M95256-A145 [STMICROELECTRONICS]

Automotive 256-Kbit serial SPI bus EEPROMs with high-speed clock;
M95256-A145
型号: M95256-A145
厂家: ST    ST
描述:

Automotive 256-Kbit serial SPI bus EEPROMs with high-speed clock

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总44页 (文件大小:798K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M95256-A125  
M95256-A145  
Automotive 256-Kbit serial SPI bus EEPROMs  
with high-speed clock  
Datasheet - production data  
Features  
Compatible with the Serial Peripheral Interface  
(SPI) bus  
Memory array  
SO8 (MN)  
150 mil width  
– 256 Kbit (32 Kbyte) of EEPROM  
– Page size: 64 byte  
– Write protection by block: 1/4, 1/2 or whole  
memory  
– Additional Write lockable Page  
(Identification page)  
TSSOP8 (DW)  
169 mil width  
Extended temperature and voltage ranges  
– Up to 125 °C (V from 1.7 V to 5.5 V)  
CC  
– Up to 145 °C (V from 2.5 V to 5.5 V)  
CC  
High speed clock frequency  
– 20 MHz for V 4.5 V  
CC  
– 10 MHz for V 2.5 V  
CC  
– 5 MHz for V 1.7 V  
CC  
WFDFPN8 (MF)  
2 x 3 mm  
Schmitt trigger inputs for noise filtering  
Short Write cycle time  
– Byte Write within 4 ms  
– Page Write within 4 ms  
Write cycle endurance  
– 4 million Write cycles at 25 °C  
– 1.2 million Write cycles at 85 °C  
– 600 k Write cycles at 125 °C  
– 400 k Write cycles at 145 °C  
Data retention  
– 50 years at 125 °C  
– 100 years at 25 °C  
ESD Protection (Human Body Model)  
– 4000 V  
Packages  
– RoHS-compliant and halogen-free  
®
(ECOPACK2 )  
January 2016  
DocID022807 Rev 8  
1/44  
This is information on a product in full production.  
www.st.com  
Contents  
M95256-A125 M95256-A145  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
Serial Data output (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Serial Data input (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Serial Clock (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Chip Select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Hold (HOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Write Protect (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
VSS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
VCC supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3
Operating features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1  
3.2  
3.3  
3.4  
Active power and Standby power modes . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SPI modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Hold mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Protocol control and data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.4.1  
3.4.2  
Protocol control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Status Register and data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.5  
Identification page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write Disable (WRDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Read Status Register (RDSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Write Status Register (WRSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Read from Memory Array (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Write to Memory Array (WRITE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read Identification Page (RDID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Write Identification Page (WRID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Read Lock Status (RDLS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.10 Lock Identification Page (LID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2/44  
DocID022807 Rev 8  
M95256-A125 M95256-A145  
Contents  
5
Application design recommendations . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.1  
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.1.1  
5.1.2  
5.1.3  
Operating supply voltage (V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
CC  
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.2  
5.3  
Implementing devices on SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Cycling with Error Correction Code (ECC) . . . . . . . . . . . . . . . . . . . . . . . . 28  
6
7
8
9
Delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
9.1  
9.2  
9.3  
SO8N package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
WFDFPN8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
10  
11  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
DocID022807 Rev 8  
3/44  
3
List of tables  
M95256-A125 M95256-A145  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Status Register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Write-protected block size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Protection modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Device identification bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Significant bits within the two address bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Cycling performance by groups of 4 byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Operating conditions (voltage range W, temperature range 4). . . . . . . . . . . . . . . . . . . . . . 30  
Operating conditions (voltage range R, temperature range 3) . . . . . . . . . . . . . . . . . . . . . . 30  
Operating conditions (voltage range R, temperature range 3)  
for high-speed communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
DC characteristics (voltage range W, temperature range 4). . . . . . . . . . . . . . . . . . . . . . . . 31  
DC characteristics (voltage range R, temperature range 3) . . . . . . . . . . . . . . . . . . . . . . . . 32  
AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
SO8N – 8-lead plastic small outline, 150 mils body width,  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
TSSOP8 – 8-lead thin shrink small outline, 3 x 4.4 mm, 0.65 mm pitch,  
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
WFPN8 (MLP8) – 8-lead, 2 x 3 mm, 0.5 mm pitch very very thin fine pitch  
Table 17.  
Table 18.  
dual flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 19.  
Table 20.  
4/44  
DocID022807 Rev 8  
M95256-A125 M95256-A145  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
8-pin package connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
SPI modes supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Hold mode activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Write Enable (WREN) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write Disable (WRDI) sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Read Status Register (RDSR) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Write Status Register (WRSR) sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Read from Memory Array (READ) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 10. Byte Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 11. Page Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 12. Read Identification Page sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 13. Write Identification Page sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 14. Read Lock Status sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 15. Lock ID sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 16. Bus master and memory devices on the SPI bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 17. AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 18. Serial input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 19. Hold timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 20. Serial output timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 21. SO8N – 8-lead plastic small outline, 150 mils body width, package outline . . . . . . . . . . . . 36  
Figure 22. SO8N – 8-lead plastic small outline, 150 mils body width,  
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 23. TSSOP8 – 8-lead thin shrink small outline, 3 x 4.4 mm, 0.65 mm pitch,  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 24. WFDFPN8 (MLP8) – 8-lead, 2 x 3 mm, 0.5 mm pitch very very thin fine pitch  
dual flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
DocID022807 Rev 8  
5/44  
5
Description  
M95256-A125 M95256-A145  
1
Description  
The M95256-A125 and M95256-A145 are 256-Kbit serial EEPROM Automotive grade  
devices operating up to 145°C. They are compliant with the very high level of reliability  
defined by the Automotive standard AEC-Q100 grade 0.  
The devices are accessed by a simple serial SPI compatible interface running up to  
20 MHz.  
The memory array is based on advanced true EEPROM technology (Electrically Erasable  
PROgrammable Memory). The M95256-A125 and M95256-A145 are byte-alterable  
memories (32768 × 8 bits) organized as 512 pages of 64 byte in which the data integrity is  
significantly improved with an embedded Error Correction Code logic.  
The M95256-A125 and M95256-A145 offer an additional Identification Page (64 byte) in  
which the ST device identification can be read. This page can also be used to store  
sensitive application parameters which can be later permanently locked in read-only mode.  
Figure 1. Logic diagram  
,K>ꢀ  
,ŝŐŚꢂǀŽůƚĂŐĞ  
ŐĞŶĞƌĂƚŽƌ  
t
^
ꢁŽŶƚƌŽůꢂůŽŐŝĐ  
Y
/ͬKꢂƐŚŝĨƚꢂƌĞŐŝƐƚĞƌ  
ꢀĂƚĂ  
ꢃĚĚƌĞƐƐꢂƌĞŐŝƐƚĞƌ  
ĂŶĚꢂĐŽƵŶƚĞƌ  
ƌĞŐŝƐƚĞƌ  
^ƚĂƚƵƐ  
ƌĞŐŝƐƚĞƌ  
ϭͬϰ  
ϭͬϮ  
^ŝnjĞꢂŽĨꢂƚŚĞ  
ZĞĂĚꢂŽŶůLJ  
ꢄꢄWZKD  
ĂƌĞĂ  
ϭꢂƉĂŐĞ  
/ĚĞŶƚŝĨŝĐĂƚŝŽŶꢂƉĂŐĞ  
yꢂĚĞĐŽĚĞƌ  
06ꢀꢁꢂꢃꢃ9ꢀ  
6/44  
DocID022807 Rev 8  
 
 
M95256-A125 M95256-A145  
Description  
Figure 2. 8-pin package connections  
-ꢃꢄXXX  
3
1
6
##  
(/,$  
7
#
$
6
33  
!)ꢀꢁꢂꢃꢀ$  
1. See Package mechanical data section for package dimensions and how to identify pin-1.  
Table 1. Signal names  
Signal name  
Description  
C
D
Serial Clock  
Serial data input  
Serial data output  
Chip Select  
Write Protect  
Hold  
Q
S
W
HOLD  
VCC  
VSS  
Supply voltage  
Ground  
DocID022807 Rev 8  
7/44  
43  
 
