PSD913F2-B-20B81 [STMICROELECTRONICS]

Flash In-System Programmable ISP Peripherals For 8-bit MCUs; Flash在系统可编程ISP外设对于8位MCU
PSD913F2-B-20B81
型号: PSD913F2-B-20B81
厂家: ST    ST
描述:

Flash In-System Programmable ISP Peripherals For 8-bit MCUs
Flash在系统可编程ISP外设对于8位MCU

文件: 总94页 (文件大小:472K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PSD913F2  
PSD934F2 PSD954F2  
Flash In-System Programmable (ISP) Peripherals  
For 8-bit MCUs  
PRELIMINARY DATA  
FEATURES SUMMARY  
Single Supply Voltage:  
– 5 V±10% for PSD9xxF2  
– 3.3 V±10% for PSD9xxF2-V  
Figure 1. Packages  
Up to 2Mbit of Primary Flash Memory (8 uniform  
sectors)  
256Kbit Secondary Flash Memory (4 uniform  
sectors)  
Up to 256Kbit SRAM  
PQFP52 (T)  
Over 2,000 Gates of PLD: DPLD  
27 Reconfigurable I/O ports  
Enhanced JTAG Serial Port  
Programmable power management  
High Endurance:  
– 100,000 Erase/Write Cycles of Flash Memory  
– 1,000 Erase/Write Cycles of PLD  
PLCC52 (K)  
January 2002  
1/3  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.  
PSD9XX Family  
PSD913F2  
PSD934F2  
PSD954F2  
Configurable Memory System on a Chip for 8-Bit Microcontrollers  
Table of Contents  
Introduction....................................................................................................................................................................1  
In-System Programming (ISP) JTAG....................................................................................................................2  
In-Application Programming (IAP) ........................................................................................................................2  
Key Features .................................................................................................................................................................3  
Block Diagram ...............................................................................................................................................................4  
PSD9XX Family.............................................................................................................................................................5  
Architectural Overview...................................................................................................................................................6  
Memory.................................................................................................................................................................6  
Page Register.......................................................................................................................................................6  
PLDs.....................................................................................................................................................................6  
I/O Ports................................................................................................................................................................7  
Microcontroller Bus Interface................................................................................................................................7  
JTAG Port.............................................................................................................................................................7  
In-System Programming.......................................................................................................................................8  
Power Management Unit ......................................................................................................................................8  
Development System ....................................................................................................................................................9  
Pin Descriptions...........................................................................................................................................................10  
Register Description and Address Offset ....................................................................................................................14  
Functional Blocks ........................................................................................................................................................15  
Memory Blocks ...................................................................................................................................................15  
Main Flash and Secondary Flash Memory Description.................................................................................15  
SRAM............................................................................................................................................................27  
Memory Chip Selects....................................................................................................................................27  
Page Register ...............................................................................................................................................30  
PLDs...................................................................................................................................................................31  
Decode PLD (DPLD).....................................................................................................................................33  
General Purpose PLD (GPLD)......................................................................................................................33  
Microcontroller Bus Interface..............................................................................................................................35  
Interface to a Multiplexed 8-bit Bus...............................................................................................................35  
Interface to a Non-multiplexed 8-bit Bus.......................................................................................................35  
Microcontroller Interface Examples...............................................................................................................37  
I/O Ports..............................................................................................................................................................42  
General Port Architecture..............................................................................................................................42  
Port Operating Modes...................................................................................................................................44  
Port Configuration Registers (PCRs) ............................................................................................................47  
Port Data Registers.......................................................................................................................................49  
Ports A and B – Functionality and Structure .................................................................................................49  
Port C – Functionality and Structure .............................................................................................................51  
Port D – Functionality and Structure .............................................................................................................51  
For additional information,  
Call 800-832-6974  
Fax: 510-657-8495  
Web Site: http://www.psdst.com  
E-mail: ask.psd@st.com  
i
PSD9XX Family  
PSD913F2  
PSD934F2  
PSD954F2  
Configurable Memory System on a Chip for 8-Bit Microcontrollers  
Table of Contents  
Power Management............................................................................................................................................54  
Automatic Power Down (APD) Unit and Power Down Mode ........................................................................54  
Other Power Savings Options.......................................................................................................................58  
Reset and Power On Requirement ...............................................................................................................59  
Programming In-Circuit using the JTAG Interface..............................................................................................60  
Standard JTAG Signals.................................................................................................................................61  
JTAG Extensions ..........................................................................................................................................61  
Security and Flash Memories Protection ......................................................................................................61  
Absolute Maximum Ratings.........................................................................................................................................62  
Operating Range.........................................................................................................................................................62  
Recommended Operating Conditions .........................................................................................................................62  
AC/DC Parameters......................................................................................................................................................63  
Example of Typical Power Calculation at Vcc = 5..0 V.......................................................................................64  
Example of Typical Power Calculation at Vcc = 5..0 V in Turbo Off Mode.........................................................65  
DC Characteristics (5 V ± 10% versions) ....................................................................................................................66  
Microcontroller Interface – AC/DC Parameters (5 V ± 10% versions).........................................................................67  
Read Timing .......................................................................................................................................................68  
Write Timing........................................................................................................................................................69  
PLD Combinatorial Timing..................................................................................................................................69  
Power Down Timing............................................................................................................................................70  
Vstbyon Timing...................................................................................................................................................70  
Reset Pin Timing ................................................................................................................................................70  
Flash Program, Write and Erase Times..............................................................................................................71  
ISC Timing..........................................................................................................................................................71  
PSD9XXFV DC Characteristics (3.0 V to 3.6 V Versions) Advance Information.......................................................72  
Microcontroller Interface – AC/DC Parameters (3 V versions)....................................................................................73  
Read Timing (3 V versions) ................................................................................................................................73  
Write Timing (3 V versions) ................................................................................................................................74  
PLD Combinatorial Timing (3 V versions)...........................................................................................................74  
Power Down Timing (3 V Versions)..................................................................................................................75  
V
Timing (3 V Versions) .........................................................................................................................75  
stbyon  
Reset Pin Timing (3 V Versions).......................................................................................................................75  
Flash Program, Write and Erase Times (3 V Versions)....................................................................................76  
ISC Timing (3 V Versions) ................................................................................................................................76  
For additional information,  
Call 800-832-6974  
Fax: 510-657-8495  
Web Site: http://www.psdst.com  
E-mail: ask.psd@st.com  
ii  
PSD9XX Family  
PSD913F2  
PSD934F2  
PSD954F2  
Configurable Memory System on a Chip for 8-Bit Microcontrollers  
Table of Contents  
Timing Diagrams .........................................................................................................................................................77  
Pin Capacitance ..........................................................................................................................................................81  
AC Testing Input/Output Waveforms...........................................................................................................................81  
AC Testing Load Circuit...............................................................................................................................................81  
Programming...............................................................................................................................................................81  
Pin Assignments..........................................................................................................................................................82  
Package Information....................................................................................................................................................84  
Selector Guide.............................................................................................................................................................87  
Part Number Construction...........................................................................................................................................87  
Ordering Information....................................................................................................................................................88  
Document Revisions....................................................................................................................................................89  
For additional information,  
Call 800-832-6974  
Fax: 510-657-8495  
Web Site: http://www.psdst.com  
E-mail: ask.psd@st.com  
iii  
PSD913F2, PSD934F2,  
PSD954F2  
Configurable Memory System  
on a Chip for 8-Bit Microcontrollers  
Preliminary Information  
The PSD9XX family of Programmable System Devices (for 8-bit microcontrollers) brings  
In-System-Programmability (ISP) to Flash memory and programmable logic. The result is a  
simple and flexible solution for embedded designs. PSD9XX devices combine many of the  
peripheral functions found in MCU based applications:  
1.0  
Introduction  
Up to 2 Mbit of Flash memory  
A secondary 256 Kbit Flash memory  
Over 2,000 gates of Flash programmable logic  
Up to 256 Kbit SRAM  
Reconfigurable I/O ports  
Programmable power management.  
1
PSD9XX Family  
Preliminary Information  
The PSD9XX family offers two methods to program PSD Flash memory while the PSD is  
soldered to a circuit board.  
1.0  
Introduction  
(Cont.)  
In-System Programming (ISP) JTAG  
An IEEE 1149.1 compliant JTAG interface is included on the PSD enabling the entire  
device (both flash memories, the PLD, and all configuration) to be rapidly programmed  
while soldered to the circuit board. This requires no MCU participation, which means  
the PSD can be programmed anytime, even while completely blank.  
The innovative JTAG interface to flash memories is an industry first, solving key  
problems faced by designers and manufacturing houses, such as:  
First time programming – How do I get firmware into the flash the very first time?  
JTAG is the answer, program the PSD while blank with no MCU involvement.  
Inventory build-up of pre-programmed devices – How do I maintain an accurate  
count of pre-programmed flash memory and PLD devices based on customer  
demand? How many and what version? JTAG is the answer, build your hardware  
with blank PSDs soldered directly to the board and then custom program just before  
they are shipped to customer. No more labels on chips and no more wasted  
inventory.  
Expensive sockets – How do I eliminate the need for expensive and unreliable  
sockets? JTAG is the answer. Solder the PSD directly to the circuit board. Program  
first time and subsequent times with JTAG. No need to handle devices and bend the  
fragile leads.  
In-Application Programming (IAP)  
Two independent flash memory arrays are included so the MCU can execute code  
from one memory while erasing and programming the other. Robust product firmware  
updates in the field are possible over any communication channel (CAN, Ethernet,  
UART, J1850, etc) using this unique architecture. Designers are relieved of these  
problems:  
Simultaneous read and write to flash memory – How can the MCU program the  
same memory from which it is executing code? It cannot. The PSD allows the MCU  
to operate the two flash memories concurrently, reading code from one while erasing  
and programming the other during IAP.  
Complex memory mapping – I have only a 64K-byte address space to start with.  
How can I map these two memories efficiently? A Programmable Decode PLD is the  
answer. The concurrent PSD memories can be mapped anywhere in MCU address  
space, segment by segment with extremely high address resolution. As an option,  
the secondary flash memory can be swapped out of the system memory map when  
IAP is complete. A built-in page register breaks the 64K-byte address limit.  
Separate program and data space – How can I write to flash memory while it  
resides in “program” space during field firmware updates, my MCU won’t allow it!  
The flash PSD provides means to “reclassify” flash memory as “data” space during  
IAP, then back to “program” space when complete.  
PSDsoft Express – ST’s software development tool – guides you through the design  
process step-by-step making it possible to complete an embedded MCU design capable of  
ISP/IAP in just hours. Select your MCU and PSDsoft Express will take you through the  
remainder of the design with point and click entry, covering...PSD selection, pin definitions,  
programmable logic inputs and outputs, MCU memory map definition, ANSI C code gener-  
ation for your MCU, and merging your MCU firmware with the PSD design. When com-  
plete, two different device programmers are supported directly from PSDsoft – FlashLINK  
(JTAG) and PSDpro.  
The PSD9XX is available in 52-pin PLCC and PQFP packages as well as a 64-pin TQFP  
package.  
2
Preliminary Information  
PSD9XX Family  
A simple interface to 8-bit microcontrollers that use either multiplexed or  
2.0  
Key Features  
non-multiplexed busses. The bus interface logic uses the control signals generated by  
the microcontroller automatically when the address is decoded and a read or write is  
performed. A partial list of the MCU families supported include:  
Intel 8031, 80196, 80186, 80C251  
Motorola 68HC11, 68HC16, 68HC12, and 683XX  
Philips 8031 and 8051XA  
Zilog Z80, Z8, and Z180  
Internal 1 or 2 Mbit flash memory. This is the main Flash memory. It is divided into  
eight equal-sized blocks that can be accessed with user-specified addresses.  
Internal secondary 256 Kbit Flash memory. It is divided into four equal-sized  
blocks that can be accessed with user-specified addresses. This secondary memory  
brings the ability to execute code and update the main Flash concurrently.  
16, 64 or 256 Kbit SRAM. The SRAM’s contents can be protected from a  
power failure by connecting an external battery.  
General Purpose PLD (GPLD) with 19 outputs. The GPLD may be used to implement  
external chip selects or combinatorial logic function.  
Decode PLD (DPLD) that decodes address for selection of internal memory blocks.  
27 individually configurable I/O port pins that can be used for the following functions:  
MCU I/Os  
PLD I/Os  
Latched MCU address output  
Special function I/Os.  
16 of the I/O ports may be configured as open-drain outputs.  
Standby current as low as 50 µA for 5 V devices.  
Built-in JTAG compliant serial port allows full-chip In-System Programmability (ISP).  
With it, you can program a blank device or reprogram a device in the factory or the  
field.  
Internal page register that can be used to expand the microcontroller address space by  
a factor of 256.  
Internal programmable Power Management Unit (PMU) that supports a low power  
mode called Power Down Mode. The PMU can automatically detect a lack of  
microcontroller activity and put the PSD9XX into Power Down Mode.  
Erase/Write cycles:  
Flash memory – 100,000 minimum  
PLD – 1,000 minimum  
Data Retention: 15 years  
3
PSD9XX Family  
Preliminary Information  
Figure 1. PSD9XX Block Diagram  
4
Preliminary Information  
PSD9XX Family  
There are 2 variants in the PSD9XX family. All PSD9XX devices provide these base  
features: 1 or 2 Mbit main Flash Memory, JTAG port, GPLD, DPLD, power management,  
and 27 I/O pins. The following table summarizes all the devices in the PSD9XX family.  
Additional devices will be introduced.  
4.0  
PSD9XX  
Family  
Table 1. PSD9XX Product Matrix  
Part #  
Flash  
Secondary  
Serial ISP Main Memory Flash Memory  
PSD9XX  
Family  
I/O  
No. of  
JTAG/ISC  
Port  
Kbit  
(8 Sectors)  
Kbit  
(4 Sectors)  
SRAM  
Kbit  
Turbo  
Mode  
Supply  
Voltage  
Device  
Pins GPLD Output  
PSD9XX  
PSD913F2  
PSD934F2  
PSD954F2  
27  
27  
27  
19  
19  
19  
Yes  
Yes  
Yes  
1024  
2048  
2048  
256  
256  
256  
16  
64  
Yes  
Yes  
Yes  
3V/5V  
3V/5V  
3V/5V  
256  
5
PSD9XX Family  
Preliminary Information  
PSD9XX devices contain several major functional blocks. Figure 1 shows the  
architecture of the PSD9XX device family. The functions of each block are described  
briefly in the following sections. Many of the blocks perform multiple functions and are  
user configurable.  
5.0  
PSD9XX  
Architectural  
Overview  
5.1 Memory  
The PSD9XX contains the following memories:  
A 1 or 2 Mbit Flash  
A secondary 256 Kbit Flash memory  
16, 64 or 256 Kbit SRAM.  
Each of the memories is briefly discussed in the following paragraphs. A more detailed  
discussion can be found in section 9.  
The 1 or 2 Mbit Flash is the main memory of the PSD9XX. It is divided into eight  
equally-sized sectors that are individually selectable.  
The 256 Kbit secondary Flash memory is divided into four equally-sized sectors. Each  
sector is individually selectable. This memory can hold boot code or data.  
The SRAM is intended for use as a scratchpad memory or as an extension to the  
