ST2L01 [STMICROELECTRONICS]

DUAL VOLTAGE REGULATOR; 双电压稳压器
ST2L01
型号: ST2L01
厂家: ST    ST
描述:

DUAL VOLTAGE REGULATOR
双电压稳压器

稳压器
文件: 总12页 (文件大小:381K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ST2L01  
DUAL VOLTAGE REGULATOR  
V
V
= +3.3V FIXED  
= 1.25 TO 3.0V ADJUSTABLE  
OUT1  
OUT2  
GUARANTEED OUTPUT1 CURRENT: 1A  
GUARANTEED OUTPUT2 CURRENT: 1A  
±2% OUTPUT TOLERANCE (AT 25°C)  
TYPICAL DROPOUT 1.1V  
(I  
= I  
=1A)  
OUT1  
OUT2  
PPAK  
SPAK-5L  
(PowerFlex  
INTERNAL POWER AND THERMAL LIMIT  
STABLE WITH LOW ESR OUTPUT  
CAPACITOR  
)
OPERATING TEMPERATURE RANGE:  
0°C TO 125°C  
AVAILABLE IN PPAK AND SPAK-5L  
(PowerFlex ) PACKAGE  
could power several  
micro-controllers.  
kind of  
different  
DESCRIPTION  
Specifically designed  
Both  
outputs  
are  
current  
limited and  
for  
data  
storage  
overtemperature protected.  
applications, this device integrates two voltage  
regulators, each one able to supply 1A. It is  
assembled in PPAK and in a new surface  
mounting package named SPAK (PowerFlex ) at  
5 pins. The first regulator block supply 3.3V to  
power the Read Channel and Memory Chips  
requiring this voltage. The second one is an  
Adjustable output voltage from 1.25V to 3.0V that  
The very good thermal performances of the  
package SPAK with only 2°C/W of Thermal  
Resistance Junction to Case is important to  
underline.  
SCHEMATIC DIAGRAM  
Over current  
Protection  
VOUT1  
VREF1  
Power Output  
Err-Amp  
RA  
RB  
Thermal  
Protection  
GND  
VREF2  
Err-Amp  
Power Output  
VOUT2  
Over current  
Protection  
ADJ  
March 2002  
1/12  
ST2L01  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
V
Input Voltage  
10  
4
V
IN  
V
ESD Tolerance (Human Body Model)  
Storage Temperature Range  
KV  
°C  
°C  
ESD  
T
-55 to +125  
0 to +125  
stg  
T
Operating Junction Temperature Range  
J
GENERAL OPERATING CONDITION  
Symbol  
Parameter  
Value  
Unit  
V
Input Voltage  
4.75 to 5.25  
±0.15  
1  
V
V
IN  
V  
Input Voltage Ripple  
IN  
t
Input Voltage Rise Time (10% to 90%)  
Input Voltage Fall Time (90% to 10%)  
µs  
µs  
r
t
1  
f
THERMAL DATA  
Symbol  
Parameter  
SPAK-5L  
PPAK  
Unit  
R
Thermal Resistance Junction-case  
2
8
°C/W  
thj-case  
CONNECTION DIAGRAM (top view)  
PPAK  
SPAK-5L  
PIN DESCRIPTION  
Pin N°  
Symbol  
Name and Function  
1
V
Input pin: bypass with a 1µF capacitor to GND  
I
2
3
4
ADJ  
ADJ pin: resistor divider connection  
Ground pin  
GND  
V
V
Output Pin: adjustable output voltage; bypass with a 1µF capacitor to GND  
Output Pin: fixed (3.3V) output voltage; bypass with a 1µF capacitor to GND  
O2  
O1  
5
ORDERING INFORMATION  
TYPE  
SPAK (Power Flex ) 5 leads (*)  
PPAK (*)  
ST2L01  
ST2L01K5  
ST2L01PT  
(*) Available in Tape & Reel with the suffix "R"  
2/12  
ST2L01  
TYPICAL APPLICATION CIRCUIT  
R
R
1
2
V
= V  
(1 +  
)+I  
R
ADJ 1  
O
REF  
Note:  
C
value could be lowered down to 470nF Ceramic Capacitor (X7R);  
O1  
C , C and C capacitors must be located not more than 0.5" from the outputs pins of the device.  
I
O1  
O2  
For more details about Capacitors read the "Application Hints"  
ELECTRICAL CHARACTERISTICS OF OUTPUT 1 (V =5V, I =10mA T = 0 to 125°C unless otherwise  
I
O1  
j
specified. Typical values are referred at T = 25°C, C = 1µF (Tantalum), C = C =1µF (X7R)  
j
I
O1  
O1  
Symbol  
Parameter  
Input Current  
Test Conditions  
Min.  
Typ.  
Max.  
28  
Unit  
mA  
V
I
I
= I =0  
T = 0 to 125°C  
15  
3.3  
3.3  
I
O1  
O2  
j
V
Output Voltage 1  
T = 25°C  
3.23  
3.2  
3.37  
3.4  
O1  
j
I
= 5mA to 1A  
V = 4.75 to 5.25V  
O1  
I
T = 0 to 125°C  
j
V  
Line Regulation 1  
Load Regulation 1  
Dropout Voltage 1  
V = 4.75 to 5.25V  
0.1  
3
6
mV  
mV  
V
O1  
I
V  
I
I
= 0.01 to 1A  
(Note 1)  
12  
1.3  
OUT1  
O
V
= 1A  
T = 0 to 125°C  
1.1  
D1  
O
j
(Note 2)  
= 10 to 500mA t  
t
Transient Response  
I
= t = 1µs  
<1  
µs  
TR  
O
rise  
fall  
(Note 3, 5)  
R = 0  
I
Current Limit 1  
T = 0 to 125°C  
1
A
SC1  
L
j
I
Minimum Load Current 1  
T = 0 to 125°C  
(Note 4)  
f = 100Hz  
0
mA  
dB  
O1  
j
SVR1 Supply Voltage Rejection  
V = 5 ±0.25V  
60  
60  
50  
30  
68  
70  
65  
38  
0.1  
I
I
I
= 100 mA  
O1  
f = 1KHz  
I
T = 0 to 125°C  
j
f = 10KHz  
I
(Note 5)  
f = 100KHz  
I
Thermal Regulation  
I
= 1A,  
t
= 30ms (Note 5)  
%/W  
O
PULSE  
eN1  
Output Noise  
B= 10Hz to 10KHz (Note 5)  
T = 0 to 125°C (Note 5)  
40  
µVrms  
V  
V  
Temperature Stability  
0.5  
%V  
%V  
O1  
j
O
Long Term Stability  
T = 125°C, 1000Hrs (Note 5)  
0.3  
O1  
j
O
Note 1: Low duty cycle pulse testing with Kelvin connections are required in order to maintain accurate data  
Note 2: Dropout Voltage is defined as the minimum differential voltage between V and V required to mantain regulation at V . It is measured  
I
O
O
when the output voltage drops 1% below its nominal value.  
Note 3: Transient response is defined with a step change in load from 10mA to 500mA as the time from the load step until the output voltage  
reaches it’s minimum value.  
Note 4: Minimum load current is defined as the minimum current required at the output in order for the output voltage to maintain regulation.  
Note 5: Guaranteed by design, not tested in production.  
3/12  
ST2L01  
ELECTRICAL CHARACTERISTICS OF OUTPUT 2 (V =5V, I =10mA T = 0 to 125°C unless otherwise  
I
O2  
j
specified. Typical values are referred at T = 25°C, C = 1µF (Tantalum), C = C =1µF (X7R). Refer to  
j
I
O1  
O1  
"Typical Application Circuit "figure with R =R =120".  
1
2
Symbol  
Parameter  
Operating Input Voltage  
Output Voltage 2  
Test Conditions  
=5mA to 1A T = 0 to 125°C  
Min.  
Typ.  
Max.  
Unit  
V
V
I
4.5  
2.45  
1.225  
I
O2  
j
V
T = 25°C  
2.5  
2.55  
V
O2  
j
V
Reference Voltage  
(measured between pins 4  
and 2)  
T = 25°C  
1.25  
1.275  
V
REF  
j
I
= 5mA to 1A  
V = 4.75 to 5.25V  
1.2125 1.25 1.2875  
O1  
I
T = 0 to 125°C  
j
V  
V  
Line Regulation 2  
Load Regulation 2  
Dropout Voltage 2  
V = 4.75 to 5.25V  
0.004  
0.08  
1.1  
0.2  
0.4  
1.3  
%
%
V
O2  
I
I
I
= 0.01 to 1A  
(Note 1)  
O2  
O
V
= 1A  
T = 0 to 125°C  
j
D2  
O
(Note 2)  
= 10 to 500mA t  
t
Transient Response  
I
= t = 1µs  
<1  
µs  
TR  
O
rise  
fall  
(Note 3, 5)  
R = 0  
I
Current Limit 2  
T = 0 to 125°C  
1
1
A
SC2  
L
j
I
Minimum Load Current 2  
Adjust Pin Current  
Adjust Pin Current  
T = 0 to 125°C  
(Note 4)  
mA  
µA  
µA  
O2  
j
I
T = 0 to 125°C  
35  
0
120  
5
ADJ  
j
I  
I
= 5mA to 1A  
V = 4.75 to 5.25V  
I
ADJ  
O1  
T = 0 to 125°C  
j
SVR2 Supply Voltage Rejection  
V = 5 ±0.25V  
f = 100Hz  
70  
70  
50  
30  
77  
80  
65  
43  
0.1  
dB  
I
I
I
= 100 mA  
O1  
f = 1KHz  
I
T = 0 to 125°C  
j
f = 10KHz  
I
(Note 5)  
f = 100KHz  
I
Thermal Regulation 2  
I
= 1A,  
t
= 30ms (Note 5)  
%/W  
O
PULSE  
eN2  
Output Noise 1  
B= 10Hz to 10KHz (Note 5)  
T = 0 to 125°C (Note 5)  
30  
µVrms  
V  
Temperature Stability  
0.5  
%V  
%V  
REF  
REF  
j
O
O
V  
Long Term Stability  
T = 125°C, 1000Hrs (Note 5)  
0.3  
j
Note 1: Low duty cycle pulse testing with Kelvin connections are required in order to maintain accurate data  
Note 2: Dropout Voltage is defined as the minimum differential voltage between V and V required to mantain regulation at V . It is measured  
I
O
O
when the output voltage drops 1% below its nominal value.  
Note 3: Transient response is defined with a step change in load from 10mA to 500mA as the time from the load step until the output voltage  
reaches it’s minimum value.  
Note 4: Minimum load current is defined as the minimum current required at the output in order for the output voltage to maintain regulation.  
Note 5: Guaranteed by design, not tested in production.  
4/12  
ST2L01  
APPLICATION HINTS  
EXTERNAL CAPACITORS  
to 2.2µF if C =1µF, and from 1µF to 4.7µF if  
I
C =2.2µF.  
Like any low-dropout regulator, the ST2L01  
requires external capacitors for stability. We  
suggest to solder both capacitors as close as  
possible to the relative pins (1, 2 and 5).  
I
The 3.3V regulator stable with a 470nF capacitor.  
This value can be increased up to 10µF if a  
tantalum capacitor is used on the input. A higher  
value C can have an ESR lower than the  
O
accepted minimum.  
INPUT CAPACITORS  
An input capacitor, whose value is at least 1µF, is  
required; the amount of the input capacitance can  
be increased without limit if a good quality  
tantalum or aluminum capacitor is used.  
When a ceramic capacitor is used in the input the  
output capacitance must be in the range from 1µF  
to 2.2µF if C =1µF, and from 1µF to 4.7µF if  
I
C =2.2µF.  
I
SMS X7R or Y5V ceramic multilayer capacitors  
could not ensure stability in any condition because  
of their variable characteristics with Frequency  
and Temperature; the use of this capacitor is  
strictly related to the use of the output capacitors.  
For more details read the "OUTPUT CAPACITOR  
SECTION".  
The input capacitor must be located at a distance  
of not more than 0.5" from the input pin of the  
device and returened to a clean analog ground.  
Surface-mountable solid tantalum capacitors offer  
a good combination of small physical size for the  
capacitance value and ESR in the range needed  
by the ST2L01. The test results show good  
stability for both outputs with values of at least  
1µF. The value can be increased without limit for  
even better performance such  
response and noise.  
a
transient  
IMPORTANT; The output capacitor must maintain  
its ESR in the stable region over the full operating  
temperature to assure stability. Also , capacitor  
tolerance and variation with temperature must be  
considered to assure that the minimum amount of  
capacitance is provided at all times. For this  
reason, when a ceramic multilayer capacitor is  
used, the better choise for temperature coefficent  
is the X7R type, which holds the capacitance  
within ±15% . The output capacitor should be  
located not more than 0.5" from the output pins of  
the device and returned to a clean analog ground.  
OUTPUT CAPACITOR  
The ST2L01 is designed specifically to work with  
Ceramic and Tantalum capacitros.  
Special care must be taken when a Ceramic  
multilayer capacitor is used.  
Special care must be taken when a Ceramic  
multilayer capacitor is used.  
Due to their characteristics they can sometimes  
have an ESR value lower than the minimum  
required by the ST2L01 and their relatively large  
capacitance can change a lot with the ambient  
temperature.  
ADJUSTABLE REGULATOR  
The ST2L01 has a 1.25V reference voltage  
between the output and the adjustable pins  
(respectevely pin 4 and 2). When a resistor R2 is  
placed between these two therminals a constant  
current flows through R2 and down to R1 to set  
The test results of the ST2L01 stability using  
multilayer ceramic capacitors show that  
a
minimum value of 1µF is needed for the adjustable  
regulator (set to 2.5V). This value can be  
increased up to 10µF when a tantalum capacitor  
the overall (V to GND) output voltage.  
O2  
is used on the input. A higher value C can have  
O
Minimum load current is 1mA.  
an ESR lower than the accepted minimum.  
When a ceramic capacitor is used on the input the  
output capacitance must be in the range from 1µF  
I
is very small (typically 35µA) and constant; in  
ADJ  
the V calculation it can be ignored.  
O
5/12  
ST2L01  
TYPICAL CHARACTERISTICS (C =1µF, C =1µF (X7R))  
I
O
Figure 1 : Input Current vs Temperature  
Figure 4 : Load Regulation vs Temperature  
Figure 5 : Output Voltage vs Input Voltage  
Figure 6 : Dropout Voltage vs Temperature  
Figure 2 : Input Current vs Input Voltage  
Figure 3 : Output Voltage vs Temperature  
6/12  
ST2L01  
Figure 7 : Line Regulation vs Temperature  
Figure 10 : Dropout Voltage vs Output Current  
Figure 8 : Supply Voltage Rejection vs  
Figure 11 : Reference Voltage vs Temperature  
Frequency  
Figure 9 : Supply Voltage Rejection vs  
Figure 12 : Output Voltage vs Input Voltage  
Temperature  
7/12  
ST2L01  
Figure 13 : Line Regulation vs Temperature  
Figure 16 : Dropout Voltage vs Temperature  
Figure 14 : Load Regulation vs Temperature  
Figure 17 : Dropout Voltage vs Output Current  
Figure 15 : Supply Voltage Rejection vs  
Figure 18 : Supply Voltage Rejection vs  
Temperature  
Frequency  
8/12  
ST2L01  
Figure 19 : Adjustable pin vs Temperature  
Figure 22 : Load Transient  
V =5V, V =adjusted to 2.5V, I =500 to 10mA, C =1µF(X7R)  
I
O
O
O
T =25°C  
J
Figure 20 : Minimum Load Current vs  
Figure 23 : Load Transient  
Temperature  
V =5V, V =adjusted to 2.5V, I =10 to 500mA, C =1µF(X7R)  
I
O
O2  
O
Figure 21 : Load Transient  
Figure 24 : Load Transient  
V =5V, I =500 to 10mA, C =1µF(X7R), T =25°C  
V =5V, I =10 to 500mA, C =1µF(X7R)  
I O1 O  
I
O1  
O
J
9/12  
ST2L01  
SPAK-5L MECHANICAL DATA  
mm.  
inch  
TYP.  
DIM.  
MIN.  
1.78  
0.03  
TYP  
MAX.  
2.03  
MIN.  
0.070  
0.001  
MAX.  
0.080  
0.005  
A
A2  
C
0.13  
0.25  
0.25  
0.010  
0.010  
C1  
D
1.02  
7.87  
0.63  
1.27  
8.13  
0.79  
0.040  
0.310  
0.025  
0.050  
0.320  
0.031  
D1  
F
G
1.69  
6.8  
0.067  
0.268  
0.220  
G1  
H1  
H2  
H3  
L
5.59  
9.27  
8.89  
9.52  
9.14  
0.365  
0.350  
0.410  
0.375  
0.360  
0.420  
10.41  
10.67  
L1  
L2  
M
7.49  
0.25  
0.295  
0.010  
8.89  
0.79  
9.14  
1.04  
0.350  
0.031  
0.360  
0.041  
N
V
3˚  
6˚  
3˚  
6˚  
PO13F1/B  
10/12  
ST2L01  
PPAK MECHANICAL DATA  
mm.  
inch  
TYP.  
DIM.  
MIN.  
2.2  
TYP  
MAX.  
2.4  
MIN.  
0.086  
0.035  
0.001  
0.015  
0.204  
0.017  
0.019  
0.236  
0.252  
0.193  
0.093  
0.368  
MAX.  
0.094  
0.043  
0.009  
0.023  
0.212  
0.023  
0.023  
0.244  
0.260  
0.206  
0.106  
0.397  
A
A1  
A2  
B
0.9  
1.1  
0.03  
0.4  
0.23  
0.6  
B2  
C
5.2  
5.4  
0.45  
0.48  
6
0.6  
C2  
D
0.6  
6.2  
E
6.4  
6.6  
G
4.9  
5.25  
2.7  
G1  
H
2.38  
9.35  
10.1  
L2  
L4  
0.8  
0.031  
0.6  
1
0.023  
0.039  
0078180-B  
11/12  
ST2L01  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information  
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or  
systems without express written approval of STMicroelectronics.  
© The ST logo is a registered trademark of STMicroelectronics  
© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco  
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.  
© http://www.st.com  
12/12  

相关型号:

ST2L01K5

DUAL VOLTAGE REGULATOR
STMICROELECTR

ST2L01K5R

DUAL OUTPUT, FIXED/ADJUSTABLE POSITIVE LDO REGULATOR, PSSO5, POWER FLEX SPAK-5
STMICROELECTR

ST2L01PT

DUAL VOLTAGE REGULATOR
STMICROELECTR

ST2L01PTR

DUAL OUTPUT, FIXED/ADJUSTABLE POSITIVE LDO REGULATOR, PSSO4, PPAK-5
STMICROELECTR

ST2L05

VERY LOW QUIESCENT CURRENT DUAL VOLTAGE REGULATOR
STMICROELECTR

ST2L05-1500

VERY LOW QUIESCENT CURRENT DUAL VOLTAGE REGULATOR
STMICROELECTR

ST2L05-1500K5

DUAL OUTPUT, FIXED/ADJUSTABLE POSITIVE REGULATOR, PSSO5, SPAK-5
STMICROELECTR

ST2L05-1515

VERY LOW QUIESCENT CURRENT DUAL VOLTAGE REGULATOR
STMICROELECTR

ST2L05-1515K5

DUAL OUTPUT, FIXED POSITIVE REGULATOR, PSSO5, SPAK-5
STMICROELECTR

ST2L05-1518

VERY LOW QUIESCENT CURRENT DUAL VOLTAGE REGULATOR
STMICROELECTR

ST2L05-1518K5

DUAL OUTPUT, FIXED POSITIVE REGULATOR, PSSO5, SPAK-5
STMICROELECTR

ST2L05-1525

VERY LOW QUIESCENT CURRENT DUAL VOLTAGE REGULATOR
STMICROELECTR