M95010-WBN6T [STMICROELECTRONICS]

4Kbit, 2Kbit and 1Kbit Serial SPI Bus EEPROM With High Speed Clock; 4k位, 2Kbit和1Kbit的串行SPI总线的EEPROM采用高速时钟
M95010-WBN6T
型号: M95010-WBN6T
厂家: ST    ST
描述:

4Kbit, 2Kbit and 1Kbit Serial SPI Bus EEPROM With High Speed Clock
4k位, 2Kbit和1Kbit的串行SPI总线的EEPROM采用高速时钟

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟
文件: 总37页 (文件大小:588K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M95040  
M95020, M95010  
4Kbit, 2Kbit and 1Kbit Serial SPI Bus EEPROM  
With High Speed Clock  
FEATURES SUMMARY  
Compatible with SPI Bus Serial Interface  
(Positive Clock SPI Modes)  
Figure 1. Packages  
Single Supply Voltage:  
4.5 to 5.5V for M950x0  
2.5 to 5.5V for M950x0-W  
1.8 to 5.5V for M950x0-R  
High Speed  
8
10MHz Clock Rate, 5ms Write Time  
Status Register  
1
BYTE and PAGE WRITE (up to 16 Bytes)  
Self-Timed Programming Cycle  
Adjustable Size Read-Only EEPROM Area  
Enhanced ESD Protection  
More than 1 Million Erase/Write Cycles  
More than 40-Year Data Retention  
PDIP8 (BN)  
8
Table 1. Product List  
Reference  
1
Part Number  
M95040  
SO8 (MN)  
M95040  
M95020  
M95010  
M95040-W  
M95040-R  
M95020  
150 mil width  
M95020-W  
M95020-R  
M95010  
TSSOP8 (DW)  
169 mil width  
M95010-W  
M95010-R  
October 2004  
1/37  
M95040, M95020, M95010  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table 1. Product List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 3. DIP, SO and TSSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Table 2. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Serial Data Output (Q). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Serial Data Input (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Serial Clock (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Chip Select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Hold (HOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Write Protect (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
CONNECTING TO THE SPI BUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 4. Bus Master and Memory Devices on the SPI Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
SPI Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 5. SPI Modes Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
OPERATING FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Active Power and Standby Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Hold Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 6. Hold Condition Activation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
WIP bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 3. Status Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Data Protection and Protocol Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 4. Write-Protected Block Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
MEMORY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 7. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 5. Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 8. Write Enable (WREN) Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2/37  
M95040, M95020, M95010  
Write Disable (WRDI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 9. Write Disable (WRDI) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Read Status Register (RDSR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
WIP bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 10.Read Status Register (RDSR) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Write Status Register (WRSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 11.Write Status Register (WRSR) Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Read from Memory Array (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 6. Address Range Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 12.Read from Memory Array (READ) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write to Memory Array (WRITE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 13.Byte Write (WRITE) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 14.Page Write (WRITE) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
POWER-UP AND DELIVERY STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Power-up State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Initial Delivery State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 7. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 8. Operating Conditions (M950x0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 9. Operating Conditions (M950x0-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 10. Operating Conditions (M950x0-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 11. AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 15.AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 12. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 13. DC Characteristics (M950x0, Device Grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 14. DC Characteristics (M950x0, Device Grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 15. DC Characteristics (M950x0-W, Device Grade 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 16. DC Characteristics (M950x0-W, Device Grade 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 17. DC Characteristics (M950x0-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 18. AC Characteristics (M950x0, Device Grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 19. AC Characteristics (M950x0, Device Grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 20. AC Characteristics (M950x0-W, Device Grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 21. AC Characteristics (M950x0-W, Device Grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 22. AC Characteristics (M950x0-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 16.Serial Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 17.Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 18.Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 19.PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline . . . . . . . . . . . . . . . . . 32  
3/37  
M95040, M95020, M95010  
Table 23. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data . . . . . . . . . . 32  
Figure 20.SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline . . . . 33  
Table 24. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data  
33  
Figure 21.TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline . . . . . . . . . . . . . . . . . . . 34  
Table 25. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data . . . . . . . . . . . . 34  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 26. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 27. How to Identify Present and Previous Products by the Process Identification Letter . . . 35  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 28. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
4/37  
M95040, M95020, M95010  
SUMMARY DESCRIPTION  
The M95040 is a 4 Kbit (512 x 8) electrically eras-  
able programmable memory (EEPROM), access-  
ed by a high speed SPI-compatible bus. The other  
members of the family (M95020 and M95010) are  
identical, though proportionally smaller (2 and 1  
Kbit, respectively).  
Figure 3. DIP, SO and TSSOP Connections  
M95xxx  
Each device is accessed by a simple serial inter-  
face that is SPI-compatible. The bus signals are C,  
D and Q, as shown in Table 2. and Figure 2..  
The device is selected when Chip Select (S) is tak-  
en Low. Communications with the device can be  
interrupted using Hold (HOLD). WRITE instruc-  
tions are disabled by Write Protect (W).  
S
Q
1
2
3
4
8
V
CC  
HOLD  
7
W
6
5
C
D
V
SS  
AI01790D  
Figure 2. Logic Diagram  
Note: See PACKAGE MECHANICAL section for package dimen-  
sions, and how to identify pin-1.  
V
CC  
Table 2. Signal Names  
C
Serial Clock  
Serial Data Input  
Serial Data Output  
Chip Select  
Write Protect  
Hold  
D
C
S
Q
D
Q
M95xxx  
S
W
W
HOLD  
HOLD  
V
Supply Voltage  
Ground  
CC  
V
SS  
V
SS  
AI01789C  
5/37  
M95040, M95020, M95010  
SIGNAL DESCRIPTION  
During all operations, V must be held stable and  
Chip Select (S). When this input signal is High,  
the device is deselected and Serial Data Output  
(Q) is at high impedance. Unless an internal Write  
cycle is in progress, the device will be in the Stand-  
by Power mode. Driving Chip Select (S) Low se-  
lects the device, placing it in the Active Power  
mode.  
CC  
within the specified valid range: V (min) to  
CC  
V
(max).  
CC  
All of the input and output signals can be held High  
or Low (according to voltages of V , V , V or  
IH  
OH  
IL  
V
, as specified in Table 13. to Table 17.). These  
OL  
signals are described next.  
After Power-up, a falling edge on Chip Select (S)  
is required prior to the start of any instruction.  
Hold (HOLD). The Hold (HOLD) signal is used to  
pause any serial communications with the device  
without deselecting the device.  
During the Hold condition, the Serial Data Output  
(Q) is high impedance, and Serial Data Input (D)  
and Serial Clock (C) are Don’t Care.  
To start the Hold condition, the device must be se-  
lected, with Chip Select (S) driven Low.  
Write Protect (W). This input signal is used to  
control whether the memory is write protected.  
When Write Protect (W) is held Low, writes to the  
memory are disabled, but other operations remain  
enabled. Write Protect (W) must either be driven  
High or Low, but must not be left floating.  
Serial Data Output (Q). This output signal is  
used to transfer data serially out of the device.  
Data is shifted out on the falling edge of Serial  
Clock (C).  
Serial Data Input (D). This input signal is used to  
transfer data serially into the device. It receives in-  
structions, addresses, and the data to be written.  
Values are latched on the rising edge of Serial  
Clock (C).  
Serial Clock (C). This input signal provides the  
timing of the serial interface. Instructions, address-  
es, or data present at Serial Data Input (D) are  
latched on the rising edge of Serial Clock (C). Data  
on Serial Data Output (Q) changes after the falling  
edge of Serial Clock (C).  
6/37  
M95040, M95020, M95010  
CONNECTING TO THE SPI BUS  
These devices are fully compatible with the SPI  
protocol.  
All instructions, addresses and input data bytes  
are shifted in to the device, most significant bit  
first. The Serial Data Input (D) is sampled on the  
first rising edge of the Serial Clock (C) after Chip  
Select (S) goes Low.  
All output data bytes are shifted out of the device,  
most significant bit first. The Serial Data Output  
(Q) is latched on the first falling edge of the Serial  
Clock (C) after the instruction (such as the Read  
from Memory Array and Read Status Register in-  
structions) have been clocked into the device.  
Figure 4. shows three devices, connected to an  
MCU, on a SPI bus. Only one device is selected at  
a time, so only one device drives the Serial Data  
Output (Q) line at a time, all the others being high  
impedance.  
Figure 4. Bus Master and Memory Devices on the SPI Bus  
SDO  
SPI Interface with  
(CPOL, CPHA) =  
(0, 0) or (1, 1)  
SDI  
SCK  
C
Q
D
C
Q
D
C Q D  
Bus Master  
(ST6, ST7, ST9,  
ST10, Others)  
SPI Memory  
Device  
SPI Memory  
Device  
SPI Memory  
Device  
CS3 CS2 CS1  
S
S
S
W
HOLD  
W
HOLD  
HOLD  
W
AI03746D  
Note: The Write Protect (W) and Hold (HOLD) signals should be driven, High or Low as appropriate.  
7/37  
M95040, M95020, M95010  
SPI Modes  
These devices can be driven by a microcontroller  
with its SPI peripheral running in either of the two  
following modes:  
is available from the falling edge of Serial Clock  
(C).  
The difference between the two modes, as shown  
in Figure 5., is the clock polarity when the bus  
master is in Stand-by mode and not transferring  
data:  
CPOL=0, CPHA=0  
CPOL=1, CPHA=1  
C remains at 0 for (CPOL=0, CPHA=0)  
C remains at 1 for (CPOL=1, CPHA=1)  
For these two modes, input data is latched in on  
the rising edge of Serial Clock (C), and output data  
Figure 5. SPI Modes Supported  
CPOL CPHA  
C
C
0
1
0
1
D
MSB  
Q
MSB  
AI01438B  
8/37  
M95040, M95020, M95010  
OPERATING FEATURES  
Power-up  
When the power supply is turned on, V  
Power mode, and the device consumption drops  
to I  
.
CC1  
rises  
CC  
from V to V  
.
Hold Condition  
SS  
CC  
During this time, the Chip Select (S) must be al-  
lowed to follow the V voltage. It must not be al-  
The Hold (HOLD) signal is used to pause any se-  
rial communications with the device without reset-  
ting the clocking sequence.  
CC  
lowed to float, but should be connected to V via  
CC  
a suitable pull-up resistor.  
During the Hold condition, the Serial Data Output  
(Q) is high impedance, and Serial Data Input (D)  
and Serial Clock (C) are Don’t Care.  
To enter the Hold condition, the device must be  
selected, with Chip Select (S) Low.  
Normally, the device is kept selected, for the whole  
duration of the Hold condition. Deselecting the de-  
vice while it is in the Hold condition, has the effect  
of resetting the state of the device, and this mech-  
anism can be used if it is required to reset any pro-  
cesses that had been in progress.  
As a built in safety feature, Chip Select (S) is edge  
sensitive as well as level sensitive. After Power-  
up, the device does not become selected until a  
falling edge has first been detected on Chip Select  
(S). This ensures that Chip Select (S) must have  
been High, prior to going Low to start the first op-  
eration.  
Power-down  
At Power-down, the device must be deselected.  
Chip Select (S) should be allowed to follow the  
voltage applied on V  
Active Power and Standby Power Modes  
When Chip Select (S) is Low, the device is select-  
ed, and in the Active Power mode. The device  
.
CC  
The Hold condition starts when the Hold (HOLD)  
signal is driven Low at the same time as Serial  
Clock (C) already being Low (as shown in Figure  
6.).  
consumes I , as specified in Table 13. to Table  
17..  
When Chip Select (S) is High, the device is dese-  
lected. If an Erase/Write cycle is not currently in  
progress, the device then goes in to the Standby  
The Hold condition ends when the Hold (HOLD)  
signal is driven High at the same time as Serial  
Clock (C) already being Low.  
Figure 6. also shows what happens if the rising  
and falling edges are not timed to coincide with  
Serial Clock (C) being Low.  
CC  
Figure 6. Hold Condition Activation  
C
HOLD  
Hold  
Hold  
Condition  
Condition  
AI02029D  
9/37  
M95040, M95020, M95010  
Status Register  
Data Protection and Protocol Control  
Figure 7. shows the position of the Status Register  
in the control logic of the device. This register con-  
tains a number of control bits and status bits, as  
shown in Table 3..  
To help protect the device from data corruption in  
noisy or poorly controlled environments, a number  
of safety features have been built in to the device.  
The main security measures can be summarized  
as follows:  
Bits b7, b6, b5 and b4 are always read as 1.  
The WEL bit is reset at power-up.  
WIP bit. The Write In Progress bit is a volatile  
read-only bit that is automatically set and reset by  
the internal logic of the device. When set to a 1, it  
indicates that the memory is busy with a Write cy-  
cle.  
Chip Select (S) must rise after the eighth clock  
count (or multiple thereof) in order to start a  
non-volatile Write cycle (in the memory array  
or in the Status Register).  
WEL bit. The Write Enable Latch bit is a volatile  
read-only bit that is set and reset by specific in-  
structions. When reset to 0, no WRITE or WRSR  
instructions are accepted by the device.  
Accesses to the memory array are ignored  
during the non-volatile programming cycle,  
and the programming cycle continues  
unaffected.  
BP1, BP0 bits. The Block Protect bits are non-  
volatile read-write bits. These bits define the area  
of memory that is protected against the execution  
of Write cycles, as summarized in Table 4..  
Invalid Chip Select (S) and Hold (HOLD)  
transitions are ignored.  
For any instruction to be accepted and executed,  
Chip Select (S) must be driven High after the rising  
edge of Serial Clock (C) that latches the last bit of  
the instruction, and before the next rising edge of  
Serial Clock (C).  
For this, “the last bit of the instruction” can be the  
eighth bit of the instruction code, or the eighth bit  
of a data byte, depending on the instruction (ex-  
cept in the case of RDSR and READ instructions).  
Moreover, the "next rising edge of CLOCK" might  
(or might not) be the next bus transaction for some  
other device on the bus.  
Table 3. Status Register Format  
b7  
1
b0  
1
1
1
BP1 BP0 WEL WIP  
Block Protect Bits  
Write Enable Latch Bit  
When a Write cycle is in progress, the device pro-  
tects it against external interruption by ignoring  
any subsequent READ, WRITE or WRSR instruc-  
tion until the present cycle is complete.  
