NAND01GR3B2CN6 [STMICROELECTRONICS]

1 Gbit, 2 Gbit, 2112 Byte/1056 Word Page, 1.8V/3V, NAND Flash Memory; 1千兆, 2千兆, 2112字节/ 1056字页, 1.8V / 3V , NAND闪存
NAND01GR3B2CN6
型号: NAND01GR3B2CN6
厂家: ST    ST
描述:

1 Gbit, 2 Gbit, 2112 Byte/1056 Word Page, 1.8V/3V, NAND Flash Memory
1千兆, 2千兆, 2112字节/ 1056字页, 1.8V / 3V , NAND闪存

闪存
文件: 总64页 (文件大小:633K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NAND01G-B  
NAND02G-B  
1 Gbit, 2 Gbit,  
2112 Byte/1056 Word Page, 1.8V/3V, NAND Flash Memory  
Feature summary  
High Density NAND Flash memories  
Up to 2 Gbit memory array  
Up to 64Mbit spare area  
Cost effective solutions for mass  
storage applications  
NAND interface  
x8 or x16 bus width  
TSOP48 12 x 20mm  
Multiplexed Address/ Data  
Pinout compatibility for all densities  
FBGA  
Supply voltage  
1.8V device: VDD = 1.7 to 1.95V  
3.0V device: VDD = 2.7 to 3.6V  
VFBGA63 9.5 x 12 x 1mm  
TFBGA63 9.5 x 12 x 1.2mm  
Page size  
x8 device: (2048 + 64 spare) Bytes  
x16 device: (1024 + 32 spare) Words  
Serial Number option  
Data protection  
Block size  
x8 device: (128K + 4K spare) Bytes  
x16 device: (64K + 2K spare) Words  
Hardware and Software Block Locking  
Hardware Program/Erase locked during  
Power transitions  
Page Read/Program  
Random access: 25µs (max)  
Sequential access: 50ns (min)  
Page program time: 300µs (typ)  
Data integrity  
100,000 Program/Erase cycles  
10 years Data Retention  
Copy Back Program mode  
ECOPACK® packages  
Fast page copy without external  
buffering  
Development tools  
Error Correction Code software and  
hardware models  
Cache Program and Cache Read modes  
Internal Cache Register to improve the  
program and read throughputs  
Bad Blocks Management and Wear  
Leveling algorithms  
Fast Block Erase  
File System OS Native reference  
software  
Block erase time: 2ms (typ)  
Status Register  
Electronic Signature  
Chip Enable ‘don’t care’  
Hardware simulation models  
for simple interface with microcontroller  
February 2006  
Rev 4.0  
1/64  
www.st.com  
2
NAND01G-B, NAND02G-B  
Part Number  
Table 1.  
Product List(1)  
Reference  
NAND01GR3B  
NAND01GW3B  
NAND01GR4B  
NAND01GW4B  
NAND02GR3B  
NAND02GW3B  
NAND02GR4B  
NAND02GW4B  
NAND01G-B  
NAND02G-B  
1. x16 organization only available for MCP Products.  
2/64  
NAND01G-B, NAND02G-B  
Contents  
Contents  
1
2
Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Memory array organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.1  
Bad blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3
Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Inputs/Outputs (I/O0-I/O7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Inputs/Outputs (I/O8-I/O15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Address Latch Enable (AL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Command Latch Enable (CL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Chip Enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Read Enable (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Power-Up Read Enable, Lock/Unlock Enable (PRL) . . . . . . . . . . . . . . . . 18  
Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Write Protect (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.10 Ready/Busy (RB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.11  
3.12  
V
V
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
DD  
SS  
4
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
Command Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Address Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Write Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
5
6
Command Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Device operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.1  
Read Memory Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.1.1 Random Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3/64  
Contents  
NAND01G-B, NAND02G-B  
6.1.2  
Page Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.2  
6.3  
Cache Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Page Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.3.1  
6.3.2  
Sequential Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Random Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.4  
6.5  
6.6  
6.7  
6.8  
Copy Back Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Cache Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Block Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Read Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.8.1  
6.8.2  
6.8.3  
6.8.4  
6.8.5  
6.8.6  
Write Protection Bit (SR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
P/E/R Controller and Cache Ready/Busy Bit (SR6) . . . . . . . . . . . . . . . 33  
P/E/R Controller Bit (SR5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Cache Program Error Bit (SR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Error Bit (SR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
SR4, SR3 and SR2 are Reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.9  
Read Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
7
8
Data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7.1  
7.2  
7.3  
7.4  
Blocks Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Blocks Unlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Blocks Lock-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Block Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Software algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
Bad Block Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Block Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Garbage Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Wear-leveling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Error Correction Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Hardware Simulation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
8.6.1  
8.6.2  
Behavioral simulation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
IBIS simulations models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9
Program and Erase Times and Endurance cycles . . . . . . . . . . . . . . . . 44  
4/64  
NAND01G-B, NAND02G-B  
Contents  
10  
11  
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
DC And AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
11.1 Ready/Busy Signal electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 57  
11.2 Data Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
12  
13  
14  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
5/64  
List of tables  
NAND01G-B, NAND02G-B  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Product List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Valid Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Bus Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Address Insertion, x8 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Address Insertion, x16 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Address Definitions, x8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Address Definitions, x16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Copy Back Program x8 Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Copy Back Program x16 Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Electronic Signature Byte/Word 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Block Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Block Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Program, Erase Times and Program Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . . . 44  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
DC Characteristics, 1.8V Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
DC Characteristics, 3V Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
AC Characteristics for Command, Address, Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
AC Characteristics for Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20 mm, Package Mechanical Data. . . 59  
VFBGA63 9.5x12mm - 6x8 active ball array, 0.80mm pitch, Package Mechanical Data . . 60  
TFBGA63 9.5x12mm - 6x8 active ball array, 0.80mm pitch, Package Mechanical Data . . 61  
Ordering Information Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
6/64  
NAND01G-B, NAND02G-B  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Logic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
TSOP48 Connections, x8 devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
FBGA63 Connections, x8 devices (Top view through package). . . . . . . . . . . . . . . . . . . . . 13  
FBGA63 Connections, x16 devices (Top view through package). . . . . . . . . . . . . . . . . . . . 14  
Memory Array Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Read Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Random Data Output During Sequential Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Cache Read Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 10. Page Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 11. Random Data Input During Sequential Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 12. Copy Back Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 13. Page Copy Back Program with Random Data Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 14. Cache Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 15. Block Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 16. Blocks Unlock Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 17. Read Block Lock Status Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 18. Block Protection State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 19. Bad Block Management Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 20. Garbage Collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 21. Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 22. Equivalent Testing Circuit for AC Characteristics Measurement . . . . . . . . . . . . . . . . . . . . 47  
Figure 23. Command Latch AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 24. Address Latch AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 25. Data Input Latch AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 26. Sequential Data Output after Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 27. Read Status Register AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 28. Read Electronic Signature AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 29. Page Read Operation AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 30. Page Program AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 31. Block Erase AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 32. Reset AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 33. Ready/Busy AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 34. Ready/Busy Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 35. Resistor Value Versus Waveform Timings For Ready/Busy Signal . . . . . . . . . . . . . . . . . . 58  
Figure 36. Data Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 37. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20 mm, Package Outline . . . . . . . . . . 59  
Figure 38. VFBGA63 9.5x12mm - 6x8 active ball array, 0.80mm pitch, Package Outline. . . . . . . . . . 60  
Figure 39. TFBGA63 9.5x12mm - 6x8 active ball array, 0.80mm pitch, Package Outline. . . . . . . . . . 61  
7/64  
Summary description  
NAND01G-B, NAND02G-B  
1
Summary description  
The NAND Flash 2112 Byte/ 1056 Word Page is a family of non-volatile Flash memories  
that uses NAND cell technology. The devices range from 1 Gbit to 2 Gbits and operate with  
either a 1.8V or 3V voltage supply. The size of a Page is either 2112 Bytes (2048 + 64  
spare) or 1056 Words (1024 + 32 spare) depending on whether the device has a x8 or x16  
bus width.  
The address lines are multiplexed with the Data Input/Output signals on a multiplexed x8 or  
x16 Input/Output bus. This interface reduces the pin count and makes it possible to migrate  
to other densities without changing the footprint.  
Each block can be programmed and erased over 100,000 cycles. To extend the lifetime of  
NAND Flash devices it is strongly recommended to implement an Error Correction Code  
(ECC).  
The devices have hardware and software security features:  
A Write Protect pin is available to give a hardware protection against program and  
erase operations.  
A Block Locking scheme is available to provide user code and/or data protection.  
The devices feature an open-drain Ready/Busy output that can be used to identify if the  
Program/Erase/Read (P/E/R) Controller is currently active. The use of an open-drain output  
allows the Ready/Busy pins from several memories to be connected to a single pull-up  
resistor.  
A Copy Back Program command is available to optimize the management of defective  
blocks. When a Page Program operation fails, the data can be programmed in another page  
without having to resend the data to be programmed.  
Each device has Cache Program and Cache Read features which improve the program and  
read throughputs for large files. During Cache Programming, the device loads the data in a  
Cache Register while the previous data is transferred to the Page Buffer and programmed  
into the memory array. During Cache Reading, the device loads the data in a Cache  
Register while the previous data is transferred to the I/O Buffers to be read.  
All devices have the Chip Enable Don’t Care feature, which allows code to be directly  
downloaded by a microcontroller, as Chip Enable transitions during the latency time do not  
stop the read operation.  
All devices have the option of a Unique Identifier (serial number), which allows each device  
to be uniquely identified.  
The Unique Identifier options is subject to an NDA (Non Disclosure Agreement) and so not  
described in the datasheet. For more details of this option contact your nearest ST Sales  
office.  
The devices are available in the following packages:  
TSOP48 (12 x 20mm) for all products  
VFBGA63 (9.5 x 12 x 1mm, 0.8mm pitch) for 1Gb products  
TFBGA63 (9.5 x 12 x 1.2mm, 0.8mm pitch) for 2Gb Dual Die products  
In order to meet environmental requirements, ST offers the NAND01G-B and NAND02G-B  
in ECOPACK® packages. ECOPACK packages are Lead-free. The category of second Level  
Interconnect is marked on the package and on the inner box label, in compliance with  
8/64  
NAND01G-B, NAND02G-B  
Summary description  
JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also  
marked on the inner box label. ECOPACK is an ST trademark.  
For information on how to order these options refer to Table 29: Ordering Information  
Scheme. Devices are shipped from the factory with Block 0 always valid and the memory  
content bits, in valid blocks, erased to ’1’.  
See Table 2: Product Description, for all the devices available in the family.  
Table 2.  
Product Description(1)  
Timings  
Bus  
Width  
Page  
Size  
Block Memory Operating  
Sequential  
access  
time  
Random  
access  
time  
Page  
Program  
time  
Reference Part Number Density  
Packages  
Block  
Erase  
(typ)  
Size  
Array  
Voltage  
(max)  
(typ)  
(min)  
1.7 to  
1.95V  
NAND01GR3B  
NAND01GW3B  
25µs  
25µs  
25µs  
25µs  
25µs  
25µs  
25µs  
25µs  
60ns  
300µs  
300µs  
300µs  
300µs  
300µs  
300µs  
300µs  
300µs  
2048+ 128K+  
x8  
64  
4K  
2.7 to  
3.6V  
Bytes  
Bytes  
64  
Pages x  
1024  
50ns  
60ns  
50ns  
60ns  
50ns  
60ns  
50ns  
NAND01G  
TSOP48  
VFBGA63  
1Gbit  
2ms  
-B  
1.7 to  
1.95V  
NAND01GR4B  
NAND01GW4B  
NAND02GR3B  
NAND02GW3B  
Blocks  
1024+  
32  
64K+  
2K  
x16(2)  
2.7 to  
3.6V  
Words Words  
1.7 to  
1.95V  
2048+ 128K+  
x8  
64  
4K  
2.7 to  
3.6V  
Bytes  
Bytes  
64  
Pages x  
2048  
TSOP48  
NAND02G  
2Gbit  
2ms TFBGA63  
-B  
(2)  
1.7 to  
1.95V  
NAND02GR4B  
NAND02GW4B  
Blocks  
1024+  
32  
64K+  
2K  
x16(2)  
2.7 to  
3.6V  
Words Words  
1. x16 organization only available for MCP  
2. Dual Die devices only  
9/64  
Summary description  
NAND01G-B, NAND02G-B  
Figure 1.  
Logic Block Diagram  
Address  
Register/Counter  
AL  
CL  
W
NAND Flash  
Memory Array  
P/E/R Controller,  
High Voltage  
Generator  
Command  
Interface  
Logic  
E
WP  
R
Page Buffer  
Cache Register  
Y Decoder  
PRL  
Command Register  
I/O Buffers & Latches  
RB  
I/O0-I/O7, x8/x16  
I/O8-I/O15, x16  
AI09373b  
Figure 2.  
Logic Diagram  
V
DD  
I/O8-I/O15, x16  
E
R
I/O0-I/O7, x8/x16  
RB  
W
NAND Flash  
AL  
CL  
WP  
PRL  
V
SS  
AI09372b  
1. x16 organization only available for MCP  
10/64  
NAND01G-B, NAND02G-B  
Summary description  
Table 3.  
Signal Names  
I/O8-15  
Data Input/Outputs for x16 devices  
Data Input/Outputs, Address Inputs, or Command Inputs for x8 and  
x16 devices  
I/O0-7  
AL  
CL  
E
Address Latch Enable  
Command Latch Enable  
Chip Enable  
R
Read Enable  
RB  
W
Ready/Busy (open-drain output)  
Write Enable  
WP  
PRL  
VDD  
VSS  
NC  
DU  
Write Protect  
Power-Up Read Enable, Lock/Unlock Enable  
Supply Voltage  
Ground  
Not Connected Internally  
Do Not Use  
11/64  
Summary description  
NAND01G-B, NAND02G-B  
Figure 3.  
TSOP48 Connections, x8 devices  
NC  
NC  
NC  
NC  
NC  
NC  
RB  
R
1
48  
NC  
NC  
NC  
NC  
I/O7  
I/O6  
I/O5  
I/O4  
NC  
E
NC  
NC  
NC  
PRL  
NAND Flash  
(x8)  
V
DD  
12  
13  
37  
36  
V
V
DD  
V
SS  
SS  
NC  
NC  
CL  
AL  
NC  
NC  
NC  
I/O3  
I/O2  
I/O1  
I/O0  
W
WP  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
24  
25  
AI11750  
12/64  
NAND01G-B, NAND02G-B  
Summary description  
Figure 4.  
FBGA63 Connections, x8 devices (Top view through package)  
1
2
3
4
5
6
7
8
9
10  
DU  
DU  
DU  
A
B
DU  
DU  
DU  
DU  
AL  
V
SS  
C
WP  
E
W
RB  
D
E
F
NC  
NC  
NC  
NC  
R
CL  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
I/O3  
NC  
NC  
NC  
G
H
J
NC  
NC  
PRL  
NC  
NC  
I/O0  
I/O1  
I/O2  
NC  
V
DD  
V
I/O5  
I/O6  
I/O7  
DD  
V
K
L
I/O4  
V
SS  
SS  
DU  
DU  
DU  
DU  
DU  
DU  
DU  
DU  
M
AI09376  
13/64  
Summary description  
NAND01G-B, NAND02G-B  
Figure 5.  
FBGA63 Connections, x16 devices (Top view through package)  
1
2
3
4
5
6
7
8
9
10  
DU  
DU  
DU  
A
B
DU  
DU  
DU  
DU  
V
SS  
C
WP  
AL  
E
W
RB  
D
E
F
NC  
NC  
R
CL  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
I/O1  
NC  
NC  
NC  
NC  
NC  
NC  
G
H
J
NC  
NC  
I/O5  
I/O12  
I/O7  
I/O14  
PRL  
I/O8  
I/O0  
I/O10  
V
DD  
V
I/O9  
I/O2  
I/O3  
I/O6  
I/O15  
DD  
V
K
L
I/O11  
I/O4  
I/O13  
V
SS  
SS  
DU  
DU  
DU  
DU  
DU  
DU  
DU  
DU  
M
AI09377  
14/64  
NAND01G-B, NAND02G-B  
Memory array organization  
2
Memory array organization  
The memory array is made up of NAND structures where 32 cells are connected in series.  
The memory array is organized in blocks where each block contains 64 pages. The array is  
split into two areas, the main area and the spare area. The main area of the array is used to  
store data whereas the spare area is typically used to store Error correction Codes, software  
flags or Bad Block identification.  
In x8 devices the pages are split into a 2048 Byte main area and a spare area of 64 Bytes.  
In the x16 devices the pages are split into a 1,024 Word main area and a 32 Word spare  
area. Refer to Figure 6: Memory Array Organization.  
2.1  
Bad blocks  
The NAND Flash 2112 Byte/ 1056 Word Page devices may contain Bad Blocks, that is  
blocks that contain one or more invalid bits whose reliability is not guaranteed. Additional  
Bad Blocks may develop during the lifetime of the device.  
The Bad Block Information is written prior to shipping (refer to Section 8.1: Bad Block  
Management for more details).  
Table 4: Valid Blocks shows the minimum number of valid blocks in each device. The values  
shown include both the Bad Blocks that are present when the device is shipped and the Bad  
Blocks that could develop later on.  
These blocks need to be managed using Bad Blocks Management, Block Replacement or  
Error Correction Codes (refer to Section 8: Software algorithms).  
Table 4.  
Valid Blocks  
Density of Device  
Min  
Max  
2 Gbits  
1 Gbit  
2008  
1004  
2048  
1024  
15/64  
Memory array organization  
NAND01G-B, NAND02G-B  
Figure 6.  
Memory Array Organization  
x8 DEVICES  
x16 DEVICES  
Block = 64 Pages  
Block = 64 Pages  
Page = 2112 Bytes (2,048 + 64)  
Page = 1056 Words (1024 + 32)  
Main Area  
Main Area  
Block  
Page  
Block  
Page  
8 bits  
16 bits  
2048 Bytes  
1024 Words  
64  
Bytes  
32  
Words  
Page Buffer, 1056 Words  
32  
Page Buffer, 2112 Bytes  
64  
1,024 Words  
Words  
2,048 Bytes  
16 bits  
Bytes  
8 bits  
AI09854  
16/64  
NAND01G-B, NAND02G-B  
Signal descriptions  
3
Signal descriptions  
See Figure 2: Logic Diagram, and Table 3: Signal Names, for a brief overview of the signals  
connected to this device.  
3.1  
Inputs/Outputs (I/O0-I/O7)  
Input/Outputs 0 to 7 are used to input the selected address, output the data during a Read  
operation or input a command or data during a Write operation. The inputs are latched on  
the rising edge of Write Enable. I/O0-I/O7 are left floating when the device is deselected or  
the outputs are disabled.  
3.2  
Inputs/Outputs (I/O8-I/O15)  
Input/Outputs 8 to 15 are only available in x16 devices. They are used to output the data  
during a Read operation or input data during a Write operation. Command and Address  
Inputs only require I/O0 to I/O7.  
The inputs are latched on the rising edge of Write Enable. I/O8-I/O15 are left floating when  
the device is deselected or the outputs are disabled.  
3.3  
3.4  
3.5  
Address Latch Enable (AL)  
The Address Latch Enable activates the latching of the Address inputs in the Command  
Interface. When AL is high, the inputs are latched on the rising edge of Write Enable.  
Command Latch Enable (CL)  
The Command Latch Enable activates the latching of the Command inputs in the Command  
Interface. When CL is high, the inputs are latched on the rising edge of Write Enable.  
Chip Enable (E)  
The Chip Enable input activates the memory control logic, input buffers, decoders and  
sense amplifiers. When Chip Enable is low, VIL, the device is selected. If Chip Enable goes  
high, vIH, while the device is busy, the device remains selected and does not go into standby  
mode.  
3.6  
Read Enable (R)  
The Read Enable pin, R, controls the sequential data output during Read operations. Data  
is valid tRLQV after the falling edge of R. The falling edge of R also increments the internal  
column address counter by one.  
17/64  
Signal descriptions  
NAND01G-B, NAND02G-B  
3.7  
Power-Up Read Enable, Lock/Unlock Enable (PRL)  
The Power-Up Read Enable, Lock/Unlock Enable input, PRL, is used to enable and disable  
the lock mechanism. When PRL is High, VIH, the device is in Block Lock mode.  
If the Power-Up Read Enable, Lock/Unlock Enable input is not required, the PRL pin should  
be left unconnected (Not Connected) or connected to VSS  
.
3.8  
Write Enable (W)  
The Write Enable input, W, controls writing to the Command Interface, Input Address and  
Data latches. Both addresses and data are latched on the rising edge of Write Enable.  
During power-up and power-down a recovery time of 10µs (min) is required before the  
Command Interface is ready to accept a command. It is recommended to keep Write Enable  
high during the recovery time.  
3.9  
Write Protect (WP)  
The Write Protect pin is an input that gives a hardware protection against unwanted program  
or erase operations. When Write Protect is Low, VIL, the device does not accept any  
program or erase operations.  
It is recommended to keep the Write Protect pin Low, VIL, during power-up and power-down.  
3.10  
Ready/Busy (RB)  
The Ready/Busy output, RB, is an open-drain output that can be used to identify if the P/E/R  
Controller is currently active. When Ready/Busy is Low, VOL, a read, program or erase  
operation is in progress. When the operation completes Ready/Busy goes High, VOH  
.
The use of an open-drain output allows the Ready/Busy pins from several memories to be  
connected to a single pull-up resistor. A Low will then indicate that one, or more, of the  
memories is busy.  
Refer to the Section 11.1: Ready/Busy Signal electrical characteristics for details on how to  
calculate the value of the pull-up resistor.  
3.11  
V
Supply Voltage  
DD  
VDD provides the power supply to the internal core of the memory device. It is the main  
power supply for all operations (read, program and erase).  
An internal voltage detector disables all functions whenever VDD is below VLKO (see  
Table 22 and Table 23) or 1.5V (for 1.8V devices) to protect the device from any involuntary  
program/erase during power-transitions.  
Each device in a system should have VDD decoupled with a 0.1µF capacitor. The PCB track  
widths should be sufficient to carry the required program and erase currents.  
18/64  
NAND01G-B, NAND02G-B  
Bus operations  
3.12  
V
Ground  
SS  
Ground, VSS, is the reference for the power supply. It must be connected to the system  
ground.  
4
Bus operations  
There are six standard bus operations that control the memory. Each of these is described  
in this section, see Table 5: Bus Operations, for a summary.  
Typically, glitches of less than 5 ns on Chip Enable, Write Enable and Read Enable are  
ignored by the memory and do not affect bus operations.  
4.1  
4.2  
Command Input  
Command Input bus operations are used to give commands to the memory. Commands are  
accepted when Chip Enable is Low, Command Latch Enable is High, Address Latch Enable  
is Low and Read Enable is High. They are latched on the rising edge of the Write Enable  
signal.  
Only I/O0 to I/O7 are used to input commands.  
See Figure 23 and Table 24 for details of the timings requirements.  
Address Input  
Address Input bus operations are used to input the memory addresses. Four bus cycles are  
required to input the addresses for 1Gb devices whereas five bus cycles are required for the  
2Gb device (refer to Table 6 and Table 7, Address Insertion).  
The addresses are accepted when Chip Enable is Low, Address Latch Enable is High,  
Command Latch Enable is Low and Read Enable is High. They are latched on the rising  
edge of the Write Enable signal. Only I/O0 to I/O7 are used to input addresses.  
See Figure 24 and Table 24 for details of the timings requirements.  
4.3  
Data Input  
Data Input bus operations are used to input the data to be programmed.  
Data is accepted only when Chip Enable is Low, Address Latch Enable is Low, Command  
Latch Enable is Low and Read Enable is High. The data is latched on the rising edge of the  
Write Enable signal. The data is input sequentially using the Write Enable signal.  
See Figure 25 and Table 24 and Table 25 for details of the timings requirements.  
19/64  
Bus operations  
NAND01G-B, NAND02G-B  
4.4  
Data Output  
Data Output bus operations are used to read: the data in the memory array, the Status  
Register, the lock status, the Electronic Signature and the Unique Identifier.  
Data is output when Chip Enable is Low, Write Enable is High, Address Latch Enable is Low,  
and Command Latch Enable is Low. The data is output sequentially using the Read Enable  
signal.  
See Figure 26 and Table 25 for details of the timings requirements.  
4.5  
4.6  
Write Protect  
Write Protect bus operations are used to protect the memory against program or erase  
operations. When the Write Protect signal is Low the device will not accept program or erase  
operations and so the contents of the memory array cannot be altered. The Write Protect  
signal is not latched by Write Enable to ensure protection even during power-up.  
Standby  
When Chip Enable is High the memory enters Standby mode, the device is deselected,  
outputs are disabled and power consumption is reduced.  
Table 5.  
Bus Operations  
Bus Operation  
E
AL  
CL  
R
W
WP  
I/O0 - I/O7  
I/O8 - I/O15(1)  
Command Input  
Address Input  
Data Input  
VIL  
VIL  
VIL  
VIL  
VIH  
VIL  
VIH  
VIL  
VIL  
VIH Rising  
VIH Rising  
VIH Rising  
X(2)  
X
Command  
Address  
X
X
VIH  
Data Input  
Data Input  
Fallin  
VIH  
g
Data Output  
Write Protect  
Standby  
VIL  
X
VIL  
X
VIL  
X
X
Data Output  
Data Output  
X
X
X
X
VIL  
X
X
X
X
VIL/VD  
VIH  
X
X
D
1. Only for x16 devices.  
2. WP must be VIH when issuing a program or erase command.  
Table 6.  
Address Insertion, x8 Devices  
Bus Cycle(1)  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
1st  
2nd  
3rd  
A7  
VIL  
A6  
VIL  
A5  
VIL  
A4  
VIL  
A3  
A11  
A15  
A23  
VIL  
A2  
A10  
A14  
A22  
VIL  
A1  
A9  
A0  
A8  
A19  
A27  
VIL  
A18  
A26  
VIL  
A17  
A25  
VIL  
A16  
A24  
VIL  
A13  
A21  
VIL  
A12  
A20  
A28  
4th  
5th(2)  
1. Any additional address input cycles will be ignored.  
2. The fifth cycle is valid for 2Gb devices. A28 is for 2Gb devices only.  
20/64  
NAND01G-B, NAND02G-B  
Bus operations  
Table 7.  
Address Insertion, x16 Devices  
I/O8-  
Bus  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
Cycle(1)  
I/O15  
1st  
2nd  
3rd  
X
X
X
X
X
A7  
VIL  
A6  
VIL  
A5  
VIL  
A4  
VIL  
A3  
VIL  
A2  
A10  
A13  
A21  
VIL  
A1  
A9  
A0  
A8  
A18  
A26  
VIL  
A17  
A25  
VIL  
A16  
A24  
VIL  
A15  
A23  
VIL  
A14  
A22  
VIL  
A12  
A20  
VIL  
A11  
A19  
A27  
4th  
5th(2)  
1. Any additional address input cycles will be ignored.  
2. The fifth cycle is valid for 2Gb devices. A27 is for 2Gb devices only.  
Table 8.  
Address Definitions, x8  
Address  
Definition  
A0 - A11  
A12 - A17  
A18 - A27  
A18 - A28  
Column Address  
Page Address  
Block Address  
Block Address  
1Gb device  
2Gb device  
Table 9.  
Address Definitions, x16  
Address  
Definition  
A0 - A10  
A11 - A16  
A17 - A26  
A17 - A27  
Column Address  
Page Address  
Block Address  
Block Address  
1Gb device  
2Gb device  
21/64  
Command Set  
NAND01G-B, NAND02G-B  
5
Command Set  
All bus write operations to the device are interpreted by the Command Interface. The  
Commands are input on I/O0-I/O7 and are latched on the rising edge of Write Enable when  
the Command Latch Enable signal is high. Device operations are selected by writing  
specific commands to the Command Register. The two-step command sequences for  
program and erase operations are imposed to maximize data security.  
The Commands are summarized in Table 10: Commands.  
Table 10. Commands  
Bus Write Operations(1)(2)  
Commands  
accepted  
during  
Command  
1st CYCLE 2nd CYCLE 3rd CYCLE 4th CYCLE  
busy  
Read  
00h(2)  
05h  
30h  
E0h  
31h  
Random Data Output  
Cache Read  
00h  
Exit Cache Read  
34h  
Yes(3)  
Page Program  
80h  
10h  
(Sequential Input default)  
Random Data Input  
Copy Back Program  
Cache Program  
Block Erase  
85h  
00h  
80h  
60h  
FFh  
90h  
70h  
7Ah  
23h  
2Ah  
2Ch  
35h  
15h  
D0h  
85h  
10h  
Reset  
Yes  
Yes  
Read Electronic Signature  
Read Status Register  
Read Block Lock Status  
Blocks Unlock  
24h  
Blocks Lock  
Blocks Lock-Down  
1. The bus cycles are only shown for issuing the codes. The cycles required to input the  
addresses or input/output data are not shown.  
2. For consecutive Read operations the 00h command does not need to be repeated.  
3. Only during Cache Read busy.  
22/64  
NAND01G-B, NAND02G-B  
Device operations  
6
Device operations  
The following section gives the details of the device operations.  
6.1  
Read Memory Array  
At Power-Up the device defaults to Read mode. To enter Read mode from another mode the  
Read command must be issued, see Table 10: Commands. Once a Read command is  
issued, subsequent consecutive Read commands only require the confirm command code  
(30h).  
Once a Read command is issued two types of operations are available: Random Read and  
Page Read.  
6.1.1  
6.1.2  
Random Read  
Each time the Read command is issued the first read is Random Read.  
Page Read  
After the first Random Read access, the page data (2112 Bytes or 1056 Words) is  
transferred to the Page Buffer in a time of tWHBH (refer to Table 25 for value). Once the  
transfer is complete the Ready/Busy signal goes High. The data can then be read out  
sequentially (from selected column address to last column address) by pulsing the Read  
Enable signal.  
The device can output random data in a page, instead of the consecutive sequential data, by  
issuing a Random Data Output command.  
The Random Data Output command can be used to skip some data during a sequential  
data output.  
The sequential operation can be resumed by changing the column address of the next data  
to be output, to the address which follows the Random Data Output command.  
The Random Data Output command can be issued as many times as required within a  
page.  
The Random Data Output command is not accepted during Cache Read operations.  
23/64  
Device operations  
NAND01G-B, NAND02G-B  
Figure 7.  
Read Operations  
CL  
E
W
AL  
R
tBLBH1  
30h  
RB  
I/O  
Address Input  
00h  
Data Output (sequentially)  
Command  
Code  
Command  
Code  
Busy  
ai08657b  
1. Highest address depends on device density.  
24/64  
NAND01G-B, NAND02G-B  
Device operations  
Figure 8.  
Random Data Output During Sequential Data Output  
tBLBH1  
(Read Busy time)  
RB  
Busy  
R
Address  
Address  
Inputs  
30h  
E0h  
I/O  
00h  
05h  
Data Output  
Data Output  
Inputs  
Cmd  
Cmd  
Cmd  
Cmd  
Code  
Code  
Code  
Code  
5 Add cycles  
2Add cycles  
Row Add 1,2,3 Col Add 1,2  
Col Add 1,2  
Spare  
Area  
Spare  
Area  
Main Area  
Main Area  
ai08658  
25/64  
Device operations  
NAND01G-B, NAND02G-B  
6.2  
Cache Read  
The Cache Read operation is used to improve the read throughput by reading data using  
the Cache Register. As soon as the user starts to read one page, the device automatically  
loads the next page into the Cache Register.  
An Cache Read operation consists of three steps (see Table 10: Commands):  
1. One bus cycle is required to setup the Cache Read command (the same as the  
standard Read command)  
2. Four or Five (refer to Table 6 and Table 7) bus cycles are then required to input the  
Start Address  
3. One bus cycle is required to issue the Cache Read confirm command to start the P/E/R  
Controller.  
The Start Address must be at the beginning of a page (Column Address = 00h, see Table 8  
and Table 9). This allows the data to be output uninterrupted after the latency time (tBLBH1),  
see Figure 9  
The Ready/Busy signal can be used to monitor the start of the operation. During the latency  
period the Ready/Busy signal goes Low, after this the Ready/Busy signal goes High, even if  
the device is internally downloading page n+1.  
Once the Cache Read operation has started, the Status Register can be read using the  
Read Status Register command.  
During the operation, SR5 can be read, to find out whether the internal reading is ongoing  
(SR5 = ‘0’), or has completed (SR5 = ‘1’), while SR6 indicates whether the Cache Register  
is ready to download new data.  
To exit the Cache Read operation an Exit Cache Read command must be issued (see  
Table 10).  
If the Exit Cache Read command is issued while the device is internally reading page n+1,  
page n will still be output, but not page n+1.  
Figure 9.  
Cache Read Operation  
tBLBH1  
(Read Busy time)  
RB  
Busy  
Address  
Inputs  
last page  
34h  
I/O  
31h  
00h  
1st page  
2nd page 3rd page  
Block N  
Exit  
Cache  
Read  
Code  
Read  
Setup  
Code  
Cache  
Read  
Confirm  
Code  
Data Output  
ai08661  
26/64  
NAND01G-B, NAND02G-B  
Device operations  
6.3  
Page Program  
The Page Program operation is the standard operation to program data to the memory  
array. Generally, data is programmed sequentially, however the device does support  
Random Input within a page.  
The memory array is programmed by page, however partial page programming is allowed  
where any number of Bytes (1 to 2112) or Words (1 to 1056) can be programmed.  
The maximum number of consecutive partial page program operations allowed in the same  
page is eight. After exceeding this a Block Erase command must be issued before any  
further program operations can take place in that page.  
6.3.1  
Sequential Input  
To input data sequentially the addresses must be sequential and remain in one block.  
For Sequential Input each Page Program operation consists of five steps (see Figure 10):  
1. one bus cycle is required to setup the Page Program (Sequential Input) command (see  
Table 10)  
2. four or five bus cycles are then required to input the program address (refer to Table 6  
and Table 7)  
3. the data is then loaded into the Data Registers  
4. one bus cycle is required to issue the Page Program confirm command to start the  
P/E/R Controller. The P/E/R will only start if the data has been loaded in step 3.  
5. the P/E/R Controller then programs the data into the array.  
6.3.2  
Random Data Input  
During a Sequential Input operation, the next sequential address to be programmed can be  
replaced by a random address, by issuing a Random Data Input command. The following  
two steps are required to issue the command:  
1. one bus cycle is required to setup the Random Data Input command (see Table 10)  
2. two bus cycles are then required to input the new column address (refer to Table 6)  
Random Data Input can be repeated as often as required in any given page.  
Once the program operation has started the Status Register can be read using the Read  
Status Register command. During program operations the Status Register will only flag  
errors for bits set to '1' that have not been successfully programmed to '0'.  
During the program operation, only the Read Status Register and Reset commands will be  
accepted, all other commands will be ignored.  
Once the program operation has completed the P/E/R Controller bit SR6 is set to ‘1’ and the  
Ready/Busy signal goes High.  
The device remains in Read Status Register mode until another valid command is written to  
the Command Interface.  
27/64  
Device operations  
NAND01G-B, NAND02G-B  
Figure 10. Page Program Operation  
tBLBH2  
(Program Busy time)  
RB  
I/O  
Busy  
Data Input  
10h  
Address Inputs  
80h  
70h  
SR0  
Confirm  
Code  
Read Status Register  
Page Program  
Setup Code  
ai08659  
Figure 11. Random Data Input During Sequential Data Input  
tBLBH2  
(Program Busy time)  
RB  
I/O  
Busy  
Address  
Inputs  
Address  
Inputs  
80h  
85h  
10h  
Data Intput  
Data Input  
70h  
SR0  
Cmd  
Code  
Cmd  
Confirm  
Code  
Read Status Register  
Code 2 Add cycles  
5 Add cycles  
Col Add 1,2  
Row Add 1,2,3 Col Add 1,2  
Spare  
Area  
Spare  
Area  
Main Area  
Main Area  
ai08664  
28/64  
NAND01G-B, NAND02G-B  
Device operations  
6.4  
Copy Back Program  
The Copy Back Program operation is used to copy the data stored in one page and  
reprogram it in another page.  
The Copy Back Program operation does not require external memory and so the operation  
is faster and more efficient because the reading and loading cycles are not required. The  
operation is particularly useful when a portion of a block is updated and the rest of the block  
needs to be copied to the newly assigned block.  
If the Copy Back Program operation fails an error is signalled in the Status Register.  
However as the standard external ECC cannot be used with the Copy Back Program  
operation bit error due to charge loss cannot be detected. For this reason it is recommended  
to limit the number of Copy Back Program operations on the same data and or to improve  
the performance of the ECC.  
The Copy Back Program operation requires four steps:  
1. The first step reads the source page. The operation copies all 1056 Words/ 2112 Bytes  
from the page into the Data Buffer. It requires:  
one bus write cycle to setup the command  
4 bus write cycles to input the source page address  
one bus write cycle to issue the confirm command code  
2. When the device returns to the ready state (Ready/Busy High), the next bus write cycle  
of the command is given with the 4 bus cycles to input the target page address. Refer  
to Table 11 for the addresses that must be the same for the Source and Target pages.  
3. Then the confirm command is issued to start the P/E/R Controller.  
To see the Data Input cycle for modifying the source page and an example of the Copy Back  
Program operation refer to Figure 12.  
A data input cycle to modify a portion or a multiple distant portion of the source page, is  
shown in Figure 13  
Table 11. Copy Back Program x8 Addresses  
Density  
Same Address for Source and Target Pages  
1 Gbit  
no constraint  
no constraint  
A28  
2 Gbit  
2 Gbit DD(1)  
1. DD = Dual Die  
Table 12. Copy Back Program x16 Addresses  
Density Same Address for Source and Target Pages  
1 Gbit  
no constraint  
no constraint  
A27  
2 Gbit  
2 Gbit DD(1)  
1. DD = Dual Die  
29/64  
Device operations  
NAND01G-B, NAND02G-B  
Figure 12. Copy Back Program  
Source  
Target  
Add Inputs  
I/O  
10h  
70h  
SR0  
35h  
85h  
00h  
Add Inputs  
Read  
Code  
Copy Back  
Code  
Read Status Register  
tBLBH1  
tBLBH2  
(Read Busy time)  
(Program Busy time)  
RB  
Busy  
Busy  
ai09858b  
1. Copy back program is only permitted between odd address pages or even address pages.  
Figure 13. Page Copy Back Program with Random Data Input  
2 Cycle  
Add Inputs  
Target  
Add Inputs  
Source  
Add Inputs  
I/O  
35h  
SR0  
00h  
85h  
Data 85h  
Data 10h  
70h  
Read  
Code  
Copy Back  
Code  
Unlimited number of repetitions  
tBLBH1  
tBLBH2  
(Read Busy time)  
(Program Busy time)  
RB  
Busy  
Busy  
ai11001  
30/64  
NAND01G-B, NAND02G-B  
Device operations  
6.5  
Cache Program  
The Cache Program operation is used to improve the programming throughput by  
programming data using the Cache Register. The Cache Program operation can only be  
used within one block. The Cache Register allows new data to be input while the previous  
data that was transferred to the Page Buffer is programmed into the memory array.  
Each Cache Program operation consists of five steps (refer to Figure 14):  
1. First of all the program setup command is issued (one bus cycle to issue the program  
setup command then four bus write cycles to input the address), the data is then input  
(up to 2112 Bytes/ 1056 Words) and loaded into the Cache Register.  
2. One bus cycle is required to issue the confirm command to start the P/E/R Controller.  
3. The P/E/R Controller then transfers the data to the Page Buffer. During this the device  
is busy for a time of tWHBH2  
.
4. Once the data is loaded into the Page Buffer the P/E/R Controller programs the data  
into the memory array. As soon as the Cache Registers are empty (after tWHBH2) a new  
Cache program command can be issued, while the internal programming is still  
executing.  
Once the program operation has started the Status Register can be read using the Read  
Status Register command. During Cache Program operations SR5 can be read to find out  
whether the internal programming is ongoing (SR5 = ‘0’) or has completed (SR5 = ‘1’) while  
SR6 indicates whether the Cache Register is ready to accept new data. If any errors have  
been detected on the previous page (Page N-1), the Cache Program Error Bit SR1 will be set  
to ‘1', while if the error has been detected on Page N the Error Bit SR0 will be set to '1’.  
When the next page (Page N) of data is input with the Cache Program command, tWHBH2 is  
affected by the pending internal programming. The data will only be transferred from the  
Cache Register to the Page Buffer when the pending program cycle is finished and the Page  
Buffer is available.  
If the system monitors the progress of the operation using only the Ready/Busy signal, the  
last page of data must be programmed with the Page Program confirm command (10h).  
If the Cache Program confirm command (15h) is used instead, Status Register bit SR5 must  
be polled to find out if the last programming is finished before starting any other operations.  
Figure 14. Cache Program Operation  
tBLBH5  
tBLBH5  
tCACHEPG  
(Cache Busy time)  
RB  
Busy  
Busy  
10h  
Busy  
Address Data  
Inputs Inputs  
Address Data  
Inputs Inputs  
Address Data  
Inputs Inputs  
I/O  
80h  
15h  
80h  
15h  
80h  
70h SR0  
Cache Program  
Confirm Code  
Page  
Program  
Confirm Code  
Read Status  
Register  
Page  
Program  
Code  
Cache  
Page  
Program Program  
Code  
Code  
First Page  
Second Page  
Last Page  
(can be repeated up to 63 times)  
ai08672  
1. Up to 64 pages can be programmed in one Cache Program operation.  
2. is the program time for the last page + the program time for the (last 1) page (Program command cycle time  
th  
t
CACHEPG  
+ Last page data loading time).  
31/64  
Device operations  
NAND01G-B, NAND02G-B  
6.6  
Block Erase  
Erase operations are done one block at a time. An erase operation sets all of the bits in the  
addressed block to ‘1’. All previous data in the block is lost.  
An erase operation consists of three steps (refer to Figure 15):  
1. One bus cycle is required to setup the Block Erase command. Only addresses A18-  
A28 (x8) or A17-A27 (x16) are used, the other address inputs are ignored.  
2. two or three bus cycles are then required to load the address of the block to be erased.  
Refer to Table 8 and Table 9 for the block addresses of each device.  
3. one bus cycle is required to issue the Block Erase confirm command to start the P/E/R  
Controller.  
The operation is initiated on the rising edge of write Enable, W, after the confirm command  
is issued. The P/E/R Controller handles Block Erase and implements the verify process.  
During the Block Erase operation, only the Read Status Register and Reset commands will  
be accepted, all other commands will be ignored.  
Once the program operation has completed the P/E/R Controller bit SR6 is set to ‘1’ and the  
Ready/Busy signal goes High. If the operation completed successfully, the Write Status Bit  
SR0 is ‘0’, otherwise it is set to ‘1’.  
Figure 15. Block Erase Operation  
tBLBH3  
(Erase Busy time)  
RB  
Busy  
Block Address  
Inputs  
I/O  
60h  
D0h  
70h  
SR0  
Confirm  
Code  
Read Status Register  
Block Erase  
Setup Code  
ai07593  
6.7  
Reset  
The Reset command is used to reset the Command Interface and Status Register. If the  
Reset command is issued during any operation, the operation will be aborted. If it was a  
program or erase operation that was aborted, the contents of the memory locations being  
modified will no longer be valid as the data will be partially programmed or erased.  
If the device has already been reset then the new Reset command will not be accepted.  
The Ready/Busy signal goes Low for tBLBH4 after the Reset command is issued. The value  
of tBLBH4 depends on the operation that the device was performing when the command was  
issued, refer to Table 25: AC Characteristics for Operations for the values.  
32/64  
NAND01G-B, NAND02G-B  
Device operations  
6.8  
Read Status Register  
The device contains a Status Register which provides information on the current or previous  
Program or Erase operation. The various bits in the Status Register convey information and  
errors on the operation.  
The Status Register is read by issuing the Read Status Register command. The Status  
Register information is present on the output data bus (I/O0-I/O7) on the falling edge of Chip  
Enable or Read Enable, whichever occurs last. When several memories are connected in a  
system, the use of Chip Enable and Read Enable signals allows the system to poll each  
device separately, even when the Ready/Busy pins are common-wired. It is not necessary to  
toggle the Chip Enable or Read Enable signals to update the contents of the Status  
Register.  
After the Read Status Register command has been issued, the device remains in Read  
Status Register mode until another command is issued. Therefore if a Read Status Register  
command is issued during a Random Read cycle a new Read command must be issued to  
continue with a Page Read operation.  
The Status Register bits are summarized in Table 13: Status Register Bits,. Refer to  
Table 13 in conjunction with the following text descriptions.  
6.8.1  
6.8.2  
Write Protection Bit (SR7)  
The Write Protection bit can be used to identify if the device is protected or not. If the Write  
Protection bit is set to ‘1’ the device is not protected and program or erase operations are  
allowed. If the Write Protection bit is set to ‘0’ the device is protected and program or erase  
operations are not allowed.  
P/E/R Controller and Cache Ready/Busy Bit (SR6)  
Status Register bit SR6 has two different functions depending on the current operation.  
During Cache Program operations SR6 acts as a Cache Program Ready/Busy bit, which  
indicates whether the Cache Register is ready to accept new data. When SR6 is set to '0',  
the Cache Register is busy and when SR6 is set to '1', the Cache Register is ready to  
accept new data.  
During all other operations SR6 acts as a P/E/R Controller bit, which indicates whether the  
P/E/R Controller is active or inactive. When the P/E/R Controller bit is set to ‘0’, the P/E/R  
Controller is active (device is busy); when the bit is set to ‘1’, the P/E/R Controller is inactive  
(device is ready).  
6.8.3  
P/E/R Controller Bit (SR5)  
The Program/Erase/Read Controller bit indicates whether the P/E/R Controller is active or  
inactive. When the P/E/R Controller bit is set to ‘0’, the P/E/R Controller is active (device is  
busy); when the bit is set to ‘1’, the P/E/R Controller is inactive (device is ready).  
33/64  
Device operations  
NAND01G-B, NAND02G-B  
6.8.4  
Cache Program Error Bit (SR1)  
The Cache Program Error bit can be used to identify if the previous page (page N-1) has  
been successfully programmed or not in a Cache Program operation. SR1 is set to ’1’ when  
the Cache Program operation has failed to program the previous page (page N-1) correctly.  
If SR1 is set to ‘0’ the operation has completed successfully.  
The Cache Program Error bit is only valid during Cache Program operations, during other  
operations it is Don’t Care.  
6.8.5  
6.8.6  
Error Bit (SR0)  
The Error bit is used to identify if any errors have been detected by the P/E/R Controller. The  
Error Bit is set to ’1’ when a program or erase operation has failed to write the correct data to  
the memory. If the Error Bit is set to ‘0’ the operation has completed successfully. The Error  
Bit SR0, in a Cache Program operation, indicates a failure on Page N.  
SR4, SR3 and SR2 are Reserved  
Table 13. Status Register Bits  
Bit  
Name  
Logic Level  
Definition  
'1'  
Not Protected  
Protected  
SR7  
Write Protection  
'0'  
'1'  
P/E/R C inactive, device ready  
Program/ Erase/ Read  
Controller  
'0'  
P/E/R C active, device busy  
SR6(1)  
'1'  
Cache Register ready (Cache Program only)  
Cache Register busy (Cache Program only)  
P/E/R C inactive, device ready  
Cache Ready/Busy  
'0'  
'1'  
Program/ Erase/ Read  
Controller(2)  
SR5  
SR4, SR3, SR2  
SR1  
'0'  
P/E/R C active, device busy  
Reserved  
Don’t Care  
'1'  
'0'  
‘1’  
‘0’  
‘1’  
‘0’  
Page N-1 failed in Cache Program operation  
Page N-1 programmed successfully  
Error – operation failed  
Cache Program Error(3)  
Generic Error  
No Error – operation successful  
SR0(1)  
Page N failed in Cache Program operation  
Page N programmed successfully  
Cache Program Error  
1. The SR6 bit and SR0 bit have a different meaning during Cache Program and Cache Read operations.  
2. Only valid for Cache Program operations, for other operations it is same as SR6.  
3. Only valid for Cache Program operations, for other operations it is Don’t Care.  
34/64  
NAND01G-B, NAND02G-B  
Device operations  
6.9  
Read Electronic Signature  
The device contains a Manufacturer Code and Device Code. To read these codes three steps  
are required:  
1. one Bus Write cycle to issue the Read Electronic Signature command (90h)  
2. one Bus Write cycle to input the address (00h)  
3. four Bus Read Cycles to sequentially output the data (as shown in Table 14: Electronic  
Signature).  
Table 14. Electronic Signature  
Byte/Word 1  
Byte/Word 2  
Device code  
Part Number  
Byte/Word 3  
Byte/Word 4  
Manufacturer  
Code  
NAND01GR3B  
NAND01GW3B  
NAND01GR4B  
NAND01GW4B  
NAND02GR3B  
NAND02GW3B  
NAND02GR4B  
NAND02GW4B  
A1h  
F1h  
B1h  
C1h  
AAh  
DAh  
BAh  
CAh  
20h  
0020h  
20h  
Page Size  
Spare Area size  
Sequential Access  
Time  
Reserved  
80h  
Block Size  
Organization  
(seeTable 15)  
0020h  
Table 15. Electronic Signature Byte/Word 4  
I/O  
Definition  
Value  
Description  
0 0  
0 1  
1 0  
1 1  
1K  
Page Size  
2K  
I/O1-I/O0  
(Without Spare Area)  
Reserved  
Reserved  
Spare Area Size  
(Byte / 512 Byte)  
0
1
8
I/O2  
I/O3  
16  
0
1
Standard (50 ns)  
Sequential Access Time  
Fast  
(30 ns)  
0 0  
0 1  
1 0  
1 1  
64K  
Block Size  
128K  
256K  
I/O5-I/O4  
(Without Spare Area)  
Reserved  
0
1
X8  
I/O6  
I/O7  
Organization  
Not Used  
X16  
Reserved  
35/64  
Data protection  
NAND01G-B, NAND02G-B  
7
Data protection  
The device has both hardware and software features to protect against program and erase  
operations.  
It features a Write Protect, WP, pin, which can be used to protect the device against program  
and erase operations. It is recommended to keep WP at VIL during power-up and power-  
down.  
In addition, to protect the memory from any involuntary program/erase operations during  
power-transitions, the device has an internal voltage detector which disables all functions  
whenever VDD is below VLKO (see Table 22 and Table 23).  
The device features a Block Lock mode, which is enabled by setting the Power-Up Read  
Enable, Lock/Unlock Enable, PRL, signal to High.  
The Block Lock mode has two levels of software protection.  
Blocks Lock/Unlock  
Blocks Lock-down  
Refer to Figure 18 for an overview of the protection mechanism.  
7.1  
Blocks Lock  
All the blocks are locked simultaneously by issuing a Blocks Lock command (see Table 10:  
Commands).  
All blocks are locked after power-up and when the Write Protect signal is Low.  
Once all the blocks are locked, one sequence of consecutive blocks can be unlocked by  
using the Blocks Unlock command.  
Refer to Figure 23: Command Latch AC Waveforms for details on how to issue the  
command.  
7.2  
Blocks Unlock  
A sequence of consecutive locked blocks can be unlocked, to allow program or erase  
operations, by issuing an Blocks Unlock command (see Table 10: Commands).  
The Blocks Unlock command consists of four steps:  
1. One bus cycle to setup the command  
2. two or three bus cycles to give the Start Block Address (refer to Table 8, Table 9 and  
Figure 16)  
3. one bus cycle to confirm the command  
4. two or three bus cycles to give the End Block Address (refer to Table 8, Table 9 and  
Figure 16).  
The Start Block Address must be nearer the logical LSB (Least Significant Bit) than End  
Block Address.  
36/64  
NAND01G-B, NAND02G-B  
Data protection  
If the Start Block Address is the same as the End Block Address, only one block is unlocked.  
Only one consecutive area of blocks can be unlocked at any one time. It is not possible to  
unlock multiple areas.  
Figure 16. Blocks Unlock Operation  
WP  
I/O  
Add1  
Add3  
23h  
Add1  
Add3  
24h  
Add2  
Add2  
End Block Address, 3 cycles  
Start Block Address, 3 cycles  
Blocks Unlock  
Command  
ai08670  
1. Three address cycles are required for 2 Gb devices. 1Gb devices only require two address cycles.  
7.3  
7.4  
Blocks Lock-Down  
The Lock-Down feature provides an additional level of protection. A Locked-down block  
cannot be unlocked by a software command. Locked-Down blocks can only be unlocked by  
setting the Write Protect signal to Low for a minimum of 100ns.  
Only locked blocks can be locked-down. The command has no affect on unlocked blocks.  
Refer to Figure 23: Command Latch AC Waveforms for details on how to issue the  
command.  
Block Lock Status  
In Block Lock mode (PRL High) the Block Lock Status of each block can be checked by  
issuing a Read Block Lock Status command (see Table 10: Commands).  
The command consists of:  
one bus cycle to give the command code  
three bus cycles to give the block address  
After this, a read cycle will then output the Block Lock Status on the I/O pins on the falling  
edge of Chip Enable or Read Enable, whichever occurs last. Chip Enable or Read Enable  
do not need to be toggled to update the status.  
The Read Block Lock Status command will not be accepted while the device is busy (RB  
Low).  
The device will remain in Read Block Lock Status mode until another command is issued.  
37/64  
Data protection  
NAND01G-B, NAND02G-B  
Figure 17. Read Block Lock Status Operation  
W
R
tWHRL  
I/O  
Add1  
Add3  
7Ah  
Dout  
Block Lock Status  
Add2  
Block Address, 3 cycles  
Read Block Lock  
Status Command  
ai08669  
1. Three address cycles are required for 2 Gb devices. 1Gb devices only require two address cycles.  
Table 16. Block Lock Status  
Status  
I/O7-I/O3  
I/O2  
I/O1  
I/O0  
Locked  
Unlocked  
X
X
X
0
1
0
1
1
0
0
0
1
Locked-Down  
Unlocked in  
Locked-Down  
Area  
X
1
0
1
1. X = Don’t Care.  
38/64  
NAND01G-B, NAND02G-B  
Data protection  
Figure 18. Block Protection State Diagram  
Power-Up  
Block Unlock  
Command  
(start + end block address)  
Locked  
Blocks Lock-Down  
Command  
Blocks Lock  
Command  
WP V >100ns  
IL  
WP V >100ns  
IL  
Unlocked in  
Locked Area  
Locked-Down  
WP V >100ns  
IL  
Unlocked in  
Locked-Down  
Area  
Blocks Lock-Down  
Command  
AI08663c  
1. PRL must be High for the software commands to be accepted.  
39/64  
Software algorithms  
NAND01G-B, NAND02G-B  
8
Software algorithms  
This section gives information on the software algorithms that ST recommends to implement  
to manage the Bad Blocks and extend the lifetime of the NAND device.  
NAND Flash memories are programmed and erased by Fowler-Nordheim tunneling using a  
high voltage. Exposing the device to a high voltage for extended periods can cause the  
oxide layer to be damaged. For this reason, the number of program and erase cycles is  
limited (see Table 18 for value) and it is recommended to implement Garbage Collection, a  
Wear-Leveling Algorithm and an Error Correction Code, to extend the number of program  
and erase cycles and increase the data retention.  
To help integrate a NAND memory into an application ST Microelectronics can provide a File  
System OS Native reference software, which supports the basic commands of file  
management.  
Contact the nearest ST Microelectronics sales office for more details.  
8.1  
Bad Block Management  
Devices with Bad Blocks have the same quality level and the same AC and DC  
characteristics as devices where all the blocks are valid. A Bad Block does not affect the  
performance of valid blocks because it is isolated from the bit line and common source line  
by a select transistor.  
The devices are supplied with all the locations inside valid blocks erased (FFh). The Bad  
Block Information is written prior to shipping. Any block, where the 1st and 6th Bytes, or 1st  
Word, in the spare area of the 1st page, does not contain FFh, is a Bad Block.  
The Bad Block Information must be read before any erase is attempted as the Bad Block  
Information may be erased. For the system to be able to recognize the Bad Blocks based on  
the original information it is recommended to create a Bad Block table following the  
flowchart shown in Figure 19  
8.2  
Block Replacement  
Over the lifetime of the device additional Bad Blocks may develop. In this case the block has  
to be replaced by copying the data to a valid block. These additional Bad Blocks can be  
identified as attempts to program or erase them will give errors in the Status Register.  
As the failure of a page program operation does not affect the data in other pages in the  
same block, the block can be replaced by re-programming the current data and copying the  
rest of the replaced block to an available valid block. The Copy Back Program command can  
be used to copy the data to a valid block.  
See the Section 6.4: Copy Back Program for more details.  
Refer to Table 17 for the recommended procedure to follow if an error occurs during an  
operation.  
40/64  
NAND01G-B, NAND02G-B  
Software algorithms  
Table 17. Block Failure  
Operation  
Recommended Procedure  
Erase  
Program  
Read  
Block Replacement  
Block Replacement or ECC  
ECC  
Figure 19. Bad Block Management Flowchart  
START  
Block Address =  
Block 0  
Increment  
Block Address  
Update  
Bad Block table  
Data  
= FFh?  
NO  
NO  
YES  
Last  
block?  
YES  
END  
AI07588C  
Figure 20. Garbage Collection  
Old Area  
New Area (After GC)  
Valid  
Page  
Invalid  
Page  
Free  
Page  
(Erased)  
AI07599B  
41/64  
Software algorithms  
NAND01G-B, NAND02G-B  
8.3  
Garbage Collection  
When a data page needs to be modified, it is faster to write to the first available page, and  
the previous page is marked as invalid. After several updates it is necessary to remove  
invalid pages to free some memory space.  
To free this memory space and allow further program operations it is recommended to  
implement a Garbage Collection algorithm. In a Garbage Collection software the valid  
pages are copied into a free area and the block containing the invalid pages is erased (see  
Figure 20).  
8.4  
Wear-leveling algorithm  
For write-intensive applications, it is recommended to implement a Wear-leveling Algorithm  
to monitor and spread the number of write cycles per block.  
In memories that do not use a Wear-Leveling Algorithm not all blocks get used at the same  
rate. Blocks with long-lived data do not endure as many write cycles as the blocks with  
frequently-changed data.  
The Wear-leveling Algorithm ensures that equal use is made of all the available write cycles  
for each block. There are two wear-leveling levels:  
First Level Wear-leveling, new data is programmed to the free blocks that have had the  
fewest write cycles  
Second Level Wear-leveling, long-lived data is copied to another block so that the  
original block can be used for more frequently-changed data.  
The Second Level Wear-leveling is triggered when the difference between the maximum  
and the minimum number of write cycles per block reaches a specific threshold.  
8.5  
Error Correction Code  
An Error Correction Code (ECC) can be implemented in the NAND Flash memories to  
identify and correct errors in the data.  
For every 2048 bits in the device it is recommended to implement 22 bits of ECC (16 bits for  
line parity plus 6 bits for column parity).  
An ECC model is available in VHDL or Verilog. Contact the nearest ST Microelectronics  
sales office for more details.  
42/64  
NAND01G-B, NAND02G-B  
Software algorithms  
Figure 21. Error Detection  
New ECC generated  
during read  
XOR previous ECC  
with new ECC  
NO  
NO  
>1 bit  
= zero?  
All results  
= zero?  
YES  
YES  
22 bit data = 0  
11 bit data = 1  
1 bit data = 1  
ECC Error  
Correctable  
Error  
No Error  
ai08332  
8.6  
Hardware Simulation models  
8.6.1  
Behavioral simulation models  
Denali Software Corporation models are platform independent functional models designed  
to assist customers in performing entire system simulations (typical VHDL/Verilog). These  
models describe the logic behavior and timings of NAND Flash devices, and so allow  
software to be developed before hardware.  
8.6.2  
IBIS simulations models  
IBIS (I/O Buffer Information Specification) models describe the behavior of the I/O buffers  
and electrical characteristics of Flash devices.  
These models provide information such as AC characteristics, rise/fall times and package  
mechanical data, all of which are measured or simulated at voltage and temperature ranges  
wider than those allowed by target specifications.  
IBIS models are used to simulate PCB connections and can be used to resolve compatibility  
issues when upgrading devices. They can be imported into SPICETOOLS.  
43/64  
Program and Erase Times and Endurance cycles  
NAND01G-B, NAND02G-B  
9
Program and Erase Times and Endurance cycles  
The Program and Erase times and the number of Program/ Erase cycles per block are  
shown in Table 18.  
Table 18. Program, Erase Times and Program Erase Endurance Cycles  
NAND Flash  
Parameters  
Unit  
Min  
Typ  
Max  
Page Program Time  
300  
2
700  
3
µs  
Block Erase Time  
ms  
Program/Erase Cycles (per block)  
Data Retention  
100,000  
10  
cycles  
years  
44/64  
NAND01G-B, NAND02G-B  
Maximum rating  
10  
Maximum rating  
Stressing the device above the ratings listed in Table 19: Absolute Maximum Ratings, may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the Operating sections of  
this specification is not implied. Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE  
Program and other relevant quality documents.  
Table 19. Absolute Maximum Ratings  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TBIAS  
TSTG  
Temperature Under Bias  
Storage Temperature  
– 50  
– 65  
125  
150  
2.7  
4.6  
2.7  
4.6  
°C  
°C  
V
1.8V devices  
3 V devices  
1.8V devices  
3 V devices  
– 0.6  
– 0.6  
– 0.6  
– 0.6  
(1)  
VIO  
Input or Output Voltage  
Supply Voltage  
V
V
VDD  
V
1. Minimum Voltage may undershoot to –2V for less than 20ns during transitions on input and I/O pins.  
Maximum voltage may overshoot to V + 2V for less than 20ns during transitions on I/O pins.  
DD  
45/64  
DC And AC parameters  
NAND01G-B, NAND02G-B  
11  
DC And AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristics Tables that  
follow, are derived from tests performed under the Measurement Conditions summarized in  
Table 20: Operating and AC Measurement Conditions. Designers should check that the  
operating conditions in their circuit match the measurement conditions when relying on the  
quoted parameters.  
Table 20. Operating and AC Measurement Conditions  
NAND Flash  
Parameter  
Units  
Min  
Max  
1.8V devices  
3V devices  
1.7  
2.7  
0
1.95  
3.6  
70  
V
V
Supply Voltage (VDD  
)
Grade 1  
°C  
°C  
pF  
pF  
V
Ambient Temperature (TA)  
Grade 6  
–40  
85  
1.8V devices  
3V devices (2.7 - 3.6V)  
1.8V devices  
3V devices  
30  
50  
Load Capacitance (CL)  
(1 TTL GATE and CL)  
0
VDD  
2.4  
Input Pulses Voltages  
0.4  
V
1.8V devices  
3V devices  
0.9  
1.5  
8.35  
5
V
Input and Output Timing Ref. Voltages  
V
Output Circuit Resistor Rref  
Input Rise and Fall Times  
kΩ  
ns  
Table 21. Capacitance(1)  
Symbol  
Parameter  
Test Condition  
Typ  
Max  
Unit  
CIN  
Input Capacitance  
VIN = 0V  
10  
10  
pF  
Input/Output  
CI/O  
VIL = 0V  
pF  
Capacitance(2)  
1.  
T = 25°C, f = 1 MHz. C and C are not 100% tested  
A IN I/O  
2. Input/output capacitances double in stacked devices  
46/64  
NAND01G-B, NAND02G-B  
DC And AC parameters  
Table 22. DC Characteristics, 1.8V Devices  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
tRLRL minimum  
Sequential  
Read  
IDD1  
-
8
15  
mA  
E=VIL, OUT = 0 mA  
I
Operating  
Current  
IDD2  
IDD3  
Program  
Erase  
-
-
-
-
8
8
15  
15  
mA  
mA  
E=VDD-0.2,  
WP=0/VDD  
IDD5  
Standby Current (CMOS)(1)  
-
10  
50  
µA  
ILI  
ILO  
Input Leakage Current(1)  
Output Leakage Current(1)  
Input High Voltage  
VIN= 0 to VDDmax  
-
-
-
±10  
±10  
µA  
µA  
V
VOUT= 0 to VDDmax  
-
VIH  
-
VDD-0.4  
-
VDD+0.3  
0.4  
VIL  
Input Low Voltage  
-
-0.3  
-
V
VOH  
VOL  
Output High Voltage Level  
Output Low Voltage Level  
Output Low Current (RB)  
IOH = -100µA  
IOL = 100µA  
VOL = 0.1V  
VDD-0.1  
-
-
V
-
-
0.1  
V
IOL (RB)  
3
4
mA  
VDD Supply Voltage (Erase and  
Program lockout)  
VLKO  
-
-
-
1.1  
V
1. Leakage current and standby current double in stacked devices  
Figure 22. Equivalent Testing Circuit for AC Characteristics Measurement  
V
DD  
2R  
ref  
NAND Flash  
C
L
2R  
ref  
GND  
GND  
Ai11085  
47/64  
DC And AC parameters  
NAND01G-B, NAND02G-B  
Table 23. DC Characteristics, 3V Devices  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
tRLRL minimum  
Sequential  
Read  
IDD1  
-
15  
30  
mA  
E=VIL, OUT = 0 mA  
I
Operating  
Current  
IDD2  
IDD3  
Program  
Erase  
-
-
-
-
15  
15  
30  
30  
1
mA  
mA  
mA  
I
Standby current (TTL)(1)  
E=VIH, WP=0/VDD  
DD4  
E=VDD-0.2,  
WP=0/VDD  
IDD5  
Standby Current (CMOS)(1)  
-
10  
50  
µA  
ILI  
ILO  
Input Leakage Current(1)  
Output Leakage Current(1)  
Input High Voltage  
VIN= 0 to VDDmax  
-
-
-
±10  
±10  
µA  
µA  
V
VOUT= 0 to VDDmax  
-
0.8VDD  
-0.3  
2.4  
-
VIH  
-
-
VDD+0.3  
0.2VDD  
-
VIL  
Input Low Voltage  
-
-
V
VOH  
VOL  
Output High Voltage Level  
Output Low Voltage Level  
Output Low Current (RB)  
IOH = -400µA  
IOL = 2.1mA  
VOL = 0.4V  
-
V
-
0.4  
V
IOL (RB)  
8
10  
mA  
VDD Supply Voltage (Erase and  
Program lockout)  
VLKO  
-
-
-
1.7  
V
1. Leakage current and standby current double in stacked devices  
48/64  
NAND01G-B, NAND02G-B  
DC And AC parameters  
Table 24. AC Characteristics for Command, Address, Data Input  
Alt.  
1.8V  
3V  
Symbol  
Parameter  
Unit  
Symbol  
Devices Devices  
tALLWL  
tALHWL  
Address Latch Low to Write Enable Low  
Address Latch High to Write Enable Low  
tALS  
AL Setup time  
CL Setup time  
Min  
Min  
0
0
0
0
ns  
Command Latch High to Write Enable  
Low  
tCLHWL  
tCLS  
ns  
tCLLWL  
tDVWH  
tELWL  
Command Latch Low to Write Enable Low  
Data Valid to Write Enable High  
tDS  
tCS  
Data Setup time Min  
20  
0
20  
0
ns  
ns  
ns  
Chip Enable Low to Write Enable Low  
E Setup time  
Min  
Min  
tWHALH  
tALH  
Write Enable High to Address Latch High AL Hold time  
10  
10  
Write Enable High to Command Latch  
High  
tWHCLH  
tWHCLL  
tCLH  
CL hold time  
Min  
10  
10  
ns  
Write Enable High to Command Latch  
Low  
tWHDX  
tWHEH  
tDH  
tCH  
Write Enable High to Data Transition  
Write Enable High to Chip Enable High  
Data Hold time  
E Hold time  
Min  
Min  
10  
10  
10  
10  
ns  
ns  
W High Hold  
time  
tWHWL  
tWH  
Write Enable High to Write Enable Low  
Min  
Min  
20  
20  
ns  
tWLWH  
tWP  
tWC  
Write Enable Low to Write Enable High  
Write Enable Low to Write Enable Low  
W Pulse Width  
25  
60  
25  
50  
ns  
ns  
(1)  
tWLWL  
Write Cycle time Min  
1. If t  
is less than 10ns, t  
must be minimum 35ns, otherwise, t  
may be minimum 25ns.  
ELWL  
WLWH  
WLWH  
49/64  
DC And AC parameters  
NAND01G-B, NAND02G-B  
Table 25. AC Characteristics for Operations(1)(2)  
Alt.  
1.8V  
3V  
Symbol  
Parameter  
Unit  
Symbol  
Devices Devices  
tALLRL1  
tALLRL2  
tBHRL  
Read Electronic Signature  
Read cycle  
Min  
Min  
10  
10  
20  
25  
700  
3
10  
10  
20  
25  
700  
3
ns  
ns  
ns  
µs  
µs  
ms  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
Address Latch Low to  
Read Enable Low  
tAR  
tRR  
Ready/Busy High to Read Enable Low  
Read Busy time  
Min  
tBLBH1  
tBLBH2  
tBLBH3  
tBLBH4  
Max  
Max  
Max  
Max  
Typ  
tPROG  
tBERS  
Program Busy time  
Erase Busy time  
Ready/Busy Low to  
Ready/Busy High  
Reset Busy time, during ready  
5
5
3
3
tBLBH5  
tCBSY  
Cache Busy time  
Max  
Max  
Max  
Max  
Min  
700  
5
700  
5
Reset Busy time, during read  
Reset Busy time, during program  
Reset Busy time, during erase  
Write Enable High to  
Ready/Busy High  
tWHBH1  
tRST  
10  
500  
10  
0
10  
500  
10  
0
tCLLRL  
tDZRL  
tEHQZ  
tELQV  
tCLR  
tIR  
tCHZ  
tCEA  
Command Latch Low to Read Enable Low  
Data Hi-Z to Read Enable Low  
Chip Enable High to Output Hi-Z  
Chip Enable Low to Output Valid  
Read Enable High to  
Min  
Max  
Max  
20  
45  
20  
45  
tRHRL  
tREH  
Read Enable High Hold time  
Min  
Min  
20  
15  
20  
15  
ns  
ns  
Read Enable Low  
TEHQX  
TRHQX  
TOH  
Chip Enable high or Read Enable high to Output Hold  
Read Enable Low to  
Read Enable Pulse Width  
Read Enable High  
tRLRH  
tRLRL  
tRP  
tRC  
Min  
Min  
25  
60  
25  
50  
ns  
ns  
Read Enable Low to  
Read Cycle time  
Read Enable Low  
Read Enable Access time  
Read Enable Low to  
Read ES Access time(3)  
Output Valid  
tRLQV  
tREA  
Max  
Max  
35  
25  
35  
25  
ns  
µs  
Write Enable High to  
Read Busy time  
tWHBH  
tR  
Ready/Busy High  
tWHBL  
tWHRL  
tWB  
Write Enable High to Ready/Busy Low  
Write Enable High to Read Enable Low  
Max  
Min  
100  
60  
100  
60  
ns  
ns  
tWHR  
Write Enable Low to  
Write Cycle time  
Write Enable Low  
tWLWL  
tWC  
Min  
60  
50  
ns  
1. The time to Ready depends on the value of the pull-up resistor tied to the Ready/Busy pin. See Figure 33, Figure 34 and  
Figure 35.  
2. To break the sequential read cycle, E must be held High for longer than t  
3. ES = Electronic Signature.  
.
EHEL  
50/64  
NAND01G-B, NAND02G-B  
DC And AC parameters  
Figure 23. Command Latch AC Waveforms  
CL  
tCLHWL  
tWHCLL  
(CL Setup time)  
(CL Hold time)  
tWHEH  
(E Hold time)  
tELWL  
(E Setup time)  
E
tWLWH  
W
tALLWL  
tWHALH  
(ALSetup time)  
(AL Hold time)  
AL  
tDVWH  
(Data Setup time)  
tWHDX  
(Data Hold time)  
I/O  
Command  
ai08028  
Figure 24. Address Latch AC Waveforms  
tCLLWL  
(CL Setup time)  
CL  
tELWL  
tWLWL  
tWLWL  
tWLWL  
(E Setup time)  
E
tWLWH  
tWLWH  
tWLWH  
tWLWH  
W
tWHWL  
tWHALL  
tALHWL  
tWHWL  
tWHALL  
tWHWL  
tWHALL  
(AL Setup time)  
(AL Hold time)  
AL  
I/O  
tDVWH  
tDVWH  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
(Data Setup time)  
tWHDX  
tWHDX  
(Data Hold time)  
Adrress  
cycle 3  
Adrress  
cycle 2  
Adrress  
cycle 4  
Adrress  
cycle 1  
ai08029  
1. A fifth address cycle is required for 2Gb devices.  
51/64  
DC And AC parameters  
NAND01G-B, NAND02G-B  
Figure 25. Data Input Latch AC Waveforms  
tWHCLH  
(CL Hold time)  
CL  
E
tWHEH  
(E Hold time)  
tALLWL  
tWLWL  
(ALSetup time)  
AL  
W
tWLWH  
tWLWH  
tWLWH  
tDVWH  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
(Data Setup time)  
tWHDX  
(Data Hold time)  
Data In  
Last  
I/O  
Data In 0  
Data In 1  
ai08030  
1. Data In Last is 2112 in x8 devices and 1056 in x16 devices.  
Figure 26. Sequential Data Output after Read AC Waveforms  
tRLRL  
(Read Cycle time)  
E
tRHRL  
(R High Holdtime)  
tEHQZ  
R
tRHQZ  
tRHQZ  
tRLQV  
tRLQV  
tRLQV  
(R Accesstime)  
I/O  
RB  
Data Out  
Data Out  
Data Out  
tBHRL  
ai08031  
1. CL = Low, AL = Low, W = High.  
52/64  
NAND01G-B, NAND02G-B  
DC And AC parameters  
Figure 27. Read Status Register AC Waveform  
tCLLRL  
CL  
tWHCLL  
tWHEH  
tCLHWL  
E
tELWL  
tWLWH  
W
R
tELQV  
tWHRL  
tEHQZ  
tDZRL  
tWHDX  
tDVWH  
(Data Setup time)  
tRLQV  
tRHQZ  
(Data Hold time)  
70h/ 72h/  
73h/ 74h/ 75h  
Status Register  
Output  
I/O  
ai08666  
Figure 28. Read Electronic Signature AC Waveform  
CL  
E
W
AL  
tALLRL1  
R
tRLQV  
(Read ES Access time)  
I/O  
90h  
00h  
Byte1  
Byte2  
Byte3  
00h  
Byte4  
Man.  
code  
Device  
code  
Read Electronic 1st Cycle  
Signature  
Command  
see Note.1  
Address  
ai08667  
1. Refer to Table 14 for the values of the Manufacturer and Device Codes, and to Table 15 for the information contained in  
Byte4.  
53/64  
DC And AC parameters  
NAND01G-B, NAND02G-B  
Figure 29. Page Read Operation AC Waveform  
CL  
tEHEL  
tEHQZ  
tEHBH  
E
tWLWL  
W
tWHBL  
AL  
tALLRL2  
tWHBH  
tRLRL  
tRHQZ  
tRHBL  
(Read Cycle time)  
R
tRLRH  
tBLBH1  
RB  
Add.N  
cycle 4  
Data  
N
Data  
N+1  
Data  
N+2  
Data  
Last  
Add.N  
cycle 1  
Add.N  
cycle 3  
Add.N  
cycle 2  
I/O  
00h  
30h  
Data Output  
from Address N to Last Byte or Word in Page  
Command Address N Input  
Code  
Busy  
ai08660  
1. A fifth address cycle is required for 2Gb devices.  
54/64  
NAND01G-B, NAND02G-B  
DC And AC parameters  
Figure 30. Page Program AC Waveform  
CL  
E
tWLWL  
tWLWL  
tWLWL  
(Write Cycle time)  
W
tWHBL  
tBLBH2  
(Program Busy time)  
AL  
R
Add.N  
Add.N Add.N  
cycle 1 cycle 2  
Add.N  
cycle 3  
I/O  
RB  
80h  
Last  
N
10h  
70h  
SR0  
cycle 4  
Confirm  
Code  
Page Program  
Setup Code  
Page  
Program  
Address Input  
Data Input  
Read Status Register  
ai08668  
1. A fifth address cycle is required for 2Gb devices.  
55/64  
DC And AC parameters  
NAND01G-B, NAND02G-B  
Figure 31. Block Erase AC Waveform  
CL  
E
tWLWL  
(Write Cycle time)  
W
AL  
R
tBLBH3  
tWHBL  
(Erase Busy time)  
Add.  
Add.  
Add.  
I/O  
RB  
70h  
SR0  
60h  
D0h  
cycle 1 cycle 2  
cycle 3  
Block Erase  
Setup Command  
Confirm  
Code  
Block Erase  
Read Status Register  
Block Address Input  
ai08038b  
1. Address cycle 3 is required for 2Gb devices only.  
Figure 32. Reset AC Waveform  
W
AL  
CL  
R
I/O  
RB  
FFh  
tBLBH4  
(Reset Busy time)  
ai08043  
56/64  
NAND01G-B, NAND02G-B  
DC And AC parameters  
11.1  
Ready/Busy Signal electrical characteristics  
Figure 34, Figure 33 and Figure 35 show the electrical characteristics for the Ready/Busy  
signal. The value required for the resistor RP can be calculated using the following equation:  
(
)
V
V
DDmax  
OLmax  
+ I  
R min= -------------------------------------------------------------  
P
I
L
OL  
So,  
1.85V  
R min(1.8V)= ---------------------------  
P
+
3mA  
I
L
3.2V  
R min(3V)= ---------------------------  
P
+
8mA  
I
L
where IL is the sum of the input currents of all the devices tied to the Ready/Busy signal. RP  
max is determined by the maximum value of tr.  
Figure 33. Ready/Busy AC Waveform  
ready V  
DD  
V
OH  
V
OL  
busy  
t
t
r
f
AI07564B  
Figure 34. Ready/Busy Load Circuit  
ibusy  
R
P
V
DD  
DEVICE  
RB  
Open Drain Output  
V
SS  
AI07563B  
57/64  
DC And AC parameters  
NAND01G-B, NAND02G-B  
Figure 35. Resistor Value Versus Waveform Timings For Ready/Busy Signal  
V
= 1.8V, C = 30pF  
V = 3.3V, C = 100pF  
DD L  
DD  
L
400  
300  
200  
400  
300  
200  
4
3
2
4
3
2
400  
300  
2.4  
200  
1.7  
120  
1.2  
100  
0
1
100  
0
1
0.85  
0.8  
100  
3.6  
90  
0.57  
0.6  
3.6  
60  
1.7  
0.43  
1.7  
30  
1.7  
3.6  
3.6  
1.7  
1
2
3
4
1
2
3
4
R
(KΩ)  
R (KΩ)  
P
P
t
t
r
ibusy  
f
ai07565B  
1. T = 25°C.  
11.2  
Data Protection  
The ST NAND device is designed to guarantee Data Protection during Power Transitions.  
A VDD detection circuit disables all NAND operations, if VDD is below the VLKO threshold.  
In the VDD range from VLKO to the lower limit of nominal range, the WP pin should be kept  
low (VIL) to guarantee hardware protection during power transitions as shown in the below  
figure.  
Figure 36. Data Protection  
Nominal Range  
V
DD  
V
LKO  
Locked  
Locked  
W
Ai11086  
58/64  
NAND01G-B, NAND02G-B  
Package mechanical  
12  
Package mechanical  
Figure 37. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20 mm, Package Outline  
1
48  
e
D1  
B
L1  
24  
25  
A2  
A
E1  
E
A1  
α
L
DIE  
C
CP  
TSOP-G  
1. Drawing is not to scale.  
Table 26. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20 mm, Package Mechanical Data  
millimeters  
inches  
Symbol  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
B
1.200  
0.150  
1.050  
0.270  
0.210  
0.080  
12.100  
20.200  
18.500  
0.0472  
0.0059  
0.0413  
0.0106  
0.0083  
0.0031  
0.4764  
0.7953  
0.7283  
0.100  
1.000  
0.220  
0.050  
0.950  
0.170  
0.100  
0.0039  
0.0394  
0.0087  
0.0020  
0.0374  
0.0067  
0.0039  
C
CP  
D1  
E
12.000  
20.000  
18.400  
0.500  
0.600  
0.800  
3°  
11.900  
19.800  
18.300  
0.4724  
0.7874  
0.7244  
0.0197  
0.0236  
0.0315  
3°  
0.4685  
0.7795  
0.7205  
E1  
e
L
0.500  
0.700  
0.0197  
0.0276  
5°  
L1  
a
0°  
5°  
0°  
59/64  
Package mechanical  
NAND01G-B, NAND02G-B  
Figure 38. VFBGA63 9.5x12mm - 6x8 active ball array, 0.80mm pitch, Package Outline  
D
D2  
D1  
FD1  
SD  
FD  
e
e
SE  
E
E2 E1  
ddd  
BALL "A1"  
FE1  
FE  
e
b
A
A2  
A1  
BGA-Z67  
1. Drawing is not to scale  
Table 27. VFBGA63 9.5x12mm - 6x8 active ball array, 0.80mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.05  
0.0413  
0.25  
0.0098  
0.70  
0.50  
9.60  
0.0276  
0.0197  
0.3780  
0.45  
9.50  
4.00  
7.20  
0.40  
9.40  
0.0177  
0.3740  
0.1575  
0.2835  
0.0157  
0.3701  
D
D1  
D2  
ddd  
E
0.10  
0.0039  
0.4764  
12.00  
5.60  
8.80  
0.80  
2.75  
1.15  
3.20  
1.60  
0.40  
0.40  
11.90  
12.10  
0.4724  
0.2205  
0.3465  
0.0315  
0.1083  
0.0453  
0.1260  
0.0630  
0.0157  
0.0157  
0.4685  
E1  
E2  
e
FD  
FD1  
FE  
FE1  
SD  
SE  
60/64  
NAND01G-B, NAND02G-B  
Package mechanical  
Figure 39. TFBGA63 9.5x12mm - 6x8 active ball array, 0.80mm pitch, Package Outline  
D
D2  
D1  
FD1  
SD  
FD  
e
e
SE  
E
E2 E1  
ddd  
BALL "A1"  
FE1  
FE  
e
b
A
A2  
A1  
1. Drawing is not to scale  
Table 28. TFBGA63 9.5x12mm - 6x8 active ball array, 0.80mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.20  
0.0472  
0.25  
0.0098  
0.80  
0.45  
9.50  
4.00  
7.20  
0.0315  
0.0177  
0.3740  
0.1575  
0.2835  
0.40  
9.40  
0.50  
9.60  
0.0157  
0.3701  
0.0197  
0.3780  
D
D1  
D2  
ddd  
E
0.10  
0.0039  
0.4764  
12.00  
5.60  
8.80  
0.80  
2.75  
1.15  
3.20  
1.60  
0.40  
0.40  
11.90  
12.10  
0.4724  
0.2205  
0.3465  
0.0315  
0.1083  
0.0453  
0.1260  
0.0630  
0.0157  
0.0157  
0.4685  
E1  
E2  
e
FD  
FD1  
FE  
FE1  
SD  
SE  
61/64  
Part numbering  
NAND01G-B, NAND02G-B  
13  
Part numbering  
Table 29. Ordering Information Scheme  
Example:  
NAND02GR3B  
2
A
N
6
E
Device Type  
NAND Flash Memory  
Density  
01G = 1Gb  
02G = 2Gb  
Operating Voltage  
R = VDD = 1.7 to 1.95V  
W = VDD = 2.7 to 3.6V  
Bus Width  
3 = x8  
4 = x16  
Family Identifier  
B = 2112 Bytes/ 1056 Word Page  
Device Options  
2 = Chip Enable Don't Care Enabled  
Product Version  
A = First Version  
B= Second Version  
C= Third Version  
Package  
N = TSOP48 12 x 20mm (all devices)  
ZA = VFBGA63 9.5 x 12 x 1mm, 0.8mm pitch (1Gb devices)  
ZB = TFBGA63 9.5 x 12 x 1.2mm, 0.8mm pitch (2Gb Dual Die devices)  
Temperature Range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Option  
E = Lead Free Package, Standard Packing  
F = Lead Free Package, Tape & Reel Packing  
Devices are shipped from the factory with the memory content bits, in valid blocks, erased to  
’1’. For further information on any aspect of this device, please contact your nearest ST  
Sales Office.  
62/64  
NAND01G-B, NAND02G-B  
Revision history  
14  
Revision history  
Table 30. Document Revision History  
Date  
Version  
Revision Details  
25-Feb-2005  
1
First Issue  
Automatic Page 0 Read feature removed throughout document.  
LFBGA63 package removed throughout document.  
Section 11.2: Data Protection and Figure 22: Equivalent Testing  
Circuit for AC Characteristics Measurement added.  
TFBGA63 and VFBGA63 packages updated. Note added to Figure 3:  
TSOP48 Connections, x8 devices and Table 3: TSOP48 Connections, x8  
devices regarding the USOP package.  
16-Aug-2005  
2
Section 3.8: Write Enable (W), Table 11, Table 12, Table 14,  
Section 7.4: Block Lock Status, Figure 18, Table 20, Table 22,  
Table 23, Table 25 and Table 30 modified.  
512 device and USOP package removed throughout document.  
18-Oct-2005  
13-Feb-2006  
3
Figure 3, <Blue>Figure 5., Table 22, Table 23 and Section 6.4: Copy  
Back Program modified.  
4 Gbit and 8 Git devices removed.  
4.0  
VIH minimum value and VIL maximum value updated in Table 23: DC  
Characteristics, 3V Devices.  
63/64  
NAND01G-B, NAND02G-B  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,  
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,  
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR  
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
64/64  

相关型号:

NAND01GR3B2CN6E

1 Gbit, 2 Gbit, 2112 Byte/1056 Word Page, 1.8V/3V, NAND Flash Memory
STMICROELECTR

NAND01GR3B2CN6E

1-Gbit, 2-Gbit, 2112-byte/1056-word page, 1.8 V/3 V, NAND flash memory
NUMONYX

NAND01GR3B2CN6F

1 Gbit, 2 Gbit, 2112 Byte/1056 Word Page, 1.8V/3V, NAND Flash Memory
STMICROELECTR

NAND01GR3B2CN6F

1-Gbit, 2-Gbit, 2112-byte/1056-word page, 1.8 V/3 V, NAND flash memory
NUMONYX

NAND01GR3B2CN6T

Flash, 128MX8, 35ns, PDSO48, 12 X 20 MM, PLASTIC, TSOP-48
STMICROELECTR

NAND01GR3B2CV1

128MX8 FLASH 1.8V PROM, 25000ns, PDSO48, 12 X 17 MM, 0.65 MM HEIGHT, PLASTIC, USOP-48
NUMONYX

NAND01GR3B2CV1E

Flash, 128MX8, 25000ns, PDSO48, 12 X 17 MM, 0.65 MM HEIGHT, ROHS COMPLIANT, PLASTIC, USOP-48
NUMONYX

NAND01GR3B2CV1F

Flash, 128MX8, 25000ns, PDSO48, 12 X 17 MM, 0.65 MM HEIGHT, ROHS COMPLIANT, PLASTIC, USOP-48
NUMONYX

NAND01GR3B2CV1T

Flash, 128MX8, 25000ns, PDSO48, 12 X 17 MM, 0.65 MM HEIGHT, PLASTIC, USOP-48
NUMONYX

NAND01GR3B2CV6

Flash, 128MX8, 25000ns, PDSO48, 12 X 17 MM, 0.65 MM HEIGHT, PLASTIC, USOP-48
NUMONYX

NAND01GR3B2CV6E

Flash, 128MX8, 25000ns, PDSO48, 12 X 17 MM, 0.65 MM HEIGHT, ROHS COMPLIANT, PLASTIC, USOP-48
NUMONYX

NAND01GR3B2CV6F

128MX8 FLASH 1.8V PROM, 25000ns, PDSO48, 12 X 17 MM, 0.65 MM HEIGHT, ROHS COMPLIANT, PLASTIC, USOP-48
NUMONYX