QST1508YM0 [STMICROELECTRONICS]

Capacitive touch sensor device 8 keys with individual key state outputs or I2C interface; 电容式触摸感应装置8键与个别国家重点输出或I2C接口
QST1508YM0
型号: QST1508YM0
厂家: ST    ST
描述:

Capacitive touch sensor device 8 keys with individual key state outputs or I2C interface
电容式触摸感应装置8键与个别国家重点输出或I2C接口

装置
文件: 总51页 (文件大小:811K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
QST108  
Capacitive touch sensor device  
8 keys with individual key state outputs or I2C interface  
Not For New Design  
Features  
Patented charge-transfer design  
Up to 8 independent QTouch™ keys supported  
2
Individual key state outputs or I C interface  
LQFP32 (7x7 mm)  
Fully “debounced” results  
Patented AKS™ Adjacent Key Suppression  
Self-calibration and auto drift compensation  
Spread-spectrum bursts to reduce EMI  
Up to 5 general-purpose outputs  
Description  
The QST108 is the ideal solution for the design of  
capacitive touch sensing user interfaces.  
ECOPACK® (RoHS compliant) package  
Touch-sensitive controls are increasingly  
replacing electromechanical switches in home  
appliances, consumer and mobile electronics,  
and in computers and peripherals. Capacitive  
touch controls allow designers to create stylish,  
functional, and economical designs which are  
highly valued by consumers, often at lower cost  
than the electromechanical solutions they  
replace.  
Applications  
This device specifically targets human interfaces  
and front panels for a wide range of applications  
such as PC peripherals, home entertainment  
systems, gaming devices, lighting and appliance  
controls, remote controls, etc.  
QST devices are designed to replace mechanical  
switching/control devices and the reduced  
number of moving parts in the end product  
provides the following advantages:  
The QST108 QTouch™ sensor IC is a pure digital  
solution based on Quantum's patented charge-  
transfer (QProx™) capacitive technology.  
QTouch™ and QProx™ are trademarks of the  
Quantum Research Group.  
Lower customer service costs  
Reduced manufacturing costs  
Increased product lifetime  
Table 1.  
Device summary  
Feature  
Order codes  
QST108KT6  
Operating supply voltage  
Supported interfaces  
Operating temperature  
Package  
2.4 to 5.5 V  
Individual key state outputs or I2C Interface  
-40° to +85° C  
LQFP32 (7x7 mm)  
July 2008  
Rev 5  
1/51  
This is information on a product still in production but not recommended for new designs.  
www.st.com  
1
Contents  
QST108  
Contents  
1
2
3
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
QST touch sensing technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Spread-spectrum operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Faulty and unused keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Detection threshold levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Detection integrator filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Self-calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Fast positive recalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Forced key recalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Max On-Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.10 Drift compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.11 Adjacent key suppression (AKS™) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4
Device operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.1  
4.2  
4.3  
4.4  
4.5  
Reset and power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Burst operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Low power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Stand-alone mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.5.1  
4.5.2  
4.5.3  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
KOUT outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Option descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.6  
4.7  
I2C mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.6.1  
4.6.2  
4.6.3  
4.6.4  
4.6.5  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
General-purpose outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
IRQ pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Communication packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
I2C address selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Supported commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2/51  
QST108  
Contents  
5
Design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.1  
5.2  
CS sense capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Sensitivity tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.2.1  
5.2.2  
5.2.3  
Increasing sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Decreasing sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Key balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.3  
5.4  
5.5  
5.6  
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Crosstalk precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
PCB layout and construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.3.1  
6.3.2  
6.3.3  
Functional EMS (electro magnetic susceptibility) . . . . . . . . . . . . . . . . . 32  
Electro magnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 33  
6.4  
6.5  
6.6  
6.7  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Capacitive sensing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
KOUTn/OPTn/GPOn pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6.7.1  
6.7.2  
General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Output pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6.8  
6.9  
RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
I2C control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
7
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.1  
Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
8
9
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Device revision information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3/51  
Contents  
QST108  
9.1  
9.2  
Device revision identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Device revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
9.2.1  
9.2.2  
Revision 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Revision 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
4/51  
QST108  
Device overview  
1
Device overview  
The QST108 capacitive touch sensor IC is a pure digital solution based on Quantum's  
patented charge-transfer (QProx™) capacitive technology.  
This technology allows users to create simple touch panel sensing electrode interfaces for  
conventional or flexible printed circuit boards (PCB/FPCB). Sensing electrodes are part of  
the PCB layout (copper pattern or printed conductive ink) and may be used in various  
shapes (circle, rectangular, etc.).  
By implementing the QProx™ charge-transfer algorithm, the QST108 detects finger  
presence (human touch) near electrodes behind a dielectric (glass, plastic, wood, etc.). Only  
one external sampling capacitor by channel is used in the measuring circuitry to control the  
detection.  
QST technology also incorporates advanced processing techniques such as drift  
compensation, auto-calibration, noise filtering, and Quantum's patented Adjacent Key  
Suppression™ (AKS™) to ensure maximum usability and control integrity.  
In order to meet environmental requirements, ST offers this device in ECOPACK®  
packages. These packages have a lead-free second level interconnect. The category of  
second level interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97.  
The maximum ratings related to soldering conditions are also marked on the inner box label.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
5/51  
Pin description  
QST108  
2
Pin description  
Figure 1.  
32-pin package pinout  
32 31 30 29 28 27 26 25  
24  
1
GPO4/KOUT4/OPT4 (HS)  
GPO5/KOUT5/OPT5 (HS)  
IRQ/KOUT6/OPT6 (HS)  
SNS_SCK6  
SNSK_SCK5  
SNS_SCK5  
SNSK_SCK4  
SNS_SCK4  
SNSK_SCK3  
SNS_SCK3  
SNSK_SCK2  
23  
22  
21  
20  
19  
18  
17  
2
3
4
5
6
7
8
I2C_SDA/KOUT71) (HS)  
QST108KT6  
I2C_SCL/KOUT81) (HS)  
RESET  
NC  
VDD_1  
9 10 11 12 13 14 15 16  
(HS) 20 mA high sink capability (on N-buffer only)  
1. An external pull-up is required on these pins.  
Table 2.  
Pin  
Device pin description  
Pin name  
Type (1) Stand-alone mode function  
I2C mode function  
If unused  
General purpose output 4  
and I²C address bit 2  
option resistor  
Key 4 output / BCD output 4  
and MOD_0 option resistor  
Option  
resistor  
1
2
3
GPO4/OPT4/KOUT4 (2) PP (HS)  
GPO5/OPT5/KOUT5 (2) PP (HS)  
Open or  
Key 5 output and  
MOD_1 option resistor  
General purpose output 5 option  
resistor  
Open or  
Interrupt line (active low) option  
resistor  
PP/OD Key 6 output and  
OPT6/KOUT6/IRQ (2)  
(HS)  
OM_0 option resistor  
TOD  
(HS)  
4
5
KOUT7/I2C_SDA(3)  
KOUT8/I2C_SCL(3)  
Key 7 output  
I2C serial data  
I2C serial clock  
Open  
Open  
TOD  
(HS)  
Key 8 output  
6/51  
QST108  
Pin description  
Table 2.  
Pin  
Device pin description (continued)  
Pin name  
Type (1) Stand-alone mode function  
I2C mode function  
If unused  
10nF  
6
RESET  
BD  
Reset (active low)  
capacitor to  
ground  
7
8
9
NC  
Not connected  
VDD_1  
VSS_1  
S
Supply voltage  
S
Ground voltage  
10 VSS_2  
11 VSS_3  
12 VSS_4  
13 VDD_2  
S
Ground voltage  
S
Ground voltage  
S
Ground voltage  
S
Supply voltage  
14 SNS_SCK1  
15 SNSK_SCK1  
16 SNS_SCK2  
17 SNSK_SCK2  
18 SNS_SCK3  
19 SNSK_SCK3  
20 SNS_SCK4  
21 SNSK_SCK4  
22 SNS_SCK5  
23 SNSK_SCK5  
24 SNS_SCK6  
25 SNSK_SCK6  
26 SNS_SCK7  
27 SNSK_SCK7  
28 SNS_SCK8  
29 SNSK_SCK8  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
Key 1 sense pin to Cs  
Key 1 sense pin to Cs/Rs  
Key 2 sense pin to Cs  
Key 2 sense pin to Cs/Rs  
Key 3 sense pin to Cs  
Key 3 sense pin to Cs/Rs  
Key 4 sense pin to Cs  
Key 4 sense pin to Cs/Rs  
Key 5 sense pin to Cs  
Key 5 sense pin to Cs/Rs  
Key 6 sense pin to Cs  
Key 6 sense pin to Cs/Rs  
Key 7 sense pin to Cs  
Key 7 sense pin to Cs/Rs  
Key 8 sense pin to Cs  
Key 8 sense pin to Cs/Rs  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Key 1 output / BCD output 1  
and MODE option resistor  
General purpose output 1 Option  
and MODE option resistor resistor  
30 GPO1/OPT1/KOUT1 (2) PP (HS)  
General purpose output 2  
Option  
Key 2 output / BCD output 2  
and AKS option resistor  
31 GPO2/OPT2/KOUT2 (2) PP (HS)  
and I2C address bit 0  
resistor  
option resistor  
General purpose output 3  
Option  
Key 3 output / BCD output 3  
and LP option resistor  
32 GPO3/OPT3/KOUT3 (2) PP (HS)  
and I2C address bit 1  
resistor  
option resistor  
1. S: supply pin, BD: bidirectional pin, SNS: capacitive sensing pin, PP: Output push-pull, OD: Output open-drain,  
TOD: Output true open-drain and HS: 20mA high sink capability (on N-buffer only)  
2. During the reset phase, these pins are floating and their state depends on the option resistor.  
3. An external pull-up is required on these pins.  
7/51  
QST touch sensing technology  
QST108  
3
QST touch sensing technology  
3.1  
Functional description  
QST devices employ bursts of charge-transfer cycles to acquire signals. Burst mode permits  
low power operation, dramatically reduces RF emissions, lowers susceptibility to RF fields,  
and yet permits excellent speed. Signals are processed using algorithms pioneered by  
Quantum which are specifically designed to provide reliable, trouble-free operation over the  
life of the product.  
The QST switches and charge measurement hardware functions are all internal to the  
device. An external C capacitor accumulates the charge from sense-plate C , which is  
S
X
then measured. Larger values of C cause the charge transferred into C to rise more  
X
S
rapidly, reducing available resolution. As a minimum resolution is required for proper  
operation, this can result in dramatically reduced gain. Larger values of C reduce the rise  
S
of differential voltage across it, increasing available resolution by permitting longer QST  
bursts. The value of C can thus be increased to allow larger values of C to be tolerated.  
S
X
The device is responsive to both C and C , and changes in either can result in substantial  
X
S
changes in sensor gain.  
Figure 2. QTouch™ measuring circuitry  
CT (~5 pF)  
Serial resistor  
S (10 kΩ)  
R
Earth  
SNSK_SCKn  
Sense capacitor  
CS (a few nF)  
SNS_SCKn  
Cx (~20 pF)  
Ai12569  
3.2  
Spread-spectrum operation  
The bursts operate over a spread of frequencies, so that external fields will have minimal  
effect on key operation and emissions are very weak. Spread-spectrum operation works  
with the Detection Integrator mechanism (DI) to dramatically reduce the probability of false  
detection due to noise.  
8/51  
QST108  
QST touch sensing technology  
3.3  
Faulty and unused keys  
Any sensing channel that does not have its sense capacitor (C ) fitted is assumed to be  
S
either faulty or unused. This channel takes no further part in operation unless a Master-  
commanded recalibration operation shows it to have an in-range burst count again. Faulty,  
unused or disabled keys are still bursted but not processed to avoid modifying the sensitivity  
of active keys.  
This is important for sensing channels that have an open or short circuit fault across C .  
S
Such channels would otherwise cause very long acquire bursts, and in consequence would  
slow the operation of the entire QST device.  
To optimize touch response time and device power consumption, if some keys are not used,  
we recommend to try suppressing the ones which belong to the same burst. Bursts which  
do not have any keys implemented will then not be processed.  
3.4  
3.5  
Detection threshold levels  
The key capacitance change induced by the presence of a finger is sensed by the variation  
in the number of charge transfer pulses to load the capacitor. The difference in the pulse  
count number is compared to a threshold in order to detect the key as pressed or not.  
Two different thresholds, one for detection and one for the end of detection, create an  
hysteresis in order to prevent erratic behavior.  
The default threshold levels and hysteresis values are described in Section 6.6: Capacitive  
sensing characteristics on page 35.  
Detection integrator filter  
The Detection Integrator (DI) filter mechanism works together with spread spectrum  
operation to dramatically reduce the effects of noise on key states. The DI mechanism  
requires a specified number of measurements that qualify as detections (and these must  
occur in a row) or the detection will not be reported.  
In a similar manner, the end of a touch (loss of signal) also has to be confirmed over several  
measurements. It is called the End of Detection Integrator (EDI).  
This process acts as a type of “debounce” mechanism against noise.  
The default DI and EDI values for confirming start of touch and end of touch are described in  
Section 6.6: Capacitive sensing characteristics on page 35.  
9/51  
QST touch sensing technology  
QST108  
Figure 3 shows an example of detection with DI=2 and EDI=2 meaning 3 consecutive  
samples are necessary to trigger the key detection or end of detection  
Figure 3.  
Detection signals  
Reference count  
Reference + EofDeTh  
Reference + DeTh  
Hysteresis  
Key Detection signal  
Time  
= Sampling point  
3.6  
Self-calibration  
On power-up, all keys are self-calibrated to provide reliable operation under almost any  
conditions. The calibration phase is used to compute a reference value per key which is then  
used by the process determining if a key is touched or not. The reference is an average of 8  
single acquisitions. As a result, the calibration time of the system can be simply calculated  
using the following formula: t  
= 8 * Burst_Period. The methodology used to measure the  
CAL  
burst period is described in application note AN2547. For a maximum calibration duration  
(t ), please refer to Section 6.6: Capacitive sensing characteristics on page 35.  
CAL  
3.7  
3.8  
Fast positive recalibration  
The device autorecalibrates a key when its signal reflects a decrease in capacitance higher  
than a fixed threshold (PosRecalTh) for a defined number of acquisitions (PosRecalI).  
Forced key recalibration  
A recalibration of the device may be issued at any time by sending to the QST device the  
2
appropriate I C command or by tying the RESET pin to ground.  
2
It is possible to recalibrate independently any individual key using an I C command.  
10/51  
QST108  
QST touch sensing technology  
3.9  
Max On-Duration  
The device can time out and automatically recalibrate each key independently after a fixed  
duration of continuous touch detection. This prevents the keys from becoming ‘stuck on’ due  
to foreign objects or other sudden influences. This is known as the Max On-Duration feature.  
After recalibration, the key will continue to operate normally, even if partially or fully  
obstructed. Max On-Duration works independently per channel: a timeout on one channel  
has no effect on another channel.  
Infinite timeout is useful in applications where a prolonged detection can occur and where  
the output must reflect the detection no matter how long. In infinite timeout mode, the  
designer should take care to ensure that drift in C , C , and V do not cause the device to  
S
X
DD  
remain “stuck on” inadvertently even when the touching object is removed from the sense  
field. Timeout durations are not accurate and can vary substantially depending on V and  
DD  
temperature values, and should not be relied upon for critical functions.  
3.10  
Drift compensation  
Signal drift can occur because of changes in C , C , and V over time. Depending on the  
X
S
DD  
C type and quality, the signal may vary substantially with temperature and veiling. If keys  
S
are subject to extremes of temperature or humidity, the signal can also drift. It is crucial that  
drift be compensated, otherwise false detections, non detections, and sensitivity shifts will  
follow.  
Drift compensation slowly corrects the reference level of each key while no detection is in  
effect. The rate of reference adjustment must be performed slowly or else legitimate  
detections can also be ignored. The device compensates drift on each channel  
independently using a maximum compensation rate to the reference level.  
Once a touch is sensed, the drift compensation mechanism ceases since the signal is  
legitimately high, and therefore should not cause the reference level to change.  
The signal drift compensation is “asymmetric”: the reference level compensates drift in one  
direction faster than it does in the other. Specifically, it compensates faster for increasing  
signals than for decreasing signals. Decreasing signals should not be compensated for  
quickly, since an approaching finger could be compensated for partially or entirely while  
approaching the sense electrode. However, an obstruction over the sense pad, for which the  
sensor has already made full allowance, could suddenly be removed leaving the sensor with  
an artificially elevated reference level and thus become insensitive to touch. In this latter  
case, the sensor will compensate for the object's removal very quickly, usually in only a few  
seconds.  
Caution:  
When only one key is enabled or if keys are very close together, the common drift  
compensation must be disabled or its rate must be reduced to ensure correct device  
operation.  
11/51  
QST touch sensing technology  
QST108  
Figure 4 illustrates an example of the drift compensation algorithm following a temperature  
change.  
Figure 4.  
Drift compensation example  
Reference Count + PosRelTh  
Reference Count  
Temperature Change  
Reference + DeTh  
Drift Compensation  
Time  
3.11  
Adjacent key suppression (AKS™)  
Adjacent key suppression (AKS™) is a Quantum-patented feature which prevents multiple  
keys from responding to a single touch. This can happen with closely spaced keys, or a  
scroll wheel that has buttons very near it.  
The QST108 supports two AKS modes:  
Locking AKS  
Once a key is considered as “touched”, all other keys are locked in an untouched state.  
To unlock these keys, the touched key must return to an untouched state. Then, the key  
having the lowest key ID number is declared as the “touched” one.  
Unlocking AKS  
On each acquisition, the signal strengths from each key are compared and the key with  
the highest signal level is declared as the “touched” one.  
2
In I C mode, up to 8 AKS groups can be specified.  
Note:  
All keys belonging to the same AKS group must have the same AKS mode.  
12/51  
QST108  
Device operating modes  
4
Device operating modes  
4.1  
Reset and power-up  
At power-up, the device configures itself according to the pull-up or pull-down option  
resistors present on pins OPT1 to OPT6. The device start-up and configuration may take up  
to t  
.
Setup  
When the power is established, it is possible to force a new device configuration by applying  
a negative pulse on the RESET pin.  
The RESET pin is a bidirectional pin with an internal pull-up. The line is forced low when the  
device resets itself (through an I²C command, for example).  
A 10nF capacitor is recommended on the RESET pin to ensure reliable start-up and noise  
immunity.  
4.2  
Burst operation  
The device operates in “Burst” mode. Each key touch is acquired using a burst of charge-  
transfer sensing pulses whose count varies depending on the value of the sense capacitor  
C and the load capacitance C . Key touches are acquired using two successive bursts of  
S
X
pulses:  
Burst A: Keys 1, 2, 3, and 4  
Burst B: Keys 5, 6, 7, and 8  
Bursts always operate in an A-B sequence. If Keys 5 to 8 are not implemented, the QST  
device will not perform the Burst B to improve the response time and reduce the power  
consumption when in Low Power (LP) mode.  
In Low Power mode, the device sleeps in an ultra-low current state between bursts to  
conserve power.  
4.3  
Low power mode  
In order to reduce the device power consumption, the QST family include scalable low  
power modes.  
Standard low power mode  
When the device is in standard low power mode, a window with very low power  
consumption is inserted between the acquisition of the last active key and the following  
acquisition of the first active key.  
This window duration is programmable as the 'sleep duration time'.  
Note that the sleep window insertion is cancelled in the following conditions:  
If a change is detected on a key, in order to speed up the DI process, the sleep  
window insertion is skipped until the end of the DI process.  
2
In I C mode, when a key change is actually detected and reported with a negative  
pulse on the IRQ pin. In this case, the low power mode is disabled until a  
command is received from the host.  
2
2
Inside an I C command, between the Write and the Read I C frames, the sleep  
period is skipped.  
13/51  
Device operating modes  
QST108  
Free run in detect  
The behavior in this mode is the same as in the standard low power mode except that  
the sleep window insertion is always skipped if any of the active keys is detected as  
touched.  
This is useful to improve the wheel response time.  
Deep Sleep mode  
In Deep Sleep mode, the device enters a very low power mode indefinitely. The device  
2
resumes its operations after receiving an I C frame with any address or a reset.  
2
Caution:  
If an I C frame is received while in Sleep or Deep Sleep mode, the device wakes up but  
2
does not acknowledge the frame (even if it has an I C frame with the device address). The  
host must therefore send again the frame until it is taken in account and acknowledged.  
4.4  
Mode selection  
The device options are configured by connecting pull-up or pull-down resistors on OPTn  
pins. The device operating mode is selected using option pin 1 (OPT1) while the device  
settings are configured using option pins OPT2 to OPT6 (Table 3). Option pins are sampled  
at power-up and after a reset.  
To fit most applications, the QST108 device offers two different operating modes:  
Stand-alone mode  
This mode allows the user to simply replace existing mechanical switches with a  
capacitive sensing solution. It is designed for maximum flexibility and can  
accommodate most popular sensing requirements via option resistors (AKS, Low  
power, Max On-Duration and output modes).  
In this mode, the 8 output pins reflect the status of the 8 sensing channels.  
2
I C mode  
2
In this mode, which is the most open one, the device is driven using the I C interface.  
To avoid polling, the QST device features an output interrupt pin (IRQ). The IRQ line  
reports all key changes to the Master device. The QST (Slave) device can drive up to  
five general-purpose outputs.  
Table 3.  
Operating modes  
Option resistor function  
OPT1: Mode selection  
OPT2  
OPT3  
OPT4  
OPT5  
OPT6  
Pin OPT1 is high at start-up Stand-alone mode  
Pin OPT1 is low at start-up I2C mode  
AKS  
LP  
MOD_0 MOD_1  
OM  
ADD0  
ADD1  
ADD2 Unused Unused  
14/51  
QST108  
Device operating modes  
4.5  
Stand-alone mode  
This mode allows the user to simply replace existing mechanical switch interface with a  
capacitive sensing solution. It is designed for maximum flexibility and can accommodate  
most popular sensing requirements via option resistors (see Figure 5).  
4.5.1  
Main features  
Pins KOUT1 to KOUT8 directly reflect the state of keys  
Selectable global adjacent key suppression (AKS™)  
Selectable sleep duration  
Selectable Max On-Duration values  
Selectable BCD mode  
15/51  
Device operating modes  
Figure 5. Stand-alone mode typical schematic  
QST108  
VDD  
2.4~5.5V  
Volt. Reg.  
VUNREG  
100nF  
100nF  
4.7µF  
4.7µF  
8
13  
VDD_1  
VDD_2  
Keep these parts close to IC  
6
RS8  
29  
RESET  
To Host  
Key8  
SNSK_SCK8  
SNS_SCK8  
SNSK_SCK7  
SNS_SCK7  
SNSK_SCK6  
SNS_SCK6  
SNSK_SCK5  
SNS_SCK5  
SNSK_SCK4  
SNS_SCK4  
SNSK_SCK3  
SNS_SCK3  
SNSK_SCK2  
SNS_SCK2  
10kΩ  
10nF  
CS8  
CS7  
CS6  
CS5  
CS4  
CS3  
CS2  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
RS7  
10kΩ  
VDD VDD  
Key7  
Key6  
Key5  
Key4  
Key3  
Key2  
10kΩ  
10kΩ  
RS6  
10kΩ  
5
4
3
KOUT8  
KOUT8  
KOUT7  
RS5  
10kΩ  
KOUT7  
OM/KOUT6  
KOUT6  
VDD  
VSS  
RS4  
10kΩ  
1MΩ  
1MΩ  
1MΩ  
1MΩ  
1MΩ  
1MΩ  
2
MOD_1/KOUT5  
MOD_0/KOUT4  
LP/KOUT3  
KOUT5  
VDD  
VSS  
RS3  
10kΩ  
1
KOUT4  
VDD  
VSS  
Binary-  
coded  
Output  
Mode  
RS2  
32  
31  
30  
KOUT3  
VDD  
VSS  
10kΩ  
AKS/KOUT2  
KOUT2  
VDD  
VSS  
RS1  
10kΩ  
15  
14  
Key1  
SNSK_SCK1  
SNS_SCK1  
CS1  
MODE/KOUT1  
KOUT1  
VDD  
VSS_1  
VSS_2  
VSS_3  
VSS_4  
9
10  
11  
12  
Ai12560  
4.5.2  
KOUT outputs  
KOUTn outputs directly reflect the state of keys. These pins are push-pull outputs except for  
pins KOUT7 and KOUT8 which are true open-drain outputs. Under RESET, these pins are  
floating and their state depends on the option resistors. Pins KOUTn are active high  
meaning that when a key is “touched”, the corresponding KOUT pin outputs a ‘1’.  
16/51  
QST108  
Device operating modes  
4.5.3  
Option descriptions  
Adjacent key suppression (AKS™)  
The QST108 features an adjacent key suppression (AKS™) function.  
This function is enabled using the AKS option resistor (OPT2) in standard output mode as  
described in Table 4. In BCD output mode, the AKS function is always enabled, regardless  
of the option resistor configuration.  
Table 4.  
AKS truth table  
OPT2/AKS  
Description  
VSS  
VDD  
Disabled  
Global locking AKS on all available keys  
Low Power mode option  
This option resistor (OPT3) selects whether the device is always sensing the keys or if a low  
power consumption phase is introduced between bursts as described in Table 5.  
In Low Power mode, a very low consumption (sleep) phase of 100ms is inserted between  
the Group B burst and the Group A burst. This significantly reduces the overall consumption  
of the device. Sleep duration is not accurate and can vary substantially depending on V  
and temperature values.  
DD  
Note:  
In Low Power mode, the response time is increased.  
Table 5.  
Low power (LP) mode truth table  
OPT3/LP  
Description  
VSS  
VDD  
Free running mode  
100ms sleep duration  
Max On-Duration  
There are four recalibration timing options (“Max On-Duration”). The recalibration option  
resistors (OPT4 and OPT5) control how long it takes for a continuous detection to trigger a  
recalibration on a key as described in Table 6. When such an event occurs, only the “stuck”  
key is recalibrated.  
Table 6.  
Max On-Duration (MOD) truth table  
OPT4/MOD_0 OPT5/MOD_1  
Description  
VSS  
VSS  
VDD  
VDD  
VSS  
VDD  
VSS  
VDD  
Infinite  
60s  
20s  
10s  
17/51  
Device operating modes  
QST108  
Output mode option  
The QST108 offers several outputs mode to fit any existing application.  
Table 7.  
OPT6/OM  
Output mode (OM) truth table  
Description  
VSS  
VDD  
Individual key state output mode: One output per sensing channel  
BCD output mode: Binary-coded touched key number (see Table 8)(1)  
1. In BCD mode, the AKS function must be enabled.  
Table 8.  
Binary code truth table  
KOUT4 KOUT3 KOUT2 KOUT1  
Description  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
All released  
Key 1 pressed  
Key 2 pressed  
Key 3 pressed  
Key 4 pressed  
Key 5 pressed  
Key 6 pressed  
Key 7 pressed  
Key 8 pressed  
Not used  
Other  
18/51  
QST108  
Device operating modes  
4.6  
I2C mode  
2
The I C mode offers the largest configurability and functionality of the QST108.  
4.6.1  
Main features  
5 general-purpose outputs  
Configuration of up to 8 AKS groups  
Additional low power modes  
Accessible internal capacitive sensing parameters  
Continuous range of Max On-Duration  
2
Figure 6.  
I C mode typical schematic  
VDD  
2.4~5.5V  
Volt. Reg.  
VUNREG  
100nF  
100nF  
4.7µF  
4.7µF  
8
13  
VDD  
VDD_1 VDD_2  
Keep these parts close to IC  
RS8  
29  
Key8  
SNSK_SCK8  
SNS_SCK8  
SNSK_SCK7  
SNS_SCK7  
SNSK_SCK6  
SNS_SCK6  
SNSK_SCK5  
SNS_SCK5  
SNSK_SCK4  
SNS_SCK4  
SNSK_SCK3  
SNS_SCK3  
SNSK_SCK2  
SNS_SCK2  
SNSK_SCK1  
SNS_SCK1  
10kΩ  
RS7  
10kΩ  
RS6  
10kΩ  
RS5  
10kΩ  
RS4  
10kΩ  
RS3  
10kΩ  
RS2  
10kΩ  
RS1  
10kΩ  
CS8  
CS7  
CS6  
CS5  
CS4  
CS3  
CS2  
CS1  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
5
4
3
I2C_SCL  
I2C_SDA  
IRQ  
To  
Host  
MCU  
Key7  
Key6  
Key5  
Key4  
Key3  
Key2  
Key1  
6
RESET  
To Host  
10nF  
2
GPO5  
ADD2/GPO4  
ADD1/GPO3  
ADD0/GPO2  
MODE/GPO1  
GPO5  
1
GPO4  
VDD  
VSS  
1MΩ  
1MΩ  
1MΩ  
1MΩ  
32  
31  
30  
GPO3  
VDD  
VSS  
GPO2  
VDD  
VSS  
GPO1  
VSS  
VSS_1 VSS_2 VSS_3 VSS_4  
9
10  
11  
12  
Ai12559  
19/51  
Device operating modes  
QST108  
4.6.2  
General-purpose outputs  
2
I C mode allows to drive up to 5 general-purpose outputs. These output pins are configured  
in output push pull mode 0 by default. Their state can be changed using the  
2
SET_GPIO_STATE I C command.  
Figure 7.  
Optional LED schematic  
VUNREG  
R
GPOn  
C (10 nF)  
Ai12570  
4.6.3  
4.6.4  
IRQ pin  
The IRQ pin is an open drain output with an internal pull-up. It can be used to inform the  
Master device about any change in the key status. The IRQ line is pulled low every time the  
state of any of the enabled keys changes. This includes any change in the touch state of the  
key, a faulty key or a new calibration of one or more keys. The reported changes may then  
be accessed by the Master device by using the GET_KEY_STATE command.  
To improve communication response time, this signal suspends Low Power mode until the  
Master device has issued a communication with the QST device.  
Communication packet  
The communication between the Master device and the QST108 (Slave) consists of two  
2
standard I C frames.  
The first frame is sent by the Master device using the QST108 device address with the write  
bit set. The data bytes consist of the command byte which is eventually followed by the  
parameters and a checksum byte.  
The second one is sent by the Master device using the QST108 device address with the  
write bit reset. The QST108 completes the frame with data according to the command  
previously sent by the Master device. The device finishes the frame by sending a checksum  
byte for communication integrity verification.  
If the read frame is omitted, the command may not be taken into account.  
To initiate the communicate with the QST108, the Master device must send the  
GET_DEVICE_INFO command in order to unlock access to all the other commands.  
20/51  
QST108  
Device operating modes  
2
4.6.5  
I C address selection  
The QST108 slave address is programmable using the option resistors mapped on pins  
OPT2 to OPT4 (see Table 9).  
Table 9.  
I²C address versus option resistor  
Option configuration  
I2C Address  
ADD1  
OPT4  
OPT3  
OPT2  
ADD[6:3]  
ADD2  
ADD0  
Hex value  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VDD  
VDD  
VSS  
VSS  
VDD  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0101  
4.7  
Supported commands  
Table 10 lists the supported I²C commands and available arguments.  
2
Note:  
For more information on the supported commands and I C protocol, please refer to the QST  
standard communication protocol reference manual.  
Table 10. Supported commands  
I2C commands  
Description  
CALIBRATE_KEY (All keys)  
Write  
Read  
0x98  
Forces the recalibration of all keys.  
ErrCode: Standard Error code (see Table 11)  
ErrCode  
CALIBRATE_KEY (Single key)  
Write  
Read  
0x9B KeyID Checksum Forces the recalibration of a single key.  
KeyId: Binary-coded key number (see Table 14)  
ErrCode  
ErrCode: Standard Error code (see Table 11)  
GET_DEBUG_INFO  
Write  
Read  
0xF7 KeyID Checksum Returns the debug info of the single KeyID channel.  
KeyDbgState: Current Key Debug state (see Table 19)  
RefMSB: Reference Count MSB  
RefLSB: Reference Count LSB  
BCMSB: Burst Count MSB  
0x0B KeyDbgState  
RefMSB RefLSB  
BCMSB BCLSB  
Checksum  
BCLSB: Burst Count LSB  
21/51  
Device operating modes  
QST108  
Table 10. Supported commands (continued)  
I2C commands  
GET_DEVICE_INFO  
Description  
Write  
0x85  
Returns the QST108 device version and ASCII-coded device  
name. This command must be sent first to enable the  
communication flow.  
0x15 MainVers SubVers  
NbSCkey NbMCkey  
MainVers: Device main version  
SubVer: Device sub-version  
NbSCkey: 0x08 single-channel keys  
NbMCkey: 0x00 multi-channel keys  
Q S T 1 0 8: ASCII-coded device name  
Read  
‘Q’ ’S’ ‘T’ ‘1’ ‘0’ ‘8’  
Checksum  
GET_KEY_ERROR  
Write  
0xC4  
Returns the error information on each key.  
0x10 KeyError1  
KeyError2 ... KeyError8  
CheckSum  
KeyErrorN: KeyError byte description (see Table 12)  
Read  
GET_KEY_STATE  
Write  
0xC1  
Returns the state of all keys.  
AllKeyState: Touched/untouched state for all 8 keys. Refer to  
Table 13: AllKeyState.  
KeyError: Refer to Table 12: KeyError byte description  
0x04 AllKeyState  
KeyError Checksum  
Read  
GET_PROTOCOL_VERSION  
Write  
0x80  
Returns the QST108 protocol version.  
MainVers: Protocol main version  
SubVer: Protocol sub-version  
0x07 MainVers SubVer  
I2CSpeed Checksum  
Read  
I2CSpeed: 0x00 (100 kHz maximum)  
RESET_DEVICE  
Write  
Read  
0xFD  
Restarts the device (options Read and Calibration) after  
reading the ErrCode (see Table 11).  
ErrCode  
SET_DETECT_INTEGRATORS  
0x03 0x04 0x00 DI EDI Sets the detection, End Of Detection and Positive Recalibration  
Write  
PosRecaII CheckSum  
Integrators for all keys.  
DI: Detection Integrator 1) 3)  
EDI: End of Detection Integrator 1) 3)  
PosRecaII: Positive Recalibration Integrator 1) 3)  
ErrCode: Standard Error code (see Table 11)  
Read  
ErrCode  
SET_GPIO_STATE  
0x08 0x01 GPOState  
Checksum  
Controls the state of the general-purpose outputs.  
GPOState: State of general-purpose outputs (see Table 16)  
ErrCode: Standard Error code (see Table 11)  
Write  
Read  
ErrCode  
22/51  
QST108  
Device operating modes  
Table 10. Supported commands (continued)  
I2C commands  
Description  
SET_KEY_ACTIVATION (see Note 4)  
0x97 KeyActivation  
Checksum  
Enables or disables a single key.  
Write  
Read  
KeyActivation: Byte containing the key number selection and  
requested state.  
ErrCode: Standard Error code (see Table 11)  
ErrCode  
SET_KEY_GROUP  
0x00 0x09  
Defines the AKS groups for each key.  
AKSGrpMode Key1Grp  
Key2Grp ...Key8Grp  
CheckSum  
AKSGrpMode: AKS mode selection of each group (see  
Table 17)  
KeynGrp: AKS group selection for key n (see Table 18)  
ErrCode: Standard Error code (see Table 11)  
Write  
Read  
ErrCode  
SET_LOW_POWER_MODE  
0x92 LowPowerMode  
Checksum  
Selects standard or Low Power mode.  
Write  
LowPowerMode: Configure Low Power mode (see Table 15)  
ErrCode: Standard Error code (see Table 11)  
Read  
ErrCode  
SET_MAX_ON_DURATION  
0x8A MaxOnDuration  
Checksum  
Sets the maximum detected ON time before triggering an  
automatic recalibration.  
Write  
MaxOnDuration: Time, in second (0 for infinite)  
ErrCode: Standard Error code (see Table 11)  
Read  
ErrCode  
SET_SCKEY_PARAMETERS  
0x01 0x04 0x00 DeTh  
EofDeTh PosRecalTh  
Checksum  
Sets the Detection, End Of Detection and Positive  
Recalibration Thresholds for a single key.  
Write  
Read  
DeTh: Detection Threshold 1) 2)  
EofDeTh: End of Detection Threshold 1) 2)  
PosRecalTh: Positive Recalibration Threshold 1) 2)  
ErrCode: Standard Error code (see Table 11)  
ErrCode  
Note:  
1
2
3
4
See Section 6.6: Capacitive sensing characteristics on page 35 for default values.  
The value is a signed character (0x80...0x7F <=> -128 ... +128).  
The value is an unsigned number (0x01..0xFF <=> 1 ... 255).  
Enabling or disabling keys triggers a new calibration of all enabled keys.  
23/51  
Device operating modes  
Error codes  
QST108  
2
Table 11 lists the I C error codes.  
Table 11. ErrCode  
ErrCode  
Description  
0x01  
0x83  
0x85  
0xA1  
0xA3  
0xE0  
No Error  
Command not supported  
Parameter not supported  
Parity Error  
Checksum Error  
Initialization process (GET_FIRMWARE_INFO command not received)  
KeyError byte description  
Table 12. KeyError byte description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Key State  
0
0
0
0
Key error codes  
Key state (Bit 7)  
When set to ‘1’, the corresponding key is touched. This bit is always cleared for the  
GET_KEY_STATE command.  
Key error codes (Bits 2:0)  
When answering the GET_KEY_STATE command, the key error code corresponds to  
the error codes of all the keys ORed toghether. When answering the  
GET_KEY_ERROR command, each key error code describes the errors of one defined  
key.  
Bit 0: When set to ‘1’, calibration in progress  
Bit 1: When set to ‘1’, maximum count reached  
Bit 2: When set to ‘1’, minimum count not reached  
All key state description  
Table 13. AllKeyState  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Key 8 State Key 7 State Key 6 State Key 5 State Key 4 State Key 3 State Key 2 State Key 1 State  
Key n state  
When set to ‘1’, the corresponding key is touched.  
24/51  
QST108  
Device operating modes  
Key activation description  
Table 14. KeyActivation  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Key  
Activation  
0
0
0
Key ID (binary coded)  
Key activation (Bit 7)  
0: Key disabled  
1: Key enabled  
Key identifier (Bits 3:0)  
0000: All keys  
0001: Key 1  
0010: Key 2  
0011: Key 3  
0100: Key 4  
0101: Key 5  
0110: Key 6  
0111: Key 7  
1000: Key 8  
Low power mode description  
Table 15. SetLowPower  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Free Run  
in Detect  
0
Sleep Duration Factor  
Free Run in Detect (Bit 6)  
0: Low Power mode is always enabled, whatever the state of the keys.  
1: Low Power mode is automatically suspended when any key is in Detect state.  
Low Power mode is automatically resumed when no key is in Detect state.  
Sleep Duration Factor (Bits 5 to 0)  
0x00 or 0x1A to 0x3E: Low power mode is disabled.  
0x01 to 0x19: Low Power mode. The sleep duration is ‘Sleep Duration Factor’ x 20  
milliseconds (20 ms to 500 ms)  
0x3F: Deep Sleep mode is entered immediately. A reset or any I2C  
communication can be used to exit Deep Sleep mode.  
2
Note:  
When the device is in Sleep or Deep Sleep, any I C bus activity will wake-up the device.  
2
The I C QST device address is not acknowledged but forces the QST device to exit from  
Low Power mode. The Master device will have to repeat the command to ensure that it is  
taken in account.  
25/51  
Device operating modes  
QST108  
Bit 0  
GPO state description  
Table 16. GPOState  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
GPO 5  
state  
GPO 4  
state  
GPO 3  
state  
GPO 2  
state  
GPO 1  
state  
0
0
0
GPOState  
Defines the state of the selected general-purpose output pin. For more information, see  
Section 4.6.2: General-purpose outputs on page 20.  
0: GPO state is ‘0’  
1: GPO state is ‘1’  
AKS group mode description  
Table 17. AKSGrpnMode  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
AKSGrp8 AKSGrp7 AKSGrp6 AKSGrp5 AKSGrp4 AKSGrp3 AKSGrp2 AKSGrp1  
Mode Mode Mode Mode Mode Mode Mode Mode  
AKSGrpnMode  
Defines the type of AKS for the Group n:  
0: Locking AKS: First key pressed within the group locks out all other keys.  
1: Unlocking AKS: Most heavily pressed key (highest signal level) is selected over  
all other keys in the group.  
AKS group selection description  
Table 18. KeynGrp  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Grp8  
Grp7  
Grp6  
Grp5  
Grp4  
Grp3  
Grp2  
Grp1  
Grpx  
The selected key is a member of AKS Group x.  
Key debug state description  
Table 19. KeyDbgState  
Value  
Description  
0x01  
0x02  
0x04  
0x08  
0x11  
0x14  
0x24  
On-going calibration  
Key released  
Key touched  
Key in error  
Key calibration filter triggered (PosRecalI)  
Key detection filter triggered (DI)  
Key end of detection filter triggered (EDI)  
26/51  
QST108  
Design guidelines  
5
Design guidelines  
5.1  
CS sense capacitor  
The C sense capacitors accumulate the charge from the key electrodes and determine  
S
sensitivity. Higher values of C make the corresponding sensing channel more sensitive.  
S
The values of C can differ for each channel, permitting differences in sensitivity from key to  
S
key or to balance unequal sensitivities. Unequal sensitivities can occur due to key size and  
placement differences and stray wiring capacitances. More stray capacitance on a sense  
trace will desensitize the corresponding key. Increasing the C for that key will compensate  
S
for the loss of sensitivity.  
The C capacitors can be virtually any plastic film or low- to medium-K ceramic capacitor.  
S
The normal C range is 1nF to 50nF depending on the sensitivity required: larger values of  
S
C require better quality to ensure reliable sensing. In certain circumstances the normal C  
range may be exceeded. Acceptable capacitor types for most uses include PPS film,  
S
S
polypropylene film, and NP0 and X5R / X7R ceramics. Lower grades than X5R or X7R are  
not recommended.  
5.2  
Sensitivity tuning  
Sensitivity can be altered to suit various applications and situations on a channel-by-  
channel basis. The easiest and most direct way to impact sensitivity is to alter the value of  
each C : more C yields higher sensitivity. Each channel has its own C value and can  
S
S
S
therefore be independently adjusted.  
5.2.1  
5.2.2  
Increasing sensitivity  
Sensitivity can also be increased by using larger electrode areas, reducing panel thickness,  
or using a panel material with a higher dielectric constant.  
Decreasing sensitivity  
In some cases the circuit may be too sensitive. Gain can be lowered further by a number of  
strategies:  
making the electrode smaller  
making the electrode into a sparse mesh using a high space-to-conductor ratio  
decreasing the C capacitors  
S
5.2.3  
Key balance  
A number of factors can cause sensitivity imbalances. Notably, SNS wiring to electrodes can  
have differing stray amounts of capacitance to ground. Increasing load capacitance will  
cause a decrease in gain. Key size differences, and proximity to other metal surfaces can  
also impact gain.  
The keys may thus require “balancing” to achieve similar sensitivity levels. This can be best  
accomplished by trimming the values of the C capacitors to achieve equilibrium. The R  
S
S
resistors have no effect on sensitivity and should not be altered. Load capacitances to  
ground can also be added to overly sensitive channels to reduce their gain.  
These should be in the order of a few picofarads.  
27/51  
Design guidelines  
QST108  
5.3  
Power supply  
If the power supply fluctuates slowly with temperature, the QST device compensates  
automatically for these changes with only minor changes in sensitivity. However, if the  
supply voltage drifts or shifts quickly, the drift compensation mechanism is not able to keep  
up, causing sensitivity anomalies or false detections.  
The power supply should be locally regulated, using a three-terminal regulator. If the supply  
is shared with another electronic system, care should be taken to ensure that the supply is  
free of digital spikes, sags and surges which can cause adverse effects. It is not  
recommended to include a series inductor in the power supply to the QST device.  
For proper operation, a 0.1 µF or greater bypass capacitor must be used between V and  
DD  
V
V
. The bypass capacitor should be routed with very short tracks to the device’s V and  
pins.  
SS  
SS  
DD  
The PCB should, if possible, include a copper pour under and around the device, but not  
extensively under the SNS lines.  
5.4  
5.5  
ESD protection  
In normal environmental conditions, only one series resistor is required for ESD  
suppression. A 10 kOhm R resistor in series with the sense trace is sufficient in most  
cases. The dielectric panel (glass or plastic) usually provides a high degree of isolation to  
prevent ESD discharge from reaching the circuit. R should be placed close to the chip. If  
S
S
the C load is high, R can prevent total charge and transfer and as a result gain can  
X
S
deteriorate. If a reduction in R increases gain noticeably, the lower value should be used.  
Conversely, increasing the R can result in added ESD and EMC benefits, provided that the  
increase does not decrease sensitivity.  
S
S
Crosstalk precautions  
Adjacent sense traces might require intervening ground traces in order to reduce capacitive  
cross bleed if high sensitivity is required or high values of delta-C are anticipated (for  
X
example, from direct human touch to an electrode connection). In normal touch applications  
behind plastic panels, this is rarely a problem regardless of how the electrodes are wired.  
Higher values of R will make crosstalk problems worse; try to keep R to 22 kOhm or less  
S
S
if possible. In general try to keep the QST device close to the electrodes and reduce the  
adjacency of the sense wiring to ground planes and other signal traces; this will reduce the  
C load, reduce interference effects, and increase signal gain. The one and only valid  
x
reason to run ground near SNS traces is to provide crosstalk isolation between traces, and  
then only on an as-needed basis.  
5.6  
PCB layout and construction  
The PCB traces, wiring, and any components associated with or in contact with either SNS  
pin will become touch sensitive and should be treated with caution to limit the touch area to  
the desired location.  
Multiple touch electrodes connected to any sensing channel can be used, for example, to  
create control surfaces on both sides of an object.  
28/51  
QST108  
Design guidelines  
It is important to limit the amount of stray capacitance on the SNS terminals, for example by  
minimizing trace lengths and widths to allow for higher gain without requiring higher values  
of C . Under heavy delta-C loading of one key, cross coupling to another key’s trace can  
S
X
cause the other key to trigger. Therefore, electrode traces from adjacent keys should not be  
run close to each other over long runs in order to minimize cross-coupling if large values of  
delta-C are expected, for example when an electrode is directly touched. This is not a  
X
problem when the electrodes are working through a plastic panel with normal touch  
sensitivity.  
For additional information on PCB layout and construction, please contact your local ST  
Sales Office for a list of available application notes.  
29/51  
Electrical characteristics  
QST108  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25°C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3Σ).  
6.1.2  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 5 V (for the 4.5V ≤  
A
DD  
V
5.5 V voltage range) and V = 3.3 V (for the 3.0 V V 3.6 V voltage range).  
DD  
DD DD  
They are given only as design guidelines and are not tested.  
6.1.3  
6.1.4  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 8.  
Figure 8.  
Pin loading conditions  
Output pin  
6.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 9.  
Figure 9. Pin input voltage  
Input pin  
VIN  
30/51  
QST108  
Electrical characteristics  
6.2  
Absolute maximum ratings  
Stresses above those listed as “absolute maximum ratings” may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Table 20. Thermal characteristics  
Symbol  
Ratings  
Storage temperature range  
Maximum junction temperature  
Value  
Unit  
TSTG  
TJ  
65 to +150  
°C  
Table 21. Voltage characteristics  
Symbol  
Ratings  
Maximum value  
Unit  
VDD VSS Supply voltage  
7.0  
V
VIN  
Input voltage on any pin (1)(2)  
VSS0.3 to VDD+0.3  
1. Directly connecting the RESET and I/O pins to VDD or VSS could damage the device if an unintentional  
internal reset is generated or an unexpected change of the I/O configuration occurs. To guarantee safe  
operation, this connection has to be done through a pull-up or pull-down resistor (typical: 4.7kΩ for RESET,  
10kΩ for I/Os).  
2.  
IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain pads,  
there is no positive injection current, and the corresponding VIN maximum must always be respected.  
Table 22. Current characteristics  
Symbol  
Ratings  
Maximum value  
Unit  
IVDD  
IVSS  
Total current into VDD power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by RESET pin  
Output current sunk by output pin  
Output current source by output pin  
Injected current on RESET pin  
75  
150  
20  
40  
25  
5
IIO  
mA  
(2)(3)  
IINJ(PIN)  
Injected current output pin  
5
Total injected current (sum of all I/O and control  
pins)  
(2)  
ΣIINJ(PIN)  
20  
1. All power (VDD) and ground (VSS) lines must always be connected to the external supply.  
2. IINJ(PIN) must never be exceeded. This is implicitly ensured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain pads,  
there is no positive injection current, and the corresponding VIN maximum must always be respected.  
3. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on  
characterisation with ΣIINJ(PIN) maximum current injection on four KOUT pins of the device.  
31/51  
Electrical characteristics  
QST108  
6.3  
EMC characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
6.3.1  
Functional EMS (electro magnetic susceptibility)  
The product is stressed by two electro magnetic events until a failure occurs:  
ESD: Electro-Static Discharge (positive and negative) is applied on all pins of the  
device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2  
standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100pF capacitor, until a functional disturbance occurs. This test  
SS  
conforms with the IEC 1000-4-4 standard.  
A device reset allows normal operations to be resumed. The test results are given in the  
table below based on the EMS levels and classes defined in application note AN1709.  
Table 23. Functional EMS  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD=5V, TA=+25°C,  
Voltage limits to be applied on any I/O  
pin to induce a functional disturbance  
VFESD  
3B  
4A  
complies with IEC 1000-4-2  
Fast transient voltage burst limits to be  
applied through 100pF on VDD and VDD  
pins to induce a functional disturbance  
VDD=5V, TA=+25°C  
complies with IEC 1000-4-4  
VFFTB  
6.3.2  
Electro magnetic interference (EMI)  
The product is monitored in terms of emission. This emission test is in line with the norm  
SAE J 1752/3 which specifies the board and the loading of each pin.  
Table 24. EM emissions  
Monitored  
Symbol Parameter  
Conditions  
fDEVICE = 4 MHz (1) Unit  
Frequency Band  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
SAE EMI Level  
20  
VDD=5V, TA=+25°C,  
complies with SAE J  
1752/3  
20  
13  
dBμV  
SEMI  
Peak level  
2.5  
-
1. Data based on characterization results, not tested in production.  
32/51  
QST108  
Electrical characteristics  
6.3.3  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU and DLU) using specific measurement methods, the  
product is stressed in order to determine its performance in terms of electrical sensitivity.  
For more details, refer to the application note AN1181.  
Electro-static discharge (ESD)  
Electro-Static Discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models  
can be simulated: Human Body Model and Charge Device Model. These tests comply with  
JESD22-A114A/A115A specifications.  
Table 25. Absolute maximum ratings  
Symbol  
Ratings  
Conditions  
TA=+25°C  
TA=+25°C  
Maximum value (1) Unit  
Electro-static discharge voltage  
(Human Body Model)  
VESD(HBM)  
4000  
500  
V
V
Electro-static discharge voltage  
(Charge Device Model)  
VESD(CDM)  
1. Data based on characterization results, not tested in production.  
Static and dynamic latch-up  
LU: 3 complementary static tests are required on 10 parts to assess the latch-up  
performance. A supply overvoltage (applied to each power supply pin) and a current  
injection (applied to each I/O pin) are performed on each sample. This test complies  
with EIA/JESD 78 IC latch-up specifications.  
DLU: Electro-Static Discharges (one positive then one negative test) are applied to  
each pin of 3 samples when the MCU is running to assess the latch-up performance in  
Dynamic mode. Power supplies are set to the typical values and the component is put  
in Reset mode. This test complies with IEC1000-4-2 and SAEJ1752/3 specifications.  
For more details, refer to the application note AN1181.  
Table 26. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class (1)  
LU  
Static latch-up class  
TA=+125°C  
VDD=5.5V, fDEVICE = 4MHz, TA=+25°C  
A
A
DLU  
Dynamic latch-up class  
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the  
JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B  
Class strictly covers all the JEDEC criteria (international standard).  
33/51  
Electrical characteristics  
QST108  
6.4  
Operating conditions  
Table 27. Operating conditions  
Symbol  
Feature  
Value  
Unit  
VDD  
TA  
Operating supply voltage  
Operating temperature  
2.4 to 5.5  
V
C
-40° to +85°  
6.5  
Supply current characteristics  
Table 28. Supply current characteristics  
Symbol  
Parameter  
Conditions  
DD = 2.4 V  
VDD = 3.3 V  
DD = 5 V  
VDD = 2.4 V  
DD = 3.3 V  
Min.  
Typ. (1) Max.  
Unit  
V
1.71  
2.17  
3.35  
276  
389  
637  
108  
144  
246  
Average suppy current  
Free Run mode  
IDD (FR)  
mA  
V
IDD  
(Sleep  
100ms)  
Average suppy current  
100ms Sleep mode  
V
µA  
VDD = 5 V  
VDD = 2.4 V  
IDD  
(Sleep  
500ms)  
Average suppy current  
500ms Sleep mode  
VDD = 3.3 V  
µA  
µA  
VDD = 5 V  
IDD  
Deep  
Sleep  
Average suppy current  
Deep Sleep mode  
5
1. The results are based on CS = 2.7nF and CX = 12.5pF  
Figure 10. IDD Sleep mode current characteristics  
34/51  
QST108  
Electrical characteristics  
6.6  
Capacitive sensing characteristics  
Table 29. External sensing components  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
CS  
CX  
CT  
RS  
Sense capacitor  
100  
100  
nF  
pF  
Equivalent electrode capacitor  
Equivalent touch capacitor  
Serial resistor  
5
pF  
10  
22  
kOhm  
Table 30. Capacitive sensing parameters  
Symbol  
Parameter  
Calibration duration  
Min. Default Max.  
Unit  
tCAL  
tSetup  
2
s
Setup duration  
100  
ms  
DI  
Detection integrator  
Samples  
Counts  
Samples  
Counts  
Samples  
Counts  
s
1
-128  
1
2
-10  
2
255  
-1  
DeTh  
Detection threshold  
EDI  
End of detection integrator  
End of detection threshold  
Positive recalibration integrator  
255  
-1  
EofDeTh  
PosRecalI  
-128  
1
-6  
2
255  
127  
255  
25.5  
25.5  
25.5  
25.5  
PosRecalTh Positive recalibration threshold  
MaxOnDuration Max on-duration delay  
1
15  
Infinite  
1
1
PosDiffDrift  
NegDiffDrift  
Positive differential drift compensation rate  
Negative differential drift compensation rate  
0.1  
0.1  
0.1  
0.1  
s/level  
s/level  
s/level  
s/level  
1
PosComDrift Positive common drift compensation rate  
NegComDrift Negative common drift compensation rate  
0.2  
0.2  
10  
10  
2
PosDriftI  
NegDriftI  
ComFact  
DiffFact  
Positive drift integrator  
Negative drift integrator  
Common time step factor  
Differential time step factor  
Burst length  
0
255  
255  
255  
255  
0
0
0
10  
BurstCount  
20  
2000 Counts  
35/51  
 
Electrical characteristics  
QST108  
6.7  
KOUTn/OPTn/GPOn pin characteristics  
6.7.1  
General characteristics  
Subject to general operating conditions for V and T unless otherwise specified.  
DD  
A
Table 31. General characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VIL  
VIH  
Input low level voltage (1)  
Input high level voltage (1)  
VSS 0.3  
0.3x VDD  
VDD + 0.3  
V
0.7x VDD  
VHys Schmitt trigger voltage hysteresis(2)  
400  
mV  
μA  
pF  
IL  
Input leakage current  
I/O pin capacitance  
VSS VIN VDD  
1
CIO  
5
CL = 50 pF  
tf(IO)out Output high to low level fall time (2) Between 10%  
and 90%  
25  
25  
ns  
tr(IO)out Output low to high level rise time (2)  
1. Not tested in production, guaranteed by characterization.  
2. Data based on validation/design results.  
6.7.2  
Output pin characteristics  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD CPU  
Table 32. Output pin current  
Symbol  
Parameter  
Conditions  
Min.  
Max. Unit  
Output low level voltage for a high sink I/O  
pin when 4 pins are sunk at same time  
(Figure 16)  
IIO = +20mA  
1.3  
(1)  
VOL  
IIO = +8mA  
IIO = -5mA  
0.75  
Output high level voltage for an I/O pin  
when 4 pins are sourced at same time  
(Figure 21)  
VDD1.5  
VDD0.8  
(2)  
VOH  
I
IO = -2mA  
Output low level voltage for a high sink I/O  
pin when 4 pins are sunk at same time  
(1)(3)  
VOL  
IIO = +8mA  
IIO = -2mA  
IIO = +8mA  
0.5  
V
Output high level voltage for an I/O pin  
when 4 pins are sourced at same time  
(Figure 19)  
(2)(3)  
VOH  
VDD0.8  
Output low level voltage for a high sink I/O  
pin when 4 pins are sunk at same time  
(1)(3)  
VOL  
0.6  
Output high level voltage for an I/O pin  
when 4 pins are sourced at same time  
(2)(3)  
VOH  
IIO = -2mA  
VDD0.9  
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 22 and the sum  
of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. The IIO current sourced must always respect the absolute maximum rating specified in Table 22 and the  
sum of IIO (output and RESET pins) must not exceed IVDD..  
3. Not tested in production, based on characterization results.  
36/51  
QST108  
Electrical characteristics  
Figure 11.  
Typical VOL at VDD = 2.4 V  
Figure 12.  
Typical VOL vs VDD at Iload = 2 mA  
VOL vs Iload @ VDD = 2.4 V HS pins  
VOLvs VDD @Iload=2 mA HS Pins  
1200  
1000  
800  
600  
400  
200  
0
120  
110  
100  
90  
-40°C  
25°C  
-40°C  
25°C  
85°C  
85°C  
125°C  
125°C  
80  
70  
60  
50  
40  
2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
4
4.2 4.4 4.6 4.8 5 5.2 5.4 5.6  
0
2
4
6
8
10  
12  
14  
16  
VDD [V]  
Iload [mA]  
Figure 13.  
Typical VOL at VDD = 3 V  
Figure 14.  
Typical VOL vs VDD at Iload = 8 mA  
VOLvs Iload @ VDD = 3 V HS pins  
VOL vs VDD@Iload = 8 mAHS Pins  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
540  
490  
440  
390  
340  
290  
240  
190  
140  
-40°C  
25°C  
-40°C  
25°C  
85°C  
85°C  
125°C  
125°C  
2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
VDD [V]  
Iload [mA]  
Figure 15.  
Typical VOL at VDD = 5 V  
Figure 16.  
Typical VOL vs VDD at Iload = 12 mA  
VOL vs Iload @ VDD = 5 V HS pins  
VOL vs VDD @Iload = 12 mAHS Pins  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
-40°C  
25°C  
85°C  
125°C  
1040  
940  
840  
740  
640  
540  
440  
340  
240  
140  
-40°C  
25°C  
85°C  
125°C  
2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
VDD [V]  
Iload [mA]  
Figure 17.  
Typical VDD-VOH vs. Iload at VDD = 2.4 V Figure 18.  
Typical VDD-VOH vs. VDD at Iload = 2 mA  
VDD-VOH vs Iload @ VDD = 2.4 V HS Pins  
VDD-VOH vs VDD @Iload = 2 mA HS Pins  
800  
800  
700  
600  
500  
400  
300  
200  
100  
0
-40°C  
25°C  
-40°C  
25°C  
85°C  
125°C  
700  
600  
500  
400  
300  
200  
100  
0
85°C  
125°C  
2
4
VDD[V]  
Iload[mA]  
37/51  
Electrical characteristics  
QST108  
Figure 19.  
Typical VDD-VOH vs. Iload at VDD = 3 V  
Figure 20.  
Typical VDD-VOH vs. VDD at Iload = 4 mA  
VDD-VOH vs Iload @ VDD = 3 V HS Pins  
VDD-VOH vs VDD @Iload = 4 mA HS Pins  
1800  
1800  
1600  
1400  
1200  
1000  
800  
-40°C  
25°C  
-40°C  
25°C  
85°C  
125°C  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
85°C  
125°C  
600  
400  
200  
0
0
2
4
6
VDD [V]  
Iload[mA]  
Figure 21.  
Typical VDD-VOH vs. Iload at VDD = 5 V  
VDD-VOH vs Iload @ VDD = 5 V HS Pins  
4500  
-40°C  
25°C  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
85°C  
125°C  
0
0
2
4
6
8
10  
12  
14  
Iload[mA]  
38/51  
QST108  
Electrical characteristics  
6.8  
RESET pin  
T = -40°C to 125°C, unless otherwise specified.  
A
Table 33. RESET pin characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VIL  
VIH  
Input low level voltage  
Input high level voltage  
VSS 0.3  
0.3x VDD  
VDD + 0.3  
V
0.7 x VDD  
Schmitt trigger voltage  
hysteresis(1)  
Vhys  
VOL  
2
V
Output low level  
voltage(2)  
VDD = 5V IIO = +2mA  
200  
mV  
VDD = 5V  
VIN = VSS  
30  
20  
50  
70  
Pull-up equivalent  
resistor(3)  
RON  
kΩ  
μs  
VDD = 3V  
90(1)  
Generated reset pulse  
duration  
tw(RSTL)out  
Internal reset sources  
90(1)  
External reset pulse  
hold time(4)  
th(RSTL)in  
μs  
tg(RSTL)in Filtered glitch duration  
200  
ns  
1. Data based on characterization results, not tested in production.  
2. The IIO current sunk must always respect the absolute maximum rating specified in Table 22: Current  
characteristics on page 31 and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
3. The RON pull-up equivalent resistor is based on a resistive transistor. Specified for voltages on RESET pin  
between VILmax and VDD  
.
4. To guarantee the reset of the device, a minimum pulse has to be applied to the RESET pin. All short pulses  
applied on RESET pin with a duration below th(RSTL)in can be ignored.  
39/51  
Electrical characteristics  
QST108  
I2C control interface  
6.9  
Subject to general operating conditions for V , and T unless otherwise specified.  
DD  
A
2
2
The QST108 I C interface meets the requirements of the Standard I C communication  
protocol described in the following table with the restriction mentioned below:  
Refer to I/O port characteristics for more details on the input/output alternate function  
characteristics (SDA and SCL).  
Table 34.  
Symbol  
I²C characteristics (100 kHz speed)  
Parameter  
Min. (1)  
Max. (1)  
Unit  
tw(SCLL) SCL clock low time  
tw(SCLH) SCL clock high time  
tsu(SDA) SDA setup time  
4.7  
4.0  
µs  
250  
0 (2)  
ns  
ns  
µs  
th(SDA)  
SDA data hold time  
tr(SDA)  
tr(SCL)  
SDA and SCL rise time  
1000  
300  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
th(STA)  
START condition hold time  
4.0  
4.7  
4.0  
4.7  
tsu(STA)  
Repeated START condition setup time  
tsu(STO) STOP condition setup time  
μs  
µs  
pF  
tw(STO:STA) STOP to START condition time (bus free)  
Cb  
Capacitive load for each bus line  
400  
Data based on standard I2C protocol requirement, not tested in production.  
1.  
2. The maximum hold time of the START condition has only to be met if the interface does not stretch the low  
period of the SCL signal.  
(1)  
Table 35. IRQ specific pin characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
tW(IRQ) IRQ pulse width  
10  
15  
µs  
VDD = 5V  
VDD = 3V  
100  
120  
300  
140  
RIRQ  
IRQ internal pull-up (2)  
kΩ  
1. For additional pin parameters, please use the pin description in Section 6.7: KOUTn/OPTn/GPOn pin  
characteristics on page 36.  
2. The IRQ pull-up equivalent resistor is based on a resistive transistor.  
40/51  
QST108  
Electrical characteristics  
Typical application with I C bus and timing diagram  
2
Figure 22.  
V
V
DD  
DD  
4.7kΩ  
4.7kΩ  
100Ω  
100Ω  
SDA  
SCL  
2
I C BUS  
QST device  
REPEATED START  
START  
t
t
w(STO:STA)  
su(STA)  
START  
SDA  
t
t
r(SDA)  
f(SDA)  
STOP  
t
t
h(SDA)  
su(SDA)  
SCL  
t
t
t
t
t
su(STO)  
t
h(STA)  
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
41/51  
Package mechanical data  
QST108  
7
Package mechanical data  
Figure 23. 32-pin low profile quad flat package (7x7) outline  
Seating  
plane  
C
A A2  
c
A1  
b
0.25 mm  
Gage plane  
ccc  
C
D
K
L
D1  
D3  
A1  
L1  
24  
17  
16  
25  
E3 E1  
E
32  
9
Pin 1  
identification  
1
8
e
5V_ME  
42/51  
QST108  
Package mechanical data  
Table 36. 32-pin low profile quad flat package mechanical data  
mm  
inches(1)  
Dim.  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.450  
0.200  
9.200  
7.200  
0.0630  
0.0059  
0.0571  
0.0177  
0.0079  
0.3622  
0.2835  
0.050  
1.350  
0.300  
0.090  
8.800  
6.800  
0.0020  
0.0531  
0.0118  
0.0035  
0.3465  
0.2677  
1.400  
0.370  
0.0551  
0.0146  
c
D
9.000  
7.000  
5.600  
9.000  
7.000  
5.600  
0.800  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
D1  
D3  
E
0.2205  
8.800  
6.800  
9.200  
7.200  
0.3465  
0.2677  
0.3543  
0.3622  
0.2835  
E1  
E3  
e
0.2756  
0.2205  
0.0315  
L
0.450  
0.0°  
0.750  
7.0°  
0.0177  
0.0°  
0.0236  
0.0295  
7.0°  
L1  
K
0.0394  
3.5°  
Tolerance (mm)  
0.10  
Tolerance (inches)  
0.0039  
ccc  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
43/51  
Package mechanical data  
Figure 24. 32-pin LQFP32 (7x7 mm) recommended footprint  
QST108  
0.80  
1.20  
9
16  
8
17  
0.50  
0.30  
7.30  
6.10  
9.70  
7.30  
1
24  
32  
25  
1.20  
6.10  
9.70  
All dimensions are in millimeters.  
Ai15211  
44/51  
QST108  
Package mechanical data  
7.1  
Soldering information  
In accordance with the RoHS European directive, all STMicroelectronics packages have  
been converted to lead-free technology, named ECOPACK™.  
ECOPACK™ packages are qualified according to the JEDEC STD-020C compliant  
soldering profile.  
Detailed information on the STMicroelectronics ECOPACK™ transition program is  
available on www.st.com/stonline/leadfree/, with specific technical Application notes  
covering the main technical aspects related to lead-free conversion (AN2033, AN2034,  
AN2035, and AN2036).  
Backward and forward compatibility  
The main difference between Pb and Pb-free soldering process is the temperature range.  
ECOPACK™ LQFP, SDIP, SO and DFN8 packages are fully compatible with Lead (Pb)  
containing soldering process (see application note AN2034).  
LQFP, SDIP and SO Pb-packages are compatible with Lead-free soldering process,  
nevertheless it's the customer's duty to verify that the Pb-packages maximum  
temperature (mentioned on the Inner box label) is compatible with their Lead-free  
soldering temperature.  
Table 37. Soldering Compatibility (wave and reflow soldering process  
Package  
Plating material devices  
Sn (pure Tin)  
Pb solder paste Pb-free solder paste (1)  
SDIP & PDIP  
DFN8  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Sn (pure Tin)  
TQFP and SO  
NiPdAu (Nickel-palladium-Gold)  
1. Assemblers must verify that the Pb-package maximum temperature (mentioned on the Inner box label) is  
compatible with their Lead-free soldering process.  
45/51  
Part numbering  
QST108  
8
Part numbering  
Table 38. Ordering information scheme  
Example:  
QST  
1
08  
K
T
6
Device type  
QST = Capacitive touch sensor  
Device sub-family  
1: QTouch (3 to 5 V)  
5: QMatrix (3 to 5 V)  
6: QSlide/QWheel (3 to 5 V)  
11: QTouch (1.8 to 3.6 V)  
15: QMatrix (1.8 to 3.6 V)  
16: QSlide/QWheel (1.8 to 3.6 V)  
Channel count  
Number of channels  
Pin count  
A: 8 pins  
Y: 16 pins  
K: 32 pins  
S: 44 pins  
C: 48 pins  
M: 80 pins  
Package  
B: DIP (dual in-line)  
H: BGA (ball grid array)  
M: SO (small outline)  
N: TSSOP (thin-shrink small outline package)  
T: LQFP (thin quad flat)  
U: QFN (dual quad flat no lead)  
Temperature range  
0: +25°C  
1: 0 to +70°C  
5: –10°C to +85°C  
6: –40°C to +85°C  
7: –40°C to +105°C  
9: –40°C to + 125°C  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST Sales Office.  
The category of second Level Interconnect is marked on the package and on the inner box  
label, in compliance with JEDEC Standard JESD97. The maximum ratings related to  
soldering conditions are also marked on the inner box label.  
46/51  
QST108  
Device revision information  
9
Device revision information  
9.1  
Device revision identification  
The marking on the right side of the second line (Line B) of the package top face identifies  
the device revision.  
Figure 25. Device revision identification (TQFP package)  
A
QST108  
BQRG  
F01  
C
D
E
H
F
G
I
K
a
J
Table 39. Device revision identification  
Marking  
Device revision  
F00  
F01  
V 2.1  
V 2.3  
2
The device revision can also be obtained using the GET_DEVICE_INFO I C command. For  
more information, refer to Section 4.9: Supported commands on page 16.  
9.2  
Device revision history  
This section identifies the device deviations from the present specification for each device  
revision.  
9.2.1  
Revision 2.1  
Engineering samples. For more information regarding this revision, please contact your local  
ST sales office.  
47/51  
Device revision information  
QST108  
9.2.2  
Revision 2.3  
When the device enters Low Power mode, an additional sleep time is inserted after  
each burst, instead of once after every complete burst cycle. As a result, if only one  
burst is required, the sleep duration during Low Power mode is doubled. And if two  
bursts are required, the sleep duration is tripled.  
In Standalone mode, the 100ms sleep duration low power becomes either a 200ms or  
300ms sleep duration depending on the number of bursts required.  
In I2C mode, it is required to program a sleep duration for one half or a third of the  
desired sleep duration depending on the number of bursts required.  
GET_PROTOCOL_VERSION returns 0x01 as I2CSpeed byte when it should return  
0x00 (maximum speed is 100 kHz).  
If a command is sent with an incorrect parity bit, the device reports an unsupported  
command instead of a parity error.  
In I2C mode, it is recommended to set the fast positive recalibration threshold to 5  
using the SET_SCKEY_PARAMETERS command in order to ensure a reliable  
behavior on low sensitivity keys.  
AKS should be always enabled in BCD mode. The AKS pull-up option resistor should  
be connected to pin KOUT2.  
48/51  
QST108  
Revision history  
10  
Revision history  
Table 40. Document revision history  
Date  
Revision  
Changes  
8-Jun-2007  
1
2
Initial release.  
15-Jun-2007  
Datasheet status changed to Preliminary Data.  
Removed Beeper function.  
Changed LED output pins to GPO pins.  
Updated pin names and functions in Section 2: Pin description on  
page 5 and added Figure 2: QTouch™ measuring circuitry on  
page 7.  
Changed order of chapters in Section 3 for better comprehension.  
Removed Simplified independent output mode from Section 4:  
Device operating modes on page 11. Independent output mode  
renamed Stand-alone mode.  
Added Section 4.2: Reset and power-up on page 11 and removed  
Power supply option chapter from Section 4.4.2: Option descriptions  
on page 14.  
26-Sep-2007  
3
Updated Table 6: Max On-Duration (MOD) truth table on page 14  
and Table 7: Output mode (OM) truth table on page 15.  
Updated Figure 3: Stand-alone mode typical schematic on page 13  
and Figure 4: I2C mode typical schematic on page 16.  
Updated Table 9: I²C address versus option resistor on page 18.  
Added Figure 5: Optional LED schematic on page 17.  
Updated Section 4.5: I2C mode on page 15.  
Added Section 5.2.3: Key balance on page 25.  
Updated Section 6.4: Supply current characteristics on page 31.  
Added Section 6.5: Capacitive sensing characteristics on page 32.  
and Section 6.7: RESET pin on page 36.  
Updated Table 30: I²C characteristics on page 37.  
Document status promoted from Preliminary Data to Datasheet.  
Added ECOPACK® information.  
Updated CX value in Figure 2: QTouch™ measuring circuitry on  
page 7.  
Added Caution note in Section 3.10: Drift compensation on page 11.  
Added Section 4.3: Low power mode on page 13.  
22-Nov-2007  
4
Updated hex values in Table 9: I²C address versus option resistor on  
page 21.  
Updated Table 28: Supply current characteristics on page 34,  
Table 30: Capacitive sensing parameters on page 35 and added  
Figure 10: IDD Sleep mode current characteristics on page 34.  
Added Table 35: IRQ specific pin characteristics on page 40.  
Added Section 9: Device revision information on page 47.  
49/51  
Revision history  
Table 40. Document revision history (continued)  
QST108  
Date  
Revision  
Changes  
Changed datasheet status to Not for new design.  
Updated Figure 2: QTouch™ measuring circuitry to add RS sense  
resistor.*  
Updated Section 3.5: Detection integrator filter on page 9 and added  
Figure 3: Detection signals on page 10.  
Added Figure 4: Drift compensation example on page 12.  
GET_KEY_ERROR and GET_KEY_STATE read values updated in  
Table 10: Supported commands on page 21 and updated note 3.  
11-Jul-2008  
5
Updated bit values for Key activation description on page 25.  
Added Section 6.3: EMC characteristics on page 32.  
Updated Table 30: Capacitive sensing parameters on page 35.  
Added Figure 24: 32-pin LQFP32 (7x7 mm) recommended footprint  
on page 44.  
Added Section 7.1: Soldering information on page 45.  
Added Section 9.2.2: Revision 2.3 on page 48.  
50/51  
QST108  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
51/51  

相关型号:

QST1508YM1

Capacitive touch sensor device 8 keys with individual key state outputs or I2C interface
STMICROELECTR

QST1508YN0

Capacitive touch sensor device 8 keys with individual key state outputs or I2C interface
STMICROELECTR

QST1508YN1

Capacitive touch sensor device 8 keys with individual key state outputs or I2C interface
STMICROELECTR

QST1508YT0

Capacitive touch sensor device 8 keys with individual key state outputs or I2C interface
STMICROELECTR

QST1508YT1

Capacitive touch sensor device 8 keys with individual key state outputs or I2C interface
STMICROELECTR

QST1508YU0

Capacitive touch sensor device 8 keys with individual key state outputs or I2C interface
STMICROELECTR

QST1508YU1

Capacitive touch sensor device 8 keys with individual key state outputs or I2C interface
STMICROELECTR

QST1608AB0

Capacitive touch sensor device 8 keys with individual key state outputs or I2C interface
STMICROELECTR

QST1608AB1

Capacitive touch sensor device 8 keys with individual key state outputs or I2C interface
STMICROELECTR

QST1608AH0

Capacitive touch sensor device 8 keys with individual key state outputs or I2C interface
STMICROELECTR

QST1608AH1

Capacitive touch sensor device 8 keys with individual key state outputs or I2C interface
STMICROELECTR

QST1608AM0

Capacitive touch sensor device 8 keys with individual key state outputs or I2C interface
STMICROELECTR