M95512WMN3P [STMICROELECTRONICS]

512 Kbit Serial SPI bus EEPROMtm with high speed clock; 512 Kbit的串行SPI总线EEPROMTM高速时钟
M95512WMN3P
型号: M95512WMN3P
厂家: ST    ST
描述:

512 Kbit Serial SPI bus EEPROMtm with high speed clock
512 Kbit的串行SPI总线EEPROMTM高速时钟

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟
文件: 总39页 (文件大小:341K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M95512-W  
M95512-R  
512 Kbit Serial SPI bus EEPROM  
with high speed clock  
Features  
Compatible with SPI bus serial interface  
(Positive clock SPI modes)  
Single supply voltage:  
– 2.5 V to 5.5 V for M95512-W  
– 1.8 V to 5.5 V for M95512-R  
High speed  
SO8 (MN)  
150 mils width  
– 5 MHz clock rate  
– 5 ms Write time  
Status Register  
Hardware Protection of the Status Register  
Byte and Page Write (up to 128 bytes)  
Self-timed programming cycle  
Adjustable size read-only EEPROM area  
Enhanced ESD Protection  
TSSOP8 (DW)  
169 mils width  
More than 1 000 000 Write cycles  
More than 40-year data retention  
Packages  
®
– ECOPACK (RoHS compliant)  
July 2008  
Rev 9  
1/39  
www.st.com  
1
Contents  
M95512-W, M95512-R  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
Serial Data Output (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Serial Data Input (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Serial Clock (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Chip Select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Hold (HOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Write Protect (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
VCC supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
VSS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3
4
Connecting to the SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1  
SPI modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Operating features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.1  
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
Operating supply voltage V  
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.2  
4.3  
4.4  
4.5  
Active Power and Standby Power modes . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Hold condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Data Protection and Protocol control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5
6
Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.1  
6.2  
6.3  
Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write Disable (WRDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Read Status Register (RDSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.3.1  
WIP bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2/39  
M95512-W, M95512-R  
6.3.2  
Contents  
WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SRWD bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.3.3  
6.3.4  
6.4  
6.5  
6.6  
Write Status Register (WRSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read from Memory Array (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Write to Memory Array (WRITE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
7
8
ECC (Error Correction Code) and Write cycling . . . . . . . . . . . . . . . . . . 25  
Power-up and delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
8.1  
8.2  
Power-up state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
9
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
10  
11  
12  
13  
3/39  
List of tables  
M95512-W, M95512-R  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Write-Protected block size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Status Register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Protection modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Operating conditions (M95512-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Operating conditions (M95512-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DC characteristics (M95512-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
DC characteristics (M95128-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
AC characteristics (M95512-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
AC characteristics (M95512-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
SO8N – 8 lead plastic small outline, 150 mils body width, package  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
TSSOP8 – 8 lead thin shrink small outline, package mechanical data. . . . . . . . . . . . . . . . 34  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Available M95512x products (package, voltage range, temperature grade) . . . . . . . . . . . 36  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
4/39  
M95512-W, M95512-R  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
SO and TSSOP connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Bus master and memory devices on the SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SPI modes supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Hold condition activation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write Enable (WREN) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write Disable (WRDI) sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Read Status Register (RDSR) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 10. Write Status Register (WRSR) sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 11. Read from Memory Array (READ) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 12. Byte Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 13. Page Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 14. AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 15. Serial input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 16. Hold timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 17. Serial output timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 18. SO8N – 8 lead plastic small outline, 150 mils body width, package outline . . . . . . . . . . . . 33  
Figure 19. TSSOP8 – 8 lead thin shrink small outline, package outline . . . . . . . . . . . . . . . . . . . . . . . 34  
5/39  
Description  
M95512-W, M95512-R  
1
Description  
These electrically erasable programmable memory (EEPROM) devices are accessed by a  
high speed SPI-compatible bus. The memory array is organized as 65536 x 8 bit.  
The device is accessed by a simple serial interface that is SPI-compatible. The bus signals  
are C, D and Q, as shown in Table 1 and Figure 1.  
The device is selected when Chip Select (S) is taken low. Communications with the device  
can be interrupted using Hold (HOLD).  
Figure 1.  
Logic diagram  
V
CC  
D
C
S
Q
M95xxx  
W
HOLD  
V
SS  
AI01789C  
Table 1.  
Signal names  
Signal name  
Function  
Direction  
C
Serial Clock  
Serial Data Input  
Serial Data Output  
Chip Select  
Write Protect  
Hold  
Input  
Input  
Output  
Input  
Input  
Input  
D
Q
S
W
HOLD  
VCC  
VSS  
Supply voltage  
Ground  
6/39  
M95512-W, M95512-R  
Figure 2.  
Description  
SO and TSSOP connections  
M95xxx  
S
Q
1
8
V
CC  
HOLD  
2
3
4
7
W
6
5
C
D
V
SS  
AI01790D  
1. See Section 11: Package mechanical data for package dimensions, and how to identify pin-1.  
7/39  
Signal description  
M95512-W, M95512-R  
2
Signal description  
During all operations, V must be held stable and within the specified valid range:  
CC  
V
(min) to V (max).  
CC  
CC  
All of the input and output signals must be held high or low (according to voltages of V ,  
IH  
V
, V or V , as specified in Table 11 and Table 12). These signals are described next.  
OH  
IL OL  
2.1  
2.2  
Serial Data Output (Q)  
This output signal is used to transfer data serially out of the device. Data is shifted out on the  
falling edge of Serial Clock (C).  
Serial Data Input (D)  
This input signal is used to transfer data serially into the device. It receives instructions,  
addresses, and the data to be written. Values are latched on the rising edge of Serial Clock  
(C).  
2.3  
2.4  
Serial Clock (C)  
This input signal provides the timing of the serial interface. Instructions, addresses, or data  
present at Serial Data Input (D) are latched on the rising edge of Serial Clock (C). Data on  
Serial Data Output (Q) changes after the falling edge of Serial Clock (C).  
Chip Select (S)  
When this input signal is high, the device is deselected and Serial Data Output (Q) is at high  
impedance. Unless an internal Write cycle is in progress, the device will be in the Standby  
Power mode. Driving Chip Select (S) low selects the device, placing it in the Active Power  
mode.  
After Power-up, a falling edge on Chip Select (S) is required prior to the start of any  
instruction.  
2.5  
Hold (HOLD)  
The Hold (HOLD) signal is used to pause any serial communications with the device without  
deselecting the device.  
During the Hold condition, the Serial Data Output (Q) is high impedance, and Serial Data  
Input (D) and Serial Clock (C) are Don’t Care.  
To start the Hold condition, the device must be selected, with Chip Select (S) driven low.  
8/39  
M95512-W, M95512-R  
Signal description  
2.6  
Write Protect (W)  
The main purpose of this input signal is to freeze the size of the area of memory that is  
protected against Write instructions (as specified by the values in the BP1 and BP0 bits of  
the Status Register).  
This pin must be driven either high or low, and must be stable during all write instructions.  
2.7  
2.8  
VCC supply voltage  
V
is the supply voltage.  
CC  
VSS ground  
V
is the reference for the V supply voltage.  
CC  
SS  
9/39  
Connecting to the SPI bus  
M95512-W, M95512-R  
3
Connecting to the SPI bus  
These devices are fully compatible with the SPI protocol.  
All instructions, addresses and input data bytes are shifted in to the device, most significant  
bit first. The Serial Data Input (D) is sampled on the first rising edge of the Serial Clock (C)  
after Chip Select (S) goes low.  
All output data bytes are shifted out of the device, most significant bit first. The Serial Data  
Output (Q) is latched on the first falling edge of the Serial Clock (C) after the instruction  
(such as the Read from Memory Array and Read Status Register instructions) have been  
clocked into the device.  
Figure 3.  
Bus master and memory devices on the SPI bus  
VSS  
VCC  
R
SDO  
SPI Interface with  
(CPOL, CPHA) =  
(0, 0) or (1, 1)  
SDI  
SCK  
VCC  
VCC  
VCC  
C
Q
D
C
Q
D
C Q D  
VSS  
VSS  
VSS  
SPI Bus Master  
SPI Memory  
Device  
SPI Memory  
Device  
SPI Memory  
Device  
R
R
R
CS3 CS2 CS1  
S
S
S
W
HOLD  
W
HOLD  
HOLD  
W
AI12836b  
1. The Write Protect (W) and Hold (HOLD) signals should be driven, high or low as appropriate.  
Figure 3 shows an example of three memory devices connected to an MCU, on an SPI bus.  
Only one device is selected at a time, so only one device drives the Serial Data Output (Q)  
line at a time, the other devices are high impedance.  
The pull-up resistor R (represented in Figure 3) ensures that no device is selected if the Bus  
Master leaves the S line in the high impedance state.  
In applications where the Bus Master might enter a state where all inputs/outputs SPI lines  
are in high impedance at the same time (for example, if the Bus Master is reset during the  
transmission of an instruction), the clock line (C) must be connected to an external pull-  
down resistor so that, if all inputs/outputs become high impedance, the C line is pulled low  
(while the S line is pulled high). This ensures that S and C do not become high at the same  
time, and so, that the t  
requirement is met.  
SHCH  
10/39  
M95512-W, M95512-R  
Connecting to the SPI bus  
The typical value of R is 100 kΩ, assuming that the time constant R*C (C = parasitic  
p
p
capacitance of the bus line) is short enough, as the S and C lines must reach the correct  
state (S = high and C = low) while the SPI bus is in high impedance.  
Example: C = 50 pF, that is R*C = 5 µs <=> the application must ensure that the Bus  
p
p
Master never leaves the SPI bus in the high impedance state for a time period shorter than  
5 µs.  
3.1  
SPI modes  
These devices can be driven by a microcontroller with its SPI peripheral running in either of  
the two following modes:  
CPOL=0, CPHA=0  
CPOL=1, CPHA=1  
For these two modes, input data is latched in on the rising edge of Serial Clock (C), and  
output data is available from the falling edge of Serial Clock (C).  
The difference between the two modes, as shown in Figure 4, is the clock polarity when the  
bus master is in Stand-by mode and not transferring data:  
C remains at 0 for (CPOL=0, CPHA=0)  
C remains at 1 for (CPOL=1, CPHA=1)  
Figure 4.  
SPI modes supported  
CPOL CPHA  
C
0
1
0
1
C
D
Q
MSB  
MSB  
AI01438B  
11/39  
Operating features  
M95512-W, M95512-R  
4
Operating features  
4.1  
Supply voltage (VCC)  
4.1.1  
Operating supply voltage V  
CC  
Prior to selecting the memory and issuing instructions to it, a valid and stable V voltage  
CC  
within the specified [V (min), V (max)] range must be applied (see Table 7 and Table 8.).  
CC  
CC  
This voltage must remain stable and valid until the end of the transmission of the instruction  
and, for a Write instruction, until the completion of the internal write cycle (t ). In order to  
W
secure a stable DC supply voltage, it is recommended to decouple the V line with a  
CC  
suitable capacitor (usually of the order of 10 nF to 100 nF) close to the V /V package  
CC SS  
pins.  
4.1.2  
Device reset  
In order to prevent inadvertent Write operations during power-up, a power-on-reset (POR)  
circuit is included. At power-up, the device does not respond to any instruction until V has  
CC  
reached the POR threshold voltage (this threshold is lower than the minimum V operating  
CC  
voltage defined in Table 7 and Table 8).  
When V passes over the POR threshold, the device is reset and in the following state:  
CC  
in the Standby Power mode  
deselected (note that when the device is deselected it is necessary to apply a falling  
edge on Chip Select (S) prior to issuing any new instruction, otherwise the instruction is  
not executed)  
Status register values:  
the Write Enable Latch (WEL) bit is reset to 0  
the Write In Progress (WIP) bit is reset to 0  
the SRWD, BP1 and BP0 bits remain unchanged (non-volatile bits).  
4.1.3  
Power-up conditions  
When the power supply is turned on, V rises continuously from V to V . During this  
CC  
SS  
CC  
time, the Chip Select (S) line is not allowed to float but should follow the V voltage. It is  
CC  
therefore recommended to connect the S line to V via a suitable pull-up resistor (see  
CC  
Figure 3).  
In addition, the Chip Select (S) input offers a built-in safety feature, as the S input is edge  
sensitive as well as level sensitive: after power-up, the device does not become selected  
until a falling edge has first been detected on Chip Select (S). This ensures that Chip Select  
(S) must have been high, prior to going low to start the first operation.  
The V rise time must not vary faster than 1 V/µs.  
CC  
Important note: When V passes over the POR threshold (see Section 4.1.2: Device  
CC  
reset), the device is reset and enters the Standby Power mode. However, the device must  
not be accessed until V reaches a valid and stable V voltage within the specified  
CC  
CC  
[V (min), V (max)] ranges defined in Table 7 and Table 8.  
CC  
CC  
12/39  
M95512-W, M95512-R  
Operating features  
4.1.4  
Power-down  
During power-down (continuous decrease in V below the minimum V operating voltage  
CC  
CC  
defined in Table 7 and Table 8), the device must be:  
deselected (Chip Select (S) should be allowed to follow the voltage applied on V  
)
CC  
in Standby Power mode (that is there should not be any internal write cycle in  
progress).  
4.2  
Active Power and Standby Power modes  
When Chip Select (S) is low, the device is selected, and in the Active Power mode. The  
device consumes I , as specified in Table 12.  
CC  
When Chip Select (S) is high, the device is deselected. If a Write cycle is not currently in  
progress, the device then goes in to the Standby Power mode, and the device consumption  
drops to I  
.
CC1  
4.3  
Hold condition  
The Hold (HOLD) signal is used to pause any serial communications with the device without  
resetting the clocking sequence.  
During the Hold condition, the Serial Data Output (Q) is high impedance, and Serial Data  
Input (D) and Serial Clock (C) are Don’t Care.  
To enter the Hold condition, the device must be selected, with Chip Select (S) low.  
Normally, the device is kept selected, for the whole duration of the Hold condition.  
Deselecting the device while it is in the Hold condition, has the effect of resetting the state of  
the device, and this mechanism can be used if it is required to reset any processes that had  
been in progress.  
The Hold condition starts when the Hold (HOLD) signal is driven low at the same time as  
Serial Clock (C) already being low (as shown in Figure 5).  
The Hold condition ends when the Hold (HOLD) signal is driven high at the same time as  
Serial Clock (C) already being low.  
Figure 5 also shows what happens if the rising and falling edges are not timed to coincide  
with Serial Clock (C) being low.  
Figure 5.  
Hold condition activation  
C
HOLD  
Hold  
Hold  
Condition  
Condition  
AI02029D  
13/39  
Operating features  
M95512-W, M95512-R  
4.4  
Status Register  
Figure 6 shows the position of the Status Register in the control logic of the device. The  
Status Register contains a number of status and control bits that can be read or set (as  
appropriate) by specific instructions. See Section 6.3: Read Status Register (RDSR) for a  
detailed description of the Status Register bits  
4.5  
Data Protection and Protocol control  
Non-volatile memory devices can be used in environments that are particularly noisy, and  
within applications that could experience problems if memory bytes are corrupted.  
Consequently, the device features the following data protection mechanisms:  
Write and Write Status Register instructions are checked that they consist of a number  
of clock pulses that is a multiple of eight, before they are accepted for execution.  
All instructions that modify data must be preceded by a Write Enable (WREN)  
instruction to set the Write Enable Latch (WEL) bit. This bit is returned to its reset state  
by the following events:  
Power-up  
Write Disable (WRDI) instruction completion  
Write Status Register (WRSR) instruction completion  
Write (WRITE) instruction completion  
The Block Protect (BP1, BP0) bits in the Status Register allow part of the memory to be  
configured as read-only.  
The Write Protect (W) signal allows the Block Protect (BP1, BP0) bits in the Status  
Register to be protected.  
For any instruction to be accepted, and executed, Chip Select (S) must be driven high after  
the rising edge of Serial Clock (C) for the last bit of the instruction, and before the next rising  
edge of Serial Clock (C).  
Two points need to be noted in the previous sentence:  
The ‘last bit of the instruction’ can be the eighth bit of the instruction code, or the eighth  
bit of a data byte, depending on the instruction (except for Read Status Register  
(RDSR) and Read (READ) instructions).  
The ‘next rising edge of Serial Clock (C)’ might (or might not) be the next bus  
transaction for some other device on the SPI bus.  
Table 2.  
Write-Protected block size  
Status Register Bits  
Array Addresses  
Protected  
Protected Block  
BP1  
BP0  
0
0
1
1
0
1
0
1
none  
none  
Upper quarter  
Upper half  
C000h - FFFFh  
8000h - FFFFh  
0000h - FFFFh  
Whole memory  
14/39  
M95512-W, M95512-R  
Memory organization  
5
Memory organization  
The memory is organized as shown in Figure 6.  
Figure 6.  
Block diagram  
HOLD  
W
High Voltage  
Generator  
Control Logic  
S
C
D
Q
I/O Shift Register  
Address Register  
and Counter  
Data  
Register  
Status  
Register  
Size of the  
Read only  
EEPROM  
area  
1 Page  
X Decoder  
AI01272C  
15/39  
Instructions  
M95512-W, M95512-R  
6
Instructions  
Each instruction starts with a single-byte code, as summarized in Table 3.  
If an invalid instruction is sent (one not contained in Table 3), the device automatically  
deselects itself.  
Table 3.  
Instruction set  
Instruction  
Description  
Instruction Format  
WREN  
WRDI  
Write Enable  
0000 0110  
0000 0100  
0000 0101  
0000 0001  
0000 0011  
0000 0010  
Write Disable  
RDSR  
WRSR  
READ  
WRITE  
Read Status Register  
Write Status Register  
Read from Memory Array  
Write to Memory Array  
6.1  
Write Enable (WREN)  
The Write Enable Latch (WEL) bit must be set prior to each WRITE and WRSR instruction.  
The only way to do this is to send a Write Enable instruction to the device.  
As shown in Figure 7, to send this instruction to the device, Chip Select (S) is driven low,  
and the bits of the instruction byte are shifted in, on Serial Data Input (D). The device then  
enters a wait state. It waits for a the device to be deselected, by Chip Select (S) being driven  
high.  
Figure 7.  
Write Enable (WREN) sequence  
S
0
1
2
3
4
5
6
7
C
D
Q
Instruction  
High Impedance  
AI02281E  
16/39  
M95512-W, M95512-R  
Instructions  
6.2  
Write Disable (WRDI)  
One way of resetting the Write Enable Latch (WEL) bit is to send a Write Disable instruction  
to the device.  
As shown in Figure 8, to send this instruction to the device, Chip Select (S) is driven low,  
and the bits of the instruction byte are shifted in, on Serial Data Input (D).  
The device then enters a wait state. It waits for a the device to be deselected, by Chip Select  
(S) being driven high.  
The Write Enable Latch (WEL) bit, in fact, becomes reset by any of the following events:  
Power-up  
WRDI instruction execution  
WRSR instruction completion  
WRITE instruction completion.  
Figure 8.  
Write Disable (WRDI) sequence  
S
0
1
2
3
4
5
6
7
C
D
Q
Instruction  
High Impedance  
AI03750D  
17/39  
Instructions  
M95512-W, M95512-R  
6.3  
Read Status Register (RDSR)  
The Read Status Register (RDSR) instruction allows the Status Register to be read. The  
Status Register may be read at any time, even while a Write or Write Status Register cycle  
is in progress. When one of these cycles is in progress, it is recommended to check the  
Write In Progress (WIP) bit before sending a new instruction to the device. It is also possible  
to read the Status Register continuously, as shown in Figure 9.  
The status and control bits of the Status Register are as follows:  
6.3.1  
6.3.2  
6.3.3  
WIP bit  
The Write In Progress (WIP) bit indicates whether the memory is busy with a Write or Write  
Status Register cycle. When set to 1, such a cycle is in progress, when reset to 0 no such  
cycle is in progress.  
WEL bit  
The Write Enable Latch (WEL) bit indicates the status of the internal Write Enable Latch.  
When set to 1 the internal Write Enable Latch is set, when set to 0 the internal Write Enable  
Latch is reset and no Write or Write Status Register instruction is accepted.  
BP1, BP0 bits  
The Block Protect (BP1, BP0) bits are non-volatile. They define the size of the area to be  
software protected against Write instructions. These bits are written with the Write Status  
Register (WRSR) instruction. When one or both of the Block Protect (BP1, BP0) bits is set to  
1, the relevant memory area (as defined in Table 4) becomes protected against Write  
(WRITE) instructions. The Block Protect (BP1, BP0) bits can be written provided that the  
Hardware Protected mode has not been set.  
6.3.4  
SRWD bit  
The Status Register Write Disable (SRWD) bit is operated in conjunction with the Write  
Protect (W) signal. The Status Register Write Disable (SRWD) bit and Write Protect (W)  
signal allow the device to be put in the Hardware Protected mode (when the Status Register  
Write Disable (SRWD) bit is set to 1, and Write Protect (W) is driven low). In this mode, the  
non-volatile bits of the Status Register (SRWD, BP1, BP0) become read-only bits and the  
Write Status Register (WRSR) instruction is no longer accepted for execution.  
Table 4.  
Status Register format  
b7  
b0  
SRWD  
0
0
0
BP1  
BP0  
WEL  
WIP  
Status Register Write Protect  
Block Protect Bits  
Write Enable Latch Bit  
Write In Progress Bit  
18/39  
M95512-W, M95512-R  
Instructions  
Figure 9.  
Read Status Register (RDSR) sequence  
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
C
D
Instruction  
Status Register Out  
Status Register Out  
High Impedance  
Q
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
MSB  
MSB  
AI02031E  
19/39  
Instructions  
M95512-W, M95512-R  
6.4  
Write Status Register (WRSR)  
The Write Status Register (WRSR) instruction allows new values to be written to the Status  
Register. Before a WRSR instruction can be accepted, a Write Enable (WREN) instruction  
must have been executed.  
The Write Status Register (WRSR) instruction is issued by driving Chip Select (S) low,  
sending the instruction code and the data byte on Serial Data input (D) and driving Chip  
Select (S) high. Chip Select (S) must be driven high after the rising edge of Serial Clock (C)  
that latches in the eighth bit of the data byte, and before the next rising edge of Serial Clock  
(C). Otherwise, the Write Status Register (WRSR) instruction is not executed.  
Driving Chip Select (S) high at a byte boundary of the input data triggers the self-timed Write  
cycle whose duration is t (specified in Table 13 and Table 14). The instruction sequence is  
W
shown in Figure 10.  
While the Write Status Register cycle is in progress, the Status Register may still be read to  
check the value of the Write In Progress (WIP) bit: the WIP bit is 1 during the self-timed  
Write cycle t , and 0 when the Write cycle is complete. The WEL bit (Write Enable Latch) is  
W
also reset when the Write cycle t is complete.  
W
The Write Status Register (WRSR) instruction allows the user to change the values of the  
BP1, BP0 and SRWD bits:  
The Block Protect (BP1, BP0) bits define the size of the area to be treated as read-only,  
as defined in Table 5.  
The SRWD bit (Status Register Write Disable bit), depending on the signal applied on  
the Write Protect pin (W), allows the user to set or reset the write protection mode of  
the Status Register. When the Status Register is in the Write-protected mode, the Write  
Status Register (WRSR) instruction is not executed.  
The contents of the SRWD and BP1, BP0 bits are updated upon completion of the WRSR  
instruction (after t ).  
W
The Write Status Register (WRSR) instruction has no effect on Status Register bits b6, b5,  
b4, b1, b0. They are always read as 0.  
Figure 10. Write Status Register (WRSR) sequence  
S
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
C
Instruction  
Status  
Register In  
7
6
5
4
3
2
0
1
D
Q
High Impedance  
MSB  
AI02282D  
20/39  
M95512-W, M95512-R  
Table 5.  
Instructions  
Protection modes  
Memory content  
W
Signal  
SRWD  
Bit  
Write Protection of the  
Mode  
Status Register  
Protected area(1) Unprotected area(1)  
1
0
0
0
Status Register is Writable  
(if the WREN instruction  
has set the WEL bit)  
Software  
Protected  
(SPM)  
Ready to accept  
Write Protected  
Write instructions  
The values in the BP1 and  
BP0 bits can be changed  
1
1
Status Register is  
Hardware write protected  
Hardware  
Protected  
(HPM)  
Ready to accept  
Write Protected  
0
1
The values in the BP1 and  
BP0 bits cannot be  
changed  
Write instructions  
1. As defined by the values in the Block Protect (BP1, BP0) bits of the Status Register, as shown in Table 2.  
The protection features of the device are summarized in Table 5.  
When the Status Register Write Disable (SRWD) bit of the Status Register is 0 (its initial  
delivery state), it is possible to write to the Status Register provided that the Write Enable  
Latch (WEL) bit has previously been set by a Write Enable (WREN) instruction, regardless  
of the whether Write Protect (W) is driven high or low.  
When the Status Register Write Disable (SRWD) bit of the Status Register is set to 1, two  
cases need to be considered, depending on the state of Write Protect (W):  
If Write Protect (W) is driven high, it is possible to write to the Status Register provided  
that the Write Enable Latch (WEL) bit has previously been set by a Write Enable  
(WREN) instruction.  
If Write Protect (W) is driven low, it is not possible to write to the Status Register even if  
the Write Enable Latch (WEL) bit has previously been set by a Write Enable (WREN)  
instruction. (Attempts to write to the Status Register are rejected, and are not accepted  
for execution). As a consequence, all the data bytes in the memory area that are  
software protected (SPM) by the Block Protect (BP1, BP0) bits of the Status Register,  
are also hardware protected against data modification.  
Regardless of the order of the two events, the Hardware Protected Mode (HPM) can be  
entered:  
by setting the Status Register Write Disable (SRWD) bit after driving Write Protect (W)  
low  
or by driving Write Protect (W) low after setting the Status Register Write Disable  
(SRWD) bit.  
The only way to exit the Hardware Protected Mode (HPM) once entered is to pull Write  
Protect (W) high.  
If Write Protect (W) is permanently tied high, the Hardware Protected Mode (HPM) can  
never be activated, and only the Software Protected Mode (SPM), using the Block Protect  
(BP1, BP0) bits of the Status Register, can be used.  
21/39  
Instructions  
M95512-W, M95512-R  
6.5  
Read from Memory Array (READ)  
As shown in Figure 11, to send this instruction to the device, Chip Select (S) is first driven  
low. The bits of the instruction byte and address bytes are then shifted in, on Serial Data  
Input (D). The address is loaded into an internal address register, and the byte of data at  
that address is shifted out, on Serial Data Output (Q).  
If Chip Select (S) continues to be driven low, the internal address register is automatically  
incremented, and the byte of data at the new address is shifted out.  
When the highest address is reached, the address counter rolls over to zero, allowing the  
Read cycle to be continued indefinitely. The whole memory can, therefore, be read with a  
single READ instruction.  
The Read cycle is terminated by driving Chip Select (S) high. The rising edge of the Chip  
Select (S) signal can occur at any time during the cycle.  
The first byte addressed can be any byte within any page.  
The instruction is not accepted, and is not executed, if a Write cycle is currently in progress.  
Figure 11. Read from Memory Array (READ) sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
C
Instruction  
16-Bit Address  
15 14 13  
MSB  
3
2
1
0
D
Q
Data Out 1  
Data Out 2  
High Impedance  
2
7
6
5
4
3
1
7
0
MSB  
AI01793D  
22/39  
M95512-W, M95512-R  
Instructions  
6.6  
Write to Memory Array (WRITE)  
As shown in Figure 12, to send this instruction to the device, Chip Select (S) is first driven  
low. The bits of the instruction byte, address byte, and at least one data byte are then shifted  
in, on Serial Data Input (D).  
The instruction is terminated by driving Chip Select (S) high at a byte boundary of the input  
data. The self-timed Write cycle triggered by the rising edge of Chip Select (S) continues for  
a period t (as specified in Table 13 and Table 14), at the end of which the Write in Progress  
W
(WIP) bit is reset to 0.  
In the case of Figure 12, Chip Select (S) is driven high after the eighth bit of the data byte  
has been latched in, indicating that the instruction is being used to write a single byte. If,  
though, Chip Select (S) continues to be driven low, as shown in Figure 13., the next byte of  
input data is shifted in, so that more than a single byte, starting from the given address  
towards the end of the same page, can be written in a single internal write cycle.  
Each time a new data byte is shifted in, the least significant bits of the internal address  
counter are incremented. If the number of data bytes sent to the device exceeds the page  
boundary, the internal address counter rolls over to the beginning of the page, and the  
previous data there are overwritten with the incoming data. (The page size of these devices  
is 128 bytes).  
The instruction is not accepted, and is not executed, under the following conditions:  
if the Write Enable Latch (WEL) bit has not been set to 1 (by executing a Write Enable  
instruction just before)  
if a Write cycle is already in progress  
if the device has not been deselected, by Chip Select (S) being driven high, at a byte  
boundary (after the eighth bit, b0, of the last data byte that has been latched in)  
if the addressed page is in the region protected by the Block Protect (BP1 and BP0)  
bits.  
Figure 12. Byte Write (WRITE) sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
C
Instruction  
16-Bit Address  
Data Byte  
15 14 13  
3
2
1
0
7
6
5
4
3
2
0
1
D
Q
High Impedance  
AI01795D  
23/39  
Instructions  
M95512-W, M95512-R  
Figure 13. Page Write (WRITE) sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
C
D
Instruction  
16-Bit Address  
Data Byte 1  
15 14 13  
3
2
1
0
7
6
5
4
3
2
0
1
S
C
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
Data Byte 2  
Data Byte 3  
Data Byte N  
7
6
5
4
3
2
0
7
6
5
4
3
2
0
6
5
4
3
2
0
1
1
1
D
AI01796D  
24/39  
M95512-W, M95512-R  
ECC (Error Correction Code) and Write cycling  
7
ECC (Error Correction Code) and Write cycling  
The M95512-W and M95512-R devices offer an ECC (Error Correction Code) logic which  
compares each 4-byte word with its associated 6 EEPROM bits of ECC. As a result, if a  
single bit out of 4 bytes of data happens to be erroneous during a Read operation, the ECC  
detects it and replaces it by the correct value. The read reliability is therefore much improved  
by the use of this feature.  
Note however that even if a single byte has to be written, 4 bytes are internally modified  
(plus the ECC bits), that is, the addressed byte is cycled together with the other three bytes  
making up the word. It is therefore recommended to write by words of 4 bytes in order to  
benefit from the larger amount of Write cycles.  
The M95512-W and M95512-R devices are qualified at 1 million (1 000 000) Write cycles,  
using a cycling routine that writes to the device by multiples of 4-byte packets.  
8
Power-up and delivery state  
8.1  
Power-up state  
After Power-up, the device is in the following state:  
Standby Power mode  
Deselected (after Power-up, a falling edge is required on Chip Select (S) before any  
instructions can be started).  
Not in the Hold Condition  
Write Enable Latch (WEL) is reset to 0  
Write In Progress (WIP) is reset to 0  
The SRWD, BP1 and BP0 bits of the Status Register are unchanged from the previous  
power-down (they are non-volatile bits).  
8.2  
Initial delivery state  
The device is delivered with the memory array set at all 1s (FFh). The Status Register Write  
Disable (SRWD) and Block Protect (BP1 and BP0) bits are initialized to 0.  
25/39  
Maximum rating  
M95512-W, M95512-R  
9
Maximum rating  
Stressing the device outside the ratings listed in Table 6 may cause permanent damage to  
the device. These are stress ratings only, and operation of the device at these, or any other  
conditions outside those indicated in the Operating sections of this specification, is not  
implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect  
device reliability. Refer also to the STMicroelectronics SURE Program and other relevant  
quality documents.  
Table 6.  
Symbol  
Absolute maximum ratings  
Parameter  
Min.  
Max.  
Unit  
TA  
TSTG  
TLEAD  
VO  
Ambient operating temperature  
Storage temperature  
Lead temperature during soldering  
Output voltage  
–40  
–65  
130  
150  
°C  
°C  
°C  
V
See note (1)  
–0.50  
–0.50  
–0.50  
VCC+0.6  
6.5  
VI  
Input voltage  
V
VCC  
Supply voltage  
6.5  
V
Electrostatic discharge voltage (Human Body  
Model)(2)  
VESD  
–4000  
4000  
V
1. Compliant with JEDEC Std J-STD-020C (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®  
7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS)  
2002/95/EU  
2. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1=100pF, R1=1500Ω, R2=500Ω)  
26/39  
M95512-W, M95512-R  
DC and AC parameters  
10  
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC Characteristic tables that  
follow are derived from tests performed under the Measurement Conditions summarized in  
the relevant tables. Designers should check that the operating conditions in their circuit  
match the measurement conditions when relying on the quoted parameters.  
Table 7.  
Symbol  
Operating conditions (M95512-W)  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply voltage  
2.5  
–40  
–40  
5.5  
85  
V
Ambient operating temperature (device grade 6)  
Ambient operating temperature (device grade 3)  
°C  
°C  
125  
Table 8.  
Symbol  
Operating conditions (M95512-R)  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply voltage  
1.8  
5.5  
85  
V
Ambient operating temperature  
–40  
°C  
Table 9.  
Symbol  
AC measurement conditions  
Parameter  
Min.  
Max.  
Unit  
CL  
Load capacitance  
30  
pF  
ns  
V
Input Rise and Fall times  
Input Pulse voltages  
50  
0.2VCC to 0.8VCC  
0.3VCC to 0.7VCC  
Input and output timing reference voltages  
V
Figure 14. AC measurement I/O waveform  
Input Levels  
Input and Output  
Timing Reference Levels  
0.8V  
CC  
0.7V  
CC  
0.3V  
CC  
0.2V  
CC  
AI00825B  
(1)  
Table 10. Capacitance  
Symbol  
Parameter  
Test condition  
Min.  
Max.  
Unit  
COUT  
Output capacitance (Q)  
Input capacitance (D)  
VOUT = 0 V  
VIN = 0 V  
8
8
6
pF  
pF  
pF  
CIN  
Input capacitance (other pins)  
VIN = 0 V  
1. Not 100% tested.  
27/39  
DC and AC parameters  
M95512-W, M95512-R  
Table 11. DC characteristics (M95512-W)  
Test condition specified in  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Table 7  
ILI  
Input leakage current  
Output leakage current  
VIN = VSS or VCC  
2
2
µA  
µA  
ILO  
S = VCC, VOUT = VSS or VCC  
C = 0.1VCC/0.9VCC at 5 MHz,  
VCC = 2.5 V, Q = open  
3
5
6
mA  
mA  
mA  
µA  
ICC  
Supply current (Read)  
Supply current (Write)  
C = 0.1VCC/0.9VCC at 5 MHz,  
VCC = 5 V, Q = open  
During tW, S = VCC  
,
(1)  
ICC0  
2.5 V < VCC < 5.5 V  
Supply current  
(Standby Power mode)  
S = VCC, VIN = VSS or VCC  
,
ICC1  
5
2.5 V < VCC < 5.5 V  
VIL  
VIH  
Input low voltage  
Input high voltage  
–0.45  
0.3 VCC  
V
V
0.7 VCC VCC+1  
0.4  
VCC = 2.5 V and IOL = 1.5 mA or  
VCC = 5 V and IOL = 2 mA  
VOL  
VOH  
Output low voltage  
Output high voltage  
V
V
VCC = 2.5 V and IOH = –0.4 mA or  
VCC = 5 V and IOH = –2 mA  
0.8 VCC  
1. Characterized value, not tested in production.  
Table 12. DC characteristics (M95128-R)  
Test condition specified in  
Symbol  
Parameter  
Min  
Max  
Unit  
Table 8  
ILI  
Input leakage current  
Output leakage current  
VIN = VSS or VCC  
2
2
µA  
µA  
ILO  
S = VCC, VOUT = VSS or VCC  
C = 0.1VCC/0.9VCC at 2 MHz,  
VCC = 1.8 V, Q = open  
ICC  
Supply current (Read)  
Supply current (Write)  
1
3
3
mA  
mA  
µA  
During tW, S = VCC  
,
(1)  
ICC0  
1.8 V < VCC < 2.5 V  
Supply current (Standby  
Power mode)  
S = VCC, VIN = VSS or VCC  
,
ICC1  
1.8 V < VCC < 2.5 V  
VIL  
VIH  
Input low voltage  
Input high voltage  
Output low voltage  
Output high voltage  
–0.45  
0.3 VCC  
VCC+1  
0.3  
V
V
V
V
0.7 VCC  
VOL  
VOH  
IOL = 0.15 mA, VCC = 1.8 V  
IOH = –0.1 mA, VCC = 1.8 V  
0.8 VCC  
1. Characterized value, not tested in production.  
28/39  
M95512-W, M95512-R  
DC and AC parameters  
Table 13. AC characteristics (M95512-W)  
Test conditions specified in Table 9 and Table 7  
Symbol  
Alt.  
Parameter  
Min.  
Max.  
Unit  
fC  
fSCK Clock frequency  
D.C.  
90  
5
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tSLCH  
tSHCH  
tSHSL  
tCHSH  
tCHSL  
tCSS1 S active setup time  
tCSS2 S not active setup time  
tCS S deselect time  
90  
100  
90  
tCSH S active hold time  
S not active hold time  
tCLH Clock high time  
tCLL Clock low time  
90  
(1)  
tCH  
90  
(1)  
tCL  
90  
(2)  
tCLCH  
tRC  
tFC  
Clock rise time  
Clock fall time  
1
1
(2)  
tCHCL  
tDVCH  
tCHDX  
tHHCH  
tHLCH  
tCLHL  
tCLHH  
tDSU Data in setup time  
20  
30  
70  
40  
0
tDH  
Data in hold time  
Clock low hold time after HOLD not active  
Clock low hold time after HOLD active  
Clock low setup time before HOLD active  
Clock low setup time before HOLD not active  
0
(2)  
tSHQZ  
tDIS Output disable time  
100  
60  
tCLQV  
tV  
Clock low to output valid  
Output hold time  
tCLQX  
tHO  
tRO  
tFO  
tLZ  
0
(2)  
tQLQH  
Output rise time  
50  
50  
50  
100  
5
(2)  
tQHQL  
Output fall time  
tHHQV  
HOLD high to output valid  
HOLD low to output High-Z  
(2)  
tHLQZ  
tHZ  
tW  
tWC Write time  
1. tCH + tCL must never be less than the shortest possible clock period, 1 / fC(max)  
2. Value guaranteed by characterization, not 100% tested in production.  
29/39  
DC and AC parameters  
M95512-W, M95512-R  
Table 14. AC characteristics (M95512-R)  
Test conditions specified in Table 9 and Table 8  
Symbol  
Alt.  
Parameter  
Min.  
D.C.  
Max.  
Unit  
fC  
fSCK  
tCSS1  
tCSS2  
tCS  
Clock frequency  
2
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tSLCH  
tSHCH  
tSHSL  
tCHSH  
tCHSL  
S active setup time  
200  
200  
200  
200  
200  
200  
200  
S not active setup time  
S deselect time  
tCSH  
S active hold time  
S not active hold time  
Clock high time  
(1)  
tCH  
tCLH  
tCLL  
tRC  
(1)  
tCL  
Clock low time  
(2)  
tCLCH  
Clock rise time  
1
1
(2)  
tCHCL  
tFC  
Clock fall time  
tDVCH  
tCHDX  
tHHCH  
tHLCH  
tCLHL  
tCLHH  
tDSU  
tDH  
Data in setup time  
40  
50  
140  
90  
0
Data in hold time  
Clock low hold time after HOLD not active  
Clock low hold time after HOLD active  
Clock low setup time before HOLD active  
Clock low setup time before HOLD not active  
Output disable time  
0
(2)  
tSHQZ  
tDIS  
tV  
250  
150  
tCLQV  
Clock low to output valid  
Output hold time  
tCLQX  
tHO  
tRO  
tFO  
tLZ  
0
(2)  
tQLQH  
Output rise time  
100  
100  
100  
250  
5
(2)  
tQHQL  
Output fall time  
tHHQV  
HOLD high to output valid  
HOLD low to output High-Z  
Write time  
(2)  
tHLQZ  
tHZ  
tWC  
tW  
1. tCH + tCL must never be less than the shortest possible clock period, 1 / fC(max)  
2. Value guaranteed by characterization, not 100% tested in production.  
30/39  
M95512-W, M95512-R  
Figure 15. Serial input timing  
DC and AC parameters  
tSHSL  
tSHCH  
S
C
tCHSL  
tSLCH  
tCH  
tCHSH  
tDVCH  
tCHCL  
tCHDX  
tCL  
tCLCH  
MSB IN  
LSB IN  
D
Q
High impedance  
AI01447d  
Figure 16. Hold timing  
S
tHLCH  
tCLHL  
tHHCH  
C
tCLHH  
tHHQV  
tHLQZ  
Q
HOLD  
AI01448c  
31/39  
DC and AC parameters  
M95512-W, M95512-R  
Figure 17. Serial output timing  
S
tCH  
tSHSL  
C
tCLQV  
tCLQX  
tCLCH  
tCHCL  
tCL  
tSHQZ  
Q
D
tQLQH  
tQHQL  
ADDR  
LSB IN  
AI01449f  
32/39  
M95512-W, M95512-R  
Package mechanical data  
11  
Package mechanical data  
®
In order to meet environmental requirements, ST offers the M95512-W in ECOPACK  
packages. These packages have a lead-free second level interconnect. The category of  
second level interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at www.st.com.  
Figure 18. SO8N – 8 lead plastic small outline, 150 mils body width, package outline  
h x 45˚  
A2  
A
c
ccc  
b
e
0.25 mm  
D
GAUGE PLANE  
k
8
1
E1  
E
L
A1  
L1  
SO-A  
1. Drawing is not to scale.  
Table 15. SO8N – 8 lead plastic small outline, 150 mils body width, package  
mechanical data  
millimeters  
inches(1)  
Symbol  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
1.75  
0.25  
0.0689  
0.0098  
0.10  
1.25  
0.28  
0.17  
0.0039  
0.0492  
0.011  
0.48  
0.23  
0.10  
5.00  
6.20  
4.00  
0.0189  
0.0091  
0.0039  
0.1969  
0.2441  
0.1575  
-
c
0.0067  
ccc  
D
4.90  
6.00  
3.90  
1.27  
4.80  
5.80  
3.80  
0.1929  
0.2362  
0.1535  
0.05  
0.189  
0.2283  
0.1496  
-
E
E1  
e
h
0.25  
0°  
0.50  
8°  
0.0098  
0°  
0.0197  
8°  
k
L
0.40  
1.27  
0.0157  
0.05  
L1  
1.04  
0.0409  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
33/39  
Package mechanical data  
M95512-W, M95512-R  
Figure 19. TSSOP8 – 8 lead thin shrink small outline, package outline  
D
8
5
c
E1  
E
1
4
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8AM  
1. Drawing is not to scale.  
Table 16. TSSOP8 – 8 lead thin shrink small outline, package mechanical data  
millimeters  
Min  
inches(1)  
Symbol  
Typ  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
0.050  
0.800  
0.190  
0.090  
0.0020  
0.0315  
0.0075  
0.0035  
1.000  
0.0394  
c
CP  
D
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
2.900  
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
0.1142  
e
E
6.200  
4.300  
0.450  
6.600  
4.500  
0.750  
0.2441  
0.1693  
0.0177  
0.2598  
0.1772  
0.0295  
E1  
L
L1  
α
0°  
8
8°  
0°  
8
8°  
N
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
34/39  
M95512-W, M95512-R  
Part numbering  
12  
Part numbering  
Table 17. Ordering information scheme  
Example:  
M95512  
W MN  
6
T
P /AB  
Device type  
M95 = SPI serial access EEPROM  
Device function  
512 = 512 Kbit (65536 × 8)  
Operating voltage  
W = VCC = 2.5 V to 5.5 V  
R = VCC = 1.8 V to 5.5 V  
Package  
MN = SO8 (150 mil width)  
DW = TSSOP8 (169 mil width)  
Device grade  
6 = Industrial temperature range, –40 to 85 °C.  
Device tested with standard test flow  
3 = Device tested with high reliability certified flow(1)  
Automotive temperature range (–40 to 125 °C)  
.
Option  
blank = Standard packing  
T = Tape and reel packing  
Plating technology  
P or G = ECOPACK® (RoHS compliant)  
Process  
/AB = F8L(2)  
1. ST strongly recommends the use of the Automotive Grade devices for use in an automotive environment.  
The high reliability certified flow (HRCF) is described in the quality note QNEE9801. Please ask your  
nearest ST sales office for a copy.  
2. The process letter only concerns device grade 3 devices.  
35/39  
Part numbering  
M95512-W, M95512-R  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
Table 18. Available M95512x products (package, voltage range, temperature grade)  
M95512-W  
2.5 V to 5.5 V  
M95512-R  
1.8 V to 5.5 V  
Package  
Range 6  
Range 3  
SO8 (MN)  
TSSOP (DW)  
Range 6  
Range 6  
Range 6  
36/39  
M95512-W, M95512-R  
Revision history  
13  
Revision history  
Table 19. Document revision history  
Date  
Revision  
Changes  
Jan-1999  
1.0  
Document written  
Document reformatted using the new template  
Voltage range -S added, and -R removed  
Instruction Sequence illustrations updated  
13-Feb-2002  
2.0  
Announcement made of planned upgrade to 10 MHz clock for the 5V, 40  
to 85°C, range  
05-Dec-  
2003  
Table of contents, and Pb-free options added. VIL(min) improved to -0.45V.  
Voltage range -R added, and -S removed  
3.0  
4.0  
Old versions of document completely replaced by one rewritten from  
M95256  
02-Apr-2004  
AC and DC characteristics tables updated with the performance data of the  
new device identified with the process letter “A”.  
Table 1., Product List added. AEC-Q100-002 compliance. Device Grade  
information clarified. tHHQX, tCHHL and tCHHH corrected to tHHQV, tCLHL and  
tCLHH, respectively.  
03-Jan-2005  
5.0  
6.0  
M95512 part number with 4.5V to 5.5V operating voltage range removed  
(related tables removed). Document status changed to Preliminary Data.  
Updated Figure 3: Bus master and memory devices on the SPI bus and  
Figure 16: Hold timing. Power On Reset information clarified. Protected  
Array Addresses modified in Table 2: Write-Protected block size. Ambient  
Operating Temperature value added in Table 6: Absolute maximum ratings.  
Supply Current (ICC) value modified for 10 MHz in Table 11: DC  
characteristics (M95512-W). All values modified in Table 14: AC  
characteristics (M95512-R). Document status changed to Datasheet.  
30-Jun-2005  
Document reformatted. Packages are ECOPACK® compliant.  
10 MHz frequency removed. VCC supply voltage and VSS ground  
descriptions added. Figure 3: Bus master and memory devices on the SPI  
bus modified and explanatory paragraph added. Power-up and Power On  
Reset paragraphs replaced by Section 4.1: Supply voltage (VCC).  
Section 7: ECC (Error Correction Code) and Write cycling added.  
TA max modified in Table 7: Operating conditions (M95512-W).  
Note modified below Table 10: Capacitance.  
CL modified in and Table 9: AC measurement conditions.  
VIL max and ICC0 test conditions modified in Table 12: DC characteristics  
(M95128-R).  
06-Feb-2007  
7
ICC modified in Table 11: DC characteristics (M95512-W), ICC0 added to  
Table 11 and Table 12: DC characteristics (M95128-R) modified.  
Table 14: AC characteristics (M95512-R) modified.  
tSHQZ end timing line moved back in Figure 17: Serial output timing.  
SO8N package specifications updated (see Figure 18 and Table 15).  
Blank removed below Plating technology in Table 17: Ordering information  
scheme.  
The device endurance is specified at more than 1 000 000 (1 million)  
cycles (corrected on page 1).  
05-Jun-2007  
8
37/39  
Revision history  
Table 19. Document revision history  
M95512-W, M95512-R  
Date  
Revision  
Changes  
M95512-W is now available in the device grade 3 (automotive temperature  
range), see Table 7 on page 27).  
Section 4.1: Supply voltage (VCC) on page 12 updated.  
Section 6.4: Write Status Register (WRSR) on page 20 and Section 6.6:  
Write to Memory Array (WRITE) on page 23 clarified.  
ICC0 modified in Table 11: DC characteristics (M95512-W).  
03-Jul-2008  
9
Figure 15: Serial input timing, Figure 16: Hold timing and Figure 17: Serial  
output timing updated.  
Package mechanical data values in inches are calculated from the  
millimeter values and rounded to four decimal digits (see Section 11:  
Package mechanical data).  
Table 18: Available M95512x products (package, voltage range,  
temperature grade) added.. Small text changes.  
38/39  
M95512-W, M95512-R  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
39/39  

相关型号:

M95512WMN3TG

512 Kbit Serial SPI bus EEPROMtm with high speed clock
STMICROELECTR

M95512WMN3TP

512 Kbit Serial SPI bus EEPROMtm with high speed clock
STMICROELECTR

M95512WMN3TP/AB

SPI BUS SERIAL EEPROM
STMICROELECTR

M95512WMN6G

512 Kbit Serial SPI bus EEPROMtm with high speed clock
STMICROELECTR

M95512WMN6P

512 Kbit Serial SPI bus EEPROMtm with high speed clock
STMICROELECTR

M95512WMN6TG

512 Kbit Serial SPI bus EEPROMtm with high speed clock
STMICROELECTR

M95512WMN6TP

512 Kbit Serial SPI bus EEPROMtm with high speed clock
STMICROELECTR

M95640

64/32/16/8 Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR

M95640-A125

Automotive 64-Kbit serial SPI bus EEPROMs with high-speed clock
STMICROELECTR

M95640-A145

Automotive 64-Kbit serial SPI bus EEPROMs with high-speed clock
STMICROELECTR

M95640-BN1

8KX8 SPI BUS SERIAL EEPROM, PDIP8, 0.25 MM LEAD FRAME, SKINNY, PLASTIC, DIP-8
STMICROELECTR

M95640-BN1T

64/32/16/8 Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR