHz  
Unit  
Parameter(1)  
Symbol  
Alt.  
Min  
Max  
(4)  
tOLZ  
Output Enable Low to Output Transition  
3
3
ns  
tGLQX  
tAVKH  
tRHKH  
tQVKH  
tLLKH  
tSP  
Set-up Time to Active Clock Edge  
3
3
ns  
tBLKH  
tWHKH  
1. These timings have been obtained in the measurement conditions described in Table 14: Operating and AC Measurement  
Conditions and Figure 13: AC Measurement Load Circuit.  
2. A refresh opportunity must be offered every t  
of K; or if E is High for longer than 15ns.  
. A refresh opportunity is possible either if E is High during the rising edge  
ELEH  
3. The Hi-Z timings measure a 100mV transition from either V or V to V /2.  
CCQ  
OH  
OL  
4. The Low-Z timings measure a 100mV transition from the Hi-Z (V  
/2) level to either V or V  
.
OL  
CCQ  
OH  
Figure 23. Clock input AC Waveform  
tKHKL  
tKHKH  
tr  
tf  
tKLKH  
AI06981  
53/73  
9 DC and AC parameters  
M69KB096AB  
Figure 24. 4-Word Synchronous Burst Read AC Waveforms (Variable Latency Mode)  
tKHKH  
tKHKL  
K
tAVKH  
tKHAX  
VALID  
ADDRESS  
Addr.  
tKHLH  
tLLKH  
L
tELEH  
tELKH  
tKHQV1  
tEHEL  
tKHEH  
E
tGLQV  
tEHQZ  
G
W
tGHQZ  
tGLQX  
tWHKH  
tKHWL  
tBLKH  
tKHBH  
LB/UB  
tELTV  
tKHTX  
Hi-Z  
Hi-Z  
WAIT  
tKHQX  
tKHQV2  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
Hi-Z  
D0-D15  
READ Burst Identified  
(W = High)  
AI11573  
1. The Latency is set to 3 clock cycles (BCR13-BCR11 = 101). The WAIT signal is active Low (BCR10=0), and is asserted  
during delay (BCR8=0).  
54/73  
M69KB096AB  
9 DC and AC parameters  
Figure 25. Synchronous Burst Read Suspend and Resume AC Waveforms  
tKHKL  
K
tAVKH  
tAVLH  
tKHAX  
Valid  
Address  
Valid  
Addr.  
L
Address  
tLLKH  
tEHQZ  
tEHEL  
tKHLH  
tELKH  
E
tGHQZ  
tGLQV  
tGHQZ  
tGLQX  
G
tWHKH  
tBLKH  
tKHWL  
tKHTX  
tKHQV1  
tGLQV  
DON'T CARE  
DON'T CARE  
W
LB/UB  
WAIT  
Hi-Z  
Hi-Z  
Hi-Z  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
D0-D15  
Output Output Output Output  
Output Output  
tKHQX  
AI11287e  
1. The latency Type (BCR14) can be set to fixed or variable during Burst Read Suspend operations.The Latency is set to 3  
clock cycles (BCR13-BCR11 = 101). The WAIT signal is active Low (BCR10=0), and is asserted during delay (BCR8=0).  
2. During Burst Read Suspend operations, the Clock signal must be stable (High or Low).  
3. G can be held Low, V , during Burst Suspend operations. If so, data output remain valid.  
IL  
55/73  
9 DC and AC parameters  
M69KB096AB  
Figure 26. Burst Read Showing End-of-Row Condition AC Waveforms (No Wrap)  
tKLKH, tKHKL  
K
tKHKH  
tF  
Addr.  
DON'T CARE  
High  
L
Low  
Low  
LB/UB  
E
Note 2  
Low  
G
W
DON'T CARE  
tKHTV  
tEHTZ  
tEHTZ  
High-Z  
WAIT  
VALID  
VALID  
DQ0-DQ15  
OUTPUT  
OUTPUT  
End of Row  
AI11574  
1. The WAIT signal is active Low (BCR10=0), and is asserted during delay (BCR8=0).  
2. The Chip Enable signal, E, must go High before the third Clock cycle after the WAIT signal goes Low. If BCR8 were set to  
1, E would have to go Low before the fourth Clock cycle after WAIT signal goes Low.  
56/73  
M69KB096AB  
9 DC and AC parameters  
Figure 27. Burst Read Interrupted by Burst Read or Write AC Waveforms  
1. The latency Type (BCR14) can be set to fixed or variable.The Latency is set to 3 clock cycles (BCR13-BCR11 = 101). The  
WAIT signal is active Low (BCR10=0), and is asserted during delay (BCR8=0). All Burst operations are given for variable  
latency and no refresh collision.  
2. The Burst Read is interrupted during the first allowable clock cycle, i.e. after the first data is received by the microcontroller.  
3. The Chip Enable signal, E, can remain Low, between burst operations, but it must not remain Low for longer than t  
.
ELEH  
4. If the latency is variable, WAIT is asserted t  
falling edge.  
after L is clocked Low. If the latency is fixed, WAIT is asserted t  
after L  
LLTV  
KHTV  
57/73  
9 DC and AC parameters  
M69KB096AB  
Figure 28. CR Controlled Configuration Register Read Followed by Read, Synchronous Mode  
K
Addr.  
ADDRESS  
(except A18-A19)  
tAVKH  
tRHKH  
tLLKH  
tELKH  
tKHAX  
tKHRL  
ADDRESS  
tLLKH  
A18-A19  
CR  
tKHLH  
L
tEHEL  
tKHQV1  
E
tEHQZ  
tBLKH  
G
tGLQV  
tGLQV  
tGHQZ  
High  
W
tBLKH  
High-Z  
UB, LB  
WAIT  
tELTV  
tKHQV2  
tGLQX  
CR VALID  
DATA VALID  
DQ0-DQ15  
tKHQX  
ai10132f  
1. A18-A19 must be set to ‘00b’ to select RCR, ‘01b’ to select BCR and ‘1Xb’ to select the DIDR.  
58/73  
M69KB096AB  
9 DC and AC parameters  
Table 22. Synchronous Burst Write AC Characteristics  
104MHz  
80MHz  
Unit  
Parameter(1)  
Symbol Alt.  
Min  
Max  
Min  
Max  
tAVWL  
tAS  
Address Set-up to Beginning of Write Operation  
0
0
ns  
(2)  
tLLWL  
tLHAX  
tAVH  
tCBPH  
tCEM  
Latch Enable High to Address Transition (Fixed Latency)  
2
5
2
6
ns  
ns  
µs  
Chip Enable High between Subsequent Operations in  
Full-Synchronous or NOR-Flash mode.  
(3)  
tEHEL  
(3)  
Maximum Chip Enable Low Pulse  
Chip Enable Low to WAIT Valid  
Chip Enable Low to Clock High  
4
4
tELEH  
tELTV  
tLLTV  
tCEW  
tCSP  
1
3
7.5  
1
4
7.5  
ns  
ns  
tELKH  
tKHAX  
tKHRL  
tKHLH  
tKHDX  
tKHEH  
tKHBH  
tKHWH  
tHD  
Hold Time From Active Clock Edge  
2
4
2
6
ns  
Last Clock Rising Edge to Latch Enable Low (Fixed  
Latency)  
tKHLL  
tKADV  
ns  
ns  
ns  
tEHDZ  
tHZ  
Chip Enable High to Input Hi-Z or WAIT Hi-Z  
Clock High to WAIT Valid or Low  
8
7
8
9
(4)  
tEHTZ  
tKHTV  
tKHTL  
tKHTX  
tAVKH  
tDVKH  
tWLKH  
tLLKH  
tSP  
Set-up Time to Active Clock Edge  
3
3
ns  
tBLKH  
tWHKH  
tWHWL  
1. These timings have been obtained in the measurement conditions described in Table 14: Operating and AC Measurement  
Conditions and Figure 13: AC Measurement Load Circuit.  
2.  
t
and t  
, are required if t  
> 20ns.  
AVWL  
LLWL  
ELKH  
3. A refresh opportunity must be offered every t  
of K; or if E is High for longer than 15ns.  
. A refresh opportunity is possible either if E is High during the rising edge  
ELEH  
4. The Hi-Z timings measure a 100mV transition from either V or V to V /2.  
CCQ  
OH  
OL  
59/73  
9 DC and AC parameters  
M69KB096AB  
Figure 29. 4-Word Synchronous Burst Write AC Waveforms (Variable Latency Mode)  
tKHKH  
K
VALID  
ADDRESS  
Addr.  
tAVKH  
tAVWL  
tKHAX  
tKHLH  
tKHLL  
tLLWL  
L
tLLKH  
tKHBH  
tBLKH  
LB/UB  
tELEH  
tELKH  
tEHEL  
E
tKHEH  
High  
G
tWLKH  
tKHWH  
W
tKHTX  
tEHTZ  
Hi-Z  
tELTV  
Hi-Z  
Note 2  
tDVKH  
WAIT  
tKHDX  
VALID  
INPUT  
VALID  
INPUT  
VALID  
INPUT  
VALID  
INPUT  
D0-D15  
Hi-Z  
WRITE Burst Identified  
(W = Low)  
ai11288  
1. The Latency is set to 3 clock cycles (BCR13-BCR11 = 101). The WAIT signal is active Low (BCR10=0), and asserted  
during delay (BCR8=0).  
2. The WAIT signal must remain asserted for LC clock cycles (LC Latency code), whatever the Latency mode (fixed or  
variable).  
3.  
t
and t  
, are required if t  
> 20ns.  
ELKH  
AVLL  
LLWL  
60/73  
M69KB096AB  
9 DC and AC parameters  
Figure 30. Burst Write Showing End-of-Row Condition AC Waveforms (No Wrap)  
tKLKH  
K
tKHKH  
tF  
Addr.  
DON'T CARE  
L
LB/UB  
Note 2  
E
High  
G
W
DON'T CARE  
tKHTV  
tKHDX  
tEHTZ  
tEHTZ  
High-Z  
WAIT  
tDVKH  
VALID  
INPUT D[n]  
VALID  
INPUT D[n+1]  
DQ0-DQ15  
End of Row  
(A6-A0 = 7Fh)  
ai11575  
1. The WAIT signal is active Low (BCR10=0), and is asserted during delay (BCR8=0).  
2. The Chip Enable signal, E, must go High before the third Clock cycle after the WAIT signal goes Low. If BCR8 were set to  
1, E would have to go Low before the fourth Clock cycle after WAIT signal goes Low.  
61/73  
9 DC and AC parameters  
M69KB096AB  
Figure 31. Synchronous Burst Write Followed by Read AC Waveforms (4 Words)  
1. The Latency type can set to fixed or variable mode. The Latency is set to 3 clock cycles (BCR13-BCR11 = 101). The WAIT  
signal is active Low (BCR10=0), and is asserted during delay (BCR8=0).  
2. E can remain Low between the Burst Read and Burst Write operation, but it must not be held Low for longer than t  
.
ELEH  
62/73  
M69KB096AB  
9 DC and AC parameters  
Figure 32. Burst Write Interrupted by Burst Write or Read AC Waveforms  
1. The latency Type (BCR14) can be set to fixed or variable.The Latency is set to 3 clock cycles (BCR13-BCR11 = 101). The  
WAIT signal is active Low (BCR10=0), and is asserted during delay (BCR8=0). All Burst operations are given for variable  
latency and no refresh collision.  
2. The Burst Write is interrupted during the first allowable clock cycle, i.e. after the first Word written to the memory.  
3. The Chip Enable signal, E, can remain Low, V , between burst operations, but it must not remain Low for longer than  
IL  
t
.
ELEH  
63/73  
9 DC and AC parameters  
M69KB096AB  
Figure 33. CR Controlled Configuration Register Program, Synchronous Mode  
K
Addr.(3)  
Opcode  
tAVKH  
tKHAX  
tKHRL  
tKHLH  
00 (RCR)  
01 (BCR)  
A18-A19(4)  
tRHKH  
(5)  
CR  
tLLKH  
tELEH  
L
E
G
tWLKH  
tKHWH  
W
UB, LB  
(2)  
DQ0-DQ15  
tELTV  
Hi-Z  
WAIT  
AI10131d  
1. Only the Configuration Register (BCR) and the Refresh Configuration Register (RCR) can be modified.  
2. Data Inputs/Outputs are not used.  
3. The Opcode is the value to be written in the Configuration Register.  
4. A19 gives the Configuration Register address.  
5. CR initiates the Configuration Register Access.  
64/73  
M69KB096AB  
9 DC and AC parameters  
Table 23. Power-Up and Deep Power-Down AC Characteristics  
Symbol  
tPU  
Alt.  
tPU  
Parameter  
Min  
150  
10  
Max  
Unit  
µs  
Initialization delay after Power-Up or Deep Power-Down Exit  
Deep Power-Down Entry to Deep Power-Down Exit  
Chip Enable Low to Deep Power-Down Exit  
tEHEL(DP)  
tELEH(DP)  
tDPD  
tDPDX  
µs  
10  
µs  
Figure 34. Power-Up AC Waveforms  
E
tPU  
1.7V  
V
, V  
CC CCQ  
Device Ready  
for Normal Operation  
Device Initialization  
AI09465d  
1. Power must be applied to V prior to or at the same time as V  
.
CCQ  
CC  
Figure 35. Deep Power-Down Entry and Exit AC Waveforms  
E
tEHEL(DP)  
tELEH (DP)  
tPU  
Deep Power-Down  
Entry (RCR4= 0)  
Deep Power-Down Deep Power-Down Device Initialization  
Mode Exit  
Device Ready  
for Normal Operation  
AI11306  
65/73  
10 Wafer and die specifications  
M69KB096AB  
10 Wafer and die specifications  
Table 24. Dimensions  
Wafer Diameter  
200mm (8")  
Wafer Thickness  
750± 25µm (29.5±1.0mil)  
5,009.365µm x 5,005.795µm  
Die Size (stepping interval)  
Street Width Along X-Axis (dsw_X) 102µm  
Street Width Along Y-Axis (dsw_Y) 102µm  
Center of Street (COS) (relative to  
X = -222.98µm, Y = 160.08µm (X = -8.779mil, Y = 6.303mil)  
Bond Pad 1)  
Bond Pad Size  
85µm x 100µm (3.35mil x 3.94mil)  
75µm x 90µm (2.95mil x 3.54mil)  
119.00µm (4.685mil)  
71  
Passivation Openings (MIN)  
Minimum Bond Pad Pitch  
Pad Count  
66/73  
M69KB096AB  
10 Wafer and die specifications  
Figure 36. Die Outline  
dsw_X  
dsw_Y  
COS  
1 2 3 4 5 6 7 8 9 10111213141516171819  
20  
21222324252627282930313233343536  
y
x
-x  
Center of Die  
-y  
Die Orientation with Respect  
to Wafer Notch  
39 38 37  
71 70 69 68 67 66 65 64 62 61 60 59 58 57 56 55  
54 53 52 51 50 49 48 47 46 45 44 43 42 41 40  
Ai11630  
1. Die streets are not to scale.  
67/73  
10 Wafer and die specifications  
M69KB096AB  
Table 25. Bond Pad Location and Identification  
Pad Coordinates from Center of Die  
Pad  
Signal  
X (µm)(1)  
Y (µm)(1)  
X (inches) (1)  
Y (inches)(1)  
1
2
3
4
5
6
7
A0  
A1  
-2,281.70  
-2,162.70  
-2,043.70  
-1,924.70  
-1,805.70  
-1,686.70  
-1,567.70  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
-0.0898306  
-0.0851456  
-0.0804605  
-0.0757755  
-0.0710905  
-0.0664054  
-0.0617204  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
A2  
A3  
A4  
A5  
VCCQ  
VSSQ  
8
-1,448.70  
-1,329.70  
-1,210.70  
-1,091.70  
-972.70  
-853.70  
-734.70  
-615.70  
-496.70  
-377.70  
-258.70  
-139.70  
135.79  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
-0.0570353  
-0.0523503  
-0.0476653  
-0.0429802  
-0.0382952  
-0.0336101  
-0.0289251  
-0.0242401  
-0.0195550  
-0.0148700  
-0.0101849  
-0.0054999  
0.0053460  
0.0148097  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
9
A6  
A7  
A17  
A18  
A19  
E
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
LB  
UB  
CR  
L
W
K
VCC  
376.17  
VSS  
22  
23  
24  
25  
26  
27  
28  
495.17  
614.17  
733.17  
852.17  
971.17  
1,090.17  
1,209.17  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
0.0194948  
0.0241798  
0.0288649  
0.0335499  
0.0382349  
0.0429200  
0.0476050  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
A20  
A21  
DNU(2)  
A8  
A9  
VSSQ  
VCCQ  
29  
30  
31  
32  
33  
1,328.17  
1,447.17  
1,566.17  
1,685.17  
1,804.17  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
2,342.81  
0.0522901  
0.0569751  
0.0616601  
0.0663452  
0.0710302  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
0.0922367  
A10  
A11  
A12  
A13  
68/73  
M69KB096AB  
10 Wafer and die specifications  
34  
35  
36  
37  
38  
39  
40  
A14  
A15  
1,923.17  
2,042.17  
2,161.17  
2,139.96  
1,961.46  
1,842.46  
1,723.46  
2,342.81  
2,342.81  
2,342.81  
-2,317.02  
-2,317.02  
-2,317.02  
-2,317.02  
0.0757153  
0.0922367  
0.0922367  
0.0922367  
-0.0912211  
-0.0912211  
-0.0912211  
-0.0912211  
0.0804003  
0.0850853  
0.0842504  
0.0772228  
0.0725378  
0.0678528  
A16  
WAIT  
DQ15  
DQ7  
VCCQ  
VSSQ  
41  
42  
43  
44  
45  
46  
1,604.46  
1,485.46  
1,366.46  
1,247.46  
1,128.46  
1,009.46  
-2,317.02  
-2,317.02  
-2,317.02  
-2,317.02  
-2,317.02  
-2,317.02  
0.0631677  
0.0584827  
0.0537976  
0.0491126  
0.0444276  
0.0397425  
-0.0912211  
-0.0912211  
-0.0912211  
-0.0912211  
-0.0912211  
-0.0912211  
DQ14  
DQ6  
DQ13  
DQ5  
VCCQ  
VSSQ  
47  
48  
49  
50  
51  
890.46  
771.46  
652.46  
533.46  
414.46  
-2,317.02  
-2,317.02  
-2,317.02  
-2,317.02  
-2,317.02  
0.0350575  
0.0303724  
0.0256874  
0.0210024  
0.0163173  
-0.0912211  
-0.0912211  
-0.0912211  
-0.0912211  
-0.0912211  
DQ12  
DQ4  
NC  
DNU(2)  
DNU(2)  
52  
53  
54  
55  
56  
57  
295.46  
176.46  
57.46  
-2,317.02  
-2,317.02  
-2,317.02  
-2,317.02  
-2,317.02  
-2,317.02  
0.0116323  
0.0069472  
0.0022622  
-0.0071079  
-0.0117929  
-0.0164780  
-0.0912211  
-0.0912211  
-0.0912211  
-0.0912211  
-0.0912211  
-0.0912211  
DNU(2)  
VSS  
VCC  
-180.54  
-299.54  
-418.54  
DNU(2)  
DNU(2)  
DNU(2)  
G
58  
59  
60  
61  
62  
-537.54  
-656.54  
-775.54  
-894.54  
-1,013.54  
-2,317.02  
-2,317.02  
-2,317.02  
-2,317.02  
-2,317.02  
-0.0211630  
-0.0258480  
-0.0305331  
-0.0352181  
-0.0399031  
-0.0912211  
-0.0912211  
-0.0912211  
-0.0912211  
-0.0912211  
DQ11  
DQ3  
VSSQ  
VCCQ  
63  
64  
65  
66  
67  
68  
-1,132.54  
-1,251.54  
-1,370.54  
-1,489.54  
-1,608.54  
-1,727.54  
-2,317.02  
-2,317.02  
-2,317.02  
-2,317.02  
-2,317.02  
-2,317.02  
-0.0445882  
-0.0492732  
-0.0539583  
-0.0586433  
-0.0633283  
-0.0680134  
-0.0912211  
-0.0912211  
-0.0912211  
-0.0912211  
-0.0912211  
-0.0912211  
DQ10  
DQ2  
DQ9  
DQ1  
VSSQ  
69/73  
10 Wafer and die specifications  
M69KB096AB  
VCCQ  
69  
70  
71  
-1,846.54  
-1,965.54  
-2,084.54  
-2,317.02  
-2,317.02  
-2,317.02  
-0.0726984  
-0.0773835  
-0.0820685  
-0.0912211  
-0.0912211  
-0.0912211  
DQ8  
DQ0  
1. Reference from the center of each bond pad to the center of the die (0,0).  
2. DNU stands for ‘do not use’.  
70/73  
M69KB096AB  
11 Part numbering  
11 Part numbering  
Table 26. Ordering Information Scheme  
Example:  
M69KB096AB  
80 C W 8  
Device Type  
M69 = PSRAM  
Mode  
K = Bare Die  
Operating Voltage  
B = VCC = 1.7 to 1.95V, Burst, Address/Data bus standard x16  
Array Organization  
096 = 64 Mbit (4 Mbit x16)  
Option 1  
A = 1 Chip Enable  
Silicon Revision  
B = B Die  
Speed Class  
80 = 80ns  
Maximum clock frequency  
C = 80MHz  
D = 104MHz  
Package  
W = Unsawn Wafer  
Operating Temperature  
8 = –30 to 85 °C  
The notation used for the device number is as shown in Table 26. Not all combinations are  
necessarily available. For a list of available options (speed, package, etc.) or for further  
information on any aspect of this device, please contact your nearest STMicroelectronics Sales  
Office.  
71/73  
12 Revision history  
M69KB096AB  
12 Revision history  
Table 27. Document Revision History  
Date  
Rev.  
Revision Details  
29-Nov-2005  
1
First Issue  
72/73  
M69KB096AB  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2005 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
73/73  

相关型号:

M69KB096AB70CW8

4MX16 PSEUDO STATIC RAM, 70ns, UUC, WAFER
STMICROELECTR

M69KB096AB70DW8

4MX16 PSEUDO STATIC RAM, 70ns, UUC, WAFER
STMICROELECTR

M69KB096AB80CW8

64 Mbit (4Mb x 16), 104MHz Clock Rate, 1.8V Supply, Bare Die, Burst PSRAM
STMICROELECTR

M69KB096AB80DW8

64 Mbit (4Mb x 16), 104MHz Clock Rate, 1.8V Supply, Bare Die, Burst PSRAM
STMICROELECTR

M69KB128AA

128 Mbit (8Mb x16) 1.8V Supply, Burst PSRAM
STMICROELECTR

M69KB128AA70AW8

128 Mbit (8Mb x16) 1.8V Supply, Burst PSRAM
STMICROELECTR

M69KB128AA70CW8

128 Mbit (8Mb x16) 1.8V Supply, Burst PSRAM
STMICROELECTR

M69KB128AA70DW8

128 Mbit (8Mb x16) 1.8V Supply, Burst PSRAM
STMICROELECTR

M69KB128AA85AW8

128 Mbit (8Mb x16) 1.8V Supply, Burst PSRAM
STMICROELECTR

M69KB128AA85CW8

128 Mbit (8Mb x16) 1.8V Supply, Burst PSRAM
STMICROELECTR

M69KB128AA85DW8

128 Mbit (8Mb x16) 1.8V Supply, Burst PSRAM
STMICROELECTR

M69KB128ABCW8

8MX16 PSEUDO STATIC RAM, 70ns, UUC, DIE
STMICROELECTR