RBO40-40M-TR [STMICROELECTRONICS]

SILICON SURGE PROTECTOR, POWER, SOP-10;
RBO40-40M-TR
型号: RBO40-40M-TR
厂家: ST    ST
描述:

SILICON SURGE PROTECTOR, POWER, SOP-10

文件: 总15页 (文件大小:167K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RBO40-40G/M/T  
REVERSED BATTERYAND  
OVERVOLTAGEPROTECTIONCIRCUIT (RBO)  
Application Specific Discretes  
TM  
A.S.D.  
FEATURES  
PROTECTION AGAINSTLOADDUMPPULSE  
40A DIODE TO GUARD AGAINST BATTERY  
REVERSAL  
MONOLITHIC STRUCTURE FOR GREATER  
RELIABILITY  
BREAKDOWN VOLTAGE : 24 V min.  
CLAMPINGVOLTAGE : ± 40 V max.  
COMPLIANT WITH ISO / DTR 7637  
D2PAK  
RBO40-40G  
DESCRIPTION  
Designed to protect against batteryreversal and  
load dump overvoltagesin automotiveapplica-  
tions, this monolithic component offers multiple  
functionsin the same package:  
PowerSO-10TM  
RBO40-40M  
D1 : reversed battery protection  
T1 : clamping against negative overvoltages  
T2 : Transil functionagainst ”load dump” effect.  
TO220AB  
RBO40-40T  
FUNCTIONAL DIAGRAM  
3
1
2
January 1997 - Ed : 3  
1/15  
RBO40-40G / RBO40-40M / RBO40-40T  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
IFSM  
Non repetitivesurge peak forward current  
(Diode D1)  
tp = 10 ms  
120  
A
IF  
DC forward current (Diode D1)  
Tc = 75°C  
40  
80  
A
V
VPP  
Peak load dump voltage (see note 1and 2)  
5 pulses(1 minute between each pulse)  
PPP  
Peak pulse power between Input and Output  
10/1000µs  
1500  
W
°C  
°C  
(Transil T1)  
Tj initial= 25°C  
Tstg  
Tj  
Storage temperature range  
Maximum junction temperature  
- 40 to + 150  
150  
TL  
Maximum lead temperaturefor solderingduring 10 s  
at 4.5mm from case for TO220AB  
260  
Note 1 : for a surge greater than the maximum value, the device will fail in short-circuit.  
Note 2 : see Load Dump curves.  
TM : PowerSO-10,TRANSIL and ASD are trademarks of SGS-THOMSON Microelectronics.  
THERMAL RESISTANCE  
Symbol  
Parameter  
Value  
Unit  
Junctionto case  
Rth (j-c)  
RBO40-40M  
RBO40-40G  
RBO40-40T  
1.0  
1.0  
1.0  
°C/W  
Rth (j-a)  
Junctionto ambient  
RBO40-40T  
60  
°C/W  
D1  
I32  
I13  
1
3
I
32  
pp  
IF  
T2  
T1  
IR32  
R M32  
2
I
V
31 V 31  
V
R M  
31  
CL  
BR  
V32  
V13  
VRM 32 VBR 32 VC L32  
VF13  
31  
I
RM  
I
R
31  
3
1
Ipp31  
2
Ex : V 13 . between Pin 1 and Pin 3  
V
BR  
32 . between Pin 3 and Pin 2  
F
2/15  
RBO40-40G / RBO40-40M / RBO40-40T  
Symbol  
Parameter  
VRM31/VRM32 Stand-offvoltage Transil T1 / Transil T2.  
VBR31/VBR32 Breakdown voltage Transil T1 / TransilT2.  
IR31/IR32  
Leakage current Transil T1 / TransilT2.  
VCL31/VCL32 Clamping voltage Transil T1 / Transil T2.  
Forward voltage drop Diode D1.  
Peak pulse current.  
VF13  
IPP  
αT  
Temperaturecoefficientof VBR.  
C31/C32  
C13  
CapacitanceTransil T1 / Transil T2.  
Capacitanceof Diode D1  
ELECTRICAL CHARACTERISTICS: DIODE D1 (- 40°C< Tamb < + 85°C)  
Value  
Symbol  
Test Conditions  
Unit  
Min. Typ. Max.  
VF 13  
VF 13  
VF 13  
VF 13  
C13  
IF = 40 A  
1.9  
1.45  
V
V
IF = 20A  
IF = 1 A  
1
V
IF = 100mA  
F = 1MHz VR= 0 V  
0.95  
V
3000  
pF  
ELECTRICAL CHARACTERISTICS : TRANSIL T1 (- 40°C < Tamb < + 85°C)  