 
Signal description  
M95256-A125 M95256-A145  
2
Signal description  
All input signals must be held high or low (according to voltages of V or V , as specified in  
IH  
IL  
Table 13 and Table 14). These signals are described below.  
2.1  
2.2  
2.3  
2.4  
2.5  
Serial Data output (Q)  
This output signal is used to transfer data serially out of the device during a Read operation.  
Data is shifted out on the falling edge of Serial Clock (C), most significant bit (MSB) first. In  
all other cases, the Serial Data output is in high impedance.  
Serial Data input (D)  
This input signal is used to transfer data serially into the device. D input receives  
instructions, addresses, and the data to be written. Values are latched on the rising edge of  
Serial Clock (C), most significant bit (MSB) first.  
Serial Clock (C)  
This input signal allows to synchronize the timing of the serial interface. Instructions,  
addresses, or data present at Serial Data Input (D) are latched on the rising edge of Serial  
Clock (C). Data on Serial Data Output (Q) changes after the falling edge of Serial Clock (C).  
Chip Select (S)  
Driving Chip Select (S) low selects the device in order to start communication. Driving Chip  
Select (S) high deselects the device and Serial Data output (Q) enters the high impedance  
state.  
Hold (HOLD)  
The Hold (HOLD) signal is used to pause any serial communications with the device without  
deselecting the device.  
2.6  
2.7  
Write Protect (W)  
This pin is used to write-protect the Status Register.  
VSS ground  
V
is the reference for all signals, including the V supply voltage.  
SS  
CC  
8/44  
DocID022807 Rev 8  
 
 
 
 
 
 
 
 
M95256-A125 M95256-A145  
Signal description  
2.8  
VCC supply voltage  
V
is the supply voltage pin. Refer to Section 3.1: Active power and Standby power modes  
CC  
and to Section 5.1: Supply voltage (VCC).  
DocID022807 Rev 8  
9/44  
43  
 
Operating features  
M95256-A125 M95256-A145  
3
Operating features  
3.1  
Active power and Standby power modes  
When Chip Select (S) is low, the device is selected and in the Active power mode.  
When Chip Select (S) is high, the device is deselected. If a Write cycle is not currently in  
progress, the device then goes in to the Standby power mode, and the device consumption  
drops to I  
, as specified in Table 13 and Table 14.  
CC1  
3.2  
SPI modes  
The device can be driven by a microcontroller with its SPI peripheral running in either of the  
two following modes:  
CPOL=0, CPHA=0  
CPOL=1, CPHA=1  
For these two modes, input data is latched in on the rising edge of Serial Clock (C), and  
output data is available from the falling edge of Serial Clock (C).  
The difference between the two modes, as shown in Figure 3, is the clock polarity when the  
bus master is in Stand-by mode and not transferring data:  
C remains at 0 for (CPOL=0, CPHA=0)  
C remains at 1 for (CPOL=1, CPHA=1)  
Figure 3. SPI modes supported  
#0/, #0(!  
#
#
$
-3"  
1
-3"  
!)ꢀꢁꢇꢆꢈ"  
10/44  
DocID022807 Rev 8  
 
 
 
 
M95256-A125 M95256-A145  
Operating features  
3.3  
Hold mode  
The Hold (HOLD) signal is used to pause any serial communications with the device without  
resetting the clocking sequence.  
The Hold mode starts when the Hold (HOLD) signal is driven low and the Serial Clock (C) is  
low (as shown in Figure 4). During the Hold mode, the Serial Data output (Q) is high  
impedance, and the signals present on Serial Data input (D) and Serial Clock (C) are not  
decoded. The Hold mode ends when the Hold (HOLD) signal is driven high and the Serial  
Clock (C) is or becomes low.  
Figure 4. Hold mode activation  
#
(/,$  
(OLD  
(OLD  
CONDITION  
#COONNDDIITTIIOONN  
-3ꢁꢃꢂꢂꢈ6ꢁ  
Deselecting the device while it is in Hold mode resets the paused communication.  
3.4  
Protocol control and data protection  
3.4.1  
Protocol control  
The Chip Select (S) input offers a built-in safety feature, as the S input is edge-sensitive as  
well as level-sensitive: after power-up, the device is not selected until a falling edge has first  
been detected on Chip Select (S). This ensures that Chip Select (S) must have been high  
prior to going low, in order to start the first operation.  
For Write commands (WRITE, WRSR, WRID, LID) to be accepted and executed:  
the Write Enable Latch (WEL) bit must be set by a Write Enable (WREN) instruction  
a falling edge and a low state on Chip Select (S) during the whole command must be  
decoded  
instruction, address and input data must be sent as multiple of eight bits  
the command must include at least one data byte  
Chip Select (S) must be driven high exactly after a data byte boundary  
Write command can be discarded at any time by a rising edge on Chip Select (S) outside of  
a byte boundary.  
To execute Read commands (READ, RDSR, RDID, RDLS), the device must decode:  
a falling edge and a low level on Chip Select (S) during the whole command  
instruction and address as multiples of eight bits (byte)  
From this step, data bits are shifted out until the rising edge on Chip Select (S).  
DocID022807 Rev 8  
11/44  
43  
 
 
 
 
Operating features  
M95256-A125 M95256-A145  
3.4.2  
Status Register and data protection  
The Status Register format is shown in Table 2 and the status and control bits of the Status  
Register are as follows:  
Table 2. Status Register format  
b7  
b6  
0
b5  
0
b4  
0
b3  
b2  
b1  
b0  
SRWD  
BP1  
BP0  
WEL  
WIP  
Status Register Write Protect  
Block Protect bits  
Write Enable Latch bit  
Write In Progress bit  
Note:  
Bits b6, b5, b4 are always read as 0.  
WIP bit  
The WIP bit (Write In Progress) is a read-only flag that indicates the Ready/Busy state of the  
device. When a Write command (WRITE, WRSR, WRID, LID) has been decoded and a  
Write cycle (t ) is in progress, the device is busy and the WIP bit is set to 1. When WIP=0,  
W
the device is ready to decode a new command.  
During a Write cycle, reading continuously the WIP bit allows to detect when the device  
becomes ready (WIP=0) to decode a new command.  
WEL bit  
The WEL bit (Write Enable Latch) bit is a flag that indicates the status of the internal Write  
Enable Latch. When WEL is set to 1, the Write instructions (WRITE, WRSR, WRID, LID) are  
executed; when WEL is set to 0, any decoded Write instruction is not executed.  
The WEL bit is set to 1 with the WREN instruction. The WEL bit is reset to 0 after the  
following events:  
Write Disable (WRDI) instruction completion  
Write instructions (WRITE, WRSR, WRID, LID) completion including the write cycle  
time t  
W
Power-up  
BP1, BP0 bits  
The Block Protect bits (BP1, BP0) are non-volatile. BP1,BP0 bits define the size of the  
memory block to be protected against write instructions, as defined in Table 2. These bits  
are written with the Write Status Register (WRSR) instruction, provided that the Status  
Register is not protected (refer to “SRWD bit and W input signal”, on page 13).  
12/44  
DocID022807 Rev 8  
 
 
M95256-A125 M95256-A145  
Operating features  
Table 3. Write-protected block size  
Status Register bits  
Protected block  
Protected array addresses  
BP1  
BP0  
0
0
1
1
0
1
0
1
None  
None  
Upper quarter  
Upper half  
6000h-7FFFh  
4000h-7FFFh  
Whole memory  
0000h - 7FFFh plus Identification page  
SRWD bit and W input signal  
The Status Register Write Disable (SRWD) bit is operated in conjunction with the Write  
Protect pin (W) signal. When the SRWD bit is written to 0, it is possible to write the Status  
Register, regardless of whether the pin Write Protect (W) is driven high or low.  
When the SRWD bit is written to 1, two cases have to be considered, depending on the  
state of the W input pin:  
Case 1: if pin W is driven high, it is possible to write the Status Register.  
Case 2: if pin W is driven low, it is not possible to write the Status Register (WRSR is  
discarded) and therefore SRWD,BP1,BP0 bits cannot be changed (the size of the  
protected memory block defined by BP1,BP0 bits is frozen).  
Case 2 can be entered in either sequence:  
Writing SRWD bit to 1 after driving pin W low, or  
Driving pin W low after writing SRWD bit to 1.  
The only way to exit Case 2 is to pull pin W high.  
Note: if pin W is permanently tied high, the Status Register cannot be write-protected.  
The protection features of the device are summarized in Table 4.  
Table 4. Protection modes  
SRWD bit  
W signal  
Status  
0
1
1
X
1
0
Status Register is writable.  
Status Register is write-protected.  
3.5  
Identification page  
The M95256-A125 and M95256-A145 offer an Identification page (64 byte) in addition to the  
256 Kbit memory. The Identification page contains two fields:  
Device identification: the three first byte are programmed by STMicroelectronics with  
the Device identification code, as shown in Table 5.  
Application parameters: the bytes after the Device identification code are available for  
application specific data.  
DocID022807 Rev 8  
13/44  
43  
 
 
 
Operating features  
M95256-A125 M95256-A145  
Note:  
If the end application does not need to read the Device identification code, this field can be  
overwritten and used to store application-specific data. Once the application-specific data  
are written in the Identification page, the whole Identification page should be permanently  
locked in Read-only mode.  
The Read, Write, Lock Identification Page instructions are detailed in Section 4: Instructions.  
Table 5. Device identification bytes  
Address in  
Content  
Value  
Identification page  
00h  
01h  
02h  
ST Manufacturer code  
SPI Family code  
20h  
00h  
Memory Density code  
0Fh (256 Kbit)  
14/44  
DocID022807 Rev 8  
 
M95256-A125 M95256-A145  
Instructions  
4
Instructions  
Each command is composed of bytes (MSBit transmitted first), initiated with the instruction  
byte, as summarized in Table 6.  
If an invalid instruction is sent (one not contained in Table 6), the device automatically enters  
a Wait state until deselected.  
Table 6. Instruction set  
Instruction  
Instruction  
WREN  
Description  
format  
Write Enable  
0000 0110  
0000 0100  
0000 0101  
0000 0001  
0000 0011  
0000 0010  
1000 0011  
1000 0010  
1000 0011  
1000 0010  
WRDI  
RDSR  
WRSR  
READ  
WRITE  
RDID  
WRID  
RDLS  
LID  
Write Disable  
Read Status Register  
Write Status Register  
Read from Memory Array  
Write to Memory Array  
Read Identification Page  
Write Identification Page  
Reads the Identification Page lock status.  
Locks the Identification page in read-only mode.  
For read and write commands to memory array and Identification Page, the address is  
defined by two bytes as explained in Table 7.  
(1)(2)  
Table 7. Significant bits within the two address bytes  
MSB Address byte  
LSB Address byte  
Instructions  
b15 b14 b13 b12 b11 b10 b9  
b8  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
READ or  
WRITE  
x
0
0
A14 A13 A12 A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
RDID or  
WRID  
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
A5  
0
A4  
0
A3  
0
A2  
0
A1  
0
A0  
0
RDLS or  
LID  
1. A: Significant address bit.  
2. x: bit is Don’t Care.  
DocID022807 Rev 8  
15/44  
43  
 
 
 
Instructions  
M95256-A125 M95256-A145  
4.1  
Write Enable (WREN)  
The WREN instruction must be decoded by the device before a write instruction (WRITE,  
WRSR, WRID or LID).  
As shown in Figure 5, to send this instruction to the device, Chip Select (S) is driven low, the  
bits of the instruction byte are shifted in (MSB first) on Serial Data Input (D) after what the  
Chip Select (S) input is driven high and the WEL bit is set (Status Register bit).  
Figure 5. Write Enable (WREN) sequence  
^
Ϭ
ϭ Ϯ ϯ ϰ ϱ ϲ ϳ  
/ŶƐƚƌƵĐƚŝŽŶ  
Y
,ŝŐŚꢂ/ŵƉĞĚĂŶĐĞ  
DLYꢄꢅꢅꢆꢀJ  
4.2  
Write Disable (WRDI)  
One way of resetting the WEL bit (in the Status Register) is to send a Write Disable  
instruction to the device.  
As shown in Figure 6, to send this instruction to the device, Chip Select (S) is driven low,  
and the bits of the instruction byte are shifted in (MSB first), on Serial Data Input (D), after  
what the Chip Select (S) input is driven high and the WEL bit is reset (Status Register bit).  
If a Write cycle is currently in progress, the WRDI instruction is decoded and executed and  
the WEL bit is reset to 0 with no effect on the ongoing Write cycle.  
Figure 6. Write Disable (WRDI) sequence  
3
#
$
1
)NSTRUCTION  
(IGH )MPEDANCE  
!)ꢀꢆꢂꢄꢀD  
16/44  
DocID022807 Rev 8  
 
 
 
 
M95256-A125 M95256-A145  
Instructions  
4.3  
Read Status Register (RDSR)  
The Read Status Register (RDSR) instruction is used to read the content of the Status  
Register.  
As shown in Figure 7, to send this instruction to the device, Chip Select (S) is first driven  
low. The bits of the instruction byte are shifted in (MSB first) on Serial Data Input (D), the  
Status Register content is then shifted out (MSB first) on Serial Data Output (Q).  
If Chip Select (S) continues to be driven low, the Status Register content is continuously  
shifted out.  
The Status Register can always be read, even if a Write cycle (t ) is in progress. The Status  
W
Register functionality is detailed in Section 3.4.2: Status Register and data protection.  
Figure 7. Read Status Register (RDSR) sequence  
3
ꢃ ꢁꢀ ꢁꢁ ꢁꢅ ꢁꢆ ꢁꢇ ꢁꢄ  
#
$
)NSTRUCTION  
3TATUS 2EGISTER /UT  
3TATUS 2EGISTER /UT  
(IGH )MPEDANCE  
1
-3"  
-3"  
!)ꢀꢅꢀꢆꢁ%  
DocID022807 Rev 8  
17/44  
43  
 
 
Instructions  
M95256-A125 M95256-A145  
4.4  
Write Status Register (WRSR)  
The Write Status Register (WRSR) instruction allows new values to be written to the Status  
Register. Before it can be accepted, a Write Enable (WREN) instruction must previously  
have been executed.  
The Write Status Register (WRSR) instruction is entered (MSB first) by driving Chip Select  
(S) low, sending the instruction code followed by the data byte on Serial Data input (D), and  
driving the Chip Select (S) signal high.  
The contents of the SRWD and BP1, BP0 bits are updated after the completion of the  
WRSR instruction, including the Write cycle (t ).  
W
The Write Status Register (WRSR) instruction has no effect on the b6, b5, b4, b1 and b0 bits  
in the Status Register (see Table 2: Status Register format).  
The Status Register functionality is detailed in Section 3.4.2: Status Register and data  
protection.  
The instruction is not accepted, and is not executed, if a Write cycle is currently in progress.  
Figure 8. Write Status Register (WRSR) sequence  
3
ꢁꢀ ꢁꢁ ꢁꢅ ꢁꢆ ꢁꢇ ꢁꢄ  
#
)NSTRUCTION  
3TATUS  
2EGISTER )N  
$
1
(IGH )MPEDANCE  
-3"  
!)ꢀꢅꢅꢈꢅD  
18/44  
DocID022807 Rev 8  
 
 
M95256-A125 M95256-A145  
Instructions  
4.5  
Read from Memory Array (READ)  
The READ instruction is used to read the content of the memory.  
As shown in Figure 9, to send this instruction to the device, Chip Select (S) is first driven  
low.  
The bits of the instruction byte and address bytes are shifted in (MSB first) on Serial Data  
Input (D) and the addressed data byte is then shifted out (MSB first) on Serial Data Output  
(Q). The first addressed byte can be any byte within any page.  
If Chip Select (S) continues to be driven low, the internal address register is automatically  
incremented, and the next byte of data is shifted out. The whole memory can therefore be  
read with a single READ instruction.  
When the highest address is reached, the address counter rolls over to zero, allowing the  
Read cycle to be continued indefinitely.  
The Read cycle is terminated by driving Chip Select (S) high at any time when the data bits  
are shifted out on Serial Data Output (Q).  
The instruction is not accepted, and is not executed, if a Write cycle is currently in progress.  
Figure 9. Read from Memory Array (READ) sequence  
6
ꢁ ꢀꢄ  
ꢅꢄ ꢅꢀ ꢅꢅ ꢅꢃ ꢅꢈ ꢅꢇ ꢅꢉ ꢅꢂ ꢅꢆ ꢅꢁ ꢃꢄ ꢃꢀ  
&
,QVWUXFWLRQ  
ꢀꢉꢋ%LWꢊ$GGUHVV  
ꢀꢇ ꢀꢈ ꢀꢃ  
06%  
ꢃ ꢅ ꢀ ꢄ  
'
4
'DWDꢊ2XWꢊꢀ  
'DWDꢊ2XWꢊꢅ  
+LJKꢊ,PSHGDQFH  
06%  
$,ꢄꢀꢂꢁꢃ'  
1. Depending on the memory size, as shown in Table 7, the most significant address bits are Don’t Care.  
DocID022807 Rev 8  
19/44  
43  
 
 
Instructions  
M95256-A125 M95256-A145  
4.6  
Write to Memory Array (WRITE)  
The WRITE instruction is used to write new data in the memory.  
As shown in Figure 10, to send this instruction to the device, Chip Select (S) is first driven  
low. The bits of the instruction byte, address bytes, and at least one data byte are then  
shifted in (MSB first), on Serial Data Input (D). The instruction is terminated by driving Chip  
Select (S) high at a data byte boundary. Figure 10 shows a single byte write.  
Figure 10. Byte Write (WRITE) sequence  
3
#
ꢁꢀ  
ꢅꢀ ꢅꢁ ꢅꢅ ꢅꢆ ꢅꢇ ꢅꢄ ꢅꢉ ꢅꢂ ꢅꢈ ꢅꢃ ꢆꢀ ꢆꢁ  
)NSTRUCTION  
ꢁꢉꢊ"IT !DDRESS  
$ATA "YTE  
ꢁꢄ ꢁꢇ ꢁꢆ  
$
1
(IGH )MPEDANCE  
!)ꢀꢁꢂꢃꢄ$  
1. Depending on the memory size, as shown in Table 7, the most significant address bits are Don’t Care.  
A Page write is used to write several bytes inside a page, with a single internal Write cycle.  
For a Page write, Chip Select (S) has to remain low, as shown in Figure 11, so that the next  
data bytes are shifted in. Each time a new data byte is shifted in, the least significant bits of  
the internal address counter are incremented. If the address counter exceeds the page  
boundary (the page size is 64 byte), the internal address pointer rolls over to the beginning  
of the same page where next data bytes will be written. If more than 64 byte are received,  
only the last 64 byte are written.  
For both Byte write and Page write, the self-timed Write cycle starts from the rising edge of  
Chip Select (S), and continues for a period t (as specified in Table 15).  
W
The instruction is discarded, and is not executed, under the following conditions:  
if a Write cycle is already in progress  
if the addressed page is in the region protected by the Block Protect (BP1 and BP0)  
bits  
if one of the conditions defined in Section 3.4.1 is not satisfied  
Note:  
The self-timed Write cycle t is internally executed as a sequence of two consecutive  
W
events: [Erase addressed byte(s)], followed by [Program addressed byte(s)]. An erased bit  
is read as “0” and a programmed bit is read as “1”.  
20/44  
DocID022807 Rev 8  
 
 
M95256-A125 M95256-A145  
Instructions  
Figure 11. Page Write (WRITE) sequence  
6
ꢀꢄ  
ꢅꢄ ꢅꢀ ꢅꢅ ꢅꢃ ꢅꢈ ꢅꢇ ꢅꢉ ꢅꢂ ꢅꢆ ꢅꢁ ꢃꢄ ꢃꢀ  
&
,QVWUXFWLRQ  
ꢀꢉꢋ%LWꢊ$GGUHVV  
'DWDꢊ%\WHꢊꢀ  
ꢀꢇ ꢀꢈ ꢀꢃ  
06%  
'
6
06%  
ꢃꢅ ꢃꢃ ꢃꢈ ꢃꢇ ꢃꢉ ꢃꢂ ꢃꢆ ꢃꢁ ꢈꢄ ꢈꢀ ꢈꢅ ꢈꢃ ꢈꢈ ꢈꢇ ꢈꢉ ꢈꢂ  
&
'
'DWDꢊ%\WHꢊꢅ  
'DWDꢊ%\WHꢊꢃ  
'DWDꢊ%\WHꢊ1  
06%  
06%  
$,ꢄꢀꢂꢁꢉH  
1. Depending on the memory size, as shown in Table 7, the most significant address bits are Don’t Care.  
DocID022807 Rev 8  
21/44  
43  
 
Instructions  
M95256-A125 M95256-A145  
4.7  
Read Identification Page (RDID)  
The Read Identification Page instruction is used to read the Identification Page (additional  
page of 64 byte which can be written and later permanently locked in Read-only mode).  
The Chip Select (S) signal is first driven low, the bits of the instruction byte and address  
bytes are then shifted in (MSB first) on Serial Data input (D). Address bit A10 must be 0 and  
the other upper address bits are Don't Care (it might be easier to define these bits as 0, as  
shown in Table 7). The data byte pointed to by the lower address bits [A5:A0] is shifted out  
(MSB first) on Serial Data output (Q).  
The first byte addressed can be any byte within the identification page.  
If Chip Select (S) continues to be driven low, the internal address register is automatically  
incremented and the byte of data at the new address is shifted out.  
Note that there is no roll over feature in the Identification Page. The address of bytes to read  
must not exceed the page boundary.  
The read cycle is terminated by driving Chip Select (S) high. The rising edge of the Chip  
Select (S) signal can occur at any time when the data bits are shifted out.  
The instruction is not accepted, and is not executed, if a Write cycle is currently in progress.  
Figure 12. Read Identification Page sequence  
6
&
ꢀꢄ  
ꢅꢄ ꢅꢀ ꢅꢅ ꢅꢃ ꢅꢈ ꢅꢇ ꢅꢉ ꢅꢂ ꢅꢆ ꢅꢁ ꢃꢄ ꢃꢀ  
,QVWUXFWLRQ  
ꢀꢉꢋELWꢊDGGUHVV  
ꢀꢇ ꢀꢈ ꢀꢃ  
06%  
'
4
'DWDꢊ2XWꢊꢀ  
'DWDꢊ2XWꢊꢅ  
+LJKꢊLPSHGDQFH  
06%  
$Lꢀꢇꢁꢉꢉ  
The first three bytes of the Identification page offer information about the device itself.  
Please refer to Section 3.5: Identification page for more information.  
22/44  
DocID022807 Rev 8  
 
 
M95256-A125 M95256-A145  
Instructions  
4.8  
Write Identification Page (WRID)  
The Write Identification Page instruction is used to write the Identification Page (additional  
page of 64 byte which can also be permanently locked in Read-only mode).  
The Chip Select signal (S) is first driven low, and then the bits of the instruction byte,  
address bytes, and at least one data byte are shifted in (MSB first) on Serial Data input (D).  
Address bit A10 must be 0 and the other upper address bits are Don't Care (it might be  
easier to define these bits as 0, as shown in Table 7). The lower address bits [A5:A0] define  
the byte address inside the identification page.  
The self-timed Write cycle starts from the rising edge of Chip Select (S), and continues for a  
period t (as specified in Table 15).  
W
Figure 13. Write Identification Page sequence  
6
&
ꢀꢄ  
ꢅꢄ ꢅꢀ ꢅꢅ ꢅꢃ ꢅꢈ ꢅꢇ ꢅꢉ ꢅꢂ ꢅꢆ ꢅꢁ ꢃꢄ ꢃꢀ  
,QVWUXFWLRQ  
ꢀꢉꢋELWꢊDGGUHVV  
'DWDꢊE\WH  
'
4
ꢀꢇ ꢀꢈ ꢀꢃ  
+LJKꢊLPSHGDQFH  
$Lꢀꢇꢁꢉꢂ  
Note:  
The first three bytes of the Identification page offer the Device Identification code (Please  
refer to Section 3.5: Identification page for more information). Using the WRID command on  
these first three bytes overwrites the Device Identification code.  
The instruction is discarded, and is not executed, under the following conditions:  
If a Write cycle is already in progress  
If the Block Protect bits (BP1,BP0) = (1,1)  
If one of the conditions defined in Section 3.4.1: Protocol control is not satisfied.  
4.9  
Read Lock Status (RDLS)  
The Read Lock Status instruction is used to read the lock status.  
To send this instruction to the device, Chip Select (S) first has to be driven low. The bits of  
the instruction byte and address bytes are then shifted in (MSB first) on Serial Data input  
(D). Address bit A10 must be 1; all other address bits are Don't Care (it might be easier to  
define these bits as 0, as shown in Table 7). The Lock bit is the LSB (Least Significant Bit) of  
the byte read on Serial Data output (Q). It is at ‘1’ when the lock is active and at ‘0’ when the  
lock is not active. If Chip Select (S) continues to be driven low, the same data byte is shifted  
out.  
The read cycle is terminated by driving Chip Select (S) high. The instruction sequence is  
shown in Figure 14.  
DocID022807 Rev 8  
23/44  
43  
 
 
 
Instructions  
M95256-A125 M95256-A145  
The Read Lock Status instruction is not accepted and not executed if a Write cycle is  
currently in progress.  
Figure 14. Read Lock Status sequence  
6
ꢀꢄ  
ꢅꢄ ꢅꢀ ꢅꢅ ꢅꢃ ꢅꢈ ꢅꢇ ꢅꢉ ꢅꢂ ꢅꢆ ꢅꢁ ꢃꢄ ꢃꢀ  
&
,QVWUXFWLRQ  
ꢀꢉꢋELWꢊDGGUHVV  
ꢀꢇ ꢀꢈ ꢀꢃ  
06%  
'
4
'DWDꢊ2XWꢊꢀ  
'DWDꢊ2XWꢊꢅ  
+LJKꢊLPSHGDQFH  
06%  
$Lꢀꢇꢁꢉꢉ  
4.10  
Lock Identification Page (LID)  
The Lock Identification Page (LID) command is used to permanently lock the Identification  
Page in Read-only mode.  
The LID instruction is issued by driving Chip Select (S) low, sending (MSB first) the  
instruction code, the address and a data byte on Serial Data input (D), and driving Chip  
Select (S) high. In the address sent, A10 must be equal to 1. All other address bits are Don't  
Care (it might be easier to define these bits as 0, as shown in Table 7). The data byte sent  
must be equal to the binary value xxxx xx1x, where x = Don't Care. The LID instruction is  
terminated by driving Chip Select (S) high at a data byte boundary, otherwise, the instruction  
is not executed.  
Figure 15. Lock ID sequence  
6
ꢀꢄ  
ꢅꢄ ꢅꢀ ꢅꢅ ꢅꢃ ꢅꢈ ꢅꢇ ꢅꢉ ꢅꢂ ꢅꢆ ꢅꢁ ꢃꢄ ꢃꢀ  
&
,QVWUXFWLRQ  
ꢀꢉꢋELWꢊDGGUHVV  
'DWDꢊE\WH  
'
4
ꢀꢇ ꢀꢈ ꢀꢃ  
+LJKꢊLPSHGDQFH  
$Lꢀꢇꢁꢉꢂ  
Driving Chip Select (S) high at a byte boundary of the input data triggers the self-timed Write  
cycle which duration is t (specified in Table 15). The instruction sequence is shown in  
W
Figure 15.  
24/44  
DocID022807 Rev 8  
 
 
 
M95256-A125 M95256-A145  
Instructions  
The instruction is discarded, and is not executed, under the following conditions:  
If a Write cycle is already in progress  
If the Block Protect bits (BP1,BP0) = (1,1)  
If one of the conditions defined in Section 3.4.1: Protocol control is not satisfied.  
DocID022807 Rev 8  
25/44  
43  
Application design recommendations  
M95256-A125 M95256-A145  
5
Application design recommendations  
5.1  
Supply voltage (VCC)  
5.1.1  
Operating supply voltage (V )  
CC  
Prior to selecting the memory and issuing instructions to it, a valid and stable V voltage  
CC  
within the specified [V  
, V  
] range must be applied (see Table 10 and Table 11).  
CC(min)  
CC(max)  
This voltage must remain stable and valid until the end of the transmission of the instruction  
and, for a Write instruction, until the completion of the internal Write cycle (t ). In order to  
W
secure a stable DC supply voltage, it is recommended to decouple the V line with a  
CC  
suitable capacitor (usually of the order of 10 nF to 100 nF) close to the V /V package  
CC SS  
pins.  
5.1.2  
Power-up conditions  
When the power supply is turned on, V continuously rises from V to V . During this  
CC  
SS  
CC  
time, the Chip Select (S) line is not allowed to float but should follow the V voltage. It is  
CC  
therefore recommended to connect the S line to V via a suitable pull-up resistor (see  
CC  
Figure 16).  
The V voltage has to rise continuously from 0 V up to the minimum V operating voltage  
CC  
CC  
defined in Table 13 and Table 14.  
In order to prevent inadvertent write operations during power-up, a power-on-reset (POR)  
circuit is included.  
At power-up, the device does not respond to any instruction until V reaches the internal  
CC  
threshold voltage (this threshold is defined in the DC characteristics tables 13 and 14 as  
VRES).  
When V passes over the POR threshold, the device is reset and in the following state:  
CC  
in the Standby power mode  
deselected  
Status register values:  
Write Enable Latch (WEL) bit is reset to 0.  
Write In Progress (WIP) bit is reset to 0.  
SRWD, BP1 and BP0 bits remain unchanged (non-volatile bits).  
not in the Hold condition  
As soon as the V voltage has reached a stable value within [V (min), V (max)] range,  
CC  
CC  
CC  
the device is ready for operation.  
26/44  
DocID022807 Rev 8  
 
 
 
 
M95256-A125 M95256-A145  
Application design recommendations  
5.1.3  
Power-down  
During power-down (continuous decrease in the V supply voltage below the minimum  
CC  
V
operating voltage defined in Table 13 and Table 14), the device must be:  
CC  
deselected (Chip Select (S) should be allowed to follow the voltage applied on V ),  
CC  
in Standby power mode (there should not be any internal Write cycle in progress).  
5.2  
Implementing devices on SPI bus  
Figure 16 shows an example of three devices, connected to the SPI bus master. Only one  
device is selected at a time, so that only the selected device drives the Serial Data output  
(Q) line. All the other devices outputs are then in high impedance.  
Figure 16. Bus master and memory devices on the SPI bus  
6##  
3$/  
30) INTERFACE WITH  
ꢋ#0/,ꢌ #0(!ꢍ ꢎ  
ꢋꢀꢌ ꢀꢍ OR ꢋꢁꢌ ꢁꢍ  
3$)  
3#+  
#
1
$
6##  
#
1
$
6##  
#
1
$
6##  
30) BUS MASTER  
30) MEMORY  
DEVICE  
30) MEMORY  
DEVICE  
30) MEMORY  
DEVICE  
2
2
2
#3ꢆ #3ꢅ #3ꢁ  
(/,$  
7
3
7 (/,$  
3
7
(/,$  
3
633  
-3ꢁꢃꢂꢄꢄ6ꢅ  
1. The Write Protect (W) and Hold (HOLD) signals must be driven high or low as appropriate.  
A pull-up resistor connected on each /S input (represented in Figure 16) ensures that each  
device is not selected if the bus master leaves the /S line in the high impedance state.  
DocID022807 Rev 8  
27/44  
43  
 
 
 
Application design recommendations  
M95256-A125 M95256-A145  
5.3  
Cycling with Error Correction Code (ECC)  
The Error Correction Code (ECC) is an internal logic function which is transparent for the  
SPI communication protocol.  
(a)  
The ECC logic is implemented on each group of four EEPROM bytes . Inside a group, if a  
single bit out of the four bytes happens to be erroneous during a Read operation, the ECC  
detects this bit and replaces it with the correct value. The read reliability is therefore much  
improved.  
Even if the ECC function is performed on groups of four bytes, a single byte can be  
written/cycled independently. In this case, the ECC function also writes/cycles the three  
(a)  
other bytes located in the same group . As a consequence, the maximum cycling budget is  
defined at group level and the cycling can be distributed over the 4 bytes of the group: the  
sum of the cycles seen by byte0, byte1, byte2 and byte3 of the same group must remain  
below the maximum value defined in Table 9: Cycling performance by groups of 4 byte.  
Example1: maximum cycling limit reached with 1 million cycles per byte  
Each byte of a group can be equally cycled 1 million times (at 25 °C) so that the group  
cycling budget is 4 million cycles.  
Example2: maximum cycling limit reached with unequal byte cycling  
Inside a group, byte0 can be cycled 2 million times, byte1 can be cycled 1 million times,  
byte2 and byte3 can be cycled 500,000 times, so that the group cycling budget is 4 million  
cycles.  
a. A group of four bytes is located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3], where N is an integer.  
DocID022807 Rev 8  
28/44  
 