microcontroller SRAM. If an external battery is connected to the PSD9XX’s Vstby pin, data  
will be retained in the event of a power failure.  
Each block of memory can be located in a different address space as defined by the user.  
The access times for all memory types includes the address latching and DPLD decoding  
time.  
5.2 Page Register  
The eight-bit Page Register expands the address range of the microcontroller by up to  
256 times.The paged address can be used as part of the address space to access  
external memory and peripherals or internal memory and I/O. The Page Register can also  
be used to change the address mapping of blocks of Flash memory into different memory  
spaces IAP.  
5.3 PLDs  
The device contains two combinatorial PLD blocks, each optimized for a different function,  
as shown in Table 2. The functional partitioning of the PLDs reduces power consumption,  
optimizes cost/performance, and eases design entry.  
The Decode PLD (DPLD) is used to decode addresses and generate chip selects for the  
PSD9XX internal memory and registers. The General Purpose PLD (GPLD) can  
implement user-defined external chip selects and logic functions. The PLDs receive their  
inputs from the PLD Input Bus and are differentiated by their output destinations, number  
of Product Terms.  
The PLDs consume minimal power by using Zero-Power design techniques. The speed  
and power consumption of the PLD is controlled by the Turbo Bit in the PMMR0 register  
and other bits in the PMMR2 registers. These registers are set by the microcontroller at  
runtime. There is a slight penalty to PLD propagation time when invoking the non-Turbo  
bit.  
Table 2. PLD I/O Table  
Name  
Abbreviation  
Inputs  
Outputs  
Product Terms  
Decode PLD  
General Purpose PLD  
DPLD  
GPLD  
57  
57  
15  
19  
39  
114  
6
Preliminary Information  
PSD9XX Family  
PSD9XX  
Architectural  
Overview  
(cont.)  
5.4 I/O Ports  
The PSD9XX has 27 I/O pins divided among four ports (Port A, B, C, and D). Each  
I/O pin can be individually configured for different functions. Ports A, B, C and D can  
be configured as standard MCU I/O ports, PLD I/O, or latched address outputs for  
microcontrollers using multiplexed address/data busses.  
The JTAG pins can be enabled on Port C for In-System Programming (ISP).  
Port A can also be configured as a data port for a non-multiplexed bus.  
5.5 Microcontroller Bus Interface  
The PSD9XX easily interfaces with most 8-bit microcontrollers that have either  
multiplexed or non-multiplexed address/data busses. The device is configured to respond  
to the microcontroller’s control signals, which are also used as inputs to the PLDs. Section  
9.3.5 contains microcontroller interface examples.  
5.6 JTAG Port  
In-System Programming can be performed through the JTAG pins on Port C. This serial  
interface allows complete programming of the entire PSD9XX device. A blank device can  
be completely programmed. The JTAG signals (TMS, TCK, TSTAT, TERR, TDI, TDO) are  
enabled on Port C when selected or when a device is blank. Table 3 indicates the JTAG  
signals pin assignments.  
Table 3. JTAG Signals on Port C  
Port C Pins  
JTAG Signal  
PC0  
PC1  
PC3  
PC4  
PC5  
PC6  
TMS  
TCK  
TSTAT  
TERR  
TDI  
TDO  
7
PSD9XX Family  
Preliminary Information  
PSD9XX  
Architectural  
Overview  
(cont.)  
5.7 In-System Programming  
Using the JTAG signals on Port C, the entire PSD9XX device can be programmed or  
erased without the use of the microcontroller (ISP). The main Flash memory can also be  
programmed in-system by the microcontroller executing the programming algorithms out of  
the Secondary Flash memory, or SRAM (IAP). The Secondary Flash memory can be  
programmed the same way by executing out of the main Flash memory. The PLD logic  
or other PSD9XX configuration can be programmed through the JTAG port or a device  
programmer. Table 4 indicates which programming methods can program different  
functional blocks of the PSD9XX.  
Table 4. Methods of Programming Different Functional Blocks of the PSD9XX  
Device  
Functional Block  
JTAG-ISP  
Programmer  
IAP  
Yes  
Yes  
No  
Main Flash Memory  
Yes  
Yes  
Yes  
Yes  
Yes  
Secondary Flash Memory  
PLD Array (DPLD and GPLD)  
PSD Configuration  
Yes  
Yes  
Yes  
No  
5.8 Power Management Unit  
The Power Management Unit (PMU) in the PSD9XX gives the user control of the power  
consumption on selected functional blocks based on system requirements. The PMU  
includes an Automatic Power Down unit (APD) that will turn off device functions due to  
microcontroller inactivity. The APD unit has a Power Down Mode that helps reduce power  
consumption.  
The PSD9XX also has some bits that are configured at run-time by the MCU to reduce  
power consumption of the PLD. The turbo bit in the PMMR0 register can be turned off and  
the PLD will latch its outputs and go to sleep until the next transition on its inputs.  
Additionally, bits in the PMMR2 register can be set by the MCU to block signals from  
entering the PLD to reduce power consumption. See section 9.5.  
8
Preliminary Information  
PSD9XX Family  
The PSD9XX family is supported by PSDsoft Express, a Windows-based (95, 98, NT)  
software development tool. A PSD design is quickly and easily produced in a point and  
click environment. The designer does not need to enter Hardware Definition Language  
(HDL) equations to define PSD pin functions and memory map information. The general  
design flow is shown in Figure 2 below. PSDsoft Express is available free from our web  
site (www.psdst.com) or the Literature CD.  
6.0  
Development  
System  
PSDsoft Express directly supports two low cost device programmers from ST, PSDpro  
and FlashLINK (JTAG). Both of these programmers may be purchased through your  
local rep/distributor, or directly from our web site using a credit card. The PSD9XX is also  
supported by third party device programmers, see web site for current list.  
Figure 2. PSDsoft Development Tools  
Choose MCU and PSD  
Automatically configures MCU  
bus interface and other PSD  
attributes.  
Define PSD Pin and  
C Code  
Node Functions  
Generation  
Point and click definition of PSD  
pin functions, internal nodes, and  
MCU system memory map.  
Generate C Code  
specific to PSD  
functions.  
Merge MCU Firmware  
with PSD Configuration  
User's choice of  
Microcontroller  
Compiler/Linker  
MCU Firmware  
A composite object file is created  
containing MCU firmware and  
PSD configuration.  
Hex or S-Record  
Format  
*.OBJ File  
ST PSD  
Programmer  
*.OBJ file  
available for 3rd party  
programmers.  
(conventional or  
JTAG-ISC)  
PSDPro or  
FlashLINK (JTAG)  
9
PSD9XX Family  
Preliminary Information  
The following table describes the pin names and pin functions of the PSD9XX. Pins that  
have multiple names and/or functions are defined using PSDsoft.  
7.0  
Table 5.  
PSD9XX  
Pin  
Pin Name Pin* Type  
(PLCC)  
Description  
Descriptions  
ADIO0-7  
30-37 I/O This is the lower Address/Data port. Connect your MCU  
address or address/data bus according to the following rules:  
1. If your MCU has a multiplexed address/data bus where  
the data is multiplexed with the lower address bits,  
connect AD[0:7] to this port.  
2. If your MCU does not have a multiplexed address/data  
bus, or you are using an 80C251 in page mode, connect  
A[0:7] to this port.  
3. If you are using an 80C51XA in burst mode, connect  
A4/D0 through A11/D7 to this port.  
ALE or AS latches the address. The PSD drives data out only  
if the read signal is active and one of the PSD functional  
blocks was selected. The addresses on this port are passed  
to the PLDs.  
ADIO8-15  
39-46 I/O This is the upper Address/Data port. Connect your MCU  
address or address/data bus according to the following rules:  
1. If your MCU has a multiplexed address/data bus where  
the data is multiplexed with the lower address bits,  
connect A[8:15] to this port.  
2. If your MCU does not have a multiplexed address/data  
bus, connect A[8:15] to this port.  
3. If you are using an 80C251 in page mode, connect  
AD[8:15] to this port.  
4. If you are using an 80C51XA in burst mode, connect  
A12/D8 through A19/D15 to this port.  
ALE or AS latches the address. The PSD drives data out only  
if the read signal is active and one of the PSD functional  
blocks was selected. The addresses on this port are passed  
to the PLDs.  
CNTL0  
CNTL1  
47  
50  
I
I
The following control signals can be connected to this port,  
based on your MCU:  
1. WR — active-low write input.  
2. R_W — active-high read/active low write input.  
This pin is connected to the PLDs. Therefore, these signals  
can be used in decode and other logic equations.  
The following control signals can be connected to this port,  
based on your MCU:  
1. RD — active-low read input.  
2. E — E clock input.  
3. DS — active-low data strobe input.  
4. PSEN — connect PSEN to this port when it is being used  
as an active-low read signal. For example, when the  
80C251 outputs more than 16 address bits, PSEN is  
actually the read signal.  
This pin is connected to the PLDs. Therefore, these  
signals can be used in decode and other logic equations.  
10  
Preliminary Information  
PSD9XX Family  
Table 5.  
PSD9XX  
Pin  
Descriptions  
(cont.)  
Pin Name Pin* Type  
(PLCC)  
Description  
CNTL2  
49  
I
This pin can be used to input the PSEN (Program Select  
Enable) signal from any MCU that uses this signal for code  
exclusively. If your MCU does not output a Program Select  
Enable signal, this port can be used as a generic input. This  
port is connected to the PLDs.  
Reset  
48  
I
Active low reset input. Resets I/O Ports and some of the  
configuration registers. Must be active at power up.  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
29  
I/O  
These pins make up Port A. These port pins are configurable  
and can have the following functions:  
28  
27  
25  
24  
23  
22  
21  
1. MCU I/O — write to or read from a standard output or  
input port.  
2. General Purpose PLD outputs.  
3. Inputs to the PLDs.  
4. Latched address outputs (see Table 6).  
5. Address inputs. For example, PA0-3 could be used for  
A[0:3] when using an 80C51XA in burst mode.  
6. As the data bus inputs D[0:7] for non-multiplexed  
address/data bus MCUs.  
7. D0/A16-D3/A19 in M37702M2 mode.  
Note: PA0-3 can only output CMOS signals with an option  
for high slew rate. However, PA4-7 can be configured as  
CMOS or Open Drain Outputs.  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
7
6
I/O  
These pins make up Port B. These port pins are configurable  
and can have the following functions:  
5
4
1. MCU I/O — write to or read from a standard output or  
input port.  
3
2
2. General Purpose PLD outputs.  
3. Inputs to the PLDs.  
52  
51  
4. Latched address outputs (see Table 6).  
Note: PB0-3 can only output CMOS signals with an option  
for high slew rate. However, PB4-7 can be configured as  
CMOS or Open Drain Outputs.  
PC0  
20  
19  
I/O  
I/O  
PC0 pin of Port C. This port pin can be configured to have  
the following functions:  
1. MCU I/O — write to or read from a standard output or  
input port.  
2. Input to the PLDs.  
3. TMS Input for the JTAG Interface.  
This pin can be configured as a CMOS or Open Drain output.  
PC1  
PC1 pin of Port C. This port pin can be configured to have  
the following functions:  
1. MCU I/O — write to or read from a standard output or  
input port.  
2. Input to the PLDs.  
3. TCK Input for the JTAG Interface.  
This pin can be configured as a CMOS or Open Drain output.  
11  
PSD9XX Family  
Preliminary Information  
Table 5.  
PSD9XX  
Pin  
Descriptions  
(cont.)  
Pin Name Pin* Type  
(PLCC)  
Description  
PC2  
18  
I/O  
PC2 pin of Port C. This port pin can be configured to have  
the following functions:  
1. MCU I/O — write to or read from a standard output or  
input port.  
2. Input to the PLDs.  
3. Vstby — SRAM standby voltage input for SRAM battery  
backup.  
This pin can be configured as a CMOS or Open Drain output.  
PC3  
17  
I/O  
PC3 pin of Port C. This port pin can be configured to have  
the following functions:  
1. MCU I/O — write to or read from a standard output or  
input port.  
2. Input to the PLDs.  
3. TSTAT output for the JTAG interface.  
4. Rdy/Bsy output for in-system parallel programming.  
This pin can be configured as a CMOS or Open Drain output.  
PC4  
14  
I/O  
PC4 pin of Port C. This port pin can be configured to have  
the following functions:  
1. MCU I/O — write to or read from a standard output or  
input port.  
2. Input to the PLDs.  
3. TERR output for the JTAG interface.  
4. Vbaton — battery backup indicator output. Goes high  
when power is being drawn from an external battery.  
This pin can be configured as a CMOS or Open Drain output.  
PC5  
PC6  
13  
12  
I/O  
I/O  
PC5 pin of Port C. This port pin can be configured to have  
the following functions:  
1. MCU I/O — write to or read from a standard output or  
input port.  
2. Input to the PLDs.  
3. TDI input for the JTAG interface.  
This pin can be configured as a CMOS or Open Drain output.  
PC6 pin of Port C. This port pin can be configured to have  
the following functions:  
1. MCU I/O — write to or read from a standard output or  
input port.  
2. Input to the PLDs.  
3. TDO output for the JTAG interface.  
This pin can be configured as a CMOS or Open Drain output.  
12  
Preliminary Information  
PSD9XX Family  
Table 5.  
PSD9XX  
Pin  
Descriptions  
(cont.)  
Pin Name Pin* Type  
(PLCC)  
Description  
PC7  
11  
I/O PC7 pin of Port C. This port pin can be configured to have  
the following functions:  
1. MCU I/O — write to or read from a standard output or  
input port.  
2. Input to the PLDs.  
3. DBE — active-low Data Byte Enable input from 68HC912  
type MCUs.  
This pin can be configured as a CMOS or Open Drain output.  
PD0  
PD1  
10  
I/O PD0 pin of Port D. This port pin can be configured to have  
the following functions:  
1. ALE/AS input latches address output from the MCU.  
2. MCU I/O — write or read from a standard output or input  
port.  
3. Input to the PLDs.  
4. General Purpose PLD output.  
9
I/O PD1 pin of Port D. This port pin can be configured to have  
the following functions:  
1. MCU I/O — write to or read from a standard output or  
input port.  
2. Input to the PLDs.  
3. General Purpose PLD output  
4. CLKIN — clock input to the automatic power-down  
unit’s power-down counter, and the PLD AND array.  
PD2  
8
I/O PD2 pin of Port D. This port pin can be configured to have  
the following functions:  
1. MCU I/O — write to or read from a standard output or  
input port.  
2. Input to the PLDs.  
3. General Purpose PLD output.  
4. CSI — chip select input. When low, the MCU can access  
the PSD memory and I/O. When high, the PSD memory  
blocks are disabled to conserve power.  
V
15, 38  
Power pins  
CC  
GND  
1,16,26  
Ground pins  
*The pin numbers in this table are for the PLCC package only. See the package information section for pin  
numbers on other package types.  
Table 6. I/O Port Latched Address Output Assignments*  
Port A  
Port B  
Port B (7:4)  
Microcontroller  
Port A (3:0) Port A (7:4) Port B (3:0)  
8051XA (8-bit)  
N/A  
N/A  
Address [7:4] Address [11:8] N/A  
N/A Address [11:8] Address [15:12]  
80C251 (page mode)  
All other 8-bit  
multiplexed  
Address [3:0] Address [7:4] Address [3:0] Address [7:4]  
N/A N/A Address [3:0] Address [7:4]  
8-bit non-multiplexed  
bus  
N/A = Not Applicable  
**Refer to the I/O Port Section on how to enable the Latched Address Output function.  
13  
PSD9XX Family  
Preliminary Information  
Table 7 shows the offset addresses to the PSD9XX registers relative to the CSIOP base  
address. The CSIOP space is the 256 bytes of address that is allocated by the user to the  
internal PSD9XX registers. Table 7 provides brief descriptions of the registers in CSIOP  
space. For a more detailed description, refer to section 9.  
8.0  
PSD9XX  
Register  
Description  
and Address  
Offset  
Table 7. Register Address Offset  
Register Name Port A Port B Port C Port D Other*  
Description  
Reads Port pin as input,  
MCU I/O input mode  
Data In  
00  
01  
10  
11  
Selects mode between  
MCU I/O or Address Out  
Control  
02  
03  
Stores data for output  
to Port pins, MCU I/O  
output mode  
Data Out  
Direction  
04  
06  
05  
07  
12  
14  
13  
15  
Configures Port pin as  
input or output  
Configures Port pins as  
either CMOS or Open  
Drain on some pins, while  
selecting high slew rate  
on other pins.  
Drive Select  
08  
09  
16  
17  
Read only – Flash Sector  
Protection  
Flash Protection  
C0  
C2  
B0  
Read only – PSD Security  
and Secondary Flash  
Sector Protection  
Secondary Flash  
Protection  
Power Management  
Register 0  
PMMR0  
Power Management  
Register 2  
PMMR2  
Page  
B4  
E0  
Page Register  
Places PSD memory  
areas in Program and/or  
Data space on an  
VM  
E2  
individual basis.  
*Other registers that are not part of the I/O ports.  
14  
Preliminary Information  
PSD9XX Family  
As shown in Figure 1, the PSD9XX consists of six major types of functional blocks:  
9.0  
The  
Memory Blocks  
PLD Blocks  
Bus Interface  
I/O Ports  
PSD9XX  
Functional  
Blocks  
Power Management Unit  
JTAG Interface  
The functions of each block are described in the following sections. Many of the blocks  
perform multiple functions, and are user configurable.  
9.1 Memory Blocks  
The PSD9XX has the following memory blocks:  
The main Flash memory  
Secondary Flash memory  
SRAM.  
The memory select signals for these blocks originate from the Decode PLD (DPLD) and  
are user-defined in PSDsoft.  
Table 8 summarizes which versions of the PSD9XX contain which memory blocks.  
Table 8. Memory Blocks  
Main Flash  
Secondary Flash Block  
Device  
Flash Size  
128KB  
Sector Size Block Size Sector Size  
SRAM  
2KB  
PSD913F2  
PSD934F2  
PSD954F2  
16KB  
32KB  
32KB  
32KB  
32KB  
32KB  
8KB  
8KB  
8KB  
256KB  
8KB  
256KB  
32KB  
9.1.1 Main Flash and Secondary Flash Memory Description  
The main Flash memory block is divided evenly into eight sectors. The secondary Flash  
memory is divided into four sectors of eight Kbytes each. Each sector of either memory  
can be separately protected from program and erase operations.  
Flash memory may be erased on a sector-by-sector basis and programmed byte-by-byte.  
Flash sector erasure may be suspended while data is read from other sectors of memory  
and then resumed after reading.  
During a program or erase of Flash, the status can be output on the Rdy/Bsy pin of Port  
C3. This pin is set up using PSDsoft.  
15  
PSD9XX Family  
Preliminary Information  
9.1.1.1 Memory Block Selects  
The  
The decode PLD in the PSD9XX generates the chip selects for all the internal memory  
blocks (refer to the PLD section). Each of the eight Flash memory sectors have a  
Flash Select signal (FS0-FS7) which can contain up to three product terms. Each of the  
four secondary Flash memory sectors have a Select signal (CSBOOT0-3) which can  
contain up to three product terms. Having three product terms for each sector select signal  
allows a given sector to be mapped in different areas of system memory. When using a  
microcontroller with separate Program and Data space, these flexible select signals allow  
dynamic re-mapping of sectors from one space to the other when used with the VM  
Register (see section 9.1.3.1).  
PSD9XX  
Functional  
Blocks  
(cont.)  
9.1.1.2 The Ready/Busy Pin (PC3)  
Pin PC3 can be used to output the Ready/Busy status of the PSD9XX. The output on the  
pin will be a ‘0’ (Busy) when Flash memory blocks are being written to, or when the Flash  
memory block is being erased. The output will be a ‘1’ (Ready) when no write or erase  
operation is in progress.  
9.1.1.3 Memory Operation  
The main Flash and secondary Flash memories are addressed through the microcontroller  
interface on the PSD9XX device. The microcontroller can access these memories in one of  
two ways:  
The microcontroller can execute a typical bus write or read operation just as it would  
if accessing a RAM or ROM device using standard bus cycles.  
The microcontroller can execute a specific instruction that consists of several write  
and read operations. This involves writing specific data patterns to special addresses  
within the Flash to invoke an embedded algorithm. These instructions are summarized  
in Table 9.  
Typically, Flash memory can be read by the microcontroller using read operations, just  
as it would read a ROM device. However, Flash memory can only be erased and  
programmed with specific instructions. For example, the microcontroller cannot write a  
single byte directly to Flash memory as one would write a byte to RAM. To program a byte  
into Flash memory, the microcontroller must execute a program instruction sequence, then  
test the status of the programming event. This status test is achieved by a read operation  
or polling the Rdy/Busy pin (PC3).  
The Flash memory can also be read by using special instructions to retrieve particular  
Flash device information (sector protect status and ID).  
16  
Preliminary Information  
PSD9XX Family  
9.1.1.3.1 Instructions  
The  
An instruction is defined as a sequence of specific operations. Each received byte is  
sequentially decoded by the PSD and not executed as a standard write operation. The  
instruction is executed when the correct number of bytes are properly received and the  
time between two consecutive bytes is shorter than the time-out value. Some instructions  
are structured to include read operations after the initial write operations.  
PSD9XX  
Functional  
Blocks  
(cont.)  
The sequencing of any instruction must be followed exactly. Any invalid combination of  
instruction bytes or time-out between two consecutive bytes while addressing Flash  
memory will reset the device logic into a read array mode (Flash memory reads like a  
ROM device).  
The PSD9XX main Flash and Secondary Flash support these instructions (see Table 9):  
Erase memory by chip or sector  
Suspend or resume sector erase  
Program a byte  
Reset to read array mode  
Read Main Flash Identifier value  
Read sector protection status  
Bypass Instruction (PSD934F2 and PSD954F2 only)  
These instructions are detailed in Table 9. For efficient decoding of the instructions, the  
first two bytes of an instruction are the coded cycles and are followed by a command byte  
or confirmation byte. The coded cycles consist of writing the data AAh to address X555h  
during the first cycle and data 55h to address XAAAh during the second cycle. Address  
lines A15-A12 are don’t care during the instruction write cycles. However, the appropriate  
sector select signal (FSi or CSBOOTi) must be selected.  
The main Flash and the Secondary Flash Block have the same set of instructions (except  
Read main Flash ID). The chip selects of the Flash memory will determine which Flash will  
receive and execute the instruction. The main Flash is selected if any one of the FS0-7 is  
active, and the secondary Flash Block is selected if any one of the CSBOOT0-3 is active.  
17  
PSD9XX Family  
Preliminary Information  
The  
Table 9. Instructions  
PSD9XX  
Functional  
Blocks  
(cont.)  
FS0-7  
or  
Instruction  
CSBOOT0-3 Cycle 1 Cycle 2 Cycle 3 Cycle 4  
Cycle5  
Cycle 6 Cycle 7  
Read (Note 5)  
1
1
“Read”  
RA RD  
Read Main Flash ID  
(Notes 6,13)  
AAh  
@555h  
55h  
90h  
“Read”  
ID  
@AAAh @555h  
@x01h  
Read Sector Protection  
(Notes 6,8,13)  
1
AAh  
@555h  
55h  
90h  
“Read”  
@AAAh @555h 00h or 01h  
@x02h  
Program a Flash Byte  
1
1
AAh  
@555h  
55h  
A0h  
PD@PA  
@AAAh @555h  
Erase One Flash Sector  
AAh  
55h 80h  
AAh  
55h  
30h  
30h  
@555h  
@AAAh @555h  
@555h  
@AAAh  
@SA  
@next SA  
(Note 7)  
Erase Flash Block  
(Bulk Erase)  
1
1
1
1
1
1
1
AAh  
@555h  
55h  
80h  
AAh  
@555h  
55h  
@AAAh  
10h  
@555h  
@AAAh @555h  
Suspend Sector Erase  
(Note 11)  
B0h  
@xxxh  
Resume Sector Erase  
(Note 12)  
30h  
@xxxh  
Reset (Note 6)  
F0 @ any  
address  
Unlock Bypass  
(Note 14)  
AAh  
@555h  
55h  
20h  
@AAAh @555h  
Unlock Bypass Program  
(Note 9,14)  
A0h  
@xxxh  
PD@PA  
Unlock Bypass Reset  
(Note 10,14)  
90h  
@xxxh  
00h  
@xxxh  
X
= Don’t Care.  
RA = Address of the memory location to be read.  
RD = Data read from location RA during read operation.  
PA = Address of the memory location to be programmed. Addresses are latched on the falling edge of the WR#  
(CNTL0) pulse.  
PD = Data to be programmed at location PA. Data is latched o the rising edge of WR# (CNTL0) pulse.  
SA = Address of the sector to be erased or verified. The chip select (FS0-7 or CSBOOT0-3) of the sector to be  
erased must be active (high).  
NOTES:  
1. All bus cycles are write bus cycle except the ones with the “read” label.  
2. All values are in hexadecimal.  
3. FS0-7 and CSBOOT0-3 are active high and are defined in PSDsoft.  
4. Only Address bits A11-A0 are used in Instruction decoding. A15-12 (or A16-A12) are don’t care.  
5. No unlock or command cycles required when device is in read mode.  
6. The Reset command is required to return to the read mode after reading the Flash ID, Sector Protect status  
or if DQ5 (error flag) goes high.  
7. Additional sectors to be erased must be entered within 80µs.  
8. The data is 00h for an unprotected sector and 01h for a protected sector. In the fourth cycle, the sector chip  
select is active and (A1 = 1, A0 = 0).  
9. The Unlock Bypass command is required prior to the Unlock Bypass Program command.  
10. The Unlock Bypass Reset command is required to return to reading array data when the device is in the  
Unlock Bypass mode.  
11. The system may read and program functions in non-erasing sectors, read the Flash ID or read the Sector  
Protect status, when in the Erase Suspend mode. The erase Suspend command is valid only during a sector  
erase operation.  
12. The Erase Resume command is valid only during the Erase Suspend mode.  
13. The MCU cannot invoke these instructions while executing code from the same Flash memory for which the  
instruction is intended. The MCU must fetch, for example, codes from the secondary block when reading the  
Sector Protection Status of the main Flash.  
14. Available to PSD934F2 and PSD954F2 devices only.  
18  
Preliminary Information  
PSD9XX Family  
The  
9.1.1.4 Power-Up Condition  
The PSD9XX Flash memory is reset upon power-up to the read array mode. The FSi and  
CSBOOTi select signals, along with the write strobe signal, must be in the false state  
during power-up for maximum security of the data contents and to remove the possibility of  
a byte being written on the first edge of a write strobe signal. Any write cycle initiation is  
PSD9XX  
Functional  
Blocks  
(cont.)  
locked when V is below VLKO.  
CC  
9.1.1.5 Read  
Under typical conditions, the microcontroller may read the Flash, or Secondary Flash  
memories using read operations just as it would a ROM or RAM device. Alternately, the  
microcontoller may use read operations to obtain status information about a program or  
erase operation in progress. Lastly, the microcontroller may use instructions to read  
special data from these memories. The following sections describe these read functions.  
9.1.1.5.1 Read the Contents of Memory  
Main Flash and Secondary Flash memories are placed in the read array mode after  
power-up, chip reset, or a Reset Flash instruction (see Table 9). The microcontroller can  
read the memory contents of main Flash or Secondary Flash by using read operations any  
time the read operation is not part of an instruction sequence.  
9.1.1.5.2 Read the Main Flash Memory Identifier  
The main Flash memory identifier is read with an instruction composed of 4 operations:  
3 specific write operations and a read operation (see Table 9). During the read operation,  
address bits A6, A1, and A0 must be 0,0,1, respectively, and the appropriate sector select  
signal (FSi) must be active. The PSD9XX main Flash memory ID is E7h (PSD934/954F2)  
and E4h (PSD913F2).  
9.1.1.5.3 Read the Flash Memory Sector Protection Status  
The Flash memory sector protection status is read with an instruction composed of 4  
operations: 3 specific write operations and a read operation (see Table 9). During the read  
operation, address bits A6, A1, and A0 must be 0,1,0, respectively, while the chip select  
(FSi or CSBOOTi) designates the Flash sector whose protection has to be verified. The  
read operation will produce 01h if the Flash sector is protected, or 00h if the sector is not  
protected.  
The sector protection status for all NVM blocks (main Flash or Secondary Flash) can also  
be read by the microcontroller accessing the Flash Protection and Secondary Flash  
Protection registers in PSD I/O space. See section 9.1.1.9.1 for register definitions.  
9.1.1.5.4 Read the Erase/Program Status Bits  
The PSD9XX provides several status bits to be used by the microcontroller to confirm  
the completion of an erase or programming instruction of Flash memory. These status bits  
minimize the time that the microcontroller spends performing these tasks and are defined  
in Table 10. The status bits can be read as many times as needed.  
Table 10. Status Bits  
FSi/  
CSBOOTi  
DQ7  
Data Toggle Error  
Polling Flag Flag  
DQ6  
DQ5  
DQ4  
DQ3  
DQ2  
DQ1  
DQ0  
Erase  
Time-  
out  
Flash  
V
X
X
X
X
IH  
NOTES: 1. X = Not guaranteed value, can be read either 1 or 0.  
2. DQ7-DQ0 represent the Data Bus bits, D7-D0.  
3. FSi/CSBOOTi are active high.  
For Flash memory, the microcontroller can perform a read operation to obtain these status  
bits while an erase or program instruction is being executed by the embedded algorithm.  
See section 9.1.1.7 for details.  
19  
PSD9XX Family  
Preliminary Information  
9.1.1.5.5 Data Polling Flag DQ7  
The  
When Erasing or Programming the Flash memory bit DQ7 outputs the complement of the  
bit being entered for Programming/Writing on DQ7. Once the Program instruction or the  
Write operation is completed, the true logic value is read on DQ7 (in a Read operation).  
Flash memory specific features:  
PSD9XX  
Functional  
Blocks  
(cont.)  
Data Polling is effective after the fourth Write pulse (for programming) or after the  
sixth Write pulse (for Erase). It must be performed at the address being programmed  
or at an address within the Flash sector being erased.  
During an Erase instruction, DQ7 outputs a ‘0’. After completion of the instruction,  
DQ7 will output the last bit programmed (it is a ‘1’ after erasing).  
If the byte to be programmed is in a protected Flash sector, the instruction is  
ignored.  
If all the Flash sectors to be erased are protected, DQ7 will be set to ‘0’ for  
about 100 µs, and then return to the previous addressed byte. No erasure will be  
performed.  
9.1.1.5.6 Toggle Flag DQ6  
The PSD9XX offers another way for determining when the Flash memory Program  
instruction is completed. During the internal Write operation and when either the FSi or  
CSBOOTi is true, the DQ6 will toggle from ‘0’ to ‘1’ and ‘1’ to ‘0’ on subsequent attempts to  
read any byte of the memory.  
When the internal cycle is complete, the toggling will stop and the data read on the  
Data Bus D0-7 is the addressed memory byte. The device is now accessible for a new  
Read or Write operation. The operation is finished when two successive reads yield the  
same output data. Flash memory specific features:  
The Toggle bit is effective after the fourth Write pulse (for programming) or after the  
sixth Write pulse (for Erase).  
If the byte to be programmed belongs to a protected Flash sector, the instruction is  
ignored.  
If all the Flash sectors selected for erasure are protected, DQ6 will toggle to ‘0’ for  
about 100 µs and then return to the previous addressed byte.  
9.1.1.5.7 Error Flag DQ5  
During a correct Program or Erase, the Error bit will set to ‘0’. This bit is set to ‘1’ when  
there is a failure during Flash byte programming, Sector erase, or Bulk Erase.  
In the case of Flash programming, the Error Bit indicates the attempt to program a Flash  
bit(s) from the programmed state (0) to the erased state (1), which is not a valid operation.  
The Error bit may also indicate a timeout condition while attempting to program a byte.  
In case of an error in Flash sector erase or byte program, the Flash sector in which the  
error occurred or to which the programmed byte belongs must no longer be used.  
Other Flash sectors may still be used. The Error bit resets after the Reset instruction.  
9.1.1.5.8 Erase Time-out Flag DQ3  
The Erase Timer bit reflects the time-out period allowed between two consecutive Sector  
Erase instructions. The Erase timer bit is set to ‘0’ after a Sector Erase instruction for a  
time period of 100 µs + 20% unless an additional Sector Erase instruction is decoded.  
After this time period or when the additional Sector Erase instruction is decoded, DQ3 is  
set to ‘1’.  
20  
Preliminary Information  
PSD9XX Family  
The  
9.1.1.6 Programming Flash Memory  
Flash memory must be erased prior to being programmed. The MCU may erase Flash  
memory all at once or by-sector, but not byte-by-byte. A byte of Flash memory erases to all  
logic ones (FF hex), and its bits are programmed to logic zeros. Although erasing Flash  
memory occurs on a sector basis, programming Flash memory occurs on a byte basis.  
PSD9XX  
Functional  
Blocks  
(cont.)  
The PSD9XX main Flash and Secondary Flash memories require the MCU to send an  
instruction to program a byte or perform an erase function (see Table 9).  
Once the MCU issues a Flash memory program or erase instruction, it must check for the  
status of completion. The embedded algorithms that are invoked inside the PSD9XX  
support several means to provide status to the MCU. Status may be checked using any of  
three methods: Data Polling, Data Toggle, or the Ready/Busy output pin.  
9.1.1.6.1 Data Polling  
Polling on DQ7 is a method of checking whether a Program or Erase instruction is in  
progress or has completed. Figure 3 shows the Data Polling algorithm.  
When the MCU issues a programming instruction, the embedded algorithm within the  
PSD9XX begins. The MCU then reads the location of the byte to be programmed in Flash  
to check status. Data bit DQ7 of this location becomes the compliment of data bit 7of the  
original data byte to be programmed. The MCU continues to poll this location, comparing  
DQ7 and monitoring the Error bit on DQ5. When the DQ7 matches data bit 7 of the original  
data, and the Error bit at DQ5 remains ‘0’, then the embedded algorithm is complete.  
If the Error bit at DQ5 is ‘1’, the MCU should test DQ7 again since DQ7 may have changed  
simultaneously with DQ5 (see Figure 3).  
The Error bit at DQ5 will be set if either an internal timeout occurred while the embedded  
algorithm attempted to program the byte or if the MCU attempted to program a ‘1’ to a bit  
that was not erased (not erased is logic ‘0’).  
It is suggested (as with all Flash memories) to read the location again after the embedded  
programming algorithm has completed to compare the byte that was written to Flash with  
the byte that was intended to be written.  
When using the Data Polling method after an erase instruction, Figure 3 still applies.  
However, DQ7 will be ‘0’ until the erase operation is complete. A ‘1’ on DQ5 will indicate  
a timeout failure of the erase operation, a ‘0’ indicates no error. The MCU can read any  
location within the sector being erased to get DQ7 and DQ5.  
PSDsoft will generate ANSI C code functions which implement these Data Polling  
algorithms.  
21  
PSD9XX Family  
Preliminary Information  
The  
Figure 3. Data Polling Flow Chart  
PSD9XX  
Functional  
Blocks  
(cont.)  
START  
READ DQ5 & DQ7  
at Valid Address  
DQ7  
=
DATA7  
YES  
NO  
NO  
DQ5  
=1  
YES  
READ DQ7  
YES  
DQ7  
=
DATA  
NO  
FAIL  
PASS  
Program/Erase  
Operation Not  
Complete, Issue  
Reset Instruction  
Program/Erase  
Operation is  
Complete  
9.1.1.6.2 Data Toggle  
Checking the Data Toggle bit on DQ6 is a method of determining whether a Program or  
Erase instruction is in progress or has completed. Figure 4 shows the Data Toggle  
algorithm.  
When the MCU issues a programming instruction, the embedded algorithm within the  
PSD9XX begins. The MCU then reads the location of the byte to be programmed in  
Flash to check status. Data bit DQ6 of this location will toggle each time the MCU reads  
this location until the embedded algorithm is complete. The MCU continues to read this  
location, checking DQ6 and monitoring the Error bit on DQ5. When DQ6 stops toggling  
(two consecutive reads yield the same value), and the Error bit on DQ5 remains 0, then  
the embedded algorithm is complete. If the Error bit on DQ5 is 1, the MCU should test  
DQ6 again, since DQ6 may have changed simultaneously with DQ5 (see Figure 4).  
The Error bit at DQ5 will be set if either an internal timeout occurred while the embedded  
algorithm attempted to program the byte, or if the MCU attempted to program a 1to a bit  
that was not erased (not erased is logic 0).  
22  
Preliminary Information  
PSD9XX Family  
9.1.1.6.2 Data Toggle (cont.)  
The  
It is suggested (as with all Flash memories) to read the location again after the embedded  
programming algorithm has completed to compare the byte that was written to Flash with  
the byte that was intended to be written.  
PSD9XX  
Functional  
Blocks  
(cont.)  
When using the Data Toggle method after an erase instructin, Figure 4 still applies. DQ6  
will toggle until the erase operation is complete. A 1on DQ5 will indicate a timeout failure  
of the erase operation, a 0indicates no error. The MCU can read any location within the  
sector being erased to get DQ6 and DQ5.  
PSDsoft will generate ANSI C code functions which implement these Data Toggling  
algorithms.  
Figure 4. Data Toggle Flow Chart  
START  
READ  
DQ5 & DQ6  
DQ6  
NO  
=
TOGGLE  
YES  
NO  
DQ5  
=1  
YES  
READ DQ6  
DQ6  
=
TOGGLE  
NO  
YES  
FAIL  
PASS  
Program/Erase  
Operation Not  
Complete, Issue  
Reset Instruction  
Program/Erase  
Operation is  
Complete  
23  
PSD9XX Family  
Preliminary Information  
The  
9.1.1.7 Unlock Bypass Instruction (PSD934F2 and PSD954F2 only)  
The unlock bypass feature allows the system to program bytes to the flash memories  
faster than using the standard program instruction. The unlock bypass instruction is  
initiated by first writing two unlock cycles. This is followed by a third write cycle containing  
the unlock bypass command, 20h (see Table 9). The flash memory then enters the unlock  
bypass mode. A two-cycle Unlock Bypass Program instruction is all that is required to  
program in this mode. The first cycle in this instruction contains the unlock bypass  
programm command, A0h; the second cycle contains the program address and data.  
Additional data is programmed in the same manner. This mode dispenses with the initial  
two unlock cycles requiredc in the standard program instruction, resulting in faster total  
programming time. During the unlock bypass mode, only the Unlock Bypass Program and  
Unlock Bypass Reset instructions are valid. To exit the unlock bypass mode, the system  
must issue the two-cycle unlock bypass reset instruction. The first cycle must contain the  
data 90h; the second cycle the data 00h. Addresses are dont care for both cycles. The  
falsh memory then returns to reading array data mode.  
PSD9XX  
Functional  
Blocks  
(cont.)  
9.1.1.8 Erasing Flash Memory  
9.1.1.8.1. Flash Bulk Erase Instruction  
The Flash Bulk Erase instruction uses six write operations followed by a Read operation of  
the status register, as described in Table 9. If any byte of the Bulk Erase instruction is  
wrong, the Bulk Erase instruction aborts and the device is reset to the Read Flash memory  
status.  
During a Bulk Erase, the memory status may be checked by reading status bits DQ5, DQ6,  
and DQ7, as detailed in section 9.1.1.6. The Error bit (DQ5) returns a 1if there has been  
an Erase Failure (maximum number of erase cycles have been executed).  
It is not necessary to program the array with 00h because the PSD9XX will automatically  
do this before erasing to 0FFh.  
During execution of the Bulk Erase instruction, the Flash memory will not accept any  
instructions.  
9.1.1.8.2 Flash Sector Erase Instruction  
The Sector Erase instruction uses six write operations, as described in Table 9. Additional  
Flash Sector Erase confirm commands and Flash sector addresses can be written  
subsequently to erase other Flash sectors in parallel, without further coded cycles, if the  
additional instruction is transmitted in a shorter time than the timeout period of about  
100 µs. The input of a new Sector Erase instruction will restart the time-out period.  
The status of the internal timer can be monitored through the level of DQ3 (Erase time-out  
bit). If DQ3 is 0, the Sector Erase instruction has been received and the timeout is  
counting. If DQ3 is 1, the timeout has expired and the PSD9XX is busy erasing the Flash  
sector(s). Before and during Erase timeout, any instruction other than Erase suspend and  
Erase Resume will abort the instruction and reset the device to Read Array mode.  
It is not necessary to program the Flash sector with 00h as the PSD9XX will do this  
automatically before erasing (byte=FFh).  
During a Sector Erase, the memory status may be checked by reading status bits DQ5,  
DQ6, and DQ7, as detailed in section 9.1.1.6.  
During execution of the erase instruction, the Flash block logic accepts only Reset and  
Erase Suspend instructions. Erasure of one Flash sector may be suspended, in order to  
read data from another Flash sector, and then resumed.  
24  
Preliminary Information  
PSD9XX Family  
9.1.1.8.3 Flash Erase Suspend Instruction  
The  
When a Flash Sector Erase operation is in progress, the Erase Suspend instruction will  
suspend the operation by writing 0B0h to any address when an appropriate Chip Select  
(FSi or CSBOOTi) is true. (See Table 9). This allows reading of data from another Flash  
sector after the Erase operation has been suspended. Erase suspend is accepted only  
during the Flash Sector Erase instruction execution and defaults to read array mode. An  
Erase Suspend instruction executed during an Erase timeout will, in addition to suspending  
the erase, terminate the time out.  
PSD9XX  
Functional  
Blocks  
(cont.)  
The Toggle Bit DQ6 stops toggling when the PSD9XX internal logic is suspended. The  
toggle Bit status must be monitored at an address within the Flash sector being erased.  
The Toggle Bit will stop toggling between 0.1 µs and 15 µs after the Erase Suspend  
instruction has been executed. The PSD9XX will then automatically be set to Read Flash  
Block Memory Array mode.  
If an Erase Suspend instruction was executed, the following rules apply:  
Attempting to read from a Flash sector that was being erased will output invalid data.  
Reading from a Flash sector that was not being erased is valid.  
The Flash memory cannot be programmed, and will only respond to Erase Resume  
and Reset instructions (read is an operation and is OK).  
If a Reset instruction is received, data in the Flash sector that was being erased will  
be invalid.  
9.1.1.8.4 Flash Erase Resume Instruction  
If an Erase Suspend instruction was previously executed, the erase operation may be  
resumed by this instruction. The Erase Resume instruction consists of writing 030h to any  
address while an appropriate Chip Select (FSi or CSBOOTi) is true. (See Table 9.)  
9.1.1.9 Specific Features  
9.1.1.9.1 Flash and Secondary Flash Sector Protect  
Each Flash and Secondary Flash sector can be separately protected against Program and  
Erase functions. Sector Protection provides additional data security because it disables all  
program or erase operations. This mode can be activated through the JTAG Port or a  
Device Programmer.  
Sector protection can be selected for each sector using the PSDsoft Configuration  
program. This will automatically protect selected sectors when the device is programmed  
through the JTAG Port or a Device Programmer. Flash sectors can be unprotected to  
allow updating of their contents using the JTAG Port or a Device Programmer. The  
microcontroller can read (but cannot change) the sector protection bits.  
Any attempt to program or erase a protected Flash sector will be ignored by the device.  
The Verify operation will result in a read of the protected data. This allows a guarantee of  
the retention of the Protection status.  
The sector protection status can be read by the MCU through the Flash protection and  
Secondary Flash protection registers (CSIOP). See Table 11.  
25  
PSD9XX Family  
Preliminary Information  
The  
Table 11. Sector Protection/Security Bit Definition  
Flash Protection Register  
PSD9XX  
Functional  
Blocks  
(cont.)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Sec7_Prot Sec6_Prot Sec5_Prot Sec4_Prot Sec3_Prot Sec2_Prot Sec1_Prot Sec0_Prot  
Bit Definitions:  
Sec<i>_Prot  
Sec<i>_Prot  
1 = Main Flash Sector <i> is write protected.  
0 = Main Flash Sector <i> is not write protected.  
Secondary Flash Protection Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
*
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Security_  
Bit  
Sec3_Prot Sec2_Prot Sec1_Prot Sec0_Prot  
*
*
*: Not used.  
Bit Definitions:  
Sec<i>_Prot  
Sec<i>_Prot  
1 = Secondary Flash Sector <i> is write protected.  
0 = Secondary Flash Sector <i> is not write protected.  
Security_Bit  
0 = Security Bit in device has not been set.  
1 = Security Bit in device has been set.  
9.1.1.9.2 Reset Instruction – PSD913F2  
The Reset instruction consists of one write cycle (see Table 9). It can also be optionally  
preceded by the standard two write decoding cycles (writing AAh to 555h and 55h to  
AAAh).  
The Reset instruction must be executed after:  
1. Reading the Flash Protection status or Flash ID  
2. When an error condition occurs (DQ5 goes high) during a Flash programming or erase  
cycle.  
The Reset instruction will reset the Flash to normal Read Mode. It may take the Flash  
memory up to few msec to complete the reset cycle.  
The Reset instruction is ignored when it is issued during a Flash programming or Bulk  
Erase cycle. During Sector Erase cycle, the Reset instruction will abort the on going sector  
erase cycle and return the Flash to normal Read Mode in up to few msec.  
9.1.1.9.3 Reset Instruction – PSD934F2, PSD954F2  
The Reset instruction consists of one write cycle (see Table 9). It can also be optionally  
preceded by the standard two write decoding cycles (writing AAh to 555h and 55h to  
AAAh).  
The Reset instruction must be executed after:  
1. Reading the Flash Protection status or Flash ID  
2. When an error condition occurs (DQ5 goes high) during a Flash programming or erase  
cycle.  
The Reset instruction will immediately reset the Flash to normal Read Mode. However,  
if there is an error condition (DQ5 goes high), the Flash memory will return to the Read  
Mode in 25 µsec after the Reset instruction is issued.  
The Reset instruction is ignored when it is issued during a Flash programming or Bulk  
Erase cycle. The Reset instruction will abort the on going sector erase cycle and return the  
Flash memory to normal Read Mode in 25 µsec.  
26  
Preliminary Information  
PSD9XX Family  
9.1.1.9.4 Reset Pin Input – PSD934F2, PSD954F2  
The  
The reset pulse input from the pin will abort any operation in progress and reset the Flash  
memory to Read Mode. When the reset occurs during a programming or erase cycle, the  
Flash memory will take up to 25 µsec to return to Read Mode. It is recommended that the  
reset pulse (except power on reset, see Reset Section) be at least 25 µSec such that the  
Flash memory will always be ready for the MCU to fetch the boot codes after reset is over.  
PSD9XX  
Functional  
Blocks  
(cont.)  
9.1.2 SRAM  
The SRAM is enabled when RS0the SRAM chip select output from the DPLDis high.  
RS0 can contain up to two product terms, allowing flexible memory mapping.  
The SRAM can be backed up using an external battery. The external battery should be  
connected to the Vstby pin (PC2). If you have an external battery connected to the  
PSD9XX, the contents of the SRAM will be retained in the event of a power loss. The  
contents of the SRAM will be retained so long as the battery voltage remains at 2V or  
greater. If the supply voltage falls below the battery voltage, an internal power switchover  
to the battery occurs.  
Pin PC4 can be configured as an output that indicates when power is being drawn from the  
external battery. This Vbaton signal will be high with the supply voltage falls below the bat-  
tery voltage and the battery on PC2 is supplying power to the internal SRAM.  
The chip select signal (RS0) for the SRAM, Vstby, and Vbaton are all configured using  
PSDsoft.  
9.1.3 Memory Select Signals  
The main Flash (FSi), Secondary Flash (CSBOOTi), and SRAM (RS0) memory select  
signals are all outputs of the DPLD. They are setup by entering equations for them in  
PSDsoft. The following rules apply to the equations for the internal chip select signals:  
1. Main Flash memory and Secondary Flash memory sector select signals must not be  
larger than the physical sector size.  
2. Any main Flash memory sector must not be mapped in the same memory space as  
another Main Flash sector.  
3. A Secondary Flash memory sector must not be mapped in the same memory space as  
another Secondary Flash sector.  
4. SRAM, I/O, and Peripheral I/O spaces must not overlap.  
5. A Secondary Flash memory sector may overlap a main Flash memory sector. In case  
of overlap, priority will be given to the Secondary Flash sector.  
6. SRAM, I/O, and Peripheral I/O spaces may overlap any other memory sector. Priority  
will be given to the SRAM, I/O, or Peripheral I/O.  
Example  
FS0 is valid when the address is in the range of 8000h to BFFFh, CSBOOT0 is valid from  
8000h to 9FFFh, and RS0 is valid from 8000h to 87FFh. Any address in the range of RS0  
will always access the SRAM. Any address in the range of CSBOOT0 greater than 87FFh  
(and less than 9FFFh) will automatically address Boot memory segment 0. Any address  
greater than 9FFFh will access the Flash memory segment 0. You can see that half of the  
Flash memory segment 0 and one-fourth of Boot segment 0 can not be accessed in this  
example. Also note that an equation that defined FS1 to anywhere in the range of 8000h to  
BFFFh would not be valid.  
Figure 5 shows the priority levels for all memory components. Any component on a higher  
level can overlap and has priority over any component on a lower level. Components on  
the same level must not overlap. Level one has the highest priority and level 3 has the  
lowest.  
27  
PSD9XX Family  
Preliminary Information  
The  
Figure 5. Priority Level of Memory and I/O Components  
PSD9XX  
Functional  
Blocks  
(cont.)  
Highest Priority  
Level 1  
SRAM, I/O  
Level 2  
Secondary Flash Memory  
Level 3  
Main Flash Memory  
Lowest Priority  
9.1.3.1. Memory Select Configuration for MCUs with Separate Program and Data Spaces  
The 8031 and compatible family of microcontrollers, which includes the 80C51, 80C151,  
80C251, 80C51XA, and the C500 family have separate address spaces for code memory  
(selected using PSEN) and data memory (selected using RD). Any of the memories  
within the PSD9XX can reside in either space or both spaces. This is controlled through  
manipulation of the VM register that resides in the PSDs CSIOP space.  
The VM register is set using PSDsoft to have an initial value. It can subsequently be  
changed by the microcontroller so that memory mapping can be changed on-the-fly.  
For example, you may wish to have SRAM and Flash in Data Space at boot, and Boot  
Block in Program Space at boot, and later swap Boot Block and Flash. This is easily done  
with the VM register by using PSDsoft to configure it for boot up and having the microcon-  
troller change it when desired.  
Table 13 describes the VM Register.  
Table 13. VM Register  
Bit 7*  
Bit 6* Bit 5*  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FL_Data Boot_Data FL_Code Boot_Code SRAM_Code  
0 = RD 0 = RD  
cant cant  
access access  
0 = PSEN 0 = PSEN  
0 = PSEN  
cant  
access  
*
*
*
*
*
cant  
cant  
access  
access  
Flash  
Secondary Flash  
Flash  
Secondary SRAM  
Flash  
1 = RD 1 = RD  
access access  
1 = PSEN 1 = PSEN  
access access  
1 = PSEN  
access  
*
Flash  
Secondary Flash  
Flash  
Secondary SRAM  
Flash  
NOTE: Bits 5-7 are not used, should set to 0.  
28  
Preliminary Information  
PSD9XX Family  
9.1.3.2 Configuration Modes for MCUs with Separate Program and Data Spaces  
9.1.3.2.1 Separate Space Modes  
The  
PSD9XX  
Functional  
Blocks  
(cont.)  
Code memory space is separated from data memory space. For example, the PSEN  
signal is used to access the program code from the Flash Memory, while the RD signal is  
used to access data from the Boot memory, SRAM and I/O Ports. This configuration  
requires the VM register to be set to 0Ch.  
9.1.3.2.2 . Combined Space Modes  
The program and data memory spaces are combined into one space that allows the main  
Flash Memory, Boot memory, and SRAM to be accessed by either PSEN or RD. For  
example, to configure the main Flash memory in combined space mode, bits 2 and 4 of the  
VM register are set to 1.  
9.1.3.3 80C31 Memory Map Example  
See Application Note for examples.  
Figure 6. 8031 Memory Modes – Separate Space Mode  
MAIN  
FLASH  
SECONDARY  
FLASH  
SRAM  
DPLD  
RS0  
BLOCK  
CSBOOT0-3  
FS0-7  
CS  
CS  
OE  
CS  
OE  
OE  
PSEN  
RD  
Figure 7. 80C31 Memory Mode – Combined Space Mode  
MAIN  
FLASH  
SECONDARY  
FLASH  
SRAM  
DPLD  
RS0  
BLOCK  
RD  
CSBOOT0-3  
FS0-7  
CS  
CS  
OE  
CS  
OE  
OE  
VM REG BIT 3  
VM REG BIT 4  
PSEN  
VM REG BIT 1  
RD  
VM REG BIT 2  
VM REG BIT 0  
29  
PSD9XX Family  
Preliminary Information  
The  
9.1.4 Page Register  
The eight bit Page Register increases the addressing capability of the microcontroller by a  
factor of up to 256. The contents of the register can also be read by the microcontroller.  
The outputs of the Page Register (PGR0-PGR7) are inputs to the PLD and can be  
included in the Flash Memory, Secondary Flash Block, and SRAM chip select equations.  
PSD9XX  
Functional  
Blocks  
(cont.)  
If memory paging is not needed, or if not all 8 page register bits are needed for memory  
paging, then these bits may be used in the PLD for general logic. See Application  
Note.  
Figure 8 shows the Page Register. The eight flip flops in the register are connected to the  
internal data bus D0-D7. The microcontroller can write to or read from the Page Register.  
The Page Register can be accessed at address location CSIOP + E0h.  
Figure 8. Page Register  
RESET  
PGR0  
INTERNAL  
SELECTS  
AND LOGIC  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
PGR1  
PGR2  
PGR3  
PGR4  
PGR5  
PGR6  
PGR7  
D0 - D7  
DPLD  
AND  
GPLD  
R/W  
PAGE  
REGISTER  
FLASH  
PLDs  
30  
Preliminary Information  
PSD9XX Family  
The  
9.2 PLDs  
The PLDs bring programmable logic functionality to the PSD9XX. After specifying the  
chip selects or logic equations for the PLDs in PSDsoft, the logic is programmed into the  
device and available upon power-up.  
PSD9XX  
Functional  
Blocks  
(cont.)  
The PSD9XX contains two PLDs: the Decode PLD (DPLD), and the General Purpose PLD  
(GPLD). The PLDs are briefly discussed in the next few paragraphs, and in more detail in  
sections 9.2.1 and 9.2.2. Figure 10 shows the configuration of the PLDs.  
The DPLD performs address decoding for internal components, such as memory,  
registers, and I/O port selects.  
The GPLD can be used to generate external chip selects, control signals or logic functions.  
The GPLD has 19 outputs that are connected to Ports A, B and D.  
The AND array is used to form product terms. These product terms are specified using  
PSsoft. An Input Bus consisting of 57 signals is connected to the PLDs. The signals are  
shown in Table 15. The complement of the 57 signals are also available as input to the  
AND array.  
Table 15. DPLD and GPLD Inputs  
Input Source  
Input Name  
Number  
of Signals  
MCU Address Bus  
A[15:0]*  
16  
3
1
1
8
8
8
3
8
1
MCU Control Signals  
Reset  
CNTL[2:0]  
RST  
Power Down  
PDN  
Port A Input  
PA[7-0]  
PB[7-0]  
PC[7-0]  
PD[2:0]  
PGR(7:0)  
Rdy/Bsy  
Port B Input  
Port C Input  
Port D Inputs  
Page Register  
Flash Programming Status Bit  
NOTE: The address inputs are A[19:4] in 80C51XA mode.  
The Turbo Bit  
The PLDs in the PSD9XX can minimize power consumption by switching off when inputs  
remain unchanged for an extended time of about 70 ns. Setting the Turbo mode bit to off  
(Bit 3 of the PMMR0 register) automatically places the PLDs into standby if no inputs  
are changing. Turbo-off mode increases propagation delays while reducing power  
consumption. Refer to the Power Management Unit section on how to set the Turbo Bit.  
Additionally, five bits are available in the PMMR2 register to block MCU control signals  
from entering the PLDs. This reduces power consumption and can be used only when  
these MCU control signals are not used in PLD logic equations.  
31  
PSD9XX Family  
Preliminary Information  
Figure 9. PLD Block Diagrams  
8
PAGE  
DATA  
REGISTER  
BUS  
8
FLASH MEMORY SELECTS  
DECODE PLD  
57  
4
1
1
SECONDARY FLASH MEMORY SELECTS  
SRAM SELECT  
CSIOP SELECT  
GENERAL  
PURPOSE PLD  
GPLD  
PLD OUT  
8
PORT A  
57  
PLD OUT  
PLD OUT  
8
3
PORT B  
PORT D  
PORT C  
PORT C PLD INPUT  
8
PORT A PLD INPUT  
PORT B PLD INPUT  
PORT D PLD INPUT  
8
8
3
Figure 10. DPLD Logic Array  
CSBOOT 0  
3
3
3
3
CSBOOT 1  
CSBOOT 2  
CSBOOT 3  
4 SECONDARY  
FLASH MEMORY  
SECTOR SELECTS  
3
3
3
3
3
3
3
3
FS0  
(INPUTS)  
(24)  
I/O PORTS (PORT A,B,C)  
PGR0 -PGR7  
8 FLASH MEMORY  
SECTOR SELECTS  
(8)  
(16)  
(3)  
[
]
A 15:0  
*
[
]
PD 2:0 (ALE,CLKIN,CSI)  
PDN (APD OUTPUT)  
(1)  
FS7  
[
] (  
(3)  
(1)  
(1)  
CNTRL 2:0 READ/WRITE CONTROL SIGNALS)  
RESET  
RS0  
2
SRAM SELECT  
RD_BSY  
CSIOP  
I/O DECODER  
SELECT  
*NOTE: The address inputs are A[19:4] in 80C51XA mode.  
32  
Preliminary Information  
PSD9XX Family  
9.2.1 Decode PLD (DPLD)  
The  
The DPLD, shown in Figure 10, is used for decoding the address for internal PSD  
components. The DPLD can generate the following chip selects:  
PSD9XX  
Functional  
Blocks  
(cont.)  
8 sector selects for the main Flash memory (three product terms each)  
4 sector selects for the Secondary Flash memory (three product terms each)  
1 internal SRAM select (two product terms)  
1 internal CSIOP select (select PSD registers, one product term)  
Inputs to the DPLD chip selects may include address inputs, Page Register inputs and  
other user defined external inputs from Ports A, B, C or D.  
9.2.2 General Purpose PLD (GPLD)  
The General Purpose PLD implements user defined system combinatorial logic function  
or chip selects for external devices. Figure 11 shows how the GPLD is connected to the  
I/O Ports. The GPLD has 19 outputs and each are routed to a port pin. The port pin can  
also be configured as input tot eh GPLD. When it is not used as GPLD output or input, the  
pin can be configured to perform other I/O functions.  
The GPLD outputs are identical except in the number of available product terms for logic  
implementation. Select the pin that can best meet the product term requirement of your  
logic function or chip selects. The outputs can be configured as active high or low outputs.  
Table 16 shows the number of product terms that are assigned to the PLD outputs on the  
I/O Ports. When PSD9XX is connected to a MCU with non-multiplexed bus, Port A will be  
configured as the Data Port and the GPLD outputs will not be available.  
Table 16. GPLD Output Product Term  
GPLD Output on Port Pin  
Number of Product Terms  
Port A, pins PA0-3  
Port A, pins PA4-7  
Port B, pins PB0-3  
Port B, pins PB4-7  
Port D, pins PD0-2  
3
9
4
7
1
33  
PSD9XX Family  
Preliminary Information  
Figure 11. General Purpose PLD and I/O Port  
PLD INPUT BUS  
34  
Preliminary Information  
PSD9XX Family  
The  
9.3 Microcontroller Bus Interface  
The no-glue logicPSD9XX Microcontroller Bus Interface can be directly connected to  
most popular microcontrollers and their control signals. Key 8-bit microcontrollers with their  
bus types and control signals are shown in Table 17. The interface type is specified using  
the PSDsoft.  
PSD9XX  
Functional  
Blocks  
(cont.)  
Table 17. Microcontrollers and their Control Signals  
Data  
Bus  
MCU  
Width CNTL0 CNTL1  
CNTL2  
PC7 PD0** ADIO0 PA3-PA0 PA7-PA4  
8031/8051  
80C51XA  
80C251  
80C251  
80198  
8
8
8
8
8
8
8
8
8
8
8
8
WR  
WR  
WR  
WR  
WR  
R/W  
WR  
R/W  
WR  
R/W  
R/W  
R/W  
RD  
RD  
PSEN  
RD  
RD  
E
PSEN  
*
*
*
*
*
*
*
ALE  
ALE  
ALE  
ALE  
ALE  
AS  
A0  
A4  
A0  
A0  
A0  
A0  
A0  
A0  
A0  
A0  
A0  
A0  
*
*
*
*
*
*
*
*
*
PSEN  
A3-A0  
*
*
*
*
*
*
*
PSEN  
*
*
*
*
*
*
*
*
68HC11  
68HC05C0  
68HC912  
Z80  
RD  
E
AS  
DBE  
AS  
RD  
DS  
DS  
E
*
*
*
*
*
AS  
D3-D0 D7-D4  
Z8  
*
*
*
*
68330  
AS  
M37702M2  
ALE  
D3-D0 D7-D4  
**Unused CNTL2 pin can be configured as PLD input. Other unused pins (PC7, PD0, PA3-0) can be  
**configured for other I/O functions.  
**ALE/AS input is optional for microcontrollers with a non-multiplexed bus  
9.3.1. PSD9XX Interface to a Multiplexed 8-Bit Bus  
Figure 12 shows an example of a system using a microcontroller with an 8-bit multiplexed  
bus and a PSD9XX. The ADIO port on the PSD9XX is connected directly to the  
microcontroller address/data bus. ALE latches the address lines internally. Latched  
addresses can be brought out to Port A or B. The PSD9XX drives the ADIO data bus only  
when one of its internal resources is accessed and the RD input is active. Should the  
system address bus exceed sixteen bits, Ports A, B, C, or D may be used as additional  
address inputs.  
9.3.2. PSD9XX Interface to a Non-Multiplexed 8-Bit Bus  
Figure 13 shows an example of a system using a microcontroller with an 8-bit  
non-multiplexed bus and a PSD9XX. The address bus is connected to the ADIO Port, and  
the data bus is connected to Port A. Port A is in tri-state mode when the PSD9XX is not  
accessed by the microcontroller. Should the system address bus exceed sixteen bits, Ports  
B, C, or D may be used for additional address inputs.  
35  
PSD9XX Family  
Preliminary Information  
The  
Figure 12. An Example of a Typical 8-Bit Multiplexed Bus Interface  
PSD9XX  
Functional  
Blocks  
(cont.)  
PSD9XXF  
[
]
AD 7:0  
MICRO-  
CONTROLLER  
[
]
A 7:0  
PORT  
A
(
(
)
)
OPTIONAL  
ADIO  
PORT  
[
]
A 15:8  
[
]
A 15:8  
PORT  
B
OPTIONAL  
(
)
WR  
RD  
WR CNTRL0  
(
)
RD CNTRL1  
PORT  
C
RST  
ALE  
(
)
ALE PD0  
PORT D  
RESET  
Figure 13. An Example of a Typical 8-Bit Non-Multiplexed Bus Interface  
PSD9XXF  
[
]
D 7:0  
[
]
D 7:0  
PORT  
A
MICRO-  
ADIO  
CONTROLLER  
PORT  
[
]
A 15:0  
[
]
A 23:16  
PORT  
B
(OPTIONAL)  
(
)
WR  
RD  
WR CNTRL0  
(
)
RD CNTRL1  
PORT  
C
RST  
ALE  
(
)
ALE PD0  
PORT D  
RESET  
36  
Preliminary Information  
PSD9XX Family  
9.3.3 Microcontroller Interface Examples  
The  
Figures 14 through 18 show examples of the basic connections between the PSD9XX  
and some popular microcontrollers. The PSD9XX Control input pins are labeled as to the  
microcontroller function for which they are configured. The MCU interface is specified using  
the PSDsoft.  
PSD9XX  
Functional  
Blocks  
(cont.)  
9.3.3.1 80C31  
Figure 14 shows the interface to the 80C31, which has an 8-bit multiplexed address/data  
bus. The lower address byte is multiplexed with the data bus. The microcontroller control  
signals PSEN, RD, and WR may be used for accessing the internal memory components  
and I/O Ports. The ALE input (pin PD0) latches the address.  
9.3.3.2 80C251  
The Intel 80C251 microcontroller features a user-configurable bus interface with four  
possible bus configurations, as shown in Table 19.  
Configuration 1 is 80C31 compatible, and the bus interface to the PSD9XX is identical to  
that shown in Figure 14. Configurations 2 and 3 have the same bus connection as shown  
in Figure 15. There is only one read input (PSEN) connected to the Cntl1 pin on the  
PSD9XX. The A16 connection to the PA0 pin allows for a larger address input to the  
PSD9XX. Configuration 4 is shown in Figure 16. The RD signal is connected to Cntl1 and  
the PSEN signal is connected to the CNTL2.  
The 80C251 has two major operating modes: Page Mode and Non-Page Mode. In  
Non-Page Mode, the data is multiplexed with the lower address byte, and ALE is active in  
every bus cycle. In Page Mode, data D[7:0] is multiplexed with address A[15:8]. In a bus  
cycle where there is a Page hit, the ALE signal is not active and only addresses A[7:0]  
are changing. The PSD9XX supports both modes. In Page Mode, the PSD bus timing  
is identical to Non-Page Mode except the address hold time and setup time with respect  
to ALE is not required. The PSD access time is measured from address A[7:0] valid to  
data in valid.  
37  
PSD9XX Family  
Preliminary Information  
The  
Table 19. 80C251 Configurations  
PSD9XX  
Functional  
Blocks  
(cont.)  
Configuration  
80C251  
Read/Write  
Pins  
Connecting to  
PSD9XX  
Pins  
Page Mode  
WR  
RD  
PSEN  
CNTL0  
CNTL1  
CNTL2  
Non-Page Mode, 80C31 compatible  
A[7:0] multiplex with D[7:0}  
1
WR  
PSEN only  
CNTL0  
CNTL1  
Non-Page Mode  
A[7:0] multiplex with D[7:0}  
2
3
4
WR  
PSEN only  
CNTL0  
CNTL1  
Page Mode  
A[15:8] multiplex with D[7:0}  
WR  
RD  
PSEN  
CNTL0  
CNTL1  
CNTL2  
Page Mode  
A[15:8] multiplex with D[7:0}  
9.3.3.3 80C51XA  
The Philips 80C51XA microcontroller family supports an 8- or 16-bit multiplexed bus that  
can have burst cycles. Address bits A[3:0] are not multiplexed, while A[19:4] are  
multiplexed with data bits D[15:0] in 16-bit mode. In 8-bit mode, A[11:4] are multiplexed  
with data bits D[7:0].  
The 80C51XA can be configured to operate in eight-bit data mode. (shown in Figure 17).  
The 80C51XA improves bus throughput and performance by executing Burst cycles for  
code fetches. In Burst Mode, address A19-4 are latched internally by the PSD9XX, while  
the 80C51XA changes the A3-0 lines to fetch up to 16 bytes of code. The PSD access  
time is then measured from address A3-A0 valid to data in valid. The PSD bus timing  
requirement in Burst Mode is identical to the normal bus cycle, except the address setup  
and hold time with respect to ALE does not apply.  
9.3.3.4 68HC11  
Figure 18 shows an interface to a 68HC11 where the PSD9XX is configured in 8-bit  
multiplexed mode with E and R/W settings. The DPLD can generate the READ and WR  
signals for external devices.  
38  
Preliminary Information  
PSD9XX Family  
Figure 14. Interfacing the PSD9XX with an 80C31  
[
]
AD 7:0  
[
]
AD 7:0  
PSD9XXF  
80C31  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
29  
28  
27  
25  
24  
23  
22  
21  
30  
31  
ADIO0  
ADIO1  
ADIO2  
ADIO3  
ADIO4  
ADIO5  
ADIO6  
ADIO7  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
31  
39  
38  
37  
36  
35  
34  
33  
32  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
EA/VP  
X1  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
32  
33  
34  
35  
36  
37  
19  
18  
9
X2  
RESET  
RESET  
12  
13  
14  
15  
INT0  
INT1  
T0  
21  
22  
23  
24  
25  
26  
27  
28  
A8  
A9  
39  
40  
41  
42  
43  
44  
45  
46  
7
6
5
4
3
2
52  
51  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
ADIO8  
ADIO9  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
A10  
A11  
A12  
A13  
A14  
A15  
ADIO10  
ADIO11  
ADIO12  
ADIO13  
ADIO14  
ADIO15  
T1  
1
2
3
4
5
6
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
17  
16  
RD  
RD  
WR  
20  
19  
18  
17  
14  
13  
12  
11  
WR  
47  
50  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
CNTL0(WR)  
CNTL1(RD)  
7
8
29  
30  
11  
10  
PSEN  
ALE  
PSEN  
ALE/P  
TXD  
49  
CNTL2(PSEN)  
10  
9
RXD  
PD0-ALE  
PD1  
8
PD2  
RESET  
48  
RESET  
RESET  
Figure 15. Interfacing the PSD9XX to the 80C251, with One Read Input  
PSD9XXF  
80C251SB  
43  
42  
41  
40  
39  
38  
37  
36  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
30  
31  
32  
33  
34  
35  
36  
37  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
2
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
ADIO0  
ADIO1  
ADIO2  
ADIO3  
ADIO4  
ADIO5  
ADIO6  
ADIO7  
**  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
A16  
29  
28  
27  
25  
24  
23  
22  
21  
*
3
4
5
6
7
8
9
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
A17  
*
A17  
24  
25  
26  
AD8  
AD9  
AD10  
21  
20  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
X1  
X2  
AD8  
39  
40  
41  
42  
43  
44  
45  
46  
ADIO8  
ADIO9  
7
6
5
4
3
2
52  
51  
AD9  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
27  
28  
AD11  
AD12  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
ADIO10  
ADIO11  
ADIO12  
ADIO13  
ADIO14  
ADIO15  
11  
13  
14  
15  
16  
17  
P3.0/RXD  
P3.1/TXD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
29  
30  
AD13  
AD14  
AD15  
31  
P2.7  
ALE  
RD  
47  
50  
33  
32  
P3.5/T1  
(
)
CNTL0 WR  
ALE  
10  
RST  
RESET  
(
)
CNTL1 RD  
PSEN  
20  
19  
18  
17  
14  
13  
12  
11  
18  
19  
WR  
A16  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
WR  
RD/A16  
35  
49  
CNTL2(PSEN)  
EA  
10  
9
8
PD0-ALE  
PD1  
PD2  
48  
RESET  
RESET  
RESET  
**Connection is optional.  
**Non-page mode: AD[7:0] - ADIO[7:0].  
39  
PSD9XX Family  
Preliminary Information  
Figure 16. Interfacing the PSD9XX to the 80C251, with Read and PSEN Inputs  
80C251SB  
PSD9XXF  
43  
42  
41  
40  
39  
38  
37  
36  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
30  
31  
32  
33  
34  
35  
36  
37  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
2
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
ADIO0  
ADIO1  
ADIO2  
ADIO3  
ADIO4  
ADIO5  
ADIO6  
ADIO7  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
29  
3
4
5
6
7
8
9
PA0  
28  
PA1  
27  
PA2  
25  
PA3  
24  
PA4  
23  
PA5  
22  
PA6  
21  
PA7  
24  
25  
26  
AD8  
AD9  
AD10  
21  
20  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
X1  
X2  
AD8  
39  
40  
41  
42  
43  
44  
45  
46  
ADIO8  
ADIO9  
ADIO10  
ADIO11  
ADIO12  
ADIO13  
ADIO14  
ADIO15  
7
AD9  
PB0  
6
27  
28  
AD11  
AD12  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
PB1  
5
11  
13  
14  
15  
16  
17  
PB2  
4
P3.0/RXD  
P3.1/TXD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
29  
30  
AD13  
AD14  
PB3  
3
PB4  
2
AD15  
31  
PB5  
52  
P2.7  
PB6  
51  
PB7  
P3.5/T1  
33  
32  
ALE  
RD  
47  
50  
(
)
CNTL0 WR  
ALE  
10  
RST  
EA  
RESET  
(
)
CNTL1 RD  
PSEN  
20  
PC0  
18  
19  
WR  
19  
WR  
RD/A16  
PC1  
PSEN  
35  
49  
18  
17  
14  
13  
12  
11  
CNTL2(PSEN)  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
10  
9
8
PD0-ALE  
PD1  
PD2  
48  
RESET  
RESET  
RESET  
Figure 17. Interfacing the PSD9XX to the 80C51XA, 8-Bit Data Bus  
80C51XA  
PSD9XXF  
21  
20  
30  
31  
32  
33  
34  
35  
36  
37  
A4D0  
A5D1  
A6D2  
A7D3  
A8D4  
A9D5  
A10D6  
A11D7  
2
3
4
A0  
A1  
A2  
A3  
A4D0  
A5D1  
A6D2  
A7D3  
A8D4  
A9D5  
A10D6  
A11D7  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
XTAL1  
XTAL2  
ADIO0  
A0/WRH  
A1  
29  
A0  
ADIO1  
ADIO2  
ADIO3  
AD104  
AD105  
ADIO6  
ADIO7  
PA0  
PA1  
28  
27  
25  
24  
23  
22  
21  
A1  
A2  
A3  
A2  
A3  
A4D0  
A5D1  
A6D2  
A7D3  
A8D4  
A9D5  
A10D6  
A11D7  
A12D8  
A13D9  
A14D10  
A15D11  
A16D12  
A17D13  
A18D14  
A19D15  
5
PA2  
43  
42  
41  
40  
39  
PA3  
PA4  
PA5  
PA6  
11  
13  
6
RXD0  
TXD0  
RXD1  
TXD1  
7
PA7  
38  
37  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
39  
40  
41  
42  
43  
44  
45  
46  
ADIO8  
ADIO9  
9
8
16  
7
36  
24  
25  
26  
27  
28  
29  
30  
31  
T2EX  
T2  
T0  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
6
5
4
3
2
52  
51  
ADIO10  
ADIO11  
AD1012  
AD1013  
ADIO14  
ADIO15  
10  
RST  
INT0  
INT1  
RESET  
14  
15  
47  
50  
(
)
CNTL0 WR  
20  
19  
18  
17  
14  
13  
12  
11  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
(
)
CNTL1 RD  
PSEN  
32  
49  
35  
17  
PSEN  
RD  
CNTL2(PSEN)  
EA/WAIT  
BUSW  
19  
18  
33  
RD  
WR  
10  
8
9
PD0-ALE  
PD1  
WRL  
ALE  
ALE  
PD2  
48  
RESET  
RESET  
40  
Preliminary Information  
PSD9XX Family  
Figure 18. Interfacing the PSD9XX with a 68HC11 (Muxed Address/Data Bus)  
AD[7:0]  
AD[7:0]  
PSD9XXF  
30  
31  
32  
33  
34  
35  
36  
37  
AD0  
AD1  
29  
28  
27  
25  
24  
23  
22  
21  
ADIO0  
ADIO1  
ADIO2  
ADIO3  
AD104  
AD105  
ADIO6  
ADIO7  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
68HC11  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
31  
PA3  
PA4  
PA5  
PA6  
PA7  
8
7
30  
29  
28  
27  
XT  
EX  
17  
19  
18  
RESET  
RESET  
IRQ  
XIRQ  
39  
40  
41  
42  
43  
44  
45  
46  
7
6
5
4
3
2
52  
51  
42  
41  
40  
39  
38  
37  
36  
35  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
ADIO8  
ADIO9  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
2
MODB  
ADIO10  
ADIO11  
AD1012  
AD1013  
ADIO14  
ADIO15  
34  
33  
32  
PA0  
PA1  
PA2  
9
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
43  
44  
45  
46  
47  
48  
49  
50  
20  
19  
18  
17  
14  
13  
12  
11  
10  
11  
12  
13  
14  
15  
16  
PE0  
PE1  
PE2  
PE3  
PE4  
PE5  
PE6  
PE7  
PC0  
PC1  
PC2  
PC3  
PC4  
47  
50  
_
CNTL0(R W)  
CNTL1(E)  
49  
CNTL2  
PC5  
PC6  
PC7  
10  
9
8
PD0 AS  
PD1  
PD2  
20  
21  
22  
23  
24  
25  
52  
51  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
VRH  
VRL  
48  
RESET  
3
MODA  
5
4
6
E
E
AS  
R/W  
AS  
R/W  
RESET  
41  
PSD9XX Family  
Preliminary Information  
The  
9.4 I/O Ports  
There are four programmable I/O ports: Ports A, B, C, and D. Each of the ports is eight  
bits except Port D, which is 3 bits. Each port pin is individually user configurable, thus  
allowing multiple functions per port. The ports are configured using PSDsoft or by the  
microcontroller writing to on-chip registers in the CSIOP address space.  
PSD9XX  
Functional  
Blocks  
(cont.)  
The topics discussed in this section are:  
General Port Architecture  
Port Operating Modes  
Port Configuration Registers  
Port Data Registers  
Individual Port Functionality.  
9.4.1 General Port Architecture  
The general architecture of the I/O Port is shown in Figure 19. Individual Port architectures  
are shown in Figures 20 through 22. In general, once the purpose for a port pin has been  
defined, that pin will no longer be available for other purposes. Exceptions will be noted.  
As shown in Figure 19, the ports contain an output multiplexer whose selects are driven  
by the configuration bits in the Control Registers (Ports A and B only) and PSDsoft. Inputs  
to the multiplexer include the following:  
Output data from the Data Out Register  
Latched address outputs  
General Purpose PLD (GPLD) outputs (external chip selects)  
The Port Data Buffer (PDB) is a tri-state buffer that allows only one source at a time to be  
read. The PDB is connected to the Internal Data Bus for feedback and can be read by the  
microcontroller. The Data Out, Direction and Control Registers, and port pin input are all  
connected to the PDB.  
The contents of these registers can be altered by the microcontroller. The PDB feedback  
path allows the microcontroller to check the contents of the registers.  
42  
DATA OUT  
REG.  
DATA OUT  
ADDRESS  
D
Q
WR  
ADDRESS  
ALE  
PORT PIN  
D
G
Q
OUTPUT  
MUX  
GPLD OUTPUT  
READ MUX  
P
D
B
OUTPUT  
SELECT  
DATA IN  
CONTROL REG.  
D
Q
WR  
WR  
DIR REG.  
D
Q
PLD-INPUT  
PSD9XX Family  
Preliminary Information  
9.4.2 Port Operating Modes  
The  
The I/O Ports have several modes of operation. Some modes can be defined in  
PSDsoft, some by the microcontroller writing to the Control Registers in CSIOP space, and  
some by both. The modes that can only be defined using PSDsoft must be  
programmed into the device and cannot be changed unless the device is reprogrammed.  
The modes that can be changed by the microcontroller can be done so dynamically  
at run-time. The PLD I/O, Data Port, and Address Input, are the only modes that must  
be defined before programming the device. All other modes can be changed by the  
microcontroller at run-time.  
PSD9XX  
Functional  
Blocks  
(cont.)  
Table 20 summarizes which modes are available on each port. Table 23 shows how and  
where the different modes are configured. Each of the port operating modes are described  
in the following subsections.  
Table 20. Port Operating Modes  
Port Mode  
Port A  
Port B  
Port C  
Port D  
MCU I/O  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
No  
PLD Outputs  
PLD Inputs  
Address Out  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes (A7 – 0) Yes (A7 – 0)  
or A15 – 8)  
Address In  
Data Port  
JTAG ISP  
Yes  
Yes (D7 – 0) No  
No No  
Yes  
Yes  
No  
Yes  
No  
Yes  
No  
44  
Preliminary Information  
PSD9XX Family  
The  
Table 21. Port Operating Mode Settings  
Defined In  
PSD9XX  
Functional  
Blocks  
(cont.)  
Control  
Register  
Setting  
Direction  
Register  
Setting  
Mode  
PSDsoft  
at Run-Time  
at Run-Time  
1 = output,  
0 = input,  
MCU I/O  
PLD I/O  
Declare pins only  
0
Logic or chip  
select equations  
NA  
NA  
1
Data Port  
(Port A)  
Selected for MCU  
with non-mux bus  
NA  
1
Address Out  
(Port A,B)  
Declare pins only  
Address In  
(Port A,B,C,D)  
Declare pins only  
Declare pins only  
NA  
NA  
NA  
NA  
JTAG ISP  
*NA = Not Applicable  
9.4.2.1 MCU I/O Mode  
In the MCU I/O Mode, the microcontroller uses the PSD9XX ports to expand its own  
I/O ports. By setting up the CSIOP space, the ports on the PSD9XX are mapped into the  
microcontroller address space. The addresses of the ports are listed in Table 7.  
A port pin can be put into MCU I/O mode by writing a ‘0’ to the corresponding bit in the  
Control Register. The MCU I/O direction may be changed by writing to the corresponding  
bit in the Direction Register. See the subsection on the Direction Register in the “Port  
Registers” section. When the pin is configured as an output, the content of the Data Out  
Register drives the pin. When configured as an input, the microcontroller can read the port  
input through the Data In buffer. See Figure 19.  
Ports C and D do not have Control Registers, and are in MCU I/O mode by default. They  
can be used for PLD I/O if they are specified in PSDsoft.  
9.4.2.2 PLD I/O Mode  
The PLD I/O Mode uses a port as an input to the PLDs, and/or as an output from the  
GPLD. The corresponding bit in the Direction Register must not be set to ‘1’ if the pin is  
defined as a PLD input pin in PSDsoft. The PLD I/O Mode is specified in PSDsoft by  
declaring the port pins, and then specifying an equation in PSDsoft.  
45  
PSD9XX Family  
Preliminary Information  
9.4.2.3 Address Out Mode  
The  
For microcontrollers with a multiplexed address/data bus, Address Out Mode can be used  
to drive latched addresses onto the port pins. These port pins can, in turn, drive external  
devices. Either the output enable or the corresponding bits of both the Direction Register  
and Control Register must be set to a ‘1’ for pins to use Address Out Mode. This must be  
done by the MCU at run-time. See Table 22 for the address output pin assignments on  
Ports A and B for various MCUs.  
PSD9XX  
Functional  
Blocks  
(cont.)  
For non-multiplexed 8 bit bus mode, address lines A[7:0] are available to Port B in  
Address Out Mode.  
Note: Do not drive address lines with Address Out Mode to an external memory device if  
it is intended for the MCU to boot from the external device. The MCU must first boot from  
PSD memory so the Direction and Control register bits can be set.  
Table 22. I/O Port Latched Address Output Assignments  
Microcontroller  
Port A (3:0) Port A (7:4)  
Port B (3:0)  
Port B (7:4)  
8051XA (8-Bit)  
N/A*  
N/A  
Address (7:4) Address (11:8) N/A  
N/A Address (11:8) Address (15:12)  
80C251  
(Page Mode)  
All Other  
8-Bit Multiplexed  
Address (3:0) Address (7:4) Address (3:0)  
N/A N/A Address [3:0]  
Address (7:4)  
Address [7:4]  
8-Bit  
Non-Multiplexed Bus  
N/A = Not Applicable.  
9.4.2.4 Address In Mode  
For microcontrollers that have more than 16 address lines, the higher addresses can be  
connected to Port A, B, C, and D. The address input can be latched by the address strobe  
(ALE/AS). Any input that is included in the DPLD equations for the Main Flash, Secondary  
Flash, or SRAM is considered to be an address input.  
9.4.2.5 Data Port Mode  
Port A can be used as a data bus port for a microcontroller with a non-multiplexed  
address/data bus. The Data Port is connected to the data bus of the microcontroller. The  
general I/O functions are disabled in Port A if the port is configured as a Data Port.  
9.4.2.6 JTAG ISP  
Port C is JTAG compliant, and can be used for In-System Programming (ISP). For more  
information on the JTAG Port, refer to section 9.6.  
46  
Preliminary Information  
PSD9XX Family  
9.4.3 Port Configuration Registers (PCRs)  
The  
Each port has a set of PCRs used for configuration. The contents of the registers can be  
accessed by the microcontroller through normal read/write bus cycles at the addresses  
given in Table 7. The addresses in Table 7 are the offsets in hex from the base of the  
CSIOP register.  
PSD9XX  
Functional  
Blocks  
(cont.)  
The pins of a port are individually configurable and each bit in the register controls its  
respective pin. For example, Bit 0 in a register refers to Bit 0 of its port. The three PCRs,  
shown in Table 23, are used for setting the port configurations. The default power-up state  
for each register in Table 23 is 00h.  
Table 23. Port Configuration Registers  
Register Name  
Port  
MCU Access  
Control  
A,B  
Write/Read  
Write/Read  
Write/Read  
Direction  
Drive Select*  
A,B,C,D  
A,B,C,D  
*NOTE: See Table 27 for Drive Register bit definition.  
9.4.3.1 Control Register  
Any bit set to ‘0’ in the Control Register sets the corresponding Port pin to MCU I/O Mode,  
and a ‘1’ sets it to Address Out Mode. The default mode is MCU I/O. Only Ports A and B  
have an associated Control Register.  
9.4.3.2 Direction Register  
The Direction Register controls the direction of data flow in the I/O Ports. Any bit set to  
‘1’ in the Direction Register will cause the corresponding pin to be an output, and any bit  
set to ‘0’ will cause it to be an input. The default mode for all port pins is input.  
Figures 20 and 22 show the Port Architecture diagrams for Ports A, B and C, respectively.  
The direction of data flow for Ports A, B, and C are controlled by the direction register.  
An example of a configuration for a port with the three least significant bits set to output  
and the remainder set to input is shown in Table 26. Since Port D only contains three pins,  
the Direction Register for Port D has only the three least significant bits active.  
Table 24. Port Pin Direction Control  
Direction Register Bit  
Port Pin Mode  
Input  
0
1
Output  
Table 26. Port Direction Assignment Example  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
0
1
1
1
47  
PSD9XX Family  
Preliminary Information  
9.4.3.3 Drive Select Register  
The  
The Drive Select Register configures the pin driver as Open Drain or CMOS for some port  
pins, and controls the slew rate for the other port pins. An external pull-up resistor should  
be used for pins configured as Open Drain.  
PSD9XX  
Functional  
Blocks  
(cont.)  
A pin can be configured as Open Drain if its corresponding bit in the Drive Select Register  
is set to a ‘1’. The default pin drive is CMOS.  
Aside: the slew rate is a measurement of the rise and fall times of an output. A higher  
slew rate means a faster output response and may create more electrical noise. A pin  
operates in a high slew rate when the corresponding bit in the Drive Register is set to ‘1’.  
The default rate is slow slew.  
Table 27 shows the Drive Register for Ports A, B, C, and D. It summarizes which pins can  
be configured as Open Drain outputs and which pins the slew rate can be set for.  
Table 27. Drive Register Pin Assignment  
Drive  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Open  
Drain  
Open  
Drain  
Open  
Drain  
Open  
Drain  
Slew  
Rate  
Slew  
Rate  
Slew  
Rate  
Slew  
Rate  
Port A  
Open  
Drain  
Open  
Drain  
Open  
Drain  
Open  
Drain  
Slew  
Rate  
Slew  
Rate  
Slew  
Rate  
Slew  
Rate  
Port B  
Port D  
Slew  
Rate  
Slew  
Rate  
Slew  
Rate  
NA  
NA  
NA  
NA  
NA  
NOTE: NA = Not Applicable.  
48  
Preliminary Information  
PSD9XX Family  
The  
9.4.4 Port Data Registers  
The Port Data Registers, shown in Table 28, are used by the microcontroller to write data  
to or read data from the ports. Table 28 shows the register name, the ports having each  
register type, and microcontroller access for each register type. The registers are  
described below.  
PSD9XX  
Functional  
Blocks  
(cont.)  
9.4.4.1 Data In  
Port pins are connected directly to the Data In buffer. In MCU I/O input mode, the pin input  
is read through the Data In buffer.  
9.4.4.2 Data Out Register  
Stores output data written by the MCU in the MCU I/O output mode. The contents of the  
Register are driven out to the pins if the Direction Register or the output enable  
product term is set to “1”. The contents of the register can also be read back by the  
microcontroller.  
Table 28. Port Data Registers  
Register Name  
Port  
MCU Access  
Data In  
Data Out  
A,B,C,D  
A,B,C,D  
Read – input on pin  
Write/Read  
9.4.5 Ports A and B – Functionality and Structure  
Ports A and B have similar functionality and structure, as shown in Figure 20. The two  
ports can be configured to perform one or more of the following functions:  
MCU I/O Mode  
GPLD Output – Combinatorial PLD outputs can be connected to Port A or Port B.  
PLD Input  
– Input to the PLDs.  
Latched Address output – Provide latched address output per Table 30.  
Address In – Additional high address inputs, may be latched by ALE.  
Open Drain/Slew Rate – pins PA[3:0] and PB[3:0] can be configured to fast slew rate,  
pins PA[7:4] and PB[7:4] can be configured to Open Drain  
Mode.  
Data Port – Port A only, connect to non-multiplexed 8-bit data bus.  
49  
DATA OUT  
REG.  
DATA OUT  
D
Q
WR  
PORT  
A OR B PIN  
ADDRESS  
ALE  
ADDRESS  
D
G
Q
[
]
[
]
A 7:0 OR A 15:8  
OUTPUT  
MUX  
GPLD OUTPUT  
READ MUX  
P
D
B
OUTPUT  
SELECT  
DATA IN  
CONTROL REG.  
D
Q
WR  
WR  
DIR REG.  
D
Q
PLD INPUT  
Preliminary Information  
PSD9XX Family  
The  
9.4.6 Port C – Functionality and Structure  
Port C can be configured to perform one or more of the following functions (see Figure 21):  
PSD9XX  
Functional  
Blocks  
(cont.)  
MCU I/O Mode  
PLD Input – Input to the PLDs.  
Address In – Additional high address inputs using the Input Micro Cells.  
In-System Programming – JTAG port can be enabled for programming/erase of the  
PSD9XX device. (See Section 9.6 for more information on JTAG programming.)  
Pins that are configured as JTAG pins in PSDsoft will not be available for other I/O  
functions.  
Open Drain – Port C pins can be configured in Open Drain Mode  
Battery Backup features – PC2 can be configured as a Battery Input (Vstby) pin.  
PC4 can be configured as a Battery On Indicator output  
pin, indicating when Vcc is less than Vbat.  
Port C does not support Address Out mode, and therefore no Control Register is required.  
Pin PC7 may be configured as the DBE input in certain microcontroller interfaces.  
9.4.7 Port D – Functionality and Structure  
Port D has three I/O pins. See Figure 22. This port does not support Address Out mode,  
and therefore no Control Register is required. Port D can be configured to perform one or  
more of the following functions:  
MCU I/O Mode  
GPLD Output – Combinatorial PLD output (external chip selects)  
PLD Input – direct input to PLDs  
Slew rate – pins can be set up for fast slew rate  
Port D pins can be configured in PSDsoft as input pins for other dedicated functions:  
PD0 – ALE, as address strobe input  
PD1 – CLKIN, as clock input to the PLD and APD counter  
PD2 – CSI, as active low chip select input. A high input will disable the  
Flash/SRAM and CSIOP.  
51  
PSD9XX Family  
Preliminary Information  
The  
Figure 21. Port C Structure  
PSD9XX  
Functional  
Blocks  
(cont.)  
I N T E R N A L D A T A B U S  
52  
DATA OUT  
REG.  
DATA OUT  
D
Q
WR  
PORT D PIN  
OUTPUT  
MUX  
GPLD OUTPUT  
READ MUX  
OUTPUT  
SELECT  
P
D
B
DATA IN  
DIR REG.  
PLD-INPUT  
D
Q
WR  
PSD9XX Family  
Preliminary Information  
The  
9.5 Power Management  
The PSD9XX offers configurable power saving options. These options may be used  
individually or in combinations, as follows:  
PSD9XX  
Functional  
Blocks  
(cont.)  
All memory types in a PSD (Flash, Secondary Flash Block, and SRAM) are built with  
Zero-Power technology. In addition to using special silicon design methodology,  
Zero-Power technology puts the memories into standby mode when address/data  
inputs are not changing (zero DC current). As soon as a transition occurs on an input,  
the affected memory “wakes up”, changes and latches its outputs, then goes back to  
standby. The designer does not have to do anything special to achieve memory  
standby mode when no inputs are changing—it happens automatically.  
The PLD sections can also achieve standby mode when its inputs are not changing,  
see PMMR registers below.  
Like the Zero-Power feature, the Automatic Power Down (APD) logic allows the PSD to  
reduce to standby current automatically. The APD will block MCU address/data signals  
from reaching the memories and PLDs. This feature is available on all PSD9XX  
devices. The APD unit is described in more detail in section 9.5.1.  
Built in logic will monitor the address strobe of the MCU for activity. If there is no  
activity for a certain time period (MCU is asleep), the APD logic initiates Power Down  
Mode (if enabled). Once in Power Down Mode, all address/data signals are blocked  
from reaching PSD memories and PLDs, and the memories are deselected internally.  
This allows the memories and PLDs to remain in standby mode even if the  
address/data lines are changing state externally (noise, other devices on the MCU  
bus, etc.). Keep in mind that any unblocked PLD input signals (not MCU address)  
that are changing states keeps the PLD out of standby mode, but not the memories.  
The PSD Chip Select Input (CSI) on all families can be used to disable the internal  
memories, placing them in standby mode even if inputs are changing. This feature  
does not block any internal signals or disable the PLDs. This is a good alternative to  
using the APD logic, especially if your MCU has a chip select output. There is a slight  
penalty in memory access time when the CSI signal makes its initial transition from  
deselected to selected.  
The PMMR registers can be written by the MCU at run-time to manage power. All PSD  
devices support “blocking bits” in these registers that are set to block designated  
signals from reaching both PLDs. Current consumption of the PLDs is directly related  
to the composite frequency of the changes on their inputs (see Figure 26). Significant  
power savings can be achieved by blocking signals that are not used in PLD equations.  
The PSD9XX devices have a Turbo Bit in the PMMR0 register. This bit can be set to  
disable the Turbo Mode feature (default is Turbo Mode on). While Turbo Mode is  
disabled, the PLDs can achieve standby current when no PLD inputs are changing  
(zero DC current). Even when inputs do change, significant power can be saved at  
lower frequencies (AC current), compared to when Turbo Mode is enabled. Conversely,  
when the Turbo Mode is enabled, there is a significant DC current component and the  
AC component is higher.  
9.5.1 Automatic Power Down (APD) Unit and Power Down Mode  
The APD Unit, shown in Figure 23, puts the PSD into Power Down Mode by monitoring  
the activity of the address strobe (ALE/AS). If the APD unit is enabled, as soon as activity  
on the address strobe stops, a four bit counter starts counting. If the address strobe  
remains inactive for fifteen clock periods of the CLKIN signal, the Power Down (PDN)  
signal becomes active, and the PSD will enter into Power Down Mode, discussed next.  
54  
Preliminary Information  
PSD9XX Family  
9.5.1 Automatic Power Down (APD) Unit and Power Down Mode (cont.)  
Power Down Mode  
The  
PSD9XX  
Functional  
Blocks  
(cont.)  
By default, if you enable the PSD APD unit, Power Down Mode is automatically enabled.  
The device will enter Power Down Mode if the address strobe (ALE/AS) remains inactive  
for fifteen CLKIN (pin PD1) clock periods.  
The following should be kept in mind when the PSD is in Power Down Mode:  
If the address strobe starts pulsing again, the PSD will return to normal operation.  
The PSD will also return to normal operation if either the CSI input returns low or the  
Reset input returns high.  
The MCU address/data bus is blocked from all memories and PLDs.  
Various signals can be blocked (prior to Power Down Mode) from entering the PLDs  
by setting the appropriate bits in the PMMR registers. The blocked signals include  
MCU control signals and the common clock (CLKIN). Note that blocking CLKIN from  
the PLDs will not block CLKIN from the APD unit.  
All PSD memories enter Standby Mode and are drawing standby current. However,  
the PLDs and I/O ports do not go into Standby Mode because you don’t want to  
have to wait for the logic and I/O to “wake-up” before their outputs can change. See  
table 29 for Power Down Mode effects on PSD ports.  
Typical standby current is in µA for 5 V parts. This standby current value assumes  
that there are no transitions on any PLD input.  
Table 29. Power Down Modes Effect on  
Ports  
Port Function  
MCU I/O  
Pin Level  
No Change  
No Change  
Undefined  
Three-State  
PLD Out  
Address Out  
Data Port  
Table 30. PSD9XX Timing and Standby Current During Power  
Down Mode  
Access  
Recovery Time  
to Normal  
Access  
5V V ,  
CC  
PLD  
Propagation  
Delay  
Memory  
Access  
Time  
Typical  
Standby  
Current  
Mode  
Normal tpd  
(Note 1)  
75 µA  
(Note 2)  
Power Down  
No Access  
tLVDV  
NOTES: 1. Power Down does not affect the operation of the PLD. The PLD operation in this  
mode is based only on the Turbo Bit.  
2. Typical current consumption assuming no PLD inputs are changing state and  
the PLD Turbo bit is off.  
HC11 (or compatible) Users Note  
The HC11 turns off its E clock when it sleeps. Therefore, if you are using an HC11  
(or compatible) in your design, and you wish to use the Power Down, you must not  
connect the E clock to the CLKIN input (PD1). You should instead connect an  
independent clock signal to the CLKIN input. The clock frequency must be less than  
15 times the frequency of AS. The reason for this is that if the frequency is greater than  
15 times the frequency of AS, the PSD9XX will keep going into Power Down Mode.  
55  
PSD9XX Family  
Preliminary Information  
The  
Figure 23. APD Logic Block  
PSD9XX  
Functional  
Blocks  
(cont.)  
APD EN  
PMMR0 BIT 1=1  
TRANSITION  
DETECTION  
DISABLE BUS  
INTERFACE  
ALE  
PD  
CLR  
APD  
SECONDARY  
FLASH SELECT  
COUNTER  
RESET  
MAIN FLASH  
SELECT  
EDGE  
DETECT  
PD  
CSI  
PLD  
SRAM SELECT  
POWER DOWN  
CLKIN  
(
)
PDN SELECT  
DISABLE  
MAIN FLASH/  
SECONDARY FLASH/SRAM  
Figure 24. Enable Power Down Flow Chart  
RESET  
Enable APD  
Set PMMR0 Bit 1 = 1  
OPTIONAL  
Disable desired inputs to PLD  
by setting PMMR0 bit 4  
and PMMR2 bits 2 through 6.  
ALE/AS idle  
for 15 CLKIN  
clocks?  
No  
Yes  
PSD in Power  
Down Mode  
56  
Preliminary Information  
PSD9XX Family  
The  
Table 31. Power Management Mode Registers (PMMR0, PMMR2)**  
PMMR0  
PSD9XX  
Functional  
Blocks  
(cont.)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PLD  
Array clk  
PLD  
Turbo  
APD  
Enable  
*
*
*
*
*
1 = off  
1 = off  
1 = on  
***Bits 0, 2, 6, and 7 are not used, and should be set to 0, bit 5 should be set to 1.  
***The PMMR0, and PMMR2 register bits are cleared to zero following power up.  
***Subsequent reset pulses will not clear the registers.  
Bit 1 0 = Automatic Power Down (APD) is disabled.  
1 = Automatic Power Down (APD) is enabled.  
Bit 3 0 = PLD Turbo is on.  
1 = PLD Turbo is off, saving power.  
Bit 4 0 = CLKIN input to the PLD AND array is connected.  
Every CLKIN change will power up the PLD when Turbo bit is off.  
1 = CLKIN input to PLD AND array is disconnected, saving power.  
PMMR2  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PLD  
array  
DBE  
PLD  
array  
ALE  
PLD**  
array  
CNTL2  
PLD**  
array  
CNTL1  
PLD**  
array  
CNTL0  
*
*
*
1 = off  
1 = off  
1 = off  
1 = off  
1 = off  
**Unused bits should be set to 0.  
**Refer to Table 17 the signals that are blocked on pins CNTL0-2.  
Bit 2 0 = Cntl0 input to the PLD AND array is connected.  
1 = Cntl0 input to PLD AND array is disconnected, saving power.  
Bit 3 0 = Cntl1 input to the PLD AND array is connected.  
1 = Cntl1 input to PLD AND array is disconnected, saving power.  
Bit 4 0 = Cntl2 input to the PLD AND array is connected.  
1 = Cntl2 input to PLD AND array is disconnected, saving power.  
Bit 5 0 = ALE input to the PLD AND array is connected.  
1 = ALE input to PLD AND array is disconnected, saving power.  
Bit 6 0 = DBE input to the PLD AND array is connected.  
1 = DBE input to PLD AND array is disconnected, saving power.  
57  
PSD9XX Family  
Preliminary Information  
The  
Table 32. APD Counter Operation  
PSD9XX  
Functional  
Blocks  
(cont.)  
APD  
ALE Power  
Enable Bit Down Polarity ALE Level  
APD Counter  
0
1
1
1
X
X
1
0
X
Not Counting  
Not Counting  
Pulsing  
1
0
Counting (Generates PDN after 15 Clocks)  
Counting (Generates PDN after 15 Clocks)  
9.5.2 Other Power Saving Options  
The PSD9XX offers other reduced power saving options that are independent of the  
Power Down Mode. Except for the SRAM Standby and CSI input features, they are  
enabled by setting bits in the PMMR0 and PMMR2 registers.  
9.5.2.1 Zero Power PLD  
The power and speed of the PLDs are controlled by the Turbo bit (bit 3) in the PMMR0.  
By setting the bit to “1”, the Turbo mode is disabled and the PLDs consume Zero Power  
current when the inputs are not switching for an extended time of 70 ns. The propagation  
delay time will be increased by 10 ns after the Turbo bit is set to “1” (turned off) when the  
inputs change at a composite frequency of less than 15 MHz. When the Turbo bit is set to  
a “0” (turned on), the PLDs run at full power and speed. The Turbo bit affects the PLD’s  
D.C. power, AC power, and propagation delay.  
Note: Blocking MCU control signals with PMMR2 bits can further reduce PLD AC power  
consumption.  
9.5.2.2 SRAM Standby Mode (Battery Backup)  
The PSD9XX supports a battery backup operation that retains the contents of the SRAM  
in the event of a power loss. The SRAM has a Vstby pin (PC2) that can be connected to  
an external battery. When V becomes lower than Vstby then the PSD will automatically  
CC  
connect to Vstby as a power source to the SRAM. The SRAM Standby Current (Istby) is  
typically 0.5 µA. The SRAM data retention voltage is 2 V minimum. The battery-on  
indicator (Vbaton) can be routed to PC4. This signal indicates when the V has dropped  
CC  
below the Vstby voltage, and that the SRAM is running on battery power.  
9.5.2.3 The CSI Input  
Pin PD2 of Port D can be configured in PSDsoft as the CSI input. When low, the signal  
selects and enables the internal Flash, Boot Block, SRAM, and I/O for read or write  
operations involving the PSD9XX. A high on the CSI pin will disable the Flash memory,  
Boot Block, and SRAM, and reduce the PSD power consumption. However, the PLD and  
I/O pins remain operational when CSI is high. Note: there may be a timing penalty when  
using the CSI pin depending on the speed grade of the PSD that you are using. See the  
timing parameter t  
in the AC/DC specs.  
SLQV  
9.5.2.4 Input Clock  
The PSD9XX provides the option to turn off the CLKIN input to the PLD AND array to  
save AC power consumption. During Power Down Mode, or, if the CLKIN input is not being  
used as part of the PLD logic equation, the clock should be disabled to save AC power.  
The CLKIN will be disconnected from the PLD AND array setting bit 4 to a “1” in PMMR0.  
9.5.2.5 MCU Control Signals  
The PSD9XX provides the option to turn off the input control signals (CNTL0-2, ALE, and  
DBE) to the PLD to save AC power consumption. These control signals are inputs to the  
PLD AND array. During Power Down Mode, or, if any of them are not being used as part of  
the PLD logic equation, these control signals should be disabled to save AC power. They  
will be disconnected from the PLD AND array by setting bits 2, 3, 4, 5, and 6 to a “1” in the  
PMMR2. Note that blocking MCU control signals to the GPLD will not block these signals  
from reaching the memory and I/O sections of the chip.  
58  
Preliminary Information  
PSD9XX Family  
The  
9.5.3 Reset and Power On Requirement  
PSD9XX  
Functional  
Blocks  
(cont.)  
9.5.3.1 Power On Reset  
Upon power up the PSD9XX requires a reset pulse of tNLNH-PO (minimum 1 ms) after  
is steady. During this time period the device loads internal configurations, clears  
V
CC  
some of the registers and sets the Flash into operating mode. After the rising edge of  
reset, the PSD9XX remains in the reset state for an additional tOPR (maximum 120 ns)  
nanoseconds before the first memory access is allowed.  
The PSD9XX Flash memory is reset to the read array mode upon power up. The FSi  
and CSBOOTi select signals along with the write strobe signal must be in the false  
state during power-up reset for maximum security of the data contents and to remove  
the possibility of a byte being written on the first edge of a write strobe signal. Any Flash  
memory write cycle initiation is prevented automatically when V is below VLKO.  
CC  
9.5.3.2 Warm Reset  
Once the device is up and running, the device can be reset with a much shorter pulse of  
tNLNH (minimum 150 ns). The same tOPR time is needed before the device is operational  
after warm reset. Figure 25 shows the timing of the power on and warm reset.  
Figure 25. Power On and Warm Reset Timing  
OPERATING LEVEL  
t
t
NLNH  
NLNH-A  
t
NLNHPO  
V
CC  
RESET  
t
t
OPR  
OPR  
WARM  
RESET  
POWER ON RESET  
9.5.3.3 I/O Pin, Register and PLD Status at Reset  
Table 33 shows the I/O pin, register and PLD status during power on reset, warm reset  
and power down mode. PLD outputs are always valid during warm reset, and they are  
valid in power on reset once the internal PSD configuration bits are loaded. This loading of  
PSD is completed typically long before the V ramps up to operating level. Once the PLD  
CC  
is active, the state of the outputs are determined by the PLD equations.  
59  
PSD9XX Family  
Preliminary Information  
The  
Table 33. Status During Power On Reset, Warm Reset and Power Down Mode  
PSD9XX  
Functional  
Blocks  
(cont.)  
Port Configuration Power On Reset  
Warm Reset  
Input Mode  
Valid  
Power Down Mode  
Unchanged  
MCU I/O  
Input Mode  
PLD Output  
Valid after internal  
PSD configuration  
bits are loaded  
Depend on inputs to  
PLD (address are  
blocked in PD mode)  
Address Out  
Data Port  
Tri-stated  
Tri-stated  
Tri-stated  
Tri-stated  
Not defined  
Tri-stated  
Register  
PMMR0, 2  
Power On Reset  
Cleared to 0”  
Warm Reset  
Unchanged  
Power Down Mode  
Unchanged  
VM Register*  
Initialized based on  
the selection in  
PSDsoft  
Initialized based on Unchanged  
the selection in  
PSDsoft  
Configuration Menu.  
Configuration Menu.  
All other registers  
Cleared to 0”  
Cleared to 0”  
Unchanged  
*SR_cod bit in the VM Register are always cleared to zero on power on or warm reset.  
**  
9.5.3.4 Reset of Flash Erase and Programming Cycles (PSD934F2 and PSD954F2)  
An external reset on the RESET pin will also reset the internal Flash memory state  
machine. When the Flash is in programming or erase mode, the RESET pin will terminate  
the programming or erase operation and return the Flash back to read mode in tNLNH-A  
(minimum 25 µs) time.  
9.6 Programming In-Circuit using the JTAG Interface  
The JTAG interface on the PSD9XX can be enabled on Port C (see Table 34). All  
memory (Flash and Secondary Flash Block), PLD logic, and PSD configuration bits may be  
programmed through the JTAG interface. A blank part can be mounted on a printed circuit  
board and programmed using JTAG.  
The standard JTAG signals (IEEE 1149.1) are TMS, TCK, TDI, and TDO. Two additional  
signals, TSTAT and TERR, are optional JTAG extensions used to speed up program and  
erase operations.  
By default, on a blank PSD (as shipped from factory or after erasure), four pins on Port C  
are enabled for the basic JTAG signals TMS, TCK, TDI, and TDO.  
See Application Note 54 for more details on JTAG In-System-Programming.  
Table 34. JTAG Port Signals  
Port C Pin  
PC0  
JTAG Signals  
TMS  
Description  
Mode Select  
Clock  
PC1  
TCK  
PC3  
TSTAT  
TERR  
TDI  
Status  
PC4  
Error Flag  
PC5  
Serial Data In  
Serial Data Out  
PC6  
TDO  
60  
Preliminary Information  
PSD9XX Family  
9.6.1 Standard JTAG Signals  
The  
The JTAG configuration bit (non-volatile) inside the PSD can be set by the user in the  
PSDsoft. Once this bit is set and programmed in the PSD, the JTAG pins are dedicated to  
JTAG at all times and is in compliance with IEEE 1149.1. After power up the standard  
JTAG signals (TDI, TDO TCK and TMS) are inputs, waiting for a serial command from an  
external JTAG controller device (such as FlashLink or Automated Test Equipment). When  
the enabling command is received from the external JTAG controller, TDO becomes an  
output and the JTAG channel is fully functional inside the PSD. The same command that  
enables the JTAG channel may optionally enable the two additional JTAG pins, TSTAT  
and TERR.  
PSD9XX  
Functional  
Blocks  
(cont.)  
The PSD9XX supports JTAG In-System-Configuration (ISC) commands, but not  
Boundary Scan. STs PSDsoft software tool and FlashLink JTAG programming cable  
implement these JTAG-ISC commands.  
9.6.2 JTAG Extensions  
TSTAT and TERR are two JTAG extension signals enabled by a JTAG command received  
over the four standard JTAG pins (TMS, TCK, TDI, and TDO). They are used to speed  
programming and erase functions by indicating status on PSD pins instead of  
having to scan the status out serially using the standard JTAG channel. See Application  
Note 54.  
TERR will indicate if an error has occurred when erasing a sector or programming a byte in  
Flash memory. This signal will go low (active) when an error condition occurs, and stay  
low until a special JTAG command is executed or a chip reset pulse is received after an  
ISC-DISABLEcommand.  
TSTAT behaves the same as the Rdy/Bsy signal described in section 9.1.1.2. TSTAT will  
be high when the PSD9XX device is in read array mode (Flash memory and Boot Block  
contents can be read). TSTAT will be low when Flash memory programming or erase  
cycles are in progress, and also when data is being written to the Secondary Flash Block.  
TSTAT and TERR can be configured as open-drain type signals with a JTAG command.  
9.6.3 Security and Flash Memories Protection  
When the security bit is set, the device cannot be read on a device programmer or through  
the JTAG Port. When using the JTAG Port, only a full chip erase command is allowed.  
All other program/erase/verify commands are blocked. Full chip erase returns the part to a  
non-secured blank state. The Security Bit can be set in PSDsoft.  
All Flash Memory and Boot sectors can individually be sector protected against erasures.  
The sector protect bits can be set in PSDsoft.  
61  
PSD9XX Family  
Preliminary Information  
Absolute  
Maximum  
Ratings  
Symbol  
Parameter  
Storage Temperature  
Condition  
PLDCC  
Min  
65  
0
Max  
+ 125  
+ 70  
+ 85  
+ 7  
Unit  
°C  
°C  
°C  
V
T
STG  
Commercial  
Operating Temperature  
Voltage on any Pin  
Industrial  
40  
0.6  
With Respect to GND  
Device Programmer  
Supply Voltage  
V
V
With Respect to GND  
With Respect to GND  
0.6  
+ 14  
+ 7  
V
PP  
CC  
Supply Voltage  
ESD Protection  
0.6  
V
V
>2000  
NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent  
damage to the device. This is a stress rating only and functional operation of the device at  
these or any other conditions above those indicated in the operational sections of this  
specification is not recommended. Exposure to Absolute Maximum Rating conditions for  
extended periods of time may affect device reliability.  
Operating  
Range  
Range  
Temperature  
V
Tolerance  
CC  
Commercial  
Industrial  
0° C to +70°C  
40° C to +85°C  
0° C to +70°C  
+ 5 V ± 10%  
+ 5 V ± 10%  
3.0 V to 3.6 V  
3.0 V to 3.6 V  
Commercial  
Industrial  
40° C to +85°C  
Recommended  
Operating  
Conditions  
Symbol  
Parameter  
Condition  
Min  
Typ Max  
Unit  
V
V
Supply Voltage  
Supply Voltage  
All Speeds  
4.5  
5
5.5  
V
CC  
CC  
V-Versions  
All Speeds  
3.0 V to 3.6 V  
3.6  
V
62  
Preliminary Information  
PSD9XX Family  
The following tables describe the AD/DC parameters of the PSD9XX family:  
AC/DC  
Parameters  
DC Electrical Specification  
AC Timing Specification  
PLD Timing  
– Combinatorial Timing  
Microcontroller Timing  
– Read Timing  
– Write Timing  
– Power Down and Reset Timing  
Following are issues concerning the parameters presented:  
In the DC specification the supply current is given for different modes of operation.  
Before calculating the total power consumption, determine the percentage of time that  
the PSD9XX is in each mode. Also, the supply power is considerably different if the  
Turbo bit is "OFF".  
The AC power component gives the PLD, Flash memory, and SRAM mA/MHz  
specification. Figure 26 shows the PLD mA/MHz as a function of the number  
of Product Terms (PT) used.  
In the PLD timing parameters, add the required delay when Turbo bit is "OFF".  
Figure 26. PLD ICC/FrequencyConsumption (VCC = 5 V ± 10%)  
110  
100  
90  
V
CC  
= 5V  
80  
70  
60  
50  
40  
30  
20  
10  
0
PT 100%  
PT 25%  
0
5
10  
15  
20  
25  
HIGHEST COMPOSITE FREQUENCY AT PLD INPUTS (MHz)  
63  
PSD9XX Family  
Preliminary Information  
Figure 26a. PLD ICC/Frequency Consumption (PSD9XXFV Versions, VCC = 3 V)  
AC/DC  
Parameters  
(cont.)  
60  
50  
40  
V
= 3V  
CC  
30  
20  
10  
0
PT 100%  
PT 25%  
0
5
10  
15  
20  
25  
HIGHEST COMPOSITE FREQUENCY AT PLD INPUTS (MHz)  
Example of PSD9XX Typical Power Calculation at V = 5.0 V  
CC  
Conditions  
Highest Composite PLD input frequency  
(Freq PLD)  
=
=
8 MHz  
4 MHz  
MCU ALE frequency (Freq ALE)  
% Flash Access  
% SRAM access  
% I/O access  
=
=
=
80%  
15%  
5% (no additional power above base)  
Operational Modes  
% Normal  
=
=
10%  
90%  
% Power Down Mode  
Number of product terms used  
(from fitter report)  
=
=
45 PT  
45/153 = 29.4%  
% of total product terms  
Turbo Mode  
=
ON  
Calculation (typical numbers used)  
ICC total = Ipwrdown x %pwrdown + %normal x (ICC (ac) + ICC (dc))  
= Ipwrdown x %pwrdown + % normal x (%flash x 2.5 mA/MHz x Freq ALE  
+ %SRAM x 1.5 mA/MHz x Freq ALE  
+ % PLD x 2 mA/MHz x Freq PLD  
+ #PT x 400 µA/PT  
= 50 µA x 0.90 + 0.1 x (0.8 x 2.5 mA/MHz x 4 MHz  
+ 0.15 x 1.5 mA/MHz x 4 MHz  
+2 mA/MHz x 8 MHz  
+ 45 x 0.4 mA/PT)  
= 45 µA + 0.1 x (8 + 0.9 + 16 + 18 mA)  
= 45 µA + 0.1 x 42.9  
= 45 µA + 4.29 mA  
= 4.34 mA  
This is the operating power with no Flash writes or erases. Calculation is based  
on IOUT = 0 mA.  
64  
Preliminary Information  
PSD9XX Family  
AC/DC  
Example of Typical Power Calculation at V = 5.0 V in Turbo Off Mode  
CC  
Parameters  
(cont.)  
Conditions  
Highest Composite PLD input frequency  
(Freq PLD)  
=
=
8 MHz  
4 MHz  
MCU ALE frequency (Freq ALE)  
% Flash Access  
% SRAM access  
% I/O access  
=
=
=
80%  
15%  
5% (no additional power above base)  
Operational Modes  
% Normal  
=
=
10%  
90%  
% Power Down Mode  
Number of product terms used  
(from fitter report)  
=
=
45 PT  
45/153 = 29.4%  
% of total product terms  
Turbo Mode  
=
Off  
Calculation (typical numbers used)  
ICC total = Ipwrdown x %pwrdown + %normal x (ICC (ac) + ICC (dc))  
= Ipwrdown x %pwrdown + % normal x (%flash x 2.5 mA/MHz x Freq ALE  
+ %SRAM x 1.5 mA/MHz x Freq ALE  
+ % PLD x (from graph using Freq PLD))  
= 50 µA x 0.90 + 0.1 x (0.8 x 2.5 mA/MHz x 4 MHz  
+ 0.15 x 1.5 mA/MHz x 4 MHz  
+ 24 mA)  
= 45 µA + 0.1 x (8 + 0.9 + 24)  
= 45 µA + 0.1 x 32.9  
= 45 µA + 3.29 mA  
= 3.34 mA  
This is the operating power with no Flash writes or erases. Calculation is based  
on IOUT = 0 mA.  
65  
PSD9XX Family  
Preliminary Information  
PSD9XX DC Characteristics (5 V ± 10% Versions)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VCC  
VIH  
Supply Voltage  
All Speeds  
4.5  
5
5.5  
VCC +.5  
0.8  
V
V
V
V
V
V
V
V
High Level Input Voltage  
4.5 V < VCC < 5.5 V  
4.5 V < VCC < 5.5 V  
(Note 1)  
2
–.5  
VIL  
Low Level Input Voltage  
VIH1  
VIL1  
VHYS  
VLKO  
Reset High Level Input Voltage  
Reset Low Level Input Voltage  
Reset Pin Hysteresis  
.8 VCC  
–.5  
VCC +.5  
.2 VCC –.1  
(Note 1)  
0.3  
VCC Min for Flash Erase and Program  
2.5  
4.2  
0.1  
I
OL = 20 µA, VCC = 4.5 V  
IOL = 8 mA, VCC = 4.5 V  
OH = –20 µA, VCC = 4.5 V  
0.01  
Output Low Voltage  
VOL  
0.25  
4.49  
0.45  
V
V
I
4.4  
VOH  
Output High Voltage Except VSTBY On  
IOH = –2 mA, VCC = 4.5 V  
IOH1 = 1 µA  
2.4  
VSBY – 0.8  
2.0  
3.9  
V
V
VOH  
Output High Voltage VSTBY On  
SRAM Standby Voltage  
1
VSBY  
ISBY  
IIDLE  
VDF  
VCC  
1
V
SRAM Standby Current (VSTBY Pin)  
Idle Current (VSTBY Pin)  
VCC = 0 V  
0.5  
µA  
µA  
V
VCC > VSBY  
Only on VSTBY  
–0.1  
2
0.1  
SRAM Data Retention Voltage  
Standby Supply Current for Power  
Down Mode  
CSI > VCC –0.3 V  
(Notes 2 and 3)  
ISB  
75  
200  
µA  
ILI  
Input Leakage Current  
Output Leakage Current  
VSS < VIN < VCC  
0.45 < VIN < VCC  
–1  
±.1  
±5  
1
µA  
µA  
ILO  
–10  
10  
PLD_TURBO = OFF,  
f = 0 MHz (Note 5)  
0
mA  
PLD  
PLD_TURBO = ON,  
f = 0 MHz  
400  
700  
µA/PT  
ICC (DC)  
(Note 5)  
Operating Supply  
Current  
During Flash Write/Erase  
Only  
15  
0
30  
0
mA  
mA  
mA  
Flash  
Read Only, f = 0 MHz  
f = 0 MHz  
SRAM  
0
0
Fig. 26  
(Note 4)  
PLD AC Adder  
ICC (AC)  
(Note 5)  
FLASH AC Adder  
SRAM AC Adder  
2.5  
1.5  
3.5  
3.0  
mA/MHz  
mA/MHz  
NOTE: 1. Reset input has hysteresis. VIL1 is valid at or below .2VCC –.1. VIH1 is valid at or above .8VCC  
2. CSI deselected or internal Power Down mode is active.  
3. PLD is in non-turbo mode and none of the inputs are switching  
4. Refer to Figure 32 for PLD current calculation.  
.
5. IOUT = 0 mA  
66  
Preliminary Information  
PSD9XX Family  
Microcontroller  
Interface –  
AC/DC  
Parameters  
(5V ± 10% Versions)  
AC Symbols for PLD Timing.  
Example: tAVLX – Time from Address Valid to ALE Invalid.  
Signal Letters  
A – Address Input  
C – CEout Output  
D – Input Data  
E – E Input  
L – ALE Input  
N – Reset Input or Output  
P – Port Signal Output  
Q – Output Data  
R – WR, UDS, LDS, DS, IORD, PSEN Inputs  
S – Chip Select Input  
T R/W Input  
W Internal PDN Signal  
B Vstby Output  
Signal Behavior  
t
– Time  
L
H
V
X
Z
– Logic Level Low or ALE  
– Logic Level High  
– Valid  
– No Longer a Valid Logic Level  
– Float  
PW – Pulse Width  
67  
PSD9XX Family  
Preliminary Information  
Microcontroller Interface – PSD9XX AC/DC Parameters  
(5V ± 10% Versions)  
Read Timing (5 V ± 10% Versions)  
-70  
-90  
-15  
Turbo  
Symbol  
Parameter  
Conditions Min Max Min Max Min Max  
Off  
Unit  
tLVLX  
tAVLX  
tLXAX  
tAVQV  
tSLQV  
ALE or AS Pulse Width  
Address Setup Time  
15  
4
20  
6
28  
10  
11  
ns  
ns  
ns  
ns  
ns  
ns  
(Note 3)  
(Note 3)  
(Note 3)  
Address Hold Time  
7
8
Address Valid to Data Valid  
CS Valid to Data Valid  
RD to Data Valid 8-Bit Bus  
70  
75  
24  
90  
100  
32  
150  
150  
40  
Add 10  
(Note 5)  
(Note 2)  
tRLQV  
RD or PSEN to Data Valid 8-Bit Bus,  
8031, 80251  
31  
38  
45  
ns  
tRHQX  
tRLRH  
tRHQZ  
tEHEL  
tTHEH  
tELTL  
RD Data Hold Time  
RD Pulse Width  
(Note 1)  
(Note 1)  
(Note 1)  
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
27  
32  
38  
RD to Data High-Z  
20  
25  
30  
E Pulse Width  
27  
6
32  
10  
0
38  
18  
0
R/W Setup Time to Enable  
R/W Hold Time After Enable  
0
Address Input Valid to Address  
Output Delay  
tAVPV  
(Note 4)  
20  
25  
30  
ns  
NOTES: 1. RD timing has the same timing as DS, LDS, UDS, and PSEN signals.  
2. RD and PSEN have the same timing.  
3. Any input used to select an internal PSD9XX function.  
4. In multiplexed mode, latched addresses generated from ADIO delay to address output on any Port.  
5. RD timing has the same timing as DS, LDS, and UDS signals.  
68  
Preliminary Information  
PSD9XX Family  
Microcontroller Interface – PSD9XX AC/DC Parameters  
(5V ± 10% Versions)  
Write Timing (5 V ± 10% Versions)  
-70  
-90  
-15  
Symbol  
Parameter  
Conditions  
Min Max Min Max Min Max Unit  
tLVLX  
ALE or AS Pulse Width  
Address Setup Time  
15  
4
20  
6
28  
10  
11  
20  
20  
45  
5
tAVLX  
(Note 1)  
(Note 1)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tLXAX  
tAVWL  
tSLWL  
tDVWH  
tWHDX  
tWLWH  
tWHAX1  
Address Hold Time  
7
8
Address Valid to Leading Edge of WR  
CS Valid to Leading Edge of WR  
WR Data Setup Time  
(Notes 1 and 3)  
(Note 3)  
8
15  
15  
35  
5
12  
25  
4
(Note 3)  
WR Data Hold Time  
(Note 3)  
WR Pulse Width  
(Note 3)  
31  
6
35  
8
45  
10  
Trailing Edge of WR to Address Invalid  
(Note 3)  
Trailing Edge of WR to DPLD Address  
Input Invalid  
tWHAX2  
tWHPV  
tAVPV  
(Note 3 and 4)  
0
0
0
ns  
Trailing Edge of WR to Port Output  
Valid Using I/O Port Data Register  
(Note 3)  
(Note 2)  
27  
20  
30  
25  
38  
30  
ns  
ns  
Address Input Valid to Address  
Output Delay  
NOTES: 1. Any input used to select an internal PSD9XX function.  
2. In multiplexed mode, latched addresses generated from ADIO delay to address output on any Port.  
3. WR timing has the same timing as E, LDS, UDS, WRL, and WRH signals.  
4. Address Hold Time for DPLD inputs that are used to generate chip selects for internal PSD memory.  
PLD Combinatorial Timing (5 V ± 10%)  
-70  
-90  
-15  
Slew  
TURBO Rate  
Fast  
PT  
Symbol  
Parameter  
Conditions Min Max Min Max Min Max Aloc  
OFF (Note 1) Unit  
PLD Input Pin/Feedback  
to PLD Combinatorial  
Output  
tPD  
20  
25  
32  
Add 2 Add 10 Sub 2  
ns  
Any  
Micro Cell  
11  
tARD  
PLD Array Delay  
16  
22  
Add 2  
ns  
NOTE: 1. Fast Slew Rate output available on PA[3:0], PB[3:0], and PD[2:0].  
69  
PSD9XX Family  
Preliminary Information  
Microcontroller Interface – PSD9XX AC/DC Parameters  
(5V ± 10% Versions)  
Power Down Timing (5 V ± 10%)  
-70  
-90  
-15  
Symbol  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Min Max Unit  
ALE Access Time from  
Power Down  
tLVDV  
80  
90  
150  
ns  
µs  
Maximum Delay from APD  
Enable to Internal PDN  
Valid Signal  
Using  
CLKIN Input  
tCLWH  
15 * tCLCL (µs) (Note 1)  
NOTE: 1. tCLCL is the CLKIN clock period.  
V
stbyon  
Timing (5 V ± 10%)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tBVBH  
Vstby Detection to Vstbyon Output High  
Off Detection to V  
(Note 1)  
20  
µs  
V
stby  
Output Low  
stbyon  
tBXBL  
(Note 1)  
20  
µs  
NOTE: 1. Vstbyon is measured at VCC ramp rate of 2 ms.  
Reset Pin Timing (5 V ± 10%)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tNLNH  
Warm RESET Active Low Time (Note 1)  
RESET High to Operational Device  
Power On Reset Active Low Time  
150  
ns  
ns  
tOPR  
120  
tNLNH-PO  
1
ms  
Warm Reset, will abort and reset Flash  
programming/erase cycles to Read mode.  
(Note 2)  
tNLNH-A  
25  
µs  
NOTE: 1. RESET will not reset Flash programming/erase cycles.  
2. RESET will abort Flash programming or erase cycle. For PSD934F2 and PSD954F2 only.  
70  
Preliminary Information  
PSD9XX Family  
Microcontroller Interface – PSD9XX AC/DC Parameters  
(5V ± 10% Versions)  
Flash Program, Write and Erase Times (5 V ± 10%)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Flash Bulk Erase (Preprogrammed to 00) (Note 1)  
Flash Bulk Erase (Not Preprogrammed)  
Sector Erase (Preprogrammed to 00)  
Sector Erase (Not Preprogrammed)  
Byte Program  
3
5
30  
sec  
sec  
sec  
sec  
µs  
tWHQV3  
tWHQV2  
tWHQV1  
1
30  
2.2  
14  
1200  
Program/Erase Cycles (Per Sector)  
Sector Erase Time-Out  
100,000  
cycles  
µs  
tWHWLO  
tQ7VQV  
100  
DQ7 Valid to Output (DQ7-0) Valid  
(Data Polling) (Note 2)  
30  
ns  
NOTE: 1. Programmed to all zeros before erase.  
2. The polling status DQ7 is valid tQ7VQV ns before the data byte DQ0-7 is valid for reading.  
ISC Timing (5 V ± 10%)  
-70  
-90  
-15  
Symbol  
Parameter  
Conditions Min  
Max  
Min Max  
Min Max Unit  
TCK Clock Frequency  
(except for PLD)  
tISCCF  
(Note 1)  
20  
18  
14  
MHz  
tISCCH  
TCK Clock High Time  
TCK Clock Low Time  
(Note 1)  
(Note 1)  
23  
23  
26  
26  
2
31  
31  
ns  
ns  
tISCCL  
tISCCF-P  
tISCCH-P  
tISCCL-P  
tISCPSU  
tISCPH  
TCK Clock Frequency (for PLD only) (Note 2)  
2
2
MHz  
ns  
TCK Clock High Time(for PLD only)  
TCK Clock Low Time(for PLD only)  
ISC Port Set Up Time  
(Note 2)  
(Note 2)  
240  
240  
7
240  
240  
8
240  
240  
10  
ns  
ns  
ISC Port Hold Up Time  
5
5
5
ns  
tISCPCO  
ISC Port Clock to Output  
21  
23  
25  
ns  
ISC Port High-Impedance to  
Valid Output  
tISCPZV  
tISCPVZ  
21  
21  
23  
23  
25  
25  
ns  
ns  
ISC Port Valid Output to  
High-Impedance  
NOTES: 1. For “non-PLD” programming, erase or in ISC by-pass mode.  
2. For program or erase PLD only.  
71  
PSD9XX Family  
Preliminary Information  
PSD9XXFV DC Characteristics (3.0 V to 3.6 V Versions) Advance Information  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VCC  
VIH  
Supply Voltage  
All Speeds  
3.0  
.7 VCC  
–.5  
3.6  
VCC +.5  
0.8  
V
V
V
V
V
V
V
V
High Level Input Voltage  
3.0 V < VCC < 3.6 V  
3.0 V < VCC < 3.6 V  
(Note 1)  
VIL  
Low Level Input Voltage  
VIH1  
VIL1  
VHYS  
VLKO  
Reset High Level Input Voltage  
Reset Low Level Input Voltage  
Reset Pin Hysteresis  
.8 VCC  
–.5  
VCC +.5  
.2 VCC –.1  
(Note 1)  
0.3  
VCC Min for Flash Erase and Program  
1.5  
2.2  
0.1  
I
OL = 20 µA, VCC = 3.0 V  
IOL = 4 mA, VCC = 3.0 V  
OH = –20 µA, VCC = 3.0 V  
0.01  
Output Low Voltage  
VOL  
0.15  
2.99  
0.45  
V
V
I
2.9  
VOH  
Output High Voltage Except VSTBY On  
IOH = –1 mA, VCC = 3.0 V  
2.7  
VSBY – 0.8  
2.0  
2.8  
V
V
VOH  
Output High Voltage VSTBY On  
SRAM Standby Voltage  
IOH1 = –1 µA  
1
VSBY  
ISBY  
IIDLE  
VDF  
VCC  
1
V
SRAM Standby Current (VSTBY Pin)  
Idle Current (VSTBY Pin)  
VCC = 0 V  
0.5  
µA  
µA  
V
VCC > VSBY  
Only on VSTBY  
–0.1  
2
0.1  
SRAM Data Retention Voltage  
Standby Supply Current  
for Power Down Mode  
CSI >VCC –0.3 V  
(Notes 2 and 3)  
ISB  
25  
100  
µA  
ILI  
Input Leakage Current  
Output Leakage Current  
VSS < VIN < VCC  
0.45 < VIN < VCC  
–1  
±.1  
±5  
1
µA  
µA  
ILO  
–10  
10  
PLD_TURBO = OFF,  
f = 0 MHz (Note 3)  
0
mA  
µA/PT  
mA  
PLD Only  
PLD_TURBO = ON,  
f = 0 MHz  
200  
10  
400  
25  
ICC (DC)  
(Note 5)  
Operating  
Supply Current  
FLASH  
During FLASH or  
Write/Erase Only  
Read Only, f = 0 MHz  
f = 0 MHz  
0
0
0
0
mA  
mA  
SRAM  
PLD AC Adder  
(Note 4)  
Figure26a  
I
CC (AC)  
FLASH  
AC Adder  
1.5  
0.8  
2.0  
1.5  
mA/MHz  
mA/MHz  
(Note 5)  
SRAM AC Adder  
NOTES: 1. Reset input has hysteresis. VIL1 is valid at or below .2VCC –.1. VIH1 is valid at or above .8VCC  
2. CSI deselected or internal PD is active.  
.
3. PLD is in non-turbo mode and none of the inputs are switching.  
4. Refer to Figure 26a for PLD current calculation.  
5. IOUT = 0 mA.  
72  
Preliminary Information  
PSD9XX Family  
Microcontroller Interface – PSD9XXFV AC/DC Parameters  
(3 V Versions)  
Read Timing (3 V Versions)  
-12  
-15  
-20  
Turbo  
Symbol  
Parameter  
Conditions  
Min Max Min Max Min Max  
Off  
Unit  
tLVLX  
tAVLX  
tLXAX  
tAVQV  
tSLQV  
ALE or AS Pulse Width  
Address Setup Time  
26  
9
26  
10  
12  
30  
12  
14  
ns  
ns  
ns  
ns  
ns  
ns  
(Note 3)  
(Note 3)  
(Note 3)  
Address Hold Time  
9
Address Valid to Data Valid  
CS Valid to Data Valid  
RD to Data Valid 8-Bit Bus  
120  
120  
35  
150  
150  
35  
200 Add 20  
200  
40  
(Note 5)  
(Note 2)  
tRLQV  
RD or PSEN to Data Valid  
8-Bit Bus, 8031, 80251  
45  
50  
55  
ns  
tRHQX  
tRLRH  
tRHQZ  
tEHEL  
tTHEH  
tELTL  
RD Data Hold Time  
RD Pulse Width  
(Note 1)  
(Note 1)  
(Note 1)  
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
38  
40  
45  
RD to Data High-Z  
38  
40  
45  
E Pulse Width  
40  
15  
0
45  
18  
0
52  
20  
0
R/W Setup Time to Enable  
R/W Hold Time After Enable  
Address Input Valid to  
Address Output Delay  
tAVPV  
(Note 4)  
33  
35  
40  
ns  
NOTES: 1. RD timing has the same timing as DS, LDS, UDS, and PSEN signals.  
2. RD and PSEN have the same timing for 8031.  
3. Any input used to select an internal PSD813F function.  
4. In multiplexed mode latched address generated from ADIO delay to address output on any Port.  
5. RD timing has the same timing as DS, LDS, and UDS signals.  
73  
PSD9XX Family  
Preliminary Information  
Microcontroller Interface – PSD9XXFV AC/DC Parameters  
(3 V Versions)  
Write Timing (3 V Versions)  
-12  
-15  
-20  
Symbol  
tLVLX  
Parameter  
ALE or AS Pulse Width  
Address Setup Time  
Address Hold Time  
Conditions  
Min Max Min Max Min Max Unit  
26  
9
26  
10  
12  
30  
12  
14  
tAVLX  
(Note 1)  
(Note 1)  
ns  
ns  
tLXAX  
9
Address Valid to Leading  
Edge of WR  
tAVWL  
(Notes 1 and 3)  
17  
20  
25  
ns  
tSLWL  
CS Valid to Leading Edge of WR  
WR Data Setup Time  
(Note 3)  
(Note 3)  
(Note 3)  
(Note 3)  
(Note 3)  
17  
45  
7
20  
45  
8
25  
50  
10  
53  
17  
ns  
ns  
ns  
ns  
ns  
tDVWH  
tWHDX  
tWLWH  
tWHAX1  
WR Data Hold Time  
WR Pulse Width  
46  
10  
48  
12  
Trailing Edge of WR to Address Invalid  
Trailing Edge of WR to DPLD Address  
Input Invalid  
tWHAX2  
tWHPV  
tAVPV  
(Notes 3 and 4)  
0
0
0
ns  
Trailing Edge of WR to Port Output  
Valid Using I/O Port Data Register  
(Note 3)  
(Note 2)  
33  
33  
35  
35  
40  
40  
ns  
ns  
Address Input Valid to Address  
Output Delay  
NOTES: 1. Any input used to select an internal PSD813F function.  
2. In multiplexed mode, latched addresses generated from ADIO delay to address output on any Port.  
3. WR timing has the same timing as E, LDS, UDS, WRL, and WRH signals.  
4. Address hold time for DPLD inputs that are used to generate chip selects for internal PSD memory.  
PLD Combinatorial Timing (3 V Versions)  
-12  
-15  
-20  
Slew  
TURBO Rate  
OFF (Note 1) Unit  
Fast  
PT  
Conditions Min Max Min Max Min Max Aloc  
Symbol  
Parameter  
PLD Input Pin/Feedback  
to PLD Combinatorial  
Output  
tPD  
40  
45  
50  
Add 4 Add 20 Sub 6  
ns  
Any  
Micro Cell  
25  
tARD  
PLD Array Delay  
29  
33  
Add 4  
ns  
NOTE: 1. Fast Slew Rate output available on PA[3:0], PB[3:0], and PD[2:0].  
74  
Preliminary Information  
PSD9XX Family  
Microcontroller Interface – PSD9XXFV AC/DC Parameters  
(3 V Versions)  
Power Down Timing (3 V Versions)  
-12  
-15  
-20  
Symbol  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
ALE Access Time from  
Power Down  
tLVDV  
145  
150  
200  
ns  
Maximum Delay from APD Enable  
to Internal PDN Valid Signal  
Using  
CLKIN Input  
tCLWH  
15 * tCLCL (µs) (Note 1)  
µs  
NOTE: 1. tCLCL is the CLKIN clock period.  
V
stbyon  
Timing (3 V Versions)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tBVBH  
V
Detection to V  
stbyon  
Output  
stby  
(Note 1)  
20  
µs  
High  
tBXBL  
V
Off Detection to V  
stbyon  
stby  
(Note 1)  
20  
µs  
Output Low  
NOTE: 1. Vstbyon is measured at VCC ramp rate of 2 ms.  
Reset Pin Timing (3 V Versions)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tNLNH  
Warm RESET Active Low Time (Note 1)  
RESET High to Operational Device  
Power On Reset Active Low Time  
300  
ns  
ns  
tOPR  
300  
tNLNH-PO  
1
ms  
Warm Reset, will abort and reset Flash  
programming/erase cycles to Read  
mode. For PSD9X4FV only.  
tNLNH-A  
25  
µs  
NOTE: 1. RESET will not reset Flash programming/erase cycles.  
2. RESET will abort Flash programming or erase cycle.  
75  
PSD9XX Family  
Preliminary Information  
Microcontroller Interface – PSD9XXFV AC/DC Parameters  
(3 V Versions)  
Flash Program, Write and Erase Times (3 V Versions)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Flash Bulk Erase (Preprogrammed to 00) (Note 1)  
Flash Bulk Erase (Not Preprogrammed)  
Sector Erase (Preprogrammed to 00)  
Sector Erase (Not Preprogrammed)  
Byte Program  
3
5
30  
sec  
sec  
sec  
sec  
µs  
tWHQV3  
tWHQV2  
tWHQV1  
1
30  
2.2  
14  
1200  
Program/Erase Cycles (Per Sector)  
Sector Erase Time-Out  
100,000  
cycles  
µs  
tWHWLO  
tQ7VQV  
100  
DQ7 Valid to Output (DQ7-0) Valid  
(Data Polling) (Note 2)  
30  
ns  
NOTE: 1. Programmed to all zeros before erase.  
2. The polling status DQ7 is valid tQ7VQV ns before the data byte DQ0-7 is valid for reading.  
ISC Timing (3 V Versions)  
-12  
-15  
-20  
Symbol  
Parameter  
Conditions Min  
Max  
Min  
Max  
Min  
Max  
Unit  
tISCCF  
TCK Clock Frequency (except for PLD)  
TCK Clock High Time  
(Note 1)  
12  
10  
9
MHz  
ns  
tISCCH  
(Note 1)  
(Note 1)  
(Note 2)  
(Note 2)  
(Note 2)  
40  
40  
45  
45  
51  
51  
tISCCL  
TCK Clock Low Time  
ns  
tISCCF-P  
tISCCH-P  
tISCCL-P  
tISCPSU  
tISCPH  
TCK Clock Frequency (for PLD only)  
TCK Clock High Time (for PLD only)  
TCK Clock Low Time (for PLD only)  
ISC Port Set Up Time  
2
2
2
MHz  
ns  
240  
240  
12  
240  
240  
13  
240  
240  
15  
ns  
ns  
ISC Port Hold Up Time  
5
5
5
ns  
tISCPCO  
tISCPZV  
tISCPVZ  
ISC Port Clock to Output  
30  
30  
30  
36  
36  
36  
40  
40  
40  
ns  
ISC Port High-Impedance to Valid Output  
ISC Port Valid Output to High-Impedance  
ns  
ns  
NOTES: 1. For “non-PLD” programming, erase or in ISC by-pass mode.  
2. For program or erase PLD only.  
76  
Preliminary Information  
PSD9XX Family  
Figure 27. Read Timing  
t
t
AVLX  
LXAX*  
ALE/AS  
t
LVLX  
A/D  
MULTIPLEXED  
BUS  
ADDRESS  
VALID  
DATA  
VALID  
t
AVQV  
ADDRESS  
NON-MULTIPLEXED  
BUS  
ADDRESS  
VALID  
DATA  
NON-MULTIPLEXED  
BUS  
DATA  
VALID  
t
SLQV  
CSI  
t
t
RLQV  
t
RHQX  
RLRH  
RD  
(PSEN, DS)  
tRHQZ  
t
EHEL  
E
t
THEH  
t
ELTL  
R/W  
t
AVPV  
ADDRESS OUT  
*tAVLX and tLXAX are not required for 80C251 in Page Mode or 80C51XA in Burst Mode.  
77  
PSD9XX Family  
Preliminary Information  
Figure 28. Write Timing  
t
t
LXAX  
AVLX  
ALE/AS  
t
LVLX  
A/D  
MULTIPLEXED  
BUS  
ADDRESS  
VALID  
DATA  
VALID  
t
AVWL  
ADDRESS  
NON-MULTIPLEXED  
BUS  
ADDRESS  
VALID  
DATA  
NON-MULTIPLEXED  
BUS  
DATA  
VALID  
t
SLWL  
CSI  
t
t
DVWH  
WHDX  
t
WR  
WLWH  
t
WHAX  
(DS)  
t
EHEL  
E
t
t
THEH  
ELTL  
R/ W  
t
WLMV  
t
t
AVPV  
WHPV  
STANDARD  
MCU I/O OUT  
ADDRESS OUT  
78  
Preliminary Information  
PSD9XX Family  
Figure 29. Combinatorial Timing – PLD  
CPLD INPUT  
t
PD  
CPLD  
OUTPUT  
Figure 30. ISC Timing  
tISCCH  
TCK  
tISCCL  
tISCPSU  
tISCPH  
TDI/TMS  
t ISCPZV  
tISCPCO  
ISC OUTPUTS/TDO  
tISCPVZ  
ISC OUTPUTS/TDO  
79  
PSD9XX Family  
Preliminary Information  
Figure 31. Reset Timing  
OPERATING LEVEL  
t
t
NLNH  
NLNH-A  
t
NLNHPO  
V
CC  
RESET  
t
t
OPR  
OPR  
WARM  
RESET  
POWER ON RESET  
Figure 32. Key to Switching Waveforms  
INPUTS  
OUTPUTS  
WAVEFORMS  
STEADY INPUT  
STEADY OUTPUT  
MAY CHANGE FROM  
HI TO LO  
WILL BE CHANGING  
FROM HI TO LO  
MAY CHANGE FROM  
LO TO HI  
WILL BE CHANGING  
LO TO HI  
DON'T CARE  
CHANGING, STATE  
UNKNOWN  
OUTPUTS ONLY  
CENTER LINE IS  
TRI-STATE  
80  
Preliminary Information  
PSD9XX Family  
TA = 25 °C, f = 1 MHz  
Pin Capacitance  
Symbol  
Parameter1  
Conditions Typical2 Max Unit  
CIN  
Capacitance (for input pins only)  
Capacitance (for input/output pins)  
VIN = 0 V  
VOUT = 0 V  
VPP = 0 V  
4
8
6
pF  
pF  
pF  
COUT  
CVPP  
12  
25  
Capacitance (for CNTL2/VPP  
)
18  
NOTES: 1. These parameters are only sampled and are not 100% tested.  
2. Typical values are for TA = 25°C and nominal supply voltages.  
Figure 33.  
AC Testing  
Input/Output  
Waveform  
3.0V  
TEST POINT  
1.5V  
0V  
Figure 34.  
AC Testing  
Load Circuit  
2.01 V  
195  
DEVICE  
UNDER TEST  
CL = 30 pF  
(INCLUDING  
SCOPE AND JIG  
CAPACITANCE)  
Upon delivery from ST, the PSD9XX device has all bits in the PLDs and  
memories in the 1or high state. The configuration bits are in the 0or low state. The  
Programming  
code, configuration, and PLDs logic are loaded through the procedure of programming.  
Information for programming the device is available directly from ST. Please contact your  
local sales representative. (See the last page.)  
81  
PSD9XX Family  
Preliminary Information  
PSD9XX  
Pin  
Assignments  
52-Pin Plastic Leaded Chip Carrier (PLCC) (Package Type J)  
Pin No.  
Pin Assignments  
Pin No.  
Pin Assignments  
1
GND  
PB5  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
PA2  
PA1  
2
3
PB4  
PA0  
4
PB3  
AD0  
5
PB2  
AD1  
6
PB1  
AD2  
7
PB0  
AD3  
8
PD2  
AD4  
9
PD1  
AD5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
PD0  
AD6  
PC7  
AD7  
PC6  
VCC  
PC5  
AD8  
PC4  
AD9  
VCC  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
CNTL0  
RESET  
CNTL2  
CNTL1  
PB7  
GND  
PC3  
PC2 (VSTBY)  
PC1  
PC0  
PA7  
PA6  
PA5  
PA4  
PA3  
GND  
PB6  
82  
Preliminary Information  
PSD9XX Family  
PSD9XX  
Pin  
Assignments  
(cont.)  
52-Pin Plastic Quad Flatpack (PQFP) (Package Type M)  
Pin No.  
Pin Assignments  
Pin No.  
Pin Assignments  
1
PD2  
PD1  
PD0  
PC7  
PC6  
PC5  
PC4  
VCC  
GND  
PC3  
PC2  
PC1  
PC0  
PA7  
PA6  
PA5  
PA4  
PA3  
GND  
PA2  
PA1  
PA0  
AD0  
AD1  
AD2  
AD3  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
AD4  
AD5  
2
3
AD6  
4
AD7  
5
VCC  
AD8  
6
7
AD9  
8
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
CNTL0  
RESET  
CNTL2  
CNTL1  
PB7  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
PB6  
GND  
PB5  
PB4  
PB3  
PB2  
PB1  
PB0  
83  
PSD9XX Family  
Preliminary Information  
Figure 35. Drawing J7 – 52-Pin Plastic Leaded Chip Carrier (PLCC)  
(Package Type J)  
PSD9XX  
Package  
Information  
7
6
5
4
3
2
52 51 50 49 48 47  
1
8
PD2  
PD1  
46  
45  
AD15  
AD14  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
PD0  
PC7  
44  
43  
AD13  
AD12  
PC6  
PC5  
PC4  
42  
41  
40  
39  
38  
37  
36  
35  
34  
AD11  
AD10  
AD9  
AD8  
V
CC  
GND  
PC3  
V
CC  
AD7  
AD6  
AD5  
AD4  
PC2 (VSTBY)  
PC1  
19  
20  
PC0  
21 22 23 24 25 26 27 28 29 30 31 32 33  
Figure 36. Drawing M3 52-Pin Plastic Quad Flatpack (PQFP)  
(Package Type M)  
52 51 50 49 48 47 46 45 44 43 42 41 40  
1
PD2  
PD1  
PD0  
PC7  
PC6  
PC5  
PC4  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
AD15  
AD14  
AD13  
AD12  
AD11  
2
3
4
5
6
AD10  
AD9  
AD8  
7
V
8
CC  
V
GND  
PC3  
9
CC  
10  
11  
12  
AD7  
AD6  
AD5  
AD4  
PC2  
PC1  
PC0  
13  
14 15 16 17 18 19 20 21 22 23 24 25 26  
84  
Preliminary Information  
PSD9XX Family  
Figure 35A.  
Drawing J7 – 52-Pin Plastic Leaded Chip Carrier (PLCC) (Package Type J)  
D
D1  
3 2 1 52 51  
E1  
E
.025  
.045  
R
View A  
C
B1  
A2  
View A  
e1  
B
D3  
D2  
E3  
E2  
A
A1  
Family: Plastic Leaded Chip Carrier  
Millimeters  
Max  
Inches  
Symbol  
A
Min  
4.19  
2.54  
Notes  
Min  
Max  
0.180  
0.110  
Notes  
4.57  
2.79  
0.165  
0.100  
A1  
A2  
B
3.66  
0.33  
3.86  
0.53  
0.144  
0.013  
0.026  
0.0097  
0.785  
0.750  
0.690  
0.152  
0.021  
0.032  
0.0103  
0.795  
0.754  
0.730  
B1  
C
0.66  
0.81  
0.246  
19.94  
19.05  
17.53  
0.261  
20.19  
19.15  
18.54  
D
D1  
D2  
D3  
E
15.24  
Reference  
0.600  
Reference  
19.94  
19.05  
17.53  
20.19  
19.15  
18.54  
0.785  
0.750  
0.690  
0.795  
0.754  
0.730  
E1  
E2  
E3  
e1  
N
15.24  
1.27  
52  
Reference  
Reference  
0.600  
0.050  
52  
Reference  
Reference  
020197R1  
85  
PSD9XX Family  
Preliminary Information  
Figure 36A.  
Drawing M3 52-Pin Plastic Quad Flatpack (PQFP) (Package Type M)  
D
D1  
D3  
52  
1
2
3
Index  
Mark  
E
E3  
E1  
Standoff: 0.05 mm Min.  
C
A2  
A
α
L
B
e1  
Lead Coplanarity: 0.1mm Max.  
Family: Plastic Quad Flatpack (PQFP)  
Millimeters  
Max  
Inches  
Symbol  
Min  
Notes  
Min  
Max  
Notes  
α
0°  
7°  
0°  
7°  
A
2.35  
2.10  
0.093  
0.083  
0.015  
0.009  
0.530  
0.398  
A2  
B
1.95  
0.22  
0.077  
0.009  
0.38  
Reference  
Reference  
C
0.23  
D
12.95  
9.90  
13.45  
10.10  
0.510  
0.390  
D1  
D3  
E
7.80  
0.307  
Reference  
12.95  
9.90  
13.45  
10.10  
0.510  
0.390  
0.530  
0.398  
E1  
E3  
e1  
L
7.80  
0.65  
Reference  
Reference  
0.307  
0.026  
Reference  
Reference  
0.73  
1.03  
0.029  
0.041  
N
52  
52  
060198R0  
86  
Preliminary Information  
PSD9XX Family  
Selector Guide  
Selector Guide – PSD9XXF Family  
Part #  
MCU  
PLDs/Decoders  
I/O  
Memory  
PSD  
@
PSD  
@
Data Path PLD Inputs  
Input Macrocells  
Output Macrocells  
PLD Outputs  
Page Reg.  
Ports Main Flash Boot Flash SRAM  
5 V  
3 V  
PSD913F1 PSD913F1V  
PSD913F2 PSD913F2V  
PSD934F2 PSD934F2V  
PSD954F2 PSD954F2V  
9
9
9
9
57  
57  
57  
57  
19  
19  
19  
19  
8-Bit  
8-Bit  
8-Bit  
8-Bit  
27  
27  
27  
27  
1024Kb  
1024Kb  
2048Kb  
2048Kb  
16Kb  
16Kb  
64Kb  
256Kb  
256Kb  
256Kb  
256Kb  
Legend:  
PSDV = Zero Power version available at 2.7 V to 5.5 V VCC  
.
Part Number  
Construction  
Flash PSD Part Number Construction  
CHARACTER # 1  
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PART  
NUMBER  
P
S
D
8
1
3
F
2
A
1
5
J
TEMP RANGE  
"Blank" = 0°C to 70°C (Commercial)  
PSD BRAND NAME  
PSD = Standard Low  
Power Device  
+
+
I = 40°C to 85°C (Industrial)  
PACKAGE TYPE  
J = PLCC  
FAMILY/SERIES  
8 = Flash PSD for 8-bit MCUs  
9 = Flash PSD for 8-bit MCUs with  
Combinatorial PLD  
U = TQFP (not available on some)  
M = PQFP  
SRAM SIZE  
0 = 0Kb  
SPEED  
1 = 16Kb  
2 = 32Kb  
3 = 64Kb  
4 = 128Kb  
5 = 256Kb  
- 90 = 90ns  
- 15 = 150ns  
- 20 = 200ns  
NVM SIZE  
1 = 256Kb  
2 = 512Kb  
3 = 1Mb  
REVISION  
"Blank" = no rev.  
- A = Rev. A  
4 = 2Mb  
V
cc  
VOLTAGE  
I/O COUNT & OTHER  
F = 27 I/O  
"blank" = 5 Volt  
V = 3.0 Volt  
2ND NVM TYPE, SIZE  
& CONFIGURATION  
1 = EEPROM, 256Kb  
2 = FLASH, 256Kb  
3 = No 2nd Array  
87  
PSD9XX Family  
Preliminary Information  
Ordering  
Information  
Operating  
Temperature  
Range  
Speed  
(ns)  
Part Number  
Package Type  
PSD913F2-70J  
PSD913F2-70M  
70  
70  
52 Pin PLCC  
52 Pin PQFP  
Comm’l  
Comm’l  
PSD913F2-90J  
PSD913F2-90M  
PSD913F2-90JI  
PSD913F2-90MI  
90  
90  
90  
90  
52 Pin PLCC  
52 Pin PQFP  
52 Pin PLCC  
52 Pin PQFP  
Comm’l  
Comm’l  
Industrial  
Industrial  
PSD934F2-70J  
PSD934F2-70M  
70  
70  
52 Pin PLCC  
52 Pin PQFP  
Comm’l  
Comm’l  
PSD934F2-90J  
PSD934F2-90M  
PSD934F2-90JI  
PSD934F2-90MI  
90  
90  
90  
90  
52 Pin PLCC  
52 Pin PQFP  
52 Pin PLCC  
52 Pin PQFP  
Comm’l  
Comm’l  
Industrial  
Industrial  
PSD954F2-70J  
PSD954F2-70M  
70  
70  
52 Pin PLCC  
52 Pin PQFP  
Comm’l  
Comm’l  
PSD954F2-90JI  
PSD954F2-90MI  
90  
90  
52 Pin PLCC  
52 Pin PQFP  
Industrial  
Industrial  
PSD913F2V-15J  
PSD913F2V-15M  
150  
150  
52 Pin PLCC  
52 Pin PQFP  
Comm’l  
Comm’l  
PSD913F2V-20JI  
PSD913F2V-20MI  
200  
200  
52 Pin PLCC  
52 Pin PQFP  
Industrial  
Industrial  
PSD934F2V-15J  
PSD934F2V-15M  
150  
150  
52 Pin PLCC  
52 Pin PQFP  
Comm’l  
Comm’l  
PSD934F2V-20JI  
PSD934F2V-20MI  
200  
200  
52 Pin PLCC  
52 Pin PQFP  
Industrial  
Industrial  
PSD954F2V-90J  
PSD954F2V-90M  
90  
90  
52 Pin PLCC  
52 Pin PQFP  
Comm’l  
Comm’l  
PSD954F2V-12JI  
PSD954F2V-12MI  
120  
120  
52 Pin PLCC  
52 Pin PQFP  
Industrial  
Industrial  
88  
PSD913F2, PSD934F2, PSD954F2  
REVISION HISTORY  
Table 1. Document Revision History  
Date  
Rev.  
Description of Revision  
Dec-1999  
Jun-2000  
Nov-2000  
1.0 Document written in the WSI format  
1.1 3V devices added  
1.2 PSD954F2 added  
Front page, and back two pages, in ST format, added to the PDF file  
1.1 References to Waferscale, WSI, EasyFLASH and PSDsoft 2000  
updated to ST, ST, Flash+PSD and PSDsoft Express  
04-Jan-2002  
2/3  
PSD913F2, PSD934F2, PSD954F2  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners  
© 2002 STMicroelectronics - All Rights Reserved  
STMicroelectronics group of companies Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong -  
India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.  
www.st.com  
3/3  

相关型号:

PSD913F2-B-20B81I

Flash In-System Programmable ISP Peripherals For 8-bit MCUs
STMICROELECTR

PSD913F2-B-20J

Flash In-System Programmable ISP Peripherals For 8-bit MCUs
STMICROELECTR

PSD913F2-B-20JI

Flash In-System Programmable ISP Peripherals For 8-bit MCUs
STMICROELECTR

PSD913F2-B-20M

Flash In-System Programmable ISP Peripherals For 8-bit MCUs
STMICROELECTR

PSD913F2-B-20MI

Flash In-System Programmable ISP Peripherals For 8-bit MCUs
STMICROELECTR

PSD913F2-B-20U

Flash In-System Programmable ISP Peripherals For 8-bit MCUs
STMICROELECTR

PSD913F2-B-20UI

Flash In-System Programmable ISP Peripherals For 8-bit MCUs
STMICROELECTR

PSD913F2-B-70B81

Flash In-System Programmable ISP Peripherals For 8-bit MCUs
STMICROELECTR

PSD913F2-B-70B81I

Flash In-System Programmable ISP Peripherals For 8-bit MCUs
STMICROELECTR

PSD913F2-B-70J

Flash In-System Programmable ISP Peripherals For 8-bit MCUs
STMICROELECTR

PSD913F2-B-70JI

Flash In-System Programmable ISP Peripherals For 8-bit MCUs
STMICROELECTR

PSD913F2-B-70M

Flash In-System Programmable ISP Peripherals For 8-bit MCUs
STMICROELECTR