SRI512-W41GE [STMICROELECTRONICS]

13.56 MHz short-range contactless memory chip with 512-bit EEPROM and anticollision functions; 13.56 MHz的短程与512位EEPROM和防撞功能的非接触式存储器芯片
SRI512-W41GE
型号: SRI512-W41GE
厂家: ST    ST
描述:

13.56 MHz short-range contactless memory chip with 512-bit EEPROM and anticollision functions
13.56 MHz的短程与512位EEPROM和防撞功能的非接触式存储器芯片

存储 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总47页 (文件大小:397K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SRI512  
13.56 MHz short-range contactless memory chip  
with 512-bit EEPROM and anticollision functions  
Features  
ISO 14443-2 Type B air interface compliant  
ISO 14443-3 Type B frame format compliant  
13.56 MHz carrier frequency  
847 kHz subcarrier frequency  
106 Kbit/second data transfer  
8 bit Chip_ID based anticollision system  
2 Count-down binary counters with automated  
antitearing protection  
64-bit Unique Identifier  
512-bit EEPROM with write protect feature  
Read_block and Write_block (32 bits)  
Internal tuning capacitor  
– Unsawn wafer  
– Bumped and sawn wafer  
1million erase/write cycles  
40-year data retention  
Self-timed programming cycle  
5 ms typical programming time  
August 2008  
Rev 4  
1/47  
www.st.com  
1
Contents  
SRI512  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
AC1, AC0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3
Data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1  
3.2  
Input data transfer from the reader to the SRI512 (request frame) . . . . . . 9  
3.1.1  
3.1.2  
3.1.3  
Character transmission format for request frame . . . . . . . . . . . . . . . . . . 9  
Request start of frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Request end of frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Output data transfer from the SRI512 to the reader (answer frame) . . . . 11  
3.2.1  
3.2.2  
3.2.3  
Character transmission format for answer frame . . . . . . . . . . . . . . . . . . 11  
Answer start of frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Answer end of frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.3  
3.4  
Transmission frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.1  
4.2  
4.3  
4.4  
Resettable OTP area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
32-bit binary counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
EEPROM area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
System area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.4.1  
4.4.2  
OTP_Lock_Reg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Fixed Chip_ID (option) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
5
6
SRI512 operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
SRI512 states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.1  
6.2  
6.3  
6.4  
6.5  
Power-off state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Ready state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Inventory state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Selected state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Deselected state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2/47  
SRI512  
Contents  
6.6  
Deactivated state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7
8
Anticollision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.1  
Description of an anticollision sequence . . . . . . . . . . . . . . . . . . . . . . . . . 26  
SRI512 commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
Initiate() command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Pcall16() command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Slot_marker(SN) command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Select(Chip_ID) command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Completion() command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Reset_to_inventory() command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Read_block(Addr) command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Write_block (Addr, Data) command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Get_UID() command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
8.10 Power-on state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
9
10  
11  
Appendix A ISO 14443 Type B CRC calculation . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Appendix B SRI512 command brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
3/47  
List of tables  
SRI512  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Bit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SRI512 memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Standard anticollision sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Command code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
4/47  
SRI512  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Die floor plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
10% ASK modulation of the received wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SRI512 request frame character format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Request start of frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Request end of frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Wave transmitted using BPSK subcarrier modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Answer start of frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Answer end of frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 10. Example of a complete transmission frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 11. CRC transmission rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 12. Resettable OTP area (addresses 0 to 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 13. Write_block update in standard mode (binary format) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 14. Write_block update in reload mode (binary format) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 15. Binary counter (addresses 5 to 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 16. Count down example (binary format) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 17. EEPROM (addresses 7 to 15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 18. System area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 19. State transition diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 20. SRI512 Chip_ID description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 21. Description of a possible anticollision sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 22. Example of an anticollision sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 23. Initiate request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 24. Initiate response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 25. Initiate frame exchange between reader and SRI512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 26. Pcall16 request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 27. Pcall16 response format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 28. Pcall16 frame exchange between reader and SRI512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 29. Slot_marker request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 30. Slot_marker response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 31. Slot_marker frame exchange between reader and SRI512 . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 32. Select request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 33. Select response format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 34. Select frame exchange between reader and SRI512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 35. Completion request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 36. Completion response format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 37. Completion frame exchange between reader and SRI512. . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 38. Reset_to_inventory request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 39. Reset_to_inventory response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 40. Reset_to_inventory frame exchange between reader and SRI512 . . . . . . . . . . . . . . . . . . 34  
Figure 41. Read_block request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 42. Read_block response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 43. Read_block frame exchange between reader and SRI512 . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 44. Write_block request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 45. Write_block response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 46. Write_block frame exchange between reader and SRI512 . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 47. Get_UID request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 48. Get_UID response format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
5/47  
List of figures  
SRI512  
Figure 49. 64-bit unique identifier of the SRI512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 50. Get_UID frame exchange between reader and SRI512. . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 51. SRI512 synchronous timing, transmit and receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 52. Initiate frame exchange between reader and SRI512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 53. Pcall16 frame exchange between reader and SRI512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 54. Slot_marker frame exchange between reader and SRI512 . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 55. Select frame exchange between reader and SRI512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 56. Completion frame exchange between reader and SRI512. . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 57. Reset_to_inventory frame exchange between reader and SRI512 . . . . . . . . . . . . . . . . . . 45  
Figure 58. Read_block frame exchange between reader and SRI512 . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 59. Write_block frame exchange between reader and SRI512 . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 60. Get_UID frame exchange between reader and SRI512. . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
6/47  
SRI512  
Description  
1
Description  
The SRI512 is a contactless memory, powered by an externally transmitted radio wave. It  
contains a 512-bit user EEPROM fabricated with STMicroelectronics CMOS technology.  
The memory is organized as 16 blocks of 32 bits. The SRI512 is accessed via the  
13.56 MHz carrier. Incoming data are demodulated and decoded from the received  
amplitude shift keying (ASK) modulation signal and outgoing data are generated by load  
variation using bit phase shift keying (BPSK) coding of a 847 kHz subcarrier. The received  
ASK wave is 10% modulated. The data transfer rate between the SRI512 and the reader is  
106 Kbit/s in both reception and emission modes.  
The SRI512 follows the ISO 14443-2 Type B recommendation for the radio-frequency power  
and signal interface.  
Figure 1.  
Logic diagram  
SRI512  
AC1  
Power  
Supply  
Regulator  
ASK  
Demodulator  
512-bit  
User  
EEPROM  
BPSK  
Load  
Modulator  
AC0  
AI10795  
The SRI512 is specifically designed for short range applications that need re-usable  
products. The SRI512 includes an anticollision mechanism that allows it to detect and select  
tags present at the same time within range of the reader. Using the STMicroelectronics  
single chip coupler, CRX14, it is easy to design a reader and build a contactless system.  
Table 1.  
Signal names  
Signal name  
Description  
AC1  
AC0  
Antenna coil  
Antenna coil  
7/47  
Signal description  
SRI512  
The SRI512 contactless EEPROM can be randomly read and written in block mode (each  
block containing 32 bits). The instruction set includes the following nine commands:  
Read_block  
Write_block  
Initiate  
Pcall16  
Slot_marker  
Select  
Completion  
Reset_to_inventory  
Get_UID  
The SRI512 memory is organized in three areas, as described in Table 3. The first area is a  
resettable OTP (one-time programmable) area in which bits can only be switched from 1 to  
0. Using a special command, it is possible to erase all bits of this area to 1.  
The second area provides two 32-bit binary counters that can only be decremented from  
FFFF FFFFh to 0000 0000h, and gives a capacity of 4,294,967,296 units per counter.  
The last area is the EEPROM memory. It is accessible by block of 32 bits and includes an  
auto-erase cycle during each Write_block command.  
Figure 2.  
Die floor plan  
AC0  
AC1  
AI09055  
2
Signal description  
2.1  
AC1, AC0  
The pads for the Antenna Coil. AC1 and AC0 must be directly bonded to the antenna.  
8/47  
SRI512  
Data transfer  
3
Data transfer  
3.1  
Input data transfer from the reader to the SRI512 (request  
frame)  
The reader must generate a 13.56 MHz sinusoidal carrier frequency at its antenna, with  
enough energy to “remote-power” the memory. The energy received at the SRI512’s  
antenna is transformed into a supply voltage by a regulator, and into data bits by the ASK  
demodulator. For the SRI512 to decode correctly the information it receives, the reader must  
10% amplitude-modulate the 13.56 MHz wave before sending it to the SRI512. This is  
represented in Figure 3. The data transfer rate is 106 Kbits/s.  
Figure 3.  
10% ASK modulation of the received wave  
DATA BITTO TRANSMIT  
TO THE SRI512  
10% ASK MODULATION  
OF THE 13.56MHz WAVE,  
GENERATED BY THE READER  
Transfer time for one data bit is 1/106 kHz  
Ai10796  
3.1.1  
Character transmission format for request frame  
The SRI512 transmits and receives data bytes as 10-bit characters, with the least significant  
bit (b ) transmitted first, as shown in Figure 4. Each bit duration, an ETU (elementary time  
0
unit), is equal to 9.44 µs (1/106 kHz).  
These characters, framed by a start of frame (SOF) and an end of frame (EOF), are put  
together to form a command frame as shown in Figure 10. A frame includes an SOF,  
commands, addresses, data, a CRC and an EOF as defined in the ISO 14443-3 Type B  
Standard. If an error is detected during data transfer, the SRI512 does not execute the  
command, but it does not generate an error frame.  
Figure 4.  
SRI512 request frame character format  
b0  
b1  
b2  
b3  
b4  
b5  
b6  
b7  
b8  
b9  
Start  
"0"  
Stop  
"1"  
LSb  
Information Byte  
MSb  
1 ETU  
ai07664  
9/47  
Data transfer  
SRI512  
Table 2.  
Bit description  
Bit  
Description  
Start bit used to synchronize the transmission  
Value  
b0  
b0 = 0  
The information byte is sent with  
the least significant bit first  
b1 to b8 Information byte (command, address or data)  
b9 Stop bit used to indicate the end of a character  
b9 = 1  
3.1.2  
Request start of frame  
The SOF described in Figure 5 is composed of:  
one falling edge,  
followed by 10 ETUs at logic-0,  
followed by a single rising edge,  
followed by at least 2 ETUs (and at most 3) at logic-1.  
Figure 5.  
Request start of frame  
b0  
0
b1  
0
b2  
0
b3  
0
b4  
0
b5  
0
b6  
0
b7  
0
b8  
0
b9  
0
b10  
1
b11  
1
ETU  
ai07665  
3.1.3  
Request end of frame  
The EOF shown in Figure 6 is composed of:  
one falling edge,  
followed by 10 ETUs at logic-0,  
followed by a single rising edge.  
Figure 6.  
Request end of frame  
b0  
0
b1  
0
b2  
0
b3  
0
b4  
0
b5  
0
b6  
0
b7  
b8  
b9  
0
ETU  
0
0
ai07666  
10/47  
SRI512  
Data transfer  
3.2  
Output data transfer from the SRI512 to the reader (answer  
frame)  
The data bits issued by the SRI512 use back-scattering. Back-scattering is obtained by  
modifying the SRI512 current consumption at the antenna (load modulation). The load  
modulation causes a variation at the reader antenna by inductive coupling. With appropriate  
detector circuitry, the reader is able to pick up information from the SRI512. To improve load-  
modulation detection, data is transmitted using a BPSK encoded, 847 kHz subcarrier  
frequency ƒ as shown in Figure 7, and as specified in the ISO 14443-2 Type B Standard.  
s
Figure 7.  
Wave transmitted using BPSK subcarrier modulation  
Data Bit to be Transmitted  
to the Reader  
Or  
847kHz BPSK Modulation  
Generated by the SRI512  
BPSK Modulation at 847kHz  
During a One-bit Data Transfer Time (1/106kHz)  
AI10797  
3.2.1  
3.2.2  
Character transmission format for answer frame  
The character format is the same as for input data transfer (Figure 4). The transmitted  
frames are made up of an SOF, data, a CRC and an EOF (Figure 10). As with an input data  
transfer, if an error occurs, the reader does not issue an error code to the SRI512, but it  
should be able to detect it and manage the situation. The data transfer rate is  
106 Kbits/second.  
Answer start of frame  
The SOF described in Figure 8 is composed of:  
followed by 10 ETUs at logic-0  
followed by 2 ETUs at logic-1  
Figure 8.  
Answer start of frame  
b0  
0
b1  
0
b2  
0
b3  
0
b4  
0
b5  
0
b6  
0
b7  
0
b8  
0
b9  
0
b10  
1
b11  
1
ETU  
ai07665  
11/47  
Data transfer  
SRI512  
3.2.3  
Answer end of frame  
The EOF shown in Figure 9 is composed of:  
followed by 10 ETUs at logic-0,  
followed by 2 ETUs at logic-1.  
Figure 9.  
Answer end of frame  
b0  
0
b1  
0
b2  
0
b3  
0
b4  
0
b5  
0
b6  
0
b7  
0
b8  
0
b9  
0
b10  
1
b11  
ETU  
1
ai07665  
3.3  
Transmission frame  
Between the request data transfer and the answer data transfer, all ASK and BPSK  
modulations are suspended for a minimum time of t = 128/ƒ . This delay allows the reader  
0
S
to switch from Transmission to Reception mode. It is repeated after each frame. After t , the  
0
13.56 MHz carrier frequency is modulated by the SRI512 at 847 kHz for a period of  
t = 128/ƒ to allow the reader to synchronize. After t , the first phase transition generated  
1
S
1
by the SRI512 forms the start bit (‘0’) of the answer SOF. After the falling edge of the answer  
EOF, the reader waits a minimum time, t , before sending a new request frame to the  
2
SRI512.  
Figure 10. Example of a complete transmission frame  
Sent by the  
SOF  
Data CRC CRC EOF  
SOF  
Cmd  
Reader  
10 bits  
10 bits  
10 bits  
10 bits  
10 bits  
12 bits  
f =847.5kHz  
s
tDR  
at 106kb/s  
Sent by the  
SRI512  
Sync  
SOF Data CRC CRC EOF  
t0  
t1  
10 bits  
10 bits  
10 bits  
12 bits  
12 bits  
128/fs  
128/fs  
t2  
Input data transfer using ASK  
Output data transfer using BPSK  
Ai10798  
12/47  
SRI512  
Data transfer  
3.4  
CRC  
The 16-bit CRC used by the SRI512 is generated in compliance with the ISO14443 Type B  
recommendation. For further information, please see Appendix A. The initial register  
contents are all 1’s: FFFFh.  
The two-byte CRC is present in every request and in every answer frame, before the EOF.  
The CRC is calculated on all the bytes between SOF (not included) and the CRC field.  
Upon reception of a request from a reader, the SRI512 verifies that the CRC value is valid. If  
it is invalid, the SRI512 discards the frame and does not answer the reader.  
Upon reception of an answer from the SRI512, the reader should verify the validity of the  
CRC. In case of error, the actions to be taken are the reader designer’s responsibility.  
The CRC is transmitted with the least significant byte first and each byte is transmitted with  
the least significant bit first.  
Figure 11. CRC transmission rules  
LSByte  
MSByte  
LSbit  
MSbit LSbit  
MSbit  
CRC 16 (8 bits)  
CRC 16 (8 bits)  
ai07667  
13/47  
Memory mapping  
SRI512  
4
Memory mapping  
The SRI512 is organized as 16 blocks of 32 bits as shown in Table 3. All blocks are  
accessible by the Read_block command. Depending on the write access, they can be  
updated by the Write_block command. A Write_block updates all the 32 bits of the block.  
Table 3.  
SRI512 memory mapping  
Msb  
b31  
32-bit block  
Lsb  
b0  
Block  
Addr  
Description  
b16 b15 b14  
b8 b7  
0
1
32 bits Boolean area  
32 bits Boolean area  
32 bits Boolean area  
32 bits Boolean area  
32 bits Boolean area  
32 bits binary counter  
32 bits binary counter  
User area  
Resettable OTP  
bits  
2
3
4
5
Count down  
Counter  
6
7
8
User area  
9
User area  
10  
11  
12  
13  
14  
15  
User area  
Lockable  
EEPROM  
User area  
User area  
User area  
User area  
User area  
Fixed Chip_ID  
(Option)  
255  
OTP_Lock_Reg  
0
ST Reserved  
System OTP bits  
ROM  
UID0  
UID1  
64 bits UID area  
14/47  
SRI512  
Memory mapping  
4.1  
Resettable OTP area  
This area contains five individual 32-bit Boolean words (see Figure 12 for a map of the  
area). A Write_block command will not erase the previous contents of the block as the write  
cycle is not preceded by an auto-erase cycle. This feature can be used to reset selected bits  
from 1 to 0. All bits previously at 0 remain unchanged. When the 32 bits of a block are all at  
0, the block is empty, and cannot be updated any more. See Figure 13 and Figure 14 for  
examples of the result of the Write_block command in the resettable OTP area.  
Figure 12. Resettable OTP area (addresses 0 to 4)  
MSb  
b31  
32-bit Block  
b16 b15 b14  
LSb  
b0  
Block  
Address  
Description  
b8 b7  
0
1
2
3
4
32-bit Boolean Area  
32-bit Boolean Area  
32-bit Boolean Area  
32-bit Boolean Area  
32-bit Boolean Area  
Resettable  
OTP Bit  
ai12381  
Figure 13. Write_block update in standard mode (binary format)  
b31  
b0  
Previous data stored in block  
Data to be written  
1
1
1
...  
...  
...  
1
1
1
1
0
0
0
0
0
1
1
1
0
0
0
1
1
1
1
1
1
1
0
0
1
0
0
1
1
1
0
1
0
1
1
1
1
1
New data stored in block  
1
ai07658  
The five 32-bit blocks making up the Resettable OTP area can be erased in one go by  
adding an auto-erase cycle to the Write_block command. An auto-erase cycle is added  
each time the SRI512 detects a Reload command. The Reload command is implemented  
through a specific update of the 32-bit binary counter located at block address 6 (see  
Section 4.2: 32-bit binary counters for details).  
15/47  
Memory mapping  
Figure 14. Write_block update in reload mode (binary format)  
SRI512  
b31  
b0  
Previous data stored in block  
Data to be written  
1
...  
...  
...  
1
1
1
1
1
1
0
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
0
0
1
0
0
1
1
1
0
1
1
1
1
1
1
1
1
1
New data stored in block  
1
ai07659  
4.2  
32-bit binary counters  
The two 32-bit binary counters located at block addresses 5 and 6, respectively, are used to  
32  
count down from 2 (4096 million) to 0. The SRI512 uses dedicated logic that only allows  
the update of a counter if the new value is lower than the previous one. This feature allows  
the application to count down by steps of 1 or more. The initial value in the counter is  
FFFF FFFFh. When the value displayed is 0000 0000h, the counter is empty and cannot be  
reloaded. The counter is updated by issuing the Write_block command to block address 5 or  
6, depending on which counter is to be updated. The Write_block command writes the new  
32-bit value to the counter block address. Figure 16 shows examples of how the counters  
operate.  
The counter programming cycles are protected by automated antitearing logic. This function  
allows the counter value to be protected in case of power down within the programming  
cycle. In case of power down, the counter value is not updated and the previous value  
continues to be stored.  
Blocks 5 and 6 can be write-protected using the OTP_Lock_Reg bits (block 255). Once a  
block has been protected, its contents cannot be modified. A protected counter block  
behaves like a ROM block.  
Figure 15. Binary counter (addresses 5 to 6)  
MSb  
b31  
32-bit Block  
LSb  
b0  
Block  
Address  
Description  
b16 b15 b14  
b8 b7  
5
6
32-bit Binary Counter  
32-bit Binary Counter  
Count down  
Counter  
ai12384  
16/47  
SRI512  
Memory mapping  
Figure 16. Count down example (binary format)  
b31  
b0  
Initial data  
1
...  
...  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1-unit decrement  
1-unit decrement  
1-unit decrement  
8-unit decrement  
Increment not allowed  
1
0
1
1
...  
...  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
0
1
1
...  
...  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
0
0
0
0
0
ai07661  
The counter with block address 6 controls the Reload command used to reset the resettable  
OTP area (addresses 0 to 4). Bits b to b act as an 11-bit Reload counter; whenever one  
31  
21  
of these 11 bits is updated, the SRI512 detects the change and adds an Erase cycle to the  
Write_block command for locations 0 to 4 (see Section 4.1: Resettable OTP area). The  
Erase cycle remains active until a Power-off or a Select command is issued. The SRI512’s  
11  
resettable OTP area can be reloaded up to 2,047 times (2 -1).  
17/47  
Memory mapping  
SRI512  
4.3  
EEPROM area  
The 9 blocks between addresses 7 and 15 are EEPROM blocks of 32 bits each (36 bytes in  
total). (See Figure 17 for a map of the area.) These blocks can be accessed using the  
Read_block and Write_block commands. The Write_block command for the EEPROM area  
always includes an auto-erase cycle prior to the write cycle.  
Blocks 7 to 15 can be write-protected. Write access is controlled by the 9 bits of the  
OTP_Lock_Reg located at block address 255 (see Section 4.4.1: OTP_Lock_Reg for  
details). Once protected, these blocks (7 to 15) cannot be unprotected  
Figure 17. EEPROM (addresses 7 to 15)  
MSb  
b31  
32-bit block  
LSb  
b0  
Block  
address  
Description  
b16 b15 b14  
b8 b7  
7
User area  
User area  
User area  
User area  
User area  
User area  
User area  
User area  
User area  
8
9
10  
11  
12  
13  
14  
15  
Lockable  
EEPROM  
Ai12383b  
18/47  
SRI512  
Memory mapping  
4.4  
System area  
This area is used to modify the settings of the SRI512. It contains 3 registers:  
OTP_Lock_Reg, Fixed Chip_ID and ST Reserved. See Figure 18 for a map of this area.  
A Write_block command in this area will not erase the previous contents. Selected bits can  
thus be set from 1 to 0. All bits previously at 0 remain unchanged. Once all the 32 bits of a  
block are at 0, the block is empty and cannot be updated any more.  
Figure 18. System area  
MSb  
b31  
32-bit Block  
LSb  
b0  
Block  
Address  
Description  
OTP  
b16 b15 b14  
b8 b7  
Fixed Chip_ID  
(Option)  
255  
OTP_Lock_Reg  
0
ST Reserved  
ai12374b  
4.4.1  
OTP_Lock_Reg  
The 16 bits, b31 to b16, of the System area (block address 255) are used as  
OTP_Lock_Reg bits in the SRI512. They control the write access to the 16 blocks 0 to 15 as  
follows:  
When b16 is at 0, block 0 is write-protected  
When b17 is at 0, block 1 is write-protected  
When b18 is at 0, block 2 is write-protected  
When b19 is at 0, block 3 is write-protected  
When b20 is at 0, block 4 is write-protected  
When b21 is at 0, block 5 is write-protected  
When b22 is at 0, block 6 is write-protected  
When b23 is at 0, block 7 is write-protected  
When b24 is at 0, block 8 is write-protected  
When b25 is at 0, block 9 is write-protected  
When b26 is at 0, block 10 is write-protected  
When b27 is at 0, block 11 is write-protected  
When b28 is at 0, block 12 is write-protected  
When b29 is at 0, block 13 is write-protected  
When b30 is at 0, block 14 is write-protected  
When b31 is at 0, block 15 is write-protected.  
The OTP_Lock_Reg bits cannot be erased. Once write-protected, the blocks behave like  
ROM blocks and cannot be unprotected. After any modification of the OTP_Lock_Reg bits, it  
is necessary to send a Select command with a valid Chip_ID to the SRI512 in order to load  
the block write protection into the logic.  
19/47  
Memory mapping  
SRI512  
4.4.2  
Fixed Chip_ID (option)  
The SRI512 is provided with an anticollision feature based on a random 8-bit Chip_ID. Prior  
to selecting an SRI512, an anticollision sequence has to be run to search for the Chip_ID of  
the SRI512. This is a very flexible feature, however the searching loop requires time to run.  
For some applications, much time could be saved by knowing the value of the SRI512  
Chip_ID beforehand, so that the SRI512 can be identified and selected directly without  
having to run an anticollision sequence. This is why the SRI512 was designed with an  
optional mask setting used to program a fixed 8-bit Chip_ID to bits b to b of the system  
7
0
area. When the fixed Chip_ID option is used, the random Chip_ID function is disabled.  
20/47  
SRI512  
SRI512 operation  
5
SRI512 operation  
All commands, data and CRC are transmitted to the SRI512 as 10-bit characters using ASK  
modulation. The start bit of the 10 bits, b , is sent first. The command frame received by the  
0
SRI512 at the antenna is demodulated by the 10% ASK demodulator, and decoded by the  
internal logic. Prior to any operation, the SRI512 must have been selected by a Select  
command. Each frame transmitted to the SRI512 must start with a start of frame, followed  
by one or more data characters, two CRC bytes and the final end of frame. When an invalid  
frame is decoded by the SRI512 (wrong command or CRC error), the memory does not  
return any error code.  
When a valid frame is received, the SRI512 may have to return data to the reader. In this  
case, data is returned using BPSK encoding, in the form of 10-bit characters framed by an  
SOF and an EOF. The transfer is ended by the SRI512 sending the 2 CRC bytes and the  
EOF.  
21/47  
SRI512 states  
SRI512  
6
SRI512 states  
The SRI512 can be switched into different states. Depending on the current state of the  
SRI512, its logic will only answer to specific commands. These states are mainly used  
during the anticollision sequence, to identify and to access the SRI512 in a very short time.  
The SRI512 provides 6 different states, as described in the following paragraphs and in  
Figure 19.  
6.1  
6.2  
Power-off state  
The SRI512 is in Power-off state when the electromagnetic field around the tag is not strong  
enough. In this state, the SRI512 does not respond to any command.  
Ready state  
When the electromagnetic field is strong enough, the SRI512 enters the Ready state. After  
Power-up, the Chip_ID is initialized with a random value. The whole logic is reset and  
remains in this state until an Initiate() command is issued. Any other command will be  
ignored by the SRI512.  
6.3  
6.4  
Inventory state  
The SRI512 switches from the Ready to the Inventory state after an Initiate() command has  
been issued. In Inventory state, the SRI512 will respond to any anticollision commands:  
Initiate(), Pcall16() and Slot_marker(), and then remain in the Inventory state. It will switch to  
the Selected state after a Select(Chip_ID) command is issued, if the Chip_ID in the  
command matches its own. If not, it will remain in Inventory state.  
Selected state  
In Selected state, the SRI512 is active and responds to all Read_block(), Write_block(), and  
Get_UID() commands. When an SRI512 has entered the Selected state, it no longer  
responds to anticollision commands. So that the reader can access another tag, the SRI512  
can be switched to the Deselected state by sending a Select(Chip_ID2) with a Chip_ID that  
does not match its own, or it can be placed in Deactivated state by issuing a Completion()  
command. Only one SRI512 can be in Selected state at a time.  
6.5  
Deselected state  
Once the SRI512 is in Deselected state, only a Select(Chip_ID) command with a Chip_ID  
matching its own can switch it back to Selected state. All other commands are ignored.  
6.6  
Deactivated state  
When in this state, the SRI512 can only be turned off. All commands are ignored.  
22/47  
SRI512  
SRI512 states  
Figure 19. State transition diagram  
Power-off  
Ready  
Out of  
field  
On field  
Chip_ID  
= RND  
8bits  
Initiate()  
Out of  
field  
Initiate() or Pcall16()  
or Slot_marker(SN) or  
Select(wrong Chip_ID)  
Inventory  
Out of  
field  
Select(Chip_ID)  
Reset_to_inventory()  
Selected  
Out of  
field  
Out of  
field  
Select(Chip_ID)  
Deselected  
Completion()  
Deactivated  
Select( Chip_ID)  
Select(Chip_ID)  
Read_block()  
Write_block()  
Get_UID()  
AI10794b  
23/47  
Anticollision  
SRI512  
7
Anticollision  
The SRI512 provides an anticollision mechanism that searches for the Chip_ID of each  
device that is present in the reader field range. When known, the Chip_ID is used to select  
an SRI512 individually, and access its memory. The anticollision sequence is managed by  
the reader through a set of commands described in Section 5: SRI512 operation:  
Initiate()  
Pcall16()  
Slot_marker().  
The reader is the master of the communication with one or more SRI512 device(s). It  
initiates the tag communication activity by issuing an Initiate(), Pcall16() or Slot_marker()  
command to prompt the SRI512 to answer. During the anticollision sequence, it might  
happen that two or more SRI512 devices respond simultaneously, so causing a collision.  
The command set allows the reader to handle the sequence, to separate SRI512  
transmissions into different time slots. Once the anticollision sequence has completed,  
SRI512 communication is fully under the control of the reader, allowing only one SRI512 to  
transmit at a time.  
The Anticollision scheme is based on the definition of time slots during which the SRI512  
devices are invited to answer with minimum identification data: the Chip_ID. The number of  
slots is fixed at 16 for the Pcall16() command. For the Initiate() command, there is no slot  
and the SRI512 answers after the command is issued. SRI512 devices are allowed to  
answer only once during the anticollision sequence. Consequently, even if there are several  
SRI512 devices present in the reader field, there will probably be a slot in which only one  
SRI512 answers, allowing the reader to capture its Chip_ID. Using the Chip_ID, the reader  
can then establish a communication channel with the identified SRI512. The purpose of the  
anticollision sequence is to allow the reader to select one SRI512 at a time.  
The SRI512 is given an 8-bit Chip_ID value used by the reader to select only one among up  
to 256 tags present within its field range. The Chip_ID is initialized with a random value  
during the Ready state, or after an Initiate() command in the Inventory state.  
The four least significant bits (b to b ) of the Chip_ID are also known as the  
0
3
Chip_slot_number. This 4-bit value is used by the Pcall16() and Slot_marker() commands  
during the anticollision sequence in the Inventory state.  
Figure 20. SRI512 Chip_ID description  
b7  
b6  
b5  
b4  
b3  
8-bit Chip_ID  
b2  
b1  
b0  
b0 to b3: CHIP_SLOT_NUMBER  
ai07668  
Each time the SRI512 receives a Pcall16() command, the Chip_slot_number is given a new  
4-bit random value. If the new value is 0000 , the SRI512 returns its whole 8-bit Chip_ID in  
b
its answer to the Pcall16() command. The Pcall16() command is also used to define the slot  
number 0 of the anticollision sequence. When the SRI512 receives the Slot_marker(SN)  
command, it compares its Chip_slot_number with the Slot_number parameter (SN). If they  
match, the SRI512 returns its Chip_ID as a response to the command. If they do not, the  
SRI512 does not answer. The Slot_marker(SN) command is used to define all the  
anticollision slot numbers from 1 to 15.  
24/47  
SRI512  
Anticollision  
Figure 21. Description of a possible anticollision sequence  
1. The value X in the answer Chip_ID means a random hexadecimal character from 0 to F.  
25/47  
Anticollision  
SRI512  
7.1  
Description of an anticollision sequence  
The anticollision sequence is initiated by the Initiate() command which triggers all the  
SRI512 devices that are present in the reader field range, and that are in Inventory state.  
Only SRI512 devices in Inventory state will respond to the Pcall16() and Slot_marker(SN)  
anticollision commands.  
A new SRI512 introduced in the field range during the anticollision sequence will not be  
taken into account as it will not respond to the Pcall16() or Slot_marker(SN) command  
(Ready state). To be considered during the anticollision sequence, it must have received the  
Initiate() command and entered the Inventory state.  
Table 4 shows the elements of a standard anticollision sequence. (See Figure 22 for an  
example.)  
Table 4.  
Standard anticollision sequence  
Send Initiate().  
– If no answer is detected, go to step1.  
Step 1 Init:  
– If only 1 answer is detected, select and access the SRI512. After accessing the  
SRI512, deselect the tag and go to step1.  
– If a collision (many answers) is detected, go to step2.  
Send Pcall16().  
Step 2 Slot 0  
Step 3 Slot 1  
Step 4 Slot 2  
Step N Slop N  
Step 17 Slot 15  
– If no answer or collision is detected, go to step3.  
– If 1 answer is detected, store the Chip_ID, Send Select() and go to step3.  
Send Slot_marker(1).  
– If no answer or collision is detected, go to step4.  
– If 1 answer is detected, store the Chip_ID, Send Select() and go to step4.  
Send Slot_marker(2).  
– If no answer or collision is detected, go to step5.  
– If 1 answer is detected, store the Chip_ID, Send Select() and go to step5.  
Send Slot_marker(3 up to 14) ...  
– If no answer or collision is detected, go to stepN+1.  
– If 1 answer is detected, store the Chip_ID, Send Select() and go to stepN+1.  
Send Slot_marker(15).  
– If no answer or collision is detected, go to step18.  
– If 1 answer is detected, store the Chip_ID, Send Select() and go to step18.  
All the slots have been generated and the Chip_ID values should be  
stored into the reader memory. Issue the Select(Chip_ID) command and  
access each identified SRI512 one by one. After accessing each SRI512,  
switch them into Deselected or Deactivated state, depending on the  
application needs.  
Step 18  
– If collisions were detected between Step2 and Step17, go to Step2.  
– If no collision was detected between Step2 and Step17, go to Step1.  
After each Slot_marker() command, there may be several, one or no answers from the  
SRI512 devices. The reader must handle all the cases and store all the Chip_IDs, correctly  
decoded. At the end of the anticollision sequence, after Slot_marker(15), the reader can  
start working with one SRI512 by issuing a Select() command containing the desired  
Chip_ID. If a collision is detected during the anticollision sequence, the reader has to  
generate a new sequence in order to identify all unidentified SRI512 devices in the field. The  
anticollision sequence can stop when all SRI512 devices have been identified.  
26/47  
SRI512  
Anticollision  
Figure 22. Example of an anticollision sequence  
Tag 1  
Tag 2  
Tag 3  
Tag 4  
Tag 5  
Tag 6  
Tag 7  
Tag 8  
Command  
Comments  
Chip_ID Chip_ID Chip_ID Chip_ID Chip_ID Chip_ID Chip_ID Chip_ID  
Each tag gets a random Chip_ID  
28h  
75h  
40h  
01h  
02h  
FEh  
A9h  
7Ch  
READY State  
INITIATE ()  
Each tag get a new random Chip_ID  
All tags answer: collisions  
40h  
45h  
13h  
12h  
3Fh  
30h  
4Ah  
43h  
50h  
55h  
48h  
43h  
52h  
53h  
7Ch  
73h  
All CHIP_SLOT_NUMBERs get  
a new random value  
PCALL16()  
Slot0: only one answer  
30h  
30h  
SELECT(30h)  
Tag3 is identified  
Slot1: no answer  
Slot2: only one answer  
Tag2 is identified  
Slot3: collisions  
SLOT_MARKER(1)  
SLOT_MARKER(2)  
SELECT(12h)  
12h  
12h  
SLOT_MARKER(3)  
SLOT_MARKER(4)  
43h  
43h  
53h  
73h  
Slot4: no answer  
SLOT_MARKER(5)  
SLOT_MARKER(6)  
SLOT_MARKER(N)  
SLOT_MARKER(F)  
45h  
55h  
53h  
Slot5: collisions  
Slot6: no answer  
SlotN: no answer  
SlotF: no answer  
All CHIP_SLOT_NUMBERs get  
a new random value  
Slot0: collisions  
40h  
40h  
41h  
42h  
50h  
50h  
74h  
PCALL16()  
41h  
41h  
SLOT_MARKER(1)  
SELECT(41h)  
Slot1: only one answer  
Tag4 is identified  
SLOT_MARKER(2)  
SELECT(42h)  
42h  
42h  
Slot2: only one answer  
Tag6 is identified  
SLOT_MARKER(3)  
53h  
53h  
Slot3: only one answer  
SELECT(53h)  
Tag5 is identified  
Slot4: only one answer  
Tag8 is identified  
SlotN: no answer  
SLOT_MARKER(4)  
SELECT(74h)  
74h  
74h  
SLOT_MARKER(N)  
All CHIP_SLOT_NUMBERs get  
a new random value  
Slot0: only one answer  
41h  
50h  
50h  
50h  
PCALL16()  
SELECT(50h)  
Tag7 is identified  
Slot1: only one answer but already  
found for tag4  
SLOT_MARKER(1)  
SLOT_MARKER(N)  
PCALL16()  
41h  
43h  
SlotN: no answer  
All CHIP_SLOT_NUMBERs get  
a new random value  
Slot0: only one answer  
SLOT_MARKER(3)  
SELECT(43h)  
43h  
43h  
Slot3: only one answer  
Tag1 is identified  
All tags are identified  
ai07669  
27/47  
SRI512 commands  
SRI512  
8
SRI512 commands  
See the paragraphs below for a detailed description of the Commands available on the  
SRI512. The commands and their hexadecimal codes are summarized in Table 5. A brief is  
given in Appendix B.  
Table 5.  
Command code  
Hexadecimal Code  
Command  
06h-00h  
06h-04h  
x6h  
Initiate()  
Pcall16()  
Slot_marker (SN)  
Read_block(Addr)  
Write_block(Addr, Data)  
Get_UID()  
08h  
09h  
0Bh  
0Ch  
Reset_to_inventory  
Select(Chip_ID)  
Completion()  
0Eh  
0Fh  
28/47  
SRI512  
SRI512 commands  
8.1  
Initiate() command  
Command code = 06h - 00h  
Initiate() is used to initiate the anticollision sequence of the SRI512. On receiving the  
Initiate() command, all SRI512 devices in Ready state switch to Inventory state, set a new 8-  
bit Chip_ID random value, and return their Chip_ID value. This command is useful when  
only one SRI512 in Ready state is present in the reader field range. It speeds up the  
Chip_ID search process. The Chip_slot_number is not used during Initiate() command  
access.  
Figure 23. Initiate request format  
SOF  
Initiate  
CRC  
CRC  
EOF  
L
H
06h  
00h  
8 bits  
8 bits  
AI07670b  
Request parameter:  
No parameter  
Figure 24. Initiate response format  
SOF  
Chip_ID  
8 bits  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bits  
AI07671  
Response parameter:  
Chip_ID of the SRI512  
Figure 25. Initiate frame exchange between reader and SRI512  
Reader  
SRI512  
SOF  
06h  
00h  
CRC  
CRC  
EOF  
L
H
<-t -> <-t ->  
SOF Chip_ID CRC  
CRC  
EOF  
0
1
L
H
AI10942  
29/47  
SRI512 commands  
SRI512  
8.2  
Pcall16() command  
Command code = 06h - 04h  
The SRI512 must be in Inventory state to interpret the Pcall16() command.  
On receiving the Pcall16() command, the SRI512 first generates a new random  
Chip_slot_number value (in the 4 least significant bits of the Chip_ID). Chip_slot_number  
can take on a value between 0 an 15 (1111 ). The value is retained until a new Pcall16() or  
b
Initiate() command is issued, or until the SRI512 is powered off. The new Chip_slot_number  
value is then compared with the value 0000 . If they match, the SRI512 returns its Chip_ID  
b
value. If not, the SRI512 does not send any response.  
The Pcall16() command, used together with the Slot_marker() command, allows the reader  
to search for all the Chip_IDs when there are more than one SRI512 device in Inventory  
state present in the reader field range.  
Figure 26. Pcall16 request format  
SOF  
Pcall16  
CRC  
CRC  
EOF  
L
H
06h  
04h  
8 bits  
8 bits  
AI07673b  
Request parameter:  
No parameter  
Figure 27. Pcall16 response format  
SOF  
Chip_ID  
8 bits  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bits  
AI07671  
Response parameter:  
Chip_ID of the SRI512  
Figure 28. Pcall16 frame exchange between reader and SRI512  
Reader  
SRI512  
SOF 06h  
04h  
CRC  
CRC  
EOF  
L
H
<-t -> <-t ->  
SOF Chip_ID CRC  
CRC  
EOF  
0
1
L
H
AI10943  
30/47  
SRI512  
SRI512 commands  
8.3  
Slot_marker(SN) command  
Command code = x6h  
The SRI512 must be in Inventory state to interpret the Slot_marker(SN) command.  
The Slot_marker byte code is divided into two parts:  
b to b : 4-bit command code  
3 0  
with fixed value 6.  
b to b : 4 bits known as the Slot_number (SN). They assume a value between 1 and  
7
4
15. The value 0 is reserved by the Pcall16() command.  
On receiving the Slot_marker() command, the SRI512 compares its Chip_slot_number  
value with the Slot_number value given in the command code. If they match, the SRI512  
returns its Chip_ID value. If not, the SRI512 does not send any response.  
The Slot_marker() command, used together with the Pcall16() command, allows the reader  
to search for all the Chip_IDs when there are more than one SRI512 device in Inventory  
state present in the reader field range.  
Figure 29. Slot_marker request format  
SOF  
Slot_marker  
X6h  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bits  
AI07675b  
Request parameter:  
x: Slot number  
Figure 30. Slot_marker response format  
SOF  
Chip_ID  
8 bits  
CRC  
L
CRC  
EOF  
H
8 bits  
8 bits  
AI07671  
Response parameters:  
Chip_ID of the SRI512  
Figure 31. Slot_marker frame exchange between reader and SRI512  
Reader  
SRI512  
SOF  
X6h  
CRC  
CRC  
EOF  
L
H
<-t ->  
<-t ->  
SOF Chip_ID CRC  
1
CRC  
EOF  
0
L
H
AI10944  
31/47  
SRI512 commands  
SRI512  
8.4  
Select(Chip_ID) command  
Command code = 0Eh  
The Select() command allows the SRI512 to enter the Selected state. Until this command is  
issued, the SRI512 will not accept any other command, except for Initiate(), Pcall16() and  
Slot_marker(). The Select() command returns the 8 bits of the Chip_ID value. An SRI512 in  
Selected state, that receives a Select() command with a Chip_ID that does not match its  
own is automatically switched to Deselected state.  
Figure 32. Select request format  
SOF  
Select  
0Eh  
Chip_ID  
8 bits  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bits  
AI07677b  
Request parameter:  
8-bit Chip_ID stored during the anticollision sequence  
Figure 33. Select response format  
SOF  
Chip_ID  
8 bits  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bits  
AI07671  
Response parameters:  
Chip_ID of the selected tag. Must be equal to the transmitted Chip_ID  
Figure 34. Select frame exchange between reader and SRI512  
Reader  
SRI512  
SOF  
0Eh  
Chip_ID CRC  
CRC  
EOF  
L
H
<-t -> <-t ->  
SOF Chip_ID CRC  
CRC  
EOF  
H
0
1
L
AI10945  
32/47  
SRI512  
SRI512 commands  
8.5  
Completion() command  
Command code = 0Fh  
On receiving the Completion() command, an SRI512 in Selected state switches to  
Deactivated state and stops decoding any new commands. The SRI512 is then locked in  
this state until a complete reset (tag out of the field range). A new SRI512 can thus be  
accessed through a Select() command without having to remove the previous one from the  
field. The Completion() command does not generate a response.  
All SRI512 devices not in Selected state ignore the Completion() command.  
Figure 35. Completion request format  
SOF  
Completion  
0Fh  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bits  
AI07679b  
Request parameters:  
No parameter  
Figure 36. Completion response format  
No Response  
AI07680  
Figure 37. Completion frame exchange between reader and SRI512  
Reader  
SRI512  
SOF  
0Fh  
CRC  
CRC  
EOF  
L
H
No Response  
AI10646  
33/47  
SRI512 commands  
SRI512  
8.6  
Reset_to_inventory() command  
Command code = 0Ch  
On receiving the Reset_to_inventory() command, all SRI512 devices in Selected state  
revert to Inventory state. The concerned SRI512 devices are thus resubmitted to the  
anticollision sequence. This command is useful when two SRI512 devices with the same 8-  
bit Chip_ID happen to be in Selected state at the same time. Forcing them to go through the  
anticollision sequence again allows the reader to generates new Pcall16() commands and  
so, to set new random Chip_IDs.  
The Reset_to_inventory() command does not generate a response.  
All SRI512 devices that are not in Selected state ignore the Reset_to_inventory() command.  
Figure 38. Reset_to_inventory request format  
SOF  
Reset_to_inventory  
0Ch  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bits  
AI07682b  
Request parameter:  
No parameter  
Figure 39. Reset_to_inventory response format  
No Response  
AI07680  
Figure 40. Reset_to_inventory frame exchange between reader and SRI512  
Reader  
SRI512  
SOF  
0Ch  
CRC  
CRC  
EOF  
L
H
No Response  
AI10947  
34/47  
SRI512  
SRI512 commands  
8.7  
Read_block(Addr) command  
Command code = 08h  
On receiving the Read_block command, the SRI512 reads the desired block and returns the  
4 data bytes contained in the block. Data bytes are transmitted with the Least Significant  
byte first and each byte is transmitted with the least significant bit first.  
The address byte gives access to the 16 blocks of the SRI512 (addresses 0 to 15).  
Read_block commands issued with a block address above 15 will not be interpreted and the  
SRI512 will not return any response, except for the System area located at address 255.  
The SRI512 must have received a Select() command and be switched to Selected state  
before any Read_block() command can be accepted. All Read_block() commands sent to  
the SRI512 before a Select() command is issued are ignored.  
Figure 41. Read_block request format  
SOF  
Read_block  
08h  
Address  
8 bIts  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bits  
AI07684b  
Request parameter:  
Address: block addresses from 0 to 15, or 255  
Figure 42. Read_block response format  
SOF  
Data 1  
8 bIts  
Data 2  
8 bIts  
Data 3  
8 bIts  
Data 4  
CRC  
CRC  
EOF  
L
H
8 bIts  
8 bits  
8 bIts  
AI07685b  
Response parameters:  
Data 1: Less significant data byte  
Data 2: Data byte  
Data 3: Data byte  
Data 4: Most significant data byte  
Figure 43. Read_block frame exchange between reader and SRI512  
Reader  
SRI512  
SOF 08h ADDR CRC CRC EOF  
L
H
<-t -> <-t ->  
SOF  
CRC CRC EOF  
Data 1 Data 2 Data 3 Data 4  
0
1
L
H
AI10948b  
35/47  
SRI512 commands  
SRI512  
8.8  
Write_block (Addr, Data) command  
Command code = 09h  
On receiving the Write_block command, the SRI512 writes the 4 bytes contained in the  
command to the addressed block, provided that the block is available and not write-  
protected. Data bytes are transmitted with the least significant byte first, and each byte is  
transmitted with the least significant bit first.  
The address byte gives access to the 16 blocks of the SRI512 (addresses 0 to 15).  
Write_block commands issued with a block address above 15 will not be interpreted and the  
SRI512 will not return any response, except for the System area located at address 255.  
The result of the Write_block command is submitted to the addressed block. See the  
following paragraphs for a complete description of the Write_block command:  
Figure 12: Resettable OTP area (addresses 0 to 4).  
Figure 15: Binary counter (addresses 5 to 6).  
Figure 17: EEPROM (addresses 7 to 15).  
The Write_block command does not give rise to a response from the SRI512. The reader  
must check after the programming time, t , that the data was correctly programmed. The  
W
SRI512 must have received a Select() command and be switched to Selected state before  
any Write_block command can be accepted. All Write_block commands sent to the SRI512  
before a Select() command is issued, are ignored.  
Figure 44. Write_block request format  
SOF  
Write_block  
09h  
Address  
8 bIts  
Data 1  
8 bIts  
Data 2  
8 bIts  
Data 3  
8 bIts  
Data 4  
8 bIts  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bIts  
AI07687b  
Request parameters:  
Address: block addresses from 0 to 15, or 255  
Data 1: Less significant data byte  
Data 2: Data byte  
Data 3: Data byte  
Data 4: Most significant data byte.  
Figure 45. Write_block response format  
No Response  
AI07680  
36/47  
SRI512  
SRI512 commands  
Figure 46. Write_block frame exchange between reader and SRI512  
Reader  
SRI512  
CRC CRC EOF  
Data 1 Data 2 Data 3 Data 4  
SOF 09h Address  
L
H
No response  
AI10949b  
8.9  
Get_UID() command  
Command code = 0Bh  
On receiving the Get_UID command, the SRI512 returns its 8 UID bytes. UID bytes are  
transmitted with the least significant byte first, and each byte is transmitted with the least  
significant bit first.  
The SRI512 must have received a Select() command and be switched to Selected state  
before any Get_UID() command can be accepted. All Get_UID() commands sent to the  
SRI512 before a Select() command is issued, are ignored.  
Figure 47. Get_UID request format  
SOF  
Get_UID  
0Bh  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bits  
AI07693b  
Request parameter:  
No parameter  
Figure 48. Get_UID response format  
UID 0  
8 bits  
UID 1  
8 bIts  
UID 2  
8 bIts  
UID 3 UID 4  
UID 5  
UID 6  
UID 7  
8 bIts  
CRC  
CRC  
H
SOF  
EOF  
L
8 bIts  
8 bIts  
8 bIts  
8 bIts  
8 bits  
8 bIts  
AI07694  
Response parameters:  
UID 0: Less significant UID byte  
UID 1 to UID 6: UID bytes  
UID 7: Most significant UID byte.  
37/47  
SRI512 commands  
SRI512  
Unique Identifier (UID)  
Members of the SRI512 family are uniquely identified by a 64-bit Unique Identifier (UID).  
This is used for addressing each SRI512 device uniquely after the anticollision loop. The  
UID complies with ISO/IEC 15963 and ISO/IEC 7816-6. It is a read-only code, and  
comprises (as summarized in Figure 49):  
an 8-bit prefix, with the most significant bits set to D0h  
an 8-bit IC manufacturer code (ISO/IEC 7816-6/AM1) set to 02h (for  
STMicroelectronics)  
a 6-bit IC code set to 00 0110b = 6d for SRI512  
a 42-bit unique serial number  
Figure 49. 64-bit unique identifier of the SRI512  
Most significant bits  
Least significant bits  
0
63  
55  
47  
41  
D0h  
02h  
6d  
Unique Serial Number  
AI12375  
Figure 50. Get_UID frame exchange between reader and SRI512  
S
O
F
E
O
F
Reader  
SRI512  
0Bh CRC CRC  
L
H
S
O
F
E
O
F
UID UID UID UID UID UID UID UID  
<-t -> <-t ->  
CRC CRC  
0
1
L
H
0
1
2
3
4
5
6
7
AI10950  
8.10  
Power-on state  
After power-on, the SRI512 is in the following state:  
It is in the low-power state.  
It is in Ready state.  
It shows highest impedance with respect to the reader antenna field.  
It will not respond to any command except Initiate().  
38/47  
SRI512  
Maximum rating  
9
Maximum rating  
Stressing the device above the rating listed in the absolute maximum ratings table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the operating sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE  
Program and other relevant quality documents.  
Table 6.  
Symbol  
Absolute maximum ratings  
Parameter  
Min.  
Max.  
Unit  
15  
25  
23  
°C  
TSTG  
tSTG  
Wafer  
Storage conditions  
(kept in its antistatic bag)  
months  
ICC  
Supply current on AC0 / AC1  
Input voltage on AC0 / AC1  
–20  
–7  
20  
mA  
V
VMAX  
7
Machine model(1)  
–100  
–1000  
100  
1000  
V
Electrostatic discharge  
voltage  
VESD  
Human body model(1)  
V
1. Mil. Std. 883 - Method 3015  
39/47  
DC and AC parameters  
SRI512  
10  
DC and AC parameters  
Table 7.  
Symbol  
Operating conditions  
Parameter  
Min.  
Max.  
Unit  
TA  
Ambient operating temperature  
–20  
85  
°C  
Table 8.  
Symbol  
DC characteristics  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VCC  
ICC  
Regulated voltage  
2.5  
3.5  
100  
250  
V
Supply current (active in read)  
Supply current (active in write)  
Backscattering-induced voltage  
Internal tuning capacitor  
VCC = 3.0 V  
VCC = 3.0 V  
ISO 10373-6  
13.56 MHz  
µA  
µA  
mV  
pF  
ICC  
VRET  
CTUN  
20  
64  
(1)  
Table 9.  
Symbol  
AC characteristics  
Parameter  
Condition  
Min  
Max  
Unit  
fCC  
External RF signal frequency  
13.553 13.567 MHz  
MICARRIER Carrier modulation Index  
tRFR, tRFF 10% rise and fall times  
MI=(A-B)/(A+B)  
ETU = 128/fCC  
8
14  
%
µs  
µs  
µs  
0.8  
2.5  
tRFSBL  
tJIT  
Minimum pulse width for start bit  
ASK modulation data jitter  
9.44  
Coupler to SRI512  
–2  
5
+2  
Minimum time from carrier  
generation to first data  
tMIN CD  
ms  
fS  
t0  
Subcarrier frequency  
fCC/16  
128/fS  
847.5  
151  
kHz  
µs  
Antenna reversal delay  
t1  
Synchronization delay  
128/fS  
151  
µs  
t2  
Answer to new request delay  
Time between request characters  
Time between answer characters  
14 ETU  
132  
0
µs  
tDR  
tDA  
Coupler to SRI512  
SRI512 to coupler  
57  
3
µs  
0
µs  
With no auto-erase cycle  
(OTP)  
ms  
tW  
Programming time for write  
With auto-erase cycle  
(EEPROM)  
5
7
ms  
ms  
Binary counter decrement  
1. All timing measurements were performed on a reference antenna with the following characteristics:  
External size: 75 mm x 48 mm  
Number of turns: 3  
Width of conductor: 1 mm  
Space between 2 conductors: 0.4 mm  
Value of the coil: 1.4 µH  
Tuning Frequency: 14.4 MHz.  
40/47  
SRI512  
DC and AC parameters  
Figure 51. SRI512 synchronous timing, transmit and receive  
ASK Modulated signal from the Reader to the Contactless device  
t
RFF  
t
A
B
RFR  
ƒ
cc  
t
RFSBL  
t
MIN CD  
FRAME Transmission between the reader and the contactless device  
t
t
DR  
DR  
DATA  
1
EOF  
1
0
FRAME Transmitted by the reader in ASK  
1
1
0
847KHz  
SOF  
1 1  
0
0
DATA  
DATA  
FRAME Transmitted by the SRI512  
in BPSK  
t
t
t
t
DA  
0
1
DA  
Data jitter on FRAME Transmitted by the reader in ASK  
t
t
JIT  
t
t
t
JIT  
JIT  
JIT  
JIT  
0
START  
t
t
t
t
t
RFSBL  
RFSBL  
RFSBL  
RFSBL  
RFSBL  
Ai10951  
41/47  
Part numbering  
SRI512  
11  
Part numbering  
Table 10. Ordering information scheme  
Example:  
SRI512  
W4  
/ 1GE  
Device type  
SRI512  
Package  
W4 = 180 µm 15 µm unsawn wafer  
SBN18 = 180 µm 15 µm bumped and sawn wafer on 8-inch frame  
Customer code  
1GE = generic product  
xxx = customer code after personalization  
Note:  
Devices are shipped from the factory with the memory content bits erased to 1.  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
42/47  
SRI512  
ISO 14443 Type B CRC calculation  
Appendix A ISO 14443 Type B CRC calculation  
#include <stdio.h>  
#include <stdlib.h>  
#include <string.h>  
#include <ctype.h>  
#define BYTE unsigned char  
#define USHORT unsigned short  
unsigned short UpdateCrc(BYTE ch, USHORT *lpwCrc)  
{
ch = (ch^(BYTE)((*lpwCrc) & 0x00FF));  
ch = (ch^(ch<<4));  
*lpwCrc = (*lpwCrc >> 8)^((USHORT)ch <<  
8)^((USHORT)ch<<3)^((USHORT)ch>>4);  
return(*lpwCrc);  
}
void ComputeCrc(char *Data, int Length, BYTE *TransmitFirst, BYTE  
*TransmitSecond)  
{
BYTE chBlock; USHORTt wCrc;  
wCrc = 0xFFFF; // ISO 3309  
do  
{
chBlock = *Data++;  
UpdateCrc(chBlock, &wCrc);  
} while (--Length);  
wCrc = ~wCrc; // ISO 3309  
*TransmitFirst = (BYTE) (wCrc & 0xFF);  
*TransmitSecond = (BYTE) ((wCrc >> 8) & 0xFF);  
return;  
}
int main(void)  
{
BYTE BuffCRC_B[10] = {0x0A, 0x12, 0x34, 0x56}, First, Second, i;  
printf("Crc-16 G(x) = x^16 + x^12 + x^5 + 1”);  
printf("CRC_B of [ ");  
for(i=0; i<4; i++)  
printf("%02X ",BuffCRC_B[i]);  
ComputeCrc(BuffCRC_B, 4, &First, &Second);  
printf("] Transmitted: %02X then %02X.”, First, Second);  
return(0);  
43/47  
SRI512 command brief  
SRI512  
Appendix B SRI512 command brief  
Figure 52. Initiate frame exchange between reader and SRI512  
Reader  
SRI512  
SOF  
06h  
00h  
CRC  
CRC  
EOF  
L
H
<-t -> <-t ->  
SOF Chip_ID CRC  
CRC  
EOF  
0
1
L
H
AI10942  
Figure 53. Pcall16 frame exchange between reader and SRI512  
Reader  
SRI512  
SOF 06h  
04h  
CRC  
CRC  
EOF  
L
H
<-t -> <-t ->  
SOF Chip_ID CRC  
CRC  
EOF  
0
1
L
H
AI10943  
Figure 54. Slot_marker frame exchange between reader and SRI512  
Reader  
SRI512  
SOF  
X6h  
CRC  
CRC  
EOF  
L
H
<-t ->  
<-t ->  
SOF Chip_ID CRC  
1
CRC  
EOF  
0
L
H
AI10944  
Figure 55. Select frame exchange between reader and SRI512  
Reader  
SRI512  
SOF  
0Eh  
Chip_ID CRC  
CRC  
EOF  
L
H
<-t -> <-t ->  
SOF Chip_ID CRC  
CRC  
EOF  
0
1
L
H
AI10945  
Figure 56. Completion frame exchange between reader and SRI512  
Reader  
SRI512  
SOF  
0Fh  
CRC  
CRC  
EOF  
L
H
No Response  
AI10646  
44/47  
SRI512  
SRI512 command brief  
Figure 57. Reset_to_inventory frame exchange between reader and SRI512  
Reader  
SRI512  
SOF  
0Ch  
CRC  
CRC  
EOF  
L
H
No Response  
AI10947  
Figure 58. Read_block frame exchange between reader and SRI512  
Reader  
SRI512  
SOF 08h ADDR CRC CRC EOF  
L
H
DATA DATA DATA DATA  
<-t -> <-t ->  
SOF  
CRC CRC EOF  
0
1
L
H
1
2
3
4
AI10948  
Figure 59. Write_block frame exchange between reader and SRI512  
DATA DATA DATA DATA  
Reader  
SRI512  
CRC CRC EOF  
SOF 09h  
ADDR  
L
H
1
2
3
4
No Response  
AI10949  
Figure 60. Get_UID frame exchange between reader and SRI512  
S
O
F
E
O
F
Reader  
SRI512  
0Bh CRC CRC  
L
H
S
O
F
E
O
F
UID UID UID UID UID UID UID UID  
<-t -> <-t ->  
CRC CRC  
0
1
L
H
0
1
2
3
4
5
6
7
AI10950  
45/47  
Revision history  
SRI512  
Revision history  
Table 11. Document revision history  
Date  
Revision  
Changes  
10-Apr-2006  
1
Initial release.  
Document status promoted from Target Specification to Preliminary  
Data.  
The Resettable OTP area can no longer be optionally set as a  
lockable EEPROM area. References to the OTP_Config_bit  
removed, this bit is always at ‘0’.  
31-Oct-2006  
2
VRET and CTUN added to Table 8: DC characteristics.  
Document status promoted from Preliminary Data to full Datasheet.  
C
TUN min and max values removed, typical value added in Table 8:  
05-Apr-2007  
28-Aug-2008  
3
4
DC characteristics. Small text changes.  
All antennas are ECOPACK® compliant.  
SRI512 products are no longer delivered with A3, A4 and A5  
antennas. Table 6: Absolute maximum ratings and Table 10:  
Ordering information scheme clarified. Small text changes.  
46/47  
SRI512  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
47/47  

相关型号:

SRI512A3S

13.56-MHz Short-range Contactless Memory Chip with 512-bit EEPROM and Anti-Collision functions
STMICROELECTR

SRI512A3T

13.56-MHz Short-range Contactless Memory Chip with 512-bit EEPROM and Anti-Collision functions
STMICROELECTR

SRI512A4S

13.56-MHz Short-range Contactless Memory Chip with 512-bit EEPROM and Anti-Collision functions
STMICROELECTR

SRI512A4T

13.56-MHz Short-range Contactless Memory Chip with 512-bit EEPROM and Anti-Collision functions
STMICROELECTR

SRI512A5S

13.56-MHz Short-range Contactless Memory Chip with 512-bit EEPROM and Anti-Collision functions
STMICROELECTR

SRI512A5T

13.56-MHz Short-range Contactless Memory Chip with 512-bit EEPROM and Anti-Collision functions
STMICROELECTR

SRI512SBN18

13.56-MHz Short-range Contactless Memory Chip with 512-bit EEPROM and Anti-Collision functions
STMICROELECTR

SRI512W4

13.56-MHz Short-range Contactless Memory Chip with 512-bit EEPROM and Anti-Collision functions
STMICROELECTR

SRI512_08

13.56 MHz short-range contactless memory chip with 512-bit EEPROM and anticollision functions
STMICROELECTR

SRI512_11

13.56 MHz short-range contactless memory chip with 512-bit EEPROM and anticollision functions
STMICROELECTR

SRI52-A4

Standard : UL - IEC 300V - 250V 10A - 20A
ELDECO

SRIFT1009-FD130A

RF SMP Connector, 1 Contact(s), Male
WINCHESTER