M95256-A125 M95256-A145  
Delivery state  
6
Delivery state  
The device is delivered with:  
the memory array set to all 1s (each byte = FFh),  
Status register: bit SRWD =0, BP1 =0 and BP0 =0,  
Identification page: the first three bytes define the Device identification code (value  
defined in Table 5). The content of the following bytes is Don’t Care.  
7
Absolute maximum ratings  
Stressing the device outside the ratings listed in Table 8 may cause permanent damage to  
the device. These are stress ratings only, and operation of the device at these, or any other  
conditions outside those indicated in the operating sections of this specification, is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Table 8. Absolute maximum ratings  
Symbol  
Parameter  
Min.  
Max.  
Unit  
TSTG  
TAMR  
TLEAD  
VO  
Storage temperature  
–65  
–40  
150  
150  
°C  
°C  
°C  
V
Ambient operating temperature  
Lead temperature during soldering  
Voltage on Q pin  
See note (1)  
–0.50  
VCC+0.6  
VI  
Input voltage  
–0.50  
6.5  
5
V
IOL  
DC output current (Q = 0)  
DC output current (Q = 1)  
Supply voltage  
-
mA  
mA  
V
IOH  
-
–0.50  
-
5
VCC  
VESD  
6.5  
4000  
Electrostatic pulse (Human Body Model)(2)  
V
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb-free assembly), the ST ECOPACK®  
7191395 specification, and the European directive on Restrictions of Hazardous Substances (RoHS  
directive 2011/65/EU of July 2011).  
2. Positive and negative pulses applied on pin pairs, in accordance with AEC-Q100-002 (compliant with  
ANSI/ESDA/JEDEC JS-001-2012, C1=100 pF, R1=1500 Ω, R2=500 Ω)  
DocID022807 Rev 8  
29/44  
43  
 
 
 
 
DC and AC parameters  
M95256-A125 M95256-A145  
8
DC and AC parameters  
This section summarizes the operating conditions and the DC/AC characteristics of the  
device.  
Table 9. Cycling performance by groups of 4 byte  
Symbol  
Parameter  
Test condition  
Min.  
Max.  
Unit  
TA 25 °C, 1.7 V < VCC < 5.5 V  
TA = 85 °C, 1.7 V < VCC < 5.5 V  
TA = 125 °C, 1.7 V < VCC < 5.5 V  
TA = 145 °C(3), 2.5 V < VCC < 5.5 V  
-
-
-
-
4,000,000  
1,200,000  
600,000  
Write  
Ncycle  
Write cycle endurance(1)  
cycle(2)  
400,000  
1. The Write cycle endurance is defined for groups of four data bytes located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3] where  
N is an integer, or for the status register byte (refer also to Section 5.3: Cycling with Error Correction Code (ECC)). The  
Write cycle endurance is defined by characterization and qualification.  
2. A Write cycle is executed when either a Page Write, a Byte Write, a WRSR, a WRID or an LID instruction is decoded.  
When using the Byte Write, the Page Write or the WRID, refer also to Section 5.3: Cycling with Error Correction Code  
(ECC).  
3. For temperature range 4 only.  
Table 10. Operating conditions (voltage range W, temperature range 4)  
Symbol  
Parameter  
Supply voltage  
Conditions  
Min. Max. Unit  
VCC  
TA  
-
-
2.5  
5.5  
V
Ambient operating temperature  
Operating clock frequency  
–40  
145  
°C  
5.5 V VCC 2.5 V,  
capacitive load on Q pin 100pF  
fC  
-
10  
MHz  
Table 11. Operating conditions (voltage range R, temperature range 3)  
Symbol  
Parameter  
Supply voltage  
Conditions  
Min. Max. Unit  
VCC  
TA  
-
1.7  
5.5  
125  
10  
5
V
Ambient operating temperature  
-
–40  
°C  
VCC 2.5 V, capacitive load on Q pin 100pF  
VCC 1.7 V, capacitive load on Q pin 100pF  
-
-
fC  
Operating clock frequency  
MHz  
Table 12. Operating conditions (voltage range R, temperature range 3)  
for high-speed communications  
Symbol  
Parameter  
Supply voltage  
Conditions  
Min. Max. Unit  
VCC  
TA  
-
4.5  
–40  
-
5.5  
85  
20  
V
Ambient operating temperature  
Operating clock frequency  
-
°C  
fC  
VCC 4.5 V, capacitive load on Q pin 60 pF  
MHz  
30/44  
DocID022807 Rev 8  
 
 
 
 
 
M95256-A125 M95256-A145  
DC and AC parameters  
Table 13. DC characteristics (voltage range W, temperature range 4)  
Specific test conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
(in addition to conditions specified in  
Table 10)  
(2)  
COUT  
Output capacitance (Q)  
Input capacitance  
VOUT = 0 V  
-
-
-
-
8
6
2
3
pF  
µA  
(2)  
CIN  
VIN = 0 V  
ILI  
Input leakage current  
Output leakage current  
VIN = VSS or VCC  
S = VCC, VOUT = VSS or VCC  
ILO  
VCC = 2.5 V, fC = 10 MHz,  
-
-
-
-
-
-
-
-
-
2
4
C = 0.1 VCC/0.9 VCC, Q = open  
ICC  
Supply current (Read)  
Supply current (Write)  
VCC = 5.5 V, fC = 10 MHz,  
mA  
C = 0.1 VCC/0.9 VCC, Q = open  
2.5 V < VCC < 5.5 V, during tW,  
S = VCC  
(1)  
ICC0  
2(2)  
t° = 85 °C, VCC = 2.5 V, S = VCC  
VIN = VSS or VCC  
2
t° = 85 °C, VCC = 5.5 V, S = VCC  
VIN = VSS or VCC  
3
t° = 125 °C, VCC = 2.5 V, S = VCC  
VIN = VSS or VCC  
15  
20  
25  
40  
Supply current  
(Standby power mode)  
ICC1  
µA  
t° = 125 °C, VCC = 5.5 V, S = VCC  
VIN = VSS or VCC  
t° = 145 °C, VCC = 2.5 V, S = VCC  
VIN = VSS or VCC  
t° = 145 °C, VCC = 5.5 V, S = VCC  
VIN = VSS or VCC  
VIL  
VIH  
Input low voltage  
Input high voltage  
Output low voltage  
Output high voltage  
-
–0.45  
0.7 VCC  
-
0.3 VCC  
VCC+1  
0.4  
-
VOL  
VOH  
IOL = 2 mA  
IOH = –2 mA  
V
0.8 VCC  
-
Internal reset threshold  
voltage  
(2)  
VRES  
-
0.5  
1.5  
1. Average value during the Write cycle (tW)  
2. Characterized only, not 100% tested  
DocID022807 Rev 8  
31/44  
43  
 
DC and AC parameters  
M95256-A125 M95256-A145  
Table 14. DC characteristics (voltage range R, temperature range 3)  
Test conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
(in addition to conditions specified  
in Table 11)  
(3)  
COUT  
Output capacitance (Q)  
Input capacitance  
VOUT = 0 V  
-
-
-
-
8
6
2
3
pF  
µA  
(3)  
CIN  
VIN = 0 V  
ILI  
Input leakage current  
Output leakage current  
VIN = VSS or VCC  
S = VCC, VOUT = VSS or VCC  
ILO  
VCC = 1.7 V, C = 0.1 VCC/0.9 VCC  
Q = open, fC = 5 MHz  
,
,
-
-
-
2
2
5
VCC = 2.5 V, C = 0.1 VCC/0.9 VCC  
Q = open, fC = 10 MHz  
ICC  
Supply current (Read)  
Supply current (Write)  
mA  
mA  
VCC = 5.5 V, fC = 20 MHz(1)  
C = 0.1 VCC/0.9 VCC, Q = open  
1.7 V VCC < 5.5 V during tW,  
S = VCC  
ICC0  
-
-
-
-
-
-
-
2(3)  
(2)  
t° = 85 °C, VCC = 1.7 V,  
S = VCC, VIN = VSS or VCC  
1
t° = 85 °C, VCC = 2.5 V,  
S = VCC, VIN = VSS or VCC  
2
t° = 85 °C, VCC = 5.5 V,  
S = VCC, VIN = VSS or VCC  
3
ICC1  
Supply current (Standby mode)  
µA  
t° = 125 °C, VCC = 1.7 V,  
S = VCC, VIN = VSS or VCC  
15  
15  
20  
t° = 125 °C, VCC = 2.5 V,  
S = VCC, VIN = VSS or VCC  
t° = 125 °C, VCC = 5.5 V,  
S = VCC, VIN = VSS or VCC  
1.7 V VCC < 2.5 V  
2.5 V VCC < 5.5 V  
1.7 V VCC < 2.5 V  
2.5 V VCC < 5.5 V  
VCC = 1.7 V, IOL = 1 mA  
VCC 2.5 V, IOL = 2 mA  
–0.45  
–0.45  
0.75 VCC  
0.7 VCC  
-
0.25 VCC  
0.3 VCC  
VCC+ 1  
VCC+ 1  
0.3  
VIL  
VIH  
Input low voltage  
Input high voltage  
Output low voltage  
V
V
V
VOL  
-
0.4  
V
CC = 1.7 V, IOH = 1 mA  
0.8 VCC  
0.8 VCC  
0.5  
-
VOH  
Output high voltage  
V
V
VCC 2.5 V, IOH = -2 mA  
-
(3)  
VRES  
Internal reset threshold voltage  
-
1.5  
1. When –40 °C < t° < 85 °C.  
2. Average value during the Write cycle (tW)  
3. Characterized only, not 100% tested  
32/44  
DocID022807 Rev 8  
 
M95256-A125 M95256-A145  
DC and AC parameters  
Table 15. AC characteristics  
Min. Max. Min. Max. Min. Max.  
Test  
Test  
conditions  
Test  
Symbol  
Alt.  
Parameter  
Unit  
conditions specified in conditions  
specified in  
Table 11  
Table 10  
and  
specified in  
Table 12  
Table 11  
fC  
fSCK Clock frequency  
-
5
-
-
10  
-
-
20  
-
MHz  
tSLCH  
tSHCH  
tSHSL  
tCHSH  
tCHSL  
tCSS1 S active setup time  
tCSS2 S not active setup time  
tCS S deselect time  
tCSH S active hold time  
S not active hold time  
60  
60  
90  
60  
60  
80  
80  
-
30  
30  
40  
30  
30  
40  
40  
-
15  
15  
20  
15  
15  
20  
20  
-
-
-
-
-
-
-
-
-
-
ns  
µs  
-
-
-
(1)  
tCH  
tCLH Clock high time  
tCLL Clock low time  
-
-
-
(1)  
tCL  
-
-
-
(2)  
tCLCH  
tRC Clock rise time  
2
2
-
2
2
-
2
2
-
(2)  
tCHCL  
tFC  
Clock fall time  
-
-
-
tDVCH  
tCHDX  
tHHCH  
tHLCH  
tCLHL  
tDSU Data in setup time  
tDH Data in hold time  
20  
20  
60  
60  
0
10  
10  
30  
30  
0
5
-
-
10  
15  
15  
0
-
Clock low hold time after HOLD not active  
-
-
-
Clock low hold time after HOLD active  
-
-
-
Clock low set-up time before HOLD active  
-
-
-
Clock low set-up time before HOLD not  
active  
tCLHH  
0
-
0
-
0
-
ns  
(2)  
tSHQZ  
tDIS Output disable time  
tV Clock low to output valid  
-
-
80  
80  
-
-
-
40  
40  
-
-
-
20  
20  
-
(3)  
tCLQV  
tCLQX  
tHO Output hold time  
tRO Output rise time  
tFO Output fall time  
0
-
0
-
0
-
(2)  
tQLQH  
20  
20  
80  
80  
4
20  
20  
40  
40  
4
20  
20  
20  
20  
4
(2)  
tQHQL  
-
-
-
tHHQV  
tLZ  
HOLD high to output valid  
-
-
-
(2)  
tHLQZ  
tHZ HOLD low to output high-Z  
tWC Write time  
-
-
-
tW  
-
-
-
ms  
1. tCH + tCL must never be lower than the shortest possible clock period, 1/fC(max).  
2. Value guaranteed by characterization, not 100% tested in production.  
3. tCLQV must be compatible with tCL (clock low time): if tSU is the Read setup time of the SPI bus master, tCL must be equal to  
(or greater than) tCLQV+tSU  
.
DocID022807 Rev 8  
33/44  
43  
 
DC and AC parameters  
M95256-A125 M95256-A145  
Figure 17. AC measurement I/O waveform  
,QSXWꢊDQGꢊ2XWSXW  
,QSXWꢊ/HYHOV  
ꢄꢌꢆꢊೌꢊ9&&  
7LPLQJꢊ5HIHUHQFHꢊ/HYHOV  
ꢄꢌꢂꢊೌꢊ9&&  
ꢄꢌꢃꢊೌꢊ9&&  
ꢄꢌꢅꢊೌꢊ9&&  
$,ꢄꢄꢆꢅꢇ&  
Figure 18. Serial input timing  
T3(3,  
3
T#(3,  
T3,#(  
T#(  
T#(3(  
T3(#(  
#
T$6#(  
T#(#,  
T#($8  
T#,  
T#,#(  
-3" ).  
,3" ).  
$
1
(IGH IMPEDANCE  
!)ꢀꢁꢇꢇꢂD  
Figure 19. Hold timing  
3
#
1
T(,#(  
T#,(,  
T((#(  
T#,((  
T((16  
T(,1:  
!)ꢀꢁꢇꢇꢈC  
34/44  
DocID022807 Rev 8  
 
 
 
M95256-A125 M95256-A145  
DC and AC parameters  
Figure 20. Serial output timing  
3
#
T#(  
T3(3,  
T#,16  
T#,18  
T#,#(  
T#(#,  
T#,  
T3(1:  
1
$
T1,1(  
T1(1,  
!$$2  
,3" ).  
!)ꢀꢁꢇꢇꢃF  
DocID022807 Rev 8  
35/44  
43  
 
Package mechanical data  
M95256-A125 M95256-A145  
9
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
9.1  
SO8N package information  
Figure 21. SO8N – 8-lead plastic small outline, 150 mils body width, package outline  
Kꢊ[ꢊꢈꢇÛ  
$ꢅ  
$
F
FFF  
E
H
ꢀꢁꢂꢃꢄPP  
*$8*(ꢄ3/$1(  
'
N
(ꢀ  
(
/
$ꢀ  
/ꢀ  
62ꢋ$B9ꢅ  
1. Drawing is not to scale.  
Table 16. SO8N – 8-lead plastic small outline, 150 mils body width,  
package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
-
-
1.750  
0.250  
-
-
-
0.0689  
0.0098  
-
0.100  
1.250  
0.280  
0.170  
4.800  
5.800  
3.800  
-
-
0.0039  
0.0492  
0.0110  
0.0067  
0.1890  
0.2283  
0.1496  
-
-
-
-
-
0.480  
0.230  
5.000  
6.200  
4.000  
-
-
0.0189  
0.0091  
0.1969  
0.2441  
0.1575  
-
c
-
4.900  
6.000  
3.900  
1.270  
-
-
D
E
0.1929  
0.2362  
E1  
e
0.1535  
0.0500  
h
0.250  
0°  
0.500  
8°  
0.0098  
0°  
-
-
-
0.0197  
8°  
k
-
L
0.400  
-
1.270  
0.0157  
0.0500  
36/44  
DocID022807 Rev 8  
 
 
 
 
M95256-A125 M95256-A145  
Package mechanical data  
Table 16. SO8N – 8-lead plastic small outline, 150 mils body width,  
package mechanical data (continued)  
millimeters  
inches(1)  
Typ.  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Max.  
L1  
-
-
1.040  
-
-
-
-
0.0409  
-
-
ccc  
0.100  
0.0039  
1. Values in inches are converted from mm and rounded to four decimal digits.  
Figure 22. SO8N – 8-lead plastic small outline, 150 mils body width,  
package recommended footprint  
ꢄꢌꢉꢊꢍ[ꢆꢎ  
ꢀꢌꢅꢂ  
2ꢂB62ꢆ1B)3B9ꢀ  
1. Dimensions are expressed in millimeters.  
DocID022807 Rev 8  
37/44  
43  
 
Package mechanical data  
M95256-A125 M95256-A145  
9.2  
TSSOP8 package information  
Figure 23. TSSOP8 – 8-lead thin shrink small outline, 3 x 4.4 mm, 0.65 mm pitch,  
package outline  
ϴ
ϱ
Đ
ꢄϭ  
ϭ
ϰ
ɲ
>
ꢃϭ  
ꢃϮ  
>ϭ  
ꢁW  
ď
Ğ
76623ꢆ$0B9ꢅ  
1. Drawing is not to scale.  
Table 17. TSSOP8 – 8-lead thin shrink small outline, 3 x 4.4 mm, 0.65 mm pitch,  
package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
-
-
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
-
-
-
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
-
0.050  
0.800  
0.190  
0.090  
-
-
0.0020  
0.0315  
0.0075  
0.0035  
-
-
1.000  
-
0.0394  
-
c
-
-
CP  
D
-
-
2.900  
-
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
-
0.1142  
-
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
-
e
E
6.200  
4.300  
0.450  
-
6.600  
4.500  
0.750  
-
0.2441  
0.1693  
0.0177  
-
0.2598  
0.1772  
0.0295  
-
E1  
L
L1  
α
0°  
8°  
0°  
8°  
1. Values in inches are converted from mm and rounded to four decimal digits.  
38/44  
DocID022807 Rev 8  
 
 
 
M95256-A125 M95256-A145  
Package mechanical data  
9.3  
WFDFPN8 package information  
Figure 24. WFDFPN8 (MLP8) – 8-lead, 2 x 3 mm, 0.5 mm pitch very very thin fine pitch  
dual flat package outline  
'ꢅ  
'ꢅꢐꢅ  
'DWXPꢊ<  
H
$
%
'
3LQꢊꢏꢀꢊ,'ꢊPDUNLQJ  
3LQꢊꢀ  
(ꢅꢐꢅ  
(ꢅ  
(
6HHꢊ=  
'HWDLO  
.
ꢅ[  
DDD #  
ꢅ[  
-
-
EEE  
GGG  
&
&
$ %  
1;ꢊE  
ꢍ1'ꢋꢀꢎꢊ[ꢊH  
%RWWRPꢊYLHZ  
DDD #  
7RSꢊYLHZ  
'DWXPꢊ<  
ꢐꢐ FFF #  
&
$
HHH #  
6HDWLQJꢊSODQH  
$ꢀ  
/
/ꢃ  
/ꢀ  
7HUPLQDOꢊWLS  
6LGHꢊYLHZ  
Hꢐꢅ  
H
'HWDLOꢊ³=´  
$ꢄ<ꢃB0(B9ꢃ  
1. Drawing is not to scale.  
2. The central pad (the area E2 by D2 in the above illustration) must be either connected to Vss or left floating  
(not connected) in the end application.  
DocID022807 Rev 8  
39/44  
43  
 
 
Package mechanical data  
M95256-A125 M95256-A145  
Table 18. WFPN8 (MLP8) – 8-lead, 2 x 3 mm, 0.5 mm pitch very very thin fine pitch  
dual flat package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
b
0.700  
0.025  
0.200  
1.900  
2.900  
-
0.750  
0.800  
0.065  
0.300  
2.100  
3.100  
-
0.0276  
0.0010  
0.0079  
0.0748  
0.1142  
-
0.0295  
0.0315  
0.0026  
0.0118  
0.0827  
0.1220  
-
0.045  
0.0018  
0.250  
0.0098  
D
2.000  
0.0787  
E
3.000  
0.1181  
e
0.500  
0.0197  
L1  
-
-
-
-
-
-
-
0.150  
-
-
-
-
-
-
-
-
0.0059  
-
L3  
0.300  
1.050  
1.050  
0.400  
0.300  
0.0118  
0.0413  
0.0413  
0.0157  
0.0118  
D2  
E2  
K
1.650  
1.450  
-
0.0650  
0.0571  
-
L
0.500  
0.0197  
NX(2)  
ND(3)  
aaa  
bbb  
ccc  
ddd  
eee(4)  
8
4
0.150  
0.100  
0.100  
0.050  
0.080  
0.0059  
0.0039  
0.0039  
0.0020  
0.0031  
1. Values in inches are converted from mm and rounded to four decimal digits.  
2. NX is the number of terminals.  
3. ND is the number of terminals on “D” sides.  
4. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from mea-  
suring.  
40/44  
DocID022807 Rev 8  
 
M95256-A125 M95256-A145  
Part numbering  
10  
Part numbering  
Table 19. Ordering information scheme  
Example:  
M95256-D  
W
DW 4  
T
P /K  
Device type  
M95 = SPI serial access EEPROM  
Device function  
256-D = 256 Kbit (32 Kbyte) plus Identification Page  
Operating voltage  
W = V = 2.5 to 5.5 V  
CC  
R = VCC = 1.7 to 5.5 V  
Package(1)  
MN = SO8 (150 mils width)  
DW = TSSOP8 (169 mils width)  
MF = WFDFPN8 (2 x 3 mm)  
Device grade  
3 = –40 to 125 °C. Device tested with high reliability certified flow(2)  
4 = –40 to 145 °C. Device tested with high reliability certified flow(2)  
Option  
blank = Tube packing  
T = Tape and reel packing  
Plating technology  
P or G = ECOPACK2®  
Process letter  
/K = Manufacturing technology code  
1. All packages are ECOPACK2® (RoHS compliant and free of brominated, chlorinated and antimony-oxide  
flame retardants).  
2. The high reliability certified flow (HRCF) is described in quality note QNEE9801. Please ask your nearest  
ST sales office for a copy.  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
Engineering samples  
Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are  
not yet qualified and therefore not yet ready to be used in production and any consequences  
deriving from such usage will not be at ST charge. In no event, ST will be liable for any  
customer usage of these engineering samples in production. ST Quality has to be contacted  
prior to any decision to use these Engineering samples to run qualification activity.  
DocID022807 Rev 8  
41/44  
43  
 
 
 
 
Revision history  
M95256-A125 M95256-A145  
11  
Revision history  
Table 20. Document revision history  
Changes  
Date  
Revision  
16-Feb-2012  
1
Initial release.  
– Changed datasheet status from Target specification to Preliminary.  
– MLP8 MB version removed in Figure 23: UFDFPN8 (MLP8) – 8-  
lead ultra thin fine pitch dual flat no lead, package outline,  
Table 18: UFDFPN8 (MLP8) – 8-lead ultra thin fine pitch dual flat  
package no lead 2 x 3 mm, data, and in Table 19: Ordering  
information scheme.  
02-Oct-2012  
2
– Deleted line “256 = 256 Kbit (32 Kbytes x 8)” in section “Device  
function” of Table 19: Ordering information scheme.  
– Changed datasheet status from Preliminary to Production.  
– Updated VRES maximum value in Table 13: DC characteristics  
(voltage range W, temperature range 4) and Table 14: DC  
characteristics (voltage range R, temperature range 3).  
25-Jan-2013  
10-Dec-2013  
3
4
– Rephrased introduction of Section 3.5: Identification page and  
information about Identification page in Section 6: Delivery state.  
– Deleted note(1) under Table 6: Instruction set.  
– Updated note (1) under Table 8: Absolute maximum ratings  
– Replaced UFDFPN8 package (MC) by WFDFPN8 package (MF).  
– Modified the Data retention from “40 years at 50 °C” to “50 years at  
125 °C”.  
Updated Note 2 below Table 8: Absolute maximum ratings  
Updated  
Table 14: DC characteristics (voltage range R, temperature range  
3)  
Table 18: WFPN8 (MLP8) – 8-lead, 2 x 3 mm, 0.5 mm pitch very  
very thin fine pitch dual flat package mechanical data  
21-Oct-2014  
5
Table 19: Ordering information scheme  
Added  
– Note 2 below Figure 24: WFDFPN8 (MLP8) – 8-lead, 2 x 3 mm,  
0.5 mm pitch very very thin fine pitch dual flat package outline.  
Updated Table 18: WFPN8 (MLP8) – 8-lead, 2 x 3 mm, 0.5 mm pitch  
very very thin fine pitch dual flat package mechanical data  
15-Jan-2015  
6
Updated Figure 24: WFDFPN8 (MLP8) – 8-lead, 2 x 3 mm, 0.5 mm  
pitch very very thin fine pitch dual flat package outline  
Added paragraph: Engineering samples on page 41  
42/44  
DocID022807 Rev 8  
 
 
M95256-A125 M95256-A145  
Revision history  
Table 20. Document revision history (continued)  
Revision Changes  
Date  
Updated  
18-Jan-2016  
7
Section 9: Package mechanical data  
– VCC min value.  
Updated  
– Title of Figure 23: TSSOP8 – 8-lead thin shrink small outline, 3 x  
28-Jan-2016  
8
4.4 mm, 0.65 mm pitch, package outline  
– Title of Table 17: TSSOP8 – 8-lead thin shrink small outline, 3 x  
4.4 mm, 0.65 mm pitch, package mechanical data  
DocID022807 Rev 8  
43/44  
43  
M95256-A125 M95256-A145  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2016 STMicroelectronics – All rights reserved  
44/44  
DocID022807 Rev 8  

相关型号:

M95256-BN1T

256/128 Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR

M95256-BN3

256Kbit and 128Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR

M95256-BN3G

256Kbit and 128Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR

M95256-BN3P

256Kbit and 128Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR

M95256-BN3T

256Kbit and 128Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR

M95256-BN3TG

256Kbit and 128Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR

M95256-BN3TP

256Kbit and 128Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR

M95256-BN5

32KX8 SPI BUS SERIAL EEPROM, PDIP8, 0.25 MM LEAD FRAME, PLASTIC, DIP-8
STMICROELECTR

M95256-BN5T

256/128 Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR

M95256-BN6

256Kbit and 128Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR

M95256-BN6G

256Kbit and 128Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR

M95256-BN6P

256Kbit and 128Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR