M95320-WMN3TG/B [STMICROELECTRONICS]

32 Kbit and 64 Kbit Serial SPI bus EEPROMs with high speed clock; 32千位和64千位串行SPI总线的EEPROM与高速时钟
M95320-WMN3TG/B
型号: M95320-WMN3TG/B
厂家: ST    ST
描述:

32 Kbit and 64 Kbit Serial SPI bus EEPROMs with high speed clock
32千位和64千位串行SPI总线的EEPROM与高速时钟

存储 内存集成电路 光电二极管 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟
文件: 总44页 (文件大小:355K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M95320 M95320-W M95320-R  
M95640 M95640-W M95640-R  
32 Kbit and 64 Kbit Serial SPI bus EEPROMs  
with high speed clock  
Feature summary  
Compatible with SPI Bus Serial Interface  
(Positive Clock SPI Modes)  
Single Supply Voltage:  
– 4.5 to 5.5V for M95320 and M95640  
– 2.5 to 5.5V for M95320-W and M95320-W  
– 1.8 to 5.5V for M95320-R and M95640-R  
SO8 (MN)  
150 mil width  
10MHz, 5MHz or 2MHz clock rates  
5ms or 10ms Write Time  
Status Register  
Hardware Protection of the Status Register  
Byte and Page Write (up to 32 Bytes)  
Self-Timed Programming Cycle  
Adjustable Size Read-Only EEPROM Area  
Enhanced ESD Protection  
TSSOP8 (DW)  
169 mil width  
More than 1 million Write cycles  
More than 40-Year Data Retention  
MLP8 (MB)  
2x3 mm  
Packages  
– ECOPACK® (RoHS compliant)  
July 2006  
Rev 6  
1/44  
www.st.com  
1
Contents  
M95320, M95640, M95320-x, M95640-x  
Contents  
1
2
Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.0.1  
2.0.2  
2.0.3  
2.0.4  
2.0.5  
2.0.6  
Serial Data Output (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Serial Data Input (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Serial Clock (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Chip Select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Hold (HOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Write Protect (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3
4
Connecting to the SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1  
SPI modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Operating features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.1  
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
Operating supply voltage V  
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Internal device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.2  
Active Power and Standby Power modes . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.2.1  
Hold condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.3  
4.4  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data protection and protocol control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5
6
Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
6.1  
6.2  
6.3  
Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write Disable (WRDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Read Status Register (RDSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
WIP bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
SRWD bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2/44  
M95320, M95640, M95320-x, M95640-x  
Contents  
6.4  
6.5  
6.6  
Write Status Register (WRSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Read from Memory Array (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Write to Memory Array (WRITE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7
Power-up and delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.1  
7.2  
Power-up state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
9
10  
11  
12  
3/44  
List of tables  
M95320, M95640, M95320-x, M95640-x  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Write-Protected block size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Status Register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Protection modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Address range bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Operating conditions (M95320 and M95640) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Operating conditions (M95320-W and M95640-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Operating conditions (M95320-R and M95640-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DC characteristics (M95320 and M95640, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . 27  
DC characteristics (M95320 and M95640, device grade 3) . . . . . . . . . . . . . . . . . . . . . . . . 27  
DC characteristics (M95320-W and M95640-W, device grade 6). . . . . . . . . . . . . . . . . . . . 28  
DC characteristics (M95320-W and M95640-W, device grade 3). . . . . . . . . . . . . . . . . . . . 28  
DC characteristics (M95320-R and M95640-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
AC characteristics (M95320 and M95640, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . 30  
AC characteristics (M95320 and M95640, device grade 3) . . . . . . . . . . . . . . . . . . . . . . . . 31  
AC characteristics (M95320-W and M95640-W, device grade 6). . . . . . . . . . . . . . . . . . . . 32  
AC characteristics (M95320-W and M95640-W, device grade 3). . . . . . . . . . . . . . . . . . . . 33  
AC characteristics (M95320-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
AC characteristics (M95640-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
SO8N – 8 lead Plastic Small Outline, 150 mils body width, package mechanical data . . . 38  
TSSOP8 – 8 lead Thin Shrink Small Outline, package mechanical data . . . . . . . . . . . . . . 39  
MLP8 - 8-lead Ultra thin Fine pitch Dual Flat No Lead, package mechanical data. . . . . . . 40  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
4/44  
M95320, M95640, M95320-x, M95640-x  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
8 pin package connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Bus master and memory devices on the SPI bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SPI modes supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Hold condition activation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Write Enable (WREN) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write Disable (WRDI) sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Read Status Register (RDSR) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 10. Write Status Register (WRSR) sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 11. Read from Memory Array (READ) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 12. Byte Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 13. Page Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 14. AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 15. Serial Input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 16. Hold timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 17. Output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 18. SO8N – 8 lead Plastic Small Outline, 150 mils body width, package outline . . . . . . . . . . . 38  
Figure 19. TSSOP8 – 8 lead Thin Shrink Small Outline, package outline . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 20. MLP8 - 8-lead Ultra thin Fine pitch Dual Flat No Lead, package outline . . . . . . . . . . . . . . 40  
5/44  
Summary description  
M95320, M95640, M95320-x, M95640-x  
1
Summary description  
These electrically erasable programmable memory (EEPROM) devices are accessed by a  
high speed SPI-compatible bus.  
The M95320, M95320-W and M95320-R are 32Kbit devices organized as 4096 x 8 bits. The  
M95640, M95640-W and M95640-R are 64Kbit devices organized as 8192 x 8 bits.  
The device is accessed by a simple serial interface that is SPI-compatible. The bus signals  
are C, D and Q, as shown in Table 1 and Figure 1.  
The device is selected when Chip Select (S) is taken Low. Communications with the device  
can be interrupted using Hold (HOLD).  
In order to meet environmental requirements, ST offers these devices in ECOPACK®  
packages.  
ECOPACK® packages are Lead-free and RoHS compliant.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
Figure 1.  
Logic diagram  
V
CC  
D
C
S
Q
M95xxx  
W
HOLD  
V
SS  
AI01789C  
Figure 2.  
8 pin package connections  
M95xxx  
S
Q
1
8
V
CC  
HOLD  
2
3
4
7
W
6
5
C
D
V
SS  
AI01790D  
1. See Package mechanical section for package dimensions and how to identify pin-1.  
6/44  
M95320, M95640, M95320-x, M95640-x  
Summary description  
Table 1.  
Signal names  
C
Serial Clock  
Serial data Input  
Serial data Output  
Chip Select  
Write Protect  
Hold  
D
Q
S
W
HOLD  
VCC  
VSS  
Supply Voltage  
Ground  
7/44  
Signal description  
M95320, M95640, M95320-x, M95640-x  
2
Signal description  
During all operations, V must be held stable and within the specified valid range:  
CC  
V
(min) to V (max).  
CC  
CC  
