M95640-WMC4TG/K [STMICROELECTRONICS]

8KX8 SPI BUS SERIAL EEPROM, PDSO8, 2 X 3 MM, HALOGEN FREE AND ROHS COMPLIANT, UFDFP-8;
M95640-WMC4TG/K
型号: M95640-WMC4TG/K
厂家: ST    ST
描述:

8KX8 SPI BUS SERIAL EEPROM, PDSO8, 2 X 3 MM, HALOGEN FREE AND ROHS COMPLIANT, UFDFP-8

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟 光电二极管 内存集成电路
文件: 总39页 (文件大小:354K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M95640-A125  
M95640-A145  
Automotive 64-Kbit serial SPI bus EEPROMs  
with high-speed clock  
Datasheet production data  
Features  
Compatible with the Serial Peripheral Interface  
(SPI) bus  
Memory array  
SO8 (MN)  
150 mil width  
– 64 Kbits (8 Kbytes) of EEPROM  
– Page size: 32 bytes  
– Write protection by block: 1/4, 1/2 or whole  
memory  
– Additional Write lockable Page  
(Identification page)  
TSSOP8 (DW)  
169 mil width  
Extended temperature and voltage ranges  
– Up to 125 °C (V from 1.8 V to 5.5 V)  
CC  
– Up to 145 °C (V from 2.5 V to 5.5 V)  
CC  
High speed clock frequency  
– 20 MHz for V  
– 10 MHz for V  
4.5 V  
2.5 V  
CC ≥  
CC ≥  
– 5 MHz for V  
1.8 V  
CC ≥  
UFDFPN8 (MC)  
2 x 3 mm  
Schmitt trigger inputs for noise filtering  
Short Write cycle time  
– Byte Write within 4 ms  
– Page Write within 4 ms  
Write cycle endurance  
– 4 million Write cycles at 25 °C  
– 1.2 million Write cycles at 85 °C  
– 600 k Write cycles at 125 °C  
– 400 k Write cycles at 145 °C  
Data retention  
– 40 years at 55 °C  
– 100 years at 25 °C  
ESD Protection (Human Body Model)  
– 4000 V  
Packages  
– RoHS-compliant and halogen-free  
®
(ECOPACK2 )  
August 2012  
Doc ID 022579 Rev 3  
1/39  
This is information on a product in full production.  
www.st.com  
1
Contents  
M95640-A125M95640-A145  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
Serial Data output (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Serial Data input (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Serial Clock (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Chip Select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Hold (HOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Write Protect (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
VSS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
VCC supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3
Operating features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1  
3.2  
3.3  
3.4  
Active power and Standby power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SPI modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Hold mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Protocol control and data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.4.1  
3.4.2  
Protocol control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Status Register and data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.5  
Identification page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write Disable (WRDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Read Status Register (RDSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write Status Register (WRSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Read from Memory Array (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Write to Memory Array (WRITE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Read Identification Page (RDID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Write Identification Page (WRID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Read Lock Status (RDLS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.10 Lock Identification Page (LID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2/39  
Doc ID 022579 Rev 3  
M95640-A125 M95640-A145  
Contents  
5
Application design recommendations . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5.1  
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5.1.1  
5.1.2  
5.1.3  
Operating supply voltage V  
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
5.2  
5.3  
Implementing devices on SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Cycling with Error Correction Code (ECC) . . . . . . . . . . . . . . . . . . . . . . . . 26  
6
Delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7
8
9
10  
11  
Doc ID 022579 Rev 3  
3/39  
List of tables  
M95640-A125M95640-A145  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Status Register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Write-protected block size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Protection modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Device identification bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Significant bits within the two address bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Cycling performance by groups of 4 bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Operating conditions (voltage range W, temperature range 4). . . . . . . . . . . . . . . . . . . . . . 28  
Operating conditions (voltage range R, temperature range 3) . . . . . . . . . . . . . . . . . . . . . . 28  
Operating conditions (voltage range R, temperature range 3)  
for high speed communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
DC characteristics (voltage range W, temperature range 4). . . . . . . . . . . . . . . . . . . . . . . . 29  
DC characteristics (voltage range R, temperature range 3) . . . . . . . . . . . . . . . . . . . . . . . . 30  
AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
SO8N – 8-lead plastic small outline, 150 mils body width, package mechanical data . . . . 34  
TSSOP8 – 8-lead thin shrink small outline, package mechanical data. . . . . . . . . . . . . . . . 35  
UFDFPN8 (MLP8) 8-lead ultra thin fine pitch dual flat package no lead  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
2 x 3 mm, data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 19.  
Table 20.  
4/39  
Doc ID 022579 Rev 3  
M95640-A125 M95640-A145  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
8-pin package connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
SPI modes supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Hold mode activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Write Enable (WREN) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write Disable (WRDI) sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Read Status Register (RDSR) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write Status Register (WRSR) sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Read from Memory Array (READ) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 10. Byte Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 11. Page Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 12. Read Identification Page sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 13. Write Identification Page sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 14. Read Lock Status sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 15. Lock ID sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 16. Bus master and memory devices on the SPI bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 17. AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 18. Serial input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 19. Hold timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 20. Serial output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 21. SO8N – 8-lead plastic small outline, 150 mils body width, package outline . . . . . . . . . . . . 34  
Figure 22. TSSOP8 – 8-lead thin shrink small outline, package outline . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 23. UFDFPN8 (MLP8) - 8-lead ultra thin fine pitch dual flat no lead, package  
outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Doc ID 022579 Rev 3  
5/39  
Description  
M95640-A125M95640-A145  
1
Description  
The M95640-A125 and M95640-A145 are 64-Kbit serial EEPROM Automotive grade  
devices operating up to 145°C. They are compliant with the very high level of reliability  
defined by the Automotive standard AEC-Q100 grade 0.  
The devices are accessed by a simple serial SPI compatible interface running up to 20 MHz.  
The memory array is based on advanced true EEPROM technology (Electrically Erasable  
PROgrammable Memory). The M95640-A125 and M95640-A145 are byte-alterable  
memories (8192 × 8 bits) organized as 256 pages of 32 bytes in which the data integrity is  
significantly improved with an embedded Error Correction Code logic.  
The M95640-A125 and M95640-A145 offer an additional Identification Page (32 bytes) in  
which the ST device identification can be read. This page can also be used to store sensitive  
application parameters which can be later permanently locked in read-only mode.  
Figure 1.  
Logic diagram  
(/,$  
(IGH VOLTAGE  
GENERATOR  
7
3
#ONTROL LOGIC  
#
$
1
)ꢄ/ SHIFT REGISTER  
$ATA  
REGISTER  
!DDRESS REGISTER  
AND COUNTER  
3TATUS  
REGISTER  
ꢀꢄꢅ  
ꢀꢄꢆ  
3IZE OF THE  
2EAD ONLY  
%%02/-  
AREA  
ꢀ PAGE  
)DENTIFICATION PAGE  
8 DECODER  
-3ꢀꢁꢂꢃꢃ6ꢀ  
6/39  
Doc ID 022579 Rev 3  
M95640-A125 M95640-A145  
Figure 2. 8-pin package connections  
Description  
M95xxx  
S
Q
1
8
V
CC  
HOLD  
2
3
4
7
W
6
5
C
D
V
SS  
AI01790D  
1. See Package mechanical data section for package dimensions and how to identify pin-1.  
Table 1.  
Signal names  
Signal name  
Description  
C
D
Serial Clock  
Serial data input  
Serial data output  
Chip Select  
Write Protect  
Hold  
Q
S
W
HOLD  
VCC  
VSS  
Supply voltage  
Ground  
Doc ID 022579 Rev 3  
7/39  
Signal description  
M95640-A125M95640-A145  
2
Signal description  
All input signals must be held high or low (according to voltages of V or V , as specified in  
IH  
IL  
Table 13 and Table 14)). These signals are described below.  
2.1  
Serial Data output (Q)  
This output signal is used to transfer data serially out of the device during a Read operation.  
Data is shifted out on the falling edge of Serial Clock (C), most significant bit (MSB) first. In  
all other cases, the Serial Data output is in high impedance.  
2.2  
2.3  
2.4  
2.5  
Serial Data input (D)  
This input signal is used to transfer data serially into the device. D input receives  
instructions, addresses, and the data to be written. Values are latched on the rising edge of  
Serial Clock (C), most significant bit (MSB) first.  
Serial Clock (C)  
This input signal allows to synchronize the timing of the serial interface. Instructions,  
addresses, or data present at Serial Data Input (D) are latched on the rising edge of Serial  
Clock (C). Data on Serial Data Output (Q) changes after the falling edge of Serial Clock (C).  
Chip Select (S)  
Driving Chip Select (S) low selects the device in order to start communication. Driving Chip  
Select (S) high deselects the device and Serial Data output (Q) enters the high impedance  
state.  
Hold (HOLD)  
The Hold (HOLD) signal is used to pause any serial communications with the device without  
deselecting the device.  
2.6  
2.7  
2.8  
Write Protect (W)  
This pin is used to write-protect the Status Register.  
VSS ground  
V
is the reference for all signals, including the V supply voltage.  
CC  
SS  
VCC supply voltage  
V
is the supply voltage pin.  
CC  
Refer to Section 3.1: Active power and Standby power modes and to Section 5.1: Supply  
voltage (V ).  
CC  
8/39  
Doc ID 022579 Rev 3  
M95640-A125 M95640-A145  
Operating features  
3
Operating features  
3.1  
Active power and Standby power modes  
When Chip Select (S) is low, the device is selected and in the Active power mode.  
When Chip Select (S) is high, the device is deselected. If a Write cycle is not currently in  
progress, the device then goes in to the Standby power mode, and the device consumption  
drops to I  
, as specified in Table 13 and Table 14.  
CC1  
3.2  
SPI modes  
The device can be driven by a microcontroller with its SPI peripheral running in either of the  
two following modes:  
CPOL=0, CPHA=0  
CPOL=1, CPHA=1  
For these two modes, input data is latched in on the rising edge of Serial Clock (C), and  
output data is available from the falling edge of Serial Clock (C).  
The difference between the two modes, as shown in Figure 3, is the clock polarity when the  
bus master is in Stand-by mode and not transferring data:  
C remains at 0 for (CPOL=0, CPHA=0)  
C remains at 1 for (CPOL=1, CPHA=1)  
Figure 3.  
SPI modes supported  
CPOL CPHA  
C
C
0
1
0
1
D
MSB  
Q
MSB  
AI01438B  
Doc ID 022579 Rev 3  
9/39  
 
Operating features  
M95640-A125M95640-A145  
3.3  
Hold mode  
The Hold (HOLD) signal is used to pause any serial communications with the device without  
resetting the clocking sequence.  
The Hold mode starts when the Hold (HOLD) signal is driven low and the Serial Clock (C) is  
low (as shown in Figure 4). During the Hold mode, the Serial Data output (Q) is high  
impedance, and the signals present on Serial Data input (D) and Serial Clock (C) are not  
decoded. The Hold mode ends when the Hold (HOLD) signal is driven high and the Serial  
Clock (C) is or becomes low.  
Figure 4.  
Hold mode activation  
#
(/,$  
(OLD  
CONDITION  
(OLD  
#COONNDDIITTIIOONN  
-3ꢀꢁꢂꢂꢇ6ꢀ  
Deselecting the device while it is in Hold mode resets the paused communication.  
3.4  
Protocol control and data protection  
3.4.1  
Protocol control  
The Chip Select (S) input offers a built-in safety feature, as the S input is edge-sensitive as  
well as level-sensitive: after power-up, the device is not selected until a falling edge has first  
been detected on Chip Select (S). This ensures that Chip Select (S) must have been high  
prior to going low, in order to start the first operation.  
For Write commands (WRITE, WRSR, WRID, LID) to be accepted and executed:  
the Write Enable Latch (WEL) bit must be set by a Write Enable (WREN) instruction  
a falling edge and a low state on Chip Select (S) during the whole command must be  
decoded  
instruction, address and input data must be sent as multiple of eight bits  
the command must include at least one data byte  
Chip Select (S) must be driven high exactly after a data byte boundary  
Write command can be discarded at any time by a rising edge on Chip Select (S) outside of  
a byte boundary.  
To execute Read commands (READ, RDSR, RDID, RDLS), the device must decode:  
a falling edge and a low level on Chip Select (S) during the whole command  
instruction and address as multiples of eight bits (bytes)  
From this step, data bits are shifted out until the rising edge on Chip Select (S).  
10/39  
Doc ID 022579 Rev 3  
 
 
M95640-A125 M95640-A145  
Operating features  
3.4.2  
Status Register and data protection  
The Status Register format is shown in Table 2 and the status and control bits of the Status  
Register are as follows:  
Table 2.  
Status Register format  
b7  
b6  
b5  
b4  
0
b3  
b2  
b1  
b0  
SRWD  
0
0
BP1  
BP0  
WEL  
WIP  
Status Register Write Protect  
Block Protect bits  
Write Enable Latch bit  
Write In Progress bit  
Note:  
Bits b6, b5, b4 are always read as 0.  
WIP bit  
The WIP bit (Write In Progress) is a read-only flag that indicates the Ready/Busy state of the  
device. When a Write command (WRITE, WRSR, WRID, LID) has been decoded and a  
Write cycle (t ) is in progress, the device is busy and the WIP bit is set to 1. When WIP=0,  
W
the device is ready to decode a new command.  
During a Write cycle, reading continuously the WIP bit allows to detect when the device  
becomes ready (WIP=0) to decode a new command.  
WEL bit  
The WEL bit (Write Enable Latch) bit is a flag that indicates the status of the internal Write  
Enable Latch. When WEL is set to 1, the Write instructions (WRITE, WRSR, WRID, LID) are  
executed; when WEL is set to 0, any decoded Write instruction is not executed.  
The WEL bit is set to 1 with the WREN instruction. The WEL bit is reset to 0 after the  
following events:  
Write Disable (WRDI) instruction completion  
Write instructions (WRITE, WRSR, WRID, LID) completion including the write cycle  
time t  
W
Power-up  
BP1, BP0 bits  
The Block Protect bits (BP1, BP0) are non-volatile. BP1,BP0 bits define the size of the  
memory block to be protected against write instructions, as defined in Table 2. These bits  
are written with the Write Status Register (WRSR) instruction, provided that the Status  
Register is not protected (refer to SRWD bit and W input signal).  
Doc ID 022579 Rev 3  
11/39  
 
 
Operating features  
Table 3.  
M95640-A125M95640-A145  
Protected array addresses  
Write-protected block size  
Status Register bits  
Protected block  
BP1  
BP0  
0
0
1
1
0
1
0
1
None  
None  
1800h - 1FFFh  
Upper quarter  
Upper half  
1000h - 1FFFh  
Whole memory  
0000h - 1FFFh plus Identification page  
SRWD bit and W input signal  
The Status Register Write Disable (SRWD) bit is operated in conjunction with the Write  
Protect pin (W) signal. When the SRWD bit is written to 0, it is possible to write the Status  
Register, regardless of whether the pin Write Protect (W) is driven high or low.  
When the SRWD bit is written to 1, two cases have to be considered, depending on the  
state of the W input pin:  
Case 1: if pin W is driven high, it is possible to write the Status Register.  
Case 2: if pin W is driven low, it is not possible to write the Status Register (WRSR is  
discarded) and therefore SRWD,BP1,BP0 bits cannot be changed (the size of the  
protected memory block defined by BP1,BP0 bits is frozen).  
Case 2 can be entered in either sequence:  
Writing SRWD bit to 1 after driving pin W low, or  
Driving pin W low after writing SRWD bit to 1.  
The only way to exit Case 2 is to pull pin W high.  
Note: if pin W is permanently tied high, the Status Register cannot be write-protected.  
The protection features of the device are summarized in Table 4.  
Table 4.  
Protection modes  
W signal  
SRWD bit  
Status  
0
1
1
X
Status Register is writable.  
Status Register is write-protected.  
1
0
12/39  
Doc ID 022579 Rev 3  
 
M95640-A125 M95640-A145  
Operating features  
3.5  
Identification page  
The M95640-A125 and M95640-A145 offer an Identification Page (32 bytes) in addition to  
the 64 Kbit memory. This page can be used for several purposes:  
Device identification: the three first bytes of the Identification page are programmed by  
STMicroelectronics with the Device identification code, as shown in Table 5.  
Storage of specific parameters: each byte in the Identification page can be written if the  
Identification page is not permanently locked in Read-only mode.  
Write protection: once the application specific parameters are written in the  
Identification page, the whole Identification page can be permanently locked in read  
only mode.  
Table 5.  
Address in  
Identification page  
Device identification bytes  
Content  
Value  
00h  
01h  
02h  
ST Manufacturer code  
SPI Family code  
20h  
00h  
Memory Density code  
0Dh (64 Kbits)  
Read, write and lock Identification Page are detailed in Section 4: Instructions.  
Doc ID 022579 Rev 3  
13/39  
 
 
Instructions  
M95640-A125M95640-A145  
4
Instructions  
Each command is composed of bytes (MSBit transmitted first), initiated with the instruction  
byte, as summarized in Table 6.  
If an invalid instruction is sent (one not contained in Table 6), the device automatically enters  
a Wait state until deselected.  
Table 6.  
Instruction set  
Instruction  
format  
Instruction  
Description  
WREN  
WRDI  
Write Enable  
Write Disable  
0000 0110  
0000 0100  
0000 0101  
0000 0001  
0000 0011  
0000 0010  
1000 0011  
1000 0010  
1000 0011  
1000 0010  
RDSR  
WRSR  
READ  
Read Status Register  
Write Status Register  
Read from Memory Array  
Write to Memory Array  
Read Identification Page  
Write Identification Page  
WRITE  
RDID(1)  
WRID(1)  
RDLS(1)  
LID(1)  
Reads the Identification Page lock status.  
Locks the Identification page in read-only mode.  
1. Instruction available for the M95640-D device only (see Section 10: Part numbering).  
For read and write commands to memory array and Identification Page, the address is  
defined by two bytes as explained in Table 7.  
(1)(2)  
Table 7.  
Significant bits within the two address bytes  
MSB Address byte  
LSB Address byte  
Instructions  
b15 b14 b13 b12 b11 b10 b9  
b8  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
READ or  
WRITE  
x
0
0
x
0
0
x
0
0
A12 A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
RDID or  
WRID  
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
A4  
0
A3  
0
A2  
0
A1  
0
A0  
0
RDLS or  
LID  
1. A: Significant address bit.  
2. x: bit is Don’t Care.  
14/39  
Doc ID 022579 Rev 3  
 
 
 
M95640-A125 M95640-A145  
Instructions  
4.1  
Write Enable (WREN)  
The WREN instruction must be decoded by the device before a write instruction (WRITE,  
WRSR, WRID or LID).  
As shown in Figure 5, to send this instruction to the device, Chip Select (S) is driven low, the  
bits of the instruction byte are shifted in (MSB first) on Serial Data Input (D) after what the  
Chip Select (S) input is driven high and the WEL bit is set (Status Register bit).  
Figure 5.  
Write Enable (WREN) sequence  
S
0
1
2
3
4
5
6
7
C
D
Q
Instruction  
High Impedance  
AI02281E  
4.2  
Write Disable (WRDI)  
One way of resetting the WEL bit (in the Status Register) is to send a Write Disable  
instruction to the device.  
As shown in Figure 6, to send this instruction to the device, Chip Select (S) is driven low,  
and the bits of the instruction byte are shifted in (MSB first), on Serial Data Input (D), after  
what the Chip Select (S) input is driven high and the WEL bit is reset (Status Register bit).  
If a Write cycle is currently in progress, the WRDI instruction is decoded and executed and  
the WEL bit is reset to 0 with no effect on the ongoing Write cycle.  
Figure 6.  
Write Disable (WRDI) sequence  
S
0
1
2
3
4
5
6
7
C
D
Q
Instruction  
High Impedance  
AI03750D  
Doc ID 022579 Rev 3  
15/39  
 
 
Instructions  
M95640-A125M95640-A145  
4.3  
Read Status Register (RDSR)  
The Read Status Register (RDSR) instruction is used to read the content of the Status  
Register.  
As shown in Figure 7, to send this instruction to the device, Chip Select (S) is first driven low.  
The bits of the instruction byte are shifted in (MSB first) on Serial Data Input (D), the Status  
Register content is then shifted out (MSB first) on Serial Data Output (Q).  
If Chip Select (S) continues to be driven low, the Status Register content is continuously  
shifted out.  
The Status Register can always be read, even if a Write cycle (t ) is in progress. The Status  
W
Register functionality is detailed in Section 3.4.2: Status Register and data protection.  
Figure 7.  
Read Status Register (RDSR) sequence  
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
C
D
Instruction  
Status Register Out  
Status Register Out  
High Impedance  
Q
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
MSB  
MSB  
AI02031E  
4.4  
Write Status Register (WRSR)  
The Write Status Register (WRSR) instruction allows new values to be written to the Status  
Register. Before it can be accepted, a Write Enable (WREN) instruction must previously  
have been executed.  
The Write Status Register (WRSR) instruction is entered (MSB first) by driving Chip Select  
(S) low, sending the instruction code followed by the data byte on Serial Data input (D), and  
driving the Chip Select (S) signal high.  
The contents of the SRWD and BP1, BP0 bits are updated after the completion of the  
WRSR instruction, including the Write cycle (t ).  
W
The Write Status Register (WRSR) instruction has no effect on the b6, b5, b4, b1 and b0  
bits in the Status Register (see Table 2: Status Register format).  
The Status Register functionality is detailed in Section 3.4.2: Status Register and data  
protection.  
The instruction is not accepted, and is not executed, if a Write cycle is currently in progress.  
16/39  
Doc ID 022579 Rev 3  
 
M95640-A125 M95640-A145  
Figure 8. Write Status Register (WRSR) sequence  
Instructions  
S
C
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Instruction  
Status  
Register In  
7
6
5
4
3
2
0
1
D
Q
High Impedance  
MSB  
AI02282D  
4.5  
Read from Memory Array (READ)  
The READ instruction is used to read the content of the memory.  
As shown in Figure 9, to send this instruction to the device, Chip Select (S) is first driven low.  
The bits of the instruction byte and address bytes are shifted in (MSB first) on Serial Data  
Input (D) and the addressed data byte is then shifted out (MSB first) on Serial Data Output  
(Q). The first addressed byte can be any byte within any page.  
If Chip Select (S) continues to be driven low, the internal address register is automatically  
incremented, and the next byte of data is shifted out. The whole memory can therefore be  
read with a single READ instruction.  
When the highest address is reached, the address counter rolls over to zero, allowing the  
Read cycle to be continued indefinitely.  
The Read cycle is terminated by driving Chip Select (S) high at any time when the data bits  
are shifted out on Serial Data Output (Q).  
The instruction is not accepted, and is not executed, if a Write cycle is currently in progress.  
Doc ID 022579 Rev 3  
17/39  
Instructions  
M95640-A125M95640-A145  
Figure 9.  
Read from Memory Array (READ) sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
C
Instruction  
16-Bit Address  
15 14 13  
MSB  
3
2
1
0
D
Q
Data Out 1  
Data Out 2  
High Impedance  
2
7
6
5
4
3
1
7
0
MSB  
AI01793D  
1. Depending on the memory size, as shown in Table 7, the most significant address bits are Don’t Care.  
4.6  
Write to Memory Array (WRITE)  
The WRITE instruction is used to write new data in the memory.  
As shown in Figure 10, to send this instruction to the device, Chip Select (S) is first driven  
low. The bits of the instruction byte, address bytes, and at least one data byte are then  
shifted in (MSB first), on Serial Data Input (D). The instruction is terminated by driving Chip  
Select (S) high at a data byte boundary. Figure 10 shows a single byte write.  
Figure 10. Byte Write (WRITE) sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
C
Instruction  
16-Bit Address  
Data Byte  
15 14 13  
3
2
1
0
7
6
5
4
3
2
0
1
D
Q
High Impedance  
AI01795D  
1. Depending on the memory size, as shown in Table 8, the most significant address bits are Don’t Care.  
A Page write is used to write several bytes inside a page, with a single internal Write cycle.  
18/39  
Doc ID 022579 Rev 3  
 
M95640-A125 M95640-A145  
Instructions  
For a Page write, Chip Select (S) has to remain low, as shown in Figure 11, so that the next  
data bytes are shifted in. Each time a new data byte is shifted in, the least significant bits of  
the internal address counter are incremented. If the address counter exceeds the page  
boundary (the page size is 32 bytes), the internal address pointer rolls over to the beginning  
of the same page where next data bytes will be written. If more than 32 bytes are received,  
only the last 32 bytes are written.  
For both Byte write and Page write, the self-timed Write cycle starts from the rising edge of  
Chip Select (S), and continues for a period t (as specified in Table 15).  
W
The instruction is discarded, and is not executed, under the following conditions:  
if a Write cycle is already in progress  
if the addressed page is in the region protected by the Block Protect (BP1 and BP0)  
bits  
if one of the conditions defined in Section 3.4.1 is not satisfied  
Note:  
The self-timed Write cycle t is internally executed as a sequence of two consecutive  
W
events: [Erase addressed byte(s)], followed by [Program addressed byte(s)]. An erased bit is  
read as “0” and a programmed bit is read as “1”.  
Figure 11. Page Write (WRITE) sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
C
D
Instruction  
16-Bit Address  
Data Byte 1  
15 14 13  
3
2
1
0
7
6
5
4
3
2
0
1
S
C
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
Data Byte 2  
Data Byte 3  
Data Byte N  
7
6
5
4
3
2
0
7
6
5
4
3
2
0
6
5
4
3
2
0
1
1
1
D
AI01796D  
1. Depending on the memory size, as shown in Table 7, the most significant address bits are Don’t Care.  
Doc ID 022579 Rev 3  
19/39  
 
Instructions  
M95640-A125M95640-A145  
4.7  
Read Identification Page (RDID)  
The Read Identification Page instruction is used to read the Identification Page (additional  
page of 32 bytes which can be written and later permanently locked in Read-only mode).  
The Chip Select (S) signal is first driven low, the bits of the instruction byte and address  
bytes are then shifted in (MSB first) on Serial Data input (D). Address bit A10 must be 0,  
other upper address bits are Don't Care (it might be easier to define these bits as 0, as  
shown in Table 7). The data byte pointed to by the lower address bits [A4:A0] is shifted out  
(MSB first) on Serial Data output (Q).  
The first byte addressed can be any byte within the identification page.  
If Chip Select (S) continues to be driven low, the internal address register is automatically  
incremented and the byte of data at the new address is shifted out.  
Note that there is no roll over feature in the Identification Page. The address of bytes to read  
must not exceed the page boundary.  
The read cycle is terminated by driving Chip Select (S) high. The rising edge of the Chip  
Select (S) signal can occur at any time when the data bits are shifted out.  
The instruction is not accepted, and is not executed, if a Write cycle is currently in progress.  
Figure 12. Read Identification Page sequence  
3
ꢀꢊ  
ꢆꢊ ꢆꢀ ꢆꢆ ꢆꢃ ꢆꢅ ꢆꢈ ꢆꢉ ꢆꢂ ꢆꢇ ꢆꢁ ꢃꢊ ꢃꢀ  
#
)NSTRUCTION  
ꢀꢉꢋBIT ADDRESS  
ꢀꢈ ꢀꢅ ꢀꢃ  
-3"  
$
1
$ATA /UT ꢀ  
$ATA /UT ꢆ  
(IGH IMPEDANCE  
-3"  
!Iꢀꢈꢁꢉꢉ  
The first three bytes of the Identification page offer information about the device itself.  
Please refer to Section 3.5: Identification page for more information.  
20/39  
Doc ID 022579 Rev 3  
M95640-A125 M95640-A145  
Instructions  
4.8  
Write Identification Page (WRID)  
The Write Identification Page instruction is used to write the Identification Page (additional  
page of 32 bytes which can also be permanently locked in Read-only mode).  
The Chip Select signal (S) is first driven low, and then the bits of the instruction byte,  
address bytes, and at least one data byte are shifted in (MSB first) on Serial Data input (D).  
Address bit A10 must be 0, other upper address bits are Don't Care (it might be easier to  
define these bits as 0, as shown in Table 7). The lower address bits [A4:A0] define the byte  
address inside the identification page.  
The self-timed Write cycle starts from the rising edge of Chip Select (S), and continues for a  
period t (as specified in Table 15).  
W
Figure 13. Write Identification Page sequence  
3
ꢀꢊ  
ꢆꢊ ꢆꢀ ꢆꢆ ꢆꢃ ꢆꢅ ꢆꢈ ꢆꢉ ꢆꢂ ꢆꢇ ꢆꢁ ꢃꢊ ꢃꢀ  
#
)NSTRUCTION  
ꢀꢉꢋBIT ADDRESS  
$ATA BYTE  
$
1
ꢀꢈ ꢀꢅ ꢀꢃ  
(IGH IMPEDANCE  
!Iꢀꢈꢁꢉꢂ  
Note:  
The first three bytes of the Identification page offer the Device Identification code (Please  
refer to Section 3.5: Identification page for more information). Using the WRID command on  
these first three bytes overwrites the Device Identification code.  
The instruction is discarded, and is not executed, under the following conditions:  
If a Write cycle is already in progress  
If the Block Protect bits (BP1,BP0) = (1,1)  
If one of the conditions defined in Section 3.4.1: Protocol control is not satisfied.  
4.9  
Read Lock Status (RDLS)  
The Read Lock Status instruction is used to read the lock status.  
To send this instruction to the device, Chip Select (S) first has to be driven low. The bits of  
the instruction byte and address bytes are then shifted in (MSB first) on Serial Data input  
(D). Address bit A10 must be 1; all other address bits are Don't Care (it might be easier to  
define these bits as 0, as shown in Table 7). The Lock bit is the LSB (Least Significant Bit) of  
the byte read on Serial Data output (Q). It is at ‘1’ when the lock is active and at ‘0’ when the  
lock is not active. If Chip Select (S) continues to be driven low, the same data byte is shifted  
out.  
The read cycle is terminated by driving Chip Select (S) high. The instruction sequence is  
shown in Figure 14.  
Doc ID 022579 Rev 3  
21/39  
Instructions  
M95640-A125M95640-A145  
The Read Lock Status instruction is not accepted and not executed if a Write cycle is  
currently in progress.  
Figure 14. Read Lock Status sequence  
3
ꢀꢊ  
ꢆꢊ ꢆꢀ ꢆꢆ ꢆꢃ ꢆꢅ ꢆꢈ ꢆꢉ ꢆꢂ ꢆꢇ ꢆꢁ ꢃꢊ ꢃꢀ  
#
)NSTRUCTION  
ꢀꢉꢋBIT ADDRESS  
ꢀꢈ ꢀꢅ ꢀꢃ  
-3"  
$
1
$ATA /UT ꢀ  
$ATA /UT ꢆ  
(IGH IMPEDANCE  
-3"  
!Iꢀꢈꢁꢉꢉ  
4.10  
Lock Identification Page (LID)  
The Lock Identification Page (LID) command is used to permanently lock the Identification  
Page in Read-only mode.  
The LID instruction is issued by driving Chip Select (S) low, sending (MSB first) the  
instruction code, the address and a data byte on Serial Data input (D), and driving Chip  
Select (S) high. In the address sent, A10 must be equal to 1. All other address bits are Don't  
Care (it might be easier to define these bits as 0, as shown in Table 7). The data byte sent  
must be equal to the binary value xxxx xx1x, where x = Don't Care. The LID instruction is  
terminated by driving Chip Select (S) high at a data byte boundary, otherwise, the instruction  
is not executed.  
Figure 15. Lock ID sequence  
3
ꢀꢊ  
ꢆꢊ ꢆꢀ ꢆꢆ ꢆꢃ ꢆꢅ ꢆꢈ ꢆꢉ ꢆꢂ ꢆꢇ ꢆꢁ ꢃꢊ ꢃꢀ  
#
)NSTRUCTION  
ꢀꢉꢋBIT ADDRESS  
$ATA BYTE  
$
1
ꢀꢈ ꢀꢅ ꢀꢃ  
(IGH IMPEDANCE  
!Iꢀꢈꢁꢉꢂ  
Driving Chip Select (S) high at a byte boundary of the input data triggers the self-timed Write  
cycle which duration is t (specified in Table 15). The instruction sequence is shown in  
W
Figure 15.  
22/39  
Doc ID 022579 Rev 3  
 
M95640-A125 M95640-A145  
Instructions  
The instruction is discarded, and is not executed, under the following conditions:  
If a Write cycle is already in progress  
If the Block Protect bits (BP1,BP0) = (1,1)  
If one of the conditions defined in Section 3.4.1: Protocol control is not satisfied.  
Doc ID 022579 Rev 3  
23/39  
Application design recommendations  
M95640-A125M95640-A145  
5
Application design recommendations  
5.1  
Supply voltage (VCC)  
5.1.1  
Operating supply voltage V  
CC  
Prior to selecting the memory and issuing instructions to it, a valid and stable V voltage  
CC  
within the specified [V  
, V  
] range must be applied (see Table 10 and Table 11).  
CC(min)  
CC(max)  
This voltage must remain stable and valid until the end of the transmission of the instruction  
and, for a Write instruction, until the completion of the internal Write cycle (t ). In order to  
W
secure a stable DC supply voltage, it is recommended to decouple the V line with a  
CC  
suitable capacitor (usually of the order of 10 nF to 100 nF) close to the V /V package  
CC SS  
pins.  
5.1.2  
Power-up conditions  
When the power supply is turned on, V continuously rises from V to V . During this  
CC  
SS  
CC  
time, the Chip Select (S) line is not allowed to float but should follow the V voltage. It is  
CC  
therefore recommended to connect the S line to V via a suitable pull-up resistor (see  
CC  
Figure 16).  
The V voltage has to rise continuously from 0 V up to the minimum V operating voltage  
CC  
CC  
defined in Table 13 and Table 14.  
In order to prevent inadvertent write operations during power-up, a power-on-reset (POR)  
circuit is included.  
At power-up, the device does not respond to any instruction until V reaches the internal  
CC  
threshold voltage (this threshold is defined in the DC characteristics tables 13 and 14 as  
VRES).  
When V passes over the POR threshold, the device is reset and in the following state:  
CC  
in the Standby power mode  
deselected  
Status register values:  
Write Enable Latch (WEL) bit is reset to 0.  
Write In Progress (WIP) bit is reset to 0.  
SRWD, BP1 and BP0 bits remain unchanged (non-volatile bits).  
not in the Hold condition  
As soon as the V voltage has reached a stable value within [V (min), V (max)] range,  
CC  
CC  
CC  
the device is ready for operation.  
24/39  
Doc ID 022579 Rev 3  
M95640-A125 M95640-A145  
Application design recommendations  
5.1.3  
Power-down  
During power-down (continuous decrease in the V supply voltage below the minimum  
CC  
V
operating voltage defined in Table 13 and Table 14), the device must be:  
CC  
deselected (Chip Select (S) should be allowed to follow the voltage applied on V ),  
CC  
in Standby power mode (there should not be any internal Write cycle in progress).  
5.2  
Implementing devices on SPI bus  
Figure 16 shows an example of three devices, connected to the SPI bus master. Only one  
device is selected at a time, so that only the selected device drives the Serial Data output  
(Q) line. All the other devices outputs are then in high impedance.  
Figure 16. Bus master and memory devices on the SPI bus  
6##  
3$/  
30) INTERFACE WITH  
ꢌ#0/,ꢍ #0(!ꢎ ꢏ  
ꢌꢊꢍ ꢊꢎ OR ꢌꢀꢍ ꢀꢎ  
3$)  
3#+  
#
1
$
6##  
#
1
$
6##  
#
1
$
6##  
30) BUS MASTER  
30) MEMORY  
DEVICE  
30) MEMORY  
DEVICE  
30) MEMORY  
DEVICE  
2
2
2
#3ꢃ #3ꢆ #3ꢀ  
(/,$  
7
3
7 (/,$  
3
7
(/,$  
3
633  
-3ꢀꢁꢂꢈꢈ6ꢆ  
1. The Write Protect (W) and Hold (HOLD) signals must be driven high or low as appropriate.  
A pull-up resistor connected on each /S input (represented in Figure 16) ensures that each  
device is not selected if the bus master leaves the /S line in the high impedance state.  
Doc ID 022579 Rev 3  
25/39  
 
Application design recommendations  
M95640-A125M95640-A145  
5.3  
Cycling with Error Correction Code (ECC)  
The Error Correction Code (ECC) is an internal logic function which is transparent for the  
SPI communication protocol.  
(a)  
The ECC logic is implemented on each group of four EEPROM bytes . Inside a group, if a  
single bit out of the four bytes happens to be erroneous during a Read operation, the ECC  
detects this bit and replaces it with the correct value. The read reliability is therefore much  
improved.  
Even if the ECC function is performed on groups of four bytes, a single byte can be  
written/cycled independently. In this case, the ECC function also writes/cycles the three  
(a)  
other bytes located in the same group . As a consequence, the maximum cycling budget is  
defined at group level and the cycling can be distributed over the 4 bytes of the group: the  
sum of the cycles seen by byte0, byte1, byte2 and byte3 of the same group must remain  
below the maximum value defined in Table 9: Cycling performance by groups of 4 bytes.  
Example1: maximum cycling limit reached with 1 million cycles per byte  
Each byte of a group can be equally cycled 1 million times (at 25 °C) so that the group  
cycling budget is 4 million cycles.  
Example2: maximum cycling limit reached with unequal byte cycling  
Inside a group, byte0 can be cycled 2 million times, byte1 can be cycled 1 million times,  
byte2 and byte3 can be cycled 500,000 times, so that the group cycling budget is 4 million  
cycles.  
a. A group of four bytes is located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3], where N is an integer.  
Doc ID 022579 Rev 3  
26/39  
 
M95640-A125 M95640-A145  
Delivery state  
6
Delivery state  
The device is delivered with:  
the memory array set to all 1s (each byte = FFh),  
Status register: bit SRWD =0, BP1 =0 and BP0 =0,  
Identification page:  
the first three bytes define the device identification (value defined in Table 5)  
the 29 following bytes set to FFh.  
7
Absolute maximum ratings  
Stressing the device outside the ratings listed in Table 8 may cause permanent damage to  
the device. These are stress ratings only, and operation of the device at these, or any other  
conditions outside those indicated in the operating sections of this specification, is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Table 8.  
Symbol  
Absolute maximum ratings  
Parameter  
Min.  
Max.  
Unit  
TSTG  
TAMR  
TLEAD  
VO  
Storage temperature  
–65  
–40  
150  
150  
°C  
°C  
°C  
V
Ambient operating temperature  
Lead temperature during soldering  
Voltage on Q pin  
See note (1)  
–0.50  
–0.50  
VCC+0.6  
VI  
Input voltage  
6.5  
5
V
IOL  
DC output current (Q = 0)  
DC output current (Q = 1)  
Supply voltage  
mA  
mA  
V
IOH  
5
VCC  
VESD  
–0.50  
6.5  
4000  
Electrostatic pulse (Human Body Model)(2)  
V
1. Compliant with JEDEC Std J-STD-020 (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®  
7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS)  
2002/95/EU  
2. Positive and negative pulses applied on pin pairs, in accordance with AEC-Q100-002 (compliant with  
JEDEC Std JESD22-A114, C1=100 pF, R1=1500 Ω, R2=500 Ω)  
Doc ID 022579 Rev 3  
27/39  
 
DC and AC parameters  
M95640-A125M95640-A145  
8
DC and AC parameters  
This section summarizes the operating conditions and the DC/AC characteristics of the  
device.  
Table 9.  
Symbol  
Cycling performance by groups of 4 bytes  
Parameter  
Test condition  
Min.  
Max.  
Unit  
TA 25 °C, 1.8 V < VCC < 5.5 V  
TA = 85 °C, 1.8 V < VCC < 5.5 V  
TA = 125 °C, 1.8 V < VCC < 5.5 V  
TA = 145 °C(3), 2.5 V < VCC < 5.5 V  
4,000,000  
1,200,000  
600,000  
Write  
Ncycle  
Write cycle endurance(1)  
cycle(2)  
400,000  
1. The Write cycle endurance is defined for groups of four data bytes located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3] where  
N is an integer, or for the status register byte (refer also to Section 5.3: Cycling with Error Correction Code (ECC)). The  
Write cycle endurance is defined by characterization and qualification.  
2. A Write cycle is executed when either a Page Write, a Byte Write, a WRSR, a WRID or an LID instruction is decoded. When  
using the Byte Write, the Page Write or the WRID, refer also to Section 5.3: Error Correction Code (ECC).  
3. For temperature range 4 only.  
Table 10. Operating conditions (voltage range W, temperature range 4)  
Symbol  
Parameter  
Supply voltage  
Conditions  
Min. Max. Unit  
VCC  
TA  
2.5  
5.5  
V
Ambient operating temperature  
Operating clock frequency  
–40  
145  
°C  
5.5 V VCC 2.5 V,  
capacitive load on Q pin 100pF  
fC  
10  
MHz  
Table 11. Operating conditions (voltage range R, temperature range 3)  
Symbol  
Parameter  
Supply voltage  
Conditions  
Min. Max. Unit  
VCC  
TA  
1.8  
5.5  
125  
10  
5
V
Ambient operating temperature  
–40  
°C  
VCC 2.5 V, capacitive load on Q pin 100pF  
VCC 1.8 V, capacitive load on Q pin 100pF  
fC  
Operating clock frequency  
MHz  
Table 12. Operating conditions (voltage range R, temperature range 3)  
for high speed communications  
Symbol  
Parameter  
Supply voltage  
Conditions  
Min. Max. Unit  
VCC  
TA  
4.5  
5.5  
85  
20  
V
Ambient operating temperature  
Operating clock frequency  
–40  
°C  
fC  
VCC 4.5 V, capacitive load on Q pin 60 pF  
MHz  
28/39  
Doc ID 022579 Rev 3  
 
 
 
 
M95640-A125 M95640-A145  
DC and AC parameters  
Table 13. DC characteristics (voltage range W, temperature range 4)  
Specific test conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
(in addition to conditions  
specified in Table 10)  
(2)  
COUT  
Output capacitance (Q)  
Input capacitance  
VOUT = 0 V  
8
6
2
3
pF  
µA  
(2)  
CIN  
VIN = 0 V  
ILI  
Input leakage current  
Output leakage current  
VIN = VSS or VCC  
S = VCC, VOUT = VSS or VCC  
ILO  
V
CC = 2.5 V, fC = 10 MHz,  
C = 0.1VCC/0.9VCC, Q = open  
CC = 5.5 V, fC = 10 MHz,  
2
4
ICC  
Supply current (Read)  
Supply current (Write)  
V
mA  
C = 0.1VCC/0.9VCC, Q = open  
2.5 V < VCC < 5.5 V, during tW,  
S = VCC  
(1)  
ICC0  
2(2)  
t° = 85 °C, VCC = 2.5 V, S = VCC  
VIN = VSS or VCC  
2
t° = 85 °C, VCC = 5.5 V, S = VCC  
VIN = VSS or VCC  
3
t° = 125 °C, VCC = 2.5 V, S = VCC  
VIN = VSS or VCC  
15  
20  
25  
40  
Supply current  
(Standby power mode)  
ICC1  
µA  
t° = 125 °C, VCC = 5.5 V, S = VCC  
VIN = VSS or VCC  
t° = 145 °C, VCC = 2.5 V, S = VCC  
VIN = VSS or VCC  
t° = 145 °C, VCC = 5.5 V, S = VCC  
VIN = VSS or VCC  
VIL  
VIH  
Input low voltage  
Input high voltage  
Output low voltage  
Output high voltage  
–0.45 0.3VCC  
0.7VCC VCC+1  
0.4  
VOL  
VOH  
IOL = 2 mA  
IOH = -2 mA  
V
0.8VCC  
Internal reset threshold  
voltage  
(2)  
VRES  
0.5  
1.3  
1. Average value during the Write cycle (tW)  
2. Characterized only, not 100% tested  
Doc ID 022579 Rev 3  
29/39  
DC and AC parameters  
M95640-A125M95640-A145  
Table 14. DC characteristics (voltage range R, temperature range 3)  
Test conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
(in addition to conditions  
specified in Table 11)  
(3)  
COUT  
Output capacitance (Q) VOUT = 0 V  
8
6
2
3
pF  
µA  
(3)  
CIN  
Input capacitance  
VIN = 0 V  
ILI  
Input leakage current  
VIN = VSS or VCC  
ILO  
Output leakage current S = VCC, VOUT = VSS or VCC  
VCC = 1.8 V, C = 0.1VCC/0.9VCC  
Q = open, fC = 5 MHz  
,
2
2
5
VCC = 2.5 V, C = 0.1VCC/0.9VCC  
,
ICC  
Supply current (Read)  
Supply current (Write)  
mA  
mA  
Q = open, fC = 10 MHz  
VCC = 5.5 V, fC = 20 MHz(1)  
C = 0.1VCC/0.9VCC, Q = open  
1.8 V VCC < 5.5 V during tW,  
S = VCC  
ICC0  
2(3)  
(2)  
t° = 85 °C, VCC = 1.8 V, S = VCC,  
VIN = VSS or VCC  
1
t° = 85 °C, VCC = 2.5 V, S = VCC,  
VIN = VSS or VCC  
2
t° = 85 °C, VCC = 5.5 V, S = VCC,  
VIN = VSS or VCC  
3
Supply current  
(Standby mode)  
ICC1  
µA  
t° = 125 °C, VCC = 1.8 V, S = VCC,  
VIN = VSS or VCC  
15  
15  
20  
t° = 125 °C, VCC = 2.5 V, S = VCC,  
VIN = VSS or VCC  
t° = 125 °C, VCC = 5.5 V, S = VCC,  
VIN = VSS or VCC  
1.8 V VCC < 2.5 V  
2.5 V VCC < 5.5 V  
1.8 V VCC < 2.5 V  
2.5 V VCC < 5.5 V  
VCC = 1.8 V, IOL = 1 mA  
VCC 2.5 V, IOL = 2 mA  
–0.45  
–0.45  
0.25 VCC  
0.3 VCC  
VIL  
VIH  
Input low voltage  
Input high voltage  
Output low voltage  
Output high voltage  
V
V
V
0.75 VCC VCC+0.5  
0.7 VCC  
VCC+0.5  
0.3  
VOL  
0.4  
VCC = 1.8 V, IOH = 1 mA  
0.8 VCC  
0.8 VCC  
VOH  
V
V
VCC 2.5 V, IOH = -2 mA  
Internal reset threshold  
voltage  
(3)  
VRES  
0.5  
1.3  
1. When –40 °C < t° < 85 °C.  
2. Average value during the Write cycle (tW)  
3. Characterized only, not 100% tested  
30/39  
Doc ID 022579 Rev 3  
 
M95640-A125 M95640-A145  
DC and AC parameters  
Table 15. AC characteristics  
Min. Max. Min. Max. Min. Max.  
Test  
Test  
conditions  
Test  
Symbol  
Alt.  
Parameter  
Unit  
conditions specified in conditions  
specified in  
Table 11  
Table 10  
and  
specified in  
Table 12  
Table 11  
fC  
fSCK Clock frequency  
5
10  
20  
MHz  
tSLCH  
tSHCH  
tSHSL  
tCHSH  
tCHSL  
tCSS1 S active setup time  
tCSS2 S not active setup time  
tCS S deselect time  
tCSH S active hold time  
S not active hold time  
60  
60  
90  
60  
60  
80  
80  
2
30  
30  
40  
30  
30  
40  
40  
2
15  
15  
20  
15  
15  
20  
20  
2
ns  
µs  
(1)  
tCH  
tCLH Clock high time  
tCLL Clock low time  
(1)  
tCL  
(2)  
tCLCH  
tRC Clock rise time  
(2)  
tCHCL  
tFC  
Clock fall time  
2
2
2
tDVCH  
tCHDX  
tHHCH  
tHLCH  
tCLHL  
tDSU Data in setup time  
tDH Data in hold time  
20  
20  
60  
60  
0
10  
10  
30  
30  
0
5
10  
15  
15  
0
Clock low hold time after HOLD not active  
Clock low hold time after HOLD active  
Clock low set-up time before HOLD active  
Clock low set-up time before HOLD not  
active  
tCLHH  
0
0
0
ns  
(2)  
tSHQZ  
tDIS Output disable time  
tV Clock low to output valid  
80  
40  
20  
(3)  
tCLQV  
80  
40  
20  
tCLQX  
tHO Output hold time  
tRO Output rise time  
tFO Output fall time  
0
0
0
(2)  
tQLQH  
20  
20  
80  
80  
4
20  
20  
40  
40  
4
20  
20  
20  
20  
4
(2)  
tQHQL  
tHHQV  
tLZ  
HOLD high to output valid  
(2)  
tHLQZ  
tHZ HOLD low to output high-Z  
tWC Write time  
tW  
ms  
1. tCH + tCL must never be lower than the shortest possible clock period, 1/fC(max).  
2. Value guaranteed by characterization, not 100% tested in production.  
3. tCLQV must be compatible with tCL (clock low time): if tSU is the Read setup time of the SPI bus master, tCL must be equal to  
(or greater than) tCLQV+tSU  
.
Doc ID 022579 Rev 3  
31/39  
DC and AC parameters  
Figure 17. AC measurement I/O waveform  
M95640-A125M95640-A145  
)NPUT VOLTAGE LEVELS  
)NPUT AND OUTPUT  
TIMING REFERENCE LEVELS  
ꢊꢐꢇ 6  
##  
ꢊꢐꢂ 6  
##  
ꢊꢐꢃ 6  
##  
ꢊꢐꢆ 6  
##  
!)ꢊꢊꢇꢆꢈ#  
Figure 18. Serial input timing  
tSHSL  
S
tCHSL  
tSLCH  
tCH  
tCHSH  
tSHCH  
C
tDVCH  
tCHCL  
tCHDX  
tCL  
tCLCH  
MSB IN  
LSB IN  
D
Q
High impedance  
AI01447d  
Figure 19. Hold timing  
S
tHLCH  
tCLHL  
tHHCH  
C
tCLHH  
tHHQV  
tHLQZ  
Q
HOLD  
AI01448c  
32/39  
Doc ID 022579 Rev 3  
M95640-A125 M95640-A145  
DC and AC parameters  
Figure 20. Serial output timing  
S
tCH  
tSHSL  
C
tCLQV  
tCLQX  
tCLCH  
tCHCL  
tCL  
tSHQZ  
Q
D
tQLQH  
tQHQL  
ADDR  
LSB IN  
AI01449f  
Doc ID 022579 Rev 3  
33/39  
Package mechanical data  
M95640-A125M95640-A145  
9
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Figure 21. SO8N – 8-lead plastic small outline, 150 mils body width, package outline  
h x 45˚  
A2  
A
c
ccc  
b
e
0.25 mm  
D
GAUGE PLANE  
k
8
1
E1  
E
L
A1  
L1  
SO-A  
1. Drawing is not to scale.  
Table 16. SO8N – 8-lead plastic small outline, 150 mils body width, package  
mechanical data  
millimeters  
inches(1)  
Symbol  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
1.75  
0.25  
0.0689  
0.0098  
0.10  
1.25  
0.28  
0.17  
0.0039  
0.0492  
0.011  
0.48  
0.23  
0.10  
5.00  
6.20  
4.00  
0.0189  
0.0091  
0.0039  
0.1969  
0.2441  
0.1575  
-
c
0.0067  
ccc  
D
4.90  
6.00  
3.90  
1.27  
4.80  
5.80  
3.80  
0.1929  
0.2362  
0.1535  
0.05  
0.189  
0.2283  
0.1496  
-
E
E1  
e
h
0.25  
0°  
0.50  
8°  
0.0098  
0°  
0.0197  
8°  
k
L
0.40  
1.27  
0.0157  
0.05  
L1  
1.04  
0.0409  
1. Values in inches are converted from mm and rounded to four decimal digits.  
34/39  
Doc ID 022579 Rev 3  
M95640-A125 M95640-A145  
Package mechanical data  
Figure 22. TSSOP8 – 8-lead thin shrink small outline, package outline  
D
8
5
c
E1  
E
1
4
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8AM  
1. Drawing is not to scale.  
Table 17. TSSOP8 – 8-lead thin shrink small outline, package mechanical data  
millimeters  
Min.  
inches(1)  
Symbol  
Typ.  
Max.  
Typ.  
Min.  
Max.  
A
A1  
A2  
b
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
0.050  
0.800  
0.190  
0.090  
0.0020  
0.0315  
0.0075  
0.0035  
1.000  
0.0394  
c
CP  
D
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
2.900  
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
0.1142  
e
E
6.200  
4.300  
0.450  
6.600  
4.500  
0.750  
0.2441  
0.1693  
0.0177  
0.2598  
0.1772  
0.0295  
E1  
L
L1  
α
0°  
8°  
0°  
8°  
1. Values in inches are converted from mm and rounded to four decimal digits.  
Doc ID 022579 Rev 3  
35/39  
Package mechanical data  
M95640-A125M95640-A145  
Figure 23. UFDFPN8 (MLP8) - 8-lead ultra thin fine pitch dual flat no lead, package  
outline  
E
B
$
,ꢀ  
,ꢃ  
0IN ꢀ  
%ꢆ  
+
%
,
!
$ꢆ  
EEE  
!ꢀ  
1. Drawing is not to scale.  
:7?-%E6ꢆ  
2. The central pad (the area E2 by D2 in the above illustration) is internally pulled to VSS. It must not be  
connected to any other voltage or signal line on the PCB, for example during the soldering process.  
Table 18. UFDFPN8 (MLP8) 8-lead ultra thin fine pitch dual flat package no lead  
2 x 3 mm, data  
millimeters  
Min  
inches(1)  
Symbol  
Typ  
Max  
Typ  
Min  
Max  
A
0.550  
0.020  
0.250  
2.000  
0.450  
0.000  
0.200  
1.900  
1.200  
2.900  
1.200  
0.600  
0.050  
0.300  
2.100  
1.600  
3.100  
1.600  
0.0217  
0.0008  
0.0098  
0.0787  
0.0177  
0.0000  
0.0079  
0.0748  
0.0472  
0.1142  
0.0472  
0.0236  
0.0020  
0.0118  
0.0827  
0.0630  
0.1220  
0.0630  
A1  
b
D
D2 (rev MC)  
E
3.000  
0.500  
0.1181  
0.0197  
E2 (rev MC)  
e
K (rev MC)  
0.300  
0.300  
0.0118  
0.0118  
L
L1  
0.500  
0.150  
0.0197  
0.0059  
L3  
0.300  
0.080  
0.0118  
0.0031  
eee(2)  
1. Values in inches are converted from mm and rounded to four decimal digits.  
2. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from  
measuring.  
36/39  
Doc ID 022579 Rev 3  
 
 
M95640-A125 M95640-A145  
Part numbering  
10  
Part numbering  
Table 19. Ordering information scheme  
Example:  
M95640-D  
W DW 4  
T
P /K  
Device type  
M95 = SPI serial access EEPROM  
Device function  
640-D = 64 Kbit (8 Kbytes) plus Identification Page  
640 = 64 Kbit(8 Kbytes)  
Operating voltage  
W = VCC = 2.5 to 5.5 V  
R = VCC = 1.8 to 5.5 V  
Package(1)  
MN = SO8 (150 mils width)  
DW = TSSOP8 (169 mils width)  
MC = MLP8 (2 × 3 mm)  
Device grade  
3 = –40 to 125 °C. Device tested with high reliability certified flow(2)  
4 = –40 to 145 °C. Device tested with high reliability certified flow(2)  
Option  
blank = Standard packing  
T = Tape and reel packing  
Plating technology  
P or G = ECOPACK (RoHS compliant)  
Process letter  
/K = Manufacturing technology code  
1. All packages are ECOPACK2® (RoHS compliant and Halogen-free).  
2. The high reliability certified flow (HRCF) is described in quality note QNEE9801. Please ask your nearest  
ST sales office for a copy.  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
Doc ID 022579 Rev 3  
37/39  
 
Revision history  
M95640-A125M95640-A145  
11  
Revision history  
Table 20. Document revision history  
Date  
Revision  
Changes  
16-Dec-2011  
1
Initial release.  
Updated RDLS and LID in Table 7: Significant bits within the two  
address bytes.  
Updated condition related to fC in Table 12: Operating conditions  
(voltage range R, temperature range 3) for high speed  
communications.  
Updated Note 2 below Table 9: Cycling performance by groups of 4  
bytes.  
16-Feb-2012  
2
Changed Table 11: Operating conditions (voltage range R,  
temperature range 3) and Table 12: Operating conditions (voltage  
range R, temperature range 3) for high speed communications titles.  
Added Note 1 in Table 14: DC characteristics (voltage range R,  
temperature range 3).  
Changed datasheet status to Production data.  
MLP8 MB version removed in Figure 23: UFDFPN8 (MLP8) - 8-lead  
ultra thin fine pitch dual flat no lead, package outline, Table 18:  
UFDFPN8 (MLP8) 8-lead ultra thin fine pitch dual flat package no  
lead 2 x 3 mm, data, and in Table 19: Ordering information scheme.  
02-Aug-2012  
3
38/39  
Doc ID 022579 Rev 3  
M95640-A125 M95640-A145  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2012 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 022579 Rev 3  
39/39  

相关型号:

M95640-WMN1

8KX8 SPI BUS SERIAL EEPROM, PDSO8, 0.150 INCH, PLASTIC, SO-8
STMICROELECTR

M95640-WMN1T

64/32/16/8 Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR

M95640-WMN3

64Kbit and 32Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR

M95640-WMN3/B

32 Kbit and 64 Kbit Serial SPI bus EEPROMs with high speed clock
STMICROELECTR

M95640-WMN3/P

32 Kbit and 64 Kbit Serial SPI bus EEPROMs with high speed clock
STMICROELECTR

M95640-WMN3G

64Kbit and 32Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR

M95640-WMN3G/B

32 Kbit and 64 Kbit Serial SPI bus EEPROMs with high speed clock
STMICROELECTR

M95640-WMN3G/K

SPI BUS SERIAL EEPROM
STMICROELECTR

M95640-WMN3G/P

32 Kbit and 64 Kbit Serial SPI bus EEPROMs with high speed clock
STMICROELECTR

M95640-WMN3G/PB

8KX8 SPI BUS SERIAL EEPROM, PDSO8, 0.150 INCH, PLASTIC, ROHS COMPLIANT, SOP-8
STMICROELECTR

M95640-WMN3G/PC

8KX8 SPI BUS SERIAL EEPROM, PDSO8, 0.150 INCH, HALOGEN FREE AND ROHS COMPLIANT, PLASTIC, SOP-8
STMICROELECTR

M95640-WMN3P

64Kbit and 32Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR