ST1S14 [STMICROELECTRONICS]

Power good open collector output;
ST1S14
型号: ST1S14
厂家: ST    ST
描述:

Power good open collector output

文件: 总46页 (文件大小:2480K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ST1S14  
Up to 3 A step-down switching regulator  
Datasheet - production data  
Applications  
Factory automation  
Printers  
DC-DC modules  
High current LED drivers  
+623ꢀꢁꢂꢁH[SRVHGꢁSDG  
Description  
Features  
The ST1S14 is a step-down monolithic power  
switching regulator able to deliver up to 3 A DC  
current to the load depending on the application  
conditions. The high current level is also achieved  
thanks to a HSOP8 package with exposed frame,  
3 A DC output current  
Operating input voltage from 5.5 V to 48 V  
850 kHz internally fixed switching frequency  
Internal soft-start  
that allows to reduce the R  
down to  
th(JA)  
Power good open collector output  
Current mode architecture  
approximately 40 °C/W. The output voltage can  
be set from 1.22 V. The device uses an internal N-  
channel DMOS transistor (with a typical R  
of  
Embedded compensation network  
Zero load current operation  
DS(on)  
200 mΩ) as the switching element to minimize the  
size of the external components. The internal  
oscillator fixes the switching frequency at 850  
kHz. Power good open collector output validates  
the regulated output voltage as soon as it reaches  
the regulation. Pulse-by-pulse current limit offers  
an effective constant current short-circuit  
Internal current limiting  
Inhibit for zero current consumption  
2 mA maximum quiescent current over  
temperature range  
250 mΩ typ. R  
DS(on)  
protection. Current foldback decreases overstress  
in a persistent short-circuit condition.  
Thermal shutdown  
Figure 1. Application schematic  
3*22'  
9287  
&ꢄ  
ꢄꢅQ)  
8ꢄ  
67ꢄ6ꢋ  
6:  
/ꢄ ꢀꢇX+  
%227  
9,1  
5ꢉ  
.  
9,1  
3*22'  
(1ꢆ  
(1ꢄ  
5ꢄ  
&ꢋ  
ꢋꢇ.  
)%  
*1'  
&ꢆ  
&ꢉ  
&ꢃ  
'ꢄ  
X)  
ꢄꢅQ)  
ꢄꢅX)  
5ꢆ  
ꢆꢇ.  
VPDOOVLJQDO  
SRZHUꢁSODQH  
*1'  
*1'  
March 2013  
DocID17977 Rev 2  
1/46  
This is information on a product in full production.  
www.st.com  
46  
 
Contents  
ST1S14  
Contents  
1
2
Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1  
1.2  
1.3  
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Enable inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.1  
2.2  
2.3  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3
4
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Function description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
Power supply and voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Voltage monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Soft-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Inhibit function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5
6
Additional features and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.1  
5.2  
Maximum duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Minimum output voltage over VIN range . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Closing the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.1  
6.2  
6.3  
6.4  
GCO(s) control to output transfer function . . . . . . . . . . . . . . . . . . . . . . . . 17  
Error amplifier compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Voltage divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Total loop gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.1  
Component selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.1.1  
Input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2/46  
DocID17977 Rev 2  
ST1S14  
Contents  
7.1.2  
7.1.3  
Output capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Inductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.2  
7.3  
7.4  
Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.4.1  
7.4.2  
7.4.3  
300 mV < V < 1.22 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
FB  
V
< 300 mV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
FB  
Start up phase in short circuit condition . . . . . . . . . . . . . . . . . . . . . . . . . 33  
7.5  
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
8
Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Order code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
9
10  
11  
DocID17977 Rev 2  
3/46  
List of figure  
ST1S14  
List of figure  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Device block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Internal circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Soft-start phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Soft-start block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bootstrap operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
V
over input voltage range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
O_MIN  
Block diagram of the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 10. Transconductance embedded error amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 11. Leading network example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 12. Module plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 13. Phase plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 14. Layout example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 15. Switching losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 16. Minimum V for effective pulse-by-pulse protection over VIN . . . . . . . . . . . . . . . . . . . . . 30  
FB  
Figure 17. I diverging triggers hiccup protection (V = 48 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
L
IN  
Figure 18. Current and frequency foldback triggered when V <300 mV (red trace) . . . . . . . . . . . . . 31  
FB  
Figure 19. Minimum V for effective pulse-by-pulse protection over VIN . . . . . . . . . . . . . . . . . . . . . 32  
FB  
Figure 20. Short-circuit current VIN = 24 V (I  
Figure 21. Short-circuit current VIN = 43 V (I  
= I  
> I  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
L_PK  
FOLD  
L_PK  
FOLD  
Figure 22. Start up in short circuit condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 23. Over current protection triggers the frequency foldback. . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 24. Over current protection triggers the current and frequency foldback . . . . . . . . . . . . . . . . . 35  
Figure 25. Demonstration board application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 26. PCB layout (component side). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 27. PCB layout (bottom side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 28. Line regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 29. Load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 30. RDSon vs. temperature (VIN = 12 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 31. VFB vs. temperature (VIN = 12 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 32. fSW vs. temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 33. Quiescent current vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 34. Shutdown current vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 35. Duty cycle max vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 36. Efficiency vs. I  
(V 12 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
OUT  
IN  
Figure 37. T vs. I  
(V 12 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
J
OUT  
IN  
Figure 38. Efficiency vs. I  
(V 24 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
IN  
OUT  
Figure 39. T vs. I  
(V 24 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
J
OUT  
IN  
Figure 40. Efficiency vs. I  
(V 32 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
IN  
OUT  
Figure 41. T vs. I  
(V 32 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
J
OUT  
IN  
Figure 42. 1 A to 3 A load transient (V 12 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
IN  
Figure 43. Zoom - 1 A to 3 A load transient (V 12 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
IN  
Figure 44. Zoom - 1 A to 3 A rising edge load transient (V 12 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
IN  
Figure 45. 1 A to 3 A falling edge load transient (V 24 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
IN  
4/46  
DocID17977 Rev 2  
ST1S14  
List of figure  
Figure 46. Zoom - 1 A to 3 A rising edge load transient (V 24 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
IN  
Figure 47. Zoom - 1 A to 3 A falling edge load transient (V 24 V). . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
IN  
Figure 48. 1 A to 3 A load transient (V 32 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
IN  
Figure 49. Zoom - 1 A to 3 A rising edge load transient (V 32 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
IN  
Figure 50. Zoom - 1 A to 3 A falling edge load transient (V 32 V). . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
IN  
Figure 51. Package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
DocID17977 Rev 2  
5/46  
Pin settings  
ST1S14  
1
Pin settings  
1.1  
Pin connection  
Figure 2. Pin connection (top view)  
%80/3%$  
0!$  
4/ '.$  
$0ꢄꢉꢃꢌꢌ9ꢄ  
1.2  
Pin description  
Table 1. Pin description  
Description  
N
Pin  
Bootstrap capacitor for N-channel gate driver. Connects 100 nF low ESR  
capacitor from BOOT pin to SW  
1
BOOT  
2
3
4
5
6
7
8
PG  
EN1  
FB  
Power good  
Enable pin active low  
Feedback voltage  
Enable pin active high  
Ground pin  
EN2  
GND  
VIN  
Input supply pin  
SW  
E.p.  
Switching node  
Exposed pad must be connected to GND  
1.3  
Enable inputs  
Table 2. Truth table  
EN1  
EN2  
Device status  
H
H
L
L
H
L
INH  
INH  
INH  
ON  
L
H
6/46  
DocID17977 Rev 2  
 
ST1S14  
Electrical data  
2
Electrical data  
2.1  
Maximum ratings  
Table 3. Absolute maximum ratings  
Parameter  
Symbol  
Value  
Unit  
VIN  
VEN1  
VEN2  
PG  
Power supply input voltage  
Enable 1 voltage  
-0.3 to 52  
-0.3 to 7  
V
V
Enable 2 voltage  
-0.3 to (VIN+0.3)  
-0.3 to (VIN+0.3)  
-0.3 to 55  
V
V
Power good  
BOOT  
SW  
Bootstrap pin  
V
Switching node  
-1 to (VIN+0.3)  
-0.3 to 3  
V
VFB  
Feedback voltage  
V
TJ  
Operating junction temperature range  
Storage temperature range  
Lead temperature (soldering 10 sec.)  
-40 to 150  
-65 to 150  
260  
°C  
°C  
°C  
TSTG  
TLEAD  
2.2  
2.3  
Thermal data  
Table 4. Thermal data  
Parameter  
Symbol  
Value  
Unit  
Rth JA  
Thermal resistance junction-ambient  
40  
° C/W  
ESD protection  
Symbol  
Table 5. ESD protection  
Test condition  
Value  
Unit  
HBM  
ESD  
MM  
4
kV  
V
500  
DocID17977 Rev 2  
7/46  
Electrical characteristics  
ST1S14  
3
Electrical characteristics  
All the population tested at T = 25 °C, V =12 V, V  
= 0 V, V  
= V unless otherwise  
EN2 CC  
J
CC  
EN1  
specified.  
The specification is guaranteed from (-40 to +125 °C) T temperature range by design,  
J
characterization, and statistical correlation.  
Table 6. Electrical characteristics  
Symbol  
Parameter  
Test condition  
Min  
Typ  
Max  
Unit  
Operating input  
voltage range  
VIN  
5.5  
48  
V
MOSFET on  
resistance  
RDS(on)  
ISW=1 A  
0.2  
4.5  
0.4  
5.2  
Ω
Maximum limiting  
current  
ISW  
3.7  
A
tHICCUP Hiccup time  
fSW Switching frequency  
16  
850  
90  
ms  
kHz  
%
600  
1000  
(1)  
(1)  
Duty cycle  
Minimum conduction  
TON MIN time of the power  
element  
90  
90  
ns  
ns  
Minimum conduction  
TOFF MIN time of the external  
diode  
(1)  
75  
120  
DC characteristics  
I
LOAD=0 A  
1.202  
1.196  
1.22  
1.22  
50  
1.239  
1.245  
V
VFB  
IFB  
Iq  
Voltage feedback  
FB biasing current  
Quiescent current  
ILOAD=10 mA to 3 A  
V
nA  
mA  
mA  
V
FB=2 V  
1.3  
2
VFB=2 V, VIN=48 V  
1.7  
2.4  
Standby quiescent  
current  
Iqst-by  
Device OFF (see Table 2)  
16  
34  
μA  
V
0.92*  
VOUT  
VFB rising edge  
Power good threshold  
0.8*  
VOUT  
PG  
VFB falling edge  
V
PG output voltage  
(open collector active)  
ISINK=6 mA  
0.4  
V
Inhibit  
8/46  
DocID17977 Rev 2  
 
ST1S14  
Electrical characteristics  
Table 6. Electrical characteristics (continued)  
Symbol  
Parameter  
Test condition  
Min  
Typ  
Max  
Unit  
Device ON  
0.5  
V
VIN=5.5 V to 48 V  
VEN1  
Enable 1 levels  
Device OFF  
1.5  
0.7  
1.5  
V
μA  
V
VIN=5.5 V to 48 V  
Enable 1 biasing  
current  
IEN1  
VEN1=5 V  
1.6  
3.5  
0.5  
Device ON  
VIN=5.5 V to 48 V  
VEN2  
Enable 2 levels  
Device OFF  
V
VIN=5.5 V to 48 V  
VEN1=0 V; VEN2=0 V  
-1  
-2.4  
5.8  
6.0  
-4.5  
10  
μA  
μA  
μA  
Enable 2 biasing  
current  
IEN2  
VEN1=0 V; VEN2=12 V  
VEN1=0 V; VCC=VEN2=48 V  
2.7  
3.0  
10  
Thermal shutdown  
Thermal shutdown  
(1)  
(1)  
TSHDWN  
140  
150  
15  
160  
°C  
°C  
temperature  
Thermal shutdown  
hysteresis  
THYS  
1. Parameter guaranteed by design  
DocID17977 Rev 2  
9/46  
Function description  
ST1S14  
4
Function description  
The ST1S14 is based on a “peak current mode”, constant frequency control. As a  
consequence the intersection between the error amplifier output and the sensed inductor  
current generates the control signal to drive the power switch.  
The main internal blocks shown in the block diagram in Figure 3 are:  
A fully integrated sawtooth oscillator with a typical frequency of 850 kHz  
A transconductance error amplifier  
A high side current sense amplifier to track the inductor current  
A pulse width modulator (PWM) comparator and the circuitry necessary to drive the  
internal power element  
Soft-start circuitry to decrease the inrush current at power-up  
Current limitation circuit based on the pulse-by-pulse current protection with frequency  
divider based on FB voltage and the hiccup protection  
Bootstrap circuitry to drive the embedded N-MOS switch  
A multi input inhibit block for standby operation  
A circuit to implement the thermal protection function  
Figure 3. Device block diagram  
"//4  
6).  
/3#  
3LOPE  
2EG  
"OOT 2EG  
COMPENSATION  
ꢀꢂꢁꢀ6  
4
+2ꢃ),  
)?3%.  
-/3&%4  
#/.42/,  
,/')#  
$RIVERꢀ  
#OMP  
6#  
%!  
37  
2C  
3HUT$OWN  
/40  
3/&4 34!24  
#P  
$RIVERꢁ  
#C  
2%&  
0'  
%.ꢀ %.ꢁ  
'.$  
$0ꢄꢉꢊꢅꢅ9ꢄ  
10/46  
DocID17977 Rev 2  
 
ST1S14  
Function description  
4.1  
Power supply and voltage reference  
The internal regulator circuit consists of a start-up circuit, an internal voltage pre-regulator,  
the bandgap voltage reference, and the bias block that provides current to all the blocks.  
The starter supplies the start-up current to the entire device when the input voltage goes  
high and the device is enabled (inhibit pin connected to ground). The pre-regulator block  
supplies the bandgap cell with a pre-regulated voltage that has a very low supply voltage  
noise sensitivity.  
4.2  
Voltage monitor  
An internal block continuously senses the V , V , and V . If the monitored voltages are  
cc  
ref  
bg  
good, the regulator begins operating. There is also a hysteresis on the V (UVLO).  
CC  
Figure 4. Internal circuit  
$0ꢄꢉꢊꢅꢄ9ꢄ  
4.3  
Soft-start  
The startup phase minimizes the inrush current and decreases the stress of the power  
components at the power up. The startup takes place when VIN crosses the selected UVLO  
threshold. A internal counter (2816 clks) sets the soft start time (see Figure 5).  
The reference of the error amplifier is ramped smootly in 704 steps (one step every 4 clks).  
A low pass filter smooths each step to minimize output discontinuity. Considering the typical  
850 kHz switching frequency, the phase two duration is 3.3 msec  
The device has full load current capability during the soft start time in order to charge the  
output capacitor (see Figure 5).  
DocID17977 Rev 2  
11/46  
 
Function description  
ST1S14  
Figure 5. Soft-start phases  
$0ꢄꢉꢊꢀꢆ9ꢄ  
During normal operation a new soft start cycle takes place in case of:  
HICCUP mode current protection  
thermal shutdown event  
UVLO event  
the device is driven in INH mode  
Figure 6. Soft-start block diagram  
6ꢆ  
6ꢄ  
95()  
9VDZ  
9VHQVH  
&WUO  
95()B287  
9)%  
ꢊꢋFONV  
/RJLF  
($  
ꢋꢅꢅP9  
9VHQVH  
,FODPS  
ꢉꢅꢅP9  
6+257  
9)%  
$0ꢄꢉꢊꢅꢉ9ꢄ  
12/46  
DocID17977 Rev 2  
ST1S14  
Function description  
4.4  
Error amplifier  
The voltage error amplifier is the core of the loop regulation. It is a transconductance  
operational amplifier whose non inverting input is connected to the internal voltage  
reference (1.222 V), while the inverting input (FB) is connected to the external divider or  
directly to the output voltage.  
The error amplifier is internally compensated to minimize the size of the final application.  
Table 7. Uncompensated error amplifier characteristics  
Description  
Transconductance  
Values  
218 µS  
93 dB  
Low frequency gain  
CP  
CC  
RC  
24 pF  
211 pF  
200 kΩ  
The error amplifier output is compared with the inductor current sense information to  
perform PWM control.  
4.5  
4.6  
Inhibit function  
The inhibit feature is used to set the device in standby mode according to Table 2. When the  
device is disabled, the power consumption is reduced to less than 40 µA. The EN2 pin is  
also V compatible.  
IN  
Thermal shutdown  
The shutdown block generates a signal that turns off the power stage if the temperature of  
the chip goes higher than a fixed internal threshold (150±10 °C). The sensing element of the  
chip is very close to the PDMOS area, ensuring fast and accurate temperature detection. A  
hysteresis of approximately 15 °C keeps the device from turning on and off continuously.  
DocID17977 Rev 2  
13/46  
Additional features and limitations  
ST1S14  
5
Additional features and limitations  
5.1  
Maximum duty cycle  
The bootstrap circuitry charges, cycle-by-cycle, the external bootstrap capacitor to generate  
a voltage higher than V necessary to drive the internal N-channel power element.  
IN  
An internal linear regulator charges the C  
during the conduction time of the external  
BOOT  
freewheeling diode during the switching activity. The internal logic implements a minimum  
OFF time of the high side switch (90 nsec typ.) to prevent the bootstrap discharge at high  
duty cycle. As a consequence, the ST1S14 can operate at a maximum duty cycle of around  
90 % typ.  
The ST1S14 embeds the diode V required for the bootstrap operation.  
D1  
Figure 7. Bootstrap operation  
6).  
2%'5,!4/2  
6$ꢀ  
6$2)6%2  
(3 SWITCH  
62%'ꢄ6$ꢀꢅ6$ꢁ  
#
"//4  
6$ꢁ  
#
/54  
$0ꢄꢉꢊꢆꢄ9ꢄ  
14/46  
DocID17977 Rev 2  
ST1S14  
Additional features and limitations  
5.2  
Minimum output voltage over VIN range  
The minimum regulated output voltage at a given input voltage is limited by the minimum  
conduction time of the power element, that is 90 nsec typ. for the ST1S14:  
Equation 1  
TON_MIN  
---------------------  
TSW  
90ns  
1.18μs  
-----------------  
= VIN ⋅  
VO_MIN(VIN) = VIN DMIN = VIN  
which is plotted in Figure 14. The reference of the embedded error amplifier (1.22 V) sets  
the minimum V  
at low V .  
O_SET  
IN  
Figure 8. V  
over input voltage range  
O_MIN  
$0ꢄꢉꢊꢅꢋ9ꢄ  
Figure 8 shows the minimum output voltage over input voltage range to have constant  
switching activity and a predictable output voltage ripple.  
The regulator can, however, regulate the minimum input voltage over the entire input  
voltage range but, given the 90 ns minimum conduction time of the power element, it skips  
some pulses to keep the output voltage in regulation when Equation 1 is not satisfied.  
This operation is not recommended at the nominal input voltage of the application mainly  
because it affects the output voltage ripple, but it is generally accepted during a line  
transient event.  
DocID17977 Rev 2  
15/46  
 
 
Closing the loop  
ST1S14  
6
Closing the loop  
Figure 9. Block diagram of the loop  
6).  
07- CONTROL  
#URRENTSENSE  
(3  
SWITCH  
,# FILTER  
RESISTOR DIVIDER  
,
#
/54  
2ꢀ  
&"  
COMPENSATIONNETWORK  
62%&  
07- COMPARATOR  
2ꢁ  
2#  
#
%RROR AMPLIFIER  
0
#
#
$0ꢄꢉꢊꢅꢃ9ꢄ  
16/46  
DocID17977 Rev 2  
 
ST1S14  
Closing the loop  
6.1  
GCO(s) control to output transfer function  
The accurate control to output transfer function for a buck peak current mode converter can  
be written as:  
Equation 2  
s
1 + ----  
ω
R0  
1
z
------ ------------------------------------------------------------------------------------------------ --------------------  
GCO(s) =  
FH(s)  
Ri  
R0 TSW  
-------------------------  
L
s
1 + -----  
1 +  
⋅ [mC ⋅ (1 D) 0.5]  
ω
p
where R represents the load resistance, R the equivalent sensing resistor of the current  
0
i
sense circuitry, ω the single pole introduced by the LC filter, and ω the zero given by the  
p
z
ESR of the output capacitor.  
F (s) accounts for the sampling effect performed by the PWM comparator on the output of  
H
the error amplifier that introduces a double pole at one half of the switching frequency.  
Equation 3  
1
ω
= ----------------------------------  
Z
ESR COUT  
Equation 4  
mC ⋅ (1 D) 0.5  
L COUT fSW  
1
ω = ---------------------------------------- + ------------------------------------------------  
n
RLOAD COUT  
where:  
Equation 5  
Se  
------  
Sn  
mC = 1 +  
Se = Vpp fSW  
V
IN VOUT  
-----------------------------  
Ri  
Sn  
=
L
S represents the ON time slope of the sensed inductor current, and S the ON time slope  
n
e
of the external ramp (V peak to peak amplitude) that implements the slope compensation  
PP  
to avoid sub-harmonic oscillations at duty cycle over 50 %.  
The sampling effect contribution F (s) is:  
H
Equation 6  
1
FH(s) = ------------------------------------------  
s
s2  
1 + -------------------- + -----  
2
ω ⋅ QP  
n
ω
n
where:  
DocID17977 Rev 2  
17/46  
Closing the loop  
ST1S14  
Equation 7  
1
QP = ---------------------------------------------------------------  
π ⋅ [mC ⋅ (1 D) 0.5]  
6.2  
Error amplifier compensation network  
The ST1S14 embeds the error amplifier (see Figure 10) and a pre-defined compensation  
network which is effective in stabilizing the system in most of the application conditions.  
Figure 10. Transconductance embedded error amplifier  
%ꢅ!  
#/-0  
&"  
2#  
#
0
#
#
6ꢄ  
2#  
ꢂ6  
2ꢃ  
#
#
0
'M 6  
#
#
$0ꢄꢉꢊꢅꢊ9ꢄ  
R and C introduce a pole and a zero in the open loop gain. C does not significantly affect  
C
C
P
system stability but it is useful to reduce the noise at the output of the error amplifier.  
The transfer function of the error amplifier and its compensation network is:  
Equation 8  
AV0 ⋅ (1 + s Rc Cc)  
A0(s) = ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
s2 R0 ⋅ (C0 + Cp) ⋅ Rc Cc + s ⋅ (R0 Cc + R0 ⋅ (C0 + Cp) + Rc Cc) + 1  
where A = G · R .  
vo  
m
o
The poles of this transfer function are (if C >> C +C ):  
c
0
P
Equation 9  
1
fP LF = -----------------------------------------  
2 ⋅ π R0 Cc  
18/46  
DocID17977 Rev 2  
 
ST1S14  
Closing the loop  
Equation 10  
1
fP HF = ------------------------------------------------------------  
2 ⋅ π Rc ⋅ (C0 + Cp)  
whereas the zero is defined as:  
Equation 11  
1
FZ = -----------------------------------------  
2 ⋅ π Rc Cc  
The embedded compensation network is R =200 K, C =24 pF, C =211 pF and C can be  
C
P
C
O
considered negligible, so the singularities are:  
Equation 12  
fZ = 3, 77 kHz  
fP LF = 3, 01 Hz  
fP HF = 33, 16 kHz  
6.3  
Voltage divider  
The contribution of a simple voltage divider is:  
Equation 13  
R2  
GDIV(s) = --------------------  
R1 + R2  
Figure 11. Leading network example  
%227  
9,1  
6:  
3*22'  
)%  
(1ꢆ  
(1ꢄ  
5ꢄ  
*1'  
&5ꢄ  
5ꢆ  
VPDOOVLJQDO  
SRZHUꢁSODQH  
$0ꢄꢉꢊꢅꢈ9ꢄ  
A small signal capacitor in parallel to the upper resistor (see Figure 11.) of the voltage  
divider implements a leading network (f  
system phase margin:  
< f  
), sometimes necessary to improve the  
zero  
pole  
Equation 14  
DocID17977 Rev 2  
19/46  
 
 
Closing the loop  
ST1S14  
R2  
(1 + s R1 CR1)  
-------------------- ----------------------------------------------------------------  
GDIV(s) =  
R1 + R2  
R1 R2  
---------------------  
R1 + R2  
1 + s ⋅  
CR1  
where:  
1
---------------------------------------------  
fZ  
=
2 ⋅ π R1 CR1  
1
fP = ------------------------------------------------------------  
R1 R2  
---------------------  
2 ⋅ π ⋅  
CR1  
R1 + R2  
fZ < fP  
6.4  
Total loop gain  
In summary, the open loop gain can be expressed as:  
Equation 15  
G(s) = GDIV(s) ⋅ GCO(s) ⋅ A0(s)  
Example: V = 12 V, V  
= 3.3 V, R  
= 2 Ω.  
IN  
OUT  
OUT  
The resistor divider is R =5.6 K, R =3.3 K.  
1
2
C
=150 nF implements a leading network (f =190 kHz, f =510 kHz).  
Z P  
R1  
Selecting L = 8.2 µH, C  
diagrams are plotted respectively in Figure 12 and 13 over input voltage range (V =6  
= 100 µF, and ESR = 75 mΩ, the gain and phase bode  
OUT  
IN  
V to 48 V, I  
=3 A).  
OUT  
Figure 12. Module plot  
$0ꢄꢉꢊꢅꢀ9ꢄ  
20/46  
DocID17977 Rev 2  
 
ST1S14  
Closing the loop  
Figure 13. Phase plot  
$0ꢄꢉꢊꢅꢌ9ꢄ  
The cut-off frequency and the phase margin are:  
Equation 16  
VIN = 6V  
VIN = 12V  
VIN = 48V  
fC = 46 kHz  
fC = 71 kHz  
fC = 97 kHz  
pm = 49°  
pm = 62°  
pm = 78°  
DocID17977 Rev 2  
21/46  
Application information  
ST1S14  
7
Application information  
7.1  
Component selection  
7.1.1  
Input capacitor  
The input capacitor must be able to support the maximum input operating voltage and the  
maximum RMS input current.  
Since step-down converters draw current from the input in pulses, the input current is  
squared and the height of each pulse is equal to the output current. The input capacitor has  
to absorb all this switching current, whose RMS value can be up to the load current divided  
by two (worst case, with duty cycle of 50 %). For this reason, the quality of these capacitors  
must be very high to minimize the power dissipation generated by the internal ESR, thereby  
improving system reliability and efficiency. The critical parameter is usually the RMS current  
rating, which must be higher than the RMS current flowing through the capacitor. The  
maximum RMS input current (flowing through the input capacitor) is:  
Equation 17  
2 D2 D2  
IRMS = IO  
D ----------------- + ------  
2
η
η
where ηis the expected system efficiency, D is the duty cycle, and I is the output DC  
O
current. Considering η= 1 this function reaches its maximum value at D = 0.5 and the  
equivalent RMS current is equal to I divided by 2. The maximum and minimum duty cycles  
O
are:  
Equation 18  
V
OUT + VF  
DMAX = ------------------------------------  
INMIN VSW  
V
and  
Equation 19  
V
OUT + VF  
DMIN = --------------------------------------  
INMAX VSW  
V
Where V is the freewheeling diode forward voltage and V  
the voltage drop across the  
F
SW  
internal PDMOS. Considering the range D  
to D  
, it is possible to determine the  
MIN  
MAX  
maximum IRMS going through the input capacitor. Capacitors that may be considered are:  
Electrolytic capacitors:  
These are widely used due to their low cost and their availability in a wide range of  
RMS current ratings.  
The only drawback is that, considering ripple current rating requirements, they are  
physically larger than other capacitors.  
22/46  
DocID17977 Rev 2  
ST1S14  
Application information  
Ceramic capacitors:  
If available for the required value and voltage rating, these capacitors usually have a  
higher RMS current rating for a given physical dimension (due to very low ESR).  
The drawback is the considerably high cost.  
Tantalum capacitors:  
Small tantalum capacitors with very low ESR are becoming more available. However,  
they can occasionally burn if subjected to very high current during charge.  
Therefore, it is suggested to avoid this type of capacitor for the input filter of the device  
as they could be stressed by a high surge current when connected to the power supply.  
Table 8. List of ceramic capacitors for the ST1S14  
Manufacturer  
Series  
Capacitor value (µ)  
Rated voltage (V)  
TAIYO YUDEN  
MURATA  
UMK325BJ106MM-T  
10  
50  
50  
GRM42-2 X7R 475K 50  
4.7  
If the selected capacitor is ceramic (so neglecting the ESR contribution), the input voltage  
ripple can be calculated as:  
Equation 20  
IO  
D
η
D
η
--------------------------  
CIN fSW  
---  
1 --- D + ⋅ (1 D)  
VIN PP  
=
7.1.2  
Output capacitor  
The output capacitor is very important to meet the output voltage ripple requirement.  
Using a small inductor value is useful to reduce the size of the choke but it increases the  
current ripple. So, to reduce the output voltage ripple, a low ESR capacitor is required.  
Nevertheless, the ESR of the output capacitor introduces a zero in the open loop gain,  
which helps to increase the phase margin of the system. If the zero goes to a very high  
frequency, its effect is negligible.  
Ceramic capacitors  
Ceramic capacitors and very low ESR capacitors that introduce a zero outside the  
designed bandwidth (f =1/(2*pi*ESR*C  
, see Section 6: Closing the loop) in general  
Z
OUT  
should be avoided. A leading network across the upper resistor of the voltage divider is  
useful to increase the phase margin and compensate the system (see Section 6.3:  
Voltage divider). The effectiveness of the leading network increases at high output  
voltage because the singularities become more split.  
High ESR capacitors  
The “high ESR capacitor” definition stands for a capacitor having an ESR value able to  
introduce a zero into the designed system bandwidth, which can be, as a general rule,  
up to f /5 at maximum. Tantalum or electrolytic capacitors belong to this group.  
SW  
Equation 21  
fSW  
--------  
5
1
----------------------------------------------------------  
fZ  
=
< BW <  
2 ⋅ π ESR COUT  
DocID17977 Rev 2  
23/46  
Application information  
ST1S14  
A list of some tantalum capacitor manufacturers is provided in Table 9.  
Table 9. Output capacitor selection  
Manufacturer  
Series  
Rated voltage (V) Cap value (µF)(1)  
ESR (mΩ)(1)  
Nippon Chemicon  
Sanyo POSCAP(2)  
KZE  
TAE  
6.3 to 50  
4 to 16  
4 to 16  
1
THB/C/E  
----------------------------------------------------------  
fZ  
=
< BW  
2 ⋅ π ESR COUT  
AVX  
TPS  
4 to 35  
1. see Section 6: Closing the loop for the selection of the output capacitor  
2. POSCAP capacitors have some characteristics which are very similar to tantalum.  
7.1.3  
Inductor  
The inductor value is very important as it fixes the ripple current flowing through the output  
capacitor. The ripple current is usually fixed at 20 - 40 % of I , which is 0.6 - 1.2 A with  
omax  
= 3 A. The approximate inductor value is obtained using the following formula:  
IOmax  
Equation 22  
(VIN V  
)
----------------------O----U----T----  
L =  
TON  
ΔI  
where T is the ON time of the internal switch, given by D · T. For example, with  
ON  
V
= 3.3 V, V = 24 V, and ΔI = 0.8 A, the inductor value is about 4.7 µH. The peak  
OUT  
IN O  
current through the inductor is given by:  
Equation 23  
ΔI  
IPK = IO + -----  
2
and it can be observed that if the inductor value decreases, the peak current (which must be  
lower than the current limit of the device) increases. So, when the peak current is fixed, a  
higher inductor value allows a higher value for the output current. In Table 10, some inductor  
manufacturers are listed.  
Table 10. Inductor selection  
Manufacturer  
Series  
Inductor value (µH)  
Saturation current (A)  
WE-HCI 7040  
WE-HCI 7050  
XPL 7030  
1 to 4.7  
4.9 to 10  
2.2 to 10  
20 to 7  
20 to 4.0  
29 to 7.2  
Wurth Elektronik  
Coilcraft  
7.2  
Layout considerations  
The layout of switching DC-DC converters is very important to minimize noise and  
interference. Power-generating portions of the layout are the main cause of noise and so  
24/46  
DocID17977 Rev 2  
 
 
ST1S14  
Application information  
high switching current loop areas should be kept as small as possible and lead lengths as  
short as possible.  
High impedance paths (in particular the feedback connections) are susceptible to  
interference, so they should be as far as possible from the high current paths. A layout  
example is provided in Figure 14 below.  
The input and output loops are minimized to avoid radiation and high frequency resonance  
problems. The feedback pin connections to the external divider are very close to the device  
in order to avoid pick-up noise. Another important issue is the ground plane of the board. As  
the package has an exposed pad, it is very important to connect it to an extended ground  
plane in order to reduce the thermal resistance junction-to-ambient.  
To increase the design noise immunity, different signal and power ground should be  
implemented in the layout (see Section 7.5: Application circuit). The signal ground serves  
the small signal components, the device ground pin, the exposed pad, and a small filtering  
capacitor connected to the VCC pin. The power ground serves the external diode and the  
input filter. The different grounds are connected underneath the output capacitor. Neglecting  
the current ripple contribution, the current flowing through this component is constant during  
the switching activity and so this is the cleanest ground point of the buck application circuit.  
Figure 14. Layout example  
$0ꢄꢉꢊꢄꢅ9ꢄ  
DocID17977 Rev 2  
25/46  
 
Application information  
ST1S14  
7.3  
Thermal considerations  
The dissipated power of the device is tied to three different sources:  
Conduction losses due to the not insignificant R  
, which are equal to:  
DSON  
Equation 24  
PON = RDSON ⋅ (IOUT)2 D  
where D is the duty cycle of the application. Note that the duty cycle is theoretically given by  
the ratio between V and V , but in practice it is substantially higher than this value to  
OUT  
IN  
compensate for the losses in the overall application. For this reason, the conduction losses  
related to the R increase compared to an ideal case.  
DSON  
Switching losses due to turning on and off. These are derived using the following  
equation:  
Equation 25  
(TRISE + TFALL  
----------------------------------------  
FSW= VIN IOUT TSW_EQ FSW  
)
PSW = VIN IOUT  
2
where T  
and T  
represent the switching times of the power element that cause the  
RISE  
FALL  
switching losses when driving an inductive load (see Figure 15). T  
is the equivalent  
SW  
switching time.  
Figure 15. Switching losses  
$0ꢄꢉꢊꢄꢄ9ꢄ  
Quiescent current losses.  
Equation 26  
PQ = VIN IQ  
26/46  
DocID17977 Rev 2  
 
ST1S14  
Application information  
Example:  
V
V
= 24 V  
IN  
= 5 V  
OUT  
I
= 3 A  
OUT  
R
has a typical value of 0.2 Ω @ 25 °C and increases to a maximum value of 0.4 Ω@  
DS(on)  
125 °C. We can consider a value of 0.3 Ω.  
T
is approximately 12 ns.  
SW_EQ  
I has a typical value of 2 mA @ V = 24 V.  
Q
IN  
The overall losses are:  
Equation 27  
PTOT = RDSON ⋅ (IOUT)2 D + VIN IOUT TSW FSW + VIN IQ= "  
= 0.3 ⋅ (3)2 0.137 + 24 3 12 109 850 103 + 24 2 103 1.15W  
The junction temperature of the device is:  
Equation 28  
TJ = TA + RthJ A PTOT  
where T is the ambient temperature and Rth is the thermal resistance junction-to-  
A
J-A  
ambient. Considering that the device is mounted on board with a good ground plane, that it  
has a thermal resistance junction-to-ambient (Rth ) of about 40 °C/W, and an ambient  
J-A  
temperature of about 40 °C:  
TJ = 40 + 1.15 40 86° C  
7.4  
Short-circuit protection  
In overcurrent protection mode, when the peak current reaches the current limit, the device  
disables the power element and it is able to reduce the conduction time down to the  
minimum value (approximately 90 nsec typical) to keep the inductor current limited. This is  
the pulse by pulse current limitation to implement constant current protection feature.  
For the ST1S14, the operation of the pulse by pulse current limitation out of the soft start  
time depends on the FB voltage:  
300 mV <VFB <1.22 V: the device operates at nominal switching frequency and the  
current limitation value  
VFB < 300mV: the switching frequency is decreased five times the nominal value (170  
kHz = 850 kHz/5) if the current protection is triggered. The frequency foldback helps to  
prevent the current diverging at low VOUT / high input voltage. The current foldback,  
which is active out of the soft start time, reduces the stress of the embedded power  
element and the external power components in case of persistent short circuit at the  
output. The current foldback is disabled during the soft start time to provide full current  
capability to charge the output capacitor at the power-up phase.The foldback peak  
current value is to 1.45 A typical. In overcurrent condition, the duty cycle is strongly  
DocID17977 Rev 2  
27/46  
 
Application information  
ST1S14  
reduced and, in most applications, this is enough to limit the switch current to the  
active current threshold, nominal or foldback depending on the FB voltage.  
The inductor current ripple during ON and OFF phases can be written as:  
ON phase  
Equation 29  
V
IN VOUT (DCRL + RDSON) ⋅ I  
------------------------------------------------------------------------------------------  
ΔIL TON  
=
(TON  
)
L
OFF phase  
Equation 30  
(VD + VOUT + DCRL I)  
--------------------------------------------------------------------  
(TOFF)  
ΔIL TON  
=
L
where V is the voltage drop across the diode, DCR is the series resistance of the inductor.  
D
L
The pulse-by-pulse current limitation is effective in implementing constant current protection  
when:  
Equation 31  
ΔIL TON = ΔIL TOFF  
The overcurrent protection is operating over the entire output voltage, which goes from the  
regulated output voltage (V  
output.  
) down to GND during heavy short circuit applied at the  
O_SET  
From Equation 29 and Equation 30 we can gather that the implementation of the constant  
current protection becomes more critical the lower is the V and the higher is V .  
OUT  
IN  
In fact, the voltage applied to the inductor during the OFF time becomes equal to the voltage  
drop across parasitic components (typically the DCR of the inductor and the V of the free  
FW  
wheeling diode) when VOUT is negligible, while during T the voltage applied the inductor  
ON  
is maximized and it is approximately equal to V . In general the worst case scenario is  
IN  
heavy short-circuit at the output with maximum input voltage.  
7.4.1  
300 mV < V < 1.22 V  
FB  
The nominal output voltage can be written as:  
Equation 32  
R1  
R1  
VO_SET = VFB  
1 + ------ = 1.22 1 + ------  
R2  
R2  
From Equation 32 the voltage can be expressed as:  
Equation 33  
R1  
VO_SET  
1 + ------ = ------------------  
R2  
1.22  
28/46  
DocID17977 Rev 2  
 
ST1S14  
Application information  
so the output voltage is:  
Equation 34  
VO_SET  
------------------  
1.22  
R1  
1 + ------ = VFB ⋅  
VO = VFB  
R2  
Equation 29 and 30, in overcurrent conditions, can be simplified to:  
Equation 35  
V
IN(DCRL + RDSON) ⋅ I  
VIN  
--------  
L
-------------------------------------------------------------------  
ΔIL TON  
=
(TON MIN) ≅  
(90ns)  
L
considering T which has already been reduced to its minimum.  
ON  
Equation 36  
VO_SET  
------------------  
+ DCRL I  
VD + VFB  
(VD + VO_MIN + DCRL I)  
1.22  
------------------------------------------------------------------------  
-------------------------------------------------------------------------------------------  
ΔIL TOFF  
=
(TSW 90ns) ≅  
(1.18μs)  
L
L
where T =1/f  
and considering the nominal f  
.
SW  
SW  
SW  
The voltage divider introduces a gain factor K between the V  
and V that affect the  
FB  
O_SET  
effectiveness of the current protection. The worst case scenario is the minimum K, that is  
the minimum output voltage, over the input voltage (Chapter 5.2: Minimum output voltage  
over V range).  
IN  
As a consequence the minimum feedback voltage to keep the inductor current limited over  
the input voltage range can be expressed making Equation 35 equal to Equation 36 and  
expressing V  
as given in Equation 1:  
O_SET  
Equation 37  
1.22 TSW  
VIN TON_MIN  
--------------------------------------  
VFB(VIN) = 1.22 –  
⋅ (VD + (IL DCR))  
Equation 37 expresses the worst case scenario as it considers the minimum K gain of the  
voltage divider over the entire input voltage range. The Figure 16 plots the Equation 37  
considering the minimum value of the peak current limit given in Table 6: Electrical  
characteristics on page 8.  
DocID17977 Rev 2  
29/46  
Application information  
ST1S14  
Figure 16. Minimum V for effective pulse-by-pulse protection over V  
FB  
IN  
$0ꢄꢉꢊꢄꢆ9ꢄ  
As a consequence of V > 12 V the pulse-by-pulse current protection (in the worst case  
IN  
scenario which is the minimum V  
) may not be effective to limit the inductor current to  
OSET  
the peak current limitation over the entire FB range 300 mV < V < 1.22 V.  
FB  
In fact, at higher input voltage, ΔI  
may be higher than ΔI  
and so the inductor  
L TON  
L TOFF  
current could escalate. The system typically meets Equation 31 at a current level higher  
than the nominal value thanks to the voltage drop across stray components.  
Figure 17. I diverging triggers hiccup protection (V = 48 V)  
L
IN  
$0ꢄꢉꢊꢄꢉ9ꢄ  
In most of the application conditions the pulse-by-pulse current limitation is effective in  
limiting the inductor current.  
Whenever the current escalates, a second level current protection called “hiccup mode” is  
enabled. In case the hiccup current level (6.2 A typ.) is triggered the switching activity is  
30/46  
DocID17977 Rev 2  
 
ST1S14  
Application information  
prevented for 16 ms and then a new soft-start phase takes place (see Figure 17).  
7.4.2  
V
< 300 mV  
FB  
The device reduces the switching frequency by five times the nominal value when V <300  
FB  
mV. The frequency foldback makes the pulse-by-pulse current protection effective to keep  
the current limited when the output voltage is shorted and V  
negligible.  
OUT  
Equation 29 and 30 in overcurrent conditions can be simplified to:  
Equation 38  
V
IN(DCRL + RDSON) ⋅ I  
VIN  
--------  
L
-------------------------------------------------------------------  
ΔIL TON  
=
(TON MIN) ≅  
(90ns)  
L
considering T which has already been reduced to its minimum.  
ON  
Equation 39  
VO_SET  
------------------  
+ DCRL I  
VD + VFB  
(VD + VO_MIN + DCRL I)  
TSW  
1.22  
------------------------------------------------------------------------  
-------------------------------------------------------------------------------------------  
ΔIL TOFF  
=
----------- – 90ns ≅  
(5.9μs)  
L
L
5
taking into consideration the frequency foldback feature.  
Figure 18. Current and frequency foldback triggered when V <300 mV (red trace)  
FB  
$0ꢄꢉꢊꢄꢋ9ꢄ  
The content given in Section 7.4.1 is valid and the equivalent expression of Equation 37 is:  
DocID17977 Rev 2  
31/46  
 
Application information  
Equation 40  
ST1S14  
1.22 TSW  
--------------------------------------  
VIN TON_MIN  
1.22  
5
VFB(VIN) = ----------- –  
⋅ (VD + (IL DCR))  
The Figure 19 plots the Equation 40 considering the foldback current limitation threshold  
(1.45A) given in Table 6: Electrical characteristics which is active out of the soft start time.  
Equation 40 expresses the worst case scenario as it considers the minimum K gain of the  
voltage divider over the entire input voltage range (see Figure 14).  
In most of the application conditions the pulse by pulse current limitation with frequency  
foldback is effective to limit the inductor current in short circuit condition. The current  
foldback helps to decrease the power component stress in persistent short circuit condition  
out of the sift start time.  
The hiccup protection offers an additional protection against heavy short circuit condition at  
very high input voltage even considering the spread of the minimum conduction time of the  
power element. In case the hiccup current level (6.2 A typical) is triggered the switching  
activity is prevented for 15 ms and then a new soft start phase takes place.  
Figure 19. Minimum V for effective pulse-by-pulse protection over V  
FB  
IN  
$0ꢄꢉꢊꢄꢃ9ꢄ  
Figure 20 shows the effectiveness of the constant current protection limiting the inductor  
current to the peak current of 1.45 A typ. during a short circuit event.  
32/46  
DocID17977 Rev 2  
 
ST1S14  
Application information  
Figure 20. Short-circuit current V = 24 V (I  
= I  
)
IN  
L_PK  
FOLD  
$0ꢄꢉꢊꢄꢊ9ꢄ  
Figure 21 shows the operation of the constant current protection when a short-circuit is  
applied at the output at the maximum input voltage. According to Figure 20, the maximum  
inductor current escalates over the foldback current limitation.  
Figure 21. Short-circuit current V = 43 V (I  
> I  
)
IN  
L_PK  
FOLD  
$0ꢄꢉꢊꢄꢈ9ꢄ  
7.4.3  
Start up phase in short circuit condition  
The start up phase in short circuit condition rapresents a preparatory example to show the  
current protection strategy.  
Figure 25 shows the first switching pulses at power up when the switch current rises but is  
lower than the current protection level, called OCP1. As a consequence the switching  
frequency is not reduced.  
DocID17977 Rev 2  
33/46  
 
 
Application information  
ST1S14  
Figure 22. Start up in short circuit condition  
$0ꢄꢉꢊꢀꢉ9ꢄ  
As soon as the current escalates to the current protection threshold (OCP1) the switching  
frequency is foldback 5 times the nomimal value.The OCP1 threshold is not foldback even if  
the VFB v< 300 mV ( see Chapter 7.4.2) becuase the device is operating in soft start time.  
Figure 23. Over current protection triggers the frequency foldback  
$0ꢄꢉꢊꢀꢋ9ꢄ  
Out of soft start time the device support frequency and current foldback operation to keep  
the siwtch current limited and reduce the stress of the power components.  
34/46  
DocID17977 Rev 2  
ST1S14  
Application information  
Figure 24. Over current protection triggers the current and frequency foldback  
$0ꢄꢉꢊꢀꢃ9ꢄ  
7.5  
Application circuit  
Figure 25. Demonstration board application circuit  
&ꢊ  
ꢄꢅQ)  
3*22'  
73ꢈ  
ꢈꢋꢋꢉꢄꢋꢄꢄ  
/ꢄ ꢄꢅX+  
8ꢄ  
67ꢄ6ꢋ  
9287  
73ꢋ  
%227  
6:  
9,1  
73ꢉ  
5ꢉ  
.  
ꢋꢇ.  
9,1  
(1ꢆ  
(1ꢄ  
-3ꢄ  
3*22'  
5ꢄ  
)%  
*1'  
(;ꢂ 3$'  
&ꢄ  
&ꢆ  
&ꢉ  
&ꢋ  
&ꢃ  
&ꢈ  
&ꢀ  
&ꢌ  
&ꢅ  
&ꢄ  
'ꢄ  
X)  
9  
X)  
9  
Q)  
9  
ꢄꢅꢁQ)  
9  
ꢄꢅX)  
-3ꢆ  
ꢄꢃꢅS)  
5ꢆ  
ꢆꢇ.  
*1'  
73ꢃ  
VPDOOVLJQDO  
SRZHUꢁSODQH  
*1'  
73ꢊ  
$0ꢄꢉꢊꢄꢀ9ꢄ  
Table 11. Component list  
Reference  
Part number  
Description  
Manufacturer  
10 μF 50 V  
(size 1210)  
C2, C3  
UMK325BJ106MM-T  
Taiyo Yuden  
100 nF 50 V  
(size 0603)  
C6, C6  
DocID17977 Rev 2  
35/46  
Application information  
ST1S14  
Table 11. Component list (continued)  
Reference  
Part number  
Description  
Manufacturer  
150 pF 50 V  
(size 0603)  
C7  
100 μF 50 V  
(size 8 x 11.5 mm)  
C8  
C1, C9, C10, C11  
R1  
EKZE500ESS101MHB5D  
Nippon Chemicon  
Not Mounted  
4.7 KΩ  
(size 0603)  
2.7 KΩ  
(size 0603)  
R2  
R3  
D1  
47 KΩ  
(size 0603)  
3 A 60 V  
STPS3L60U  
744314850  
ST  
(size SMB)  
8.5 μH  
SAT=4.5 A, IRMS=4 A  
L1  
I
Wurth  
(size 7 x 6.9 x 4.8 mm)  
Figure 26. PCB layout (component side)  
$0ꢄꢉꢊꢄꢌ9ꢄ  
36/46  
DocID17977 Rev 2  
ST1S14  
Application information  
Figure 27. PCB layout (bottom side)  
$0ꢄꢉꢊꢆꢅ9ꢄ  
DocID17977 Rev 2  
37/46  
Typical characteristics  
ST1S14  
8
Typical characteristics  
Figure 28. Line regulation  
Figure 29. Load regulation  
$0ꢄꢉꢊꢆꢆ9ꢄ  
$0ꢄꢉꢊꢆꢉ9ꢄ  
Figure 30. R  
vs. temperature (V = 12 V)  
Figure 31. V vs. temperature (V = 12 V)  
FB IN  
DSon  
IN  
$0ꢄꢉꢊꢆꢋ9ꢄ  
$0ꢄꢉꢊꢆꢃ9ꢄ  
Figure 32. f  
vs. temperature  
Figure 33. Quiescent current vs. temperature  
SW  
$0ꢄꢉꢊꢆꢈ9ꢄ  
$0ꢄꢉꢊꢆꢊ9ꢄ  
38/46  
DocID17977 Rev 2  
ST1S14  
Typical characteristics  
Figure 34. Shutdown current vs. temperature  
Figure 35. Duty cycle max vs. temperature  
$0ꢄꢉꢊꢆꢀ9ꢄ  
$0ꢄꢉꢊꢆꢌ9ꢄ  
Figure 36. Efficiency vs. I  
(V 12 V)  
Figure 37. T vs. I  
(V 12 V)  
OUT  
IN  
J
OUT IN  
$0ꢄꢉꢊꢉꢄ9ꢄ  
$0ꢄꢉꢊꢉꢅ9ꢄ  
Figure 38. Efficiency vs. I  
(V 24 V)  
Figure 39. T vs. I  
(V 24 V)  
OUT  
IN  
J
OUT IN  
$0ꢄꢉꢊꢉꢆ9ꢄ  
$0ꢄꢉꢊꢉꢉ9ꢄ  
DocID17977 Rev 2  
39/46  
Typical characteristics  
ST1S14  
Figure 40. Efficiency vs. I  
(V 32 V)  
Figure 41. T vs. I  
(V 32 V)  
OUT  
IN  
J
OUT IN  
$0ꢄꢉꢊꢉꢋ9ꢄ  
$0ꢄꢉꢊꢉꢃ9ꢄ  
Figure 42. 1 A to 3 A load transient (V 12 V) Figure 43. Zoom - 1 A to 3 A load transient (V  
IN  
IN  
12 V)  
$0ꢄꢉꢊꢉꢊ9ꢄ  
$0ꢄꢉꢊꢉꢈ9ꢄ  
Figure 44. Zoom - 1 A to 3 A rising edge load Figure 45. 1 A to 3 A falling edge load transient  
transient (V 12 V) (V 24 V)  
IN  
IN  
$0ꢄꢉꢊꢉꢀ9ꢄ  
$0ꢄꢉꢊꢉꢌ9ꢄ  
40/46  
DocID17977 Rev 2  
ST1S14  
Typical characteristics  
Figure 46. Zoom - 1 A to 3 A rising edge load  
transient (V 24 V)  
Figure 47. Zoom - 1 A to 3 A falling edge load  
transient (V 24 V)  
IN  
IN  
$0ꢄꢉꢊꢋꢄ9ꢄ  
$0ꢄꢉꢊꢋꢅ9ꢄ  
Figure 48. 1 A to 3 A load transient (V 32 V)  
Figure 49. Zoom - 1 A to 3 A rising edge load  
transient (V 32 V)  
IN  
IN  
$0ꢄꢉꢊꢋꢉ9ꢄ  
$0ꢄꢉꢊꢋꢆ9ꢄ  
Figure 50. Zoom - 1 A to 3 A falling edge load  
transient (V 32 V)  
IN  
$0ꢄꢉꢊꢋꢋ9ꢄ  
DocID17977 Rev 2  
41/46  
Package mechanical data  
ST1S14  
9
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions, and product status are available at www.st.com.  
ECOPACK is an ST trademark.  
Table 12. HSOP8 mechanical data  
mm  
Dim.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
1.75  
0.15  
1.25  
0.38  
0.17  
4.80  
3.10  
5.80  
3.80  
2.20  
0.51  
0.25  
5.00  
3.50  
6.20  
4.00  
2.60  
c
D
4.90  
3.30  
6.00  
3.90  
2.40  
1.27  
D1  
E
E1  
E2  
e
h
0.30  
0.45  
0°  
0.50  
0.80  
8°  
L
k
42/46  
DocID17977 Rev 2  
ST1S14  
Package mechanical data  
Figure 51. Package dimensions  
7195016D  
DocID17977 Rev 2  
43/46  
Order code  
ST1S14  
10  
Order code  
Table 13. Ordering information  
Package  
Order code  
Packaging  
ST1S14PHR  
HSOP8 - exposed pad  
Tape and reel  
44/46  
DocID17977 Rev 2  
ST1S14  
Revision history  
11  
Revision history  
Table 14. Document revision history  
Date  
Revision  
Changes  
12-Nov-2010  
1
Initial release  
Updated IEN2 current limit.  
04-Mar-2013  
2
Updated Section 4.3: Soft-start and Section 7.4: Short-circuit  
protection.  
DocID17977 Rev 2  
45/46  
ST1S14  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE  
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH  
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR  
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED  
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN  
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,  
AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.  
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE  
CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2013 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
46/46  
DocID17977 Rev 2  

相关型号:

ST1S14PHR

Up to 3 A step-down switching regulator
STMICROELECTR

ST1S15

Short-circuit and thermal protection
STMICROELECTR

ST1S15J18R

Short-circuit and thermal protection
STMICROELECTR

ST1S30

3 A, 1.5 MHz PWM step-down switching regulator with synchronous rectification
STMICROELECTR

ST1S30IPUR

3 A, 1.5 MHz PWM step-down switching regulator with synchronous rectification
STMICROELECTR

ST1S30PUR

3 A, 1.5 MHz PWM step-down switching regulator with synchronous rectification
STMICROELECTR

ST1S32

4 A DC step-down switching regulator
STMICROELECTR

ST1S32PUR

4 A DC step-down switching regulator
STMICROELECTR

ST1S40DR

6A SWITCHING REGULATOR, 1000kHz SWITCHING FREQ-MAX, PDSO8, ROHS COMPLIANT, SOP-8
STMICROELECTR

ST1S40IPUR

3 A DC step-down switching regulator
STMICROELECTR

ST1S40PHR

6A SWITCHING REGULATOR, 1000kHz SWITCHING FREQ-MAX, PDSO8, ROHS COMPLIANT, HSOP-8
STMICROELECTR

ST1S40PUR

6A SWITCHING REGULATOR, 1000kHz SWITCHING FREQ-MAX, PDSO8, 4 X 4 MM, 1.08 MM HEIGHT, ROHS COMPLIANT, VFQFP-8
STMICROELECTR