All of the input and output signals must be held High or Low (according to voltages of V ,  
IH  
V
, V or V , as specified in Table 13 to Table 17). These signals are described next.  
OH  
IL OL  
2.0.1  
2.0.2  
Serial Data Output (Q)  
This output signal is used to transfer data serially out of the device. Data is shifted out on the  
falling edge of Serial Clock (C).  
Serial Data Input (D)  
This input signal is used to transfer data serially into the device. It receives instructions,  
addresses, and the data to be written. Values are latched on the rising edge of Serial Clock  
(C).  
2.0.3  
2.0.4  
Serial Clock (C)  
This input signal provides the timing of the serial interface. Instructions, addresses, or data  
present at Serial Data Input (D) are latched on the rising edge of Serial Clock (C). Data on  
Serial Data Output (Q) changes after the falling edge of Serial Clock (C).  
Chip Select (S)  
When this input signal is High, the device is deselected and Serial Data Output (Q) is at high  
impedance. Unless an internal Write cycle is in progress, the device will be in the Standby  
Power mode. Driving Chip Select (S) Low selects the device, placing it in the Active Power  
mode.  
After Power-up, a falling edge on Chip Select (S) is required prior to the start of any  
instruction.  
2.0.5  
2.0.6  
Hold (HOLD)  
The Hold (HOLD) signal is used to pause any serial communications with the device without  
deselecting the device.  
During the Hold condition, the Serial Data Output (Q) is high impedance, and Serial Data  
Input (D) and Serial Clock (C) are Don’t Care.  
To start the Hold condition, the device must be selected, with Chip Select (S) driven Low.  
Write Protect (W)  
The main purpose of this input signal is to freeze the size of the area of memory that is  
protected against Write instructions (as specified by the values in the BP1 and BP0 bits of  
the Status Register).  
This pin must be driven either High or Low, and must be stable during all write operations.  
8/44  
M95320, M95640, M95320-x, M95640-x  
Connecting to the SPI bus  
3
Connecting to the SPI bus  
These devices are fully compatible with the SPI protocol.  
All instructions, addresses and input data bytes are shifted in to the device, most significant  
bit first. The Serial Data Input (D) is sampled on the first rising edge of the Serial Clock (C)  
after Chip Select (S) goes Low.  
All output data bytes are shifted out of the device, most significant bit first. The Serial Data  
Output (Q) is latched on the first falling edge of the Serial Clock (C) after the instruction  
(such as the Read from Memory Array and Read Status Register instructions) have been  
clocked into the device.  
Figure 3 shows three devices, connected to an MCU, on a SPI bus. Only one device is  
selected at a time, so only one device drives the Serial Data Output (Q) line at a time, all the  
others being high impedance.  
Figure 3.  
Bus master and memory devices on the SPI bus  
VSS  
VCC  
R(2)  
SDO  
SPI Interface with  
(CPOL, CPHA) =  
(0, 0) or (1, 1)  
SDI  
SCK  
VCC  
VCC  
VCC  
C
Q
D
C
Q
D
C Q D  
VSS  
VSS  
VSS  
SPI Bus Master  
R(2)  
R(2)  
R(2)  
SPI Memory  
Device  
SPI Memory  
Device  
SPI Memory  
Device  
CS3 CS2 CS1  
S
S
S
W
HOLD  
W
HOLD  
HOLD  
W
AI12836  
1. The Write Protect (W) and Hold (HOLD) signals should be driven, High or Low as appropriate.  
2. These pull-up resistors, R, ensure that the memory devices are not selected if the Bus Master leaves the S line in the high-  
impedance state. As the Bus Master may enter a state where all inputs/outputs are in high impedance at the same time  
(e.g.: when the Bus Master is reset), the clock line (C) must be connected to an external pull-down resistor so that, when all  
inputs/outputs become high impedance, S is pulled High while C is pulled Low (thus ensuring that S and C do not become  
High at the same time, and so, that the tSHCH requirement is met).  
9/44  
Connecting to the SPI bus  
M95320, M95640, M95320-x, M95640-x  
3.1  
SPI modes  
These devices can be driven by a microcontroller with its SPI peripheral running in either of  
the two following modes:  
CPOL=0, CPHA=0  
CPOL=1, CPHA=1  
For these two modes, input data is latched in on the rising edge of Serial Clock (C), and  
output data is available from the falling edge of Serial Clock (C).  
The difference between the two modes, as shown in Figure 4, is the clock polarity when the  
bus master is in Stand-by mode and not transferring data:  
C remains at 0 for (CPOL=0, CPHA=0)  
C remains at 1 for (CPOL=1, CPHA=1)  
Figure 4.  
SPI modes supported  
CPOL CPHA  
C
C
0
1
0
1
D
Q
MSB  
MSB  
AI01438B  
10/44  
M95320, M95640, M95320-x, M95640-x  
Operating features  
4
Operating features  
4.1  
Supply voltage (VCC)  
4.1.1  
Operating supply voltage V  
CC  
Prior to selecting the memory and issuing instructions to it, a valid and stable V voltage  
CC  
within the specified [V (min), V (max)] range must be applied (see Table 8.). In order to  
CC  
CC  
secure a stable DC supply voltage, it is recommended to decouple the V line with a  
CC  
suitable capacitor (usually of the order of 10nF to 100nF) close to the V /V package  
CC SS  
pins.  
This voltage must remain stable and valid until the end of the transmission of the instruction  
and, for a Write instruction, until the completion of the internal write cycle (t ).  
W
4.1.2  
Power-up conditions  
When the power supply is turned on, V rises from V to V . During this time, the Chip  
CC  
SS  
CC  
Select (S) is not allowed to float but must follow the V voltage, therefore the S line should  
CC  
be connected to V via a suitable pull-up resistor.  
CC  
In addition, the Chip Select (S) input offers a built-in safety feature, as the S input is edge  
sensitive as well as level sensitive: after Power-up, the device does not become selected  
until a falling edge has first been detected on Chip Select (S). This ensures that Chip Select  
(S) must have been High, prior to going Low to start the first operation.  
The V rise time must not be faster than 1V/µs.  
CC  
4.1.3  
Internal device Reset  
In order to prevent inadvertent Write operations during Power-up, a Power On Reset (POR)  
circuit is included. At Power-up (continuous rise of V ), the device will not respond to any  
CC  
instruction until V has reached the Power On Reset threshold voltage (this threshold is  
CC  
lower than the minimum V operating voltage defined in Tables XX).  
CC  
When V has passed the POR threshold, the device is reset and in the following state:  
CC  
Standby Power mode  
deselected (at next Power-up, a falling edge is required on Chip Select (S) before any  
instructions can be started).  
not in the Hold Condition  
Status Register state:  
the Write Enable Latch (WEL) is reset to 0  
Write In Progress (WIP) is reset to 0. The SRWD, BP1 and BP0 bits of the Status  
Register are in the same state as when the power was last removed (they are non-  
volatile bits).  
11/44  
Operating features  
M95320, M95640, M95320-x, M95640-x  
4.1.4  
Power-down  
At Power-down (continuous decrease of V ), as soon as V drops from the normal  
CC  
CC  
operating voltage to below the Power On Reset threshold voltage, the device stops  
responding to any instruction sent to it.  
During Power-down, the device must be deselected and in Standby Power mode (that is  
there should be no internal Write cycle in progress). Chip Select (S) should be allowed to  
follow the voltage applied on V  
.
CC  
4.2  
Active Power and Standby Power modes  
When Chip Select (S) is Low, the device is selected, and in the Active Power mode. The  
device consumes I , as specified in Table 13 to Table 17.  
CC  
When Chip Select (S) is High, the device is deselected. If an Erase/Write cycle is not  
currently in progress, the device then goes in to the Standby Power mode, and the device  
consumption drops to I  
.
CC1  
4.2.1  
Hold condition  
The Hold (HOLD) signal is used to pause any serial communications with the device without  
resetting the clocking sequence.  
During the Hold condition, the Serial Data Output (Q) is high impedance, and Serial Data  
Input (D) and Serial Clock (C) are Don’t Care.  
To enter the Hold condition, the device must be selected, with Chip Select (S) Low.  
Normally, the device is kept selected, for the whole duration of the Hold condition.  
Deselecting the device while it is in the Hold condition, has the effect of resetting the state of  
the device, and this mechanism can be used if it is required to reset any processes that had  
been in progress.  
The Hold condition starts when the Hold (HOLD) signal is driven Low at the same time as  
Serial Clock (C) already being Low (as shown in Figure 5).  
The Hold condition ends when the Hold (HOLD) signal is driven High at the same time as  
Serial Clock (C) already being Low.  
Figure 5 also shows what happens if the rising and falling edges are not timed to coincide  
with Serial Clock (C) being Low.  
Figure 5.  
Hold condition activation  
C
HOLD  
Hold  
Hold  
Condition  
Condition  
AI02029D  
12/44  
M95320, M95640, M95320-x, M95640-x  
Operating features  
4.3  
Status Register  
Figure 6 shows the position of the Status Register in the control logic of the device. The  
Status Register contains a number of status and control bits that can be read or set (as  
appropriate) by specific instructions. See Section 6.3: Read Status Register (RDSR) for a  
detailed description of the Status Register bits.  
4.4  
Data protection and protocol control  
Non-volatile memory devices can be used in environments that are particularly noisy, and  
within applications that could experience problems if memory bytes are corrupted.  
Consequently, the device features the following data protection mechanisms:  
Write and Write Status Register instructions are checked that they consist of a number  
of clock pulses that is a multiple of eight, before they are accepted for execution.  
All instructions that modify data must be preceded by a Write Enable (WREN)  
instruction to set the Write Enable Latch (WEL) bit. This bit is returned to its reset state  
by the following events:  
Power-up  
Write Disable (WRDI) instruction completion  
Write Status Register (WRSR) instruction completion  
Write (WRITE) instruction completion  
The Block Protect (BP1, BP0) bits allow part of the memory to be configured as read-  
only. This is the Software Protected Mode (SPM).  
The Write Protect (W) signal allows the Block Protect (BP1, BP0) bits to be protected.  
This is the Hardware Protected Mode (HPM).  
For any instruction to be accepted, and executed, Chip Select (S) must be driven High after  
the rising edge of Serial Clock (C) for the last bit of the instruction, and before the next rising  
edge of Serial Clock (C).  
Two points need to be noted in the previous sentence:  
The ‘last bit of the instruction’ can be the eighth bit of the instruction code, or the eighth  
bit of a data byte, depending on the instruction (except for Read Status Register  
(RDSR) and Read (READ) instructions).  
The ‘next rising edge of Serial Clock (C)’ might (or might not) be the next bus  
transaction for some other device on the SPI bus.  
Table 2.  
Write-Protected block size  
Status Register Bits  
Array Addresses Protected  
Protected Block  
M95640, M95640-W,  
M95640-R, M95640-S  
M95320, M95320-W,  
M95320-R, M95320-S  
BP1  
BP0  
0
0
1
1
0
1
0
1
none  
none  
none  
Upper quarter  
Upper half  
1800h - 1FFFh  
1000h - 1FFFh  
0000h - 1FFFh  
0C00h - 0FFFh  
0800h - 0FFFh  
0000h - 0FFFh  
Whole memory  
13/44  
Memory organization  
M95320, M95640, M95320-x, M95640-x  
5
Memory organization  
The memory is organized as shown in Figure 6.  
Figure 6.  
Block diagram  
HOLD  
W
High Voltage  
Generator  
Control Logic  
S
C
D
Q
I/O Shift Register  
Address Register  
and Counter  
Data  
Register  
Status  
Register  
Size of the  
Read only  
EEPROM  
area  
1 Page  
X Decoder  
AI01272C  
14/44  
M95320, M95640, M95320-x, M95640-x  
Instructions  
6
Instructions  
Each instruction starts with a single-byte code, as summarized in Table 3.  
If an invalid instruction is sent (one not contained in <Blue>Table 3.), the device  
automatically deselects itself.  
Table 3.  
Instruction set  
Instruction  
Description  
Instruction Format  
WREN  
WRDI  
Write Enable  
0000 0110  
0000 0100  
0000 0101  
0000 0001  
0000 0011  
0000 0010  
Write Disable  
RDSR  
WRSR  
READ  
WRITE  
Read Status Register  
Write Status Register  
Read from Memory Array  
Write to Memory Array  
6.1  
Write Enable (WREN)  
The Write Enable Latch (WEL) bit must be set prior to each WRITE and WRSR instruction.  
The only way to do this is to send a Write Enable instruction to the device.  
As shown in Figure 7, to send this instruction to the device, Chip Select (S) is driven Low,  
and the bits of the instruction byte are shifted in, on Serial Data Input (D). The device then  
enters a wait state. It waits for a the device to be deselected, by Chip Select (S) being driven  
High.  
Figure 7.  
Write Enable (WREN) sequence  
S
0
1
2
3
4
5
6
7
C
D
Q
Instruction  
High Impedance  
AI02281E  
15/44  
Instructions  
M95320, M95640, M95320-x, M95640-x  
6.2  
Write Disable (WRDI)  
One way of resetting the Write Enable Latch (WEL) bit is to send a Write Disable instruction  
to the device.  
As shown in Figure 8, to send this instruction to the device, Chip Select (S) is driven Low,  
and the bits of the instruction byte are shifted in, on Serial Data Input (D).  
The device then enters a wait state. It waits for a the device to be deselected, by Chip Select  
(S) being driven High.  
The Write Enable Latch (WEL) bit, in fact, becomes reset by any of the following events:  
Power-up  
WRDI instruction execution  
WRSR instruction completion  
WRITE instruction completion.  
Figure 8.  
Write Disable (WRDI) sequence  
S
0
1
2
3
4
5
6
7
C
D
Q
Instruction  
High Impedance  
AI03750D  
16/44  
M95320, M95640, M95320-x, M95640-x  
Instructions  
6.3  
Read Status Register (RDSR)  
The Read Status Register (RDSR) instruction allows the Status Register to be read. The  
Status Register may be read at any time, even while a Write or Write Status Register cycle  
is in progress. When one of these cycles is in progress, it is recommended to check the  
Write In Progress (WIP) bit before sending a new instruction to the device. It is also possible  
to read the Status Register continuously, as shown in Figure 9.  
The Status Register format is shown in Table 4 and the status and control bits of the Status  
Register are as follows:  
6.3.1  
6.3.2  
6.3.3  
WIP bit  
The Write In Progress (WIP) bit indicates whether the memory is busy with a Write or Write  
Status Register cycle. When set to 1, such a cycle is in progress, when reset to 0 no such  
cycle is in progress.  
WEL bit  
The Write Enable Latch (WEL) bit indicates the status of the internal Write Enable Latch.  
When set to 1 the internal Write Enable Latch is set, when set to 0 the internal Write Enable  
Latch is reset and no Write or Write Status Register instruction is accepted.  
BP1, BP0 bits  
The Block Protect (BP1, BP0) bits are non-volatile. They define the size of the area to be  
software protected against Write instructions. These bits are written with the Write Status  
Register (WRSR) instruction. When one or both of the Block Protect (BP1, BP0) bits is set to  
1, the relevant memory area (as defined in Table 4) becomes protected against Write  
(WRITE) instructions. The Block Protect (BP1, BP0) bits can be written provided that the  
Hardware Protected mode has not been set.  
6.3.4  
SRWD bit  
The Status Register Write Disable (SRWD) bit is operated in conjunction with the Write  
Protect (W) signal. The Status Register Write Disable (SRWD) bit and Write Protect (W)  
signal allow the device to be put in the Hardware Protected mode (when the Status Register  
Write Disable (SRWD) bit is set to 1, and Write Protect (W) is driven Low). In this mode, the  
non-volatile bits of the Status Register (SRWD, BP1, BP0) become read-only bits and the  
Write Status Register (WRSR) instruction is no longer accepted for execution.  
Table 4.  
Status Register format  
b7  
b0  
SRWD  
0
0
0
BP1  
BP0  
WEL  
WIP  
Status Register Write Protect  
Block Protect Bits  
Write Enable Latch Bit  
Write In Progress Bit  
17/44  
Instructions  
M95320, M95640, M95320-x, M95640-x  
Figure 9.  
Read Status Register (RDSR) sequence  
S
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
C
D
Instruction  
Status Register Out  
Status Register Out  
High Impedance  
Q
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
MSB  
MSB  
AI02031E  
6.4  
Write Status Register (WRSR)  
The Write Status Register (WRSR) instruction allows new values to be written to the Status  
Register. Before it can be accepted, a Write Enable (WREN) instruction must previously  
have been executed. After the Write Enable (WREN) instruction has been decoded and  
executed, the device sets the Write Enable Latch (WEL).  
The Write Status Register (WRSR) instruction is entered by driving Chip Select (S) Low,  
followed by the instruction code and the data byte on Serial Data Input (D).  
The instruction sequence is shown in Figure 10.  
The Write Status Register (WRSR) instruction has no effect on b6, b5, b4, b1 and b0 of the  
Status Register. b6, b5 and b4 are always read as 0.  
Chip Select (S) must be driven High after the rising edge of Serial Clock (C) that latches in  
the eighth bit of the data byte, and before the next rising edge of Serial Clock (C). Otherwise,  
the Write Status Register (WRSR) instruction is not executed. As soon as Chip Select (S) is  
driven High, the self-timed Write Status Register cycle (whose duration is t ) is initiated.  
W
While the Write Status Register cycle is in progress, the Status Register may still be read to  
check the value of the Write In Progress (WIP) bit. The Write In Progress (WIP) bit is 1  
during the self-timed Write Status Register cycle, and is 0 when it is completed. When the  
cycle is completed, the Write Enable Latch (WEL) is reset.  
The Write Status Register (WRSR) instruction allows the user to change the values of the  
Block Protect (BP1, BP0) bits, to define the size of the area that is to be treated as read-  
only, as defined in Table 4.  
The Write Status Register (WRSR) instruction also allows the user to set or reset the Status  
Register Write Disable (SRWD) bit in accordance with the Write Protect (W) signal. The  
Status Register Write Disable (SRWD) bit and Write Protect (W) signal allow the device to  
be put in the Hardware Protected Mode (HPM). The Write Status Register (WRSR)  
instruction is not executed once the Hardware Protected Mode (HPM) is entered.  
The contents of the Status Register Write Disable (SRWD) and Block Protect (BP1, BP0)  
bits are frozen at their current values from just before the start of the execution of Write  
Status Register (WRSR) instruction. The new, updated, values take effect at the moment of  
completion of the execution of Write Status Register (WRSR) instruction.  
18/44  
M95320, M95640, M95320-x, M95640-x  
Instructions  
Table 5.  
Protection modes  
Memory Content  
W
Signal  
SRWD  
Bit  
Write Protection of the  
Mode  
Unprotected  
Status Register  
Protected Area(1)  
Area(1)  
1
0
0
0
Status Register is Writable  
(if the WREN instruction  
has set the WEL bit)  
Software  
Protected  
(SPM)  
Ready to accept  
Write instructions  
Write Protected  
The values in the BP1 and  
BP0 bits can be changed  
1
1
Status Register is  
Hardware write protected  
Hardware  
Protected  
(HPM)  
Ready to accept  
Write instructions  
0
1
Write Protected  
The values in the BP1 and  
BP0 bits cannot be  
changed  
1. As defined by the values in the Block Protect (BP1, BP0) bits of the Status Register, as shown in Table 2.  
The protection features of the device are summarized in Table 2.  
When the Status Register Write Disable (SRWD) bit of the Status Register is 0 (its initial  
delivery state), it is possible to write to the Status Register provided that the Write Enable  
Latch (WEL) bit has previously been set by a Write Enable (WREN) instruction, regardless  
of the whether Write Protect (W) is driven High or Low.  
When the Status Register Write Disable (SRWD) bit of the Status Register is set to 1, two  
cases need to be considered, depending on the state of Write Protect (W):  
If Write Protect (W) is driven High, it is possible to write to the Status Register provided  
that the Write Enable Latch (WEL) bit has previously been set by a Write Enable  
(WREN) instruction.  
If Write Protect (W) is driven Low, it is not possible to write to the Status Register even  
if the Write Enable Latch (WEL) bit has previously been set by a Write Enable (WREN)  
instruction. (Attempts to write to the Status Register are rejected, and are not accepted  
for execution). As a consequence, all the data bytes in the memory area that are  
software protected (SPM) by the Block Protect (BP1, BP0) bits of the Status Register,  
are also hardware protected against data modification.  
Regardless of the order of the two events, the Hardware Protected Mode (HPM) can be  
entered:  
by setting the Status Register Write Disable (SRWD) bit after driving Write Protect (W)  
Low  
or by driving Write Protect (W) Low after setting the Status Register Write Disable  
(SRWD) bit.  
The only way to exit the Hardware Protected Mode (HPM) once entered is to pull Write  
Protect (W) High.  
If Write Protect (W) is permanently tied High, the Hardware Protected Mode (HPM) can  
never be activated, and only the Software Protected Mode (SPM), using the Block Protect  
(BP1, BP0) bits of the Status Register, can be used.  
19/44  
Instructions  
M95320, M95640, M95320-x, M95640-x  
(1)  
Table 6.  
Device  
Address Bits  
Address range bits  
32 Kbit Devices  
64 Kbit Devices  
A12-A0  
A11-A0  
1. b15 to b13 are Don’t Care on the 64 Kbit devices.  
b15 to b12 are Don’t Care on the 32 Kbit devices.  
Figure 10. Write Status Register (WRSR) sequence  
S
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
C
Instruction  
Status  
Register In  
7
6
5
4
3
2
0
1
D
Q
High Impedance  
MSB  
AI02282D  
20/44  
M95320, M95640, M95320-x, M95640-x  
Instructions  
6.5  
Read from Memory Array (READ)  
As shown in Figure 11, to send this instruction to the device, Chip Select (S) is first driven  
Low. The bits of the instruction byte and address bytes are then shifted in, on Serial Data  
Input (D). The address is loaded into an internal address register, and the byte of data at  
that address is shifted out, on Serial Data Output (Q).  
If Chip Select (S) continues to be driven Low, the internal address register is automatically  
incremented, and the byte of data at the new address is shifted out.  
When the highest address is reached, the address counter rolls over to zero, allowing the  
Read cycle to be continued indefinitely. The whole memory can, therefore, be read with a  
single READ instruction.  
The Read cycle is terminated by driving Chip Select (S) High. The rising edge of the Chip  
Select (S) signal can occur at any time during the cycle.  
The first byte addressed can be any byte within any page.  
The instruction is not accepted, and is not executed, if a Write cycle is currently in progress.  
Figure 11. Read from Memory Array (READ) sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
C
Instruction  
16-Bit Address  
15 14 13  
MSB  
3
2
1
0
D
Q
Data Out 1  
Data Out 2  
High Impedance  
2
7
6
5
4
3
1
7
0
MSB  
AI01793D  
1. Depending on the memory size, as shown in Table 6, the most significant address bits are Don’t Care.  
21/44  
Instructions  
M95320, M95640, M95320-x, M95640-x  
6.6  
Write to Memory Array (WRITE)  
As shown in Figure 12, to send this instruction to the device, Chip Select (S) is first driven  
Low. The bits of the instruction byte, address byte, and at least one data byte are then  
shifted in, on Serial Data Input (D).  
The instruction is terminated by driving Chip Select (S) High at a byte boundary of the input  
data. In the case of Figure 12, this occurs after the eighth bit of the data byte has been  
latched in, indicating that the instruction is being used to write a single byte. The self-timed  
Write cycle starts, and continues for a period t  
(as specified in Table 18 to Table 22), at  
WC  
the end of which the Write in Progress (WIP) bit is reset to 0.  
If, though, Chip Select (S) continues to be driven Low, as shown in Figure 13, the next byte  
of input data is shifted in, so that more than a single byte, starting from the given address  
towards the end of the same page, can be written in a single internal Write cycle.  
Each time a new data byte is shifted in, the least significant bits of the internal address  
counter are incremented. If the number of data bytes sent to the device exceeds the page  
boundary, the internal address counter rolls over to the beginning of the page, and the  
previous data there are overwritten with the incoming data. (The page size of these devices  
is 32 bytes).  
The instruction is not accepted, and is not executed, under the following conditions:  
if the Write Enable Latch (WEL) bit has not been set to 1 (by executing a Write Enable  
instruction just before)  
if a Write cycle is already in progress  
if the device has not been deselected, by Chip Select (S) being driven High, at a byte  
boundary (after the eighth bit, b0, of the last data byte that has been latched in)  
if the addressed page is in the region protected by the Block Protect (BP1 and BP0)  
bits.  
Figure 12. Byte Write (WRITE) sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
C
Instruction  
16-Bit Address  
Data Byte  
15 14 13  
3
2
1
0
7
6
5
4
3
2
0
1
D
Q
High Impedance  
AI01795D  
1. Depending on the memory size, as shown in Table 6, the most significant address bits are Don’t Care.  
22/44  
M95320, M95640, M95320-x, M95640-x  
Instructions  
Figure 13. Page Write (WRITE) sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
C
Instruction  
16-Bit Address  
Data Byte 1  
15 14 13  
3
2
1
0
7
6
5
4
3
2
0
1
D
S
C
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
Data Byte 2  
Data Byte 3  
Data Byte N  
7
6
5
4
3
2
0
7
6
5
4
3
2
0
6
5
4
3
2
0
1
1
1
D
AI01796D  
1. Depending on the memory size, as shown in Table 6, the most significant address bits are Don’t Care.  
23/44  
Power-up and delivery state  
M95320, M95640, M95320-x, M95640-x  
7
Power-up and delivery state  
7.1  
Power-up state  
After Power-up, the device is in the following state:  
Standby Power mode  
deselected (after Power-up, a falling edge is required on Chip Select (S) before any  
instructions can be started).  
not in the Hold Condition  
the Write Enable Latch (WEL) is reset to 0  
Write In Progress (WIP) is reset to 0  
The SRWD, BP1 and BP0 bits of the Status Register are unchanged from the previous  
power-down (they are non-volatile bits).  
7.2  
Initial delivery state  
The device is delivered with the memory array set at all 1s (FFh). The Status Register Write  
Disable (SRWD) and Block Protect (BP1 and BP0) bits are initialized to 0.  
24/44  
M95320, M95640, M95320-x, M95640-x  
Maximum rating  
8
Maximum rating  
Stressing the device outside the ratings listed in Table 7 may cause permanent damage to  
the device. These are stress ratings only, and operation of the device at these, or any other  
conditions outside those indicated in the Operating sections of this specification, is not  
implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect  
device reliability. Refer also to the STMicroelectronics SURE Program and other relevant  
quality documents.  
Table 7.  
Symbol  
Absolute maximum ratings  
Parameter  
Min.  
Max.  
Unit  
TSTG  
TA  
Storage Temperature  
Ambient operating temperature  
Lead Temperature during Soldering  
Output Voltage  
–65  
–40  
150  
130  
°C  
°C  
°C  
V
TLEAD  
VO  
See note (1)  
–0.50  
–0.50  
–0.50  
VCC+0.6  
6.5  
VI  
Input Voltage  
V
VCC  
Supply Voltage  
6.5  
V
Electrostatic Discharge Voltage (Human Body  
model)(2)  
VESD  
–4000  
4000  
V
1. Compliant with JEDEC Std J-STD-020C (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®  
7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS)  
2002/95/EU  
2. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1=100pF, R1=1500, R2=500)  
25/44  
DC and AC parameters  
M95320, M95640, M95320-x, M95640-x  
9
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC Characteristic tables that  
follow are derived from tests performed under the Measurement Conditions summarized in  
the relevant tables. Designers should check that the operating conditions in their circuit  
match the measurement conditions when relying on the quoted parameters.  
Table 8.  
Symbol  
Operating conditions (M95320 and M95640)  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply Voltage  
4.5  
–40  
–40  
5.5  
85  
V
Ambient Operating Temperature (Device Grade 6)  
Ambient Operating Temperature (Device Grade 3)  
°C  
°C  
125  
Table 9.  
Symbol  
Operating conditions (M95320-W and M95640-W)  
Parameter Min.  
Max.  
Unit  
VCC  
TA  
Supply Voltage  
2.5  
–40  
–40  
5.5  
85  
V
Ambient Operating Temperature (Device Grade 6)  
Ambient Operating Temperature (Device Grade 3)  
°C  
°C  
125  
Table 10. Operating conditions (M95320-R and M95640-R)  
Symbol  
Parameter  
Min.(1)  
Max. (1)  
Unit  
VCC  
TA  
Supply Voltage  
Ambient Operating Temperature  
1.8  
5.5  
85  
V
–40  
°C  
1. This product is under development. For more information, please contact your nearest ST sales office.  
(1)  
Table 11. AC measurement conditions  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
CL  
Load Capacitance  
30  
pF  
ns  
V
Input Rise and Fall Times  
50  
Input Pulse Voltages  
0.2VCC to 0.8VCC  
0.3VCC to 0.7VCC  
Input and Output Timing Reference Voltages  
V
1. Output Hi-Z is defined as the point where data out is no longer driven.  
Figure 14. AC measurement I/O waveform  
Input Levels  
Input and Output  
Timing Reference Levels  
0.8V  
CC  
0.7V  
0.3V  
CC  
CC  
0.2V  
CC  
AI00825B  
26/44  
M95320, M95640, M95320-x, M95640-x  
DC and AC parameters  
(1)  
Table 12. Capacitance  
Symbol  
Parameter  
Test Condition  
Min.  
Max.  
Unit  
COUT  
CIN  
Output Capacitance (Q)  
Input Capacitance (D)  
VOUT = 0V  
VIN = 0V  
VIN = 0V  
8
8
6
pF  
pF  
pF  
Input Capacitance (other pins)  
1. Sampled only, not 100% tested, at TA=25°C and a frequency of 5MHz.  
Table 13. DC characteristics (M95320 and M95640, device grade 6)  
Symbol  
Parameter  
Test Condition  
Min.  
Max.  
Unit  
ILI  
Input Leakage Current  
VIN = VSS or VCC  
± 2  
± 2  
µA  
µA  
Output Leakage  
Current  
ILO  
ICC  
S = VCC, VOUT = VSS or VCC  
C = 0.1VCC/0.9VCC at 10MHz,  
Supply Current  
5
2
mA  
µA  
VCC = 5V, Q = open  
Supply Current  
(Standby)  
S = VCC, VCC = 5V,  
VIN = VSS or VCC  
ICC1  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.45 0.3VCC  
0.7VCC VCC+1  
0.4  
V
V
V
V
(1)  
VOL  
IOL = 2 mA, VCC = 5V  
IOH = –2 mA, VCC = 5V  
(1)  
VOH  
0.8VCC  
1. For all 5V range devices, the device meets the output requirements for both TTL and CMOS standards.  
Table 14. DC characteristics (M95320 and M95640, device grade 3)  
Symbol  
Parameter  
Test Condition  
Min.  
Max.  
Unit  
ILI  
Input Leakage Current  
Output Leakage Current  
VIN = VSS or VCC  
± 2  
± 2  
µA  
µA  
ILO  
S = VCC, VOUT = VSS or VCC  
C = 0.1VCC/0.9VCC at 5MHz,  
VCC = 5V, Q = open  
ICC  
Supply Current  
4
5
mA  
µA  
Supply Current  
(Standby)  
S = VCC, VCC = 5V,  
ICC1  
VIN = VSS or VCC  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.45 0.3 VCC  
0.7 VCC VCC+1  
0.4  
V
V
V
V
(1)  
VOL  
IOL = 2mA, VCC = 5V  
IOH = –2mA, VCC = 5V  
(1)  
VOH  
0.8 VCC  
1. For all 5V range devices, the device meets the output requirements for both TTL and CMOS standards.  
27/44  
DC and AC parameters  
M95320, M95640, M95320-x, M95640-x  
Table 15. DC characteristics (M95320-W and M95640-W, device grade 6)  
Symbol  
Parameter  
Test Condition  
Min.  
Max.  
Unit  
ILI  
Input Leakage Current  
Output Leakage Current  
VIN = VSS or VCC  
± 2  
± 2  
µA  
µA  
ILO  
S = VCC, VOUT = VSS or VCC  
C = 0.1VCC/0.9VCC at 5MHz,  
VCC = 2.5V, Q = open  
ICC  
Supply Current  
3
1
mA  
µA  
Supply Current  
(Standby)  
S = VCC, VCC = 2.5V  
VIN = VSS or VCC  
ICC1  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
–0.45 0.3VCC  
0.7VCC VCC+1  
V
V
IOL = 1.5mA, VCC = 2.5V or  
IOL = 2mA, VCC = 5.5V  
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
0.4  
V
V
IOH = –0.4mA, VCC = 2.5V or  
IOH = –2mA, VCC = 5.5V  
0.8VCC  
Table 16. DC characteristics (M95320-W and M95640-W, device grade 3)  
Symbol  
Parameter  
Test Condition  
Min.  
Max. Unit  
ILI  
Input Leakage Current  
Output Leakage Current  
VIN = VSS or VCC  
± 2  
± 2  
µA  
µA  
ILO  
S = VCC, VOUT = VSS or VCC  
C = 0.1VCC/0.9VCC at 5MHz,  
VCC = 2.5V, Q = open  
ICC  
Supply Current  
3
2
mA  
ICC1  
VIL  
Supply Current (Standby) S = VCC, VCC = 2.5V, VIN = VSS or VCC  
µA  
V
Input Low Voltage  
Input High Voltage  
–0.45 0.3VCC  
0.7VCC VCC+1  
0.4  
VIH  
V
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
IOL = 1.5mA, VCC = 2.5V  
IOH = –0.4mA, VCC = 2.5V  
V
0.8VCC  
V
28/44  
M95320, M95640, M95320-x, M95640-x  
DC and AC parameters  
Min.(1) Max.(1) Unit  
Table 17. DC characteristics (M95320-R and M95640-R)  
Symbol  
Parameter  
Test Condition  
ILI  
Input Leakage Current  
Output Leakage Current  
VIN = VSS or VCC  
± 1  
± 1  
µA  
µA  
ILO  
S = VCC, VOUT = VSS or VCC  
C = 0.1VCC/0.9VCC at max clock  
frequency, 1.8V < VCC = 2.5V,  
Q = open  
ICC  
Supply Current  
3
1
mA  
µA  
S = VCC, VIN = VSS or VCC  
,
ICC1  
Supply Current (Standby)  
1.8V < VCC = 2.5V  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.45 0.3 VCC  
0.7 VCC VCC+1  
0.3  
V
V
V
V
VOL  
VOH  
IOL = 0.15 mA, VCC = 1.8 V  
IOH = –0.1 mA, VCC = 1.8 V  
0.8 VCC  
1. This product is under qualification. For more information, please contact your nearest ST sales office.  
29/44  
DC and AC parameters  
M95320, M95640, M95320-x, M95640-x  
Table 18. AC characteristics (M95320 and M95640, device grade 6)  
Test conditions specified in Table 11 and Table 8  
Symbol  
Alt.  
Parameter  
Min.  
Max.  
Unit  
fC  
fSCK Clock Frequency  
D.C.  
15  
15  
40  
25  
15  
40  
40  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tSLCH  
tSHCH  
tSHSL  
tCHSH  
tCHSL  
tCSS1 S Active Setup Time  
tCSS2 S Not Active Setup Time  
tCS  
S Deselect Time  
tCSH S Active Hold Time  
S Not Active Hold Time  
(1)  
tCH  
tCLH  
tCLL  
tRC  
Clock High Time  
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
(1)  
tCL  
(2)  
tCLCH  
1
1
(2)  
tCHCL  
tFC  
tDVCH  
tCHDX  
tHHCH  
tHLCH  
tCLHL  
tCLHH  
tDSU Data In Setup Time  
15  
15  
15  
20  
0
tDH  
Data In Hold Time  
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock Low Set-up Time before HOLD Active  
Clock Low Set-up Time before HOLD not Active  
Output Disable Time  
0
(2)  
tSHQZ  
tDIS  
tV  
25  
25  
tCLQV  
tCLQX  
Clock Low to Output Valid  
Output Hold Time  
tHO  
tRO  
tFO  
tLZ  
0
(2)  
tQLQH  
Output Rise Time  
20  
20  
25  
25  
5
(2)  
tQHQL  
Output Fall Time  
tHHQV  
HOLD High to Output Valid  
HOLD Low to Output High-Z  
Write Time  
(2)  
tHLQZ  
tHZ  
tWC  
tW  
1. tCH + tCL must never be lower than the shortest possible clock period, 1/fC(max).  
2. Value guaranteed by characterization, not 100% tested in production.  
30/44  
M95320, M95640, M95320-x, M95640-x  
DC and AC parameters  
Table 19. AC characteristics (M95320 and M95640, device grade 3)  
Test conditions specified in Table 11 and Table 8  
Symbol  
Alt.  
Parameter  
Min.  
Max.  
Unit  
fC  
fSCK Clock Frequency  
D.C.  
90  
5
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tSLCH  
tSHCH  
tSHSL  
tCHSH  
tCHSL  
tCSS1 S Active Setup Time  
tCSS2 S Not Active Setup Time  
tCS S Deselect Time  
90  
100  
90  
tCSH S Active Hold Time  
S Not Active Hold Time  
tCLH Clock High Time  
tCLL Clock Low Time  
90  
(1)  
tCH  
90  
(1)  
tCL  
90  
(2)  
tCLCH  
tRC  
tFC  
Clock Rise Time  
Clock Fall Time  
1
1
(2)  
tCHCL  
tDVCH  
tCHDX  
tHHCH  
tHLCH  
tCLHL  
tCLHH  
tDSU Data In Setup Time  
20  
30  
70  
40  
0
tDH  
Data In Hold Time  
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock Low Set-up Time before HOLD Active  
Clock Low Set-up Time before HOLD not Active  
0
(2)  
tSHQZ  
tDIS Output Disable Time  
100  
60  
tCLQV  
tCLQX  
tV  
Clock Low to Output Valid  
Output Hold Time  
tHO  
tRO  
tFO  
tLZ  
0
(2)  
tQLQH  
Output Rise Time  
50  
50  
50  
100  
5
(2)  
tQHQL  
Output Fall Time  
tHHQV  
HOLD High to Output Valid  
HOLD Low to Output High-Z  
(2)  
tHLQZ  
tHZ  
tW  
tWC Write Time  
1. tCH + tCL must never be lower than the shortest possible clock period, 1/fC(max).  
2. Value guaranteed by characterization, not 100% tested in production.  
31/44  
DC and AC parameters  
M95320, M95640, M95320-x, M95640-x  
Table 20. AC characteristics (M95320-W and M95640-W, device grade 6)  
Test conditions specified in Table 11 and Table 9  
Current  
Product  
New Product  
Version(2)  
Version(1)  
Parameter  
Symbol Alt.  
Unit  
Min. Max. Min. Max.  
fC  
fSCK Clock Frequency  
D.C.  
90  
5
D.C.  
30  
30  
40  
30  
30  
42  
40  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
tSLCH  
tSHCH  
tSHSL  
tCHSH  
tCHSL  
tCSS1 S Active Setup Time  
tCSS2 S Not Active Setup Time  
tCS S Deselect Time  
tCSH S Active Hold Time  
S Not Active Hold Time  
tCLH Clock High Time  
tCLL Clock Low Time  
tRC Clock Rise Time  
tFC Clock Fall Time  
90  
100  
90  
90  
(3)  
tCH  
90  
(3)  
tCL  
90  
(4)  
tCLCH  
1
1
2
2
(4)  
tCHCL  
tDVCH  
tCHDX  
tHHCH  
tHLCH  
tCLHL  
tDSU Data In Setup Time  
tDH Data In Hold Time  
20  
30  
10  
10  
30  
30  
0
Clock Low Hold Time after HOLD not Active 70  
Clock Low Hold Time after HOLD Active  
Clock Low Set-up Time before HOLD Active  
40  
0
Clock Low Set-up Time before HOLD not  
Active  
tCLHH  
0
0
ns  
(4)  
tSHQZ  
tCLQV  
tCLQX  
tDIS Output Disable Time  
100  
60  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tV  
Clock Low to Output Valid  
tHO Output Hold Time  
tRO Output Rise Time  
tFO Output Fall Time  
0
0
(4)  
tQLQH  
50  
50  
50  
100  
5
40  
40  
40  
40  
5
(4)  
tQHQL  
tHHQV  
tLZ HOLD High to Output Valid  
tHZ HOLD Low to Output High-Z  
tWC Write Time  
(4)  
tHLQZ  
tW  
1. Current product version is identified by Process Identification letter ‘V’’.  
2. New product version is identified by Process Identification letter ‘P’. Please contact your nearest ST sales  
office for details (PCN MPG-NVM/05/1315 and PCN MPG-NVM/05/1191)  
3. tCH + tCL must never be lower than the shortest possible clock period, 1/fC(max).  
4. Value guaranteed by characterization, not 100% tested in production.  
32/44  
M95320, M95640, M95320-x, M95640-x  
DC and AC parameters  
Table 21. AC characteristics (M95320-W and M95640-W, device grade 3)  
Test conditions specified in Table 11 and Table 9  
Symbol  
Alt.  
Parameter  
Min.  
Max.  
Unit  
fC  
fSCK Clock Frequency  
D.C.  
90  
5
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tSLCH  
tSHCH  
tSHSL  
tCHSH  
tCHSL  
tCSS1 S Active Setup Time  
tCSS2 S Not Active Setup Time  
tCS S Deselect Time  
tCSH S Active Hold Time  
S Not Active Hold Time  
tCLH Clock High Time  
tCLL Clock Low Time  
90  
100  
90  
90  
(1)  
tCH  
90  
(1)  
tCL  
90  
(2)  
tCLCH  
tRC Clock Rise Time  
1
1
(2)  
tCHCL  
tFC  
Clock Fall Time  
tDVCH  
tCHDX  
tHHCH  
tHLCH  
tCLHL  
tCLHH  
tDSU Data In Setup Time  
tDH Data In Hold Time  
20  
30  
70  
40  
0
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock Low Set-up Time before HOLD Active  
Clock Low Set-up Time before HOLD not Active  
tDIS Output Disable Time  
0
(2)  
tSHQZ  
100  
60  
tCLQV  
tCLQX  
tV  
Clock Low to Output Valid  
tHO Output Hold Time  
tRO Output Rise Time  
tFO Output Fall Time  
0
(2)  
tQLQH  
50  
50  
50  
100  
5
(2)  
tQHQL  
tHHQV  
tLZ  
HOLD High to Output Valid  
HOLD Low to Output High-Z  
(2)  
tHLQZ  
tHZ  
tW  
tWC Write Time  
1. tCH + tCL must never be lower than the shortest possible clock period, 1/fC(max).  
2. Value guaranteed by characterization, not 100% tested in production.  
33/44  
DC and AC parameters  
M95320, M95640, M95320-x, M95640-x  
Table 22. AC characteristics (M95320-R)  
Test conditions specified in Table 11 and Table 10  
Symbol  
Alt.  
Parameter  
Min.  
D.C.  
Max.  
Unit  
fC  
fSCK  
tCSS1  
tCSS2  
tCS  
Clock Frequency  
5
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
0
tSLCH  
tSHCH  
tSHSL  
tCHSH  
tCHSL  
S Active Setup Time  
60  
60  
90  
60  
60  
90  
90  
S Not Active Setup Time  
S Deselect Time  
tCSH  
S Active Hold Time  
S Not Active Hold Time  
Clock High Time  
(1)  
tCH  
tCLH  
tCLL  
tRC  
(1)  
tCL  
Clock Low Time  
(2)  
tCLCH  
Clock Rise Time  
2
2
(2)  
tCHCL  
tFC  
Clock Fall Time  
tDVCH  
tCHDX  
tHHCH  
tHLCH  
tCLHL  
tDSU  
tDH  
Data In Setup Time  
20  
20  
60  
60  
0
Data In Hold Time  
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock Low Set-up Time before HOLD Active  
Clock Low Set-up Time before HOLD not  
Active  
tCLHH  
0
0
(2)  
tSHQZ  
tDIS  
tV  
Output Disable Time  
Clock Low to Output Valid  
Output Hold Time  
80  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tCLQV  
tCLQX  
tHO  
tRO  
tFO  
tLZ  
0
(2)  
tQLQH  
Output Rise Time  
80  
80  
80  
80  
10  
(2)  
tQHQL  
Output Fall Time  
tHHQV  
HOLD High to Output Valid  
HOLD Low to Output High-Z  
Write Time  
(2)  
tHLQZ  
tHZ  
tWC  
tW  
1. tCH + tCL must never be lower than the shortest possible clock period, 1/fC(max).  
2. Value guaranteed by characterization, not 100% tested in production.  
34/44  
M95320, M95640, M95320-x, M95640-x  
DC and AC parameters  
Table 23. AC characteristics (M95640-R)  
Test conditions specified in Table 11 and Table 9  
Symbol  
Alt.  
Parameter  
Min.  
Max.  
Unit  
fC  
fSCK Clock Frequency  
D.C.  
150  
150  
200  
150  
150  
200  
200  
2
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
0
tSLCH  
tSHCH  
tSHSL  
tCHSH  
tCHSL  
tCSS1 S Active Setup Time  
tCSS2 S Not Active Setup Time  
tCS  
S Deselect Time  
tCSH S Active Hold Time  
S Not Active Hold Time  
tCLH Clock High Time  
tCLL Clock Low Time  
(1)  
tCH  
(3)  
tCL  
(2)  
tCLCH  
tRC  
tFC  
Clock Rise Time  
Clock Fall Time  
2
2
(4)  
tCHCL  
tDVCH  
tCHDX  
tHHCH  
tHLCH  
tCLHL  
tCLHH  
tDSU Data In Setup Time  
50  
50  
150  
150  
0
tDH  
Data In Hold Time  
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock Low Set-up Time before HOLD Active  
Clock Low Set-up Time before HOLD not Active  
Output Disable Time  
0
0
(4)  
tSHQZ  
tDIS  
tV  
200  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tCLQV  
tCLQX  
Clock Low to Output Valid  
Output Hold Time  
tHO  
tRO  
tFO  
tLZ  
0
(4)  
tQLQH  
Output Rise Time  
200  
200  
200  
200  
10  
(4)  
tQHQL  
Output Fall Time  
tHHQV  
HOLD High to Output Valid  
HOLD Low to Output High-Z  
Write Time  
(4)  
tHLQZ  
tHZ  
tWC  
tW  
1. tCH + tCL must never be lower than the shortest possible clock period, 1/fC(max).  
2. Value guaranteed by characterization, not 100% tested in production.  
35/44  
DC and AC parameters  
M95320, M95640, M95320-x, M95640-x  
Figure 15. Serial Input timing  
tSHSL  
S
C
tCHSL  
tSLCH  
tCHSH  
tSHCH  
tDVCH  
tCHCL  
tCHDX  
tCLCH  
MSB IN  
LSB IN  
D
Q
High Impedance  
AI01447C  
Figure 16. Hold timing  
S
tHLCH  
tCLHL  
tHHCH  
C
tCLHH  
tHHQV  
tHLQZ  
Q
D
HOLD  
AI01448B  
36/44  
M95320, M95640, M95320-x, M95640-x  
DC and AC parameters  
Figure 17. Output timing  
S
tCH  
C
tCLQV  
tCLQX  
tCLQV  
tCL  
tSHQZ  
tCLQX  
LSB OUT  
Q
tQLQH  
tQHQL  
ADDR.  
LSB IN  
D
AI01449e  
37/44  
Package mechanical  
M95320, M95640, M95320-x, M95640-x  
10  
Package mechanical  
Figure 18. SO8N – 8 lead Plastic Small Outline, 150 mils body width, package outline  
h x 45˚  
A2  
A
c
ccc  
b
e
0.25 mm  
D
GAUGE PLANE  
k
8
1
E1  
E
L
A1  
L1  
SO-A  
1. Drawing is not to scale.  
Table 24. SO8N – 8 lead Plastic Small Outline, 150 mils body width, package  
mechanical data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.75  
0.25  
0.069  
0.010  
0.10  
1.25  
0.28  
0.17  
0.004  
0.049  
0.011  
0.007  
0.48  
0.23  
0.10  
5.00  
6.20  
4.00  
0.019  
0.009  
0.004  
0.197  
0.244  
0.157  
c
ccc  
D
4.90  
6.00  
3.90  
1.27  
4.80  
5.80  
3.80  
0.193  
0.236  
0.154  
0.050  
0.189  
0.228  
0.150  
E
E1  
e
h
0.25  
0°  
0.50  
8°  
0.010  
0°  
0.020  
8°  
k
L
0.40  
1.27  
0.016  
0.050  
L1  
1.04  
0.041  
38/44  
M95320, M95640, M95320-x, M95640-x  
Package mechanical  
Figure 19. TSSOP8 – 8 lead Thin Shrink Small Outline, package outline  
D
8
5
c
E1  
E
1
4
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8AM  
1. Drawing is not to scale.  
Table 25. TSSOP8 – 8 lead Thin Shrink Small Outline, package mechanical data  
millimeters  
Min.  
inches  
Min.  
Symbol  
Typ.  
Max.  
Typ.  
Max.  
A
A1  
A2  
b
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
0.050  
0.800  
0.190  
0.090  
0.0020  
0.0315  
0.0075  
0.0035  
1.000  
0.0394  
c
CP  
D
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
2.900  
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
0.1142  
e
E
6.200  
4.300  
0.450  
6.600  
4.500  
0.750  
0.2441  
0.1693  
0.0177  
0.2598  
0.1772  
0.0295  
E1  
L
L1  
α
0°  
8°  
0°  
8°  
39/44  
Package mechanical  
M95320, M95640, M95320-x, M95640-x  
Figure 20. MLP8 - 8-lead Ultra thin Fine pitch Dual Flat No Lead, package outline  
e
b
D
L1  
L3  
E
E2  
L
A
D2  
ddd  
A1  
UFDFPN-01  
1. Drawing is not to scale.  
Table 26. MLP8 - 8-lead Ultra thin Fine pitch Dual Flat No Lead, package  
mechanical data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
b
0.55  
0.50  
0.00  
0.20  
0.60  
0.05  
0.30  
0.022  
0.020  
0.000  
0.008  
0.024  
0.002  
0.012  
0.25  
2.00  
0.010  
0.079  
D
D2  
ddd  
E
1.55  
1.65  
0.05  
0.061  
0.065  
0.002  
3.00  
0.118  
E2  
e
0.15  
0.25  
0.006  
0.010  
0.50  
0.45  
0.020  
0.018  
L
0.40  
0.50  
0.15  
0.016  
0.020  
0.006  
L1  
L3  
N
0.30  
8
0.012  
8
40/44  
M95320, M95640, M95320-x, M95640-x  
Part numbering  
11  
Part numbering  
Table 27. Ordering information scheme  
Example:  
M95640  
W MN 6  
T
P
/B  
Device Type  
M95 = SPI serial access EEPROM  
Device Function  
640 = 64 Kbit (8192 x 8)  
320 = 32 Kbit (4096 x 8)  
Operating Voltage  
blank = VCC = 4.5 to 5.5V  
W = VCC = 2.5 to 5.5V  
R = VCC = 1.8 to 5.5V  
Package  
MN = SO8 (150 mil width)  
DW = TSSOP8 (169 mil width)  
MB = MLP8 (2x3 mm)  
Device Grade  
6 = Industrial temperature range, –40 to 85 °C.  
Device tested with standard test flow  
3 = Device tested with High Reliability Certified Flow(1)Automotive  
temperature range (–40 to 125 °C)  
Option  
blank = Standard Packing  
T = Tape and Reel Packing  
Plating Technology  
blank = Standard SnPb plating  
P or G = ECOPACK (RoHS compliant)  
Process letter(2)  
/B = DP26% Rsst  
/P = DP26% Chartered  
1. ST strongly recommends the use of the Automotive Grade devices for use in an automotive environment.  
The High Reliability Certified Flow (HRCF) is described in the quality note QNEE9801. Please ask your  
nearest ST sales office for a copy.  
2. The Process letter only concerns Grade-3 devices.  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST Sales Office.  
The category of second-Level Interconnect is marked on the package and on the inner box  
label, in compliance with JEDEC Standard JESD97. The maximum ratings related to  
soldering conditions are also marked on the inner box label.  
41/44  
Revision history  
M95320, M95640, M95320-x, M95640-x  
12  
Revision history  
Table 28. Document revision history  
Date  
Revision  
Changes  
Human Body Model meets JEDEC std (Table 2). Minor adjustments on pp  
1,11,15. New clause on p7. Addition of TSSOP8 package on pp 1, 2,  
Ordering Info, Mechanical Data  
13-Jul-2000  
1.2  
Test condition added ILI and ILO, and specification of tDLDH and tDHDL  
removed.  
tCLCH, tCHCL, tDLDH and tDHDL changed to 50ns for the -V range.  
“-V” Voltage range changed to “2.7V to 3.6V” throughout.  
Maximum lead soldering time and temperature conditions updated.  
Instruction sequence illustrations updated.  
16-Mar-2001  
1.3  
“Bus Master and Memory Devices on the SPI bus” illustration updated.  
Package Mechanical data updated  
19-Jul-2001  
06-Dec-2001  
18-Dec-2001  
1.4  
1.5  
2.0  
M95160 and M95080 devices removed to their own data sheet  
Endurance increased to 1M write/erase cycles  
Instruction sequence illustrations updated  
Document reformatted using the new template. No parameters changed.  
Announcement made of planned upgrade to 10MHz clock for the 5V, 40  
to 85°C, range.  
08-Feb-2002  
18-Dec-2002  
2.1  
2.2  
Endurance set to 100K write/erase cycles  
10MHz, 5MHz, 2MHz clock; 5ms, 10ms Write Time; 100K, 1M erase/write  
cycles distinguished on front page, and in the DC and AC Characteristics  
tables  
Process indentification letter corrected in footnote to AC Characteristics  
table for temp. range 3  
26-Mar-2003  
26-Jun-2003  
2.3  
2.4  
-S voltage range upgraded by removing it and inserting -R voltage range  
in its place  
15-Oct-2003  
21-Nov-2003  
28-Jan-2004  
3.0  
3.1  
4.0  
Table of contents, and Pb-free options added. VIL(min) improved to -0.45V  
VI(min) and VO(min) corrected (improved) to -0.45V  
TSSOP8 connections added to DIP and SO connections  
42/44  
M95320, M95640, M95320-x, M95640-x  
Revision history  
Table 28. Document revision history (continued)  
Date  
Revision  
Changes  
M95320-S and M95640-S root part numbers (1.65 to 5.5V Supply) and  
related characteristics added.  
20MHz Clock rate added.TSSOP14 package removed and MLP8 package  
added.  
Description of Power On Reset: VCC Lock-Out Write Protect updated.  
Product List summary table added. Absolute Maximum Ratings for  
VIO(min) and VCC(min) improved. Soldering temperature information  
clarified for RoHS compliant devices. Device Grade 3 clarified, with  
reference to HRCF and automotive environments. AEC-Q100-002  
compliance. tCHHL(min) and tCHHH(min) is tCH for products under “S”  
24-May-2005  
5.0  
process. tHHQX corrected to tHHQV  
.
Figure 16: Hold timing updated.  
Document converted to new ST template.  
Packages are ECOPACK® compliant. PDIP package removed.  
SO8N package specifications updated (see Table 24 and Figure 18).  
M95640-S and M95320-S part numbers removed (DC and AC parameters  
updated accordingly).  
How to identify previous, current and new products by the Process  
identification letter Table removed.  
Figure 4: SPI modes supported updated and Note 2 added. First three  
paragraphs of Section 4: Operating features replaced by Section 4.1:  
Supply voltage (VCC).  
07-Jul-2006  
6
TA added to Table 7: Absolute maximum ratings. ICC and ICC1 updated in  
Table 13, Table 14, Table 15 and Table 17. VOL and VOH updated in  
Table 15. ICC updated in Table 16. Data in Table 17 is no longer  
preliminary.  
tCH updated in Table 20. Table 23: AC characteristics (M95640-R) added.  
Timing line of tSHQZ modified in Figure 17: Output timing.  
Process letter added to Table 27: Ordering information scheme, Note 2  
removed. Note 2 removed from Figure 2.  
43/44  
M95320, M95640, M95320-x, M95640-x  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
44/44  

相关型号:

M95320-WMN3TG/P

32 Kbit and 64 Kbit Serial SPI bus EEPROMs with high speed clock
STMICROELECTR

M95320-WMN3TG/PC

32 Kbit serial SPI bus EEPROMs with high-speed clock
STMICROELECTR

M95320-WMN3TP

64Kbit and 32Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR

M95320-WMN3TP/B

32 Kbit and 64 Kbit Serial SPI bus EEPROMs with high speed clock
STMICROELECTR

M95320-WMN3TP/P

32 Kbit and 64 Kbit Serial SPI bus EEPROMs with high speed clock
STMICROELECTR

M95320-WMN3TP/PB

暂无描述
STMICROELECTR

M95320-WMN3TP/PC

32 Kbit serial SPI bus EEPROMs with high-speed clock
STMICROELECTR

M95320-WMN4TG/K

4KX8 SPI BUS SERIAL EEPROM, PDSO8, 0.150 INCH, HALOGEN FREE AND ROHS COMPLIANT, PLASTIC, SON-8
STMICROELECTR

M95320-WMN5

4KX8 SPI BUS SERIAL EEPROM, PDSO8, 0.150 INCH, PLASTIC, SO-8
STMICROELECTR

M95320-WMN5T

64/32/16/8 Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR

M95320-WMN6

64Kbit and 32Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR

M95320-WMN6G

64Kbit and 32Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR