M93C76-RMN3P/K [STMICROELECTRONICS]

512 X 16 MICROWIRE BUS SERIAL EEPROM, PDSO8, 0.150 INCH, HALOGEN FREE AND ROHS COMPLIANT, PLASTIC, SOP-8;
M93C76-RMN3P/K
型号: M93C76-RMN3P/K
厂家: ST    ST
描述:

512 X 16 MICROWIRE BUS SERIAL EEPROM, PDSO8, 0.150 INCH, HALOGEN FREE AND ROHS COMPLIANT, PLASTIC, SOP-8

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟 光电二极管 内存集成电路
文件: 总31页 (文件大小:579K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M93Cx6-A125  
Automotive 16-Kbit, 8-Kbit, 4-Kbit, 2-Kbit and 1-Kbit  
(8-bit or 16-bit wide) MICROWIRE serial EEPROM  
Datasheet - production data  
Features  
TM  
Industry standard MICROWIRE bus  
Memory array: 1 Kb, 2 Kb, 4 Kb, 8 Kb or 16 Kb  
Dual organization: by word (x16) or byte (x8)  
SO8 (MN)  
150 mil width  
Write  
– Byte within 4 ms  
– Word within 4 ms  
READY/BUSY signal during programming  
2 MHz clock rate  
Sequential read operation  
Single supply voltage: 1.8 V to 5.5 V  
TSSOP8 (DW)  
169 mil width  
Operating temperature range: -40 °C up to  
125 °C  
Enhanced ESD protection  
Write cycle endurance  
– 4 million Write cycles at 25 °C  
– 1.2 million Write cycles at 85 °C  
– 600 k Write cycles at 125 °C  
WFDFPN8 (MF)  
2 x 3 mm  
Data retention  
– 50 years at 125 °C  
– more than 100 years at 25 °C  
Packages  
– RoHS-compliant and Halogen-free  
®
(ECOPACK )  
Table 1. Device summary  
Reference  
Part number  
M93C46-A125  
M93C56-A125  
M93C66-A125  
M93C76-A125  
M93C86-A125  
M93Cx6-A125  
December 2013  
DocID024752 Rev 2  
1/31  
This is information on a product in full production.  
www.st.com  
 
 
Contents  
M93Cx6-A125  
Contents  
1
2
3
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Connecting to the serial bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Operating features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1  
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1.1  
3.1.2  
3.1.3  
3.1.4  
Operating supply voltage (V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
CC  
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power-up and device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4
5
Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
5.1  
5.2  
Read Data from Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Erase and Write data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.2.6  
Write Enable and Write Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Write All . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
ECC (Error Correction Code) and Write cycling . . . . . . . . . . . . . . . . . . 15  
Erase Byte or Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Erase All . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6
READY/BUSY status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Common I/O operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Clock pulse counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7
8
9
10  
11  
2/31  
DocID024752 Rev 2  
M93Cx6-A125  
Contents  
12  
13  
14  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
DocID024752 Rev 2  
3/31  
3
List of tables  
M93Cx6-A125  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Memory size versus organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Instruction set for the M93Cx6-A125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Instruction set for the M93C46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Instruction set for the M93C56 and M93C66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Instruction set for the M93C76 and M93C86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Operating conditions (M93Cx6-A125) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Input and output capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Cycling performance by byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
SO8 narrow – 8 lead plastic small outline, 150 mils body width, package data . . . . . . . . . 25  
TSSOP8 – 8-lead thin shrink small outline, package mechanical data. . . . . . . . . . . . . . . . 26  
WFDFPN8 (MLP8) – 8-lead thin fine pitch dual flat package no lead 2 x 3 mm,  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 18.  
Table 19.  
4/31  
DocID024752 Rev 2  
M93Cx6-A125  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
8-pin package connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Bus master and memory devices on the serial bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
M93Cx6-A125 ORG input connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
READ, WRITE, WEN, WDS sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
WRAL sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
ERASE, ERAL sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write sequence with one clock glitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
AC testing input output waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 10. Synchronous timing (Start and op-code input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 11. Synchronous timing (Read) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 12. Synchronous timing (Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 13. SO8 narrow – 8 lead plastic small outline, 150 mils body width, package outline . . . . . . . 25  
Figure 14. TSSOP8 – 8 lead thin shrink small outline, package outline . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 15. WFDFPN8 (MLP8) – 8-lead thin fine pitch dual flat package no lead  
2 x 3 mm, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DocID024752 Rev 2  
5/31  
5
Description  
M93Cx6-A125  
1
Description  
The M93C46 (1 Kbit), M93C56 (2 Kbit), M93C66 (4 Kbit), M93C76 (8 Kbit) and M93C86  
(16 Kbit) are Electrically Erasable PROgrammable Memory (EEPROM) devices accessed  
through the MICROWIRE bus protocol. The memory array can be configured either in bytes  
(x8b) or in words (x16b).  
The M93Cx6-A125 devices operate within a voltage supply range from 1.8 V to 5.5 V  
The M93Cx6-A125 devices are guaranteed over the -40 °C/+125 °C temperature range and  
are compliant with the Automotive standard AEC-Q100 Grade 1.  
Table 2. Memory size versus organization  
Device  
Number of bits  
Number of 8-bit bytes  
Number of 16-bit words  
M93C86  
M93C76  
M93C66  
M93C56  
M93C46  
16384  
8192  
4096  
2048  
1024  
2048  
1024  
512  
1024  
512  
256  
128  
64  
256  
128  
Figure 1. Logic diagram  
6
##  
$
1
#
3
-ꢂꢅ#Xꢆ  
/2'  
6
33  
!)ꢀꢁꢂꢃꢄ  
Table 3. Signal names  
Function  
Signal name  
Direction  
S
D
Q
C
Chip Select  
Input  
Input  
Output  
Input  
Input  
Serial Data input  
Serial Data output  
Serial Clock  
ORG  
VCC  
VSS  
Organization Select  
Supply voltage  
Ground  
6/31  
DocID024752 Rev 2  
 
 
 
 
M93Cx6-A125  
Description  
The M93Cx6-A125 is accessed by a set of instructions, as summarized in Table 4, and in  
more detail in Table 5: Instruction set for the M93C46 to Table 7: Instruction set for the  
M93C76 and M93C86).  
Table 4. Instruction set for the M93Cx6-A125  
Instruction  
READ  
Description  
Read Data from Memory  
Data  
Byte or Word  
WRITE  
WEN  
Write Data to Memory  
Write Enable  
Byte or Word  
-
WDS  
Write Disable  
-
ERASE  
ERAL  
WRAL  
Erase Byte or Word  
Erase All Memory  
Byte or Word  
-
-
Write All Memory with same Data  
A Read Data from Memory (READ) instruction loads the address of the first byte or word to  
be read in an internal address register. The data at this address is then clocked out serially.  
The address register is automatically incremented after the data is output and, if Chip Select  
Input (S) is held High, the M93Cx6-A125 can output a sequential stream of data bytes or  
words. In this way, the memory can be read as a data stream from eight to 16384 bits long  
(in the case of the M93C86), or continuously (the address counter automatically rolls over to  
00h when the highest address is reached).  
Programming is internally self-timed (the external clock signal on Serial Clock (C) may be  
stopped or left running after the start of a Write cycle) and does not require an Erase cycle  
prior to the Write instruction. The Write instruction writes 8 or 16 bits at a time into one of the  
byte or word locations of the M93Cx6-A125. After the start of the programming cycle, a  
Busy/Ready signal is available on Serial Data Output (Q) when Chip Select Input (S) is  
driven High. An internal Power-on Data Protection mechanism in the M93Cx6-A125 inhibits  
the device when the supply is too low.  
Figure 2. 8-pin package connections (top view)  
-ꢂꢅ#Xꢆ  
3
#
$
1
6
##  
$5  
/2'  
6
33  
!)ꢀꢁꢂꢃꢂ"  
1. See Section 12: Package mechanical data for package dimensions, and how to identify pin-1.  
2. DU = Don’t Use. The DU (do not use) pin does not contribute to the normal operation of the device. It is  
reserved for use by STMicroelectronics during test sequences. The pin may be left unconnected or may be  
connected to VCC or VSS  
.
DocID024752 Rev 2  
7/31  
30  
 
 
Connecting to the serial bus  
M93Cx6-A125  
2
Connecting to the serial bus  
Figure 3 shows an example of three memory devices connected to an MCU, on a serial bus.  
Only one device is selected at a time, so only one device drives the Serial Data output (Q)  
line at a time, the other devices are high impedance.  
The pull-down resistor R (represented in Figure 3) ensures that no device is selected if the  
bus master leaves the S line in the high impedance state.  
In applications where the bus master may be in a state where all inputs/outputs are high  
impedance at the same time (for example, if the bus master is reset during the transmission  
of an instruction), the clock line (C) must be connected to an external pull-down resistor so  
that, if all inputs/outputs become high impedance, the C line is pulled low (while the S line is  
pulled low): this ensures that C does not become high at the same time as S goes low, and  
so, that the t  
requirement is met. The typical value of R is 100 kΩ.  
SLCH  
Figure 3. Bus master and memory devices on the serial bus  
633  
6##  
2
3$/  
3$)  
3#+  
"US MASTER  
6##  
6##  
6##  
#
1
$
#
1
$
# 1 $  
633  
633  
633  
-ꢂꢅXXX  
MEMORY DEVICE  
-ꢂꢅXXX  
MEMORY DEVICE  
-ꢂꢅXXX  
MEMORY DEVICE  
2
2
2
#3ꢅ #3ꢃ #3ꢁ  
3
3
3
/2'  
/2'  
/2'  
!)ꢁꢇꢅꢈꢈB  
8/31  
DocID024752 Rev 2  
 
 
M93Cx6-A125  
Operating features  
3
Operating features  
3.1  
Supply voltage (VCC)  
3.1.1  
Operating supply voltage (V  
)
CC  
Prior to selecting the memory and issuing instructions to it, a valid and stable V voltage  
CC  
within the specified [V (min), V (max)] range must be applied. In order to secure a stable  
CC  
CC  
DC supply voltage, it is recommended to decouple the V line with a suitable capacitor  
CC  
(usually of the order of 10 nF to 100 nF) close to the V /V package pins.  
CC SS  
This voltage must remain stable and valid until the end of the transmission of the instruction  
and, for a Write instruction, until the completion of the internal write cycle (t ).  
W
3.1.2  
3.1.3  
Power-up conditions  
When the power supply is turned on, V rises from V to V . During this time, the Chip  
Select (S) line is not allowed to float and should be driven to V , it is therefore  
recommended to connect the S line to V via a suitable pull-down resistor.  
CC  
SS  
CC  
SS  
SS  
The V rise time must not vary faster than 1 V/µs.  
CC  
Power-up and device reset  
In order to prevent inadvertent Write operations during power-up, a power on reset (POR)  
circuit is included. At power-up (continuous rise of V ), the device does not respond to any  
CC  
instruction until V has reached the power on reset threshold voltage (this threshold is  
CC  
lower than the minimum V operating voltage defined in Operating conditions, in  
CC  
Section 11: DC and AC parameters).  
When V passes the POR threshold, the device is reset and is in the following state:  
CC  
Standby Power mode  
deselected (assuming that there is a pull-down resistor on the S line)  
3.1.4  
Power-down  
At power-down (continuous decrease in V ), as soon as V drops from the normal  
CC  
CC  
operating voltage to below the power on reset threshold voltage, the device stops  
responding to any instruction sent to it.  
During power-down, the device must be deselected and in the Standby Power mode (that is,  
there should be no internal Write cycle in progress).  
DocID024752 Rev 2  
9/31  
30  
 
 
 
 
 
 
Memory organization  
M93Cx6-A125  
4
Memory organization  
The M93Cx6-A125 memory is organized either as bytes (x8) or as words (x16). If  
Organization Select (ORG) is left unconnected (or connected to V ) the x16 organization is  
CC  
selected; when Organization Select (ORG) is connected to Ground (V ) the x8  
SS  
organization is selected. When the M93Cx6-A125 is in Standby mode, Organization Select  
(ORG) should be set either to V or V to reach the device minimum power consumption  
SS  
CC  
(as any voltage between V and V applied to ORG input may increase the device  
SS  
CC  
Standby current).  
Figure 4. M93Cx6-A125 ORG input connection  
9FF  
9VV  
9FF  
9VV  
9FF  
9VV  
1RWꢅ  
FRQQHFWHG  
25*  
25*  
25*  
[ꢁꢂꢅRUJDQL]DWLRQ  
[ꢁꢂꢅRUJDQL]DWLRQ  
[ꢆꢅRUJDQL]DWLRQ  
06Yꢀꢁꢂꢃꢄ9ꢁ  
10/31  
DocID024752 Rev 2  
 
 
M93Cx6-A125  
Instructions  
5
Instructions  
The instruction set of the M93Cx6-A125 devices contains seven instructions, as  
summarized in Table 5 to Table 7. Each instruction consists of the following parts, as shown  
in Figure 5: READ, WRITE, WEN, WDS sequences:  
Each instruction is preceded by a rising edge on Chip Select Input (S) with Serial Clock  
(C) being held low.  
A start bit, which is the first ‘1’ read on Serial Data Input (D) during the rising edge of  
Serial Clock (C).  
Two op-code bits, read on Serial Data Input (D) during the rising edge of Serial Clock  
(C). (Some instructions also use the first two bits of the address to define the op-code).  
The address bits of the byte or word that is to be accessed. For the M93C46, the  
address is made up of 6 bits for the x16 organization or 7 bits for the x8 organization  
(see Table 5). For the M93C56 and M93C66, the address is made up of 8 bits for the  
x16 organization or 9 bits for the x8 organization (see Table 6). For the M93C76 and  
M93C86, the address is made up of 10 bits for the x16 organization or 11 bits for the x8  
organization (see Table 7).  
The M93Cx6-A125 devices are fabricated in CMOS technology and are therefore able to  
run as slow as 0 Hz (static input signals) or as fast as the maximum ratings specified in “AC  
characteristics” tables, in Section 11: DC and AC parameters.  
Table 5. Instruction set for the M93C46  
x8 origination (ORG = 0)  
x16 origination (ORG = 1)  
Start Op-  
Required  
clock  
Required  
Address  
Instruction  
Description  
Address  
bit  
code  
Data  
Data  
clock  
(1)  
(1)  
cycles  
cycles  
Read Data from  
Memory  
READ  
1
10  
A6-A0  
Q7-Q0  
-
A5-A0  
Q15-Q0  
-
Write Data to  
Memory  
WRITE  
WEN  
1
1
1
01  
00  
00  
A6-A0  
D7-D0  
18  
10  
10  
A5-A0  
D15-D0  
25  
9
Write Enable  
Write Disable  
11X XXXX  
-
-
11 XXXX  
00 XXXX  
-
-
00X  
XXXX  
WDS  
9
Erase Byte or  
Word  
ERASE  
ERAL  
1
1
1
11  
00  
00  
A6-A0  
-
-
10  
10  
18  
A5-A0  
-
-
9
9
10X  
XXXX  
Erase All Memory  
10 XXXX  
Write All Memory  
with same Data  
01X  
XXXX  
WRAL  
D7-D0  
01 XXXX D15-D0  
25  
1. X = Don't Care bit.  
DocID024752 Rev 2  
11/31  
30  
 
 
Instructions  
Instruction  
M93Cx6-A125  
Table 6. Instruction set for the M93C56 and M93C66  
x8 origination (ORG = 0)  
x16 origination (ORG = 1)  
Op-  
cod  
e
Start  
bit  
Required  
Address  
Required  
Address  
Description  
Data  
clock  
Data  
clock  
(1) (2)  
(1) (3)  
cycles  
cycles  
Q7-  
Q0  
Q15-  
Q0  
READ  
WRITE  
WEN  
Read Data from Memory  
Write Data to Memory  
Write Enable  
1
1
1
10  
01  
00  
A8-A0  
A8-A0  
-
A7-A0  
-
D7-  
D0  
20  
12  
A7-A0 D15-D0  
27  
11  
1 1XXX  
XXXX  
11XX  
-
-
XXXX  
0 0XXX  
XXXX  
00XX  
-
WDS  
Write Disable  
1
1
1
00  
11  
00  
-
-
-
12  
12  
12  
11  
11  
11  
XXXX  
ERASE  
ERAL  
Erase Byte or Word  
Erase All Memory  
A8-A0  
A7-A0  
-
-
1 0XXX  
XXXX  
10XX  
XXXX  
Write All Memory with  
same Data  
0 1XXX  
XXXX  
D7-  
D0  
01XX  
XXXX  
WRAL  
1
00  
20  
D15-D0  
27  
1. X = Don't Care bit.  
2. Address bit A8 is not decoded by the M93C56.  
3. Address bit A7 is not decoded by the M93C56.  
Table 7. Instruction set for the M93C76 and M93C86  
x8 Origination (ORG = 0)  
x16 Origination (ORG = 1)  
Start Op-  
bit code  
Required  
clock  
Required  
Address  
Instruction  
Description  
Address  
Data  
Data  
clock  
(1)(2)  
(1) (3)  
cycles  
cycles  
Read Data from  
Memory  
READ  
WRITE  
WEN  
1
1
1
10  
01  
00  
A10-A0  
A10-A0  
Q7-Q0  
D7-D0  
-
-
A9-A0 Q15-Q0  
A9-A0 D15-D0  
-
Write Data to  
Memory  
22  
14  
29  
13  
11X XXXX  
XXXX  
11 XXXX  
-
Write Enable  
XXXX  
00X XXXX  
XXXX  
00 XXXX  
-
WDS  
Write Disable  
1
1
1
00  
11  
00  
-
-
-
14  
14  
14  
13  
13  
13  
XXXX  
ERASE  
ERAL  
Erase Byte or Word  
Erase All Memory  
A10-A0  
A9-A0  
-
-
10X XXXX  
XXXX  
10 XXXX  
XXXX  
Write All Memory  
with same Data  
01X XXXX  
XXXX  
01 XXXX  
XXXX  
WRAL  
1
00  
D7-D0  
22  
D15-D0  
29  
1. X = Don't Care bit.  
2. Address bit A10 is not decoded by the M93C76.  
3. Address bit A9 is not decoded by the M93C76.  
12/31  
DocID024752 Rev 2  
 
 
M93Cx6-A125  
Instructions  
5.1  
Read Data from Memory  
The Read Data from Memory (READ) instruction outputs data on Serial Data Output (Q).  
When the instruction is received, the op-code and address are decoded, and the data from  
the memory is transferred to an output shift register. A dummy 0 bit is output first, followed  
by the 8-bit byte or 16-bit word, with the most significant bit first. Output data changes are  
triggered by the rising edge of Serial Clock (C). The M93Cx6-A125 automatically increments  
the internal address register and clocks out the next byte (or word) as long as the Chip  
Select Input (S) is held High. In this case, the dummy 0 bit is not output between bytes (or  
words) and a continuous stream of data can be read (the address counter automatically rolls  
over to 00h when the highest address is reached).  
5.2  
Erase and Write data  
5.2.1  
Write Enable and Write Disable  
The Write Enable (WEN) instruction enables the future execution of erase or write  
instructions, and the Write Disable (WDS) instruction disables it. When power is first  
applied, the M93Cx6-A125 initializes itself so that erase and write instructions are disabled.  
After a Write Enable (WEN) instruction has been executed, erasing and writing remains  
enabled until a Write Disable (WDS) instruction is executed, or until V falls below the  
CC  
power-on reset threshold voltage. To protect the memory contents from accidental  
corruption, it is advisable to issue the Write Disable (WDS) instruction after every write  
cycle. The Read Data from Memory (READ) instruction is not affected by the Write Enable  
(WEN) or Write Disable (WDS) instructions.  
5.2.2  
Write  
For the Write Data to Memory (WRITE) instruction, 8 or 16 data bits follow the op-code and  
address bits. These form the byte or word that is to be written. As with the other bits, Serial  
Data Input (D) is sampled on the rising edge of Serial Clock (C).  
After the last data bit has been sampled, the Chip Select Input (S) must be taken low before  
the next rising edge of Serial Clock (C). If Chip Select Input (S) is brought low before or after  
this specific time frame, the self-timed programming cycle will not be started, and the  
addressed location will not be programmed. The completion of the cycle can be detected by  
monitoring the READY/BUSY line, as described later in this document.  
Once the Write cycle has been started, it is internally self-timed (the external clock signal on  
Serial Clock (C) may be stopped or left running after the start of a Write cycle). The Write  
cycle is automatically preceded by an Erase cycle, so it is unnecessary to execute an  
explicit erase instruction before a Write Data to Memory (WRITE) instruction.  
DocID024752 Rev 2  
13/31  
30  
 
 
 
 
Instructions  
M93Cx6-A125  
Figure 5. READ, WRITE, WEN, WDS sequences  
2EAD  
3
$
1
ꢁ ꢁ ꢀ !N  
!ꢀ  
1N  
1ꢀ  
!$$2  
$!4! /54  
/0  
#/$%  
7RITE  
3
$
1
#(%#+  
34!453  
ꢁ ꢀ ꢁ !N  
!ꢀ $N  
$ꢀ  
!$$2  
$!4! ).  
7RITE  
"539  
2%!$9  
/0  
#/$%  
7RITE  
%NABLE  
3
$
3
$ISABLE  
ꢁ ꢀ ꢀ ꢁ ꢁ 8N 8ꢀ  
$
ꢁ ꢀ ꢀ ꢀ ꢀ 8N 8ꢀ  
/0  
/0  
#/$%  
#/$%  
!)ꢀꢀꢄꢈꢄD  
1. For the meanings of An, Xn, Qn and Dn, see Table 5, Table 6 and Table 7.  
14/31  
DocID024752 Rev 2  
 
M93Cx6-A125  
Instructions  
5.2.3  
Write All  
As with the Erase All Memory (ERAL) instruction, the format of the Write All Memory with  
same Data (WRAL) instruction requires that a dummy address be provided. As with the  
Write Data to Memory (WRITE) instruction, the format of the Write All Memory with same  
Data (WRAL) instruction requires that an 8-bit data byte, or 16-bit data word, be provided.  
This value is written to all the addresses of the memory device. The completion of the cycle  
can be detected by monitoring the READY/BUSY line, as described next.  
Figure 6. WRAL sequence  
72)4%  
!,,  
3
$
1
#(%#+  
34!453  
ꢁ ꢀ ꢀ ꢀ ꢁ 8N 8ꢀ $N  
$ꢀ  
!$$2  
/0  
$!4! ).  
"539  
2%!$9  
#/$%  
!)ꢀꢀꢄꢄꢀ#  
1. For the meanings of Xn and Dn, please see Table 5, Table 6 and Table 7.  
5.2.4  
ECC (Error Correction Code) and Write cycling  
The devices identified with the Process letter “K” embed an Error Correction Code (ECC)  
internal logic function which is transparent for the Microwire communication protocol.  
The ECC logic is implemented on each byte.  
DocID024752 Rev 2  
15/31  
30  
 
 
 
Instructions  
M93Cx6-A125  
5.2.5  
Erase Byte or Word  
The Erase Byte or Word (ERASE) instruction sets the bits of the addressed memory byte (or  
word) to 1. Once the address has been correctly decoded, the falling edge of the Chip  
Select Input (S) starts the self-timed Erase cycle. The completion of the cycle can be  
detected by monitoring the READY/BUSY line, as described in Section 6: READY/BUSY  
status.  
Figure 7. ERASE, ERAL sequences  
%2!3%  
3
$
1
#(%#+  
34!453  
ꢁ ꢁ ꢁ !N  
!ꢀ  
!$$2  
"539  
2%!$9  
/0  
#/$%  
%2!3%  
!,,  
3
$
1
#(%#+  
34!453  
ꢁ ꢀ ꢀ ꢁ ꢀ 8N 8ꢀ  
!$$2  
/0  
"539  
2%!$9  
#/$%  
!)ꢀꢀꢄꢈꢂ"  
1. For the meanings of An and Xn, please see Table 5, Table 6 and Table 7.  
5.2.6  
Erase All  
The Erase All Memory (ERAL) instruction erases the whole memory (all memory bits are set  
to 1). The format of the instruction requires that a dummy address be provided. The Erase  
cycle is conducted in the same way as the Erase instruction (ERASE). The completion of  
the cycle can be detected by monitoring the READY/BUSY line, as described in Section 6:  
READY/BUSY status.  
16/31  
DocID024752 Rev 2  
 
 
 
M93Cx6-A125  
READY/BUSY status  
6
READY/BUSY status  
While the Write or Erase cycle is underway, for a WRITE, ERASE, WRAL or ERAL  
instruction, the Busy signal (Q=0) is returned whenever Chip Select input (S) is driven high.  
(Please note, though, that there is an initial delay, of t , before this status information  
SLSH  
becomes available). In this state, the M93Cx6-A125 ignores any data on the bus. When the  
Write cycle is completed, and Chip Select Input (S) is driven high, the Ready signal (Q=1)  
indicates that the M93Cx6-A125 is ready to receive the next instruction. Serial Data Output  
(Q) remains set to 1 until the Chip Select Input (S) is brought low or until a new start bit is  
decoded.  
7
8
Initial delivery state  
The device is delivered with all bits in the memory array set to 1 (each byte contains FFh).  
Common I/O operation  
Serial Data Output (Q) and Serial Data Input (D) can be connected together, through a  
current limiting resistor, to form a common, single-wire data bus. Some precautions must be  
taken when operating the memory in this way, mostly to prevent a short circuit current from  
flowing when the last address bit (A0) clashes with the first data bit on Serial Data Output  
(Q). Please see the application note AN394 for details.  
DocID024752 Rev 2  
17/31  
30  
 
 
 
Clock pulse counter  
M93Cx6-A125  
9
Clock pulse counter  
In a noisy environment, the number of pulses received on Serial Clock (C) may be greater  
than the number delivered by the master (the microcontroller). This can lead to a  
misalignment of the instruction of one or more bits (as shown in Figure 8) and may lead to  
the writing of erroneous data at an erroneous address.  
To avoid this problem, the M93Cx6-A125 has an on-chip counter that counts the clock  
pulses from the start bit until the falling edge of the Chip Select Input (S). If the number of  
clock pulses received is not the number expected, the WRITE, ERASE, ERAL or WRAL  
instruction is aborted, and the contents of the memory are not modified.  
The number of clock cycles expected for each instruction, and for each member of the  
M93Cx6-A125 family, are summarized in Table 5: Instruction set for the M93C46 to Table 7:  
Instruction set for the M93C76 and M93C86. For example, a Write Data to Memory (WRITE)  
instruction on the M93C56 (or M93C66) expects 20 clock cycles (for the x8 organization)  
from the start bit to the falling edge of Chip Select Input (S). That is:  
1 Start bit  
+ 2 Op-code bits  
+ 9 Address bits  
+ 8 Data bits  
Figure 8. Write sequence with one clock glitch  
3
#
$
!N  
!Nꢊꢁ  
'LITCH  
!Nꢊꢃ  
34!24  
ꢋꢀꢋ  
ꢋꢁꢋ  
$ꢀ  
!$$2%33 !.$ $!4!  
!2% 3()&4%$ "9 /.% ")4  
72)4%  
!)ꢀꢁꢅꢂꢉ  
18/31  
DocID024752 Rev 2  
 
 
M93Cx6-A125  
Maximum ratings  
10  
Maximum ratings  
Stressing the device outside the ratings listed in the Absolute maximum ratings table may  
cause permanent damage to the device. These are stress ratings only, and operation of the  
device at these, or any other conditions outside those indicated in the operating sections of  
this specification, is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Table 8. Absolute maximum ratings  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Ambient operating temperature  
Storage temperature  
–40  
–65  
130  
150  
°C  
°C  
°C  
V
TSTG  
TLEAD Lead temperature during soldering  
See note (1)  
VOUT  
VIN  
Output range (Q = VOH or Hi-Z)  
Input range  
–0.50  
–0.50  
–0.50  
-
VCC+0.5  
VCC+1  
6.5  
V
VCC  
VESD  
Supply voltage  
V
Electrostatic discharge voltage (human body model)(2)  
4000  
V
1. Compliant with JEDEC standard J-STD-020D (for small-body, Sn-Pb or Pb assembly), the ST ECOPACK®  
7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS  
directive 2011/65/EU of July 2011).  
2. Positive and negative pulses applied on pin pairs, according to the AEC-Q100-002 (compliant with JEDEC  
Std JESD22-A114, C1 = 100 pF, R1 = 1500 Ω, R2 = 500 Ω).  
DocID024752 Rev 2  
19/31  
30  
 
 
DC and AC parameters  
M93Cx6-A125  
11  
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device.  
Table 9. Operating conditions (M93Cx6-A125)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply voltage  
Ambient operating temperature  
1.8  
5.5  
V
–40  
125  
°C  
Table 10. AC measurement conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
CL  
Load capacitance  
100  
pF  
ns  
V
-
-
-
-
Input rise and fall times  
-
50  
Input voltage levels  
0.2 VCC to 0.8 VCC  
0.3 VCC to 0.7 VCC  
0.3 VCC to 0.7 VCC  
Input timing reference voltages  
Output timing reference voltages  
V
V
Figure 9. AC testing input output waveforms  
-ꢂꢅ#88  
ꢄꢇꢆ9  
&&  
&&  
ꢄꢇꢉ9  
ꢄꢇꢀ9  
&&  
&&  
)NPUT AND OUTPUT  
TIMING REFERENCE LEVELS  
)NPUT VOLTAGE LEVELS  
ꢄꢇꢈ9  
-3ꢁꢂꢈꢄꢄ6ꢅ  
Table 11. Input and output capacitance  
Symbol  
COUT  
CIN  
Parameter  
Test condition(1)  
Min  
Max  
Unit  
Output capacitance  
Input capacitance  
VOUT = 0V  
VIN = 0V  
-
-
8
6
pF  
pF  
1. Sampled only, not 100% tested, at TA = 25 °C and a frequency of 1 MHz.  
Table 12. Cycling performance by byte  
Symbol  
Parameter  
Test condition  
Min.  
Max.  
Unit  
TA 25 °C, 1.8 V < VCC < 5.5 V  
TA = 85 °C, 1.8 V < VCC < 5.5 V  
TA = 125 °C, 1.8 V < VCC < 5.5 V  
-
-
-
4,000,000  
1,200,000  
600,000  
Write cycle  
endurance  
Write  
Ncycle  
cycle(1)  
1. A Write cycle is executed when either a Write, a Write All, an Erase or an Erase All instruction is decoded.  
20/31  
DocID024752 Rev 2  
 
 
 
 
 
 
M93Cx6-A125  
DC and AC parameters  
Table 13. DC characteristics  
Test conditions  
(in addition to conditions specified  
in Table 9)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
ILI  
Input leakage current  
Output leakage current  
VIN = VSS or VCC  
-
-
2
2
µA  
ILO  
S = VCC, VOUT = VSS or VCC  
VCC = 1.8 V, C = 0.1 VCC/0.9 VCC  
Q = open, fC = 2 MHz  
,
,
-
-
-
1
1
VCC = 2.5 V, C = 0.1 VCC/0.9 VCC  
Q = open, fC = 2 MHz  
ICC  
Supply current (Read)  
Supply current (Write)  
mA  
mA  
VCC = 5.5 V, fC = 2 MHz  
1.5  
C = 0.1 VCC/0.9 VCC, Q = open  
1.8 V VCC < 5.5 V during tW,  
S = VCC  
(1)  
ICC0  
-
-
-
-
-
-
-
1.5  
1
t° = 85 °C, VCC = 1.8 V,  
S = VCC, VIN = VSS or VCC  
t° = 85 °C, VCC = 2.5 V,  
S = VCC, VIN = VSS or VCC  
2
t° = 85 °C, VCC = 5.5 V,  
S = VCC, VIN = VSS or VCC  
3
ICC1  
Supply current (Standby mode)  
µA  
t° = 125 °C, VCC = 1.8 V,  
S = VCC, VIN = VSS or VCC  
15  
15  
15  
t° = 125 °C, VCC = 2.5 V,  
S = VCC, VIN = VSS or VCC  
t° = 125 °C, VCC = 5.5 V,  
S = VCC, VIN = VSS or VCC  
1.8 V VCC < 2.5 V  
2.5 V VCC < 5.5 V  
1.8 V VCC < 2.5 V  
2.5 V VCC < 5.5 V  
–0.45  
–0.45  
0.25 VCC  
0.3 VCC  
VIL  
VIH  
VOL  
Input low voltage (D, C, S)  
Input high voltage (D, C, S)  
Output low voltage  
V
V
V
0.75 VCC VCC+0.5  
0.7 VCC  
VCC+0.5  
V
CC = 1.8 V, IOL = 1 mA  
VCC 2.5 V, IOL = 2.1 mA  
CC = 1.8 V, IOH = 1 mA  
-
0.3  
0.4  
-
-
V
0.8 VCC  
0.8 VCC  
0.5  
VOH  
Output high voltage  
V
V
VCC 2.5 V, IOH = -2.1 mA  
-
VRES  
Internal reset threshold voltage  
-
1.5  
1. Average value during the Write cycle (tW)  
DocID024752 Rev 2  
21/31  
30  
 
DC and AC parameters  
M93Cx6-A125  
Table 14. AC characteristics  
Test conditions specified in Table 9 and Table 10  
Symbol  
Alt.  
Parameter  
Min.  
Max.  
Unit  
fC  
fSK  
Clock frequency  
D.C.  
50  
50  
200  
200  
200  
50  
50  
50  
0
2
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tSLCH  
tSHCH  
Chip Select low to Clock high  
Chip Select set-up time  
-
tCSS  
tCS  
-
(1)  
tSLSH  
Chip Select low to Chip Select high  
Clock high time  
-
(2)  
tCHCL  
tSKH  
tSKL  
tDIS  
tDIH  
tSKS  
tCSH  
tSV  
-
-
(2)  
tCLCH  
Clock low time  
tDVCH  
tCHDX  
tCLSH  
tCLSL  
tSHQV  
Data in set-up time  
-
Data in hold time  
-
Clock set-up time (relative to S)  
Chip Select hold time  
-
-
Chip Select to READY/BUSY status  
Chip Select low to output Hi-Z (VCC>2.5 V)  
Chip Select low to output Hi-Z (VCC<2.5 V)  
Delay to output low  
-
200  
100  
200  
200  
200  
4
-
(3)  
tSLQZ  
tDF  
-
tCHQL  
tCHQV  
tW  
tPD0  
tPD1  
tWP  
-
Delay to output valid  
-
Erase or Write cycle time  
-
1. Chip Select Input (S) must be brought low for a minimum of tSLSH between consecutive instruction cycles.  
2. tCHCL + tCLCH 1 / fC.  
3. Value defined from characterization, not tested in production.  
22/31  
DocID024752 Rev 2  
 
M93Cx6-A125  
DC and AC parameters  
Figure 10. Synchronous timing (Start and op-code input)  
W&/6+  
W&+&/  
#
3
$
W6+&+  
W&/&+  
W'9&+  
67$57  
W&+';  
23ꢅ&2'(  
23ꢅ&2'(  
67$57  
23ꢅ&2'(ꢅ,1387  
AIꢀꢁꢇꢃꢄ  
Figure 11. Synchronous timing (Read)  
#
3
$
1
T#,3,  
T$6#(  
T#($8  
T#(16  
T3,3(  
!ꢀ  
!N  
T3,1:  
T#(1,  
(Iꢊ:  
1ꢁꢉꢌ1ꢈ  
1ꢀ  
!$$2%33 ).054  
$!4! /54054  
!)ꢀꢀꢄꢃꢀ#  
Figure 12. Synchronous timing (Write)  
W6/&+  
#
3
$
1
W&/6/  
W'9&+  
W&+';  
$ꢄꢊ'ꢄ  
W6/6+  
$Q  
W6+49  
%86<  
W6/4=  
5($'<  
+Lꢋ=  
W:  
$''5(66ꢊ'$7$ꢅ,1387  
:5,7(ꢅ&<&/(  
AIꢀꢁꢇꢃꢂ  
DocID024752 Rev 2  
23/31  
30  
 
 
 
Package mechanical data  
M93Cx6-A125  
12  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
24/31  
DocID024752 Rev 2  
 
M93Cx6-A125  
Package mechanical data  
Figure 13. SO8 narrow – 8 lead plastic small outline, 150 mils body width,  
package outline  
Kꢅ[ꢅꢌꢍƒ  
$ꢈ  
$
F
FFF  
E
H
ꢄꢇꢈꢍꢅPP  
*$8*(ꢅ3/$1(  
'
N
(ꢁ  
(
/
$ꢁ  
/ꢁ  
62ꢋ$  
1. Drawing is not to scale.  
Table 15. SO8 narrow – 8 lead plastic small outline, 150 mils body width,  
package data  
millimeters  
Min  
inches(1)  
Symbol  
Typ  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
-
-
1.75  
0.25  
-
-
-
0.0689  
0.0098  
-
-
0.1  
1.25  
0.28  
0.17  
-
-
0.0039  
0.0492  
0.011  
0.0067  
-
-
-
-
0.48  
0.23  
0.1  
5
-
0.0189  
0.0091  
0.0039  
0.1969  
0.2441  
0.1575  
-
c
-
-
ccc  
D
-
4.9  
6
-
4.8  
5.8  
3.8  
-
0.1929  
0.2362  
0.1535  
0.05  
-
0.189  
0.2283  
0.1496  
-
E
6.2  
4
E1  
e
3.9  
1.27  
-
-
h
0.25  
0°  
0.5  
8°  
0.0098  
0°  
0.0197  
8°  
k
-
-
L
-
0.4  
-
1.27  
-
-
0.0157  
-
0.05  
L1  
1.04  
0.0409  
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
DocID024752 Rev 2  
25/31  
30  
 
 
Package mechanical data  
M93Cx6-A125  
Figure 14. TSSOP8 – 8 lead thin shrink small outline, package outline  
'
F
(ꢁ (  
D
$ꢁ  
/
$
$ꢈ  
/ꢁ  
&3  
E
H
76623ꢆ$0  
1. Drawing is not to scale.  
Table 16. TSSOP8 – 8-lead thin shrink small outline, package mechanical data  
millimeters  
Min  
inches(1)  
Symbol  
Typ  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
-
-
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
-
-
-
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
-
-
0.050  
0.800  
0.190  
0.090  
-
-
0.0020  
0.0315  
0.0075  
0.0035  
-
1.000  
-
0.0394  
-
c
-
-
CP  
D
-
-
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
-
2.900  
-
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
-
0.1142  
-
e
E
6.200  
4.300  
0.450  
-
6.600  
4.500  
0.750  
-
0.2441  
0.1693  
0.0177  
-
0.2598  
0.1772  
0.0295  
-
E1  
L
L1  
α
0°  
8°  
0°  
8°  
N
8
8
1. Values in inches are converted from mm and rounded to four decimal digits.  
26/31  
DocID024752 Rev 2  
 
 
M93Cx6-A125  
Package mechanical data  
Figure 15. WFDFPN8 (MLP8) – 8-lead thin fine pitch dual flat package no lead  
2 x 3 mm, package outline  
$ꢃ  
$ꢃꢌꢃ  
$ATUM !  
E
$
%ꢃꢌꢃ  
0IN ꢍꢁ )$ MARKING  
%ꢃ  
3EE  
$ETAIL h!v  
%
+
ꢃX  
AAA  
#
.8 B  
ꢃX  
AAA  
#
-
ꢎ.$ꢊꢁꢏ X E  
BBB  
! "  
#
-
DDD  
#
4OP VIEW  
"OTTOM VIEW  
!
CCC  
#
#
$ATUM !  
EEE  
3EATING PLANE  
#
!ꢁ  
3IDE VIEW  
,
,ꢅ  
Eꢌꢃ  
E
,ꢁ  
4ERMINAL TIP  
$ETAIL h!v  
-&?-%?6ꢅ  
1. Drawing is not to scale.  
DocID024752 Rev 2  
27/31  
30  
 
Package mechanical data  
M93Cx6-A125  
Table 17. WFDFPN8 (MLP8) – 8-lead thin fine pitch dual flat package no lead 2 x 3 mm,  
mechanical data  
millimeters  
Min.  
inches(1)  
Symbol  
Typ.  
Max.  
Typ.  
Min.  
Max.  
A
A1  
b
0.750  
0.045  
0.250  
2.000  
3.000  
0.700  
0.025  
0.200  
1.900  
2.900  
0.500  
-
0.800  
0.065  
0.300  
2.100  
3.100  
0.0295  
0.0018  
0.0098  
0.0787  
0.1181  
0.0276  
0.0010  
0.0079  
0.0748  
0.1142  
0.0197  
-
0.0315  
0.0026  
0.0118  
0.0827  
0.1220  
D
E
e
L1  
-
-
0.150  
-
-
-
0.0059  
-
L3  
0.300  
0.0118  
NX(2)  
ND(3)  
aaa  
bbb  
ccc  
ddd  
eee(4)  
D2  
E2  
K
8
4
0.150  
0.100  
0.100  
0.050  
0.080  
1.050  
1.050  
0.450  
0.300  
0.0059  
0.0039  
0.0039  
0.0020  
0.0031  
0.0413  
0.0413  
0.0177  
0.0118  
-
-
-
-
1.450  
1.450  
-
-
-
-
-
0.0571  
0.0571  
-
-
L
0.500  
1. Values in inches are converted from mm and rounded to four decimal digits.  
2. NX is the number of terminals.  
3. ND is the number of terminals on “D” sides.  
4. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from  
measuring.  
28/31  
DocID024752 Rev 2  
 
M93Cx6-A125  
Part numbering  
13  
Part numbering  
Table 18. Ordering information scheme  
M93C86  
Example:  
R MN  
3
T
P
/K  
Device type  
M93 = MICROWIRE serial EEPROM  
Device function  
86 = 16 Kbit (2048 x 8)  
76 = 8 Kbit (1024 x 8)  
66 = 4 Kbit (512 x 8)  
56 = 2 Kbit (256 x 8)  
46 = 1 Kbit (128 x 8)  
Operating voltage  
R = VCC = 1.8 to 5.5 V  
Package(1)  
MN = SO8 (150 mils width)  
DW = TSSOP8 (169 mils width)  
MF = WFDFPN8 (2 x 3 mm)  
Device grade  
3 = Device tested with high reliability certified flow(2)  
Automotive temperature range (–40 to 125 °C)  
Packing  
blank = standard packing  
T = tape and reel packing  
Plating technology  
P = ECOPACK® (RoHS compliant)  
Process  
/K = Manufacturing technology code  
1. All packages are ECOPACK2® (RoHS compliant and Halogen-free).  
2. The high reliability certified flow (HRCF) is described in quality note QNEE9801. Please ask your  
nearest ST sales office for a copy.  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
DocID024752 Rev 2  
29/31  
30  
 
 
Revision history  
M93Cx6-A125  
14  
Revision history  
Table 19. Document revision history  
Changes  
Date  
Revision  
15-Nov-2013  
07-Aug-2013  
15  
1
Removed Table 14 Cycling performance by byte  
Initial release  
Document status changed from “Preliminary data” to “Production data”.  
Updated:  
Features: “data retention” bullet  
Table 9: Operating conditions (M93Cx6-A125)  
– “TSLQZ” row in Table 14: AC characteristics  
– Note (1) under Table 8: Absolute maximum ratings  
Table 13: DC characteristics  
02-Dec-2013  
2
Figure 15: WFDFPN8 (MLP8) – 8-lead thin fine pitch dual flat package  
no lead 2 x 3 mm, package outline.  
Renamed Figure 11: Synchronous timing (Read) and Figure 12:  
Synchronous timing (Write).  
30/31  
DocID024752 Rev 2  
 
 
M93Cx6-A125  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE  
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)  
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS  
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT  
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS  
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY  
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE  
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2013 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
DocID024752 Rev 2  
31/31  
31  
 

相关型号:

M93C76-RMN3P/S

16 Kbit, 8 Kbit, 4 Kbit, 2 Kbit and 1 Kbit (8-bit or 16-bit wide) MICROWIRE㈢ serial access EEPROM
STMICROELECTR

M93C76-RMN3P/W

16 Kbit, 8 Kbit, 4 Kbit, 2 Kbit and 1 Kbit (8-bit or 16-bit wide) MICROWIRE㈢ serial access EEPROM
STMICROELECTR

M93C76-RMN3T

16Kbit, 8Kbit, 4Kbit, 2Kbit and 1Kbit (8-bit or 16-bit wide) MICROWIRE Serial Access EEPROM
STMICROELECTR

M93C76-RMN3TG

16Kbit, 8Kbit, 4Kbit, 2Kbit and 1Kbit (8-bit or 16-bit wide) MICROWIRE Serial Access EEPROM
STMICROELECTR

M93C76-RMN3TG/S

16 Kbit, 8 Kbit, 4 Kbit, 2 Kbit and 1 Kbit (8-bit or 16-bit wide) MICROWIRE㈢ serial access EEPROM
STMICROELECTR

M93C76-RMN3TG/W

16 Kbit, 8 Kbit, 4 Kbit, 2 Kbit and 1 Kbit (8-bit or 16-bit wide) MICROWIRE㈢ serial access EEPROM
STMICROELECTR

M93C76-RMN3TP

16Kbit, 8Kbit, 4Kbit, 2Kbit and 1Kbit (8-bit or 16-bit wide) MICROWIRE Serial Access EEPROM
STMICROELECTR

M93C76-RMN3TP/K

Automotive 8-Kbit MICROWIRE serial EEPROM
STMICROELECTR

M93C76-RMN3TP/S

16 Kbit, 8 Kbit, 4 Kbit, 2 Kbit and 1 Kbit (8-bit or 16-bit wide) MICROWIRE㈢ serial access EEPROM
STMICROELECTR

M93C76-RMN3TP/W

16 Kbit, 8 Kbit, 4 Kbit, 2 Kbit and 1 Kbit (8-bit or 16-bit wide) MICROWIRE㈢ serial access EEPROM
STMICROELECTR

M93C76-RMN5

512X16 MICROWIRE BUS SERIAL EEPROM, PDSO8, 0.150 INCH, PLASTIC, SO-8
STMICROELECTR

M93C76-RMN5T

512X16 MICROWIRE BUS SERIAL EEPROM, PDSO8, 0.150 INCH, PLASTIC, SO-8
STMICROELECTR