SRIX512-A5T/XXX [STMICROELECTRONICS]

IC,TRANSPONDER,CMOS,DIE;
SRIX512-A5T/XXX
型号: SRIX512-A5T/XXX
厂家: ST    ST
描述:

IC,TRANSPONDER,CMOS,DIE

电信 电信集成电路
文件: 总49页 (文件大小:478K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SRIX512  
13.56 MHz short range contactless memory chip  
with 512-bit EEPROM, anticollision and anticlone functions  
Not For New Design  
Features  
ISO 14443-2 Type B air interface compliant  
ISO 14443-3 Type B frame format compliant  
13.56 MHz carrier frequency  
847 kHz subcarrier frequency  
106 Kbit/second data transfer  
France telecom proprietary anticlone function  
8 bit Chip_ID based anticollision system  
Antenna (A3)  
Antenna (A4)  
2 count-down binary counters with automated  
antitearing protection  
64-bit unique identifier  
512-bit EEPROM with Write Protect feature  
READ BLOCK and WRITE BLOCK (32 bits)  
Internal tuning capacitor  
1 million ERASE/WRITE cycles  
40-year data retention  
Self-timed programming cycle  
5 ms typical programming time  
Packages  
– ECOPACK® (RoHS compliant)  
Antenna (A5)  
Wafer  
April 2007  
Rev 6  
1/49  
This is information on a product still in production but not recommended for new designs.  
www.st.com  
1
Contents  
SRIX512  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
AC1, AC0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3
Data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1  
3.2  
Input data transfer from the Reader to the SRIX512 (request frame) . . . . 9  
3.1.1  
3.1.2  
3.1.3  
Character transmission format for request frame . . . . . . . . . . . . . . . . . . 9  
Request start of frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Request end of frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Output data transfer from the SRIX512 to the reader (answer frame) . . . 11  
3.2.1  
3.2.2  
3.2.3  
Character transmission format for answer frame . . . . . . . . . . . . . . . . . . 11  
Answer start of frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Answer end of frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.3  
3.4  
Transmission frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.1  
4.2  
4.3  
4.4  
Resettable OTP area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
32-bit binary counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
EEPROM area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
System area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.4.1  
4.4.2  
OTP_Lock_Reg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Fixed Chip_ID (option) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5
6
SRIX512 operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
SRIX512 states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.1  
6.2  
6.3  
6.4  
6.5  
POWER-OFF state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
READY state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
INVENTORY state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
SELECTED state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
DESELECTED state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2/49  
SRIX512  
Contents  
6.6  
DEACTIVATED state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7
Anticollision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.1  
Description of an anticollision sequence . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8
9
Anticlone function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
SRIX512 commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
9.8  
9.9  
INITIATE() command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
PCALL16() command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SLOT_MARKER(SN) command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
SELECT(Chip_ID) command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
COMPLETION() command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
RESET_TO_INVENTORY() command . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
READ_BLOCK(Addr) command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
WRITE_BLOCK (Addr, Data) command . . . . . . . . . . . . . . . . . . . . . . . . . 35  
GET_UID() command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
9.10 Power-on state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
DC and ac parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
10  
11  
12  
13  
Appendix A ISO 14443 Type B CRC calculation . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Appendix B SRIX512 command brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
14  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3/49  
List of tables  
SRIX512  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Bit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SRIX512 memory mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Standard anticollision sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Command code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
A3 antenna specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
A4 antenna specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
A5 antenna specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
4/49  
SRIX512  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Die floor plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
10% ASK modulation of the received wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SRIX512 request frame character format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Request start of frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Request end of frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Wave transmitted using BPSK subcarrier modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Answer start of frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Answer end of frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 10. Example of a complete transmission frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 11. CRC transmission rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 12. Resettable OTP area (addresses 0 to 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 13. WRITE_BLOCK update in Standard mode (binary format) . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 14. WRITE_BLOCK update in Reload mode (binary format) . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 15. Binary counter (addresses 5 to 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 16. Count down example (binary format) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 17. EEPROM (addresses 7 to 15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 18. System area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 19. State transition diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 20. SRIX512 Chip_ID description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 21. Description of a possible anticollision sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 22. Example of an anticollision sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 23. INITIATE request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 24. INITIATE response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 25. INITIATE frame exchange between Reader and SRIX512 . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 26. PCALL16 request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 27. PCALL16 response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 28. PCALL16 frame exchange between Reader and SRIX512 . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 29. SLOT_MARKER request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 30. SLOT_MARKER response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 31. SLOT_MARKER frame exchange between Reader and SRIX512. . . . . . . . . . . . . . . . . . . 30  
Figure 32. SELECT request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 33. SELECT response format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 34. SELECT frame exchange Between Reader and SRIX512. . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 35. COMPLETION request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 36. COMPLETION response format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 37. COMPLETION frame exchange between Reader and SRIX512 . . . . . . . . . . . . . . . . . . . . 32  
Figure 38. RESET_TO_INVENTORY request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 39. RESET_TO_INVENTORY response format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 40. RESET_TO_INVENTORY frame exchange between Reader and SRIX512 . . . . . . . . . . . 33  
Figure 41. READ_BLOCK request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 42. READ_BLOCK response format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 43. READ_BLOCK frame exchange between Reader and SRIX512 . . . . . . . . . . . . . . . . . . . . 34  
Figure 44. WRITE_BLOCK request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 45. WRITE_BLOCK response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 46. WRITE_BLOCK frame exchange between Reader and SRIX512 . . . . . . . . . . . . . . . . . . . 36  
Figure 47. GET_UID request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 48. GET_UID Response Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
5/49  
List of figures  
SRIX512  
Figure 49. 64-bit unique identifier of the SRIX512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 50. GET_UID frame exchange between Reader and SRIX512 . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 51. SRIX512 synchronous timing, transmit and receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 52. A3 antenna specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 53. A4 antenna specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 54. A5 antenna specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 55. INITIATE frame exchange between Reader and SRIX512 . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 56. PCALL16 frame exchange between Reader and SRIX512 . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 57. SLOT_MARKER frame exchange between Reader and SRIX512. . . . . . . . . . . . . . . . . . . 46  
Figure 58. SELECT frame exchange between Reader and SRIX512 . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 59. COMPLETION frame exchange between Reader and SRIX512 . . . . . . . . . . . . . . . . . . . . 46  
Figure 60. RESET_TO_INVENTORY frame exchange between Reader and SRIX512 . . . . . . . . . . . 47  
Figure 61. READ_BLOCK frame exchange between Reader and SRIX512 . . . . . . . . . . . . . . . . . . . . 47  
Figure 62. WRITE_BLOCK frame exchange Between Reader and SRIX512 . . . . . . . . . . . . . . . . . . . 47  
Figure 63. GET_UID frame exchange between Reader and SRIX512 . . . . . . . . . . . . . . . . . . . . . . . . 47  
6/49  
SRIX512  
Description  
1
Description  
The SRIX512 is a contactless memory, powered by an externally transmitted radio wave. It  
contains a 512-bit user EEPROM fabricated with STMicroelectronics CMOS technology.  
The memory is organized as 16 blocks of 32 bits. The SRIX512 is accessed via the  
13.56 MHz carrier. Incoming data are demodulated and decoded from the received  
amplitude shift keying (ASK) modulation signal and outgoing data are generated by load  
variation using Bit Phase Shift Keying (BPSK) coding of a 847 kHz subcarrier. The received  
ASK wave is 10% modulated. The Data transfer rate between the SRIX512 and the reader  
is 106 Kbit/s in both reception and emission modes.  
The SRIX512 follows the ISO 14443-2 Type B recommendation for the radio-frequency  
power and signal interface.  
Figure 1.  
Logic diagram  
SRIX512  
AC1  
Power  
Supply  
Regulator  
ASK  
Demodulator  
512-bit  
User  
EEPROM  
BPSK  
Load  
Modulator  
AC0  
AI08560  
The SRIX512 is specifically designed for short range applications that need secure and re-  
usable products. The SRIX512 includes an anticollision mechanism that allows it to detect  
and select tags present at the same time within range of the reader. The anticollision is  
based on a probabilistic scanning method using slot markers. The SRIX512 provides an  
anticlone function which allows its authentication. Using the STMicroelectronics single chip  
coupler, CRX14, it is easy to design a reader with the authentication capability and to build a  
system with a high level of security.  
Table 1.  
Signal names  
AC1  
Antenna coil  
Antenna coil  
AC0  
7/49  
Signal description  
SRIX512  
The SRIX512 contactless EEPROM can be randomly read and written in block mode (each  
block containing 32 bits). The instruction set includes the following ten commands:  
READ_BLOCK  
WRITE_BLOCK  
INITIATE  
PCALL16  
SLOT_MARKER  
SELECT  
COMPLETION  
RESET_TO_INVENTORY  
AUTHENTICATE  
GET_UID  
The SRIX512 memory is organized in three areas, as described in Table 3. The first area is  
a resettable OTP (one time programmable) area in which bits can only be switched from 1 to  
0. Using a special command, it is possible to erase all bits of this area to 1. The second area  
provides two 32-bit binary counters which can only be decremented from FFFF FFFFh to  
0000 0000h, and gives a capacity of 4,294,967,296 units per counter. The last area is the  
EEPROM memory. It is accessible by block of 32 bits and includes an auto-erase cycle  
during each WRITE_BLOCK command.  
Figure 2.  
Die floor plan  
AC0  
AC1  
AI09055  
2
Signal description  
2.1  
AC1, AC0  
The pads for the Antenna Coil. AC1 and AC0 must be directly bonded to the antenna.  
8/49  
SRIX512  
Data transfer  
3
Data transfer  
3.1  
Input data transfer from the Reader to the SRIX512 (request  
frame)  
The reader must generate a 13.56 MHz sinusoidal carrier frequency at its antenna, with  
enough energy to “remote-power” the memory. The energy received at the SRIX512’s  
antenna is transformed into a supply voltage by a regulator, and into data bits by the ASK  
demodulator. For the SRIX512 to decode correctly the information it receives, the reader  
must 10% amplitude-modulate the 13.56 MHz wave before sending it to the SRIX512. This  
is represented in Figure 3. The data transfer rate is 106 Kbits/s.  
Figure 3.  
10% ASK modulation of the received wave  
DATA BIT TO TRANSMIT  
TO THE  
SRIX512  
10% ASK MODULATION  
OF THE 13.56MHz WAVE,  
GENERATED BY THE READER  
Transfer time for one data bit is 1/106 kHz  
Ai09716  
3.1.1  
Character transmission format for request frame  
The SRIX512 transmits and receives data bytes as 10-bit characters, with the least  
significant bit (b ) transmitted first, as shown in Figure 4. Each bit duration, an ETU  
0
(Elementary Time Unit), is equal to 9.44 µs (1/106 kHz).  
These characters, framed by a Start Of Frame (SOF) and an End Of Frame (EOF), are put  
together to form a Command Frame as shown in Figure 10. A frame includes an SOF,  
commands, addresses, data, a CRC and an EOF as defined in the ISO 14443-3 Type B  
Standard. If an error is detected during data transfer, the SRIX512 does not execute the  
command, but it does not generate an error frame.  
Figure 4.  
SRIX512 request frame character format  
b0  
b1  
b2  
b3  
b4  
b5  
b6  
b7  
b8  
b9  
Start  
"0"  
Stop  
"1"  
LSb  
Information Byte  
MSb  
1 ETU  
ai07664  
9/49  
Data transfer  
SRIX512  
Table 2.  
Bit description  
Description  
Bit  
Value  
b0  
Start bit used to synchronize the transmission  
Information Byte (command, address or data)  
Stop bit used to indicate the end of a character  
b0 = 0  
The information byte is sent with the  
least significant bit first  
b1 to b8  
b9  
b9 = 1  
3.1.2  
Request start of frame  
The SOF described in Figure 5 is composed of:  
one falling edge,  
followed by 10 ETUs at logic-0,  
followed by a single rising edge,  
followed by at least 2 ETUs (and at most 3) at logic-1.  
Figure 5.  
Request start of frame  
b0  
0
b1  
0
b2  
0
b3  
0
b4  
0
b5  
0
b6  
0
b7  
0
b8  
0
b9  
0
b10  
1
b11  
1
ETU  
ai07665  
3.1.3  
Request end of frame  
The EOF shown in Figure 6 is composed of:  
one falling edge,  
followed by 10 ETUs at logic-0,  
followed by a single rising edge.  
Figure 6.  
Request end of frame  
b0  
0
b1  
0
b2  
0
b3  
0
b4  
0
b5  
0
b6  
0
b7  
0
b8  
0
b9  
0
ETU  
ai07666  
10/49  
SRIX512  
Data transfer  
3.2  
Output data transfer from the SRIX512 to the reader (answer  
frame)  
The data bits issued by the SRIX512 use retro-modulation. Retro-modulation is obtained by  
modifying the SRIX512 current consumption at the antenna (load modulation). The load  
modulation causes a variation at the reader antenna by inductive coupling. With appropriate  
detector circuitry, the reader is able to pick up information from the SRIX512. To improve  
load-modulation detection, data is transmitted using a BPSK encoded, 847 kHz subcarrier  
frequency ƒ as shown in Figure 7, and as specified in the ISO 14443-2 Type B Standard.  
s
Figure 7.  
Wave transmitted using BPSK subcarrier modulation  
Data Bit to be Transmitted  
to the Reader  
Or  
847kHz BPSK Modulation  
Generated by the SRIX512  
BPSK Modulation at 847kHz  
During a One-bit Data Transfer Time (1/106kHz)  
AIi9717  
3.2.1  
3.2.2  
Character transmission format for answer frame  
The character format is the same as for input data transfer (Figure 4). The transmitted  
frames are made up of an SOF, data, a CRC and an EOF (Figure 10). As with an input data  
transfer, if an error occurs, the reader does not issue an error code to the SRIX512, but it  
should be able to detect it and manage the situation. The data transfer rate is  
106 Kbits/second.  
Answer start of frame  
The SOF described in Figure 8 is composed of:  
followed by 10 ETUs at logic-0  
followed by 2 ETUs at logic-1  
Figure 8.  
Answer start of frame  
b0  
0
b1  
0
b2  
0
b3  
0
b4  
0
b5  
0
b6  
0
b7  
0
b8  
0
b9  
0
b10  
1
b11  
1
ETU  
ai07665  
11/49  
Data transfer  
SRIX512  
3.2.3  
Answer end of frame  
The EOF shown in Figure 9 is composed of:  
followed by 10 ETUs at logic-0,  
followed by 2 ETUs at logic-1.  
Figure 9.  
Answer end of frame  
b0  
0
b1  
0
b2  
0
b3  
0
b4  
0
b5  
0
b6  
0
b7  
0
b8  
0
b9  
0
b10  
1
b11  
1
ETU  
ai07665  
3.3  
Transmission frame  
Between the Request data transfer and the Answer data transfer, all ASK and BPSK  
modulations are suspended for a minimum time of t = 128/ƒ . This delay allows the reader  
0
S
to switch from Transmission to Reception mode. It is repeated after each frame. After t , the  
0
13.56 MHz carrier frequency is modulated by the SRIX512 at 847 kHz for a period of t =  
1
128/ƒ to allow the reader to synchronize. After t , the first phase transition generated by the  
S
1
SRIX512 forms the start bit (‘0’) of the Answer SOF. After the falling edge of the Answer  
EOF, the reader waits a minimum time, t , before sending a new Request Frame to the  
2
SRIX512.  
Figure 10. Example of a complete transmission frame  
Sent by the  
SOF  
Data CRC CRC EOF  
SOF  
Cmd  
Reader  
10 bits  
10 bits  
10 bits  
10 bits  
10 bits  
12 bits  
f =847.5kHz  
s
tDR  
at 106kb/s  
Sent by the  
SRIX512  
Sync  
SOF Data CRC CRC EOF  
t0  
t1  
10 bits  
10 bits  
10 bits  
12 bits  
12 bits  
128/fs  
128/fs  
t2  
Input data transfer using ASK  
Output data transfer using BPSK  
Ai09718  
12/49  
SRIX512  
Data transfer  
3.4  
CRC  
The 16-bit CRC used by the SRIX512 is generated in compliance with the ISO 14443  
Type B recommendation. For further information, please see Appendix A. The initial register  
contents are all 1s: FFFFh.  
The two-byte CRC is present in every Request and in every Answer Frame, before the EOF.  
The CRC is calculated on all the bytes between SOF (not included) and the CRC field.  
Upon reception of a Request from a reader, the SRIX512 verifies that the CRC value is  
valid. If it is invalid, the SRIX512 discards the frame and does not answer the reader.  
Upon reception of an Answer from the SRIX512, the reader should verify the validity of the  
CRC. In case of error, the actions to be taken are the reader designer’s responsibility.  
The CRC is transmitted with the Least Significant Byte first and each byte is transmitted with  
the least significant bit first.  
Figure 11. CRC transmission rules  
LSByte  
MSByte  
LSbit  
MSbit LSbit  
MSbit  
CRC 16 (8 bits)  
CRC 16 (8 bits)  
ai07667  
13/49  
Memory mapping  
SRIX512  
4
Memory mapping  
The SRIX512 is organized as 16 blocks of 32 bits as shown in Table 3. All blocks are  
accessible by the READ_BLOCK command. Depending on the write access, they can be  
updated by the WRITE_BLOCK command. A WRITE_BLOCK updates all the 32 bits of the  
block.  
Table 3.  
SRIX512 memory mapping  
Msb  
b31  
32 bits Block  
Lsb  
b0  
Block  
Addr  
Description  
b24 b23  
b16 b15  
b8 b7  
0
1
32 bits Boolean Area  
32 bits Boolean Area  
32 bits Boolean Area  
32 bits Boolean Area  
32 bits Boolean Area  
32 bits binary counter  
32 bits binary counter  
User Area  
ResettableOTP  
bits  
2
3
4
5
Count down  
Counter  
6
7
8
User Area  
9
User Area  
10  
11  
12  
13  
14  
15  
User Area  
Lockable  
EEPROM  
User Area  
User Area  
User Area  
User Area  
User Area  
Fixed Chip_ID  
(Option)  
System OTP  
bits  
255  
OTP_Lock_Reg  
ST Reserved  
UID0  
UID1  
64 bits UID Area  
ROM  
14/49  
SRIX512  
Memory mapping  
4.1  
Resettable OTP area  
In this area contains five individual 32-bit Boolean Words (see Figure 12 for a map of the  
area). A WRITE_BLOCK command will not erase the previous contents of the block as the  
Write cycle is not preceded by an Auto Erase cycle. This feature can be used to reset  
selected bits from 1 to 0. All bits previously at 0 remain unchanged. When the 32 bits of a  
block are all at 0, the block is empty, and cannot be updated any more. See Figure 13 and  
Figure 14 for examples of the result of the WRITE_BLOCK command in the resettable OTP  
area.  
Figure 12. Resettable OTP area (addresses 0 to 4)  
MSb  
b31  
32-bit Block  
b16 b15  
LSb  
b0  
Block  
Address  
Description  
b24 b23  
b8 b7  
0
1
2
3
4
32-bit Boolean Area  
32-bit Boolean Area  
32-bit Boolean Area  
32-bit Boolean Area  
32-bit Boolean Area  
Resettable  
OTP Bit  
ai07657  
Figure 13. WRITE_BLOCK update in Standard mode (binary format)  
b31  
b0  
Previous data stored in block  
Data to be written  
1
1
1
...  
...  
...  
1
1
1
1
0
0
0
0
0
1
1
1
0
0
0
1
1
1
1
1
1
1
0
0
1
0
0
1
1
1
0
1
0
1
1
1
1
1
New data stored in block  
1
ai07658  
The five 32-bit blocks making up the Resettable OTP area can be erased in one go by  
adding an Auto Erase cycle to the WRITE_BLOCK command. An Auto Erase cycle is added  
each time the SRIX512 detects a Reload command. The Reload command is implemented  
through a specific update of the 32-bit binary counter located at block address 6 (see “32-bit  
binary counters” for details).  
Figure 14. WRITE_BLOCK update in Reload mode (binary format)  
b31  
b0  
Previous data stored in block  
Data to be written  
1
...  
...  
...  
1
1
1
1
1
1
0
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
0
0
1
0
0
1
1
1
0
1
1
1
1
1
1
1
1
1
1
New data stored in block  
ai07659  
15/49  
Memory mapping  
SRIX512  
4.2  
32-bit binary counters  
The two 32-bit binary counters located at block addresses 5 and 6, respectively, are used to  
32  
count down from 2 (4096 million) to 0. The SRIX512 uses dedicated logic that only allows  
the update of a counter if the new value is lower than the previous one. This feature allows  
the application to count down by steps of 1 or more. The initial value in Counter 5 is  
FFFF FFFEh, and is FFFF FFFFh in Counter 6. When the value displayed is 0000 0000h,  
the counter is empty and cannot be reloaded. The counter is updated by issuing the  
WRITE_BLOCK command to block address 5 or 6, depending on which counter is to be  
updated. The WRITE_BLOCK command writes the new 32-bit value to the counter block  
address. Figure 16 shows examples of how the counters operate.  
The counter programming cycles are protected by automated antitearing logic. This function  
allows the counter value to be protected in case of power down within the programming  
cycle. In case of power down, the counter value is not updated and the previous value  
continues to be stored.  
Figure 15. Binary counter (addresses 5 to 6)  
MSb  
b31  
32-bit Block  
b16 b15  
LSb  
b0  
Block  
Address  
Description  
b24 b23  
b8 b7  
5
6
32-bit Binary Counter  
32-bit Binary Counter  
Count down  
Counter  
ai07660  
Figure 16. Count down example (binary format)  
b31  
b0  
Initial data  
1
1
...  
...  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1-unit decrement  
1-unit decrement  
1-unit decrement  
8-unit decrement  
Increment not allowed  
0
1
1
...  
...  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
0
1
1
...  
...  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
0
0
0
0
0
ai07661  
The counter with block address 6 controls the Reload command used to reset the resettable  
OTP area (addresses 0 to 4). Bits b to b act as an 11-bit Reload counter; whenever one  
31  
21  
of these 11 bits is updated, the SRIX512 detects the change and adds an Erase cycle to the  
WRITE_BLOCK command for locations 0 to 4 (see the “Resettable OTP area” paragraph).  
The Erase cycle remains active until a POWER-OFF or a SELECT command is issued. The  
11  
SRIX512’s resettable OTP area can be reloaded up to 2,047 times (2 -1).  
16/49  
SRIX512  
Memory mapping  
4.3  
EEPROM area  
The 9 blocks between addresses 7 and 15 are EEPROM blocks of 32 bits each (36 Bytes in  
total). (See Figure 17 for a map of the area.) These blocks can be accessed using the  
READ_BLOCK and WRITE_BLOCK commands. The WRITE_BLOCK command for the  
EEPROM area always includes an Auto-Erase cycle prior to the Write cycle.  
Blocks 7 to 15 can be Write-protected. Write access is controlled by the 8 bits of the  
OTP_Lock_Reg located at block address 255 (see “OTP_Lock_Reg” for details). Once  
protected, these blocks (7 to 15) cannot be unprotected.  
Figure 17. EEPROM (addresses 7 to 15)  
MSb  
b31  
32-bit Block  
b16 b15  
LSb  
b0  
Block  
Address  
Description  
b24 b23  
b8 b7  
7
User Area  
User Area  
User Area  
User Area  
User Area  
User Area  
User Area  
User Area  
User Area  
8
9
10  
11  
12  
13  
14  
15  
Lockable  
EEPROM  
Ai09719  
4.4  
System area  
This area is used to modify the settings of the SRIX512. It contains 3 registers:  
OTP_Lock_Reg, Fixed Chip_ID and ST Reserved. See Figure 18 for a map of this area.  
A WRITE_BLOCK command in this area will not erase the previous contents. Selected bits  
can thus be set from 1 to 0. All bits previously at 0 remain unchanged. Once all the 32 bits of  
a block are at 0, the block is empty and cannot be updated any more.  
Figure 18. System area  
MSb  
b31  
32-bit Block  
b16 b15  
LSb  
b0  
Block  
Address  
Description  
OTP  
b24 b23  
b8 b7  
Fixed Chip_ID  
(Option)  
255  
OTP_Lock_Reg  
ST Reserved  
ai07663  
17/49  
Memory mapping  
SRIX512  
4.4.1  
OTP_Lock_Reg  
The 8 bits, b to b , of the System Area (block address 255) are used as OTP_Lock_Reg  
31  
24  
bits in the SRIX512. They control the Write access to the 9 EEPROM blocks with addresses  
7 to 15 as follows:  
When b is at 0, blocks 7 and 8 are Write-protected  
24  
When b is at 0, block 9 is Write-protected  
25  
When b is at 0, block 10 is Write-protected  
26  
When b is at 0, block 11 is Write-protected  
27  
When b is at 0, block 12 is Write-protected  
28  
When b is at 0, block 13 is Write-protected  
29  
When b is at 0, block 14 is Write-protected  
30  
When b is at 0, block 15 is Write-protected.  
31  
The OTP_Lock_Reg bits cannot be erased. Once Write-protected, EEPROM blocks behave  
like ROM blocks and cannot be unprotected.  
4.4.2  
Fixed Chip_ID (option)  
The SRIX512 is provided with an anticollision feature based on a random 8-bit Chip_ID.  
Prior to selecting an SRIX512, an anticollision sequence has to be run to search for the  
Chip_ID of the SRIX512. This is a very flexible feature, however the searching loop requires  
time to run.  
For some applications, much time could be saved by knowing the value of the SRIX512  
Chip_ID beforehand, so that the SRIX512 can be identified and selected directly without  
having to run an anticollision sequence. This is why the SRIX512 was designed with an  
optional mask setting used to program a fixed 8-bit Chip_ID to bits b to b of the system  
7
0
area. When the fixed Chip_ID option is used, the random Chip_ID function is disabled.  
18/49  
SRIX512  
SRIX512 operation  
5
SRIX512 operation  
All commands, data and CRC are transmitted to the SRIX512 as 10-bit characters using  
ASK modulation. The start bit of the 10 bits, b , is sent first. The command frame received  
0
by the SRIX512 at the antenna is demodulated by the 10% ASK demodulator, and decoded  
by the internal logic. Prior to any operation, the SRIX512 must have been selected by a  
SELECT command. Each frame transmitted to the SRIX512 must start with a Start Of  
Frame, followed by one or more data characters, two CRC Bytes and the final End Of  
Frame. When an invalid frame is decoded by the SRIX512 (wrong command or CRC error),  
the memory does not return any error code.  
When a valid frame is received, the SRIX512 may have to return data to the reader. In this  
case, data is returned using BPSK encoding, in the form of 10-bit characters framed by an  
SOF and an EOF. The transfer is ended by the SRIX512 sending the 2 CRC Bytes and the  
EOF.  
19/49  
SRIX512 states  
SRIX512  
6
SRIX512 states  
The SRIX512 can be switched into different states. Depending on the current state of the  
SRIX512, its logic will only answer to specific commands. These states are mainly used  
during the anticollision sequence, to identify and to access the SRIX512 in a very short time.  
The SRIX512 provides 6 different states, as described in the following paragraphs and in  
Figure 19.  
6.1  
6.2  
POWER-OFF state  
The SRIX512 is in POWER-OFF state when the electromagnetic field around the tag is not  
strong enough. In this state, the SRIX512 does not respond to any command.  
READY state  
When the electromagnetic field is strong enough, the SRIX512 enters the READY state.  
After Power-up, the Chip_ID is initialized with a random value. The whole logic is reset and  
remains in this state until an INITIATE() command is issued. Any other command will be  
ignored by the SRIX512.  
6.3  
6.4  
INVENTORY state  
The SRIX512 switches from the READY to the INVENTORY state after an INITIATE()  
command has been issued. In INVENTORY state, the SRIX512 will respond to any  
anticollision commands: INITIATE(), PCALL16() and SLOT_MARKER(), and then remain in  
the INVENTORY state. It will switch to the SELECTED state after a SELECT(Chip_ID)  
command is issued, if the Chip_ID in the command matches its own. If not, it will remain in  
INVENTORY state.  
SELECTED state  
In SELECTED state, the SRIX512 is active and responds to all READ_BLOCK(),  
WRITE_BLOCK(), AUTHENTICATE() and GET_UID() commands. When an SRIX512 has  
entered the SELECTED state, it no longer responds to anticollision commands. So that the  
reader can access another tag, the SRIX512 can be switched to the DESELECTED state by  
sending a SELECT(Chip_ID2) with a Chip_ID that does not match its own, or it can be  
placed in DEACTIVATED state by issuing a COMPLETION() command. Only one SRIX512  
can be in SELECTED state at a time.  
6.5  
DESELECTED state  
Once the SRIX512 is in DESELECTED state, only a SELECT(Chip_ID) command with a  
Chip_ID matching its own can switch it back to SELECTED state. All other commands are  
ignored.  
20/49  
SRIX512  
SRIX512 states  
6.6  
DEACTIVATED state  
When in this state, the SRIX512 can only be turned off. All commands are ignored.  
Figure 19. State transition diagram  
POWER-OFF  
Out of  
Field  
On Field  
READY  
Chip_ID = RND  
8bits  
INITIATE()  
Out of  
Field  
INITIATE() or PCALL16()  
or SLOT_MARKER(SN) or  
SELECT(wrong Chip_ID)  
INVENTORY  
Out of  
Field  
SELECT(Chip_ID)  
RESET_TO_INVENTORY()  
SELECTED  
Out of  
Field  
Out of  
Field  
SELECT(Chip_ID)  
COMPLETION()  
DESELECTED  
DEACTIVATED  
SELECT(Chip_ID)  
SELECT(Chip_ID)  
READ_BLOCK()  
WRITE_BLOCK()  
AUTHENTICATE()  
GET_UID()  
AI05733  
21/49  
Anticollision  
SRIX512  
7
Anticollision  
The SRIX512 provides an anticollision mechanism that searches for the Chip_ID of each  
device that is present in the reader field range. When known, the Chip_ID is used to select  
an SRIX512 individually, and access its memory. The anticollision sequence is managed by  
the reader through a set of commands described in the “SRIX512 operation” section:  
INITIATE()  
PCALL16()  
SLOT_MARKER().  
The reader is the master of the communication with one or more SRIX512 device(s). It  
initiates the tag communication activity by issuing an INITIATE(), PCALL16() or  
SLOT_MARKER() command to prompt the SRIX512 to answer. During the anticollision  
sequence, it might happen that two or more SRIX512 devices respond simultaneously, so  
causing a collision. The command set allows the reader to handle the sequence, to separate  
SRIX512 transmissions into different time slots. Once the anticollision sequence has  
completed, SRIX512 communication is fully under the control of the reader, allowing only  
one SRIX512 to transmit at a time.  
The anticollision scheme is based on the definition of time slots during which the SRIX512  
devices are invited to answer with minimum identification data: the Chip_ID. The number of  
slots is fixed at 16 for the PCALL16() command. For the INITIATE() command, there is no  
slot and the SRIX512 answers after the command is issued. SRIX512 devices are allowed  
to answer only once during the anticollision sequence. Consequently, even if there are  
several SRIX512 devices present in the reader field, there will probably be a slot in which  
only one SRIX512 answers, allowing the reader to capture its Chip_ID. Using the Chip_ID,  
the reader can then establish a communication channel with the identified SRIX512. The  
purpose of the anticollision sequence is to allow the reader to select one SRIX512 at a time.  
The SRIX512 is given an 8-bit Chip_ID value used by the reader to select only one among  
up to 256 tags present within its field range. The Chip_ID is initialized with a random value  
during the READY state, or after an INITIATE() command in the INVENTORY state.  
The four least significant bits (b to b ) of the Chip_ID are also known as the  
0
3
CHIP_SLOT_NUMBER. This 4-bit value is used by the PCALL16() and SLOT_MARKER()  
commands during the anticollision sequence in the INVENTORY state.  
Figure 20. SRIX512 Chip_ID description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
8-bit Chip_ID  
b0 to b3: CHIP_SLOT_NUMBER  
ai07668  
Each time the SRIX512 receives a PCALL16() command, the CHIP_SLOT_NUMBER is  
given a new 4-bit random value. If the new value is 0000 , the SRIX512 returns its whole 8-  
b
bit Chip_ID in its answer to the PCALL16() command. The PCALL16() command is also  
used to define the slot number 0 of the anticollision sequence. When the SRIX512 receives  
the SLOT_MARKER(SN) command, it compares its CHIP_SLOT_NUMBER with the  
SLOT_NUMBER parameter (SN). If they match, the SRIX512 returns its Chip_ID as a  
response to the command. If they do not, the SRIX512 does not answer. The  
SLOT_MARKER(SN) command is used to define all the anticollision slot numbers from 1 to  
15.  
22/49  
SRIX512  
Anticollision  
Figure 21. Description of a possible anticollision sequence  
1. The value X in the Answer Chip_ID means a random hexadecimal character from 0 to F.  
23/49  
Anticollision  
SRIX512  
7.1  
Description of an anticollision sequence  
The anticollision sequence is initiated by the INITIATE() command which triggers all the  
SRIX512 devices that are present in the reader field range, and that are in INVENTORY  
state. Only SRIX512 devices in INVENTORY state will respond to the PCALL16() and  
SLOT_MARKER(SN) anticollision commands.  
A new SRIX512 introduced in the field range during the anticollision sequence will not be  
taken into account as it will not respond to the PCALL16() or SLOT_MARKER(SN)  
command (READY state). To be considered during the anticollision sequence, it must have  
received the INITIATE() command and entered the INVENTORY state.  
Table 4 shows the elements of a standard anticollision sequence. (See Figure 22 for an  
example.)  
Table 4.  
Standard anticollision sequence  
Send INITIATE().  
– If no answer is detected, go to step1.  
Step 1  
Init:  
– If only 1 answer is detected, select and access the SRIX512. After accessing the SRIX512,  
deselect the tag and go to step1.  
– If a collision (many answers) is detected, go to step2.  
Send PCALL16().  
Step 2  
Step 3  
Step 4  
Step N  
Slot 0  
Slot 1  
Slot 2  
Slop N  
– If no answer or collision is detected, go to step3.  
– If 1 answer is detected, store the Chip_ID, Send SELECT() and go to step3.  
Send SLOT_MARKER(1).  
– If no answer or collision is detected, go to step4.  
– If 1 answer is detected, store the Chip_ID, Send SELECT() and go to step4.  
Send SLOT_MARKER(2).  
– If no answer or collision is detected, go to step5.  
– If 1 answer is detected, store the Chip_ID, Send SELECT() and go to step5.  
Send SLOT_MARKER(3 up to 14) ...  
– If no answer or collision is detected, go to stepN+1.  
– If 1 answer is detected, store the Chip_ID, Send SELECT() and go to stepN+1.  
Send SLOT_MARKER(15).  
Step 17 Slot 15  
– If no answer or collision is detected, go to step18.  
– If 1 answer is detected, store the Chip_ID, Send SELECT() and go to step18.  
All the slots have been generated and the Chip_ID values should be stored into the  
reader memory. Issue the SELECT(Chip_ID) command and access each identified  
SRIX512 one by one. After accessing each SRIX512, switch them into DESELECTED  
or DEACTIVATED state, depending on the application needs.  
Step 18  
– If collisions were detected between Step2 and Step17, go to Step2.  
– If no collision was detected between Step2 and Step17, go to Step1.  
After each SLOT_MARKER() command, there may be several, one or no answers from the  
SRIX512 devices. The reader must handle all the cases and store all the Chip_IDs, correctly  
decoded. At the end of the anticollision sequence, after SLOT_MARKER(15), the reader  
can start working with one SRIX512 by issuing a SELECT() command containing the  
desired Chip_ID. If a collision is detected during the anticollision sequence, the reader has  
to generate a new sequence in order to identify all unidentified SRIX512 devices in the field.  
The anticollision sequence can stop when all SRIX512 devices have been identified.  
24/49  
SRIX512  
Anticollision  
Figure 22. Example of an anticollision sequence  
Tag 1  
Tag 2  
Tag 3  
Tag 4  
Tag 5  
Tag 6  
Tag 7  
Tag 8  
Command  
Comments  
Chip_ID Chip_ID Chip_ID Chip_ID Chip_ID Chip_ID Chip_ID Chip_ID  
Each tag gets a random Chip_ID  
28h  
75h  
40h  
01h  
02h  
FEh  
A9h  
7Ch  
READY State  
INITIATE ()  
Each tag get a new random Chip_ID.  
All tags answer: collisions  
40h  
45h  
13h  
12h  
3Fh  
30h  
4Ah  
43h  
50h  
55h  
48h  
43h  
52h  
53h  
7Ch  
73h  
All CHIP_SLOT_NUMBERs get  
a new random value  
PCALL16()  
Slot0: only one answer  
30h  
30h  
SELECT(30h)  
Tag3 is identified  
SLOT_MARKER(1)  
SLOT_MARKER(2)  
SELECT(12h)  
Slot1: no answer  
Slot2: only one answer  
Tag2 is identified  
Slot3: collisions  
12h  
12h  
SLOT_MARKER(3)  
43h  
43h  
53h  
73h  
SLOT_MARKER(4)  
SLOT_MARKER(5)  
Slot4: no answer  
Slot5: collisions  
45h  
55h  
53h  
SLOT_MARKER(6)  
SLOT_MARKER(N)  
SLOT_MARKER(F)  
Slot6: no answer  
SlotN: no answer  
SlotF: no answer  
All CHIP_SLOT_NUMBERs get  
a new random value  
Slot0: collisions  
40h  
40h  
41h  
42h  
50h  
50h  
74h  
PCALL16()  
41h  
41h  
SLOT_MARKER(1)  
SELECT(41h)  
Slot1: only one answer  
Tag4 is identified  
SLOT_MARKER(2)  
SELECT(42h)  
42h  
42h  
Slot2: only one answer  
Tag6 is identified  
SLOT_MARKER(3)  
53h  
53h  
Slot3: only one answer  
SELECT(53h)  
Tag5 is identified  
SLOT_MARKER(4)  
74h  
74h  
Slot4: only one answer  
SELECT(74h)  
Tag8 is identified  
SlotN: no answer  
SLOT_MARKER(N)  
All CHIP_SLOT_NUMBERs get  
a new random value  
Slot0: only one answer  
41h  
50h  
50h  
50h  
PCALL16()  
SELECT(50h)  
Tag7 is identified  
Slot1: only one answer but already  
found for tag4  
SLOT_MARKER(1)  
SLOT_MARKER(N)  
PCALL16()  
41h  
43h  
SlotN: no answer  
All CHIP_SLOT_NUMBERs get  
a new random value  
Slot0: only one answer  
SLOT_MARKER(3)  
SELECT(43h)  
43h  
43h  
Slot3: only one answer  
Tag1 is identified  
All tags are identified  
ai07669  
25/49  
Anticlone function  
SRIX512  
8
Anticlone function  
The SRIX512 provides an anticlone function that allows the application to authentication the  
device. This function uses reserved data that is stored in the SRIX512 memory at its time of  
manufacture.  
The Authentication system is based on a proprietary challenge/response mechanism which  
allows the application software to authenticate any member of the secure memory tag  
SRXxxx family from STMicroelectronics (of which the SRIX512 is the prime example). A  
reader system, based on the ST CRX14 chip coupler, can check each SRIX512 tag for  
authenticity, and protect the application system against silicon copies or emulators.  
A complete description of the Authentication system is available under Non Disclosure  
Agreement (NDA) with STMicroelectronics. For more details about this SRIX512 function,  
please contact your nearest STMicroelectronics sales office.  
26/49  
SRIX512  
SRIX512 commands  
9
SRIX512 commands  
See the paragraphs below for a detailed description of the Commands available on the  
SRIX512. The commands and their hexadecimal codes are summarized in Table 5. A brief  
is given in Appendix B.  
Table 5.  
Command code  
Hexadecimal code  
Command  
06h-00h  
06h-04h  
x6h  
INITIATE()  
PCALL16()  
SLOT_MARKER (SN)  
READ_BLOCK(Addr)  
08h  
09h  
WRITE_BLOCK(Addr, Data)  
AUTHENTICATE(RND)  
GET_UID()  
0Ah  
0Bh  
0Ch  
RESET_TO_INVENTORY  
SELECT(Chip_ID)  
0Eh  
0Fh  
COMPLETION()  
27/49  
SRIX512 commands  
SRIX512  
9.1  
INITIATE() command  
Command Code = 06h - 00h  
INITIATE() is used to initiate the anticollision sequence of the SRIX512. On receiving the  
INITIATE() command, all SRIX512 devices in READY state switch to INVENTORY state, set  
a new 8-bit Chip_ID random value, and return their Chip_ID value. This command is useful  
when only one SRIX512 in READY state is present in the reader field range. It speeds up  
the Chip_ID search process. The CHIP_SLOT_NUMBER is not used during INITIATE()  
command access.  
Figure 23. INITIATE request format  
SOF  
INITIATE  
CRC  
CRC  
EOF  
L
H
06h  
00h  
8 bits  
8 bits  
AI07670  
Request parameter:  
No parameter  
Figure 24. INITIATE response format  
SOF  
Chip_ID  
8 bits  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bits  
AI07671  
Response parameter:  
Chip_ID of the SRIX512  
Figure 25. INITIATE frame exchange between Reader and SRIX512  
Reader  
SOF  
06h  
00h  
CRC  
CRC  
EOF  
L
H
SRIX512  
<-t -><-t ->  
SOF Chip_ID CRC  
CRC  
EOF  
0
1
L
H
AI10824b  
28/49  
SRIX512  
SRIX512 commands  
9.2  
PCALL16() command  
Command Code = 06h - 04h  
The SRIX512 must be in INVENTORY state to interpret the PCALL16() command.  
On receiving the PCALL16() command, the SRIX512 first generates a new random  
CHIP_SLOT_NUMBER value (in the 4 least significant bits of the Chip_ID).  
CHIP_SLOT_NUMBER can take on a value between 0 an 15 (1111 ). The value is retained  
b
until a new PCALL16() or INITIATE() command is issued, or until the SRIX512 is powered  
off. The new CHIP_SLOT_NUMBER value is then compared with the value 0000 . If they  
b
match, the SRIX512 returns its Chip_ID value. If not, the SRIX512 does not send any  
response.  
The PCALL16() command, used together with the SLOT_MARKER() command, allows the  
reader to search for all the Chip_IDs when there are more than one SRIX512 device in  
INVENTORY state present in the reader field range.  
Figure 26. PCALL16 request format  
SOF  
PCALL16  
CRC  
CRC  
EOF  
L
H
06h  
04h  
8 bits  
8 bits  
AI07673  
Request parameter:  
No parameter  
Figure 27. PCALL16 response format  
SOF  
Chip_ID  
8 bits  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bits  
AI07671  
Response parameter:  
Chip_ID of the SRIX512  
Figure 28. PCALL16 frame exchange between Reader and SRIX512  
Reader  
SOF  
06h  
04h  
CRC  
CRC  
EOF  
L
H
SRIX512  
<-t -><-t ->  
SOF Chip_ID CRC  
CRC  
EOF  
0
1
L
H
AI10823b  
29/49  
SRIX512 commands  
SRIX512  
9.3  
SLOT_MARKER(SN) command  
Command Code = x6h  
The SRIX512 must be in INVENTORY state to interpret the SLOT_MARKER(SN)  
command.  
The SLOT_MARKER Byte code is divided into two parts:  
b to b : 4-bit command code  
3 0  
with fixed value 6.  
b to b : 4 bits known as the SLOT_NUMBER (SN). They assume a value between 1  
7
4
and 15. The value 0 is reserved by the PCALL16() command.  
On receiving the SLOT_MARKER() command, the SRIX512 compares its  
CHIP_SLOT_NUMBER value with the SLOT_NUMBER value given in the command code.  
If they match, the SRIX512 returns its Chip_ID value. If not, the SRIX512 does not send any  
response.  
The SLOT_MARKER() command, used together with the PCALL16() command, allows the  
reader to search for all the Chip_IDs when there are more than one SRIX512 device in  
INVENTORY state present in the reader field range.  
Figure 29. SLOT_MARKER request format  
SOF  
SLOT_MARKER  
X6h  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bits  
AI07675  
Request parameter:  
x: Slot number  
Figure 30. SLOT_MARKER response format  
SOF  
Chip_ID  
8 bits  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bits  
AI07671  
Response parameters:  
Chip_ID of the SRIX512  
Figure 31. SLOT_MARKER frame exchange between Reader and SRIX512  
Reader  
SOF  
X6h  
CRC  
CRC  
EOF  
L
H
SRIX512  
<-t -><-t ->  
SOF Chip_ID CRC  
CRC  
EOF  
0
1
L
H
AI10822b  
30/49  
SRIX512  
SRIX512 commands  
9.4  
SELECT(Chip_ID) command  
Command Code = 0Eh  
The SELECT() command allows the SRIX512 to enter the SELECTED state. Until this  
command is issued, the SRIX512 will not accept any other command, except for INITIATE(),  
PCALL16() and SLOT_MARKER(). The SELECT() command returns the 8 bits of the  
Chip_ID value. An SRIX512 in SELECTED state, that receives a SELECT() command with a  
Chip_ID that does not match its own is automatically switched to DESELECTED state.  
Figure 32. SELECT request format  
SOF  
SELECT  
0Eh  
Chip_ID  
8 bits  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bits  
AI07677  
Request parameter:  
8-bit Chip_ID stored during the anticollision sequence  
Figure 33. SELECT response format  
SOF  
Chip_ID  
8 bits  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bits  
AI07671  
Response parameters:  
Chip_ID of the selected tag. Must be equal to the transmitted Chip_ID  
Figure 34. SELECT frame exchange Between Reader and SRIX512  
Reader  
SOF  
0Eh  
Chip_ID CRC  
CRC  
EOF  
L
H
SRIX512  
<-t -><-t ->  
SOF Chip_ID CRC  
CRC  
EOF  
0
1
L
H
AI10821b  
31/49  
SRIX512 commands  
SRIX512  
9.5  
COMPLETION() command  
Command Code = 0Fh  
On receiving the COMPLETION() command, a SRIX512 in SELECTED state switches to  
DEACTIVATED state and stops decoding any new commands. The SRIX512 is then locked  
in this state until a complete reset (tag out of the field range). A new SRIX512 can thus be  
accessed through a SELECT() command without having to remove the previous one from  
the field. The COMPLETION() command does not generate a response.  
All SRIX512 devices not in SELECTED state ignore the COMPLETION() command.  
Figure 35. COMPLETION request format  
SOF  
COMPLETION  
0Fh  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bits  
AI07679  
Request parameters:  
No parameter  
Figure 36. COMPLETION response format  
No Response  
AI07680  
Figure 37. COMPLETION frame exchange between Reader and SRIX512  
Reader  
SOF  
0Fh  
CRC  
CRC  
EOF  
L
H
SRIX512  
No Response  
AI10820  
32/49  
SRIX512  
SRIX512 commands  
9.6  
RESET_TO_INVENTORY() command  
Command Code = 0Ch  
On receiving the RESET_TO_INVENTORY() command, all SRIX512 devices in SELECTED  
state revert to INVENTORY state. The concerned SRIX512 devices are thus resubmitted to  
the anticollision sequence. This command is useful when two SRIX512 devices with the  
same 8-bit Chip_ID happen to be in SELECTED state at the same time. Forcing them to go  
through the anticollision sequence again allows the reader to generates new PCALL16()  
commands and so, to set new random Chip_IDs.  
The RESET_TO_INVENTORY() command does not generate a response.  
All SRIX512 devices that are not in SELECTED state ignore the RESET_TO_INVENTORY()  
command.  
Figure 38. RESET_TO_INVENTORY request format  
SOF  
RESET_TO_INVENTORY  
0Ch  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bits  
AI07682  
Request parameter:  
No parameter  
Figure 39. RESET_TO_INVENTORY response format  
No Response  
AI07680  
Figure 40. RESET_TO_INVENTORY frame exchange between Reader and SRIX512  
Reader  
SOF  
0Ch  
CRC  
CRC  
EOF  
L
H
SRIX512  
No Response  
AI10825  
33/49  
SRIX512 commands  
SRIX512  
9.7  
READ_BLOCK(Addr) command  
Command Code = 08h  
On receiving the READ_BLOCK command, the SRIX512 reads the desired block and  
returns the 4 data Bytes contained in the block. Data Bytes are transmitted with the Least  
Significant Byte first and each byte is transmitted with the least significant bit first.  
The address byte gives access to the 16 blocks of the SRIX512 (addresses 0 to 15).  
READ_BLOCK commands issued with a block address above 15 will not be interpreted and  
the SRIX512 will not return any response, except for the System area located at address  
255.  
The SRIX512 must have received a SELECT() command and be switched to SELECTED  
state before any READ_BLOCK() command can be accepted. All READ_BLOCK()  
commands sent to the SRIX512 before a SELECT() command is issued are ignored.  
Figure 41. READ_BLOCK request format  
SOF  
READ_BLOCK  
08h  
ADDRESS  
8 bIts  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bits  
AI07684  
Request parameter:  
ADDRESS: block addresses from 0 to 15, or 255  
Figure 42. READ_BLOCK response format  
SOF  
DATA 1  
8 bIts  
DATA 2  
8 bIts  
DATA 3  
8 bIts  
DATA 4  
8 bIts  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bIts  
AI07685  
Response parameters:  
DATA 1: Less significant data Byte  
DATA 2: Data Byte  
DATA 3: Data Byte  
DATA 4: Most significant data Byte  
Figure 43. READ_BLOCK frame exchange between Reader and SRIX512  
Reader  
SOF 08h ADDR CRC CRC EOF  
L
H
DATA DATA DATA DATA  
SRIX512  
<-t -><-t ->  
SOF  
CRC CRC EOF  
0
1
L
H
1
2
3
4
AI10826b  
34/49  
SRIX512  
SRIX512 commands  
9.8  
WRITE_BLOCK (Addr, Data) command  
Command Code = 09h  
On receiving the WRITE_BLOCK command, the SRIX512 writes the 4 bytes contained in  
the command to the addressed block, provided that the block is available and not Write-  
protected. Data Bytes are transmitted with the Least Significant Byte first, and each byte is  
transmitted with the least significant bit first.  
The address Byte gives access to the 16 blocks of the SRIX512 (addresses 0 to 15).  
WRITE_BLOCK commands issued with a block address above 15 will not be interpreted  
and the SRIX512 will not return any response, except for the System area located at  
address 255.  
The result of the WRITE_BLOCK command is submitted to the addressed block. See the  
following paragraphs for a complete description of the WRITE_BLOCK command:  
Resettable OTP area (addresses 0 to 4).  
Binary counter (addresses 5 to 6).  
EEPROM (addresses 7 to 15).  
The WRITE_BLOCK command does not give rise to a response from the SRIX512. The  
reader must check after the programming time, t , that the data was correctly programmed.  
W
The SRIX512 must have received a SELECT() command and be switched to SELECTED  
state before any WRITE_BLOCK command can be accepted. All WRITE_BLOCK  
commands sent to the SRIX512 before a SELECT() command is issued, are ignored.  
Figure 44. WRITE_BLOCK request format  
SOF WRITE_BLOCK ADDRESS  
DATA 1  
8 bIts  
DATA 2  
8 bIts  
DATA 3  
8 bIts  
DATA 4  
8 bIts  
CRC  
CRC  
EOF  
L
H
09h  
8 bIts  
8 bits  
8 bIts  
AI07687  
Request parameters:  
ADDRESS: block addresses from 0 to 15, or 255  
DATA 1: Less significant data Byte  
DATA 2: Data Byte  
DATA 3: Data Byte  
DATA 4: Most significant data Byte.  
Figure 45. WRITE_BLOCK response format  
No Response  
AI07680  
35/49  
SRIX512 commands  
SRIX512  
Figure 46. WRITE_BLOCK frame exchange between Reader and SRIX512  
DATA DATA DATA DATA  
Reader  
CRC CRC EOF  
SOF 09h  
ADDR  
L
H
1
2
3
4
No Response  
SRIX512  
AI10827  
9.9  
GET_UID() command  
Command Code = 0Bh  
On receiving the GET_UID command, the SRIX512 returns its 8 UID Bytes. UID Bytes are  
transmitted with the Least Significant Byte first, and each byte is transmitted with the least  
significant bit first.  
The SRIX512 must have received a SELECT() command and be switched to SELECTED  
state before any GET_UID() command can be accepted. All GET_UID() commands sent to  
the SRIX512 before a SELECT() command is issued, are ignored.  
Figure 47. GET_UID request format  
SOF  
GET_UID  
0Bh  
CRC  
CRC  
EOF  
L
H
8 bits  
8 bits  
AI07693  
Request parameter:  
No parameter  
Figure 48. GET_UID Response Format  
UID 0  
8 bits  
UID 1  
8 bIts  
UID 2  
8 bIts  
UID 3  
8 bIts  
UID 4  
UID 5  
8 bIts  
UID 6  
UID 7  
CRC  
CRC  
SOF  
EOF  
L
H
8 bIts  
8 bIts  
8 bIts  
8 bits  
8 bIts  
AI07694  
Response parameters:  
UID 0: Less significant UID Byte  
UID 1 to UID 6: UID Bytes  
UID 7: Most significant UID Byte.  
36/49  
SRIX512  
SRIX512 commands  
Unique Identifier (UID)  
Members of the SRIX512 family are uniquely identified by a 64-bit Unique Identifier (UID).  
This is used for addressing each SRIX512 device uniquely after the anti-collision loop. The  
UID complies with ISO/IEC 15963 and ISO/IEC 7816-6. It is a read-only code, and  
comprises (as summarized in Figure 49):  
an 8-bit prefix, with the most significant bits set to D0h  
an 8-bit IC Manufacturer code (ISO/IEC 7816-6/AM1) set to 02h (for  
STMicroelectronics)  
a 6-bit IC code set to 00 0100b = 4d for SRIX512  
a 42-bit Unique Serial Number  
Figure 49. 64-bit unique identifier of the SRIX512  
Most significant bits  
Least significant bits  
0
63  
55  
47  
41  
D0h  
02h  
4d  
Unique Serial Number  
AI14079  
Figure 50. GET_UID frame exchange between Reader and SRIX512  
S
O
F
E
O
F
Reader  
0Bh CRC CRC  
L
H
S
O
F
E
O
F
UID UID UID UID UID UID UID UID  
SRIX512  
<-t -><-t ->  
CRC CRC  
0
1
L
H
0
1
2
3
4
5
6
7
AI10828b  
9.10  
Power-on state  
After Power-on, the SRIX512 is in the following state:  
It is in the low-power state.  
It is in READY state.  
It shows highest impedance with respect to the reader antenna field.  
It will not respond to any command except INITIATE().  
37/49  
Maximum rating  
SRIX512  
10  
Maximum rating  
Stressing the device above the rating listed in the absolute maximum ratings table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the operating sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE  
Program and other relevant quality documents.  
Table 6.  
Symbol  
Absolute maximum ratings  
Parameter  
Min.  
Max.  
Unit  
15  
25  
23  
°C  
Wafer  
months  
kept in its antistatic bag  
TSTG, hSTG  
tSTG  
,
Storage conditions  
15  
25  
60%  
2
°C  
RH  
years  
mA  
V
A3, A4, A5  
40%  
ICC  
Supply current on AC0 / AC1  
Input voltage on AC0 / AC1  
–20  
–7  
20  
VMAX  
7
Machine model(1)  
–100  
100  
V
Human Body  
model(1)  
–1000  
–4000  
1000  
4000  
V
V
VESD  
Electrostatic Discharge Voltage  
Human Body model  
(2)  
1. Mil. Std. 883 - Method 3015.  
2. ESD test: ISO10373-6 for proximity cards.  
38/49  
SRIX512  
DC and ac parameters  
11  
DC and ac parameters  
Table 7.  
Symbol  
Operating conditions  
Parameter  
Min.  
Max.  
Unit  
TA  
Ambient operating temperature  
–20  
85  
°C  
Table 8.  
Symbol  
DC characteristics  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VCC  
ICC  
Regulated voltage  
2.5  
3.5  
100  
250  
V
Supply current (active in Read)  
Supply current (active in Write)  
Back-scattering-induced voltage  
Internal tuning capacitor  
VCC = 3.0 V  
VCC = 3.0 V  
ISO 10373-6  
13.56 MHz  
µA  
µA  
mV  
pF  
ICC  
VRET  
CTUN  
20  
64  
(1)  
Table 9.  
Symbol  
AC characteristics  
Parameter  
Condition  
Min  
Max  
Unit  
fCC  
External RF signal frequency  
13.553 13.567 MHz  
MICARRIER Carrier modulation index  
tRFR, tRFF 10% Rise and Fall times  
MI=(A-B)/(A+B)  
ETU = 128/fCC  
8
14  
%
µs  
µs  
µs  
0.8  
2.5  
tRFSBL  
tJIT  
Minimum pulse width for start bit  
ASK modulation data jitter  
9.44  
Coupler to SRIX512  
–2  
5
+2  
Minimum time from carrier  
generation to first data  
tMIN CD  
ms  
fS  
t0  
Subcarrier frequency  
fCC/16  
128/fS  
847.5  
151  
kHz  
µs  
Antenna reversal delay  
t1  
Synchronization delay  
128/fS  
151  
µs  
t2  
Answer to new request delay  
Time between request characters  
Time between answer characters  
14 ETU  
132  
0
µs  
tDR  
tDA  
Coupler to SRIX512  
SRIX512 to Coupler  
57  
3
µs  
0
µs  
With no Auto-Erase cycle  
(OTP)  
ms  
tW  
Programming time for WRITE  
With Auto-Erase cycle  
(EEPROM)  
5
7
ms  
ms  
Binary counter decrement  
1. All timing measurements were performed on a reference antenna with the following characteristics:  
External size: 75 mm x 48 mm  
Number of turns: 3  
Width of conductor: 1 mm  
Space between 2 conductors: 0.4 mm  
Value of the coil: 1.4 µH  
Tuning Frequency: 14.4 MHz.  
39/49  
DC and ac parameters  
SRIX512  
Figure 51. SRIX512 synchronous timing, transmit and receive  
ASK Modulated signal from the Reader to the Contactless device  
t
RFF  
t
A
B
RFR  
ƒ
cc  
t
RFSBL  
t
MIN CD  
FRAME Transmission between the reader and the contactless device  
t
t
DR  
DR  
DATA  
1
EOF  
1
0
FRAME Transmitted by the reader in ASK  
1
1
0
847KHz  
SOF  
1 1  
0
0
DATA  
DATA  
FRAME Transmitted by the SRIX512  
in BPSK  
t
t
t
t
DA  
0
1
DA  
Data jitter on FRAME Transmitted by the reader in ASK  
t
t
JIT  
t
t
t
JIT  
JIT  
JIT  
JIT  
0
START  
t
t
t
t
t
RFSBL  
RFSBL  
RFSBL  
RFSBL  
RFSBL  
Ai09720  
40/49  
SRIX512  
Package mechanical  
12  
Package mechanical  
In order to meet environmental requirements, ST offers these devices in ECOPACK®  
packages. These packages have a Lead-free second-level interconnect. The category of  
Second-Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97.  
The maximum ratings related to soldering conditions are also marked on the inner box label.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
Figure 52. A3 antenna specification  
A1  
A
B
B1  
AI09046B  
1. Drawing is not to scale.  
Table 10. A3 antenna specification  
Symbol  
Parameter  
Type  
Min  
Max  
Unit  
A
B
Coil width  
Coil length  
Inlay width  
Inlay length  
38  
38  
37.5  
37.5  
42.5  
42.5  
90  
38.5  
38.5  
43.5  
43.5  
130  
mm  
mm  
mm  
mm  
µm  
A1  
B1  
43  
43  
Overall thickness of copper antenna coil  
Silicon thickness  
110  
180  
40  
165  
195  
µm  
Q
Unloaded Q value  
FNOM  
Unloaded free-air resonance  
15.1  
MHz  
0.5  
A/m  
PA  
H-field energy for device operation  
114  
dbµA/m  
41/49  
Package mechanical  
SRIX512  
Figure 53. A4 antenna specification  
A
A1  
B
B1  
AI07696B  
1. Drawing is not to scale.  
Table 11. A4 antenna specification  
Symbol  
Parameter  
Type  
Min  
Max  
Unit  
A
B
Coil width  
Coil length  
Inlay width  
Inlay length  
15  
15  
14.5  
14.5  
18.5  
18.5  
90  
15.5  
15.5  
19.5  
19.5  
130  
mm  
mm  
mm  
mm  
µm  
A1  
B1  
19  
19  
Overall thickness of copper antenna coil  
Silicon thickness  
110  
180  
30  
165  
195  
µm  
Q
Unloaded Q value  
FNOM  
Unloaded free-air resonance  
14.5  
MHz  
1.5  
A/m  
PA  
H-field energy for device operation  
123.5  
dbµA/m  
42/49  
SRIX512  
Package mechanical  
Figure 54. A5 antenna specification  
A
A1  
B
B1  
AI09071B  
1. Drawing is not to scale.  
Table 12. A5 antenna specification  
Symbol  
Parameter  
Type  
Min  
Max  
Unit  
A
B
Coil width  
Coil length  
Inlay width  
Inlay length  
42  
65  
41.5  
64.5  
45.5  
69.5  
130  
42.5  
65.5  
46.5  
70.5  
150  
mm  
mm  
mm  
mm  
µm  
A1  
B1  
46  
70  
Overall thickness of copper antenna coil  
Silicon thickness  
140  
180  
30  
165  
195  
µm  
Q
Unloaded Q value  
FNOM  
Unloaded free-air resonance  
14.8  
MHz  
0.25  
108  
A/m  
PA  
H-field energy for device operation  
dbµA/m  
43/49  
Part numbering  
SRIX512  
13  
Part numbering  
Table 13. Ordering information scheme  
Example:  
SRIX512  
W4  
/XXX  
Device type  
SRIX512  
Package  
W4 =180 µm ± 15 µm Unsawn Wafer  
SBN18 = 180 µm ± 15 µm Bumped and Sawn Wafer on 8-inch Frame  
A3T = 38 mm x 38 mm Copper Antenna on Continuous Tape  
A3S = 38 mm x 38 mm Copper Singulated Adhesive Antenna on Tape  
A4T = 15 mm x 15 mm Copper Antenna on Continuous Tape  
A4S = 15 mm x 15 mm Copper Singulated Adhesive Antenna on Tape  
A5T = 42 mm x 65 mm Copper Antenna on Continuous Tape  
A5S = 42 mm x 65 mm Copper Singulated Adhesive Antenna on Tape  
Customer code  
XXX = Given by STMicroelectronics  
Note:  
Devices are shipped from the factory with the memory content bits erased to 1.  
For a list of available options (Speed, Package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST Sales Office.  
44/49  
SRIX512  
ISO 14443 Type B CRC calculation  
Appendix A ISO 14443 Type B CRC calculation  
#include <stdio.h>  
#include <stdlib.h>  
#include <string.h>  
#include <ctype.h>  
#define BYTE unsigned char  
#define USHORT unsigned short  
unsigned short UpdateCrc(BYTE ch, USHORT *lpwCrc)  
{
ch = (ch^(BYTE)((*lpwCrc) & 0x00FF));  
ch = (ch^(ch<<4));  
*lpwCrc = (*lpwCrc >> 8)^((USHORT)ch << 8)^((USHORT)ch<<3)^((USHORT)ch>>4);  
return(*lpwCrc);  
}
void ComputeCrc(char *Data, int Length, BYTE *TransmitFirst, BYTE *TransmitSecond)  
{
BYTE chBlock; USHORTt wCrc;  
wCrc = 0xFFFF; // ISO 3309  
do  
{
chBlock = *Data++;  
UpdateCrc(chBlock, &wCrc);  
} while (--Length);  
wCrc = ~wCrc; // ISO 3309  
*TransmitFirst = (BYTE) (wCrc & 0xFF);  
*TransmitSecond = (BYTE) ((wCrc >> 8) & 0xFF);  
return;  
}
int main(void)  
{
BYTE BuffCRC_B[10] = {0x0A, 0x12, 0x34, 0x56}, First, Second, i;  
printf("Crc-16 G(x) = x^16 + x^12 + x^5 + 1”);  
printf("CRC_B of [ ");  
for(i=0; i<4; i++)  
printf("%02X ",BuffCRC_B[i]);  
ComputeCrc(BuffCRC_B, 4, &First, &Second);  
printf("] Transmitted: %02X then %02X.”, First, Second);  
return(0);  
45/49  
SRIX512 command brief  
SRIX512  
Appendix B SRIX512 command brief  
Figure 55. INITIATE frame exchange between Reader and SRIX512  
Reader  
SOF  
06h  
00h  
CRC  
CRC  
EOF  
L
H
SRIX512  
<-t -><-t ->  
SOF Chip_ID CRC  
CRC  
EOF  
0
1
L
H
AI10824b  
Figure 56. PCALL16 frame exchange between Reader and SRIX512  
Reader  
SOF  
06h  
04h  
CRC  
CRC  
EOF  
L
H
SRIX512  
<-t -><-t ->  
SOF Chip_ID CRC  
CRC  
EOF  
0
1
L
H
AI10823b  
Figure 57. SLOT_MARKER frame exchange between Reader and SRIX512  
Reader  
SOF  
X6h  
CRC  
CRC  
EOF  
L
H
SRIX512  
<-t -><-t ->  
SOF Chip_ID CRC  
CRC  
EOF  
0
1
L
H
AI10822b  
Figure 58. SELECT frame exchange between Reader and SRIX512  
Reader  
SOF  
0Eh  
Chip_ID CRC  
CRC  
EOF  
L
H
SRIX512  
<-t -><-t ->  
SOF Chip_ID CRC  
CRC  
EOF  
0
1
L
H
AI10821b  
Figure 59. COMPLETION frame exchange between Reader and SRIX512  
Reader  
SOF  
0Fh  
CRC  
CRC  
EOF  
L
H
SRIX512  
No Response  
AI10820  
46/49  
SRIX512  
SRIX512 command brief  
Figure 60. RESET_TO_INVENTORY frame exchange between Reader and SRIX512  
Reader  
SOF  
0Ch  
CRC  
CRC  
EOF  
L
H
SRIX512  
No Response  
AI10825  
Figure 61. READ_BLOCK frame exchange between Reader and SRIX512  
Reader  
SOF 08h ADDR CRC CRC EOF  
L
H
DATA DATA DATA DATA  
SRIX512  
<-t -><-t ->  
SOF  
CRC CRC EOF  
0
1
L
H
1
2
3
4
AI10826b  
Figure 62. WRITE_BLOCK frame exchange Between Reader and SRIX512  
DATA DATA DATA DATA  
Reader  
CRC CRC EOF  
SOF 09h  
ADDR  
L
H
1
2
3
4
No Response  
SRIX512  
AI10827  
Figure 63. GET_UID frame exchange between Reader and SRIX512  
S
O
F
E
O
F
Reader  
0Bh CRC CRC  
L
H
S
O
F
E
O
F
UID UID UID UID UID UID UID UID  
SRIX512  
<-t -><-t ->  
CRC CRC  
0
1
L
H
0
1
2
3
4
5
6
7
AI10828  
47/49  
Revision history  
SRIX512  
14  
Revision history  
Table 14. Document revision history  
Date  
Version  
Changes  
11-Jul-2003  
26-Apr-2004  
29-Nov-2004  
13-Dec-2004  
17-Aug-2005  
1.0  
2.0  
3.0  
4.0  
5.0  
First Issue  
First public release of full datasheet  
Package mechanical section revised.  
VRET and CTUN parameters added to Table 8: DC characteristics.  
Updated initial counter values in 32-bit binary counters on page 16.  
Document reformatted. Small text changes. Document status changed  
from Datasheet to Not For New Design.  
Unique Identifier (UID) on page 37 added.  
05-Apr-2007  
6
CTUN min and max values removed, typ value added in Table 8: DC  
characteristics. Space removed between t0 and t1 in all “frame exchange  
between Reader and SRIX512” figures (see Appendix B: SRIX512  
command brief). All antennas are ECOPACK® compliant.  
48/49  
SRIX512  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
49/49  

相关型号:

SRIX512-SBN18/XXX

SPECIALTY MEMORY CIRCUIT, UUC, WAFER
STMICROELECTR

SRIX512-W4/XXX

SPECIALTY MEMORY CIRCUIT, UUC, WAFER
STMICROELECTR

SRJ

SRJ / SRK / SRM / SRT Series
E-SWITCH

SRJ-10

SRJ / SRK / SRM / SRT Series
E-SWITCH

SRJ-16

SRJ / SRK / SRM / SRT Series
E-SWITCH

SRJ090D3

RESISTOR, VOLTAGE DEPENDENT
TAIYO YUDEN

SRJ090D5

RESISTOR, VOLTAGE DEPENDENT
TAIYO YUDEN

SRJ176A3

Varistor, Surface Mount, ROHS COMPLIANT
TAIYO YUDEN

SRJ176A5

Varistor, Surface Mount, ROHS COMPLIANT
TAIYO YUDEN

SRJ20A5

Varistor, Surface Mount, ROHS COMPLIANT
TAIYO YUDEN

SRJ20B3

Varistor, Surface Mount, ROHS COMPLIANT
TAIYO YUDEN

SRJ20B5

Varistor, Surface Mount, ROHS COMPLIANT
TAIYO YUDEN