Write In Progress Bit  
Table 4. Write-Protected Block Size  
Status Register Bits  
Array Addresses Protected  
Protected Block  
BP1  
BP0  
M95040  
none  
M95020  
none  
M95010  
none  
0
0
1
1
0
1
0
1
none  
Upper quarter  
Upper half  
180h - 1FFh  
100h - 1FFh  
000h - 1FFh  
C0h - FFh  
80h - FFh  
00h - FFh  
60h - 7Fh  
40h - 7Fh  
00h - 7Fh  
Whole memory  
10/37  
M95040, M95020, M95010  
MEMORY ORGANIZATION  
The memory is organized as shown in Figure 7..  
Figure 7. Block Diagram  
HOLD  
High Voltage  
Generator  
W
S
Control Logic  
C
D
Q
I/O Shift Register  
Address Register  
and Counter  
Data  
Register  
Status  
Register  
Size of the  
Read only  
EEPROM  
area  
1 Page  
X Decoder  
AI01272C  
11/37  
M95040, M95020, M95010  
INSTRUCTIONS  
Each instruction starts with a single-byte code, as  
summarized in Table 5..  
If an invalid instruction is sent (one not contained  
in Table 5.), the device automatically deselects it-  
self.  
Table 5. Instruction Set  
Instruc  
Instruction  
Format  
Description  
tion  
WREN Write Enable  
0000 X110  
0000 X100  
0000 X101  
0000 X001  
WRDI  
RDSR  
Write Disable  
Read Status Register  
WRSR Write Status Register  
READ Read from Memory Array  
WRITE Write to Memory Array  
0000 A 011  
8
0000 A 010  
8
Note: 1. A8 = 1 for the upper half of the memory array of the  
M95040, and 0 for the lower half, and is Don’t Care for  
other devices.  
2. X = Don’t Care.  
12/37  
M95040, M95020, M95010  
Write Enable (WREN)  
As shown in Figure 8., to send this instruction to  
the device, Chip Select (S) is driven Low, and the  
bits of the instruction byte are shifted in, on Serial  
Data Input (D). The device then enters a wait  
state. It waits for a the device to be deselected, by  
Chip Select (S) being driven High.  
The Write Enable Latch (WEL) bit must be set pri-  
or to each WRITE and WRSR instruction. The only  
way to do this is to send a Write Enable instruction  
to the device.  
Figure 8. Write Enable (WREN) Sequence  
S
0
1
2
3
4
5
6
7
C
D
Q
Instruction  
High Impedance  
AI01441D  
Write Disable (WRDI)  
The device then enters a wait state. It waits for a  
the device to be deselected, by Chip Select (S) be-  
ing driven High.  
The Write Enable Latch (WEL) bit, in fact, be-  
comes reset by any of the following events:  
One way of resetting the Write Enable Latch  
(WEL) bit is to send a Write Disable instruction to  
the device.  
As shown in Figure 9., to send this instruction to  
the device, Chip Select (S) is driven Low, and the  
bits of the instruction byte are shifted in, on Serial  
Data Input (D).  
Power-up  
WRDI instruction execution  
WRSR instruction completion  
WRITE instruction completion  
Write Protect (W) line being held Low.  
Figure 9. Write Disable (WRDI) Sequence  
S
0
1
2
3
4
5
6
7
C
D
Q
Instruction  
High Impedance  
AI03790D  
13/37  
M95040, M95020, M95010  
Read Status Register (RDSR)  
One of the major uses of this instruction is to allow  
the MCU to poll the state of the Write In Progress  
(WIP) bit. This is needed because the device will  
not accept further WRITE or WRSR instructions  
when the previous Write cycle is not yet finished.  
As shown in Figure 10., to send this instruction to  
the device, Chip Select (S) is first driven Low. The  
bits of the instruction byte are then shifted in, on  
Serial Data Input (D). The current state of the bits  
in the Status Register is shifted out, on Serial Data  
Out (Q). The Read Cycle is terminated by driving  
Chip Select (S) High.  
The status and control bits of the Status Register  
are as follows:  
WIP bit. The Write In Progress (WIP) bit indicates  
whether the memory is busy with a Write or Write  
Status Register cycle. When set to 1, such a cycle  
is in progress, when reset to 0 no such cycle is in  
progress.  
WEL bit. The Write Enable Latch (WEL) bit indi-  
cates the status of the internal Write Enable Latch.  
When set to 1 the internal Write Enable Latch is  
set, when set to 0 the internal Write Enable Latch  
is reset and no Write or Write Status Register in-  
struction is accepted.  
The Status Register may be read at any time, even  
during a Write cycle (whether it be to the memory  
area or to the Status Register). All bits of the Sta-  
tus Register remain valid, and can be read using  
the RDSR instruction. However, during the current  
Write cycle, the values of the non-volatile bits  
(BP0, BP1) become frozen at a constant value.  
The updated value of these bits becomes avail-  
able when a new RDSR instruction is executed, af-  
ter completion of the Write cycle. On the other  
hand, the two read-only bits (Write Enable Latch  
(WEL), Write In Progress (WIP)) are dynamically  
updated during the on-going Write cycle.  
BP1, BP0 bits. The Block Protect (BP1, BP0) bits  
are non-volatile. They define the size of the area to  
be software protected against Write instructions.  
These bits are written with the Write Status Regis-  
ter (WRSR) instruction. When one or both of the  
Block Protect (BP1, BP0) bits is set to 1, the rele-  
vant memory area (as defined in Table 4.) be-  
comes protected against Write (WRITE)  
instructions. The Block Protect (BP1, BP0) bits  
can be written provided that the Hardware Protect-  
ed mode has not been set.  
Figure 10. Read Status Register (RDSR) Sequence  
S
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
C
D
Instruction  
Status Register Out  
Status Register Out  
High Impedance  
Q
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
MSB  
MSB  
AI01444D  
14/37  
M95040, M95020, M95010  
Write Status Register (WRSR)  
This instruction has no effect on bits b7, b6, b5, b4,  
b1 and b0 of the Status Register.  
od t (as specified in Table 18. to Table 22.), at  
the end of which the Write in Progress (WIP) bit is  
reset to 0.  
W
The instruction is not accepted, and is not execut-  
ed, under the following conditions:  
As shown in Figure 11., to send this instruction to  
the device, Chip Select (S) is first driven Low. The  
bits of the instruction byte and data byte are then  
shifted in on Serial Data Input (D).  
The instruction is terminated by driving Chip Se-  
lect (S) High. Chip Select (S) must be driven High  
after the rising edge of Serial Clock (C) that latch-  
es the eighth bit of the data byte, and before the  
the next rising edge of Serial Clock (C). If this con-  
dition is not met, the Write Status Register  
(WRSR) instruction is not executed. The self-  
timed Write Cycle starts, and continues for a peri-  
if the Write Enable Latch (WEL) bit has not  
been set to 1 (by executing a Write Enable  
instruction just before)  
if a Write Cycle is already in progress  
if the device has not been deselected, by Chip  
Select (S) being driven High, after the eighth  
bit, b0, of the data byte has been latched in  
if Write Protect (W) is Low.  
Figure 11. Write Status Register (WRSR) Sequence  
S
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
C
Instruction  
Status  
Register In  
7
6
5
4
3
2
0
1
D
Q
High Impedance  
MSB  
AI01445B  
15/37  
M95040, M95020, M95010  
Read from Memory Array (READ)  
to be continued indefinitely. The whole memory  
can, therefore, be read with a single READ instruc-  
tion.  
The Read cycle is terminated by driving Chip Se-  
lect (S) High. The rising edge of the Chip Select  
(S) signal can occur at any time during the cycle.  
The first byte addressed can be any byte within  
any page.  
The instruction is not accepted, and is not execut-  
ed, if a Write cycle is currently in progress.  
As shown in Figure 12., to send this instruction to  
the device, Chip Select (S) is first driven Low. The  
bits of the instruction byte and address byte are  
then shifted in, on Serial Data Input (D). For the  
M95040, the most significant address bit, A8, is in-  
corporated as bit b3 of the instruction byte, as  
shown in Table 5.. The address is loaded into an  
internal address register, and the byte of data at  
that address is shifted out, on Serial Data Output  
(Q).  
If Chip Select (S) continues to be driven Low, an  
internal bit-pointer is automatically incremented at  
each clock cycle, and the corresponding data bit is  
shifted out.  
When the highest address is reached, the address  
counter rolls over to zero, allowing the Read cycle  
Table 6. Address Range Bits  
Device  
M95040  
M95020  
M95010  
Address Bits  
A8-A0  
A7-A0  
A6-A0  
Figure 12. Read from Memory Array (READ) Sequence  
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22  
C
Instruction  
A8  
Byte Address  
A7 A6 A5 A4 A3 A2 A1 A0  
D
Q
Data Out  
High Impedance  
2
1
7
6
5
4
3
0
AI01440E  
Note: Depending on the memory size, as shown in Table 6., the most significant address bits are Don’t Care.  
16/37  
M95040, M95020, M95010  
Write to Memory Array (WRITE)  
given address to the end of the same page can be  
programmed in a single instruction.  
If Chip Select (S) still continues to be driven Low,  
the next byte of input data is shifted in, and is used  
to overwrite the byte at the start of the current  
page.  
As shown in Figure 13., to send this instruction to  
the device, Chip Select (S) is first driven Low. The  
bits of the instruction byte, address byte, and at  
least one data byte are then shifted in, on Serial  
Data Input (D).  
The instruction is terminated by driving Chip Se-  
lect (S) High after the rising edge of Serial Clock  
(C) that latches the last data bit, and before the  
next rising edge of Serial Clock (C) occurs any-  
where on the bus. In the case of Figure 13., this  
occurs after the eighth bit of the data byte has  
been latched in, indicating that the instruction is  
being used to write a single byte. The self-timed  
The instruction is not accepted, and is not execut-  
ed, under the following conditions:  
if the Write Enable Latch (WEL) bit has not  
been set to 1 (by executing a Write Enable  
instruction just before)  
if a Write cycle is already in progress  
if the device has not been deselected, by Chip  
Select (S) being driven High, at a byte  
boundary (after the rising edge of Serial Clock  
(C) that latches the last data bit, and before  
the next rising edge of Serial Clock (C) occurs  
anywhere on the bus)  
Write cycle starts, and continues for a period t  
WC  
(as specified in Table 18. to Table 22.), at the end  
of which the Write in Progress (WIP) bit is reset to  
0.  
If, though, Chip Select (S) continues to be driven  
Low, as shown in Figure 14., the next byte of input  
data is shifted in. In this way, all the bytes from the  
if Write Protect (W) is Low or if the addressed  
page is in the region protected by the Block  
Protect (BP1 and BP0) bits.  
Figure 13. Byte Write (WRITE) Sequence  
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
C
Instruction  
A8  
Byte Address  
Data Byte  
1
A7 A6 A5 A4 A3 A2 A1 A0  
7
6
5
4
3
2
0
D
Q
High Impedance  
AI01442D  
Note: Depending on the memory size, as shown in Table 6., the most significant address bits are Don’t Care.  
17/37  
M95040, M95020, M95010  
Figure 14. Page Write (WRITE) Sequence  
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
C
D
S
C
D
Instruction  
A8  
Byte Address  
Data Byte 1  
1
A7 A6 A5 A4 A3 A2 A1 A0  
7
6
5
4
3
2
0
7
24 25 26 27 28 29 30 31  
Data Byte 2  
Data Byte N  
Data Byte 16  
1
7
6
5
4
3
2
1
0
7
6
5
4
3
2
0
7
6
5
4
3
2
1
0
AI01443D  
Note: Depending on the memory size, as shown in Table 6., the most significant address bits are Don’t Care.  
18/37  
M95040, M95020, M95010  
POWER-UP AND DELIVERY STATE  
Power-up State  
Initial Delivery State  
After Power-up, the device is in the following state:  
The device is delivered with the memory array set  
at all 1s (FFh). The Block Protect (BP1 and BP0)  
bits are initialized to 0.  
low power Standby Power mode  
deselected (after Power-up, a falling edge is  
required on Chip Select (S) before any  
instructions can be started).  
not in the Hold Condition  
the Write Enable Latch (WEL) is reset to 0  
Write In Progress (WIP) is reset to 0  
The BP1 and BP0 bits of the Status Register are  
unchanged from the previous power-down (they  
are non-volatile bits).  
19/37  
M95040, M95020, M95010  
MAXIMUM RATING  
Stressing the device outside the ratings listed in  
Table 7. may cause permanent damage to the de-  
vice. These are stress ratings only, and operation  
of the device at these, or any other conditions out-  
side those indicated in the Operating sections of  
this specification, is not implied. Exposure to Ab-  
solute Maximum Rating conditions for extended  
periods may affect device reliability. Refer also to  
the STMicroelectronics SURE Program and other  
relevant quality documents.  
Table 7. Absolute Maximum Ratings  
Symbol  
Parameter  
Min.  
Max.  
Unit  
°C  
°C  
V
T
Storage Temperature  
–65  
150  
STG  
1
1
TLEAD  
VO  
Lead Temperature during Soldering  
Output Voltage  
See note  
V
CC+0.6  
6.5  
–0.50  
–0.50  
–0.50  
VI  
Input Voltage  
V
V
Supply Voltage  
6.5  
V
CC  
2
VESD  
–4000  
4000  
V
Electrostatic Discharge Voltage (Human Body model)  
®
Note: 1. Compliant with JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assembly), the ST ECOPACK 7191395 specification, and  
the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU.  
2. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1=100pF, R1=1500, R2=500)  
20/37  
M95040, M95020, M95010  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, and the DC and AC charac-  
teristics of the device. The parameters in the DC  
and AC Characteristic tables that follow are de-  
rived from tests performed under the Measure-  
ment Conditions summarized in the relevant  
tables. Designers should check that the operating  
conditions in their circuit match the measurement  
conditions when relying on the quoted parame-  
ters.  
Table 8. Operating Conditions (M950x0)  
Symbol  
Parameter  
Min.  
4.5  
Max.  
5.5  
Unit  
V
V
CC  
Supply Voltage  
Ambient Operating Temperature (Device Grade 6)  
Ambient Operating Temperature (Device Grade 3)  
–40  
–40  
85  
°C  
°C  
TA  
125  
Table 9. Operating Conditions (M950x0-W)  
Symbol  
Parameter  
Min.  
2.5  
Max.  
5.5  
Unit  
V
V
CC  
Supply Voltage  
Ambient Operating Temperature (Device Grade 6)  
Ambient Operating Temperature (Device Grade 3)  
–40  
–40  
85  
°C  
°C  
TA  
125  
Table 10. Operating Conditions (M950x0-R)  
Symbol  
Parameter  
Min.  
1.8  
Max.  
5.5  
Unit  
V
V
CC  
Supply Voltage  
Ambient Operating Temperature  
TA  
–40  
85  
°C  
Table 11. AC Measurement Conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
pF  
ns  
V
C
Load Capacitance  
100  
L
Input Rise and Fall Times  
50  
0.2V to 0.8V  
Input Pulse Voltages  
CC  
CC  
CC  
0.3V to 0.7V  
Input and Output Timing Reference Voltages  
V
CC  
Note: Output Hi-Z is defined as the point where data out is no longer driven.  
Figure 15. AC Measurement I/O Waveform  
Input Levels  
Input and Output  
Timing Reference Levels  
0.8V  
CC  
CC  
0.7V  
CC  
0.3V  
CC  
0.2V  
AI00825B  
21/37  
M95040, M95020, M95010  
Table 12. Capacitance  
Symbol  
COUT  
Parameter  
Test Condition  
= 0V  
Min.  
Max.  
Unit  
pF  
Output Capacitance (Q)  
Input Capacitance (D)  
Input Capacitance (other pins)  
V
8
8
6
OUT  
CIN  
V
= 0V  
= 0V  
pF  
IN  
IN  
V
pF  
Note: Sampled only, not 100% tested, at T =25°C and a frequency of 5MHz.  
A
Table 13. DC Characteristics (M950x0, Device Grade 6)  
Symbol  
Parameter  
Test Condition  
VIN = VSS or VCC  
Min.  
Max.  
± 2  
Unit  
ILI  
Input Leakage Current  
Output Leakage Current  
µA  
µA  
ILO  
S = VCC, VOUT = VSS or VCC  
± 2  
C = 0.1VCC/0.9VCC at 5MHz,  
5
5
mA  
mA  
µA  
2
3
VCC = 5 V, Q = open, Previous Product  
ICC  
Supply Current  
C = 0.1VCC/0.9VCC at 10MHz,  
VCC = 5 V, Q = open, Present Product  
S = VCC , VCC = 5 V,  
10  
2
2
V
IN = VSS or VCC, Previous Product  
Supply Current  
(Standby Power mode)  
ICC1  
S = VCC , VCC = 5 V,  
µA  
3
VIN = VSS or VCC, Present Product  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
–0.45  
0.3 VCC  
VCC+1  
0.4  
V
V
V
0.7 VCC  
1
IOL = 2 mA, VCC = 5 V  
IOH = –2 mA, VCC = 5 V  
VOL  
1
Output High Voltage  
0.8 VCC  
V
VOH  
Note: 1. For all 5V range devices, the device meets the output requirements for both TTL and CMOS standards.  
2. Previous product: identified by Process Identification letter K.  
3. Present product: identified by Process Identification letter W or G.  
22/37  
M95040, M95020, M95010  
Table 14. DC Characteristics (M950x0, Device Grade 3)  
Symbol  
Parameter  
Test Condition  
VIN = VSS or VCC  
Min.  
Max.  
± 2  
Unit  
µA  
ILI  
Input Leakage Current  
Output Leakage Current  
ILO  
S = VCC, VOUT = VSS or VCC  
± 2  
µA  
C = 0.1VCC/0.9VCC at 2 MHz,  
5
3
mA  
mA  
µA  
2
V
CC = 5 V, Q = open, Previous Product  
ICC  
Supply Current  
C = 0.1VCC/0.9VCC at 5 MHz,  
3
V
CC = 5 V, Q = open, Present Product  
S = VCC , VCC = 5 V,  
10  
5
2
VIN = VSS or VCC, Previous Product  
Supply Current  
(Standby Power mode)  
ICC1  
S = VCC , VCC = 5 V,  
µA  
3
V
IN = VSS or VCC, Present Product  
VIL  
VIH  
0.3 VCC  
VCC+1  
0.4  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
–0.45  
V
V
V
0.7 VCC  
1
IOL = 2 mA, VCC = 5 V  
IOH = –2 mA, VCC = 5 V  
VOL  
1
Output High Voltage  
0.8 VCC  
V
VOH  
Note: 1. For all 5V range devices, the device meets the output requirements for both TTL and CMOS standards.  
2. Previous product: identified by Process Identification letter K.  
3. Present product: identified by Process Identification letter W or G.  
Table 15. DC Characteristics (M950x0-W, Device Grade 6)  
Symbol  
Parameter  
Test Condition  
VIN = VSS or VCC  
Min.  
Max.  
± 2  
Unit  
µA  
ILI  
Input Leakage Current  
Output Leakage Current  
ILO  
S = VCC, VOUT = VSS or VCC  
± 2  
µA  
C = 0.1VCC/0.9VCC at 2 MHz,  
2
2
2
1
mA  
mA  
µA  
1
VCC = 2.5 V, Q = open, Previous Product  
ICC  
Supply Current  
C = 0.1VCC/0.9VCC at 5 MHz,  
2
VCC = 2.5 V, Q = open, Present Product  
S = VCC , VCC = 2.5 V,  
1
V
IN = VSS or VCC, Previous Product  
Supply Current  
(Standby Power mode)  
ICC1  
S = VCC , VCC = 2.5 V  
µA  
2
V
IN = VSS or VCC, Present Product  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.45  
0.3 VCC  
VCC+1  
0.4  
V
V
V
V
0.7 VCC  
VOL  
VOH  
I
OL = 1.5 mA, VCC = 2.5 V  
IOH = –0.4 mA, VCC = 2.5 V  
0.8 VCC  
Note: 1. Previous product: identified by Process Identification letter K.  
2. Present product: identified by Process Identification letter W or G.  
23/37  
M95040, M95020, M95010  
Table 16. DC Characteristics (M950x0-W, Device Grade 3)  
Symbol  
Parameter  
Test Condition  
VIN = VSS or VCC  
Min.  
Max.  
± 2  
Unit  
µA  
ILI  
Input Leakage Current  
Output Leakage Current  
ILO  
S = VCC, VOUT = VSS or VCC  
± 2  
µA  
C = 0.1VCC/0.9VCC at 2 MHz,  
2
mA  
1
V
CC = 2.5 V, Q = open, Previous Product  
ICC  
Supply Current  
C = 0.1VCC/0.9VCC at 5 MHz,  
2
2
mA  
µA  
2
V
CC = 2.5 V, Q = open, Present Product  
Supply Current  
(Standby Power mode)  
ICC1  
S = VCC , VCC = 2.5 V, VIN = VSS or VCC  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.45  
0.3 VCC  
VCC+1  
0.4  
V
V
V
V
0.7 VCC  
VOL  
VOH  
IOL = 1.5 mA, VCC = 2.5 V  
IOH = –0.4 mA, VCC = 2.5 V  
0.8 VCC  
Note: 1. Previous product: identified by Process Identification letter K.  