Value  
Symbol  
Test Conditions  
Unit  
Min. Typ. Max.  
VBR 31  
VBR 31  
IRM 31  
IRM 31  
VCL 31  
α T  
IR = 1 mA  
22  
24  
35  
32  
100  
10  
40  
9
V
V
IR = 1 mA, Tamb = 25°C  
VRM = 20 V  
µA  
VRM = 20 V, Tamb = 25°C  
IPP =37.5A,Tj initial = 25°C  
Temperaturecoefficient of VBR  
µA  
10/1000µs  
V
10-4/°C  
C 31  
F = 1MHz  
VR = 0 V  
3000  
pF  
ELECTRICAL CHARACTERISTICS : TRANSIL T2 (- 40°C < Tamb < + 85°C)  
Value  
Symbol  
Test Conditions  
Unit  
Min. Typ. Max.  
VBR 32  
VBR 32  
IRM 32  
IRM 32  
VCL 32  
α T  
IR = 1 mA  
22  
24  
35  
32  
100  
10  
40  
9
V
V
IR = 1 mA, Tamb = 25°C  
VRM = 20 V  
µA  
VRM = 20 V, Tamb = 25°C  
IPP = 20 A (note1)  
µA  
V
Temperaturecoefficient of VBR  
10-4/°C  
C32  
F = 1MHz  
VR = 0 V  
8000  
pF  
Note 1 : One pulse, see pulse definition in load dump testgenerator circuit.  
3/15  
RBO40-40G / RBO40-40M / RBO40-40T  
PRODUCT DESCRIPTION  
The RBO has 3 functionsintegratedon the same  
chip.  
3
1
D1 : “Diode function” in order to protect against  
reversedbattery operation.  
T2 : “Transil function” in order to protect against  
positive surge generated by electric systems  
(ignition, relay. ...).  
T1 : Protectionfor motor drive application  
(See below).  
2
BASIC APPLICATION  
* The monolithic multi-function protection  
(RBO) has been developed to protect  
sensitive semiconductors in car electronic  
modules against both overvoltage and  
battery reverse.  
* In addition, the RBO circuit prevents  
overvoltages generated by the module from  
affecting the car supply network.  
MOTOR DRIVER APPLICATION  
BATTERY  
D1  
Filter  
T2  
MOTOR  
T1  
RBO  
DEVICE  
MOTOR CONTROL  
In this application, one half of the motor drive circuit is suppliedthroughthe “RBO” and is thusprotected  
as per its basic function application.  
The secondpart is connecteddirectly to the “car supply network” and is protectedas follows :  
- For positive surges : T2 (clamping phase) and D1 in forward-biased.  
- For negative surges : T1 (clamping phase) and T2 in forward-biased.  
4/15  
RBO40-40G / RBO40-40M / RBO40-40T  
PINOUT configuration in D2PAK :  
- Input (1) : Pin 1  
- Output (3) : Pin 3  
D1  
- Gnd  
(2) : Connectedto base Tab  
T2  
T1  
TAB  
Marking  
: Logo, date code, RBO40-40G  
PINOUT configuration in PowerSO-10 :  
- Input (1) : Pin 1 to 5  
- Output (3) : Pin 6 to 10  
- Gnd  
(2) : Connectedto base Tab  
Pin 1  
D1  
Input (1)  
Output (3)  
Marking  
: Logo, date code, RBO40-40M  
T2  
T1  
Gnd (2)  
Pin 6  
Tab  
TOP VIEW  
PINOUT configuration in TO220AB :  
- Input (1) : Pin 1  
- Output (3) : Pin 3  
D1  
T1  
- GND  
(2) : Connectedto base Tab  
T2  
Marking  
: Logo, date code, RBO40-40T  
(TAB)  
5/15  
RBO40-40G / RBO40-40M / RBO40-40T  
LOAD DUMP TEST GENERATOR CIRCUIT (SCHAFFNER NSG 506 C). Issued from ISO / DTR 7637.  
Open circuit (voltage curve)  
Corresponding current wave with D.U.T.  
(pulse test n°5)  
I
t
U(V)  
Ipp  
Ipp/2  
0
tr  
offset  
10% / 13.5V  
90%  
Vs  
10%  
Vbat  
0
t
t
tp = 40ms  
Impulse  
N°5  
Vs (V)  
66.5  
13.5  
2
Vbat (V)  
Ri ()  
t (ms)  
200 (*)  
<10  
5
tr (ms)  
Number  
60s between each pulse  
(*) Generator setting  
CALIBRATION METHOD FOR SCHAFFNER NSG 506 C  
1) With open circuit (generatoris in open circuit):  
- calibrate Vs  
2) With short circuit (generator is in short circuit):  
- calibrate Ri (Ri = 2)  
3) With D.U.T.  
- calibratetp (tp = 40ms @ Ipp/2)  
Typical Voltage curve (open circuit)  
Typical Voltage and Current curve with D.U.T.  
typ. Vpp  
typ. VCL  
20ms/div.  
5.0V/div.  
Ipp  
VBat  
20ms/div.  
10.0V/div.  
20ms/div.  
3A/div.  
6/15  
RBO40-40G / RBO40-40M / RBO40-40T  
Fig. 1 : Peak pulse power versus exponential  
pulse duration (Tj initial = 85°C).  
Fig. 2-1 : Clamping voltage versus peak pulse  
current (Tj initial = 85°C).  
Exponential waveform tp = 40 ms and tp = 1 ms  
(TRANSIL T2).  
VCL(V)  
Ppp(kW)  
45.0  
10.0  
5.0  
42.5  
40.0  
Transil T2  
2.0  
1.0  
0.5  
tp = 40ms  
37.5  
Transil T1  
tp = 1ms  
35.0  
0.2  
0.1  
32.5  
tp(ms)  
10  
Ipp(A)  
30.0  
1
2
5
20  
50  
100  
0.2  
0.5  
1
2
5
10 20  
50 100  
0.1  
Fig. 2-2 : Clamping voltage versus peak pulse  
current (Tj initial = 85°C).  
Fig. 3 : Relative variation of peak pulse power  
versus junction temperature.  
Exponential waveform tp = 1 ms and tp = 20 µs  
(TRANSIL T1).  
Ppp[Tj]/Ppp[Tj initial=85 °C]  
VCL(V)  
1.20  
55  
50  
45  
1.00  
0.80  
0.60  
0.40  
p = 1ms  
t
40  
35  
30  
25  
tp = 20µs  
0.20  
Tj initial (°C)  
A)  
p
Ip (  
0.00  
1
2
5
10  
20  
50 100 200  
500  
25  
50  
75  
100  
125  
150  
175  
0
7/15  
RBO40-40G / RBO40-40M / RBO40-40T  
Fig. 4 :  
Fig. 5-1 :  
Relative variation of thermal impedance  
Peak forward voltage drop versus peak  
junction to case versus pulse duration.  
forward current (typical values) - (TRANSIL T2).  
Zth(j-c)/Rth(j-c)  
V
FM(V)  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
1.0  
0.5  
0.2  
Tj = 25°C  
Tj = 150°C°  
IFM(A)  
tp (s)  
0.1  
5
1E-3  
1E-2  
1E-1  
1E+0  
1E+1  
0.1 0.2  
0.5  
1
2
10  
20  
50 100  
Fig. 6 : Relative variation of leakage current  
versus junction temperature.  
Fig. 5-2 :  
Peak forward voltage drop versus peak  
forward current (typical values) - (DIODED1).  
V
FM(V)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Tj = 25°C  
Tj = 150°C°  
IFM(A)  
0.2  
0.5  
1
2
5
10 20  
50 100  
0.1  
ORDERING INFORMATION  
RBO  
40  
-
40  
M
Package :  
Reversed Battery &  
Overvoltage protection  
M = PowerSO-10  
G = D2PAK  
T = TO220AB  
IF(AV) = 40 A  
VCL = 40V  
8/15  
RBO40-40G / RBO40-40M / RBO40-40T  
DIMENSIONS  
PACKAGE MECHANICAL DATA  
D2PAK Plastic  
REF.  
Millimeters  
Inches  
A
Min. Typ. Max. Min. Typ. Max.  
E
C2  
A
4.30  
4.60 0.169  
2.69 0.098  
0.23 0.001  
0.93 0.027  
0.181  
0.106  
0.009  
0.037  
L2  
A1 2.49  
A2 0.03  
D
B
B2  
C
0.70  
L
1.40  
0.055  
L3  
0.45  
0.60 0.017  
1.36 0.047  
9.35 0.352  
10.28 0.393  
5.28 0.192  
15.85 0.590  
1.40 0.050  
1.75 0.055  
0.024  
0.054  
0.368  
0.405  
0.208  
0.624  
0.055  
0.069  
A1  
C2 1.21  
D
E
G
L
8.95  
10.00  
4.88  
B2  
B
R
C
G
15.00  
A2  
L2 1.27  
L3 1.40  
R
2.0 MIN.  
FLAT ZONE  
0.40  
0.016  
V2  
V2  
0°  
8°  
0°  
8°  
FOOT-PRINT D2PAK  
16.90  
10.30  
5.08  
1.30  
3.70  
8.90  
9/15  
RBO40-40G / RBO40-40M / RBO40-40T  
SOLDERING RECOMMENDATION  
- thermal capacity of the base substrate  
Voids pose a difficult reliability problem for large  
surface mount devices. Such voids under the  
package result in poor thermal contact and the  
high thermal resistance leads to component  
failures. The PowerSO-10 is designed from  
scratch to be solely a surface mount package,  
hence symmetry in the x- and y-axis gives the  
package excellent weight balance. Moreover, the  
PowerSO-10offers the uniquepossibility to control  
easily the flatness and quality of the soldering  
process. Both the top and the bottom soldered  
edges of the package are accessible for visual  
inspection (soldering meniscus).  
The soldering process causes considerable  
thermal stress to a semiconductor component.  
This has to be minimized to assure a reliable and  
extended lifetime of the device. The PowerSO-10  
package can be exposed to  
a maximum  
temperature of 260°C for 10 seconds. However a  
proper soldering of the package could be done at  
215°C for 3 seconds. Any solder temperature  
profile should be within these limits. As reflow  
techniquesaremost common in surfacemounting,  
typical heating profiles are given in Figure 1,either  
for mounting on FR4 or on metal-backed boards.  
For each particular board, the appropriate heat  
profile has to be adjusted experimentally. The  
present proposal is just a starting point. In any  
case, the following precautions have to be  
considered :  
Coplanarity between the substrate and the  
package can be easily verified. The quality of the  
solder joints is very important for two reasons : (I)  
poor quality solder joints result directly in poor  
reliability  
and (II) solder thickness affects the  
- always preheat the device  
thermal resistance significantly. Thus a tight  
control of this parameter results in thermally  
efficient and reliable solder joints.  
- peak temperatureshould be at least30 °C  
higherthan the melting point of the solder  
alloy chosen  
Fig. 1 : Typical reflow soldering heat profile  
Temperature (o C)  
250  
245oC  
215oC  
200  
Soldering  
Epoxy FR4  
150  
100  
50  
board  
Preheating  
Cooling  
Metal-backed  
board  
0
0
40  
80  
120 160 200 240 280 320 360  
Time (s)  
10/15  
RBO40-40G / RBO40-40M / RBO40-40T  
SUBSTRATES AND MOUNTINGINFORMATION  
decrease thermal resistance accordingly. Using  
a configurationwith 16 holesunder the spreaderof  
the package with a pitch of 1.8 mm and a diameter  
of 0.7 mm, the thermal resistance (junction -  
heatsink) can be reduced to 12°C/W (see fig. 3).  
Beside the thermal advantage, this solution allows  
multi-layer boards to be used. However, a  
drawback of this traditional material prevents its  
use in very high power, high current circuits. For  
instance, it is not advisable to surface mount  
devices with currents greater than 10 A on FR4  
boards. A Power Mosfet or Schottky diode in a  
surface mount power packagecan handle up to  
around 50 A if better substratesare used.  
The use of epoxy FR4 boards is quite common for  
surface mounting techniques, however, their poor  
thermal conduction compromises the otherwise  
outstanding thermal performance of the  
PowerSO-10. Some methods to overcome this  
limitation are discussedbelow.  
One possibility to improve the thermal conduction  
is the use of large heat spreader areas at the  
copper layer of the PC board. This leads to a  
reduction of thermal resistance to 35 °C for 6 cm2  
of the board heatsink (see fig. 2).  
Use of copper-filledthrough holes on conventional  
FR4 techniqueswill increase the metallization and  
Fig. 2 :  
Mountingon epoxy FR4 head dissipation by extending the area of the copper layer  
Copper foil  
FR4 board  
Fig. 3 :  
Mounting on epoxy FR4 by using copper-filled through holes for heat transfer  
Copper foil  
FR4 board  
heatsink  
heat transfer  
11/15  
RBO40-40G / RBO40-40M / RBO40-40T  
A new technology available today is IMS - an  
Insulated Metallic Substrate. This offers greatly  
enhanced thermal characteristics for surface  
mount components. IMS is a substrate consisting  
of threedifferent layers, (I) the basematerialwhich  
is available as an aluminium or a copper plate, (II)  
a thermal conductive dielectrical layer and (III) a  
copper foil, which can be etched as a circuit layer.  
Using this material a thermal resistance of 8°C/W  
with 40 cm2 of board floating in air is achievable  
(see fig. 4). If evenhigherpower is to be dissipated  
an externalheatsink could be applied which leads  
to an Rth(j-a) of 3.5°C/W (see Fig. 5), assuming  
that Rth (heatsink-air) is equal to Rth  
(junction-heatsink). This is commonly applied in  
practice, leading to reasonable heatsink  
dimensions. Often power devices are defined by  
considering the maximum junction temperature of  
the device. In practice , however, this is far from  
being exploited. A summary of various power  
managementcapabilities is made in table 1 based  
on a reasonabledelta T of 70°C junction to air.  
The PowerSO-10 concept also represents an  
attractive alternative to C.O.B. techniques.  
PowerSO-10 offers devices fully tested at low  
and high temperature. Mounting is simple - only  
conventional SMT is required - enabling the users  
to getrid ofbond wire problemsand the problem to  
control the high temperaturesoft soldering as well.  
An optimized thermal management is guaranteed  
through PowerSO-10 as the power chips must in  
any case be mounted on heat spreaders before  
being mounted onto the substrate.  
Fig. 4 : Mountingon metal backed board  
Fig. 5 :  
externalheatsink applied  
Mounting on metal backed board with an  
Copperfoil  
FR4 board  
Copper foil  
Insulation  
Aluminium  
Aluminium  
heatsink  
TABLE 1  
PowerSo-10package mounted on  
1.FR4 using the recommendedpad-layout  
2.FR4 with heatsink on board (6cm2)  
Rth (j-a)  
50 °C/W  
35 °C/W  
12 °C/W  
8 °C/W  
P Diss  
1.5 W  
2.0 W  
5.8 W  
8.8 W  
20 W  
3.FR4 with copper-filled through holes and external heatsink applied  
4. IMS floating in air (40 cm2)  
5. IMS with external heatsink applied  
3.5 °C/W  
12/15  
RBO40-40G / RBO40-40M / RBO40-40T  
PACKAGE MECHANICAL DATA  
B
0.10A B  
10  
6
E3 E1  
E2  
H
E
1
5
SEATING  
PLANE  
A
e
B
DETAIL ”A”  
C
0.25 M  
Q
D
h
F
D1  
A
SEATING  
PLANE  
A1  
A1  
L
DETAIL A”  
a
E4  
DIMENSIONS  
Millimeters Inches  
Min. Typ. Max. Min. Typ. Max.  
DIMENSIONS  
REF.  
Millimeters  
Inches  
REF.  
Min. Typ. Max. Min. Typ. Max.  
A
3.35  
3.65 0.131  
0.10 0.00  
0.60 0.0157  
0.55 0.0137  
9.60 0.370  
7.60 0.291  
9.50 0.366  
7.40 0.283  
7.60 0.283  
0.143  
E3 6.10  
E4 5.90  
e
6.35 0.240  
6.10 0.232  
0.250  
0.240  
A1 0.00  
0.0039  
0.0236  
0.0217  
0.378  
0.299  
0.374  
0.291  
0.299  
B
C
D
0.40  
0.35  
9.40  
1.27  
0.05  
F
H
h
1.25  
1.35 0.0492  
14.40 0.543  
0.0531  
0.567  
13.80  
D1 7.40  
9.30  
0.50  
1.70  
0.019  
0.067  
E
L
1.20  
1.80 0.0472  
0.0708  
E1 7.20  
E2 7.20  
Q
a
0°  
8°  
0°  
8°  
13/15  
RBO40-40G / RBO40-40M / RBO40-40T  
FOOT PRINT  
HEADER SHAPE  
MOUNTING PAD LAYOUT  
RECOMMENDED  
Dimensions in millimeters  
Dimensions in millimeters  
SHIPPING TUBE  
DIMENSIONS (mm)  
TYP  
C
B
A
18  
12  
0,8  
532  
B
C
Length tube  
Quantity per tube  
50  
A
Surface mount film taping : contact sales office  
14/15  
RBO40-40G / RBO40-40M / RBO40-40T  
DIMENSIONS  
PACKAGE MECHANICAL DATA  
TO220AB Plastic  
REF.  
Millimeters  
Inches  
Min.  
Min.  
Max.  
15.87  
4.50  
14.70  
10.45  
0.96  
1.39  
4.82  
0.65  
2.70  
2.79  
6.85  
4.00  
3.00  
1.75  
1.20  
Max.  
0.625  
0.177  
0.579  
0.411  
0.038  
0.055  
0.190  
0.026  
0.106  
0.110  
0.270  
0.157  
0.118  
0.069  
0.047  
A
a1  
a2  
B
14.23  
0.560  
12.70  
10.20  
0.64  
1.15  
4.48  
0.35  
2.10  
2.29  
5.85  
3.55  
2.54  
1.45  
0.80  
0.500  
0.402  
0.025  
0.045  
0.176  
0.020  
0.083  
0.090  
0.230  
0.140  
0.100  
0.057  
0.031  
b1  
b2  
C
c1  
c2  
e
F
I
L
l2  
l3  
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No  
license is grantedby implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics.Specifications mentioned  
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.  
SGS-THOMSONMicroelectronics products are not authorized for use as criticalcomponents in life support devices or systems withoutexpress  
written approval of SGS-THOMSON Microelectronics.  
1997 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.  
SGS-THOMSON MicroelectronicsGROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco  
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom -U.S.A.  
15/15  

相关型号:

RBO40-40T

REVERSEDBATTERYAND OVERVOLTAGEPROTECTIONCIRCUITRBO
STMICROELECTR

RBOX100

Fanless and cableless design
AXIOMTEK

RBOX101-4COM

Fanless and cableless design
AXIOMTEK

RBOX101-6COM

Fanless and cableless design
AXIOMTEK

RBOX103

Fanless and cableless design
AXIOMTEK

RBOX104

Fanless and cableless design
AXIOMTEK

RBOX111-4COM

Fanless and cableless design
AXIOMTEK

RBOX120-2COM

Robust Din-rail Fanless Embedded System
AXIOMTEK

RBOX120-2COM-FL1.1G

Robust Din-rail Fanless Embedded System
AXIOMTEK

RBOX120-2COM-FL1.33G

Robust Din-rail Fanless Embedded System
AXIOMTEK

RBOX200

Fanless and cableless design
AXIOMTEK

RBOX201-4COM

Fanless and cableless design
AXIOMTEK