2. Present product: identified by Process Identification letter W or G.  
Table 17. DC Characteristics (M950x0-R)  
1
1
Symbol  
ILI  
Parameter  
Test Condition  
VIN = VSS or VCC  
Unit  
µA  
Min.  
Max.  
Input Leakage Current  
Output Leakage Current  
± 2  
± 2  
ILO  
S = VCC, VOUT = VSS or VCC  
µA  
C = 0.1 VCC/0.9. VCC at 1 MHz,  
VCC = 1.8 V, Q = open  
ICC  
Supply Current  
1
mA  
µA  
Supply Current  
(Standby Power mode)  
ICC1  
S = VCC, VIN = VSS or VCC , VCC = 1.8 V  
0.5  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.45  
0.25 VCC  
VCC+1  
0.3  
V
V
V
V
0.7 VCC  
VOL  
VOH  
I
OL = 0.15 mA, VCC = 1.8 V  
I
OH = –0.1 mA, VCC = 1.8 V  
0.8 VCC  
Note: 1. Preliminary data: Product under development. Please contact your nearest ST sales office for information.  
24/37  
M95040, M95020, M95010  
Table 18. AC Characteristics (M950x0, Device Grade 6)  
Test conditions specified in Table 11. and Table 8.  
3
3
4
4
Symbol  
Alt.  
Parameter  
Unit  
MHz  
ns  
Min.  
Max.  
Min.  
Max.  
f
C
f
Clock Frequency  
D.C.  
90  
5
D.C.  
15  
10  
SCK  
CSS1  
CSS2  
t
t
t
S Active Setup Time  
S Not Active Setup Time  
S Deselect Time  
SLCH  
t
90  
15  
ns  
SHCH  
t
t
100  
90  
40  
ns  
SHSL  
CS  
t
t
CSH  
S Active Hold Time  
S Not Active Hold Time  
Clock High Time  
25  
ns  
CHSH  
t
90  
15  
ns  
CHSL  
1
t
90  
40  
ns  
t
CLH  
CH  
1
t
Clock Low Time  
Clock Rise Time  
90  
40  
ns  
µs  
t
CLL  
CL  
2
t
1
1
1
1
t
RC  
CLCH  
2
t
Clock Fall Time  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
FC  
CHCL  
t
t
DSU  
Data In Setup Time  
20  
30  
70  
40  
15  
15  
15  
20  
30  
30  
DVCH  
t
t
Data In Hold Time  
CHDX  
DH  
t
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock High Set-up Time before HOLD Active  
Clock High Set-up Time before HOLD not Active  
Output Disable Time  
HHCH  
t
HLCH  
t
t
CHHL  
CH  
t
t
CHHH  
CH  
2
t
100  
60  
25  
35  
t
t
DIS  
SHQZ  
t
t
Clock Low to Output Valid  
Output Hold Time  
CLQV  
V
t
t
HO  
0
0
CLQX  
2
t
Output Rise Time  
50  
50  
20  
20  
25  
35  
5
RO  
QLQH  
2
t
Output Fall Time  
ns  
ns  
ns  
ms  
t
FO  
QHQL  
t
t
LZ  
HOLD High to Output Valid  
HOLD Low to Output High-Z  
Write Time  
50  
HHQV  
2
t
100  
10  
t
HZ  
HLQZ  
t
W
t
WC  
Note: 1. t + t must never be less than the shortest possible clock period, 1 / f (max)  
CH  
CL  
C
2. Value guaranteed by characterization, not 100% tested in production.  
3. Previous product: identified by Process Identification letter K.  
4. Present product: identified by Process Identification letter W or G.  
25/37  
M95040, M95020, M95010  
Table 19. AC Characteristics (M950x0, Device Grade 3)  
Test conditions specified in Table 11. and Table 8.  
3
3
4
4
Symbol  
Alt.  
Parameter  
Unit  
MHz  
ns  
Min.  
Max.  
Min.  
Max.  
f
C
f
Clock Frequency  
D.C.  
200  
200  
200  
200  
200  
200  
2
D.C.  
90  
5
SCK  
CSS1  
CSS2  
t
t
t
S Active Setup Time  
S Not Active Setup Time  
S Deselect Time  
SLCH  
t
90  
ns  
SHCH  
t
t
100  
90  
ns  
SHSL  
CS  
t
t
CSH  
S Active Hold Time  
S Not Active Hold Time  
Clock High Time  
ns  
CHSH  
t
90  
ns  
CHSL  
1
t
90  
ns  
t
CLH  
CH  
1
t
Clock Low Time  
Clock Rise Time  
200  
90  
ns  
µs  
t
CLL  
CL  
2
t
1
1
1
1
t
RC  
CLCH  
2
t
Clock Fall Time  
µs  
ns  
ns  
ns  
ns  
ns  
t
FC  
CHCL  
t
t
DSU  
Data In Setup Time  
40  
50  
20  
30  
70  
40  
60  
DVCH  
t
t
Data In Hold Time  
CHDX  
DH  
t
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock High Set-up Time before HOLD Active  
140  
90  
HHCH  
t
HLCH  
t
t
CHHL  
CH  
Clock High Set-up Time before HOLD not  
Active  
t
t
60  
ns  
CHHH  
CH  
2
t
Output Disable Time  
Clock Low to Output Valid  
Output Hold Time  
250  
150  
100  
60  
ns  
ns  
ns  
t
DIS  
SHQZ  
t
t
CLQV  
V
t
t
HO  
0
0
CLQX  
2
t
Output Rise Time  
100  
100  
100  
250  
10  
50  
50  
50  
100  
5
ns  
ns  
ns  
ns  
ms  
t
RO  
QLQH  
2
t
Output Fall Time  
t
FO  
QHQL  
t
t
LZ  
HOLD High to Output Valid  
HOLD Low to Output High-Z  
Write Time  
HHQV  
2
t
t
HZ  
HLQZ  
t
W
t
WC  
Note: 1. t + t must never be less than the shortest possible clock period, 1 / f (max)  
CH  
CL  
C
2. Value guaranteed by characterization, not 100% tested in production.  
3. Previous product: identified by Process Identification letter K.  
4. Present product: identified by Process Identification letter W or G.  
26/37  
M95040, M95020, M95010  
Table 20. AC Characteristics (M950x0-W, Device Grade 6)  
Test conditions specified in Table 11. and Table 9.  
3
3
4
4
Symbol  
Alt.  
Parameter  
Unit  
MHz  
ns  
Min.  
Max.  
Min.  
Max.  
f
C
f
Clock Frequency  
D.C.  
200  
200  
200  
200  
200  
200  
2
D.C.  
90  
5
SCK  
CSS1  
CSS2  
t
t
t
S Active Setup Time  
S Not Active Setup Time  
S Deselect Time  
SLCH  
t
90  
ns  
SHCH  
t
t
100  
90  
ns  
SHSL  
CS  
t
t
CSH  
S Active Hold Time  
S Not Active Hold Time  
Clock High Time  
ns  
CHSH  
t
90  
ns  
CHSL  
1
t
90  
ns  
t
CLH  
CH  
1
t
Clock Low Time  
Clock Rise Time  
200  
90  
ns  
µs  
t
CLL  
CL  
2
t
1
1
1
1
t
RC  
CLCH  
2
t
Clock Fall Time  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
FC  
CHCL  
t
t
DSU  
Data In Setup Time  
40  
50  
20  
30  
70  
40  
60  
60  
DVCH  
t
t
Data In Hold Time  
CHDX  
DH  
t
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock High Set-up Time before HOLD Active  
Clock High Set-up Time before HOLD not Active  
Output Disable Time  
140  
90  
HHCH  
t
HLCH  
t
t
CHHL  
CH  
t
t
CHHH  
CH  
2
t
250  
150  
100  
60  
t
t
DIS  
SHQZ  
t
t
Clock Low to Output Valid  
Output Hold Time  
CLQV  
V
t
t
HO  
0
0
CLQX  
2
t
Output Rise Time  
100  
100  
100  
250  
10  
50  
50  
50  
100  
5
RO  
QLQH  
2
t
Output Fall Time  
ns  
ns  
ns  
ms  
t
FO  
QHQL  
t
t
LZ  
HOLD High to Output Valid  
HOLD Low to Output High-Z  
Write Time  
HHQV  
2
t
t
HZ  
HLQZ  
t
W
t
WC  
Note: 1. t + t must never be less than the shortest possible clock period, 1 / f (max)  
CH  
CL  
C
2. Value guaranteed by characterization, not 100% tested in production.  
3. Previous product: identified by Process Identification letter K.  
4. Present product: identified by Process Identification letter W or G.  
27/37  
M95040, M95020, M95010  
Table 21. AC Characteristics (M950x0-W, Device Grade 3)  
Test conditions specified in Table 11. and Table 9.  
3
3
4
4
Symbol  
Alt.  
Parameter  
Unit  
MHz  
ns  
Min.  
Max.  
Min.  
Max.  
f
C
f
Clock Frequency  
D.C.  
200  
200  
200  
200  
200  
200  
2
D.C.  
90  
5
SCK  
CSS1  
CSS2  
t
t
t
S Active Setup Time  
S Not Active Setup Time  
S Deselect Time  
SLCH  
t
90  
ns  
SHCH  
t
t
100  
90  
ns  
SHSL  
CS  
t
t
CSH  
S Active Hold Time  
S Not Active Hold Time  
Clock High Time  
ns  
CHSH  
t
90  
ns  
CHSL  
1
t
90  
ns  
t
CLH  
CH  
1
t
Clock Low Time  
Clock Rise Time  
200  
90  
ns  
µs  
t
CLL  
CL  
2
t
1
1
1
1
t
RC  
CLCH  
2
t
Clock Fall Time  
µs  
ns  
ns  
ns  
ns  
ns  
t
FC  
CHCL  
t
t
DSU  
Data In Setup Time  
40  
50  
20  
30  
70  
40  
60  
DVCH  
t
t
Data In Hold Time  
CHDX  
DH  
t
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock High Set-up Time before HOLD Active  
140  
90  
HHCH  
t
HLCH  
t
t
CHHL  
CH  
Clock High Set-up Time before HOLD not  
Active  
t
t
60  
ns  
CHHH  
CH  
2
t
Output Disable Time  
Clock Low to Output Valid  
Output Hold Time  
250  
150  
100  
60  
ns  
ns  
ns  
t
DIS  
SHQZ  
t
t
CLQV  
V
t
t
HO  
0
0
CLQX  
2
t
Output Rise Time  
100  
100  
100  
250  
10  
50  
50  
50  
100  
5
ns  
ns  
ns  
ns  
ms  
t
RO  
QLQH  
2
t
Output Fall Time  
t
FO  
QHQL  
t
t
LZ  
HOLD High to Output Valid  
HOLD Low to Output High-Z  
Write Time  
HHQV  
2
t
t
HZ  
HLQZ  
t
W
t
WC  
Note: 1. t + t must never be less than the shortest possible clock period, 1 / f (max)  
CH  
CL  
C
2. Value guaranteed by characterization, not 100% tested in production.  
3. Previous product: identified by Process Identification letter K.  
4. Present product: identified by Process Identification letter W or G.  
28/37  
M95040, M95020, M95010  
Table 22. AC Characteristics (M950x0-R)  
Test conditions specified in Table 11. and Table 10.  
Symbol  
Alt.  
Parameter  
Min.  
D.C.  
200  
200  
200  
200  
200  
Max.  
Unit  
MHz  
ns  
f
f
Clock Frequency  
2
C
SCK  
CSS1  
CSS2  
t
t
t
S Active Setup Time  
S Not Active Setup Time  
S Deselect Time  
SLCH  
t
ns  
SHCH  
t
t
ns  
SHSL  
CS  
t
t
CSH  
S Active Hold Time  
S Not Active Hold Time  
Clock High Time  
ns  
CHSH  
t
ns  
CHSL  
1
t
200  
200  
ns  
ns  
µs  
µs  
t
CLH  
CH  
1
t
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
t
CL  
CLL  
2
2
t
1
1
t
t
RC  
CLCH  
t
FC  
CHCL  
t
t
DSU  
Data In Setup Time  
40  
50  
ns  
ns  
ns  
ns  
ns  
ns  
DVCH  
CHDX  
t
t
t
DH  
Data In Hold Time  
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock High Set-up Time before HOLD Active  
Clock High Set-up Time before HOLD not Active  
140  
90  
HHCH  
t
HLCH  
CHHL  
t
t
120  
120  
CHHH  
2
t
Output Disable Time  
Clock Low to Output Valid  
Output Hold Time  
250  
180  
ns  
ns  
ns  
ns  
t
DIS  
SHQZ  
t
t
V
CLQV  
t
t
0
CLQX  
HO  
RO  
2
t
Output Rise Time  
100  
100  
100  
250  
10  
t
t
QLQH  
2
t
Output Fall Time  
ns  
ns  
ns  
ms  
FO  
QHQL  
t
t
HOLD High to Output Valid  
HOLD Low to Output High-Z  
Write Time  
HHQV  
LZ  
2
t
t
HZ  
HLQZ  
t
W
t
WC  
Note: 1. t + t must never be less than the shortest possible clock period, 1 / f (max)  
CH  
CL  
C
2. Value guaranteed by characterization, not 100% tested in production.  
3. Preliminary data: Product under development. Please contact your nearest ST sales office for information.  
29/37  
M95040, M95020, M95010  
Figure 16. Serial Input Timing  
tSHSL  
S
tCHSL  
tSLCH  
tCHSH  
tSHCH  
C
tDVCH  
tCHCL  
tCHDX  
tCLCH  
MSB IN  
LSB IN  
D
Q
High Impedance  
AI01447C  
Figure 17. Hold Timing  
S
tHLCH  
tCHHL  
tHHCH  
C
tCHHH  
tHLQZ  
tHHQV  
Q
D
HOLD  
AI02032B  
30/37  
M95040, M95020, M95010  
Figure 18. Output Timing  
S
tCH  
C
tCLQV  
tCLQV  
tCL  
tSHQZ  
tCLQX  
tCLQX  
LSB OUT  
Q
D
tQLQH  
tQHQL  
ADDR.LSB IN  
AI01449D  
31/37  
M95040, M95020, M95010  
PACKAGE MECHANICAL  
Figure 19. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline  
E
b2  
A2  
A1  
A
L
c
b
e
eA  
eB  
D
8
1
E1  
PDIP-B  
Note: Drawing is not to scale.  
Table 23. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data  
mm  
inches  
Min.  
Symb.  
Typ.  
Min.  
Max.  
Typ.  
Max.  
A
A1  
A2  
b
5.33  
0.210  
0.38  
2.92  
0.36  
1.14  
0.20  
9.02  
7.62  
6.10  
0.015  
0.115  
0.014  
0.045  
0.008  
0.355  
0.300  
0.240  
3.30  
0.46  
1.52  
0.25  
9.27  
7.87  
6.35  
2.54  
7.62  
4.95  
0.56  
1.78  
0.36  
10.16  
8.26  
7.11  
0.130  
0.018  
0.060  
0.010  
0.365  
0.310  
0.250  
0.100  
0.300  
0.195  
0.022  
0.070  
0.014  
0.400  
0.325  
0.280  
b2  
c
D
E
E1  
e
eA  
eB  
L
10.92  
3.81  
0.430  
0.150  
3.30  
2.92  
0.130  
0.115  
32/37  
M95040, M95020, M95010  
Figure 20. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline  
h x 45˚  
A
C
B
CP  
e
D
N
E
H
1
A1  
α
L
SO-a  
Note: Drawing is not to scale.  
Table 24. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data  
mm  
Min.  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
inches  
Min.  
0.053  
0.004  
0.013  
0.007  
0.189  
0.150  
Symb.  
Typ.  
Max.  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
Typ.  
Max.  
0.069  
0.010  
0.020  
0.010  
0.197  
0.157  
A
A1  
B
C
D
E
e
1.27  
0.050  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
0.90  
8°  
0.228  
0.010  
0.016  
0°  
0.244  
0.020  
0.035  
8°  
L
α
N
CP  
8
8
0.10  
0.004  
33/37  
M95040, M95020, M95010  
Figure 21. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline  
D
8
5
c
E1  
E
1
4
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8AM  
Note: Drawing is not to scale.  
Table 25. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data  
mm  
inches  
Min.  
Symbol  
Typ.  
Min.  
Max.  
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
Typ.  
Max.  
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
A
A1  
A2  
b
0.050  
0.800  
0.190  
0.090  
0.0020  
0.0315  
0.0075  
0.0035  
1.000  
0.0394  
c
CP  
D
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
2.900  
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
0.1142  
e
E
6.200  
4.300  
0.450  
6.600  
4.500  
0.750  
0.2441  
0.1693  
0.0177  
0.2598  
0.1772  
0.0295  
E1  
L
L1  
α
0°  
8°  
0°  
8°  
34/37  
M95040, M95020, M95010  
PART NUMBERING  
Table 26. Ordering Information Scheme  
Example:  
M95040  
W MN  
6
T
P
/W  
Device Type  
M95 = SPI serial access EEPROM  
Device Function  
040 = 4 Kbit (512 x 8)  
020 = 2 Kbit (256 x 8)  
010 = 1 Kbit (128 x 8)  
Operating Voltage  
blank = V = 4.5 to 5.5V  
CC  
W = V = 2.5 to 5.5V  
CC  
R = V = 1.8 to 5.5V  
CC  
Package  
BN = PDIP8  
MN = SO8 (150 mil width)  
DW = TSSOP8 (169 mil width)  
Device Grade  
6 = Industrial temperature range, –40 to 85 °C.  
Device tested with standard test flow  
1
3 = Device tested with High Reliability Certified Flow .  
Automotive temperature range (–40 to 125 °C)  
Option  
blank = Standard Packing  
T = Tape and Reel Packing  
Plating Technology  
blank = Standard SnPb plating  
P = Lead-Free and RoHS compliant  
G = Lead-Free, RoHS compliant, Sb O -free and TBBA-free  
2
3
2
Process  
blank = F6SP20%  
/W = F6SP36%  
Note: 1. ST strongly recommends the use of the Automotive Grade devices for use in an automotive environment. The High Reliability Cer-  
tified Flow (HRCF) is described in the quality note QNEE9801. Please ask your nearest ST sales office for a copy.  
2. Used only for Device Grade 3  
For a list of available options (speed, package,  
etc.) or for further information on any aspect of this  
device, please contact your nearest ST Sales Of-  
fice.  
Table 27. How to Identify Present and Previous Products by the Process Identification Letter  
1
1
Markings on Present Products  
Markings on Previous Products  
95040W6  
95040W6  
AYWWW (or AYWWG)  
AYWWK  
35/37  
M95040, M95020, M95010  
REVISION HISTORY  
Table 28. Document Revision History  
Date  
Version  
Description of Revision  
10-May-2000  
2.2  
s/issuing three bytes/issuing two bytes/ in the 2nd sentence of the Byte Write Operation  
Human Body Model meets JEDEC std (Table 2). Minor adjustments to Figs 7,9,10,11 & Tab  
9. Wording changes, according to the standard glossary  
16-Mar-2001  
2.3  
Illustrations and Package Mechanical data updated  
19-Jul-2001  
11-Oct-2001  
26-Feb-2002  
2.4  
3.0  
3.1  
Temperature range ‘3’ added to the -W supply voltage range in DC and AC characteristics  
Document reformatted using the new template  
Description of chip deselect after 8th clock pulse made more explicit  
Position of A8 in Read Instruction Sequence Figure corrected. Load Capacitance C  
changed  
L
27-Sep-2002  
3.2  
24-Oct-2002  
24-Feb-2003  
28-May-2003  
3.3  
3.4  
3.5  
Minimum values for tCHHL and tCHHH changed.  
Description of Read from Memory Array (READ) instruction corrected, and clarified  
New products, identified by the process letter W, added  
Correction to current products, identified by the process letter K not L.  
I
changed in DC characteristics, and t  
, t  
substituted in AC characteristics  
CC  
CHHL CHHH  
25-Jun-2003  
3.6  
Voltage range -S upgraded by removing it, and adding the -R voltage range in its place  
Temperature range 5 removed.  
Table of contents, and Pb-free options added. V (min) improved to -0.45V  
21-Nov-2003  
02-Feb-2004  
4.0  
4.1  
IL  
V (max) and t  
(max) changed  
CLQV  
IL  
Absolute Maximum Ratings for V (min) and V (min) improved. Soldering temperature  
IO  
CC  
information clarified for RoHS compliant devices. New 5V and 2.5V devices, with process  
letter W, promoted from preliminary data to full data. Device Grade 3 clarified, with reference  
to HRCF and automotive environments  
01-Mar-2004  
05-Oct-2004  
5.0  
6.0  
Product List summary table added. Process identification letter “G” information added. Order  
information for Tape and Reel changed to T. AEC-Q100-002 compliance. Device Grade  
informaton clarified. tHHQX corrected to tHHQV. Signal Description updated.  
10MHz, 5ms Write is now the present product. tCH+tCL<1/fC constraint clarified  
36/37  
M95040, M95020, M95010  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
37/37  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY