ST62P09LB6/OTP [STMICROELECTRONICS]

8-BIT MCUs WITH A/D CONVERTER, TWO TIMERS, OSCILLATOR SAFEGUARD & SAFE RESET; 带A / D转换器,两个定时器,振荡器SAFEGUARD & SAFE RESET 8位MCU
ST62P09LB6/OTP
型号: ST62P09LB6/OTP
厂家: ST    ST
描述:

8-BIT MCUs WITH A/D CONVERTER, TWO TIMERS, OSCILLATOR SAFEGUARD & SAFE RESET
带A / D转换器,两个定时器,振荡器SAFEGUARD & SAFE RESET 8位MCU

振荡器 转换器
文件: 总160页 (文件大小:1396K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor, Inc.  
MC56F8357/D  
Rev. 7.0, 06/2004  
56F8357  
Preliminary Technical Data  
56F8357 16-bit Digital Signal Processor  
• Up to 60 MIPS at 60MHz core frequency  
• Temperature Sensor  
• DSP and MCU functionality in a unified,  
C-efficient architecture  
• Two Quadrature Decoders  
• Optional on-chip regulator  
• FlexCAN module  
• Access up to 4MB of off-chip program and 32MB  
of data memory  
• Two Serial Communication Interfaces (SCIs)  
• Up to two Serial Peripheral Interfaces (SPIs)  
• Up to four general-purpose Quad Timers  
• Computer Operating Properly (COP) / Watchdog  
• Chip Select Logic for glueless interface to ROM  
and SRAM  
• 256KB of Program Flash  
• 4KB of Program RAM  
• 8KB of Data Flash  
• JTAG/Enhanced On-Chip Emulation (OnCE™) for  
unobtrusive, real-time debugging  
• 16KB of Data RAM  
• Up to 76 GPIO lines  
• 16KB Boot Flash  
• 160-pin LQFP Package  
• Two 6-channel PWM modules  
• Four 4-channel, 12-bit ADCs  
OCR_DIS  
RSTO  
EMI_MODE  
EXTBOOT  
* Configuration  
shown for on-chip  
2.5V regulator  
V
2
V
V
V
V
2
V
SSA  
PP  
CAP  
DD  
SS  
DDA  
5
RESET  
4
7
6
6
6
JTAG/  
EOnCE  
Port  
PWM Outputs  
Digital Reg  
Low Voltage  
Supervisor  
Analog Reg  
PWMA  
3
4
16-Bit  
56800E Core  
Current Sense Inputs or GPIOC  
Fault Inputs  
Data ALU  
Bit  
Manipulation  
Unit  
Program Controller  
and  
Hardware Looping Unit  
Address  
Generation Unit  
PWM Outputs  
PWMB  
16 x 16 + 36 -> 36-Bit MAC  
Three 16-bit Input Registers  
Four 36-bit Accumulators  
3
4
Current Sense Inputs or GPIOD  
Fault Inputs  
PAB  
4
4
PDB  
CDBR  
CDBW  
AD0  
ADCA  
AD1  
5
4
4
R/W Control  
6
VREF  
Memory  
A0-5 or GPIOA8-13  
XDB2  
XAB1  
XAB2  
PAB  
2
8
4
A6-7 or GPIOE2-3  
A8-15 or GPIOA0-7  
AD0  
External  
Address Bus  
Switch  
Program Memory  
128K x 16 Flash  
2K x 16 RAM  
ADCB  
AD1  
GPIOB0-3 (A16-19)  
GPIOB4 (A20,  
prescaler_clock)  
TEMP_SENSE  
1
3
Boot ROM  
8K x 16 Flash  
System Bus  
Control  
PDB  
CDBR  
CDBW  
Quadrature  
Decoder 0 or  
Quad  
Timer or /  
GPIOC  
GPIOB5-7 (A21-23,  
clk0-3**)  
Data Memory  
4K x 16 Flash  
8K x 16 RAM  
4
7
8
D0-6 or GPIOF9-15  
D7-15 or GPIOF0-8  
External Data  
Bus Switch  
Quadrature  
Decoder 1 or  
Quad  
Timer B or  
SPI1 or GPIOC  
IPBus Bridge (IPBB)  
WR  
RD  
4
2
Peripheral  
Device Selects  
Bus Control  
6
RW  
Control  
IPAB  
IPWDB  
IPRDB  
GPIOD0-5 or CS2-7  
PS (CS0) or GPIOD8  
DS (CS1) or GPIOD9  
Quad  
Timer C or  
GPIOE  
Decoding  
Peripherals  
**See Table 2-2  
for explanation  
Quad  
Timer D or  
GPIOE  
Clock  
resets  
4
2
PLL  
P
O
R
System  
Integration  
Module  
FlexCAN  
SCI1 or  
GPIOD  
COP/  
Watchdog  
SPI0 or  
GPIOE  
O
S
C
SCI0 or  
GPIOE  
Interrupt  
Controller  
Clock  
Generator  
XTAL  
EXTAL  
4
2
2
IRQA  
IRQB  
CLKO  
CLKMODE  
56F8357 Block Diagram  
© Motorola, Inc., 2004. All rights reserved.  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Document Revision History  
Version History  
Description of Change  
Rev 1.0  
Rev 2.0  
Initial Public Release  
Added Package Pins to GPIO Table in Part 8, General Purpose Input/Output (GPIO)  
Added “Typical Min” values to Table 10-17  
Editing grammar, spelling, consistency of language throughout family  
Updated values in Regulator Parameters Table 10-9,  
External Clock Operation Timing Requirements Table 10-13,  
SPI Timing Table 10-18,  
ADC Parameters Table 10-24, and  
IO Loading Coefficients at 10MHz Table 10-25.  
Rev 3.0  
Rev 4.0  
Corrected Table 4-6 Data Memory Map - changed address X:$FF0000 to X:$FFFF00  
Added Section 4.8, added the word “access” to FM Error Interrupt in Table 4-5,  
documenting only Typ. numbers for LVI in Table 10-6,  
updated EMI numbers and writeup in Section 10.9.  
Rev 5.0  
Rev 6.0  
Updated numbers in Table 10-7 and Table 10-8 with more recent data,  
Corrected typo in Table 10-3 in Pd characteristics.  
Replace any reference to Flash Interface Unit with Flash Module; removed references to  
JTAG pin DE; corrected pin number for D14 in Table 2-2; added note to Vcap pin in  
Table 2-2; corrected thermal numbers for 160 LQFP in Table 10-3; removed unneccessary  
notes in Table 10-12; corrected temperature range in Table 10-14; added ADC calibration  
information to Table 10-24 and new graphs in Figure 10-22  
Rev 7.0  
Adding/clarifing notes to Table 4-4 to help clarify independent program flash blocks and  
other Program Flash modes, clarification in Table 10-23, corrected Digital Input Current  
Low (pull-up enabled) numbers in Table 10-5. Removed text and Table 10-2; replaced with  
note to Table 10-1.  
2
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
56F8357 Data Sheet Table of Contents  
Part 1: Overview . . . . . . . . . . . . . . . . . . . . 4  
Part 8: General Purpose Input/Output  
1.1. 56F8357 Features . . . . . . . . . . . . . . . . . . 4  
1.2. 56F8357 Description . . . . . . . . . . . . . . . . 5  
1.3. Award-Winning Development  
(GPIO) . . . . . . . . . . . . . . . . . . . . . 118  
8.1. Introduction . . . . . . . . . . . . . . . . . . . . . 118  
8.2. Configuration . . . . . . . . . . . . . . . . . . . . 118  
8.3. Memory Maps . . . . . . . . . . . . . . . . . . . 122  
Environment . . . . . . . . . . . . . . . 6  
1.4. Architecture Block Diagram . . . . . . . . . . . 7  
1.5. Product Documentation . . . . . . . . . . . . . 10  
1.6. Data Sheet Conventions . . . . . . . . . . . . 11  
Part 9: Joint Test Action Group (JTAG) 122  
9.1. 56F8357 Information . . . . . . . . . . . . . . 122  
Part 2: Signal/Connection Descriptions 12  
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . 12  
2.2. 56F8357 Signal Pins . . . . . . . . . . . . . . . 14  
Part 10: Specifications . . . . . . . . . . . . . 122  
10.1. General Characteristics . . . . . . . . . . . 122  
10.2. DC Electrical Characteristics . . . . . . . 126  
10.3. Temperature Sense . . . . . . . . . . . . . . 129  
10.4. AC Electrical Characteristics . . . . . . . 129  
10.5. Flash Memory Characteristics . . . . . . 130  
10.6. External Clock Operation Timing . . . . 131  
10.7. Phase Locked Loop Timing . . . . . . . . 131  
10.8. Crystal Oscillator Timing . . . . . . . . . . 132  
10.9. External Memory Interface Timing . . . 132  
10.10. Reset, Stop, Wait, Mode Select,  
Part 3: On-Chip Clock Synthesis (OCCS) 32  
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . 32  
3.2. External Clock Operation . . . . . . . . . . . 33  
3.3. Registers . . . . . . . . . . . . . . . . . . . . . . . . 34  
Part 4: Memory Operating Modes (MEM) 35  
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . 35  
4.2. Program Map . . . . . . . . . . . . . . . . . . . . 36  
4.3. Interrupt Vector Table . . . . . . . . . . . . . . 37  
4.4. Data Map . . . . . . . . . . . . . . . . . . . . . . . . 40  
4.5. Flash Memory Map . . . . . . . . . . . . . . . . 40  
4.6. EOnCE Memory Map . . . . . . . . . . . . . . 42  
4.7. Peripheral Memory Mapped Registers . 42  
4.8. Factory Programmed Memory . . . . . . . . 68  
and Interrupt Timing . . . . . . . 135  
10.11. Serial Peripheral Interface (SPI)  
Timing . . . . . . . . . . . . . . . . . . 137  
10.12. Quad Timer Timing . . . . . . . . . . . . . 141  
10.13. Quadrature Decoder Timing . . . . . . . 141  
10.14. Serial Communication Interface  
(SCI) Timing . . . . . . . . . . . . . 142  
10.15. Controller Area Network (CAN)  
Part 5: Interrupt Controller (ITCN) . . . . . 69  
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . 69  
5.2. Features . . . . . . . . . . . . . . . . . . . . . . . . 69  
5.3. Functional Description . . . . . . . . . . . . . . 69  
5.4. Block Diagram . . . . . . . . . . . . . . . . . . . . 71  
5.5. Operating Modes . . . . . . . . . . . . . . . . . . 71  
5.6. Register Descriptions . . . . . . . . . . . . . . 72  
5.7. Resets . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Timing . . . . . . . . . . . . . . . . . . 143  
10.16. JTAG Timing . . . . . . . . . . . . . . . . . . 143  
10.17. Analog-to-Digital Converter (ADC)  
Parameters . . . . . . . . . . . . . . 145  
10.18. Equivalent Circuit for ADC Inputs . . . 147  
10.19. Power Consumption . . . . . . . . . . . . . 147  
Part 11: Packaging . . . . . . . . . . . . . . . . 149  
11.1. Package and Pin-Out Information  
Part 6: System Integration Module (SIM) 97  
6.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . 97  
6.2. Features . . . . . . . . . . . . . . . . . . . . . . . . 97  
6.3. Operating Modes . . . . . . . . . . . . . . . . . . 98  
6.4. Operation Mode Register . . . . . . . . . . . 98  
6.5. Register Descriptions . . . . . . . . . . . . . . 99  
6.6. Clock Generation Overview . . . . . . . . 111  
6.7. Power Down Modes Overview . . . . . . 112  
6.8. Stop and Wait Mode Disable Function 112  
6.9. Resets . . . . . . . . . . . . . . . . . . . . . . . . . 113  
56F8357 . . . . . . . . . . . . . . . . 149  
Part 12: Design Considerations . . . . . . 153  
12.1. Thermal Design Considerations . . . . . 153  
12.2. Electrical Design Considerations . . . . 154  
12.3. Power Distribution and I/O Ring  
Implementation 155  
Part 13: Ordering Information . . . . . . . 156  
Part 7: Security Features . . . . . . . . . . . 114  
7.1. Operation with Security Enabled . . . . . 114  
7.2. Flash Access Blocking Mechanisms . . 114  
Please see http://www.motorola.com/semiconductors for the most current Data Sheet revision.  
56F8357 Technical Data  
Preliminary  
3
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Part 1 Overview  
1.1 56F8357 Features  
1.1.1  
Digital Signal Processing Core  
Efficient 16-bit 56800E family hybrid controller engine with dual Harvard architecture  
As many as 60 Million Instructions Per Second (MIPS) at 60 MHz core frequency  
Single-cycle 16 × 16-bit parallel Multiplier-Accumulator (MAC)  
Four 36-bit accumulators, including extension bits  
Arithmetic and logic multi-bit shifter  
Parallel instruction set with unique DSP addressing modes  
Hardware DO and REP loops  
Three internal address buses  
Four internal data buses  
Instruction set supports both DSP and controller functions  
Controller style addressing modes and instructions for compact code  
Efficient C compiler and local variable support  
Software subroutine and interrupt stack with depth limited only by memory  
JTAG/EOnCE debug programming interface  
1.1.2  
Memory  
Harvard architecture permits as many as three simultaneous accesses to program and data memory  
Flash security protection feature  
On-chip memory, including a low-cost, high-volume flash solution  
— 256KB of Program Flash  
— 4KB of Program RAM  
— 8KB of Data Flash  
— 16KB of Data RAM  
— 16KB of Boot Flash  
Off-chip memory expansion capabilities provide a simple method for interfacing additional external  
memory and/or peripheral devices  
— Access up to 4MB of external program memory or 32MB of external data memory  
— external accesses supported at up to 60MHz (zero wait states)  
EEPROM emulation capability  
1.1.3  
Peripheral Circuits for 56F8357  
Two Pulse Width Modulator modules, each with six PWM outputs, three Current Sense inputs, and  
four Fault inputs; fault-tolerant design with dead time insertion; supports both center-aligned and  
edge-aligned modes  
Four 12-bit, Analog-to-Digital Converters (ADCs), which support four simultaneous conversions  
with quad, 4-pin multiplexed inputs; ADC and PWM modules can be synchronized through Timer  
C, channels 2 and 3  
4
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
56F8357 Description  
Temperature Sensor can be connected, on the board, to any of the ADC inputs to monitor the  
on-chip temperature  
Two four-input Quadrature Decoders or two additional Quad Timers  
Four dedicated general-purpose Quad Timers totaling dedicated six pins: Timer C with two pins and  
Timer D with four pins  
FlexCAN (CAN Version 2.0 B-compliant ) module with 2-pin port for transmit and receive  
Two Serial Communication Interfaces (SCIs), each with two pins (or four additional GPIO lines)  
Two Serial Peripheral Interfaces (SPIs). both with configurable 4-pin port (or eight additional GPIO  
lines); SPI1 can also be used as Quadrature Decoder 1 or Quad Timer B  
Computer Operating Properly (COP) / Watchdog timer  
Two dedicated external interrupt pins  
Up to 76 General Purpose I/O (GPIO) pins  
External reset input pin for hardware reset  
External reset output pin for system reset  
Integrated Low-Voltage Interrupt Module  
JTAG/Enhanced On-Chip Emulation (OnCE™) for unobtrusive, processor speed-independent  
debugging  
Software-programmable, Phase Lock Loop (PLL)-based frequency synthesizer for the core clock  
1.1.4  
Energy Information  
Fabricated in high-density CMOS with 5V-tolerant, TTL-compatible digital inputs  
On-board 3.3V down to 2.6V voltage regulator for powering internal logic and memories; can be  
disabled  
On-chip regulators for digital and analog circuitry to lower cost and reduce noise  
Wait and Stop modes available  
ADC smart power management  
Each peripheral can be individually disabled to save power  
1.2 56F8357 Description  
The 56F8357 is a member of the 56800E core-based family of hybrid controllers. It combines, on  
a single chip, the processing power of a DSP and the functionality of a microcontroller with a  
flexible set of peripherals to create an extremely cost-effective solution. Because of its low cost,  
configuration flexibility, and compact program code, the 56F8357 is well-suited for many  
applications. The 56F8357 includes many peripherals that are especially useful for motion control,  
smart appliances, steppers, encoders, tachometers, limit switches, power supply and control,  
automotive control, engine management, noise suppression, remote utility metering, industrial  
control for power, lighting, and automation applications.  
The 56800E core is based on a Harvard-style architecture consisting of three execution units  
operating in parallel, allowing as many as six operations per instruction cycle. The MCU-style  
programming model and optimized instruction set allow straightforward generation of efficient,  
compact DSP and control code. The instruction set is also highly efficient for C/C++ Compilers to  
enable rapid development of optimized control applications.  
The 56F8357 supports program execution from internal or external memories. Two data operands  
can be accessed from the on-chip data RAM per instruction cycle. The 56F8357 also provides two  
external dedicated interrupt lines and up to 76 General Purpose Input/Output (GPIO) lines,  
depending on peripheral configuration.  
56F8357 Technical Data  
Preliminary  
5
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
The 56F8357 hybrid controller includes 256KB of Program Flash and 8KB of Data Flash (each  
programmable through the JTAG port) with 4KB of Program RAM and 16KB of Data RAM. It  
also supports program execution from external memory.  
A total of 16KB of Boot Flash is incorporated for easy customer-inclusion of field-programmable  
software routines that can be used to program the main Program and Data Flash memory areas.  
Both Program and Data Flash memories can be independently bulk erased or erased in pages.  
Program Flash page erase size is 1KB. Boot and Data Flash page erase size is 512 bytes. The Boot  
Flash memory can also be either bulk or page erased.  
A key application-specific feature of the 56F8357 is the inclusion of two Pulse Width Modulator  
(PWM) modules. These modules each incorporate three complementary, individually  
programmable PWM signal output pairs (each module is also capable of supporting six  
independent PWM functions, for a total of 12 PWM outputs) to enhance motor control  
functionality. Complementary operation permits programmable dead time insertion, distortion  
correction via current sensing by software, and separate top and bottom output polarity control. The  
up-counter value is programmable to support a continuously variable PWM frequency.  
Edge-aligned and center-aligned synchronous pulse width control (0% to 100% modulation) is  
supported. The device is capable of controlling most motor types: ACIM (AC Induction Motors);  
both BDC and BLDC (Brush and Brushless DC motors); SRM and VRM (Switched and Variable  
Reluctance Motors); and stepper motors. The PWMs incorporate fault protection and  
cycle-by-cycle current limiting with sufficient output drive capability to directly drive standard  
optoisolators. A “smoke-inhibit”, write-once protection feature for key parameters is also included.  
A patented PWM waveform distortion correction circuit is also provided. Each PWM is  
double-buffered and includes interrupt controls to permit integral reload rates to be programmable  
from 1 to 16. The PWM modules provide a reference output to synchronize the Analog-to-Digital  
Converters through two channels of Quad Timer C.  
The 56F8357 incorporates two Quadrature Decoders capable of capturing all four transitions on  
the two-phase inputs, permitting generation of a number proportional to actual position. Speed  
computation capabilities accommodate both fast- and slow-moving shafts. An integrated watchdog  
timer in the Quadrature Decoder can be programmed with a time-out value to alarm when no shaft  
motion is detected. Each input is filtered to ensure only true transitions are recorded.  
This hybrid controller also provides a full set of standard programmable peripherals that include  
two Serial Communications Interfaces (SCIs); two Serial Peripheral Interfaces (SPIs); and four  
Quad Timers. Any of these interfaces can be used as General Purpose Input/Outputs (GPIOs) if  
that function is not required. A Flex Controller Area Network (FlexCAN) interface (CAN Version  
2.0 B-compliant) and an internal interrupt controller are a part of the 56F8357.  
1.3 Award-Winning Development Environment  
TM  
Processor Expert  
(PE) provides a Rapid Application Design (RAD) tool that combines  
easy-to-use component-based software application creation with an expert knowledge system.  
The CodeWarrior Integrated Development Environment is a sophisticated tool for code navigation,  
compiling, and debugging. A complete set of evaluation modules (EVMs) and development  
system cards will support concurrent engineering. Together, PE, CodeWarrior and EVMs create a  
complete, scalable tools solution for easy, fast, and efficient development.  
6
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Architecture Block Diagram  
1.4 Architecture Block Diagram  
The 56F8357 architecture is shown in Figure 1-1 and Figure 1-2. Figure 1-1 illustrates how the  
56800E system buses communicate with internal memories, the external memory interface and the  
IPBus Bridge. Table 1-1 lists the internal buses in the 56800E architecture and provides a brief  
description of their function. Figure 1-2 shows the peripherals and control blocks connected to the  
IPBus Bridge. The figures do not show the on-board regulator and power and ground signals. They  
also do not show the multiplexing between peripherals or the dedicated GPIOs. Please see  
Section 2, Signal/Connection Descriptions, to see which signals are multiplexed with those of  
other peripherals.  
Also shown in Figure 1-2 are connections between the PWM, Timer C and ADC blocks. These  
connections allow the PWM and/or Timer C to control the timing of the start of ADC conversions.  
The Timer C channel indicated can generate periodic start (SYNC) signals to the ADC to start its  
conversions. In another operating mode, the PWM load interrupt (SYNC output) signal is routed  
internally to the Timer C input channel as indicated. The timer can then be used to introduce a  
controllable delay before generating its output signal. The timer output then triggers the ADC. To  
fully understand this interaction, please see the 56F8300 Peripheral User Manual for clarification  
on the operation of all three of these peripherals.  
56F8357 Technical Data  
Preliminary  
7
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
5
JTAG / EOnCE  
Boot  
Flash  
pdb_m[15:0]  
pab[20:0]  
Program  
Flash  
Program  
RAM  
cdbw[31:0]  
56800E  
24  
16  
10  
Address  
Data  
CHIP  
TAP  
Controller  
EMI  
Control  
TAP  
Linking  
Module  
Data  
RAM  
xab1[23:0]  
xab2[23:0]  
Data  
Flash  
External JTAG  
Port  
cdbr_m[31:0]  
xdb2_m[15:0]  
To Flash  
Control Logic  
IPBus  
Bridge  
Flash  
Memory  
Module  
IPBus  
Figure 1-1 System Bus Interfaces  
Note:  
Note:  
Flash memories are encapsulated within the Flash Memory (FM) Module. Flash control is  
accomplished by the I/O to the FM over the peripheral bus, while reads and writes are  
completed between the core and the Flash memories.  
The primary data RAM port is 32 bits wide. Other data ports are 16 bits.  
8
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Architecture Block Diagram  
To/From IPBus Bridge  
Interrupt  
Controller  
CLKGEN  
(OSC/PLL)  
Low-Voltage Interrupt  
Timer A  
POR & LVI  
SIM  
4
System POR  
Quadrature Decoder 0  
Timer D  
RESET  
4
COP Reset  
Timer B  
COP  
2
4
FlexCAN  
Quadrature Decoder 1  
SPI 1  
13  
PWMA  
SYNC Output  
13  
GPIO A  
GPIO B  
GPIO C  
GPIO D  
GPIO E  
GPIO F  
PWMB  
SYNC Output  
ch3i  
ch2i  
2
Timer C  
ch3o  
ch2o  
8
ADCB  
ADCA  
4
SPI 0  
8
2
SCI 0  
1
TEMP_SENSE  
2
SCI 1  
Note: ADC A and ADC B use the same  
voltage reference circuit with VREFH  
,
V
pins.  
REFP, VREFMID, VREFN, and VREFLO  
IPBus  
Figure 1-2 Peripheral Subsystem  
56F8357 Technical Data  
Preliminary  
9
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 1-1 Bus Signal Names  
Name  
Function  
Program Memory Interface  
pdb_m[15:0] Program data bus for instruction word fetches or read operations.  
cdbw[15:0]  
Primary core data bus used for program memory writes. (Only these 16 bits of the cdbw[31:0] bus  
are used for writes to program memory.)  
pab[20:0]  
Program memory address bus. Data is returned on pdb_m bus.  
Primary Data Memory Interface Bus  
cdbr_m[31:0] Primary core data bus for memory reads. Addressed via xab1 bus.  
cdbw[31:0]  
xab1[23:0]  
Primary core data bus for memory writes. Addressed via xab1 bus.  
Primary data address bus. Capable of addressing bytes1, words, and long data types. Data is written  
on cdbw and returned on cdbr_m. Also used to access memory-mapped I/O.  
Secondary Data Memory Interface  
xdb2_m[15:0] Secondary data bus used for secondary data address bus xab2 in the dual memory reads.  
xab2[23:0]  
Secondary data address bus used for the second of two simultaneous accesses. Capable of  
addressing only words. Data is returned on xdb2_m.  
Peripheral Interface Bus  
IPBus [15:0] Peripheral bus accesses all on-chip peripherals registers. This bus operates at the same clock rate  
as the Primary Data Memory and therefore generates no delays when accessing the processor.  
Write data is obtained from cdbw. Read data is provided to cdbr_m.  
1. Byte accesses can only occur in the bottom half of the memory address space. The MSB of the address will be forced to 0.  
1.5 Product Documentation  
The documents in Table 1-2 are required for a complete description and proper design with the  
56F8357. Documentation is available from local Motorola distributors, Motorola semiconductor  
sales  
offices,  
Motorola  
Literature  
Distribution  
Centers,  
or  
online  
at  
http://www.motorola.com/semiconductors.  
Table 1-2 56F8357 Chip Documentation  
Topic  
DSP56800E  
Description  
Order Number  
Detailed description of the 56800E family architecture,  
and 16-bit hybrid controller core processor and the  
instruction set  
DSP56800ERM/D  
Reference Manual  
568300 Peripheral User  
Manual  
Detailed description of peripherals of the 56F8300  
devices  
MC56F8300UM/D  
MC56F83xxBLUM/D  
MC56F8357/D  
56F8300 SCI/CAN  
Bootloader User Manual  
Detailed description of the SCI/CAN Bootloaders  
56F8300 family of devices  
56F8357  
Technical Data Sheet  
Electrical and timing specifications, pin descriptions,  
and package descriptions (this document)  
56F8357  
Product Brief  
Summary description and block diagram of the  
56F8357 core, memory, peripherals and interfaces  
MC56F8357PB/D  
MC56F8357E/D  
56F8357  
Errata  
Details any chip issues that might be present  
10  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Data Sheet Conventions  
1.6 Data Sheet Conventions  
This data sheet uses the following conventions:  
OVERBAR  
This is used to indicate a signal that is active when pulled low. For example, the RESET pin is  
active when low.  
“asserted”  
“deasserted”  
Examples:  
A high true (active high) signal is high or a low true (active low) signal is low.  
A high true (active high) signal is low or a low true (active low) signal is high.  
Voltage1  
Signal/Symbol  
Logic State  
True  
Signal State  
Asserted  
PIN  
PIN  
PIN  
PIN  
VIL/VOL  
False  
Deasserted  
Asserted  
VIH/VOH  
VIH/VOH  
VIL/VOL  
True  
False  
Deasserted  
1. Values for VIL, VOL, VIH, and VOH are defined by individual product specifications.  
56F8357 Technical Data  
Preliminary  
11  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Part 2 Signal/Connection Descriptions  
2.1 Introduction  
The input and output signals of the 56F8357 are organized into functional groups, as detailed in  
Table 2-1 and as illustrated in Figure 2-1. In Table 2-2, each table row describes the signal or  
signals present on a pin.  
Table 2-1 Functional Group Pin Allocations  
Functional Group  
Number of Pins  
Power (VDD or VDDA  
Power Option Control  
Ground (VSS or VSSA  
)
9
1
7
)
Supply Capacitors1 & VPP  
6
PLL and Clock  
4
24  
16  
10  
6
Address Bus  
Data Bus  
Bus Control  
Interrupt and Program Control  
Pulse Width Modulator (PWM) Ports  
Serial Peripheral Interface (SPI) Port 0  
26  
4
Quadrature Decoder Port 02  
Quadrature Decoder Port 13  
4
4
4
Serial Communications Interface (SCI) Ports2  
CAN Ports  
2
21  
6
Analog-to-Digital Converter (ADC) Ports  
Timer Module Ports  
JTAG/Enhanced On-Chip Emulation (EOnCE)  
Temperature Sense  
5
1
1. If the on-chip regulator is disabled, the V  
pins serve as 2.5V V  
power inputs  
CAP  
DD_CORE  
2. Alternately, can function as Quad Timer pins  
3. Pins in this section can function as Quad Timer, SPI #1, or GPIO  
12  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
 
Freescale Semiconductor, Inc.  
Introduction  
V
DD_IO  
Power  
Power  
7
1
1
6
V
DDA_OSC_PLL  
PHASEA0 (TA0, GPIOC4)  
PHASEB0 (TA1, GPIOC5)  
INDEX0 (TA2, GPIOC6)  
HOME0 (TA3, GPIOC7)  
Quadrature  
1
1
1
1
V
V
DDA_ADC  
Decoder 0  
or Quad  
Timer A  
Power  
V
SS  
Ground  
Ground  
SSA_ADC  
1
OCR_DIS  
1
SCLK0 (GPIOE4)  
MOSI0 (GPIOE5)  
MISO0 (GPIOE6)  
SS0 (GPIOE7)  
56F8357  
1
1
1
1
SPI0 or  
GPIO  
V
1 - V  
CAP  
4
2
Other  
Supply  
Ports  
CAP  
4
V
1 & V  
PP  
PP  
2
CLKMODE  
EXTAL  
XTAL  
1
1
PLL  
and  
Clock  
Quadrature  
Decoder 1 or  
Quad Timer B  
or SPI 1 or  
GPIO  
PHASEA1(TB0, SCLK1, GPIOC0)  
PHASEB1 (TB1, MOSI1, GPIOC1)  
INDEX1 (TB2, MISO1, GPIOC2)  
HOME1 (TB3, SS1, GPIOC3)  
1
1
1
1
1
1
CLKO  
A0 - A5 (GPIOA8 - 13)  
A6 - A7 (GPIOE2 - 3)  
A8 - A15 (GPIOA0 - 7)  
6
2
PWMA0 - 5  
6
3
4
External  
Address  
Bus  
ISA0 - 2 (GPIOC8 - 10)  
FAULTA0 - 3  
PWMA  
PWMB  
8
4
1
1
1
1
GPIOB0 - 3 (A16 - 19)  
GPIOB4 (A20, prescaler_clock)  
GPIOB5 (A21, SYS_CLK)  
or GPIO  
PWMB0 - 5  
GPIOB6 (A22, SYS_CLK2)  
GPIOB7 (A23, oscillator_clock)  
6
ISB0 - 2 (GPIOD10 - 12)  
FAULTB0 - 3  
3
4
External  
Data  
D0 - D6 (GPIOF9 - 15)  
D7 - D15 (GPIOF0 - 8)  
7
9
ANA0 - 7  
ADCA  
ADCB  
8
Bus  
V
REF  
5
8
RD  
WR  
ANB0 - 7  
1
1
1
1
6
External  
Bus  
Control  
Temperature  
Sense Diode  
PS / CS0 (GPIODF8)  
DS / CS1 (GPIOFD9)  
GPIOD0 - 5 (CS2 - 7)  
Temp_Sense  
1
CAN_RX  
CAN_TX  
1
1
FlexCAN  
TXD0 (GPIOE0)  
RXD0 (GPIOE1)  
SCI 0 or  
GPIO  
1
1
TC0 - 1 (GPIOE8 - 9)  
Quad Timer  
C and D or  
GPIO  
2
4
TXD1 (GPIOD6)  
RXD1 (GPIOD7)  
SCI 1  
or GPIO  
1
1
TD0 - 3 (GPIOE10 - 13)  
TCK  
TMS  
TDI  
IRQA  
1
1
JTAG/  
EOnCE  
Port  
IRQB  
1
1
1
1
EXTBOOT  
EMI_MODE  
INTERRUPT/  
PROGRAM  
CONTROL  
TDO  
TRST  
1
1
1
RESET  
RSTO  
1
1
1
Figure 2-1 56F8357 Signals Identified by Functional Group  
(160-pin LQFP)  
1. Alternate pin functionality is shown in parenthesis; pin direction/type shown is the default functionality.  
56F8357 Technical Data  
Preliminary  
13  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
2.2 56F8357 Signal Pins  
After reset, each pin is configured for its primary function (listed first). Any alternate functionality  
must be programmed.  
If the “State During Reset” lists more than one state for a pin, the first state is the actual reset state.  
Other states show the reset condition of the alternate function, which you get if the alternate pin  
function is selected without changing the configuration of the alternate peripheral. For example,  
the A8/GPIOA0 pin shows that it is tri-stated during reset. If the GPIOA_PER is changed to select  
the GPIO function of the pin, it will become an input if no other registers are changed.  
Table 2-2 56F8357 Signal and Package Information for the 160-Pin LQFP  
State  
Signal Name  
Pin No.  
Type  
During  
Reset  
Signal Description  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDDA_ADC  
1
Supply  
I/O Power — This pin supplies 3.3V power to the chip I/O  
interface.  
16  
31  
42  
77  
96  
134  
114  
Supply  
Supply  
ADC Power — This pin supplies 3.3V power to the ADC  
modules. It must be connected to a clean analog power  
supply.  
VDDA_OSC_PLL  
92  
Oscillator and PLL Power — This pin supplies 3.3V  
power to the OSC and to the internal regulator that in turn  
supplies the Phase Locked Loop. It must be connected to  
a clean analog power supply.  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
27  
41  
Supply  
V
SS — These pins provide ground for chip logic and I/O  
drivers.  
74  
80  
125  
160  
14  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
 
Freescale Semiconductor, Inc.  
56F8357 Signal Pins  
Table 2-2 56F8357 Signal and Package Information for the 160-Pin LQFP  
State  
Signal Name  
VSSA_ADC  
Pin No.  
115  
Type  
Supply  
Input  
During  
Reset  
Signal Description  
ADC Analog Ground — This pin supplies an analog  
ground to the ADC modules.  
OCR_DIS  
91  
Input  
On-Chip Regulator Disable —  
Tie this pin to VSS to enable the on-chip regulator  
Tie this pin to VDD to disable the on-chip regulator  
This pin is intended to be a static DC signal from  
power-up to shut down. Do not try to toggle this pin  
for power savings during operation.  
62  
144  
95  
Supply  
Supply  
VCAP1 - 4 — When OCR_DIS is tied to VSS (regulator  
VCAP1*  
VCAP2*  
enabled), connect each pin to a 2.2µF or greater bypass  
capacitor in order to bypass the core logic voltage  
regulator, required for proper chip operation. When  
OCR_DIS is tied to VDD (regulator disabled), these pins  
become VDD_CORE and should be connected to a  
regulated 2.5V power supply.  
VCAP3*  
15  
VCAP4*  
Note: This bypass is required even if the chip is  
powered with an external supply.  
V
PP1  
PP2  
141  
2
Input  
Input  
Input  
Input  
VPP1 - 2 — These pins should be left unconnected as an  
open circuit for normal functionality.  
V
CLKMODE  
99  
Clock Input Mode Selection — This input determines the  
function of the XTAL and EXTAL pins.  
1 = External clock input on XTAL is used to directly drive  
the input clock of the chip. The EXTAL pin should be  
grounded.  
0 = A crystal or ceramic resonator should be connected  
between XTAL and EXTAL.  
EXTAL  
XTAL  
94  
93  
Input  
Input  
External Crystal Oscillator Input — This input can be  
connected to an 8MHz external crystal. Tie this pin low if  
XTAL is driven by an external clock source.  
Input/  
Output  
Chip-driven  
Crystal Oscillator Output — This output connects the  
internal crystal oscillator output to an external crystal.  
If an external clock is used, XTAL must be used as the  
input and EXTAL connected to GND.  
The input clock can be selected to provide the clock  
directly to the core. This input clock can also be selected  
as the input clock for the on-chip PLL.  
* When the on-chip regulator is disabled, these four pins become 2.5V V  
.
DD_CORE  
56F8357 Technical Data  
Preliminary  
15  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 2-2 56F8357 Signal and Package Information for the 160-Pin LQFP  
State  
Signal Name  
CLKO  
Pin No.  
Type  
During  
Reset  
Signal Description  
3
Output  
Tri-Stated  
Clock Output — This pin outputs a buffered clock signal.  
Using the SIM CLKO Select Register (SIM_CLKOSR), this  
pin can be programmed as any of the following: disabled,  
CLK_MSTR (system clock), IPBus clock, oscillator output,  
prescaler clock and postscaler clock. Other signals are  
also available for test purposes.  
See Section 6.5.7 for details.  
A0  
154  
Output  
Tri-stated  
Address Bus — A0 - A5 specify six of the address lines  
for external program or data memory accesses.  
Depending upon the state of the DRV bit in the EMI bus  
control register (BCR), A0–A5 and EMI control signals are  
tri-stated when the external bus is inactive.  
(GPIOA8)  
Input/  
Output  
Port A GPIO — These six GPIO pins can be individually  
programmed as input or output pins.  
A1  
(GPIOA9)  
10  
11  
12  
13  
14  
17  
After reset, these pins default to address bus functionality  
and must be programmed as GPIO.  
A2  
(GPIOA10)  
To deactivate the internal pull-up resistor, clear the  
appropriate GPIO bit in the GPIOA_PUR register.  
A3  
(GPIOA11)  
Example: GPIOA8, clear bit 8 in the GPIOA_PUR register.  
A4  
(GPIOA12)  
A5  
(GPIOA13)  
A6  
Output  
Tri-stated  
Address Bus — A6 - A7 specify two of the address lines  
for external program or data memory accesses.  
Depending upon the state of the DRV bit in the EMI bus  
control register (BCR), A6–A7 and EMI control signals are  
tri-stated when the external bus is inactive.  
(GPIOE2)  
Schmitt  
Input/  
Output  
Input  
Port E GPIO — These two GPIO pins can be individually  
programmed as input or output pins.  
A7  
(GPIOE3)  
18  
After reset, the default state is Address Bus.  
To deactivate the internal pull-up resistor, clear the  
appropriate GPIO bit in the GPIOE_PUR register.  
Example: GPIOE2, clear bit 2 in the GPIOE_PUR register.  
16  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
56F8357 Signal Pins  
Table 2-2 56F8357 Signal and Package Information for the 160-Pin LQFP  
State  
Signal Name  
A8  
Pin No.  
Type  
During  
Reset  
Signal Description  
19  
Output  
Tri-stated  
Address Bus— A8 - A15 specify eight of the address lines  
for external program or data memory accesses.  
Depending upon the state of the DRV bit in the EMI bus  
control register (BCR), A8–A15 and EMI control signals are  
tri-stated when the external bus is inactive.  
(GPIOA0)  
Schmitt  
Input/  
Output  
Input  
Port A GPIO — These eight GPIO pins can be individually  
programmed as input or output pins.  
A9  
(GPIOA1)  
20  
21  
22  
23  
24  
25  
26  
33  
After reset, the default state is Address Bus.  
A10  
(GPIOA2)  
To deactivate the internal pull-up resistor, clear the  
appropriate GPIO bit in the GPIOA_PUR register.  
A11  
(GPIOA3)  
Example: GPIOA0, clear bit 0 in the GPIOA_PUR register.  
A12  
(GPIOA4)  
A13  
(GPIOA5)  
A14  
(GPIOA6)  
A15  
(GPIOA7)  
GPIOB0  
Schmitt  
Input/  
Output  
Input  
Port B GPIO — These four GPIO pins can be  
programmed as input or output pins.  
(A16)  
Output  
Tri-stated  
Address Bus — A16 - A19 specify one of the address  
lines for external program or data memory accesses.  
Depending upon the state of the DRV bit in the EMI bus  
control register (BCR), A0–A23 and EMI control signals are  
tri-stated when the external bus is inactive.  
GPIOB1  
(A17)  
34  
35  
36  
GPIOB2  
(A18)  
After reset, the startup state of GPIOB0 - 3 (GPIO or  
address) is determined as a function of EXTBOOT,  
EMI_MODE and the Flash security setting. See Table 4-4  
for further information on when this pin is configured as an  
address pin at reset. In all cases, this state may be  
changed by writing to GPIOB_PER.  
GPIOB3  
(A19)  
To deactivate the internal pull-up resistor, clear the  
appropriate GPIO bit in the GPIOB_PUR register.  
56F8357 Technical Data  
Preliminary  
17  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 2-2 56F8357 Signal and Package Information for the 160-Pin LQFP  
State  
Signal Name  
GPIOB4  
Pin No.  
Type  
During  
Reset  
Signal Description  
37  
Schmitt  
Input/  
Output  
Input  
Port B GPIO — These four GPIO pins can be  
programmed as input or output pins.  
(A20)  
Output  
Tri-stated  
Address Bus — A20 - A23 specify one of the address  
lines for external program or data memory accesses.  
Depending upon the state of the DRV bit in the EMI bus  
control register (BCR), A20–A23 and EMI control signals are  
tri-stated when the external bus is inactive.  
(prescaler_  
clock)  
Output  
Output  
Clock Outputs — can be used to monitor the  
prescaler_clock, SYS_CLK, SYS_CLK2 or oscillator_clock  
on GPIOB4 through GPIOB7, respectively.  
GPIOB5  
(A21)  
(SYS_CLK)  
46  
47  
48  
After reset, the default state is GPIO.  
These pins can also be used to extend the external  
address bus to its full length or to view any of several  
system clocks. In these cases, the GPIO_B_PER can be  
used to individually disable the GPIO. The CLKOSR  
register in the SIM ( see Section 6.5.7) can then be used  
to choose between address and clock functions.  
GPIOB6  
(A22)  
(SYS_CLK2)  
GPIOB7  
(A23)  
(oscillator_  
clock)  
D0  
70  
Input/  
Output  
Tri-stated  
Data Bus — D0 - D6 specify part of the data for external  
program or data memory accesses.  
Depending upon the state of the DRV bit in the EMI bus  
control register (BCR), D0 - D6 and EMI control signals are  
tri-stated when the external bus is inactive.  
(GPIOF9)  
Input/  
Output  
Input  
Port F GPIO — These seven GPIO pins can be  
individually programmed as input or output pins.  
D1  
(GPIOF10)  
71  
83  
86  
88  
89  
90  
After reset, these pins default to the EMI Data bus  
function.  
D2  
(GPIOF11)  
To deactivate the internal pull-up resistor, clear the  
appropriate GPIO bit in the GPIOF_PUR register.  
D3  
(GPIOF12)  
Example: GPIOF9, clear bit 9 in the GPIOF_PUR register.  
D4  
(GPIOF13)  
D5  
(GPIOF14)  
D6  
(GPIOF15)  
18  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
56F8357 Signal Pins  
Table 2-2 56F8357 Signal and Package Information for the 160-Pin LQFP  
State  
Signal Name  
D7  
Pin No.  
Type  
During  
Reset  
Signal Description  
28  
Input/  
Output  
Tri-stated  
Data Bus — D7 - D14 specify part of the data for external  
program or data memory accesses.  
Depending upon the state of the DRV bit in the EMI bus  
control register (BCR), D7 - D15and EMI control signals are  
tri-stated when the external bus is inactive.  
(GPIOF0)  
Input/  
Output  
Input  
Port F GPIO — These eight GPIO pins can be individually  
programmed as input or output pins.  
D8  
(GPIOF1)  
29  
30  
At reset, these pins default to data bus functionality.  
D9  
(GPIOF2)  
To deactivate the internal pull-up resistor, clear the  
appropriate GPIO bit in the GPIOF_PUR register.  
D10  
(GPIOF3)  
32  
Example: GPIOF0, clear bit 0 in the GPIOF_PUR register.  
D11  
(GPIOF4)  
149  
150  
151  
152  
153  
52  
D12  
(GPIOF5)  
D13  
(GPIOF6)  
D14  
(GPIOF7)  
D15  
(GPIOF8)  
RD  
Output  
Tri-stated  
Read Enable — RD is asserted during external memory  
read cycles. When RD is asserted low, pins D0 - D15  
become inputs and an external device is enabled onto the  
data bus. When RD is deasserted high, the external data is  
latched inside the device. When RD is asserted, it qualifies  
the A0 - A23, PS, DS, and CSn pins. RD can be connected  
directly to the OE pin of a static RAM or ROM.  
Depending upon the state of the DRV bit in the EMI bus  
control register (BCR), RD is tri-stated when the external bus  
is inactive.  
To deactivate the internal pull-up resistor, set the CTRL bit  
in the SIM_PUDR register.  
56F8357 Technical Data  
Preliminary  
19  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 2-2 56F8357 Signal and Package Information for the 160-Pin LQFP  
State  
Signal Name  
WR  
Pin No.  
Type  
During  
Reset  
Signal Description  
51  
Output  
Tri-stated  
Write Enable — WR is asserted during external memory  
write cycles. When WR is asserted low, pins D0 - D15  
become outputs and the device puts data on the bus.  
When WR is deasserted high, the external data is latched  
inside the external device. When WR is asserted, it  
qualifies the A0 - A23, PS, DS, and CSn pins. WR can be  
connected directly to the WE pin of a static RAM.  
Depending upon the state of the DRV bit in the EMI bus  
control register (BCR), WR is tri-stated when the external bus  
is inactive.  
To deactivate the internal pull-up resistor, set the CTRL bit  
in the SIM_PUDR register.  
PS  
53  
Output  
Tri-stated  
Program Memory Select — This signal is actually CS0 in  
the EMI, which is programmed at reset for compatibility  
with the 56F80x PS signal. PS is asserted low for external  
program memory access.  
(CS0)  
Depending upon the state of the DRV bit in the EMI bus  
control register (BCR), CS0 is tri-stated when the external  
bus is inactive.  
(GPIOD8)  
Input/  
Output  
Input  
Port D GPIO — This GPIO pin can be individually  
programmed as an input or output pin.  
CS0 resets to provide the PS function as defined on the  
56F80x devices.  
To deactivate the internal pull-up resistor, clear bit 8 in the  
GPIOD_PUR register.  
DS  
54  
Output  
Tri-stated  
Data Memory Select — This signal is actually CS1 in the  
EMI, which is programmed at reset for compatibility with  
the 56F80x DS signal. DS is asserted low for external data  
memory access.  
(CS1)  
Depending upon the state of the DRV bit in the EMI bus  
control register (BCR), CS1 is tri-stated when the external  
bus is inactive.  
(GPIOD9)  
Input/  
Output  
Input  
Port D GPIO — This GPIO pin can be individually  
programmed as an input or output pin.  
To deactivate the internal pull-up resistor, clear bit 9 in the  
GPIOD_PUR register.  
20  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
56F8357 Signal Pins  
Table 2-2 56F8357 Signal and Package Information for the 160-Pin LQFP  
State  
Signal Name  
GPIOD0  
(CS2)  
Pin No.  
Type  
During  
Reset  
Signal Description  
55  
Input/  
Output  
Input  
Port D GPIO — These six GPIO pins can be individually  
programmed as input or output pins.  
Output  
Chip Select — CS2 - CS7 may be programmed within the  
EMI module to act as chip selects for specific areas of the  
external memory map.  
GPIOD1  
(CS3)  
56  
57  
58  
59  
60  
4
Depending upon the state of the DRV bit in the EMI bus  
control register (BCR), A0–A23 and EMI control signals are  
tri-stated when the external bus is inactive.  
GPIOD2  
(CS4)  
GPIOD3  
(CS5)  
At reset, these pins are configured as GPIO.  
To deactivate the internal pull-up resistor, clear the  
appropriate GPIO bit in the GPIOD_PUR register.  
GPIOD4  
(CS6)  
Example: GPIOD0, clear bit 0 in the GPIOD_PUR register.  
GPIOD5  
(CS7)  
TXD0  
Output  
Tri-stated  
Input  
Transmit Data — SCI0 transmit data output  
(GPIOE0)  
Input/  
Output  
Port E GPIO — This GPIO pin can be individually  
programmed as an input or output pin.  
After reset, the default state is SCI output.  
To deactivate the internal pull-up resistor, clear bit 0 in the  
GPIOE_PUR register.  
RXD0  
5
Input  
Input  
Input  
Receive Data — SCI0 receive data input  
(GPIOE1)  
Input/  
Output  
Port E GPIO — This GPIO pin can be individually  
programmed as an input or output pin.  
After reset, the default state is SCI output.  
To deactivate the internal pull-up resistor, clear bit 1 in the  
GPIOE_PUR register.  
TXD1  
49  
Output  
Tri-stated  
Input  
Transmit Data — SCI1 transmit data output  
(GPIOD6)  
Input/  
Output  
Port D GPIO — This GPIO pin can be individually  
programmed as an input or output pin.  
After reset, the default state is SCI output.  
To deactivate the internal pull-up resistor, clear bit 6 in the  
GPIOD_PUR register.  
56F8357 Technical Data  
Preliminary  
21  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 2-2 56F8357 Signal and Package Information for the 160-Pin LQFP  
State  
Signal Name  
Pin No.  
Type  
During  
Reset  
Signal Description  
RXD1  
50  
Input  
Input  
Input  
Receive Data — SCI1 receive data input  
(GPIOD7)  
Input/  
Output  
Port D GPIO — This GPIO pin can be individually  
programmed as an input or output pin.  
After reset, the default state is SCI input.  
To deactivate the internal pull-up resistor, clear bit 7 in the  
GPIOD_PUR register.  
TCK  
TMS  
137  
138  
Schmitt  
Input  
Input,  
pulled low  
internally  
Test Clock Input — This input pin provides a gated clock  
to synchronize the test logic and shift serial data to the  
JTAG/EOnCE port. The pin is connected internally to a  
pull-down resistor.  
Schmitt  
Input  
Input,  
pulled high  
internally  
Test Mode Select Input — This input pin is used to  
sequence the JTAG TAP controller’s state machine. It is  
sampled on the rising edge of TCK and has an on-chip  
pull-up resistor.  
To deactivate the internal pull-up resistor, set the JTAG bit  
in the SIM_PUDR register.  
TDI  
139  
Schmitt  
Input  
Input,  
pulled high  
internally  
Test Data Input — This input pin provides a serial input  
data stream to the JTAG/EOnCE port. It is sampled on the  
rising edge of TCK and has an on-chip pull-up resistor.  
To deactivate the internal pull-up resistor, set the JTAG bit  
in the SIM_PUDR register.  
TDO  
140  
136  
Output  
Tri-stated  
Test Data Output — This tri-stateable output pin provides  
a serial output data stream from the JTAG/EOnCE port. It  
is driven in the shift-IR and shift-DR controller states, and  
changes on the falling edge of TCK.  
TRST  
Schmitt  
Input  
Input,  
pulled high  
internally  
Test Reset — As an input, a low signal on this pin  
provides a reset signal to the JTAG TAP controller. To  
ensure complete hardware reset, TRST should be  
asserted whenever RESET is asserted. The only  
exception occurs in a debugging environment when a  
hardware device reset is required and the JTAG/EOnCE  
module must not be reset. In this case, assert RESET, but  
do not assert TRST.  
To deactivate the internal pull-up resistor, set the JTAG bit  
in the SIM_PUDR register.  
22  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
56F8357 Signal Pins  
Table 2-2 56F8357 Signal and Package Information for the 160-Pin LQFP  
State  
Signal Name  
PHASEA0  
(TA0)  
Pin No.  
Type  
During  
Reset  
Signal Description  
155  
Schmitt  
Input  
Input  
Input  
Phase A — Quadrature Decoder 0, PHASEA input  
TA0 — Timer A, Channel 0  
Schmitt  
Input/  
Output  
(GPIOC4)  
Schmitt  
Input/  
Output  
Input  
Port C GPIO — This GPIO pin can be individually  
programmed as an input or output pin.  
After reset, the default state is PHASEA0.  
To deactivate the internal pull-up resistor, clear bit 4 of the  
GPIOC_PUR register.  
PHASEB0  
(TA1)  
156  
Schmitt  
Input  
Input  
Input  
Phase B — Quadrature Decoder 0, PHASEB input  
TA1 — Timer A ,Channel  
Schmitt  
Input/  
Output  
(GPIOC5)  
Schmitt  
Input/  
Output  
Input  
Port C GPIO — This GPIO pin can be individually  
programmed as an input or output pin.  
After reset, the default state is PHASEB0.  
To deactivate the internal pull-up resistor, clear bit 5 of the  
GPIOC_PUR register.  
INDEX0  
(TA2)  
157  
Schmitt  
Input  
Input  
Input  
Index — Quadrature Decoder 0, INDEX input  
TA2 — Timer A, Channel 2  
Schmitt  
Input/  
Output  
(GPIOC6)  
Schmitt  
Input/  
Output  
Input  
Port C GPIO — This GPIO pin can be individually  
programmed as an input or output pin.  
After reset, the default state is INDEX0.  
To deactivate the internal pull-up resistor, clear bit 6 of the  
GPIOC_PUR register.  
56F8357 Technical Data  
Preliminary  
23  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 2-2 56F8357 Signal and Package Information for the 160-Pin LQFP  
State  
Signal Name  
HOME0  
Pin No.  
Type  
During  
Reset  
Signal Description  
158  
Schmitt  
Input  
Input  
Input  
Home — Quadrature Decoder 0, HOME input  
TA3 — Timer A ,Channel 3  
(TA3)  
Schmitt  
Input/  
Output  
(GPIOC7)  
Schmitt  
Input/  
Output  
Input  
Port C GPIO — This GPIO pin can be individually  
programmed as an input or output pin.  
After reset, the default state is HOME0.  
To deactivate the internal pull-up resister, clear bit 7 of the  
GPIOC_PUR register.  
SCLK0  
146  
Schmitt  
Input/  
Output  
Input  
Input  
SPI 0 Serial Clock — In the master mode, this pin serves  
as an output, clocking slaved listeners. In slave mode, this  
pin serves as the data clock input.  
(GPIOE4)  
Schmitt  
Input/  
Output  
Port E GPIO — This GPIO pin can be individually  
programmed as an input or output pin.  
After reset, the default state is SCLK0.  
To deactivate the internal pull-up resistor, clear bit 4 in the  
GPIOE_PUR register.  
MOSI0  
148  
Input/  
Output  
Tri-stated  
Input  
SPI 0 Master Out/Slave In — This serial data pin is an  
output from a master device and an input to a slave device.  
The master device places data on the MOSI line a  
half-cycle before the clock edge the slave device uses to  
latch the data.  
(GPIOE5)  
Input/  
Output  
Port E GPIO — This GPIO pin can be individually  
programmed as an input or output pin.  
After reset, the default state is MOSI0.  
To deactivate the internal pull-up resistor, clear bit 5 in the  
GPIOE_PUR register.  
24  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
56F8357 Signal Pins  
Table 2-2 56F8357 Signal and Package Information for the 160-Pin LQFP  
State  
Signal Name  
MISO0  
Pin No.  
Type  
During  
Reset  
Signal Description  
147  
Input/  
Output  
Input  
SPI 0 Master In/Slave Out — This serial data pin is an  
input to a master device and an output from a slave device.  
The MISO line of a slave device is placed in the  
high-impedance state if the slave device is not selected.  
The slave device places data on the MISO line a half-cycle  
before the clock edge the master device uses to latch the  
data.  
(GPIOE6)  
Input/  
Output  
Input  
Port E GPIO — This GPIO pin can be individually  
programmed as an input or output pin.  
After reset, the default state is MISO0.  
To deactivate the internal pull-up resistor, clear bit 6 in the  
GPIOE_PUR register.  
SS0  
145  
Input  
Input  
Input  
SPI 0 Slave Select — SS0 is used in slave mode to  
indicate to the SPI module that the current transfer is to be  
received.  
(GPIOE7)  
Input/  
Output  
Port E GPIO — This GPIO pin can be individually  
programmed as input or output pin.  
After reset, the default state is SS0.  
To deactivate the internal pull-up resistor, clear bit 7 in the  
GPIOE_PUR register.  
PHASEA1  
(TB0)  
6
Schmitt  
Input  
Input  
Input  
Phase A1 — Quadrature Decoder 1, PHASEA input for  
decoder 1.  
Schmitt  
Input/  
TB0 — Timer B, Channel 0  
Output  
(SCLK1)  
Schmitt  
Input/  
Output  
Input  
Input  
SPI 1 Serial Clock — In the master mode, this pin serves  
as an output, clocking slaved listeners. In slave mode, this  
pin serves as the data clock input. To activate the SPI  
function, set the PHSA_ALT bit in the SIM_GPS register.  
For details, see Section 6.5.8.  
(GPIOC0)  
Schmitt  
Input/  
Output  
Port C GPIO — This GPIO pin can be individually  
programmed as an input or output pin.  
After reset, the default state is PHASEA1.  
To deactivate the internal pull-up resistor, clear bit 0 in the  
GPIOC_PUR register.  
56F8357 Technical Data  
Preliminary  
25  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 2-2 56F8357 Signal and Package Information for the 160-Pin LQFP  
State  
Signal Name  
PHASEB1  
(TB1)  
Pin No.  
Type  
During  
Reset  
Signal Description  
7
Schmitt  
Input  
Input  
Input  
Phase B1 — Quadrature Decoder ,1 PHASEB input for  
decoder 1.  
Schmitt  
Input/  
TB1 — Timer B, Channel 1  
Output  
(MOSI1)  
Schmitt  
Input/  
Output  
Tri-stated  
SPI 1 Master Out/Slave In — This serial data pin is an  
output from a master device and an input to a slave device.  
The master device places data on the MOSI line a  
half-cycle before the clock edge the slave device uses to  
latch the data. To activate the SPI function, set the  
PHSB_ALT bit in the SIM_GPS register. For details, see  
Section 6.5.8.  
(GPIOC1)  
Schmitt  
Input/  
Output  
Input  
Port C GPIO — This GPIO pin can be individually  
programmed as an input or output pin.  
After reset, the default state is PHASEB1.  
To deactivate the internal pull-up resistor, clear bit 1 in the  
GPIOC_PUR register.  
INDEX1  
(TB2)  
8
Schmitt  
Input  
Input  
Input  
Index1 — Quadrature Decoder 1, INDEX input  
TB2 — Timer B, Channel 2  
Schmitt  
Input/  
Output  
(MISO1)  
Schmitt  
Input/  
Output  
Input  
SPI 1 Master In/Slave Out — This serial data pin is an  
input to a master device and an output from a slave device.  
The MISO line of a slave device is placed in the  
high-impedance state if the slave device is not selected.  
The slave device places data on the MISO line a half-cycle  
before the clock edge the master device uses to latch the  
data. To activate the SPI function, set the INDEX_ALT bit  
in the SIM_GPS register. For details, see Section 6.5.8.  
(GPIOC2)  
Schmitt  
Input/  
Output  
Input  
Port C GPIO — This GPIO pin can be individually  
programmed as an input or output pin.  
After reset, the default state is INDEX1.  
To deactivate the internal pull-up resistor, clear bit 2 in the  
GPIOC_PUR register.  
26  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
56F8357 Signal Pins  
Table 2-2 56F8357 Signal and Package Information for the 160-Pin LQFP  
State  
Signal Name  
HOME1  
Pin No.  
Type  
During  
Reset  
Signal Description  
9
Schmitt  
Input  
Input  
Input  
Home — Quadrature Decoder 1, HOME input  
TB3 — Timer B, Channel 3  
(TB3)  
Schmitt  
Input/  
Output  
(SS1)  
Schmitt  
Input  
Input  
Input  
SPI 1 Slave Select — In the master mode, this pin is used  
to arbitrate multiple masters. In slave mode, this pin is  
used to select the slave. To activate the SPI function, set  
the HOME_ALT bit in the SIM_GPS register. For details,  
see Section 6.5.8.  
(GPIOC3)  
Schmitt  
Input/  
Output  
Port C GPIO — This GPIO pin can be individually  
programmed as an input or output pin.  
After reset, the default state is HOME1.  
To deactivate the internal pull-up resistor, clear bit 3 in the  
GPIOC_PUR register.  
PWMA0  
PWMA1  
PWMA2  
PWMA3  
PWMA4  
PWMA5  
ISA0  
73  
75  
Output  
Tri-State  
PWMA0 - 5 — These are six PWMA outputs.  
76  
78  
79  
81  
126  
Schmitt  
Input  
Input  
Input  
ISA0 - 2 — These three input current status pins are used  
for top/bottom pulse width correction in complementary  
channel operation for PWMA.  
(GPIOC8)  
Schmitt  
Input/  
Output  
Port C GPIO — These GPIO pins can be individually  
programmed as input or output pins.  
ISA1  
(GPIOC9)  
127  
128  
At reset, these pins default to ISA functionality.  
ISA2  
(GPIOC10)  
To deactivate the internal pull-up resistor, clear the  
appropriate bit of the GPIOC_PUR register. For details,  
see Section 6.5.8.  
56F8357 Technical Data  
Preliminary  
27  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 2-2 56F8357 Signal and Package Information for the 160-Pin LQFP  
State  
Signal Name  
Pin No.  
Type  
During  
Reset  
Signal Description  
FAULTA0  
FAULTA1  
FAULTA2  
82  
84  
85  
Schmitt  
Input  
Input  
FAULTA0 - 2 — These three fault input pins are used for  
disabling selected PWMA outputs in cases where fault  
conditions originate off-chip.  
To deactivate the internal pull-up resistor, set the PWMA0  
bit in the SIM_PUDR register. For details, see Section  
6.5.8.  
FAULTA3  
87  
Schmitt  
Input  
Input  
FAULTA3 — This fault input pin is used for disabling  
selected PWMA outputs in cases where fault conditions  
originate off-chip.  
To deactivate the internal pull-up resistor, set the PWMA1  
bit in the SIM_PUDR register. See Section 6.5.6 for  
details.  
PWMB0  
PWMB1  
PWMB2  
PWMB3  
PWMB4  
PWMB5  
ISB0  
38  
39  
40  
43  
44  
45  
61  
Output  
Tri-State  
PWMB0 - 5 — Six PWMB output pins.  
Schmitt  
Input  
Input  
Input  
ISB0 - 2 — These three input current status pins are used  
for top/bottom pulse width correction in complementary  
channel operation for PWMB.  
(GPIOD10)  
Schmitt  
Input/  
Output  
Port D GPIO — These GPIO pins can be individually  
programmed as input or output pins.  
ISB1  
(GPIOD11)  
63  
64  
At reset, these pins default to ISB functionality.  
ISB2  
(GPIOD12)  
To deactivate the internal pull-up resistor, clear the  
appropriate bit of the GPIOD_PUR register. For details,  
see Section 6.5.8.  
FAULTB0  
FAULTB1  
FAULTB2  
FAULTB3  
67  
68  
69  
72  
Schmitt  
Input  
Input  
FAULTB0 - 3 — These four fault input pins are used for  
disabling selected PWMB outputs in cases where fault  
conditions originate off-chip.  
To deactivate the internal pull-up resistor, set the PWMB  
bit in the SIM_PUDR register. For details, see Section  
6.5.8.  
28  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
56F8357 Signal Pins  
Table 2-2 56F8357 Signal and Package Information for the 160-Pin LQFP  
State  
Signal Name  
Pin No.  
Type  
During  
Reset  
Signal Description  
ANA0  
ANA1  
ANA2  
ANA3  
ANA4  
ANA5  
ANA6  
ANA7  
VREFH  
100  
101  
102  
103  
104  
105  
106  
107  
113  
Input  
Input  
Input  
Input  
ANA0 - 3 — Analog inputs to ADC A, channel 0  
Input  
ANA4 - 7 — Analog inputs to ADC A, channel 1  
Input  
VREFH — Analog Reference Voltage High. VREFH must be  
less than or equal to VDDA_ADC.  
VREFP  
VREFMID  
VREFN  
112  
111  
110  
109  
Input/  
Output  
Input/  
Output  
VREFP, VREFMID & VREFN — Internal pins for voltage  
reference which are brought off-chip so they can be  
bypassed. Connect to a 0.1µF low ESR capacitor.  
VREFLO  
Input  
Input  
Input  
Input  
VREFLO — Analog Reference Voltage Low. This should  
normally be connected to a low-noise VSS  
.
ANB0  
ANB1  
116  
117  
118  
119  
120  
121  
122  
123  
108  
ANB0 - 3 — Analog inputs to ADC B, channel 0  
ANB2  
ANB3  
ANB4  
Input  
Input  
ANB4 - 7 — Analog inputs to ADC B, channel 1  
ANB5  
ANB6  
ANB7  
TEMP_SENSE  
Output  
Output  
Temperature Sense Diode — This signal connects to an  
on-chip diode that can be connected to one of the ADC  
inputs and used to monitor the temperature of the die.  
Must be bypassed with a 0.01µF capacitor.  
56F8357 Technical Data  
Preliminary  
29  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 2-2 56F8357 Signal and Package Information for the 160-Pin LQFP  
State  
Signal Name  
CAN_RX  
Pin No.  
Type  
During  
Reset  
Signal Description  
143  
Schmitt  
Input  
Input  
FlexCAN Receive Data — This is the CAN input. This pin  
has an internal pull-up resistor.  
To deactivate the internal pull-up resistor, set the CAN bit  
in the SIM_PUDR register.  
CAN_TX  
TC0  
142  
133  
Open  
Drain  
Output  
Open  
Drain  
Output  
FlexCAN Transmit Data — CAN output  
Schmitt  
Input/  
Input  
TC0 — Timer C, Channel 0 and 1  
Output  
(GPIOE8)  
Schmitt  
Input/  
Output  
Input  
Port E GPIO — These GPIO pins can be individually  
programmed as input or output pins.  
TC1  
(GPIOE9)  
135  
129  
At reset, these pins default to Timer functionality.  
To deactivate the internal pull-up resistor, clear the  
appropriate bit of the GPIOE_PUR register.  
TD0  
Schmitt  
Input/  
Output  
Input  
Input  
TD0 - 3 — Timer D, Channels 0, 1, 2 and 3  
(GPIOE10)  
Schmitt  
Input/  
Output  
Port E GPIO — These GPIO pins can be individually  
programmed as input or output pins.  
TD1  
(GPIOE11)  
130  
131  
132  
At reset, these pins default to Timer functionality.  
TD2  
(GPIOE12)  
To deactivate the internal pull-up resistor, clear the  
appropriate bit of the GPIOE_PUR register. See Section  
6.5.6 for details.  
TD3  
(GPIOE13)  
IRQA  
IRQB  
65  
66  
Schmitt  
Input  
Input  
External Interrupt Request A and B — The IRQA and  
IRQB inputs are asynchronous external interrupt requests  
during Stop and Wait mode operation. During other  
operating modes, they are synchronized external interrupt  
requests, which indicate an external device is requesting  
service. They can be programmed to be level-sensitive or  
negative-edge triggered.  
To deactivate the internal pull-up resistor, set the IRQ bit in  
the SIM_PUDR register. See Section 6.5.6 for details.  
30  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
56F8357 Signal Pins  
Table 2-2 56F8357 Signal and Package Information for the 160-Pin LQFP  
State  
Signal Name  
RESET  
Pin No.  
Type  
During  
Reset  
Signal Description  
98  
Schmitt  
Input  
Input  
Reset — This input is a direct hardware reset on the  
processor. When RESET is asserted low, the device is  
initialized and placed in the reset state. A Schmitt trigger  
input is used for noise immunity. When the RESET pin is  
deasserted, the initial chip operating mode is latched from  
the EXTBOOT pin. The internal reset signal will be  
deasserted synchronous with the internal clocks after a  
fixed number of internal clocks.  
To ensure complete hardware reset, RESET and TRST  
should be asserted together. The only exception occurs in  
a debugging environment when a hardware device reset is  
required and the JTAG/EOnCE module must not be reset.  
In this case, assert RESET but do not assert TRST.  
Note: The internal Power-On Reset will assert on initial  
power-up.  
To deactivate the internal pull-up resistor, set the RESET  
bit in the SIM_PUDR register. See Section 6.5.6 for  
details.  
RSTO  
97  
Output  
Output  
Input  
Reset Output — This output reflects the internal reset  
state of the chip.  
EXTBOOT  
124  
Schmitt  
Input  
External Boot — This input is tied to VDD to force the  
device to boot from off-chip memory (assuming that the  
on-chip Flash memory is not in a secure state). Otherwise,  
it is tied to ground. For details, see Table 4-4.  
Note: When this pin is tied low, the customer boot software  
should disable the internal pull-up resistor by setting the  
XBOOT bit of the SIM_PUDR; see Section 6.5.6.  
EMI_MODE  
159  
Schmitt  
Input  
Input  
External Memory Mode — This input is tied to VDD in  
order to enable an extra four address lines, for a total of 20  
address lines out of reset. This function is also affected by  
EXTBOOT and the Flash security mode. For details, see  
Table 4-4.  
If a 20-bit address bus is not desired, then this pin is tied to  
ground.  
Note: When this pin is tied low, the customer boot software  
should disable the internal pull-up resistor by setting the  
EMI_MODE bit of the SIM_PUDR; see Section 6.5.6.  
56F8357 Technical Data  
Preliminary  
31  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Part 3 On-Chip Clock Synthesis (OCCS)  
3.1 Introduction  
Refer to the OCCS chapter of the 56F8300 Peripheral User Manual for a full description of the  
OCCS. The material contained here identifies the specific features of the OCCS design that apply  
to the 56F8357 part. Figure 3-1 shows the specific OCCS block diagram to reference from the  
OCCS chapter of the 56F8300 Peripheral User Manual.  
CLKMODE  
XTAL  
ZSRC  
Crystal  
OSC  
Prescaler CLK  
PLLCOD  
SYS_CLK2  
Source to SIM  
EXTAL  
PLLCID  
PLLDB  
PLL  
F
F
OUT/2  
OUT  
Prescaler  
÷ (1,2,4,8)  
Postscaler  
÷ (1,2,4,8)  
Postscaler CLK  
÷2  
x (1 to 128)  
Bus  
Interface  
Bus Interface & Control  
LCK  
Lock  
Detector  
Loss of Reference  
Clock Interrupt  
Loss of  
Reference  
Clock  
Detector  
Figure 3-1 OCCS Block Diagram  
32  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
 
 
Freescale Semiconductor, Inc.  
External Clock Operation  
3.2 External Clock Operation  
The 56F8357 system clock can be derived from an external crystal, ceramic resonator, or an  
external system clock signal. To generate a reference frequency using the internal oscillator, a  
reference crystal or ceramic resonator must be connected between the EXTAL and XTAL pins.  
3.2.1  
Crystal Oscillator  
The internal oscillator is also designed to interface with a parallel-resonant crystal resonator in the  
frequency range specified for the external crystal in Table 10-13. A recommended crystal  
oscillator circuit is shown in Figure 3-2. Follow the crystal supplier’s recommendations when  
selecting a crystal, since crystal parameters determine the component values required to provide  
maximum stability and reliable start-up. The crystal and associated components should be mounted  
as near as possible to the EXTAL and XTAL pins to minimize output distortion and start-up  
stabilization time.  
Crystal Frequency = 4 - 8MHz (optimized for 8MHz)  
EXTAL XTAL  
Rz  
EXTAL XTAL  
Rz  
Sample External Crystal Parameters:  
Rz = 750 KΩ  
Note: If the operating temperature range is limited to  
CLKMODE = 0  
below 85oC (105oC junction), then Rz = 10 Meg Ω  
CL1  
CL2  
Figure 3-2 Connecting to a Crystal Oscillator  
Note:  
The OCCS_COHL bit must be set to 1 when a crystal oscillator is used. The reset condition on  
the OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL)  
register, discussed in the 56F8300 Peripheral User Manual.  
56F8357 Technical Data  
Preliminary  
33  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
3.2.2  
Ceramic Resonator (Default)  
It is also possible to drive the internal oscillator with a ceramic resonator, assuming the overall  
system design can tolerate the reduced signal integrity. A typical ceramic resonator circuit is shown  
in Figure 3-3. Refer to the supplier’s recommendations when selecting a ceramic resonator and  
associated components. The resonator and components should be mounted as near as possible to  
the EXTAL and XTAL pins.  
Resonator Frequency = 4 - 8MHz (optimized for 8MHz)  
3 Terminal  
2 Terminal  
EXTAL XTAL  
Rz  
Sample External Ceramic Resonator Parameters:  
Rz = 750 KΩ  
EXTAL XTAL  
Rz  
CLKMODE = 0  
CL1  
CL2  
C1  
C2  
Figure 3-3 Connecting a Ceramic Resonator  
Note:  
The OCCS_COHL bit must be set to 0 when a ceramic resonator is used. The reset condition  
on the OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL)  
register, discussed in the 56F8300 Peripheral User Manual.  
3.2.3  
External Clock Source  
The recommended method of connecting an external clock is given in Figure 3-4. The external  
clock source is connected to XTAL and the EXTAL pin is grounded. When using an external clock  
source, set the OCCS_COHL bit high as well.  
56F8357  
Note: When using an external clocking source with  
XTAL  
EXTAL  
this configuration, the input “CLKMODE” should be  
high and the COHL bit in the OSCTL register  
should be set to 1.  
VSS  
External  
Clock  
Figure 3-4 Connecting an External Clock Signal  
3.3 Registers  
When referring to the register definitions for the OCCS in the 56F8300 Peripheral User Manual,  
use the register definitions without the internal Relaxation Oscillator, since the 56F8357 does  
NOT contain this oscillator.  
34  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
 
 
Freescale Semiconductor, Inc.  
Introduction  
Part 4 Memory Operating Modes (MEM)  
4.1 Introduction  
The 56F8357 device is a 16-bit motor-control chip based on the 56800E core. It uses a  
Harvard-style architecture with two independent memory spaces for Data and Program. On-chip  
RAM and Flash memory are used in both spaces.  
This chapter provides memory maps for:  
Program Address Space including the Interrupt Vector Table  
Data Address Space including the EOnCE Memory and Peripheral Memory Maps  
On-chip memory sizes for each device are summarized in Table 4-1. Flash memories’ restrictions  
are identified in the “Use Restrictions” column of Table 4-1.  
Table 4-1 Chip Memory Configurations  
On-Chip Memory  
56F8357  
Use Restrictions  
Program Flash  
Data Flash  
256KB  
8KB  
Erase / Program via Flash interface unit and word writes to CDBW  
Erase / Program via Flash interface unit and word writes to CDBW. Data  
Flash can be read via one of CDBR or XDB2, but not both simultaneously  
Program RAM  
Data RAM  
4KB  
16KB  
16KB  
None  
None  
Program Boot Flash  
Erase / Program via Flash Interface unit and word to CDWB  
56F8357 Technical Data  
Preliminary  
35  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
4.2 Program Map  
The operating mode control bits (MA and MB) in the Operating Mode Register (OMR) control the  
Program memory map. At reset, these bits are set as indicated in Table 4-2. Table 4-4 shows the  
memory map configurations that are possible at reset. After reset, the OMR MA bit can be changed  
and will have an effect on the P-space memory map, as shown in Table 4-3. Changing the OMR  
MB bit will have no effect  
Table 4-2 OMR MB/MA Value at Reset  
OMR MB =  
OMR MA =  
Flash Secured  
State1, 2  
Chip Operating Mode  
EXTBOOT Pin  
0
0
Mode 0 – Internal Boot; EMI is configured to use 16 address lines; Flash  
Memory is secured; external P-space is not allowed; the EOnCE is disabled  
0
1
Not valid; cannot boot externally if the Flash is secured and will actually  
configure to 00 state  
1
1
0
1
Mode 0 – Internal Boot; EMI is configured to use 16 address lines  
Mode 1 – External Boot; Flash Memory is not secured; EMI configuration is  
determined by the state of the EMI_MODE pin  
1. This bit is only configured at reset. If the Flash secured state changes, this will not be reflected in MB until the next reset.  
2. Changing MB in software will not affect Flash memory security.  
Table 4-3 Changing OMR MA Value During Normal Operation  
OMR MA  
Chip Operating Mode  
Use internal P-space memory map configuration  
0
1
Use external P-space memory map configuration – If MB = 0 at reset, changing this bit has no  
effect.  
The 56F8357’s external memory interface (EMI) can operate much like the 56F80x family’s EMI,  
or it can be operated in a mode similar to that used on other products in the 56800E family. Initially,  
CS0 and CS1 are configured as PS and DS, in a mode compatible with earlier 56800 devices.  
Eighteen address lines are required to shadow the first 192K of internal program space when  
booting externally for development purposes. Therefore, the entire complement of on-chip  
memory cannot be accessed using a 16-bit 56800-compatible address bus. To address this  
situation, the EMI_MODE pin can be used to configure four GPIO pins as Address[19:16] upon  
reset (Software reconfiguration of the highest address lines [A20-23] is required if the full address  
range is to be used.)  
The EMI_MODE pin also affects the reset vector address, as provided in Table 4-4. Additional  
pins must be configured as address or chip select signals to access addresses at P:$10 0000 and  
above.  
36  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
 
Freescale Semiconductor, Inc.  
Interrupt Vector Table  
Table 4-4 Program Memory Map at Reset  
Mode 11 (MA = 1)  
Mode 0 (MA = 0)  
Begin/End  
Address  
Internal Boot  
External Boot  
EMI_MODE = 02,3  
EMI_MODE = 14  
Internal Boot  
16-Bit External Address Bus  
16-Bit External Address Bus  
20-Bit External Address Bus  
External Program Memory5  
External Program Memory5  
External Program Memory6  
P:$1F FFFF  
P:$10 0000  
P:$0F FFFF  
P:$03 0000  
P:$02 FFFF  
P:$02 F800  
On-Chip Program RAM  
4KB  
P:$02 F7FF  
P:$02 2000  
Reserved  
116KB  
External Program Memory  
COP Reset Address = 02 00027  
Boot Location = 02 00007  
P:$02 1FFF  
P:$02 0000  
Boot Flash  
16KB  
Boot Flash  
16KB  
COP Reset Address = 02 0002 (Not Used for Boot in this Mode)  
Boot Location = 02 0000  
Internal Program Flash8  
Internal Program Flash  
128KB  
P:$01 FFFF  
P:$01 0000  
128KB  
Internal Program Flash8  
128KB  
P:$00 FFFF  
P:$00 0000  
External Program RAM  
COP Reset Address = 00 0002  
Boot Location = 00 0000  
1. If Flash Security Mode is enabled, EXTBOOT Mode 1 cannot be used. See Security Features, Part 7.  
2. This mode provides maximum compatibility with 56F80x parts while operating externally.  
3. “EMI_MODE = 0” when EMI_MODE pin is tied to ground at boot up.  
4. “EMI_MODE = 1” when EMI_MODE pin is tied to V at boot up.  
DD  
5. Not accessible in reset configuration, since the address is above P:$00 FFFF. The higher bit address/GPIO (and/or chip  
selects) pins must be reconfigured before this external memory is accessible.  
6. Not accessible in reset configuration, since the address is above P:$0F FFFF. The higher bit address/GPIO (and/or chip  
selects) pins must be reconfigured before this external memory is accessible.  
7. Booting from this external address allows prototyping of the internal Boot Flash.  
8. Two independent program flash blocks allow one to be programmed/erased while executing from another. Each block must  
have it’s own mass erase.  
4.3 Interrupt Vector Table  
Table 4-5 provides the reset and interrupt priority structure, including on-chip peripherals. The  
table is organized with higher-priority vectors at the top and lower-priority interrupts lower in the  
table. The priority of an interrupt can be assigned to different levels, as indicated, allowing some  
control over interrupt priorities. All level 3 interrupts will be serviced before level 2, and so on. For  
a selected priority level, the lowest vector number has the highest priority.  
The location of the vector table is determined by the Vector Base Address (VBA) register. Please  
see Section 5.6.11 for the reset value of the VBA.  
In some configurations, the reset address and COP reset address will correspond to vector 0 and 1  
of the interrupt vector table. In these instances, the first two locations in the vector table must  
56F8357 Technical Data  
Preliminary  
37  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
contain branch or JMP instructions. All other entries must contain JSR instructions.  
1
Table 4-5 Interrupt Vector Table Contents  
Vector  
Number  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
Reserved for Reset Overlay2  
Reserved for COP Reset Overlay2  
Illegal Instruction  
SW Interrupt 3  
core  
core  
core  
core  
core  
core  
2
3
4
5
6
7
3
3
P:$04  
P:$06  
P:$08  
P:$0A  
P:$0C  
P:$0E  
3
HW Stack Overflow  
Misaligned Long Word Access  
OnCE Step Counter  
OnCE Breakpoint Unit 0  
Reserved  
3
1-3  
1-3  
core  
core  
core  
9
1-3  
1-3  
1-3  
P:$12  
P:$14  
P:$16  
OnCE Trace Buffer  
OnCE Transmit Register Empty  
OnCE Receive Register Full  
Reserved  
10  
11  
core  
core  
core  
core  
core  
14  
15  
16  
17  
18  
2
1
P:$1C  
P:$1E  
P:$20  
P:$22  
P:$24  
SW Interrupt 2  
SW Interrupt 1  
0
SW Interrupt 0  
0-2  
0-2  
IRQA  
IRQB  
Reserved  
LVI  
PLL  
FM  
FM  
FM  
20  
21  
22  
23  
24  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$28  
P:$2A  
P:$2C  
P:$2E  
P:$30  
Low-Voltage Detector (power sense)  
PLL  
FM Access Error Interrupt  
FM Command Complete  
FM Command, data and address Buffers Empty  
Reserved  
FLEXCAN  
FLEXCAN  
FLEXCAN  
FLEXCAN  
GPIOF  
26  
27  
28  
29  
30  
31  
0-2  
33  
34  
35  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$34  
P:$36  
P:$38  
P:$3A  
P:$3C  
P:$3E  
GPIO  
P:$42  
P:$44  
P:$46  
FLEXCAN Bus Off  
FLEXCAN Error  
FLEXCAN Wake Up  
FLEXCAN Message Buffer Interrupt  
GPIO F  
GPIOE  
GPIO E  
GPIOD32  
GPIOC  
P:$40  
D
0-2  
0-2  
0-2  
GPIO C  
GPIOB  
GPIO B  
GPIOA  
GPIO A  
Reserved  
SPI1  
SPI1  
SPI0  
SPI0  
38  
39  
40  
41  
0-2  
0-2  
0-2  
0-2  
P:$4C  
P:$4E  
P:$50  
P:$52  
SPI 1 Receiver Full  
SPI 1 Transmitter Empty  
SPI 0 Receiver Full  
SPI 0 Transmitter Empty  
38  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
 
Freescale Semiconductor, Inc.  
Interrupt Vector Table  
1
Table 4-5 Interrupt Vector Table Contents (Continued)  
Vector  
Number  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
SCI1  
SCI1  
42  
43  
0-2  
0-2  
P:$54  
P:$56  
SCI 1 Transmitter Empty  
SCI 1 Transmitter Idle  
Reserved  
SCI1  
45  
46  
47  
48  
49  
50  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$5A  
P:$5C  
P:$5E  
P:$60  
P:$62  
P:$64  
SCI 1 Receiver Error  
SCI 1 Receiver Full  
SCI1  
DEC1  
DEC1  
DEC0  
DEC0  
Quadrature Decoder #1 Home Switch or Watchdog  
Quadrature Decoder #1 INDEX Pulse  
Quadrature Decoder #0 Home Switch or Watchdog  
Quadrature Decoder #0 INDEX Pulse  
Reserved  
TMRD52  
TMRD53  
TMRD54  
TMRD55  
TMRC  
TMRC  
TMRC  
TMRC  
TMRB  
TMRB  
TMRB  
TMRB  
TMRA  
TMRA  
TMRA  
TMRA  
SCI0  
0-2  
0-2  
0-2  
0-2  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
P:$68  
Timer  
Timer  
Timer  
Timer  
P:$70  
P:$72  
P:$74  
P:$76  
P:$78  
P:$7A  
P:$7C  
P:$7E  
P:$80  
P:$82  
P:$84  
P:$86  
P:$88  
P:$8A  
,
D Channel  
D Channel  
0
1
2
3
P:$6A  
P:$6C  
P:$6E  
,
,
,
D Channel  
D Channel  
0-2  
Timer C, Channel 0  
Timer C, Channel 1  
Timer C, Channel 2  
Timer C, Channel 3  
Timer B, Channel 0  
Timer B, Channel 1  
Timer B, Channel 2  
Timer B, Channel 3  
Timer A, Channel 0  
Timer A, Channel 1  
Timer A, Channel 2  
Timer A, Channel 3  
SCI 0 Transmitter Empty  
SCI 0 Transmitter Idle  
Reserved  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
SCI0  
SCI0  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
- 1  
P:$8E  
P:$90  
P:$92  
P:$94  
P:$96  
P:$98  
P:$9A  
P:$9C  
P:$9E  
P:$A0  
P:$A2  
SCI 0 Receiver Error  
SCI 0 Receiver Full  
ADC B Conversion Compete  
SCI0  
ADCB  
ADCA  
ADCB  
ADCA  
PWMB  
PWMA  
PWMB  
PWMA  
core  
ADC A Conversion Complete  
ADC B Zero Crossing of Limit Error  
ADC A Zero Crossing of Limit Error  
Reload PWM B  
Reload PWM A  
PWM B Fault  
PWM A Fault  
SW Interrupt LP  
56F8357 Technical Data  
Preliminary  
39  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
1. Two words are allocated for each entry in the vector table. This does not allow the full address range to be referenced  
from the vector table, providing only 19 bits of address.  
2. If the VBA is set to $0200 (or VBA = 0000 for Mode 1, EMI_MODE = 0), the first two locations of the vector table are the  
chip reset addresses; therefore, these locations are not interrupt vectors.  
2.  
4.4 Data Map  
1
Table 4-6 Data Memory Map  
Begin/End  
Address  
EX = 02  
EX = 1  
X:$FF FFFF  
X:$FF FF00  
EOnCE  
256 locations allocated  
EOnCE  
256 locations allocated  
X:$FF FEFF  
X:$01 0000  
External Memory  
External Memory  
X:$00 FFFF  
X:$00 F000  
On-Chip Peripherals  
4096 locations allocated  
On-Chip Peripherals  
4096 locations allocated  
X:$00 EFFF  
X:$00 3000  
External Memory  
External Memory  
X:$00 2FFF  
X:$00 2000  
On-Chip Data Flash  
8KB  
X:$00 1FFF  
X:$00 0000  
On-Chip Data RAM  
16KB3  
1. All addresses are 16-bit Word addresses, not byte addresses.  
2. In the Operation Mode Register (OMR).  
3. The Data RAM is organized as a 2K x 32-bit memory to allow single-cycle, long-word operations.  
4.5 Flash Memory Map  
Figure 4-1 illustrates the Flash Memory (FM) map on the system bus.  
The Flash Memory is divided into three functional blocks. The Program and boot memories reside  
on the Program Memory buses. They are controlled by one set of banked registers. Data Memory  
Flash resides on the Data Memory buses and is controlled separately by its own set of banked  
registers.  
The top nine words of the Program Memory Flash are treated as special memory locations. The  
content of these words is used to control the operation of the Flash Controller. Because these words  
are part of the Flash Memory content, their state is maintained during power down and reset.  
During chip initialization, the content of these memory locations is loaded into Flash Memory  
control registers, detailed in the Flash Memory chapter of the DSP56F8300 Peripheral User  
Manual. In the 56F8357, these configuration parameters are located between $01_FFF7 and  
$01_FFFF.  
40  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
 
Freescale Semiconductor, Inc.  
Flash Memory Map  
Program Memory  
Data Memory  
FM_BASE + $14  
BOOT_FLASH_START + $1FFF  
Banked Registers  
16KB  
Boot  
Unbanked Registers  
FM_BASE + $00  
BOOT_FLASH_START = $02_0000  
PROG_FLASH_START + $01_FFFF  
PROG_FLASH_START + $01_FFF7  
PROG_FLASH_START + $01_FFF6  
FM_PROG_MEM_TOP = $01_FFFF  
Configure Field  
DATA_FLASH_START + $0FFF  
DATA_FLASH_START + $0000  
128KB  
Program  
8KB  
BLOCK 1 Odd (2 Bytes) $01_0003  
BLOCK 1 Even (2 Bytes) $01_0002  
BLOCK 1 Odd (2 Bytes) $01_0001  
BLOCK 1 Even (2 Bytes) $01_0000  
PROG_FLASH_START + $01_0000  
PROG_FLASH_START + $00_FFFF  
128KB  
Program  
BLOCK 0 Odd (2 Bytes) $00_0003  
BLOCK 0 Even (2 Bytes) $00_0002  
BLOCK 0 Odd (2 Bytes) $00_0001  
BLOCK 0 Even (2 Bytes) $00_0000  
PROG_FLASH_START = $00_0000  
Figure 4-1 Flash Array Memory Maps  
Table 4-7 shows the page and sector sizes used within each Flash memory block on the chip.  
Table 4-7 Flash Memory Partitions  
Flash Size  
Sectors  
Sector Size  
Page Size  
Program Flash  
Data Flash  
256KB  
8KB  
16  
16  
4
8K x 16 bits  
256 x 16 bits  
2K x 16 bits  
512 x 16 bits  
256 x 16 bits  
256 x 16 bits  
Boot Flash  
16KB  
Please see 56F8300 Peripheral User Manual for additional Flash information.  
56F8357 Technical Data  
Preliminary  
41  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
4.6 EOnCE Memory Map  
Table 4-8 EOnCE Memory Map  
Address  
Register Acronym  
Register Name  
Reserved  
X:$FF FF8A  
X:$FF FF8E  
OESCR  
External Signal Control Register  
Reserved  
OBCNTR  
Breakpoint Unit [0] Counter  
Reserved  
X:$FF FF90  
X:$FF FF91  
X:$FF FF92  
X:$FF FF93  
X:$FF FF94  
X:$FF FF95  
X:$FF FF96  
X:$FF FF97  
X:$FF FF98  
X:$FF FF99  
X:$FF FF9A  
X:$FF FF9B  
X:$FF FF9C  
X:$FF  
OBMSK (32 bits)  
Breakpoint 1 Unit [0] Mask Register  
Breakpoint 1 Unit [0] Mask Register  
Breakpoint 2 Unit [0] Address Register  
Breakpoint 2 Unit [0] Address Register  
Breakpoint 1 Unit [0] Address Register  
Breakpoint 1 Unit [0] Address Register  
Breakpoint Unit [0] Control Register  
Breakpoint Unit [0] Control Register  
Trace Buffer Register Stages  
Trace Buffer Register Stages  
Trace Buffer Pointer Register  
Trace Buffer Control Register  
Peripheral Base Address Register  
OBAR2 (32 bits)  
OBAR1 (24 bits)  
OBCR (24 bits)  
OTB (21-24 bits/stage)  
OTBPR (8 bits)  
OTBCR  
OBASE (8 bits)  
FF9DOSR  
Status  
Register  
X:$FF FF9E  
X:$FF FF9F  
X:$FF FFA0  
OSCNTR (24 bits)  
Instruction Step Counter  
Instruction Step Counter  
Control Register  
OCR (bits)  
Reserved  
X:$FF FFFC  
X:$FF  
OCLSR (8 bits)  
Core Lock / Unlock Status Register  
FFFDOTXRXSR  
(8  
bits)  
Transmit  
and  
Receive  
Status  
X:$FF FFFE  
X:$FF FFF  
OTX / ORX (32 bits)  
OTX1 / ORX1  
Transmit Register / Receive Register  
Transmit Register Upper Word  
Receive Register Upper Word  
4.7 Peripheral Memory Mapped Registers  
On-chip peripheral registers are part of the data memory map on the 56800E series. These locations  
may be accessed with the same addressing modes used for ordinary data memory, except all  
peripheral registers should be read/written using word accesses only.  
42  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Peripheral Memory Mapped Registers  
Table 4-9 summarizes base addresses for the set of peripherals on the 56F8357 device. Peripherals  
are listed in order of the base address.  
The following tables list all of the peripheral registers required to control or access the peripherals.  
Table 4-9 Data Memory Peripheral Base Address Map Summary  
Peripheral  
PrefixBase  
Address  
Table  
4-10  
Number  
External Memory Interface  
Timer A  
EMI  
X:$00 F020  
X:$00 F040  
X:$00 F080  
X:$00 F0C0  
F100  
TMRA  
TMRB  
TMRC  
4-11  
4-12  
4-13  
4-14  
4-15  
4-16  
4-17  
4-18  
4-19  
4-20  
4-21  
4-22  
4-23  
4-24  
4-25  
4-26  
4-27  
4-28  
4-29  
4-30  
4-31  
4F-33220  
4-33  
4-34  
4-35  
4-36  
4-37  
4-38  
Timer B  
Timer C  
Timer  
DTMXR:D$00  
PWMA  
PWMB  
DEC0  
PWM A  
X:$00 F140  
X:$00 F160  
X:$00 F180  
X:$00 F190  
X:$00 F1A0  
X:$00 F200  
X:$00 F240  
X:$00 F270  
X:$00 F280  
X:$00 F290  
X:$00 F2A0  
X:$00 F2B0  
X:$00 F2C0  
X:$00 F2D0  
X:$00 F2E0  
X:$00 F300  
X:$00 F310  
PWM B  
Quadrature Decoder 0  
Quadrature Decoder 1  
ITCN  
DEC1  
ITCN  
ADC A  
ADCA  
ADCB  
TSENSOR  
SCI0  
ADC B  
Temperature Sensor  
SCI #0  
SCI #1  
SCI1  
SPI #0  
SPI0  
SPI #1  
SPI1  
COP  
COP  
PLL, OSC  
GPIO Port A  
GPIO Port B  
GPIO Port C  
GPIO  
CLKGEN  
GPIOA  
GPIOB  
GPIOC  
Port  
DGPIODX:$00  
GPIO Port E  
GPIO Port F  
SIM  
GPIOE  
GPIOF  
SIM  
X:$00 F330  
X:$00 F340  
X:$00 F350  
X:$00 F360  
X:$00 F400  
X:$00 F800  
Power Supervisor  
FM  
LVI  
FM  
FlexCAN  
FC  
56F8357 Technical Data  
Preliminary  
43  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Table 4-10 External Memory Integration Registers Address Map  
(EMI_BASE = $00 F020)  
Register Acronym Address Offset  
Register Description  
Reset Value  
Chip Select Base Address Register 0  
Chip Select Base Address Register 1  
Chip Select Base Address Register 2  
Chip Select Base Address Register 3  
Chip Select Base Address Register 4  
Chip Select Base Address Register 5  
Chip Select Base Address Register 6  
Chip Select Base Address Register 7  
Chip Select Option Register 0  
CSBAR 0  
CSBAR 1  
CSBAR 2  
CSBAR 3  
CSBAR 4  
CSBAR 5  
CSBAR 6  
CSBAR 7  
CSOR 0  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
0x5FCB programmed for chip  
select for program space, word  
wide, read and write, 11 waits  
Chip Select Option Register 1  
0x5FAB programmed for chip  
select for data space, word  
wide, read and write, 11 waits  
CSOR 1  
$9  
Chip Select Option Register 2  
CSOR 2  
CSOR 3  
CSOR 4  
CSOR 5  
CSOR 6  
CSOR 7  
CSTC 0  
CSTC 1  
CSTC 2  
CSTC 3  
CSTC 4  
CSTC 5  
CSTC 6  
CSTC 7  
BCR  
$A  
$B  
Chip Select Option Register 3  
Chip Select Option Register 4  
$C  
Chip Select Option Register 5  
$D  
Chip Select Option Register 6  
$E  
Chip Select Option Register 7  
$F  
Chip Select Timing Control Register 0  
Chip Select Timing Control Register 1  
Chip Select Timing Control Register 2  
Chip Select Timing Control Register 3  
Chip Select Timing Control Register 4  
Chip Select Timing Control Register 5  
Chip Select Timing Control Register 6  
Chip Select Timing Control Register 7  
Bus Control Register  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
0x016B sets the default  
number of wait states to 11 for  
both read and write accesses  
44  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Peripheral Memory Mapped Registers  
Table 4-11 Quad Timer A Registers Address Map  
(TMRA_BASE = $00 F040)  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRA0_CMP1  
TMRA0_CMP2  
TMRA0_CAP  
$0  
$1  
Compare Register 2  
Capture Register  
$2  
TMRA0_LOAD$3  
TMRA0_HOLD$4  
TMRA0_CNTR  
TMRA0_CTRL  
TMRA0_SCR  
Load  
Hold  
$5  
Register  
Register  
Counter Register  
$6  
Control Register  
$7  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRA0_CMPLD1  
TMRA0_CMPLD2  
TMRA0_COMSCR  
$8  
$9  
$A  
TMRA1_CMP1  
TMRA1_CMP2  
TMRA1_CAP  
$10  
$11  
Compare Register 1  
Compare Register 2  
Capture Register  
$12  
TMRA1_LOAD$13  
TMRA1_HOLD$14  
TMRA1_CNTR  
TMRA1_CTRL  
Load  
Hold  
$15  
Register  
Register  
Counter Register  
$16  
Control Register  
TMRA1_SCR  
$17  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRA1_CMPLD1  
TMRA1_CMPLD2  
TMRA1_COMSCR  
$18  
$19  
$1A  
TMRA2_CMP1  
TMRA2_CMP2  
TMRA2_CAP  
$20  
$21  
Compare Register 1  
Compare Register 2  
Capture Register  
$22  
TMRA2_LOAD$23  
TMRA2_HOLD$24  
TMRA2_CNTR  
TMRA2_CTRL  
TMRA2_SCR  
Load  
Hold  
$25  
Register  
Register  
Counter Register  
$26  
Control Register  
$27  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
TMRA2_CMPLD1  
TMRA2_CMPLD2  
$28  
$29  
56F8357 Technical Data  
Preliminary  
45  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 4-11 Quad Timer A Registers Address Map  
(TMRA_BASE = $00 F040) (Continued)  
Register Acronym  
Address Offset  
Register Description  
TMRA2_COMSCR  
$2A  
Comparator Status and Control Register  
Reserved  
TMRA3_CMP1  
TMRA3_CMP2  
TMRA3_CAP  
$30  
$31  
Compare Register 1  
Compare Register 2  
Capture Register  
$32  
TMRA3_LOAD$33  
TMRA3_HOLD$34  
TMRA3_CNTR  
TMRA3_CTRL  
Load  
Hold  
$35  
Register  
Register  
Counter Register  
$36  
Control Register  
TMRA3_SCR  
$37  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
TMRA3_CMPLD1  
TMRA3_CMPLD2  
TMRA3_COMSCR  
$38  
$39  
$3A  
Table 4-12 Quad Timer B Registers Address Map  
(TMRB_BASE = $00 F080)  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRB0_CMP1  
TMRB0_CMP2  
TMRB0_CAP  
$0  
$1  
Compare Register 2  
Capture Register  
Register  
$2  
TMRB0_LOAD$3  
TMRB0_HOLD$4  
TMRB0_CNTR  
TMRB0_CTRL  
TMRB0_SCR  
Load  
Hold  
$5  
Register  
Counter Register  
Control Register  
$6  
$7  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRB0_CMPLD1  
TMRB0_CMPLD2  
TMRB0_COMSCR  
$8  
$9  
$A  
TMRB1_CMP1  
TMRB1_CMP2  
TMRB1_CAP  
$10  
$11  
Compare Register 1  
Compare Register 2  
Capture Register  
Register  
$12  
TMRB1_LOAD$13  
TMRB1_HOLD$14  
Load  
Hold  
Register  
46  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Peripheral Memory Mapped Registers  
Table 4-12 Quad Timer B Registers Address Map  
(TMRB_BASE = $00 F080) (Continued)  
Register Acronym  
Address Offset  
Register Description  
TMRB1_CNTR  
TMRB1_CTRL  
$15  
$16  
$17  
$18  
$19  
$1A  
Counter Register  
Control Register  
TMRB1_SCR  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRB1_CMPLD1  
TMRB1_CMPLD2  
TMRB1_COMSCR  
TMRB2_CMP1  
TMRB2_CMP2  
TMRB2_CAP  
$20  
$21  
Compare Register 1  
Compare Register 2  
Capture Register  
$22  
TMRB2_LOAD$23  
TMRB2_HOLD$24  
TMRB2_CNTR  
TMRB2_CTRL  
Load  
Hold  
$25  
Register  
Register  
Counter Register  
$26  
Control Register  
TMRB2_SCR  
$27  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRB2_CMPLD1  
TMRB2_CMPLD2  
TMRB2_COMSCR  
$28  
$29  
$2A  
TMRB3_CMP1  
TMRB3_CMP2  
TMRB3_CAP  
$30  
$31  
Compare Register 1  
Compare Register 2  
Capture Register  
$32  
TMRB3_LOAD$33  
TMRB3_HOLD$34  
TMRB3_CNTR  
TMRB3_CTRL  
Load  
Hold  
$35  
Register  
Register  
Counter Register  
$36  
Control Register  
TMRB3_SCR  
$37  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
TMRB3_CMPLD1  
TMRB3_CMPLD2  
TMRB3_COMSCR  
$38  
$39  
$3A  
56F8357 Technical Data  
Preliminary  
47  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 4-13 Quad Timer C Registers Address Map  
(TMRC_BASE = $00 F0C0)  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRC0_CMP1  
TMRC0_CMP2  
TMRC0_CAP  
$0  
$1  
Compare Register 2  
Capture Register  
$2  
TMRC0_LOAD$3  
TMRC0_HOLD$4  
TMRC0_CNTR  
TMRC0_CTRL  
TMRC0_SCR  
Load  
Hold  
$5  
Register  
Register  
Counter Register  
$6  
Control Register  
$7  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRC0_CMPLD1  
TMRC0_CMPLD2  
TMRC0_COMSCR  
$8  
$9  
$A  
TMRC1_CMP1  
TMRC1_CMP2  
TMRC1_CAP  
$10  
$11  
Compare Register 1  
Compare Register 2  
Capture Register  
$12  
TMRC1_LOAD$13  
TMRC1_HOLD$14  
TMRC1_CNTR  
TMRC1_CTRL  
Load  
Hold  
$15  
Register  
Register  
Counter Register  
$16  
Control Register  
TMRC1_SCR  
$17  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRC1_CMPLD1  
TMRC1_CMPLD2  
TMRC1_COMSCR  
$18  
$19  
$1A  
TMRC2_CMP1  
TMRC2_CMP2  
TMRC2_CAP  
$20  
$21  
Compare Register 1  
Compare Register 2  
Capture Register  
$22  
TMRC2_LOAD$23  
TMRC2_HOLD$24  
TMRC2_CNTR  
TMRC2_CTRL  
TMRC2_SCR  
Load  
Hold  
$25  
Register  
Register  
Counter Register  
$26  
Control Register  
$27  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
TMRC2_CMPLD1  
TMRC2_CMPLD2  
$28  
$29  
48  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Peripheral Memory Mapped Registers  
Table 4-13 Quad Timer C Registers Address Map  
(TMRC_BASE = $00 F0C0) (Continued)  
Register Acronym  
Address Offset  
Register Description  
TMRC2_COMSCR  
$2A  
Comparator Status and Control Register  
Reserved  
TMRC3_CMP1  
TMRC3_CMP2  
TMRC3_CAP  
$30  
$31  
Compare Register 1  
Compare Register 2  
Capture Register  
$32  
TMRC3_LOAD$33  
TMRC3_HOLD$34  
TMRC3_CNTR  
TMRC3_CTRL  
Load  
Hold  
$35  
Register  
Register  
Counter Register  
$36  
Control Register  
TMRC3_SCR  
$37  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
TMRC3_CMPLD1  
TMRC3_CMPLD2  
TMRC3_COMSCR  
$38  
$39  
$3A  
Table 4-14 Quad Timer D Registers Address Map  
(TMRD_BASE = $00 F100)  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRD0_CMP1  
TMRD0_CMP2  
TMRD0_CAP  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Compare Register 2  
Capture Register  
TMRD0_LOAD  
TMRD0_HOLD  
TMRD0_CNTR  
TMRD0_CTRL  
TMRD0_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRD0_CMPLD1  
TMRD0_CMPLD2  
TMRD0_COMSCR  
TMRD1_CMP1  
TMRD1_CMP2  
TMRD1_CAP  
TMRD1_LOAD  
TMRD1_HOLD  
$10  
$11  
$12  
$13  
$14  
Compare Register 1  
Compare Register 2  
Capture Register  
Load Register  
Hold Register  
56F8357 Technical Data  
Preliminary  
49  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 4-14 Quad Timer D Registers Address Map  
(TMRD_BASE = $00 F100) (Continued)  
Register Acronym  
Address Offset  
Register Description  
TMRD1_CNTR  
TMRD1_CTRL  
$15  
$16  
$17  
$18  
$19  
$1A  
Counter Register  
Control Register  
TMRD1_SCR  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRD1_CMPLD1  
TMRD1_CMPLD2  
TMRD1_COMSCR  
TMRD2_CMP1  
TMRD2_CMP2  
TMRD2_CAP  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRD2_LOAD  
TMRD2_HOLD  
TMRD2_CNTR  
TMRD2_CTRL  
TMRD2_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRD2_CMPLD1  
TMRD2_CMPLD2  
TMRD2_COMSCR  
TMRD3_CMP1  
TMRD3_CMP2  
TMRD3_CAP  
$30  
$31  
$32  
$33  
$34  
$35  
$36  
$37  
$38  
$39  
$3A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRD3_LOAD  
TMRD3_HOLD  
TMRD3_CNTR  
TMRD3_CTRL  
TMRD3_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
TMRD3_CMPLD1  
TMRD3_CMPLD2  
TMRD3_COMSCR  
50  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Peripheral Memory Mapped Registers  
Table 4-15 Pulse Width Modulator A Registers Address Map  
(PWMA_BASE = $00 F140)  
Register Acronym  
Address Offset  
Register Description  
PWMA_PMCTL  
$0  
$1  
Control Register  
PWMA_PMFCTL  
PWMA_PMFSA  
Fault Control Register  
Fault Status Acknowledge Register  
Output Control Register  
Counter Register  
$2  
PWMA_PMOUT  
$3  
PWMA_PMCNT  
$4  
PWMA_PWMCM  
PWMA_PWMVAL0  
PWMA_PWMVAL1  
PWMA_PWMVAL2  
PWMA_PWMVAL3  
PWMA_PWMVAL4  
PWMA_PWMVAL5  
PWMA_PMDEADTM  
PWMA_PMDISMAP1  
PWMA_PMDISMAP2  
PWMA_PMCFG  
$5  
Counter Modulo Register  
Value Register 0  
$6  
$7  
Value Register 1  
$8  
Value Register 2  
$9  
Value Register 3  
$A  
$B  
$C  
$D  
$E  
$F  
$10  
$11  
$12  
Value Register 4  
Value Register 5  
Dead Time Register  
Disable Mapping Register 1  
Disable Mapping Register 2  
Configure Register  
PWMA_PMCCR  
Channel Control Register  
PWMA_PMPORT  
PWMA_PMICCR  
Port Register  
PWM Internal Correction Control Register  
Table 4-16 Pulse Width Modulator B Registers Address Map  
(PWMB_BASE = $00 F160)  
Register Acronym  
Address Offset  
Register Description  
PWMB_PMCTL  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
Control Register  
PWMB_PMFCTL  
PWMB_PMFSA  
Fault Control Register  
Fault Status Acknowledge Register  
Output Control Register  
Counter Register  
PWMB_PMOUT  
PWMB_PMCNT  
PWMB_PWMCM  
PWMB_PWMVAL0  
PWMB_PWMVAL1  
PWMB_PWMVAL2  
PWMB_PWMVAL3  
Counter Modulo Register  
Value Register 0  
Value Register 1  
Value Register 2  
Value Register 3  
56F8357 Technical Data  
Preliminary  
51  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 4-16 Pulse Width Modulator B Registers Address Map  
(PWMB_BASE = $00 F160) (Continued)  
Register Acronym  
Address Offset  
Register Description  
PWMB_PWMVAL4  
PWMB_PWMVAL5  
PWMB_PMDEADTM  
PWMB_PMDISMAP1  
PWMB_PMDISMAP2  
PWMB_PMCFG  
$A  
$B  
Value Register 4  
Value Register 5  
$C  
$D  
$E  
Dead Time Register  
Disable Mapping Register 1  
Disable Mapping Register 2  
Configure Register  
$F  
PWMB_PMCCR  
$10  
$11  
$12  
Channel Control Register  
PWMB_PMPORT  
PWMB_PMICCR  
Port Register  
PWM Internal Correction Control Register  
Table 4-17 Quadrature Decoder 0 Registers Address Map  
(DEC0_BASE = $00 F180)  
Register Acronym  
Address Offset  
Register Description  
Decoder Control Register  
DEC0_DECCR  
DEC0_FIR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
$D  
Filter Interval Register  
DEC0_WTR  
DEC0_POSD  
DEC0_POSDH  
DEC0_REV  
DEC0_REVH  
DEC0_UPOS  
DEC0_LPOS  
DEC0_UPOSH  
DEC0_LPOSH  
DEC0_UIR  
Watchdog Time-out Register  
Position Difference Counter Register  
Position Difference Counter Hold Register  
Revolution Counter Register  
Revolution Hold Register  
Upper Position Counter Register  
Lower Position Counter Register  
Upper Position Hold Register  
Lower Position Hold Register  
Upper Initialization Register  
Lower Initialization Register  
Input Monitor Register  
DEC0_LIR  
DEC0_IMR  
52  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Peripheral Memory Mapped Registers  
Table 4-18 Quadrature Decoder 1 Registers Address Map  
(DEC1_BASE = $00 F190)  
Register Acronym  
Address Offset  
Register Description  
Decoder Control Register  
DEC1_DECCR  
DEC1_FIR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
$D  
Filter Interval Register  
DEC1_WTR  
DEC1_POSD  
DEC1_POSDH  
DEC1_REV  
Watchdog Time-out Register  
Position Difference Counter Register  
Position Difference Counter Hold Register  
Revolution Counter Register  
Revolution Hold Register  
DEC1_REVH  
DEC1_UPOS  
DEC1_LPOS  
DEC1_UPOSH  
DEC1_LPOSH  
DEC1_UIR  
Upper Position Counter Register  
Lower Position Counter Register  
Upper Position Hold Register  
Lower Position Hold Register  
Upper Initialization Register  
Lower Initialization Register  
Input Monitor Register  
DEC1_LIR  
DEC1_IMR  
Table 4-19 Interrupt Control Registers Address Map  
(ITCN_BASE = $00 F1A0)  
Register Acronym  
IPR 0  
Address Offset  
Register Description  
Interrupt Priority Register 0  
$0  
$1  
IPR 1  
IPR 2  
IPR 3  
IPR 4  
IPR 5  
IPR 6  
IPR 7  
IPR 8  
IPR 9  
VBA  
Interrupt Priority Register 1  
Interrupt Priority Register 2  
Interrupt Priority Register 3  
Interrupt Priority Register 4  
Interrupt Priority Register 5  
Interrupt Priority Register 6  
Interrupt Priority Register 7  
Interrupt Priority Register 8  
Interrupt Priority Register 9  
Vector Base Address Register  
Fast Interrupt Match Register 0  
Fast Interrupt Vector Address Low 0 Register  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
$DFast  
$E  
FIM0  
FIVAL0  
FIVAH0  
FIM1  
Interrupt  
Vector  
Address  
High  
53  
0
Fast Interrupt Match Register 1  
56F8357 Technical Data  
Preliminary  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 4-19 Interrupt Control Registers Address Map  
(ITCN_BASE = $00 F1A0) (Continued)  
Register Acronym  
FIVAL1  
Address Offset  
Register Description  
$F  
Fast Interrupt Vector Address Low 1 Register  
Fast Interrupt Vector Address High 1 Register  
IRQ Pending Register 0  
FIVAH1  
IRQP 0  
IRQP 1  
IRQP 2  
IRQP 3  
IRQP 4  
IRQP 5  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
IRQ Pending Register 1  
IRQ Pending Register 2  
IRQ Pending Register 3  
IRQ Pending Register 4  
IRQ Pending Register 5  
Reserved  
ICTL  
$1DInterrupt  
Control  
Register  
Table 4-20 Analog-to-Digital Converter Registers Address Map  
(ADCA_BASE = $00 F200)  
Register Acronym  
Address Offset  
Register Description  
Control Register 1  
ADCA_CR 1  
$0  
$1  
ADCA_CR 2  
Control Register 2  
ADCA_ZCC  
$2  
Zero Crossing Control Register  
Channel List Register 1  
Channel List Register 2  
Sample Disable Register  
Status Register  
ADCA_LST 1  
ADCA_LST 2  
ADCA_SDIS  
$3  
$4  
$5  
ADCA_STAT  
ADCA_LSTAT  
ADCA_ZCSTAT  
ADCA_RSLT 0  
ADCA_RSLT 1  
ADCA_RSLT 2  
ADCA_RSLT 3  
ADCA_RSLT 4  
ADCA_RSLT 5  
ADCA_RSLT 6  
ADCA_RSLT 7  
ADCA_LLMT 0  
ADCA_LLMT 1  
ADCA_LLMT 2  
ADCA_LLMT 3  
$6  
$7  
Limit Status Register  
Zero Crossing Status Register  
Result Register 0  
$8  
$9  
$A  
$B  
$C  
$D  
$E  
$F  
Result Register 1  
Result Register 2  
Result Register 3  
Result Register 4  
Result Register 5  
Result Register 6  
$10  
$11  
$12  
$13  
$14  
Result Register 7  
Low Limit Register 0  
Low Limit Register 1  
Low Limit Register 2  
Low Limit Register 3  
54  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Peripheral Memory Mapped Registers  
Table 4-20 Analog-to-Digital Converter Registers Address Map  
(ADCA_BASE = $00 F200) (Continued)  
Register Acronym  
Address Offset  
Register Description  
Low Limit Register 4  
ADCA_LLMT 4  
ADCA_LLMT 5  
ADCA_LLMT 6  
ADCA_LLMT 7  
ADCA_HLMT 0  
ADCA_HLMT 1  
ADCA_HLMT 2  
ADCA_HLMT 3  
ADCA_HLMT 4  
ADCA_HLMT 5  
ADCA_HLMT 6  
ADCA_HLMT 7  
ADCA_OFS 0  
ADCA_OFS 1  
ADCA_OFS 2  
ADCA_OFS 3  
ADCA_OFS 4  
ADCA_OFS 5  
ADCA_OFS 6  
ADCA_OFS 7  
ADCA_POWER  
ADCA_CAL  
$15  
$16  
$17  
$18  
$19  
$1A  
$1B  
$1C  
$1D  
$1E  
$1F  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Low Limit Register 5  
Low Limit Register 6  
Low Limit Register 7  
High Limit Register 0  
High Limit Register 1  
High Limit Register 2  
High Limit Register 3  
High Limit Register 4  
High Limit Register 5  
High Limit Register 6  
High Limit Register 7  
Offset Register 0  
Offset Register 1  
Offset Register 2  
Offset Register 3  
Offset Register 4  
Offset Register 5  
Offset Register 6  
Offset Register 7  
Power Control Register  
ADC Calibration Register  
Table 4-21 Analog-to-Digital Converter Registers Address Map  
(ADCB_BASE = $00 F240)  
Register Acronym  
Address Offset  
Register Description  
Control Register 1  
ADCB_CR 1  
ADCB_CR 2  
ADCB_ZCC  
ADCB_LST 1  
ADCB_LST 2  
ADCB_SDIS  
ADCB_STAT  
ADCB_LSTAT  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
Control Register 2  
Zero Crossing Control Register  
Channel List Register 1  
Channel List Register 2  
Sample Disable Register  
Status Register  
Limit Status Register  
56F8357 Technical Data  
Preliminary  
55  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 4-21 Analog-to-Digital Converter Registers Address Map  
(ADCB_BASE = $00 F240) (Continued)  
Register Acronym  
Address Offset  
Register Description  
Zero Crossing Status Register  
ADCB_ZCSTAT  
ADCB_RSLT 0  
ADCB_RSLT 1  
ADCB_RSLT 2  
ADCB_RSLT 3  
ADCB_RSLT 4  
ADCB_RSLT 5  
ADCB_RSLT 6  
ADCB_RSLT 7  
ADCB_LLMT 0  
ADCB_LLMT 1  
ADCB_LLMT 2  
ADCB_LLMT 3  
ADCB_LLMT 4  
ADCB_LLMT 5  
ADCB_LLMT 6  
ADCB_LLMT 7  
ADCB_HLMT 0  
ADCB_HLMT 1  
ADCB_HLMT 2  
ADCB_HLMT 3  
ADCB_HLMT 4  
ADCB_HLMT 5  
ADCB_HLMT 6  
ADCB_HLMT 7  
ADCB_OFS 0  
ADCB_OFS 1  
ADCB_OFS 2  
ADCB_OFS 3  
ADCB_OFS 4  
ADCB_OFS 5  
ADCB_OFS 6  
ADCB_OFS 7  
ADCB_POWER  
ADCB_CAL  
$8  
$9  
Result Register 0  
Result Register 1  
Result Register 2  
Result Register 3  
Result Register 4  
Result Register 5  
Result Register 6  
Result Register 7  
Low Limit Register 0  
Low Limit Register 1  
Low Limit Register 2  
Low Limit Register 3  
Low Limit Register 4  
Low Limit Register 5  
Low Limit Register 6  
Low Limit Register 7  
High Limit Register 0  
High Limit Register 1  
High Limit Register 2  
High Limit Register 3  
High Limit Register 4  
High Limit Register 5  
High Limit Register 6  
High Limit Register 7  
Offset Register 0  
$A  
$B  
$C  
$D  
$E  
$F  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
$1B  
$1C  
$1D  
$1E  
$1F  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Offset Register 1  
Offset Register 2  
Offset Register 3  
Offset Register 4  
Offset Register 5  
Offset Register 6  
Offset Register 7  
Power Control Register  
ADC Calibration Register  
56  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Peripheral Memory Mapped Registers  
Table 4-22 Temperature Sensor Register Address Map  
(TSENSOR_BASE = $00 F270)  
Register Acronym  
Address Offset  
Register Description  
TSENSOR_CNTL  
$0  
Control Register  
Table 4-23 Serial Communication Interface 0 Registers Address Map  
(SCI0_BASE = $00 F280)  
Register Acronym  
Address Offset  
Register Description  
Baud Rate Register  
SCI0_SCIBR  
SCI0_SCICR  
$0  
$1  
Control Register  
Reserved  
SCI0_SCISR  
SCI0_SCIDR  
$3  
$4  
Status Register  
Data Register  
Table 4-24 Serial Communication Interface 1 Registers Address Map  
(SCI1_BASE = $00 F290)  
Register Acronym  
Address Offset  
Register Description  
Baud Rate Register  
SCI1_SCIBR  
SCI1_SCICR  
$0  
$1  
Control Register  
Reserved  
SCI1_SCISR  
SCI1_SCIDR  
$3  
$4  
Status Register  
Data Register  
Table 4-25 Serial Peripheral Interface 0 Registers Address Map  
(SPI0_BASE = $00 F2A0)  
Register Acronym  
Address Offset  
Register Description  
Status and Control Register  
SPI0_SPSCR  
SPI0_SPDSR  
SPI0_SPDRR  
SPI0_SPDTR  
$0  
$1  
$2  
$3  
Data Size Register  
Data Receive Register  
Data Transmitter Register  
56F8357 Technical Data  
Preliminary  
57  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 4-26 Serial Peripheral Interface 1 Registers Address Map  
(SPI1_BASE = $00 F2B0)  
Register Acronym  
Address Offset  
Register Description  
Status and Control Register  
SPI1_SPSCR  
SPI1_SPDSR  
SPI1_SPDRR  
SPI1_SPDTR  
$0  
$1  
$2  
$3  
Data Size Register  
Data Receive Register  
Data Transmitter Register  
Table 4-27 Computer Operating Properly Registers Address Map  
(COP_BASE = $00 F2C0)  
Register Acronym  
Address Offset  
Register Description  
COPCTL  
COPTO  
$0  
$1  
$2  
Control Register  
Time Out Register  
Counter Register  
COPCTR  
Table 4-28 Clock Generation Module Registers Address Map  
(CLKGEN_BASE = $00 F2D0)  
Register Acronym  
PLLCR  
Address Offset  
Register Description  
$0  
$1  
$2  
Control Register  
PLLDB  
PLLSR  
Divide-By Register  
Status Register  
Reserved  
SHUTDOWN  
OSCTL  
$4  
$5  
Shutdown Register  
Oscillator Control Register  
58  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Peripheral Memory Mapped Registers  
Table 4-29 GPIOA Registers Address Map  
(GPIOA_BASE = $00 F2E0)  
Address Offset  
Register Description  
Reset Value  
Register Acronym  
GPIOA_PUR  
0 x 3FFF  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Pull-up Enable Register  
0 x 0000  
0 x 0000  
0 x 3FFF  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
GPIOA_DR  
Data Register  
GPIOA_DDR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOA_PER  
GPIOA_IAR  
GPIOA_IENR  
GPIOA_IPOLR  
GPIOA_IPR  
GPIOA_IESR  
GPIOA_PPMODE  
GPIOA_RAWDATA  
0 x 3FFF  
Table 4-30 GPIOB Registers Address Map  
(GPIOB_BASE = $00 F300)  
Register Acronym  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
0 x 00FF  
0 x 0000  
GPIOB_PUR  
GPIOB_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Data Register  
0 x 0000  
GPIOB_DDR  
GPIOB_PER  
GPIOB_IAR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
0 x 0000 or 0 x 000F 1  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
GPIOB_IENR  
GPIOB_IPOLR  
GPIOB_IPR  
GPIOB_IESR  
GPIOB_PPMODE  
GPIOB_RAWDATA  
0 x 00FF  
1. Determined by EMI_MODE and EXTBOOT. Can be 0x00 or 0x0F, depending on address pin configuration. See  
Table 4-4.  
56F8357 Technical Data  
Preliminary  
59  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Table 4-31 GPIOC Registers Address Map  
(GPIOC_BASE = $00 F310)  
Register Acronym  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
0 x 07FF  
0 x 0000  
0 x 0000  
0 x 07FF  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
GPIOC_PUR  
GPIOC_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Data Register  
GPIOC_DDR  
GPIOC_PER  
GPIOC_IAR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOC_IENR  
GPIOC_IPOLR  
GPIOC_IPR  
GPIOC_IESR  
GPIOC_PPMODE  
GPIOC_RAWDATA  
0 x 07FF  
Table 4-32 GPIOD Registers Address Map  
(GPIOD_BASE = $00 F320)  
Register Acronym  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
0 x 1FFF  
0 x 0000  
0 x 0000  
0 x 1FC0  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
GPIOD_PUR  
GPIOD_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Data Register  
GPIOD_DDR  
GPIOD_PER  
GPIOD_IAR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOD_IENR  
GPIOD_IPOLR  
GPIOD_IPR  
GPIOD_IESR  
GPIOD_PPMODE  
GPIOD_RAWDATA  
0 x 1FFF  
60  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Peripheral Memory Mapped Registers  
Table 4-33 GPIOE Registers Address Map  
(GPIOE_BASE = $00 F330)  
Register Acronym  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
0 x 3FFF  
0 x 0000  
GPIOE_PUR  
GPIOE_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Data Register  
0 x 0000  
GPIOE_DDR  
GPIOE_PER  
GPIOE_IAR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
0 x 3FFF  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 3FFF  
GPIOE_IENR  
GPIOE_IPOLR  
GPIOE_IPR  
GPIOE_IESR  
GPIOE_PPMODE  
GPIOE_RAWDATA  
Table 4-34 GPIOF Registers Address Map  
(GPIOF_BASE = $00 F340)  
Register Acronym  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
0 x FFFF  
0 x 0000  
0 x 0000  
0 x FFFF  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
GPIOF_PUR  
GPIOF_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Data Register  
GPIOF_DDR  
GPIOF_PER  
GPIOF_IAR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOF_IENR  
GPIOF_IPOLR  
GPIOF_IPR  
GPIOF_IESR  
GPIOF_PPMODE  
GPIOF_RAWDATA  
0 x FFFF  
56F8357 Technical Data  
Preliminary  
61  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Table 4-35 System Integration Module Registers Address Map  
(SIM_BASE = $00 F350)  
Register Acronym  
Address Offset  
Register Description  
SIM_CONTROL  
SIM_RSTSTS  
SIM_SCR0  
$0  
$1  
Control Register  
Reset Status Register  
Software Control Register 0  
Software Control Register 1  
Software Control Register 2  
Software Control Register 3  
Significant  
$2  
SIM_SCR1  
$3  
SIM_SCR2  
$4  
SIM_SCR3  
$5  
SIM_MSH_ID$6  
SIM_LSH_ID$7  
SIM_PUDR  
Most  
Least  
$8  
Half  
Half  
JTAG  
JTAG  
Significant  
Pull-up Disable Register  
Reserved  
SIM_CLKOSR  
SIM_GPS  
$A  
Clock Out Select Register  
$B  
Quad Decoder 1 / Timer B / SPI 1 Select Register  
Peripheral Clock Enable Register  
SIM_PCE  
$C  
SIM_ISALH  
SIM_ISALL  
$DI/O  
$E  
Short  
Address  
Location  
High  
Register  
I/O Short Address Location Low Register  
Table 4-36 Power Supervisor Registers Address Map  
(LVI_BASE = $00 F360)  
Register Acronym  
Address Offset  
Register Description  
LVI_CONTROL  
LVI_STATUS  
$0  
$1  
Control Register  
Status Register  
62  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Peripheral Memory Mapped Registers  
Table 4-37 Flash Module Registers Address Map  
(FM_BASE = $00 F400)  
Register Acronym  
Address Offset  
Clock ivider  
Register Description  
Register  
FMCLKD$0  
FMMCR  
D
$1  
Module Control Register  
Reserved  
FMSECH  
FMSECL  
FMMNTR  
$3  
$4  
$5  
Security High Half Register  
Security Low Half Register  
Monitor Data Register  
Reserved  
FMPROT  
$10  
$11  
Protection Register (Banked)  
Protection Boot Register (Banked)  
Reserved  
FMPROTB  
FMUSTAT  
FMCMD$14  
FMCTL  
$13  
$15  
$1A  
User Status Register (Banked)  
Register  
Command  
(Banked)  
Control Register (Banked)  
Reserved  
16-Bit Information Option Register 0  
Hot temperature ADC reading of Temperature Sensor;  
value set during factory test  
FMIFROPT 0  
16-Bit Information Option Register 1  
Not used  
FMIFROPT 1  
FMIFROPT 2  
$1B  
$1C  
16-Bit Information Option Register 2  
Room temperature ADC reading of Temperature Sensor;  
value set during factory test  
Table 4-38 FlexCAN Registers Address Map  
(FC_BASE = $00 F800)  
Register Acronym  
FCMCR  
Address Offset  
Register Description  
Module Configuration Register  
$0  
Reserved  
FCCTL0  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
Control Register 0 Register  
FCCTL1  
Control Register 1 Register  
FCTMR  
Free-Running Timer Register  
Maximum Message Buffer Configuration Register  
Interrupt Masks 2 Register  
FCMAXMB  
FCIMASK2  
FCRXGMASK_H  
FCRXGMASK_L  
FCRX14MASK_H  
FCRX14MASK_L  
Receive Global Mask High Register  
Receive Global Mask Low Register  
Receive Buffer 14 Mask High Register  
Receive Buffer 14 Mask Low Register  
56F8357 Technical Data  
Preliminary  
63  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 4-38 FlexCAN Registers Address Map  
(FC_BASE = $00 F800) (Continued)  
Register Acronym  
Address Offset  
Register Description  
Receive Buffer 15 Mask High Register  
Buffer 15  
Reserved  
Error and Status Register  
FCRX15MASK_H  
FCRX15MASK_L  
$C  
$DReceive  
Mask  
Low  
Register  
FCSTATUS  
$10  
$11  
$12  
$13  
FCIMASK1  
Interrupt Masks 1 Register  
Interrupt Flags 1 Register  
FCIFLAG1  
FCR/T_ERROR_CNTRS  
Receive and Transmit Error Counters Register  
Reserved  
FCIFLAG 2  
$1B  
Interrupt Flags 2 Register  
Reserved  
FCMB0_CONTROL  
FCMB0_ID_HIGH  
FCMB0_ID_LOW  
FCMB0_DATA  
$40  
$41  
$42  
$43  
$44  
$45  
$46  
Message Buffer 0 Control / Status Register  
Message Buffer 0 ID High Register  
Message Buffer 0 ID Low Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Reserved  
FCMB0_DATA  
FCMB0_DATA  
FCMB0_DATA  
FCMSB1_CONTROL  
FCMSB1_ID_HIGH  
FCMSB1_ID_LOW  
FCMB1_DATA  
$48  
$49  
$4A  
$4B  
$4C  
$4D  
$4E  
Message Buffer 1 Control / Status Register  
Message Buffer 1 ID High Register  
Message Buffer 1 ID Low Register  
Message Buffer 1 Data Register  
Message Buffer 1 Data Register  
Message Buffer 1 Data Register  
Message Buffer 1 Data Register  
Reserved  
FCMB1_DATA  
FCMB1_DATA  
FCMB1_DATA  
FCMB2_CONTROL  
FCMB2_ID_HIGH  
FCMB2_ID_LOW  
FCMB2_DATA  
$50  
$51  
$52  
$53  
$54  
$55  
$56  
Message Buffer 2 Control / Status Register  
Message Buffer 2 ID High Register  
Message Buffer 2 ID Low Register  
Message Buffer 2 Data Register  
Message Buffer 2 Data Register  
Message Buffer 2 Data Register  
Message Buffer 2 Data Register  
Reserved  
FCMB2_DATA  
FCMB2_DATA  
FCMB2_DATA  
FCMB3_CONTROL  
$58  
Message Buffer 3 Control / Status Register  
64  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Peripheral Memory Mapped Registers  
Table 4-38 FlexCAN Registers Address Map  
(FC_BASE = $00 F800) (Continued)  
Register Acronym  
Address Offset  
Register Description  
FCMB3_ID_HIGH  
FCMB3_ID_LOW  
FCMB3_DATA  
FCMB3_DATA  
FCMB3_DATA  
FCMB3_DATA  
$59  
$5A  
$5B  
$5C  
$5D  
$5E  
Message Buffer 3 ID High Register  
Message Buffer 3 ID Low Register  
Message Buffer 3 Data Register  
Message Buffer 3 Data Register  
Message Buffer 3 Data Register  
Message Buffer 3 Data Register  
Reserved  
FCMB4_CONTROL  
FCMB4_ID_HIGH  
FCMB4_ID_LOW  
FCMB4_DATA  
$60  
$61  
$62  
$63  
$64  
$65  
$66  
Message Buffer 4 Control / Status Register  
Message Buffer 4 ID High Register  
Message Buffer 4 ID Low Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Reserved  
FCMB4_DATA  
FCMB4_DATA  
FCMB4_DATA  
FCMB5_CONTROL  
FCMB5_ID_HIGH  
FCMB5_ID_LOW  
FCMB5_DATA  
$68  
$69  
$6A  
$6B  
$6C  
$6D  
$6E  
Message Buffer 5 Control / Status Register  
Message Buffer 5 ID High Register  
Message Buffer 5 ID Low Register  
Message Buffer 5 Data Register  
Message Buffer 5 Data Register  
Message Buffer 5 Data Register  
Message Buffer 5 Data Register  
Reserved  
FCMB5_DATA  
FCMB5_DATA  
FCMB5_DATA  
FCMB6_CONTROL  
FCMB6_ID_HIGH  
FCMB6_ID_LOW  
FCMB6_DATA  
$70  
$71  
$72  
$73  
$74  
$75  
$76  
Message Buffer 6 Control / Status Register  
Message Buffer 6 ID High Register  
Message Buffer 6 ID Low Register  
Message Buffer 6 Data Register  
Message Buffer 6 Data Register  
Message Buffer 6 Data Register  
Message Buffer 6 Data Register  
Reserved  
FCMB6_DATA  
FCMB6_DATA  
FCMB6_DATA  
FCMB7_CONTROL  
FCMB7_ID_HIGH  
FCMB7_ID_LOW  
FCMB7_DATA  
$78  
$79  
$7A  
$7B  
Message Buffer 7 Control / Status Register  
Message Buffer 7 ID High Register  
Message Buffer 7 ID Low Register  
Message Buffer 7 Data Register  
56F8357 Technical Data  
Preliminary  
65  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 4-38 FlexCAN Registers Address Map  
(FC_BASE = $00 F800) (Continued)  
Register Acronym  
Address Offset  
Register Description  
FCMB7_DATA  
FCMB7_DATA  
FCMB7_DATA  
$7C  
$7D  
$7E  
Message Buffer 7 Data Register  
Message Buffer 7 Data Register  
Message Buffer 7 Data Register  
Reserved  
FCMB8_CONTROL  
FCMB8_ID_HIGH  
FCMB8_ID_LOW  
FCMB8_DATA  
$80  
$81  
$82  
$83  
$84  
$85  
$86  
Message Buffer 8 Control / Status Register  
Message Buffer 8 ID High Register  
Message Buffer 8 ID Low Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Reserved  
FCMB8_DATA  
FCMB8_DATA  
FCMB8_DATA  
FCMB9_CONTROL  
FCMB9_ID_HIGH  
FCMB9_ID_LOW  
FCMB9_DATA  
$88  
$89  
$8A  
$8B  
$8C  
$8D  
$8E  
Message Buffer 9 Control / Status Register  
Message Buffer 9 ID High Register  
Message Buffer 9 ID Low Register  
Message Buffer 9 Data Register  
Message Buffer 9 Data Register  
Message Buffer 9 Data Register  
Message Buffer 9 Data Register  
Reserved  
FCMB9_DATA  
FCMB9_DATA  
FCMB9_DATA  
FCMB10_CONTROL  
FCMB10_ID_HIGH  
FCMB10_ID_LOW  
FCMB10_DATA  
FCMB10_DATA  
FCMB10_DATA  
FCMB10_DATA  
$90  
$91  
$92  
$93  
$94  
$95  
$96  
Message Buffer 10 Control / Status Register  
Message Buffer 10 ID High Register  
Message Buffer 10 ID Low Register  
Message Buffer 10 Data Register  
Message Buffer 10 Data Register  
Message Buffer 10 Data Register  
Message Buffer 10 Data Register  
Reserved  
FCMB11_CONTROL  
FCMB11_ID_HIGH  
FCMB11_ID_LOW  
FCMB11_DATA  
$98  
$99  
$9A  
$9B  
$9C  
$9D  
Message Buffer 11 Control / Status Register  
Message Buffer 11 ID High Register  
Message Buffer 11 ID Low Register  
Message Buffer 11 Data Register  
Message Buffer 11 Data Register  
Message Buffer 11 Data Register  
FCMB11_DATA  
FCMB11_DATA  
66  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Peripheral Memory Mapped Registers  
Table 4-38 FlexCAN Registers Address Map  
(FC_BASE = $00 F800) (Continued)  
Register Acronym  
Address Offset  
Register Description  
FCMB11_DATA  
$9E  
Message Buffer 11 Data Register  
Reserved  
FCMB12_CONTROL  
FCMB12_ID_HIGH  
FCMB12_ID_LOW  
FCMB12_DATA  
FCMB12_DATA  
FCMB12_DATA  
FCMB12_DATA  
$A0  
$A1  
$A2  
$A3  
$A4  
$A5  
$A6  
Message Buffer 12 Control / Status Register  
Message Buffer 12 ID High Register  
Message Buffer 12 ID Low Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Reserved  
FCMB13_CONTROL  
FCMB13_ID_HIGH  
FCMB13_ID_LOW  
FCMB13_DATA  
FCMB13_DATA  
FCMB13_DATA  
FCMB13_DATA  
$A8  
$A9  
$AA  
$AB  
$AC  
$AD  
$AE  
Message Buffer 13 Control / Status Register  
Message Buffer 13 ID High Register  
Message Buffer 13 ID Low Register  
Message Buffer 13 Data Register  
Message Buffer 13 Data Register  
Message Buffer 13 Data Register  
Message Buffer 13 Data Register  
Reserved  
FCMB14_CONTROL  
FCMB14_ID_HIGH  
FCMB14_ID_LOW  
FCMB14_DATA  
FCMB14_DATA  
FCMB14_DATA  
FCMB14_DATA  
$B0  
$B1  
$B2  
$B3  
$B4  
$B5  
$B6  
Message Buffer 14 Control / Status Register  
Message Buffer 14 ID High Register  
Message Buffer 14 ID Low Register  
Message Buffer 14 Data Register  
Message Buffer 14 Data Register  
Message Buffer 14 Data Register  
Message Buffer 14 Data Register  
Reserved  
FCMB15_CONTROL  
FCMB15_ID_HIGH  
FCMB15_ID_LOW  
FCMB15_DATA  
FCMB15_DATA  
FCMB15_DATA  
FCMB15_DATA  
$B8  
$B9  
$BA  
$BB  
$BC  
$BD  
$BE  
Message Buffer 15 Control / Status Register  
Message Buffer 15 ID High Register  
Message Buffer 15 ID Low Register  
Message Buffer 15 Data Register  
Message Buffer 15 Data Register  
Message Buffer 15 Data Register  
Message Buffer 15 Data Register  
Reserved  
56F8357 Technical Data  
Preliminary  
67  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
4.8 Factory Programmed Memory  
During manufacturing the Boot Flash memory block is programmed with a default Serial  
Bootloader program. The Serial Bootloader application can be used to load a user application into  
the Program and Data Flash memories of the device. The document MC56F83xxBLUM/D,  
56F83xx SCI/CAN Bootloader User Manual provides detailed information on this firmware.  
The application note AN1973/D, Production Flash Programming provides additional  
information on how the Serial Bootloader program can be used to perform production flash  
programming of the on board flash memories as well as other potential methods.  
Like all the flash memory blocks the Boot Flash can be erased and programmed by the user. The  
Serial Bootloader application is programmed as an aid to the end user, but is not required to be used  
or maintained in the Boot Flash memory.  
68  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Introduction  
Part 5 Interrupt Controller (ITCN)  
5.1 Introduction  
The Interrupt Controller (ITCN) module is used to arbitrate between various interrupt requests  
(IRQs), to signal to the 56800E core when an interrupt of sufficient priority exists, and what  
address to jump to in order to service this interrupt.  
5.2 Features  
The ITCN module design includes these distinctive features:  
Programmable priority levels for each IRQ  
Two programmable Fast Interrupts  
Notification to SIM module to restart clocks out of Wait and Stop modes  
Drives initial address on the address bus after reset  
5.3 Functional Description  
The Interrupt Controller is a slave on the IPBus. It contains registers allowing each of the 82  
interrupt sources to be set to one of four priority levels, excluding certain interrupts of fixed  
priority. Next, all of the interrupt requests of a given level are priority encoded to determine the  
lowest numerical value of the active interrupt requests for that level. Within a given priority level,  
0 is the highest priority, while number 81 is the lowest.  
5.3.1  
Normal Interrupt Handling  
Once the ITCN has determined that an interrupt is to be serviced and which interrupt has the  
highest priority, an interrupt vector address is generated. Normal interrupt handling concatenates  
the VBA and the vector number to determine the vector address. In this way, an offset is generated  
into the vector table for each interrupt.  
5.3.2  
Interrupt Nesting  
Interrupt exceptions may be nested to allow an IRQ of higher priority than the current exception to  
be serviced. The following tables define the nesting requirements for each priority level.  
Table 5-1 Interrupt Mask Bit Definition  
SR[9]1  
SR[8]1  
Permitted Exceptions  
Masked Exceptions  
None  
0
0
1
1
0
1
0
1
Priorities 0, 1, 2, 3  
Priorities 1, 2, 3  
Priorities 2, 3  
Priority 3  
Priority 0  
Priorities 0, 1  
Priorities 0, 1, 2  
1. Core status register bits indicating current interrupt mask within the core.  
56F8357 Technical Data  
Preliminary  
69  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Table 5-2. Interrupt Priority Encoding  
Current Interrupt Priority  
Level  
Required Nested  
Exception Priority  
IPIC_LEVEL[1:0]1  
00  
01  
01  
11  
No Interrupt or SWILP  
Priority 0  
Priorities 0, 1, 2, 3  
Priorities 1, 2, 3  
Priorities 2, 3  
Priority 3  
Priority 1  
Priorities 2 or 3  
1. See IPIC field definition in Section 5.6.30.2  
5.3.3  
Fast Interrupt Handling  
Fast interrupts are described in the DSP56800E Reference Manual. The interrupt controller  
recognizes fast interrupts before the core does.  
A fast interrupt is defined (to the ITCN) by:  
1. Setting the priority of the interrupt as level 2, with the appropriate field in the IPR registers  
2. Setting the FIMn register to the appropriate vector number  
3. Setting the FIVALn and FIVAHn registers with the address of the code for the fast interrupt  
When an interrupt occurs, its vector number is compared with the FIM0 and FIM1 register values.  
If a match occurs, and it is a level 2 interrupt, the ITCN handles it as a fast interrupt. The ITCN  
takes the vector address from the appropriate FIVALn and FIVAHn registers, instead of generating  
an address that is an offset from the VBA.  
The core then fetches the instruction from the indicated vector adddress and if it is not a JSR, the  
core starts its fast interrupt handling.  
70  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
 
Freescale Semiconductor, Inc.  
Block Diagram  
5.4 Block Diagram  
any0  
Priority  
Level  
Level 0  
82->7  
Priority  
Encoder  
7
2->4  
Decode  
INT1  
INT  
VAB  
IPIC  
CONTROL  
any3  
Level 3  
Priority  
Level  
IACK  
SR[9:8]  
82->7  
Priority  
Encoder  
7
PIC_EN  
2->4  
Decode  
INT82  
Figure 5-1 Interrupt Controller Block Diagram  
5.5 Operating Modes  
The ITCN module design contains two major modes of operation:  
Functional Mode  
The ITCN is in this mode by default.  
Wait and Stop Modes  
During Wait and Stop modes, the system clocks and the 56800E core are turned off. The ITCN will  
signal a pending IRQ to the System Integration Module (SIM) to restart the clocks and service the  
IRQ. An IRQ can only wake up the core if the IRQ is enabled prior to entering the Wait or Stop  
mode. Also, the IRQA and IRQB signals automatically become low-level sensitive in these modes  
even if the control register bits are set to make them falling-edge sensitive. This is because there is  
no clock available to detect the falling edge.  
A peripheral which requires a clock to generate interrupts will not be able to generate interrupts  
during Stop mode. The FlexCAN module can wake the device from Stop mode, and a reset will do  
just that, or IRQA and IRQB can wake it up.  
56F8357 Technical Data  
Preliminary  
71  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
5.6 Register Descriptions  
A register address is the sum of a base address and an address offset. The base address is defined  
at the system level and the address offset is defined at the module level. The ITCN peripheral has  
24 registers.  
Table 5-3 ITCN Register Summary  
(ITCN_BASE = $00 F1A0)  
Register  
Acronym  
Base Address +  
Register Name  
Interrupt Priority Register 0  
Section Location  
IPR0  
$0  
$1  
5.6.1  
5.6.2  
Interrupt Priority Register 1  
IPR1  
Interrupt Priority Register 2  
IPR2  
$2  
5.6.3  
Interrupt Priority Register 3  
IPR3  
$3  
5.6.4  
Interrupt Priority Register 4  
IPR4  
$4  
5.6.5  
Interrupt Priority Register 5  
IPR5  
$5  
5.6.6  
Interrupt Priority Register 6  
IPR6  
$6  
5.6.7  
Interrupt Priority Register 7  
IPR7  
$7  
5.6.8  
Interrupt Priority Register 8  
IPR8  
$8  
5.6.9  
Interrupt Priority Register 9  
IPR9  
$9  
5.6.10  
5.6.11  
5.6.12  
5.6.13  
5.6.14  
5.6.15  
5.6.16  
5.6.17  
5.6.18  
5.6.19  
5.6.20  
5.6.21  
5.6.22  
5.6.23  
Vector Base Address Register  
Fast Interrupt 0 Match Register  
Fast Interrupt 0 Vector Address Low Register  
Fast Interrupt 0 Vector Address High Register  
Fast Interrupt 1 Match Register  
Fast Interrupt 1 Vector Address Low Register  
Fast Interrupt 1 Vector Address High Register  
IRQ Pending Register 0  
VBA  
$A  
$B  
$C  
$D  
$E  
$F  
FIM0  
FIVAL0  
FIVAH0  
FIM1  
FIVAL1  
FIVAH1  
IRQP0  
IRQP1  
IRQP2  
IRQP3  
IRQP4  
IRQP5  
Reserved  
ICTL  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
IRQ Pending Register 1  
IRQ Pending Register 2  
IRQ Pending Register 3  
IRQ Pending Register 4  
IRQ Pending Register 5  
Interrupt Control Register  
$1D  
5.6.30  
72  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Register Descriptions  
Add. Register  
Offset Name  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
W
R
0
0
0
0
0
0
0
0
0
0
0
0
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
IPR0  
IPR1  
IPR2  
IPR3  
IPR4  
IPR5  
IPR6  
IPR7  
IPR8  
IPR9  
VBA  
BKPT_U0 IPL  
STPCNT IPL  
0
0
0
0
0
0
0
0
0
0
RX_REG IPL  
TX_REG IPL  
IRQB IPL  
TRBUF IPL  
IRQA IPL  
W
R
0
0
FMCBE IPL  
FMCC IPL  
FMERR IPL  
LOCK IPL  
LVI IPL  
W
R
0
0
GPIOD  
IPL  
GPIOE  
IPL  
GPIOF  
IPL  
FCMSGBUF IPL FCWKUP IPL  
FCERR IPL  
FCBOFF IPL  
W
R
0
0
0
0
0
0
GPIOB  
IPL  
GPIOC  
IPL  
SPI1_RCV  
IPL  
GPIOA  
IPL  
SPI0_RCV IPL SPI1_XMIT IPL  
DEC1_XIRQ IPL DEC1_HIRQ IPL  
W
R
SCI1_RCV  
IPL  
SCI1_RERR IPL  
TMRD1 IPL  
SCI1_TIDL IPL SCI1_XMIT IPL SPI0_XMIT IPL  
W
R
0
0
TMRC0 IPL  
TMRA0 IPL  
TMRD3 IPL  
TMRB3 IPL  
TMRD2 IPL  
TMRB2 IPL  
TMRD0 IPL  
TMRB0 IPL  
DEC0_XIRQ IPL DEC0_HIRQ IPL  
W
R
TMRB1 IPL  
TMRC3 IPL  
TMRA3 IPL  
TMRC2 IPL  
TMRA2 IPL  
TMRC1 IPL  
TMRA1 IPL  
W
R
0
0
SCI0_RCV IPL SCI0_RERR IPL  
SCI0_TIDL IPL SCI0_XMIT IPL  
PWMB_RL IPL ADCA_ZC IPL  
W
R
PWMA_RL  
IPL  
PWMA F IPL  
PWMB F IPL  
0
ABCB_ZC IPL  
ADCA_CC IPL  
ADCB_CC IPL  
W
R
0
0
0
0
VECTOR BASE ADDRESS  
W
R
0
0
0
0
0
0
0
VBA0  
FIVAL0  
FAST INTERRUPT 0  
W
R
FAST INTERRUPT 0  
VECTOR ADDRESS LOW  
W
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FAST INTERRUPT 0  
VECTOR ADDRESS HIGH  
$DFIVAH0  
W
R
$E  
$F  
FIM1  
FAST INTERRUPT 1  
W
R
FAST INTERRUPT 1  
VECTOR ADDRESS LOW  
FIVAL1  
FIVAH1  
IRQP0  
IRQP1  
IRQP2  
IRQP3  
IRQP4  
W
R
0
0
0
0
0
0
0
0
0
0
FAST INTERRUPT 1  
VECTOR ADDRESS HIGH  
$10  
$11  
$12  
$13  
$14  
$15  
W
R
PENDING [16:2]  
1
W
R
PENDING [32:17]  
W
R
PENDING [48:33]  
PENDING [64:49]  
PENDING [80:65]  
W
R
W
R
W
PEND-  
ING  
[81]  
R
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
$16  
IRQP5  
W
Reserved  
IRQB  
STATE STATE  
IRQA  
INT  
IPIC  
VAB  
R
IRQB  
EDG  
IRQA  
EDG  
$1DICTL  
INT_DIS  
W
= Reserved  
Figure 5-2 ITCN Register Map Summary  
56F8357 Technical Data  
Preliminary  
73  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
5.6.1  
Interrupt Priority Register 0 (IPR0)  
Base + $0  
15  
0
14  
0
13  
12  
11  
10  
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Read  
Write  
BKPT_U0IPL  
STPCNT IPL  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-3 Interrupt Priority Register 0 (IPR0)  
Reserved—Bits 15–14  
5.6.1.1  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.1.2  
EOnCE Breakpoint Unit 0 Interrupt Priority Level (BKPT_U0 IPL)—  
Bits13–12  
This field is used to set the interrupt priority levels for IRQs. This IRQ is limited to priorities 1  
through 3. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.1.3  
EOnCE Step Counter Interrupt Priority Level (STPCNT IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1  
through 3. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.1.4  
Reserved—Bits 9–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.2  
Interrupt Priority Register 1 (IPR1)  
Base + $1  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
4
3
2
1
0
Read  
Write  
RX_REG IPL TX_REG IPL  
TRBUF IPL  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-4 Interrupt Priority Register 1 (IPR1)  
Reserved—Bits 15–6  
5.6.2.1  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
74  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Register Descriptions  
5.6.2.2  
EOnCE Receive Register Full Interrupt Priority Level  
(RX_REG IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1  
through 3. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.2.3  
EOnCE Transmit Register Empty Interrupt Priority Level  
(TX_REG IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1  
through 3. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.2.4  
EOnCE Trace Buffer Interrupt Priority Level (TRBUF IPL)—  
Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1  
through 3. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.3  
Interrupt Priority Register 2 (IPR2)  
Base + $2  
15  
14  
13  
12  
11  
10  
9
8
7
6
0
5
0
4
0
3
2
1
0
Read  
Write  
FMCBE IPL  
FMCC IPL  
FMERR IPL  
LOCK IPL  
LVI IPL  
IRQB IPL  
IRQA IPL  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-5 Interrupt Priority Register 2 (IPR2)  
56F8357 Technical Data  
Preliminary  
75  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
5.6.3.1  
Flash Memory Command, Data, Address Buffers Empty Interrupt  
Priority Level (FMCBE IPL)—Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.2  
Flash Memory Command Complete Priority Level  
(FMCC IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.3  
Flash Memory Error Interrupt Priority Level  
(FMERR IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.4  
PLL Loss of Lock Interrupt Priority Level (LOCK IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.5  
Low Voltage Detector Interrupt Priority Level (LVI IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
76  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Register Descriptions  
5.6.3.6  
Reserved—Bits 5–4  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.3.7  
External IRQ B Interrupt Priority Level (IRQB IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.8  
External IRQ A Interrupt Priority Level (IRQA IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4  
Interrupt Priority Register 3 (IPR3)  
Base + $3  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
Read  
Write  
GPIOD  
IPL  
GPIOE  
IPL  
GPIOF  
IPL  
FCMSGBUF IPL  
FCWKUP IPL  
FCERR IPL  
FCBOFF IPL  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-6 Interrupt Priority Register 3 (IPR3)  
GPIO D Interrupt Priority Level (GPIOD IPL)—Bits 15–14  
5.6.4.1  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.2  
GPIO E Interrupt Priority Level (GPIOE IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8357 Technical Data  
Preliminary  
77  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
5.6.4.3  
GPIO F Interrupt Priority Level (GPIOF IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.4  
FlexCAN Message Buffer Interrupt Priority Level  
(FCMSGBUF IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.5  
FlexCAN Wake Up Interrupt Priority Level (FCWKUP IPL)—  
Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.6  
FlexCAN Error Interrupt Priority Level (FCERR IPL)— Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.7  
FlexCAN Bus Off Interrupt Priority Level (FCBOFF IPL)— Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
78  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Register Descriptions  
5.6.4.8  
Reserved—Bits 1–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.5  
Interrupt Priority Register 4 (IPR4)  
Base + $4  
15  
14  
13  
12  
11  
10  
9
0
8
0
7
0
6
0
5
4
3
2
1
0
Read  
Write  
SPI0_RCV  
IPL  
SPI1_XMIT  
IPL  
SPI1_RCV  
IPL  
GPIOA  
PL  
GPIOB  
IPL  
GPIOC  
IPL  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-7 Interrupt Priority Register 4 (IPR4)  
5.6.5.1  
SPI0 Receiver Full Interrupt Priority Level (SPI0_RCV IPL)—  
Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.2  
SPI1 Transmit Empty Interrupt Priority Level (SPI1_XMIT IPL)—  
Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.3  
SPI1 Receiver Full Interrupt Priority Level (SPI1_RCV IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.4  
Reserved—Bits 9–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
56F8357 Technical Data  
Preliminary  
79  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
5.6.5.5  
GPIO A Interrupt Priority Level (GPIOA IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.6  
GPIO B Interrupt Priority Level (GPIOB IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.7  
GPIO C Interrupt Priority Level (GPIOC IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6  
Interrupt Priority Register 5 (IPR5)  
Base + $5  
15  
14  
13  
12  
11  
10  
9
8
7
0
6
0
5
4
3
2
1
0
Read  
Write  
DEC1_XIRQ DEC1_HIRQ  
IPL IPL  
SCI1_RCV  
IPL  
SCI1_RERR  
IPL  
SCI1_TIDL  
IPL  
SCI1_XMIT  
IPL  
SPI0_XMIT  
IPL  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-8 Interrupt Priority Register 5 (IPR5)  
5.6.6.1  
Quadrature Decoder 1 INDEX Pulse Interrupt Priority Level  
(DEC1_XIRQ IPL)—Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
80  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Register Descriptions  
5.6.6.2  
Quadrature Decoder 1 HOME Signal Transition or Watchdog Timer  
Interrupt Priority Level (DEC1_HIRQ IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.3  
SCI1 Receiver Full Interrupt Priority Level (SCI1_RCV IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.4  
SCI1 Receiver Error Interrupt Priority Level (SCI1_RERR IPL)—  
Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.5  
Reserved—Bits 7–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.6.6  
SCI1 Transmitter Idle Interrupt Priority Level (SCI1_TIDL IPL)—  
Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8357 Technical Data  
Preliminary  
81  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
5.6.6.7  
SCI1 Transmitter Empty Interrupt Priority Level (SCI1_XMIT IPL)—  
Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.8  
SPI0 Transmitter Empty Interrupt Priority Level (SPI_XMIT IPL)—  
Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7  
Interrupt Priority Register 6 (IPR6)  
Base + $6  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
0
4
0
3
2
1
0
Read  
Write  
DEC0_XIRQ  
IPL  
DEC0_HIRQ  
IPL  
TMRC0 IPL  
TMRD3 IPL  
TMRD2 IPL  
TMRD1 IPL  
TMRD0 IPL  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-9 Interrupt Priority Register 6 (IPR6)  
5.6.7.1  
Timer C, Channel 0 Interrupt Priority Level (TMRC0 IPL)—  
Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.2  
Timer D, Channel 3 Interrupt Priority Level (TMRD3 IPL)—  
Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
82  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Register Descriptions  
5.6.7.3  
Timer D, Channel 2 Interrupt Priority Level (TMRD2 IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.4  
Timer D, Channel 1 Interrupt Priority Level (TMRD1 IPL)—  
Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.5  
Timer D, Channel 0 Interrupt Priority Level (TMRD0 IPL)—  
Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.6  
Reserved—Bits 5–4  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.7.7  
Quadrature Decoder 0, INDEX Pulse Interrupt Priority Level  
(DEC0_XIRQ IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8357 Technical Data  
Preliminary  
83  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
5.6.7.8  
Quadrature Decoder 0, HOME Signal Transition or Watchdog  
Timer Interrupt Priority Level (DEC0_HIRQ IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8  
Interrupt Priority Register 7 (IPR7)  
Base + $7  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Read  
Write  
TMRA0 IPL  
TMRB3 IPL  
TMRB2 IPL  
TMRB1 IPL  
TMRB0 IPL  
TMRC3 IPL  
TMRC2 IPL  
TMRC1 IPL  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-10 Interrupt Priority Register (IPR7)  
5.6.8.1  
Timer A, Channel 0 Interrupt Priority Level (TMRA0 IPL)—  
Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.2  
Timer B, Channel 3 Interrupt Priority Level (TMRB3 IPL)—  
Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.3  
Timer B, Channel 2 Interrupt Priority Level (TMRB2 IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
84  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Register Descriptions  
5.6.8.4  
Timer B, Channel 1 Interrupt Priority Level (TMRB1 IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.5  
Timer B, Channel 0 Interrupt Priority Level (TMRB0 IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.6  
Timer C, Channel 3 Interrupt Priority Level (TMRC3 IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.7  
Timer C, Channel 2 Interrupt Priority Level (TMRC2 IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.8  
Timer C, Channel 1 Interrupt Priority Level (TMRC1 IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8357 Technical Data  
Preliminary  
85  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
5.6.9  
Interrupt Priority Register 8 (IPR8)  
Base + $8  
15  
14  
13  
12  
11  
0
10  
0
9
8
7
6
5
4
3
2
1
0
Read  
Write  
SCI0_RCV  
IPL  
SCI0_RERR  
IPL  
SCI0_TIDL  
IPL  
SCI0_XMIT  
IPL  
TMRA3 IPL  
TMRA2 IPL  
TMRA1 IPL  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-11 Interrupt Priority Register 8 (IPR8)  
5.6.9.1  
SCI0 Receiver Full Interrupt Priority Level (SCI0_RCV IPL)—  
Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.2  
SCI0 Receiver Error Interrupt Priority Level (SCI0_RERR IPL)—  
Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.3  
Reserved—Bits 11–10  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.9.4  
SCI0 Transmitter Idle Interrupt Priority Level (SCI0_TIDL IPL)—  
Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
86  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Register Descriptions  
5.6.9.5  
SCI0 Transmitter Empty Interrupt Priority Level (SCI0_XMIT IPL)—  
Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.6  
Timer A, Channel 3 Interrupt Priority Level (TMRA3 IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.7  
Timer A, Channel 2 Interrupt Priority Level (TMRA2 IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.8  
Timer A, Channel 1 Interrupt Priority Level (TMRA1 IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10 Interrupt Priority Register 9 (IPR9)  
Base + $9  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PWMA_RL  
IPL  
ADCA_CC  
IPL  
ADCB_CC  
IPL  
PWMA_F IPL PWMB_F IPL  
PWM_RL IPL ADCA_ZC IPL ABCB_ZC IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-12 Interrupt Priority Register 9 (IPR9)  
56F8357 Technical Data  
Preliminary  
87  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
5.6.10.1 PWM A Fault Interrupt Priority Level (PWMA_F IPL)—Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.2 PWM B Fault Interrupt Priority Level (PWMB_F IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.3 Reload PWM A Interrupt Priority Level (PWMA_RL IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.4 Reload PWM B Interrupt Priority Level (PWMB_RL IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.5 ADC A Zero Crossing Interrupt Priority Level (ADCA_ZC IPL)—  
Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 0. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
88  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Register Descriptions  
5.6.10.6 ADC B Zero Crossing Interrupt Priority Level (ADCB_ZC IPL)—  
Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.7 ADC A Conversion Complete Interrupt Priority Level  
(ADCA_CC IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.8 ADC B Conversion Complete Interrupt Priority Level  
(ADCB_CC IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0  
through 2. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.11 Vector Base Address Register (VBA)  
Base + $A  
Read  
15  
0
14  
0
13  
0
12  
11  
10  
9
8
7
6
5
4
0
3
0
2
0
1
0
0
0
VECTOR BASE ADDRESS  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
Figure 5-13 Vector Base Address Register (VBA)  
5.6.11.1 Reserved—Bits 15–13  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
56F8357 Technical Data  
Preliminary  
89  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
5.6.11.2 Interrupt Vector Base Address (VECTOR BASE ADDRESS)—  
Bits 12–0  
The contents of this register determine the location of the Vector Address Table. The value in this  
register is used as the upper 13 bits of the interrupt Vector Address Bus (VAB[20:0]). The lower  
eight bits are determined based upon the highest-priority interrupt. They are then appended onto  
VBA before presenting the full VAB to the 56800E core; see Section 5.3.1 for details.  
5.6.12 Fast Interrupt 0 Match Register (FIM0)  
Base + $B  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
5
4
3
2
1
0
0
0
FAST INTERRUPT 0  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-14 Fast Interrupt 0 Match Register (FIM0)  
5.6.12.1 Reserved—Bits 15–7  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.12.2 Fast Interrupt 0 Vector Number (FAST INTERRUPT 0)—Bits 6–0  
This value determines which IRQ will be a Fast Interrupt 0. Fast interrupts vector directly to a  
service routine based on values in the Fast Interrupt Vector Address registers without having to go  
to a jump table first; see Section 5.3.3. IRQs used as fast interrupts must be set to priority level 2.  
Unexpected results will occur if a fast interrupt vector is set to any other priority. Fast interrupts  
automatically become the highest-priority level 2 interrupt, regardless of their location in the  
interrupt table, prior to being declared as fast interrupt. Fast interrupt 0 has priority over Fast  
Interrupt 1. To determine the vector number of each IRQ, refer to Table 4-5.  
5.6.13 Fast Interrupt 0 Vector Address Low Register (FIVAL0)  
Base + $C  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
FAST INTERRUPT 0  
VECTOR ADDRESS LOW  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-15 Fast Interrupt 0 Vector Address Low Register (FIVAL0)  
5.6.13.1 Fast Interrupt 0 Vector Address Low (FIVAL0)—Bits 15–0  
The lower 16 bits of the vector address are used for Fast Interrupt 0. This register is combined with  
FIVAH0 to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register.  
90  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Register Descriptions  
5.6.14 Fast Interrupt 0 Vector Address High Register (FIVAH0)  
Base + $D  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
3
2
1
0
0
FAST INTERRUPT 0  
VECTOR ADDRESS HIGH  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-16 Fast Interrupt 0 Vector Address High Register (FIVAH0)  
5.6.14.1 Reserved—Bits 15–5  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.14.2 Fast Interrupt 0 Vector Address High (FIVAH0)—Bits 4–0  
The upper five bits of the vector address are used for Fast Interrupt 0. This register is combined  
with FIVAL0 to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register.  
5.6.15 Fast Interrupt 1 Match Register (FIM1)  
Base + $E  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
5
4
3
2
1
0
0
0
Read  
Write  
FAST INTERRUPT 1  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-17 Fast Interrupt 1 Match Register (FIM1)  
5.6.15.1 Reserved—Bits 15–7  
This bit field is reserved or not implemented. It is read as 0, but cannot be modified by writing.  
5.6.15.2 Fast Interrupt 1 Vector Number (FAST INTERRUPT 1)—Bits 6–0  
This value determines which IRQ will be a Fast Interrupt 1. Fast interrupts vector directly to a  
service routine based on values in the Fast Interrupt Vector Address registers without having to go  
to a jump table first; see Section 5.3.3. IRQs used as fast interrupts must be set to priority level 2.  
Unexpected results will occur if a fast interrupt vector is set to any other priority. Fast interrupts  
automatically become the highest-priority level 2 interrupt, regardless of their location in the  
interrupt table, prior to being declared as fast interrupt. Fast interrupt 0 has priority over Fast  
Interrupt 1. To determine the vector number of each IRQ, refer to Table 4-5.  
5.6.16 Fast Interrupt 1 Vector Address Low Register (FIVAL1)  
Base + $F  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
FAST INTERRUPT 1  
VECTOR ADDRESS LOW  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-18 Fast Interrupt 1 Vector Address Low Register (FIVAL1)  
56F8357 Technical Data  
Preliminary  
91  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
5.6.16.1 Fast Interrupt 1 Vector Address Low (FIVAL1)—Bits 15–0  
The lower 16 bits of vector address are used for Fast Interrupt 1. This register is combined with  
FIVAL1 to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register.  
5.6.17 Fast Interrupt 1 Vector Address High Register (FIVAH1)  
Base + $10  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
3
2
1
0
0
Read  
Write  
FAST INTERRUPT 1  
VECTOR ADDRESS HIGH  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-19 Fast Interrupt 1 Vector Address High Register (FIVAH1)  
5.6.17.1 Reserved—Bits 15–5  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.17.2 Fast Interrupt 1 Vector Address High (FIVAH1)—Bits 4–0  
The upper five bits of vector address are used for Fast Interrupt 1. This register is combined with  
FIVAH1 to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register.  
5.6.18 IRQ Pending 0 Register (IRQP0)  
Base + $11  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
1
2
1
1
1
0
1
PENDING [16:2]  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-20 IRQ Pending 0 Register (IRQP0)  
5.6.18.1 IRQ Pending (PENDING)—Bits 16–2  
This register combines with the other five to represent the pending IRQs for interrupt vector  
numbers 2 through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.18.2 Reserved—Bit 0  
This bit is reserved or not implemented. It is read as 1 and cannot be modified by writing.  
5.6.19 IRQ Pending 1 Register (IRQP1)  
$Base + $12  
15  
1
14  
1
13  
12  
11  
10  
9
8
7
6
5
4
3
1
2
1
1
1
0
1
PENDING [32:17]  
Read  
Write  
RESET  
1
1
1
1
1
1
1
1
1
1
Figure 5-21 IRQ Pending 1 Register (IRQP1)  
92  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Register Descriptions  
5.6.19.1 IRQ Pending (PENDING)—Bits 32–17  
This register combines with the other five to represent the pending IRQs for interrupt vector  
numbers 2 through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.20 IRQ Pending 2 Register (IRQP2)  
Base + $13  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [48:33]  
Write  
RESET  
1
1
1
1
1
1
1
1
1
Figure 5-22 IRQ Pending 2 Register (IRQP2)  
5.6.20.1 IRQ Pending (PENDING)—Bits 48–33  
This register combines with the other five to represent the pending IRQs for interrupt vector  
numbers 2 through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.21 IRQ Pending 3 Register (IRQP3)  
Base + $14  
15  
14  
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [64:49]  
Read  
Write  
RESET  
1
1
1
1
1
1
1
1
1
Figure 5-23 IRQ Pending 3 Register (IRQP3)  
5.6.21.1 IRQ Pending (PENDING)—Bits 64–49  
This register combines with the other five to represent the pending IRQs for interrupt vector  
numbers 2 through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.22 IRQ Pending 4 Register (IRQP4)  
Base + $15  
15  
1
14  
1
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [80:65]  
Read  
Write  
RESET  
1
1
1
1
1
1
1
Figure 5-24 IRQ Pending 4 Register (IRQP4)  
56F8357 Technical Data  
Preliminary  
93  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
5.6.22.1 IRQ Pending (PENDING)—Bits 80–65  
This register combines with the other five to represent the pending IRQs for interrupt vector  
numbers 2 through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.23 IRQ Pending 5 Register (IRQP5)  
Base + $16  
Read  
15  
1
14  
1
13  
1
12  
1
11  
1
10  
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
PEND-  
ING  
[81]  
Write  
RESET  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Figure 5-25 IRQ Pending Register 5 (IRQP5)  
5.6.23.1 Reserved—Bits 96–82  
This bit field is reserved or not implemented. The bits are read as 1 and cannot be modified by  
writing.  
5.6.23.2 IRQ Pending (PENDING)—Bit 81  
This register combines with the other five to represent the pending IRQs for interrupt vector  
numbers 2 through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.24 Reserved—Base + 17  
5.6.25 Reserved—Base + 18  
5.6.26 Reserved—Base + 19  
5.6.27 Reserved—Base + 1A  
5.6.28 Reserved—Base + 1B  
5.6.29 Reserved—Base + 1C  
5.6.30 ITCN Control Register (ICTL)  
Base + $1D  
Read  
15  
14  
13  
12 11 10  
9
8
7
6
5
INT_DIS  
0
4
1
3
2
1
0
INT  
IPIC  
VAB  
IRQB STATE IRQA STATE  
IRQB IRQA  
EDG  
EDG  
Write  
RESET  
0
0
0
1
0
0
0
0
0
0
1
1
1
0
0
Figure 5-26 ITCN Control Register (ICTL)  
94  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Register Descriptions  
5.6.30.1 Interrupt (INT)—Bit 15  
This read-only bit reflects the state of the interrupt to the 56800E core.  
0 = No interrupt is being sent to the 56800E core  
1 = An interrupt is being sent to the 56800E core  
5.6.30.2 Interrupt Priority Level (IPIC)—Bits 14–13  
These read-only bits reflect the state of the new interrupt priority level bits being presented to the  
56800E core at the time the last IRQ was taken. This field is only updated when the 56800E core  
jumps to a new interrupt service routine.  
Note:  
Nested interrupts may cause this field to be updated before the original interrupt service  
routine can read it.  
00 = Required nested exception priority levels are 0, 1, 2, or 3  
01 = Required nested exception priority levels are 1, 2, or 3  
10 = Required nested exception priority levels are 2 or 3  
11 = Required nested exception priority level is 3  
5.6.30.3 Vector Number - Vector Address Bus (VAB)—Bits 12–6  
This read-only field shows the vector number (VAB[7:1]) used at the time the last IRQ was taken.  
This field is only updated when the 56800E core jumps to a new interrupt service routine.  
Note:  
Nested interrupts may cause this field to be updated before the original interrupt service  
routine can read it.  
5.6.30.4 Interrupt Disable (INT_DIS)—Bit 5  
This bit allows all interrupts to be disabled.  
0 = Normal operation (default)  
1 = All interrupts disabled  
5.6.30.5 Reserved—Bit 4  
This bit field is reserved or not implemented. It is read as 1 and cannot be modified by writing.  
5.6.30.6 IRQB State Pin (IRQB STATE)—Bit 3  
This read-only bit reflects the state of the external IRQB pin.  
5.6.30.7 IRQA State Pin (IRQA STATE)—Bit 2  
This read-only bit reflects the state of the external IRQA pin.  
5.6.30.8 IRQB Edge Pin (IRQB Edg)—Bit 1  
This bit controls whether the external IRQB interrupt is edge- or level-sensitive. During Stop and  
Wait modes, it is automatically level-sensitive.  
0 = IRQB interrupt is a low-level sensitive (default)  
1 = IRQB interrupt is falling-edge sensitive  
56F8357 Technical Data  
Preliminary  
95  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
5.6.30.9 IRQA Edge Pin (IRQA Edg)—Bit 0  
This bit controls whether the external IRQA interrupt is edge- or level-sensitive. During Stop and  
Wait modes, it is automatically level-sensitive.  
0 = IRQA interrupt is a low-level sensitive (default)  
1 = IRQA interrupt is falling-edge sensitive  
5.7 Resets  
5.7.1  
Reset Handshake Timing  
The ITCN provides the 56800E core with a reset vector address whenever RESET is asserted. The  
reset vector will be presented until the second rising clock edge after RESET is released.  
5.7.2  
ITCN After Reset  
After reset, all of the ITCN registers are in their default states. This means all interrupts are  
disabled, except the core IRQs with fixed priorities:  
Illegal Instruction  
SW Interrupt 3  
HW Stack Overflow  
Misaligned Long Word Access  
SW Interrupt 2  
SW Interrupt 1  
SW Interrupt 0;  
SW Interrupt LP  
These interrupts are enabled at their fixed priority levels.  
96  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Overview  
Part 6 System Integration Module (SIM)  
6.1 Overview  
The SIM module is a system catchall for the glue logic that ties together the system-on-chip. It  
controls distribution of resets and clocks and provides a number of control features. The system  
integration module is responsible for the following functions:  
Reset sequencing  
Clock generation & distribution  
Stop/Wait control  
Pull-up Enables for Selected Peripherals  
System status registers  
Registers for software access to the JTAG ID of the chip  
Enforcing Flash security  
These are discussed in more detail in the sections that follow.  
6.2 Features  
The SIM has the following features:  
Flash security feature prevents unauthorized access to code/data contained in on-chip Flash  
memory  
Power-saving clock gating for peripheral  
Three power modes (Run, Wait, Stop) to control power utilization  
— Stop mode shuts down 56800E core, system clock, peripheral clock, and PLL operation  
— Stop mode entry can optionally disable PLL and Oscillator (low power vs. fast restart); must be  
explicitly done  
— Wait mode shuts down the 56800E core, and unnecessary system clock operation  
— Run mode supports full part operation  
Controls to enable/disable the 56800E core WAIT and STOP instructions  
Calculates base delay for reset extension based upon POR or RESET operations. Reset delay will  
21  
be either 3 x 32 clocks for reset, exept for POR, which is 2 clock cycles  
Controls reset sequencing after reset  
Software-initiated reset  
Four 16-bit registers reset only by a Power-On Reset usable for general-purpose software control  
System Control Register  
Registers for software access to the JTAG ID of the chip  
56F8357 Technical Data  
Preliminary  
97  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
6.3 Operating Modes  
Since the SIM is responsible for distributing clocks and resets across the chip, it must understand  
the various chip operating modes and take appropriate action. These are:  
Reset Mode, which has two submodes:  
— POR and RESET operation  
The 56800E core and all peripherals are reset. This occurs when the internal POR is asserted or  
the RESET pin is asserted.  
— COP reset and software reset operation  
The 56800E core and all peripherals are reset. The MA bit within the OMR is not changed. This  
allows the software to determine the boot mode (internal or external boot) to be used on the next  
reset.  
Run Mode  
This is the primary mode of operation for this device. In this mode, the 56800E controls chip  
operation  
Debug Mode  
The 56800E is controlled via JTAG/EOnCE when in debug mode. All peripherals, except the COP  
and PWMs, continue to run. COP is disabled and PWM outputs are optionally switched off to  
disable any motor from being driven; see the PWM chapter in the 56F8300 Peripheral User  
Manual for details.  
Wait Mode  
In Wait mode, the core clock and memory clocks are disabled. Optionally, the COP can be stopped.  
Similarly, it is an option to switch off PWM outputs to disable any motor from being driven. All  
other peripherals continue to run.  
Stop Mode  
When in Stop mode, the 56800E core, memory, and most peripheral clocks are shut down.  
Optionally, the COP and CAN can be stopped. For lowest power consumption in Stop mode, the  
PLL can be shut down. This must be done explicitly before entering Stop mode, since there is no  
automatic mechanism for this. The CAN (along with any non-gated interrupt) is capable of waking  
the chip up from Stop mode, but is not fully functional in Stop mode.  
6.4 Operation Mode Register  
Bit  
15  
NL  
R/W  
0
14  
13  
12  
11  
10  
9
8
CM  
R/W  
0
7
XP  
R/W  
0
6
5
4
3
2
0
1
MB  
R/W  
0
0
MA  
R/W  
0
SDR  
R/W  
0
SA  
EX  
Type  
R/W  
0
R/W  
0
R/W  
0
RESET  
0
0
0
0
0
0
0
Figure 6-1 OMR  
See Section 4.2 for detailed information on how the Operating Mode Register (OMR) MA and MB  
bits operate in this device. For additional information on the EX bit, see Section 4.4. For all other  
bits, see the DSP56800E Reference Manual.  
Note:  
The OMR is not a Memory Map register; it is directly accessible in code through the acronym  
OMR.  
98  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Register Descriptions  
6.5 Register Descriptions  
Table 6-1 SIM Registers  
(SIM_BASE = $00 F350)  
Address Offset  
Address Acronym  
Register Name  
Section Location  
Control Register  
Base + $0  
Base + $1  
Base + $2  
Base + $3  
Base + $4  
Base + $5  
Base + $6  
Base + $7  
Base + $8  
SIM_CONTROL  
SIM_RSTSTS  
SIM_SCR0  
6.5.1  
6.5.2  
6.5.3  
6.5.3  
6.5.3  
6.5.3  
6.5.4  
6.5.5  
6.5.6  
Reset Status Register  
Software Control Register 0  
Software Control Register 1  
Software Control Register 2  
Software Control Register 3  
Most Significant Half of JTAG ID  
Least Significant Half of JTAG ID  
Pull-up Disable Register  
SIM_SCR1  
SIM_SCR2  
SIM_SCR3  
SIM_MSH_ID  
SIM_LSH_ID  
SIM_PUDR  
Reserved  
CLKO Select Register  
Base + $A  
Base + $B  
Base + $C  
SIM_CLKOSR  
SIM_GPS  
6.5.7  
6.5.8  
GPIO Peripheral Select Register  
Peripheral Clock Enable Register  
I/O Short Address Location High Register  
I/O Short Address Location Low Register  
SIM_PCE  
6.5.9  
Base  
+
$DSIM_ISALH  
SIM_ISALL  
6.5.10  
6.5.10  
Base + $E  
56F8357 Technical Data  
Preliminary  
99  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Add.  
Offset  
Register  
Name  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
W
R
0
0
0
0
0
0
0
0
0
0
SIM_  
CONTROL  
ONCE  
EBL  
SW  
RST  
STOP_  
DISABLE  
WAIT_  
DISABLE  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
0
0
0
0
0
0
0
0
0
0
0
0
SIM_  
RSTSTS  
SWR COPR EXTR POR  
W
R
SIM_SCR0  
SIM_SCR1  
SIM_SCR2  
SIM_SCR3  
FIELD  
FIELD  
FIELD  
FIELD  
W
R
W
R
W
R
W
R
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
1
0
1
1
1
0
0
0
1
SIM_MSH_  
ID  
W
R
SIM_LSH_ID  
W
R
PWMA  
1
EMI_  
MODE  
PWMA  
0
SIM_PUDR  
Reserved  
CAN  
RESET IRQ XBOOT PWMB  
DATA CTRL  
ADR JTAG TMRD TMRC TMRA  
W
R
W
R
0
0
0
0
0
0
0
0
0
0
0
0
SIM_  
CLKOSR  
$A  
$B  
$C  
A23  
0
A22  
0
A21  
0
A20 CLKDIS  
CLKOSEL  
0
0
0
SIM_GPS  
SIM_PCE  
C3  
C2  
C1  
C0  
W
R
PWM PWM  
B
EMI  
1
ADCB ADCA CAN DEC1 DEC0 TMRD TMRC TMRB TMRA SCI1  
SCI0 SPI1  
SPI0  
1
A
W
R
1
1
1
1
1
1
1
1
1
1
1
1
$DSIM_ISALH  
ISAL[23:22]  
W
R
$E  
SIM_ISALL  
ISAL[21:6]  
W
= Reserved  
Figure 6-2 SIM Register Map Summary  
6.5.1  
SIM Control Register (SIM_CONTROL)  
Base + $0  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
4
3
2
1
0
Read  
Write  
ONCE SW  
EBL  
STOP_  
DISABLE  
WAIT_  
DISABLE  
RST  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 6-3 SIM Control Register (SIM_CONTROL)  
Reserved—Bits 15–6  
6.5.1.1  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.1.2 OnCE Enable (OnCE EBL)—Bit 5  
0 = OnCE clock to 56800E core enabled when core TAP is enabled  
1 = OnCE clock to 56800E core is always enabled  
100  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
 
Freescale Semiconductor, Inc.  
Register Descriptions  
6.5.1.3  
Software Reset (SW RST)—Bit 4  
This bit is always read as 0. Writing a 1 to this bit will cause the part to reset.  
6.5.1.4  
Stop Disable (STOP_DISABLE)—Bits 3–2  
00 - Stop mode will be entered when the 56800E core executes a STOP instruction  
01 - The 56800E STOP instruction will not cause entry into Stop mode; STOP_DISABLE can be  
reprogrammed in the future  
10 - The 56800E STOP instruction will not cause entry into Stop mode; STOP_DISABLE can then  
only be changed by resetting the device  
11 - Same operation as 10  
6.5.1.5  
Wait Disable (WAIT_DISABLE)—Bits 1–0  
00 - Wait mode will be entered when the 56800E core executes a WAIT instruction  
01 - The 56800E WAIT instruction will not cause entry into Wait mode; WAIT_DISABLE can be  
reprogrammed in the future  
10 - The HawkV2 WAIT instruction will not cause entry into Wait mode; WAIT_DISABLE can  
then only be changed by resetting the device  
11 - Same operation as 10  
6.5.2  
SIM Reset Status Register (SIM_RSTSTS)  
Bits in this register are set upon any system reset and are initialized only by a Power-On Reset  
(POR). A reset (other than POR) will only set bits in the register; bits are not cleared. Only software  
should clear this register.  
Base + $1  
15  
0
14  
0
13  
O
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
4
3
2
1
0
0
0
Read  
Write  
SWR COPR  
EXTR POR  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
Figure 6-4 SIM Reset Status Register (SIM_RSTSTS)  
Reserved—Bits 15–6  
6.5.2.1  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.2.2 Software Reset (SWR)—Bit 5  
When 1, this bit indicates that the previous reset occurred as a result of a software reset (write to  
SW RST bit in the SIM_CONTROL register). This bit will be cleared by any hardware reset or by  
software. Writing a 0 to this bit position will set the bit, while writing a 1 to the bit will clear it.  
6.5.2.3  
COP Reset (COPR)—Bit 4  
When 1, the COPR bit indicates the Computer Operating Properly (COP) timer-generated reset has  
occurred. This bit will be cleared by a Power-On Reset or by software. Writing a 0 to this bit  
position will set the bit, while writing a 1 to the bit will clear it.  
6.5.2.4  
External Reset (EXTR)—Bit 3  
If 1, the EXTR bit indicates an external system reset has occurred. This bit will be cleared by a  
Power-On Reset or by software. Writing a 0 to this bit position will set the bit, while writing a 1 to  
the bit position will clear it. Basically, when the EXTR bit is 1, the previous system reset was  
caused by the external RESET pin being asserted low.  
56F8357 Technical Data  
Preliminary  
101  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
6.5.2.5  
Power-On Reset (POR)—Bit 2  
When 1, the POR bit indicates a Power-On Reset occurred some time in the past. This bit can be  
cleared only by software or by another type of reset. Writing a 0 to this bit will set the bit while  
writing a 1 to the bit position will clear the bit. In summary, if the bit is 1, the previous system reset  
was due to a Power-On Reset.  
6.5.2.6  
Reserved—Bits 1–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.3  
SIM Software Control Registers (SIM_SCR0, SIM_SCR1,  
SIM_SCR2, and SIM_SCR3)  
Only SIM_SCR0 is shown below. SIM_SCR1, SIM_SCR2, and SIM_SCR3 are identical in  
functionality.  
Base + $2  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
0
1
0
0
0
FIELD  
0
Write  
POR  
0
0
0
0
0
0
0
0
0
0
0
0
Figure 6-5 SIM Software Control Register 0 (SIM_SCR0)  
Software Control Data 1 (FIELD)—Bits 15–0  
6.5.3.1  
This register is reset only by the Power-On Reset (POR). It has no part-specific functionality and  
is intended for use by a software developer to contain data that will be unaffected by the other reset  
sources (RESET pin, software reset, and COP reset).  
6.5.4  
Most Significant Half of JTAG ID (SIM_MSH_ID)  
This read-only register displays the most significant half of the JTAG ID for the chip. This register  
reads $01F4.  
Base + $6  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
1
7
1
6
1
5
1
4
1
3
0
2
1
1
0
0
0
Write  
RESET  
0
0
0
0
0
0
0
1
1
1
1
1
0
1
0
0
Figure 6-6 Most Significant Half of JTAG ID (SIM_MSH_ID)  
102  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Register Descriptions  
6.5.5  
Least Significant Half of JTAG ID (SIM_LSH_ID)  
This read-only register displays the least significant half of the JTAG ID for the chip. This register  
reads $601D.  
Base + $7  
Read  
15  
0
14  
1
13  
1
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
1
3
1
2
1
1
0
0
1
Write  
0
1
1
0
0
0
0
0
0
0
0
1
1
1
0
1
RESET  
Figure 6-7 Least Significant Half of JTAG ID (SIM_LSH_ID)  
6.5.6  
SIM Pull-up Disable Register (SIM_PUDR)  
Most of the pins on the chip have on-chip pull-up resistors. Pins which can operate as GPIO can  
have these resistors disabled via the GPIO function. Non-GPIO pins can have their pull-ups  
disabled by setting the appropriate bit in this register. Disabling pull-ups is done on a  
peripheral-by-peripheral basis (for pins not muxed with GPIO). Each bit in the register (see  
Figure 6-8) corresponds to a functional group of pins. See Table 2-2 to identify which pins can  
deactivate the internal pull-up resistor.  
Base + $8 15  
14  
13  
12  
11  
10  
9
8
7
6
0
5
CTRL  
0
4
0
3
JTAG  
0
2
0
1
0
0
0
Read  
Write  
0
EMI_  
MODE  
PWMA1 CAN  
RESET IRQ XBOOT PWMB PWMA0  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 6-8 SIM Pull-up Disable Register (SIM_PUDR)  
Reserved—Bit 15  
6.5.6.1  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.6.2  
PWMA1—Bit 14  
This bit controls the pull-up resistors on the FAULTA3 pin.  
6.5.6.3  
CAN—Bit 13  
This bit controls the pull-up resistors on the CAN_RX pin.  
6.5.6.4 EMI_MODE—Bit 12  
This bit controls the pull-up resistors on the EMI_MODE pin.  
6.5.6.5 RESET—Bit 11  
This bit controls the pull-up resistors on the RESET pin.  
6.5.6.6 IRQ—Bit 10  
This bit controls the pull-up resistors on the IRQA and IRQB pins.  
6.5.6.7  
XBOOT—Bit 9  
This bit controls the pull-up resistors on the EXTBOOT pin.  
56F8357 Technical Data  
Preliminary  
103  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
6.5.6.8  
PWMB—Bit 8  
This bit controls the pull-up resistors on the FAULTB0, FAULTB1, FAULTB2, and FAULTB3  
pins.  
6.5.6.9  
PWMA0—Bit 7  
This bit controls the pull-up resistors on the FAULTA0, FAULTA1, and FAULTA2 pins.  
6.5.6.10 Reserved—Bit 6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.6.11 CTRL—Bit 5  
This bit controls the pull-up resistors on the WR and RD pins.  
6.5.6.12 Reserved—Bit 4  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.6.13 JTAG—Bit 3  
This bit controls the pull-up resistors on the TRST, TMS and TDI pins.  
6.5.6.14 Reserved—Bits 2-0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.7  
CLKO Select Register (SIM_CLKOSR)  
The CLKO select register can be used to multiplex out any one of the clocks generated inside the  
clock generation and SIM modules. The default value is SYS_CLK. All other clocks primarily  
muxed out are for test purposes only, and are subject to significant phase shift at high frequencies.  
The upper four bits of the GPIO B register can function as GPIO, A23 through A20, or as additional  
clock output signals. GPIO has priority and is enabled/disabled via the GPIOB_PER. If GPIO  
B[7:4] are programmed to operate as peripheral outputs, then the choice between A23 through A20  
and additional clock outputs is done here in the CLKOSR. The default state is for the peripheral  
function of GPIO B[7:4] to be programmed as A23 through A20. This can be changed by altering  
A23 through A20 as shown in Figure 6-9.  
Base + $A  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
A23  
0
8
A22  
0
7
A21  
0
6
A20  
0
5
4
3
0
2
CLKOSEL  
0
1
0
0
0
CLK  
DIS  
Write  
RESET  
0
0
0
0
0
0
1
0
Figure 6-9 CLKO Select Register (SIM_CLKOSR)  
6.5.7.1  
Reserved—Bits 15–10  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
104  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
 
Freescale Semiconductor, Inc.  
Register Descriptions  
6.5.7.2  
Alternate GPIO_B Peripheral Function for A23 (A23)—Bit 9  
0 = Peripheral output function of GPIO B[7] is defined to be A[23]  
1 = Peripheral output function of GPIO B[7] is defined to be the oscillator clock (MSTR_OSC in  
Figure 3-1)  
6.5.7.3  
Alternate GPIO_B Peripheral Function for A22 (A22)—Bit 8  
0 = Peripheral output function of GPIO B[6] is defined to be A[22]  
1 = Peripheral output function of GPIO B[6] is defined to be SYS_CLK2  
6.5.7.4  
Alternate GPIO_B Peripheral Function for A21 (A21)—Bit 7  
0 = Peripheral output function of GPIO B[5] is defined to be A[21]  
1 = Peripheral output function of GPIO B[5] is defined to be SYS_CLK  
6.5.7.5  
Alternate GPIO_B Peripheral Function for A20 (A20)—Bit 6  
0 = Peripheral output function of GPIO B[4] is defined to be A[20]  
1 = Peripheral output function of GPIO B[4] is defined to be the prescaler clock (FREF in  
Figure 3-4)  
6.5.7.6  
Clockout Disable (CLKDIS)—Bit 5  
0 = CLKOUT output is enabled and will output the signal indicated by CLKOSEL  
1 = CLKOUT is tri-stated  
6.5.7.7  
CLockout Select (CLKOSEL)—Bits 4–0  
Selects clock to be muxed out on the CLKO pin.  
00000 = SYS_CLK (from OCCS - DEFAULT)  
00001 = Reserved for factory test—56800E clock  
00010 = Reserved for factory test—XRAM clock  
00011 = Reserved for factory test—PFLASH odd clock  
00100 = Reserved for factory test—PFLASH even clock  
00101 = Reserved for factory test—BFLASH clock  
00110 = Reserved for factory test—DFLASH clock  
00111 = Oscillator output  
01000 = F (from OCCS)  
out  
01001 = Reserved for factory test—IPB clock  
01010 = Reserved for factory test—Feedback (from OCCS, this is path to PLL)  
01011 = Reserved for factory test—Prescaler clock (from OCCS)  
01100 = Reserved for factory test—Postscaler clock (from OCCS)  
01101 = Reserved for factory test—SYS_CLK2 (from OCCS)  
01110 = Reserved for factory test—SYS_CLK_DIV2  
01111 = Reserved for factory test—SYS_CLK_D  
10000 = ADCA clock  
10001 = ADCB clock  
56F8357 Technical Data  
Preliminary  
105  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
6.5.8  
GPIO Peripheral Select Register (SIM_GPS)  
The GPIO Peripheral Select register can be used to multiplex out any one of the three alternate  
peripherals for GPIOC. The default peripheral is Quad Decoder 1 and Quad Timer B; these  
peripherals work together.  
The four I/O pins associated with GPIO C can function as GPIO, Quad Decoder 1/Quad Timer B,  
or as SPI 1 signals. GPIO is not the default and is enabled/disabled via the GPIOC_PER, as shown  
in Figure 6-10 and Table 6-2. When GPIO C[3:0] are programmed to operate as peripheral I/O,  
then the choice between decoder/timer and SPI inputs/outputs is made in the SIM_GPS register and  
in conjunction with the Quad Timer Status and Control Registers (SCR). The default state is for  
the peripheral function of GPIO C[3:0] to be programmed as decoder functions. This can be  
changed by altering the appropriate controls in the indicated registers.  
GPIOC_PER Register  
GPIO Controlled  
0
1
I/O Pad Control  
SIM_ GPS Register  
0
1
Quad Timer Controlled  
SPI Controlled  
Figure 6-10 Overall Control of Pads Using SIM_GPS Control  
106  
56F8357 Technical Data  
Preliminary  
For More Information On This Product,  
Go to: www.freescale.com  
 
 
Freescale Semiconductor, Inc.  
Register Descriptions  
1
Table 6-2 Control of Pads Using SIM_GPS Control  
Control Registers  
Pin Function  
Comments  
GPIO Input  
0
0
1
0
1
0
0
GPIO Output  
Quad Timer  
Input/Quad  
Decoder Input 2  
See the “Switch Matrix for Inputs to the Timer”  
table in the 56F8300 Peripheral User Manual  
for the definition of the timer inputs based on  
the Quad Decoder Mode configuration.  
Quad Timer  
Output / Quad  
Decoder Input 3  
1
0
1
SPI input  
See SPI controls for determining the direction  
of each of the SPI pins.  
1
1
1
1
SPI output  
—-  
1. This applies to the four pins that serve as Quad Decoder / Quad Timer / SPI / GPIOC functions. A separate set of control  
bits is used for each pin.  
2. Reset configuration  
3. Quad Decoder pins are always inputs and function in conjunction with the Quad Timer pins.  
Base + $B  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
Figure 6-11 GPIO Peripheral Select Register (SIM_GPS)  
Reserved—Bits 15–4  
6.5.8.1  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.8.2  
GPIO C3 (C3)—Bit 3  
This bit selects the alternate function for GPIOC3.  
0 = HOME1/TB3 (default - see “Switch Matrix Mode” bits of the Quad Decoder DECCR register  
in the 56F8300 Peripheral User Manual)  
1 = SS1  
6.5.8.3  
GPIO C2 (C2)—Bit 2  
This bit selects the alternate function for GPIOC2.  
0 = INDEX1/TB2 (default)  
1 = MISO1  
56F8357 Technical Data  
Preliminary  
107  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
6.5.8.4  
GPIO C1 (C1)—Bit 1  
This bit selects the alternate function for GPIOC1.  
0 = PHASEB1/TB1 (default)  
1 = MOSI1  
6.5.8.5  
GPIO C0 (C0)—Bit 0  
This bit selects the alternate function for GPIOC0.  
0 = PHASEA1/TB0 (default)  
1 = SCLK1  
6.5.9  
Peripheral Clock Enable Register (SIM_PCE)  
The Peripheral Clock Enable register is used enable or disable clocks to the peripherals as a power  
savings feature. The clocks can be individually controlled for each peripheral on the chip.  
Base + $C  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
EMI ADCB ADCA CAN DEC1 DEC0 TMRD TMRC TMRB TMRA SCI 1 SCI 0 SPI 1 SPI 0 PWMB PWMA  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 6-12 Peripheral Clock Enable Register (SIM_PCE)  
External Memory Interface Enable (EMI)—Bit 15  
6.5.9.1  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.2  
Analog-to-Digital Converter B Enable (ADCB)—Bit 14  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.3  
Analog-to-Digital Converter A Enable (ADCA)—Bit 13  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.4  
FlexCAN Enable (CAN)—Bit 12  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
108  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Register Descriptions  
6.5.9.5  
Decoder 1 Enable (DEC1)—Bit 11  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.6  
Decoder 0 Enable (DEC0)—Bit 10  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.7  
Quad Timer D Enable (TMRD)—Bit 9  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.8  
Quad Timer C Enable (TMRC)—Bit 8  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.9  
Quad Timer B Enable (TMRB)—Bit 7  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.10 Quad Timer A Enable (TMRA)—Bit 6  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.11 Serial Communications Interface 1 Enable (SCI1)—Bit 5  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.12 Serial Communications Interface 0 Enable (SCI0)—Bit 4  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
56F8357 Technical Data  
Preliminary  
109  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
6.5.9.13 Serial Peripheral Interface 1 Enable (SPI1)—Bit 3  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.14 Serial Peripheral Interface 0 Enable (SPI0)—Bit 2  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.15 Pulse Width Modulator B Enable (PWMB)—1  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.16 Pulse Width Modulator A Enable (PWMA)—0  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.10 I/O Short Address Location Register (SIM_ISALH and  
SIM_ISALL)  
The I/O Short Address Location registers are used to specify the memory referenced via the I/O  
short address mode. The I/O short address mode allows the instruction to specify the lower six bits  
of address; the upper address bits are not directly controllable. This register set allows limited  
control of the full address, as shown in Figure 6-13.  
Note:  
If this register is set to something other than the top of memory (EOnCE register space) and  
the EX bit in the OMR is set to 1, the JTAG port cannot access the on-chip EOnCE registers,  
and debug functions will be affected.  
Instruction Portion  
Hard Coded” Address Portion  
6 Bits from I/O Short Address Mode Instruction  
16 Bits from SIM_ISALL Register  
2 bits from SIM_ISALH Register  
Full 24-Bit for Short I/O Address  
Figure 6-13 I/O Short Address Determination  
110  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
 
Freescale Semiconductor, Inc.  
Clock Generation Overview  
With this register set, an interrupt driver can set the SIM_ISALL register pair to point to its  
peripheral registers and then use the I/O Short addressing mode to reference them. The ISR should  
restore this register to its previous contents prior to returning from interrupt.  
Note:  
Note:  
The default value of this register set points to the EOnCE registers.  
The pipeline delay between setting this register set and using short I/O addressing with the  
new value is three cycles.  
Base + $D  
15  
1
14  
1
13  
1
12  
1
11  
1
10  
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
0
Read  
Write  
ISAL[23:22]  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 6-14 I/O Short Address Location High Register (SIM_ISALH)  
6.5.10.1 Input/Output Short Address Low (ISAL[23:22])—Bit 1–0  
This field represents the upper two address bits of the “hard coded” I/O short address.  
Base + $E  
15  
1
14  
1
13  
1
12  
1
11  
1
10  
1
9
1
8
7
6
1
5
1
4
1
3
1
2
1
1
0
1
Read  
Write  
ISAL[21:6]  
RESET  
1
1
1
Figure 6-15 I/O Short Address Location Low Register (SIM_ISAL)  
6.5.10.2 Input/Output Short Address Low (ISAL[21:6])—Bit 15–0  
This field represents the lower 16 address bits of the “hard coded” I/O short address.  
6.6 Clock Generation Overview  
The SIM uses an internal master clock from the OCCS (CLKGEN) module to produce the  
peripheral and system (core and memory) clocks. The maximum master clock frequency is  
120MHz. Peripheral and system clocks are generated at half the master clock frequency and  
therefore at a maximum 60MHz. The SIM provides power modes (Stop, Wait) and clock enables  
(SIM_PCE register, CLK_DIS, ONCE_EBL) to control which clocks are in operation. The OCCS,  
power modes, and clock enables provide a flexible means to manage power consumption.  
Power utilization can be minimized in several ways. In the OCCS, crystal oscillator, and PLL may  
be shut down when not in use. When the PLL is in use, its prescaler and postscaler can be used to  
limit PLL and master clock frequency. Power modes permit system and/or peripheral clocks to be  
disabled when unused. Clock enables provide the means to disable individual clocks. Some  
peripherals provide further controls to disable unused subfunctions. Refer to Part 3, On-Chip  
Clock Synthesis (OCCS) and the 56F8300 Peripheral User Manual for further details.  
56F8357 Technical Data  
Preliminary  
111  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
6.7 Power Down Modes Overview  
The 56F8357 operates in one of three power-down modes as shown in Table 6-3.  
Table 6-3 Clock Operation in Power Down Modes  
Mode  
Run  
Core Clocks  
Active  
Peripheral Clocks  
Active  
Active  
Description  
Device is fully functional  
Peripherals are active and can produce interrupts if they  
have not been masked off.  
Wait  
Core and memory  
clocks disabled  
Interrupts will cause the core to come out of its  
suspended state and resume normal operation.  
Typically used for power-conscious applications.  
The only possible recoveries from Stop mode are:  
1. CAN traffic (1st message will be lost)  
2. Non-clocked interrupts  
3. COP reset  
Stop  
System clocks continue to be generated in  
the SIM, but most are gated prior to  
reaching memory, core and peripherals.  
4. External reset  
5. Power-on reset  
All peripherals, except the COP/watchdog timer, run off the IPBus clock frequency, which is the  
same as the main processor frequency in this architecture. The maximum frequency of operation  
is SYS_CLK = 60MHz.  
6.8 Stop and Wait Mode Disable Function  
Permanent  
Disable  
D
Q
D-FLOP  
56800E  
C
Reprogrammable Disable  
STOP_DIS  
D
Q
D-FLOP  
Clock  
Select  
C
R
RESET  
Note: Wait disable circuit is similar  
Figure 6-16 Stop Disable Circuit  
112  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Resets  
The 56800E core contains both STOP and WAIT instructions. Both put the CPU to sleep. For  
lowest power consumption in Stop mode, the PLL can be shut down. This must be done explicitly  
before entering Stop mode, since there is no automatic mechanism for this. When the PLL is shut  
down, the 56800E system clock must be set equal to the oscillator output.  
Some applications require the 56800E STOP and WAIT instructions be disabled. To disable those  
instructions, write to the SIM control register (SIM_CONTROL), described in Section 6.5.1. This  
procedure can be on either a permanent or temporary basis. Permanently assigned applications last  
only until their next reset.  
6.9 Resets  
The SIM supports four sources of reset. The two asynchronous sources are the external RESET pin  
and the Power-On Reset (POR). The two synchronous sources are the software reset, which is  
generated within the SIM itself by writing to the SIM_CONTROL register and the COP reset.  
Reset begins with the assertion of any of the reset sources. Release of reset to various blocks is  
21  
sequenced to permit proper operation of the device. A POR reset is first extended for 2 clock  
cycles to permit stabilization of the clock source, followed by a 32 clock window in which SIM  
clocking is initiated. It is then followed by a 32 clock window in which peripherals are released to  
implement Flash security, and, finally, followed by a 32 clock window in which the core is  
initialized. After completion of the described reset sequence, application code will begin  
execution.  
Resets may be asserted asynchronously, but are always released internally on a rising edge of the  
system clock.  
56F8357 Technical Data  
Preliminary  
113  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Part 7 Security Features  
The 56F8357 offers security features intended to prevent unauthorized users from reading the  
contents of the Flash memory (FM) array. The 56F8357’s Flash security consists of several  
hardware interlocks that block the means by which an unauthorized user could gain access to the  
Flash array.  
However, part of the security must lie with the user’s code. An extreme example would be user’s  
code that dumps the contents of the internal program, as this code would defeat the purpose of  
security. At the same time, the user may also wish to put a “backdoor” in his program. As an  
example, the user downloads a security key through the SCI, allowing access to a programming  
routine that updates parameters stored in another section of the Flash.  
7.1 Operation with Security Enabled  
Once the user has programmed the Flash with his application code, the 56F8357 can be secured by  
programming the security bytes located in the FM configuration field, which occupies a portion of  
the FM array. These non-volatile bytes will keep the part secured through reset and through  
power-down of the device. Only two bytes within this field are used to enable or disable security.  
Refer to the Flash Memory section in the 56F8300 Peripheral User Manual for the state of the  
security bytes and the resulting state of security. When Flash security mode is enabled in  
accordance with the method described in the Flash Memory module specification, the 56F8357  
will disable external P-space accesses restricting code execution to internal memory, disable  
EXTBOOT=1 mode, and disable the core EOnCE debug capabilities. Normal program execution  
is otherwise unaffected.  
7.2 Flash Access Blocking Mechanisms  
The 56F8357 has several operating functional and test modes. Effective Flash security must  
address operating mode selection and anticipate modes in which the on-chip Flash can be  
compromised and read without explicit user permission. Methods to block these are outlined in the  
next subsections.  
7.2.1  
Forced Operating Mode Selection  
At boot time, the SIM determines in which functional modes the 56F8357 will operate. These are:  
Internal Boot Mode  
External Boot Mode  
Secure Mode  
When Flash security is enabled as described in the Flash Memory module specification, the  
56F8357 will boot in internal boot mode, disable all access to external P-space, and start executing  
code from the Boot Flash at address 0x02_0000.  
This security affords protection only to applications in which the 56F8357 operates in internal  
Flash security mode. Therefore, the security feature cannot be used unless all executing code  
resides on-chip.  
When security is enabled, any attempt to override the default internal operating mode by asserting  
the EXTBOOT pin in conjunction with reset will be ignored.  
114  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Flash Access Blocking Mechanisms  
7.2.2  
Disabling EOnCE Access  
On-chip Flash can be read by issuing commands across the EOnCE port, which is the debug  
interface for the 56800E core. The TRST, TCLK, TMS, TDO, and TDI pins comprise a JTAG  
interface onto which the EOnCE port functionality is mapped. When the 56F8357 boots, the  
chip-level JTAG TAP (Test Access Port) is active and provides the chip’s boundary scan capability  
and access to the ID register.  
Proper implementation of Flash security requires that no access to the EOnCE port is provided  
when security is enabled. The 56800E core has an input which disables reading of internal memory  
via the JTAG/EOnCE. The FM sets this input at reset to a value determined by the contents of the  
FM security bytes.  
7.2.3  
Flash LOCKOUT_RECOVERY  
If a user inadvertently enables security on the 56F8357, a lockout recovery mechanism is provided  
which allows the complete erasure of the internal Flash contents, including the configuration field,  
and thus disables security (the protection register is ignored). This does not compromise security,  
as the entire contents of the user’s secured code stored in Flash are erased before security is  
disabled on the 56F8357 on the next reset or power-up sequence. To start the lockout recovery  
sequence, the JTAG public instruction (LOCKOUT_RECOVERY) must first be shifted into the  
chip-level TAP controller’s instruction register.  
The LOCKOUT_RECOVERY instruction will have an associated 7-bit Data Register (DR) that is  
used to control the clock divider circuit within the FM module. This divider, FM_CLKDIV[6:0],  
is used to control the period of the clock used for timed events in the FM erase algorithm. This  
register must be set with appropriate values before the lockout sequence can begin. Refer to the  
JTAG section of the 56F8300 Peripheral User Manual for more details on setting this register  
value.  
The value of the JTAG FM_CLKDIV[6:0] will replace the value of the FM register FMCLKD that  
divides down the system clock for timed events, as illustrated in Figure 7-1. FM_CLKDIV[6] will  
map to the PRDIV8 bit, and FM_CLKDIV[5:0] will map to the DIV[5:0] bits. The combination of  
PRDIV8 and DIV must divide the FM input clock down to a frequency of 150kHz-200kHz. The  
“Writing the FMCLKD Register” section in the Flash Memory chapter of the 56F8300  
Peripheral User Manual gives specific equations for calculating the correct values.  
56F8357 Technical Data  
Preliminary  
115  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Flash Memory  
SYS_CLK  
2
input  
clock  
DIVIDER  
7
FMCLKD  
7
7
FM_CLKDIV  
FM_ERASE  
JTAG  
Figure 7-1 JTAG to FM Connection for LOCKOUT_RECOVERY  
Two examples of FM_CLKDIV calculations follow.  
EXAMPLE 1: If the system clock is the 8MHz crystal frequency because the PLL has not been  
set up, the input clock will be below 12.8MHz, so PRDIV8 = FM_CLKDIV[6] = 0. Using the  
following equation yields a DIV value of 19 for a clock of 200kHz, and a DIV value of 20 for a  
clock of 190kHz. This translates into an FM_CLKDIV[6:0] value of $13 or $14, respectively.  
SYS_CLK  
( )  
(2)  
150[kHz]  
200[kHz]  
<
<
(DIV + 1)  
EXAMPLE 2: In this example, the system clock has been set up with a value of 32MHz, making  
the FM input clock 16MHz. Because that is greater than 12.8MHz, PRDIV8 = FM_CLKDIV[6] =  
1. Using the following equation yields a DIV value of 9 for a clock of 200kHz, and a DIV value of  
10 for a clock of 181kHz. This translates to an FM_CLKDIV[6:0] value of $49 or $4A,  
respectively.  
SYS_CLK  
( )  
(2)(8)  
150[kHz]  
200[kHz]  
<
<
(DIV + 1)  
Once the LOCKOUT_RECOVERY instruction has been shifted into the instruction register, the  
clock divider value must be shifted into the corresponding 7-bit data register. After the data register  
has been updated, the user must transition the TAP controller into the RUN-TEST/IDLE state for  
the lockout sequence to commence. The controller must remain in this state until the erase  
sequence has completed. For details, see the JTAG Section in the 56F8300 Peripheral User  
Manual.  
116  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Flash Access Blocking Mechanisms  
Note:  
Once the lockout recovery sequence has completed, the user must reset both the JTAG TAP  
controller (by asserting TRST) and the 56F8357 (by asserting external chip reset) to return to  
normal unsecured operation.  
7.2.4  
Product Analysis  
The recommended method of unsecuring a programmed 56F8357 for product analysis of field  
failures is via the backdoor key access. The customer would need to supply Motorola with the  
backdoor key and the protocol to access the backdoor routine in the Flash. Additionally, the  
KEYEN bit that allows backdoor key access must be set.  
An alternative method for performing analysis on a secured microcontroller would be to  
mass-erase and reprogram the Flash with the original code, but modify the security bytes.  
To insure that a customer does not inadvertently lock himself out of the 56F8357 during  
programming, it is recommended that he program the backdoor access key first, his application  
code second, and the security bytes within the FM configuration field last.  
56F8357 Technical Data  
Preliminary  
117  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Part 8 General Purpose Input/Output (GPIO)  
8.1 Introduction  
This section is intended to supplement the GPIO information found in the 56F8300 Peripheral  
User Manual and contains only chip-specific information. This information supercedes the  
generic information in the 56F8300 Peripheral User Manual.  
8.2 Configuration  
There are six GPIO ports defined on the 56F8357. The width of each port and the associated  
peripheral function is shown in Table 8-1. The specific mapping of GPIO port pins is shown in  
Table 8-2.  
Table 8-1 GPIO Ports Configuration  
Available  
Pins in  
56F8347  
GPIO  
Port  
Port  
Width  
Peripheral Function  
Reset Function  
A
B
C
14  
8
14  
8
14 pins - EMI Address pins  
EMI Address  
EMI Address  
8pins - EMI Address pins  
11  
11  
4 pins -DEC1 / TMRB / SPI1  
4 pins -DEC0 / TMRA  
DEC1 / TMRB  
DEC0 / TMRA  
3 pins -PWMA current sense  
PWMA current sense  
D13  
E
13  
6 pins - EMI CSn  
2 pins - SCI1  
2 pins - EMI CSn  
3 pins -PWMB current sense  
EMI Chip Selects  
SCI1  
EMI Chip Selects  
PWMB current sense  
14  
16  
14  
16  
SCI0  
EMI Address  
SPI0  
TMRC  
TMRD  
2 pins - SCI0  
2 pins - EMI Address pins  
4 pins - SPI0  
2 pins - TMRC  
4 pins - TMRD  
F
16 pins - EMI Data  
EMI Data  
118  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Configuration  
Table 8-2 GPIO External Signals Map  
Reset  
Function  
Functional Signal  
Package Pin  
GPIO Port  
GPIO Bit  
0
1
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
GPIO  
A8  
19  
20  
21  
22  
23  
24  
25  
26  
154  
10  
11  
12  
13  
14  
33  
34  
35  
36  
37  
46  
47  
48  
A9  
2
A10  
3
A11  
4
A12  
5
A13  
6
A14  
GPIOA  
7
A15  
8
A0  
9
A1  
10  
11  
12  
13  
0
A2  
A3  
A4  
A5  
A16  
1
GPIO  
A17  
2
GPIO  
A18  
3
GPIO  
A19  
GPIOB  
4
GPIO  
A20 / Prescaler_clock  
A21 / SYS_CLK  
A22 / SYS_CLK2  
A23 / Oscillator_Clock  
5
GPIO  
6
GPIO  
7
GPIO  
56F8357 Technical Data  
Preliminary  
119  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 8-2 GPIO External Signals Map (Continued)  
Reset  
GPIO Port  
GPIO Bit  
Functional Signal  
Package Pin  
Function  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
PhaseA1 / TB0 / SCLK11  
PhaseB1 / TB1 / MOSI11  
Index1 / TB2 / MISO11  
0
1
2
3
6
7
8
9
Home1 / TB3 / SSI11  
PHASEA0 / TA0  
PHASEB0 / TA1  
Index0 / TA2  
Home0 / TA3  
ISA0  
4
5
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
GPIO  
155  
156  
157  
158  
126  
127  
128  
55  
GPIOC  
6
7
8
9
ISA1  
10  
0
ISA2  
CS2  
1
GPIO  
CS3  
56  
2
GPIO  
CS4  
57  
3
GPIO  
CS5  
58  
4
GPIO  
CS6  
59  
5
GPIO  
CS7  
60  
GPIOD  
6
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
TXD1  
49  
7
RXD1  
50  
8
PS / CS0  
DS / CS1  
ISB0  
53  
9
54  
10  
11  
12  
61  
ISB1  
63  
ISB2  
64  
120  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Configuration  
Table 8-2 GPIO External Signals Map (Continued)  
Reset  
Function  
GPIO Port  
GPIO Bit  
Functional Signal  
Package Pin  
0
1
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
TXD0  
RXD0  
A6  
4
5
2
17  
3
A7  
18  
4
SCLK0  
MOSI0  
MISO0  
SS0  
TC0  
TC1  
TD0  
TD1  
TD2  
TD3  
D7  
146  
148  
147  
145  
133  
135  
129  
130  
131  
132  
28  
5
6
GPIOE  
7
8
9
10  
11  
12  
13  
0
1
D8  
29  
2
D9  
30  
3
D10  
D11  
D12  
D13  
D14  
D15  
D0  
32  
4
149  
150  
151  
152  
153  
70  
5
6
7
GPIOF  
8
9
10  
11  
12  
13  
14  
15  
D1  
71  
D2  
83  
D3  
86  
D4  
88  
D5  
89  
D6  
90  
1. See Section 6.5.8 to determine how to select peripherals from this set  
56F8357 Technical Data  
Preliminary  
121  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
8.3 Memory Maps  
The width of the GPIO port defines how many bits are implemented in each of the GPIO registers.  
Based on this and the default function of each of the GPIO pins, the reset values of the GPIOx_PUR  
and GPIOx_PER registers will change from port to port. Tables 4-29 through 4-34 define the actual  
reset values of these registers for the 56F8357.  
Part 9 Joint Test Action Group (JTAG)  
9.1 56F8357 Information  
Please contact your Motorola marketing representative for device/package-specific BSDL  
information.  
Part 10 Specifications  
10.1 General Characteristics  
The 56F8357 is fabricated in high-density CMOS with 5V-tolerant TTL-compatible digital inputs.  
The term “5V-tolerant” refers to the capability of an I/O pin, built on a 3.3V-compatible process  
technology, to withstand a voltage up to 5.5V without damaging the device. Many systems have a  
mixture of devices designed for 3.3V and 5V power supplies. In such sytems, a bus may carry both  
3.3V- and 5V-compatible I/O voltage levels (a standard 3.3V I/O is designed to receive a  
maximum voltage of 3.3V ± 10% during normal operation without causing damage). This  
5V-tolerant capability therefore offers the power savings of 3.3V I/O levels combined with the  
ability to receive 5V levels without damage.  
Absolute maximum ratings in Table 10-1 are stress ratings only, and functional operation at the  
maximum is not guaranteed. Stress beyond these ratings may affect device reliability or cause  
permanent damage to the device.  
Note:  
All specifications meet both Automotive and Industrial requirements unless individual  
specifications are listed.  
CAUTION  
This device contains protective circuitry to guard  
against damage due to high static voltage or electrical  
fields. However, normal precautions are advised to  
avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit.  
Reliability of operation is enhanced if unused inputs are  
tied to an appropriate voltage level.  
122  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
General Characteristics  
Table 10-1 Absolute Maximum Ratings  
(VSS = VSSA_ADC = 0)  
Characteristic  
Supply Voltage  
Symbol  
Notes  
Min  
-0.3  
-0.3  
MaxUnit  
VDD_IO  
4.0  
4.0  
V
V
VDDA_ADC,  
VREFH  
VREFH must be  
less than or equal  
to VDDA_ADC  
ADC Supply Voltage  
VDDA_OSC_PLL  
VDDA_CORE  
VIN  
-0.3  
-0.3  
-0.3  
4.0  
3.0  
6.0  
V
V
V
Oscillator / PLL Supply Voltage  
Internal Logic Core Supply Voltage  
Input Voltage (digital)  
OCR_DIS is High  
Pin Groups  
1, 2, 5, 6, 9, 10  
Pin Groups  
11, 12, 13  
VINA  
-0.3  
-0.3  
4.0  
4.0  
V
V
Input Voltage (analog)  
Output Voltage  
Pin Groups  
1, 2, 3, 5, 6, 7, 8  
VOUT  
Pin Group 4  
VOD  
TA  
-0.3  
-40  
-40  
-40  
-40  
-55  
-55  
6.0  
125  
105  
150  
125  
150  
150  
V
Output Voltage (open drain)  
°C  
°C  
°C  
°C  
°C  
°C  
Ambient Temperature (Automotive)  
Ambient Temperature (Industrial)  
Junction Temperature (Automotive)  
Junction Temperature (Industrial)  
TA  
TJ  
TJ  
TSTG  
TSTG  
Storage Temperature (Automotive)  
Storage Temperature (Industrial)  
Note: The overall life of this device may be reduced if subjected to extended use over 110°C  
junction. For additional information, please contact your sales representative.  
Pin Group 1: TXD0-1, RXD0-1, SS0, MISO0,  
MOSI0  
Pin Group 2: PHASEA0-1, PHASEB0-1,  
INDEX0-1, HOME0-1, ISB0-2, ISA0-2,  
TD2-3, TC0-1, SCLK0  
Pin Group 8: PWMA0-5, PWMB0-5  
Pin Group 9: IRQA, IRQB, RESET, EXTBOOT,  
TRST, TMS, TDI, CAN_RX,  
EMI_MODE, FAULTA0-3, FAULTB0-3  
Pin Group 10: TCK  
Pin Group 3: RSTO, TDO  
Pin Group 11: XTAL, EXTAL  
Pin Group 4: CAN_TX  
Pin Group 12: ANA0-7, ANB0-7  
Pin Group 13: OCR_DIS, CLKMODE  
Pin Group 5: A0-5, D0-15, GPIOD0-5, PS, DS  
Pin Group 6: A6-15, GPIOB0-7, TD0-1  
Pin Group 7: CLKO, WR, RD  
56F8357 Technical Data  
Preliminary  
123  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Table 10-2 Electrostatic Discharge Protection  
Characteristic  
Min  
2000  
200  
Typ  
MaxUnit  
V
V
V
ESD for Human Body Model (HBM)  
ESD for Machine Model (MM)  
500  
ESD for Charge Device Model (CDM)  
6
Table 10-3 Thermal Characteristics  
Value  
Characteristic  
Symbol  
Unit  
Notes  
Comments  
160-pin LQFP  
Junction to ambient  
Natural convection  
38.5  
RθJA  
°C/W  
2
Junction to ambient (@1m/sec)  
35.4  
33  
RθJMA  
°C/W  
°C/W  
2
Junction to ambient  
Natural convection  
Four layer board  
(2s2p)  
RθJMA  
(2s2p)  
1,2  
Junction to ambient (@1m/sec) Four layer board  
(2s2p)  
31.5  
RθJMA  
°C/W  
1,2  
Junction to case  
8.6  
0.8  
RθJC  
ΨJT  
°C/W  
°C/W  
W
3
Junction to center of case  
I/O pin power dissipation  
Power dissipation  
4, 5  
P I/O  
P D  
User-determined  
P D = (IDD x VDD + P I/O  
(TJ - TA) / θJA  
)
W
Maximum allowed PD  
PDMAX  
°C  
Notes:  
1. Theta-JA determined on 2s2p test boards is frequently lower than would be observed in an application. Determined on  
2s2p thermal test board.  
2. Junction to ambient thermal resistance, Theta-JA (R ) was simulated to be equivalent to the JEDEC specification  
θJA  
JESD51-2 in a horizontal configuration in natural convection. Theta-JA was also simulated on a thermal test board  
with two internal planes (2s2p where “s” is the number of signal layers and “p” is the number of planes) per JESD51-6  
and JESD51-7. The correct name for Theta-JA for forced convection or with the non-single layer boards is  
Theta-JMA.  
3. Junction to case thermal resistance, Theta-JC (R ), was simulated to be equivalent to the measured values using the  
θJC  
cold plate technique with the cold plate temperature used as the "case" temperature. The basic cold plate measurement  
technique is described by MIL-STD 883D, Method 1012.1. This is the correct thermal metric to use to calculate  
thermal performance when the package is being used with a heat sink.  
4. Thermal Characterization Parameter, Psi-JT (Ψ ), is the "resistance" from junction to reference point thermocouple  
JT  
on top center of case as defined in JESD51-2. Ψ is a useful value to use to estimate junction temperature in steady  
JT  
state customer environments.  
5. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipaion of other components on the board, and board thermal  
resistance.  
6. See Section 12.1 for more details on thermal design considerations.  
124  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
General Characteristics  
Table 10-4 Recommended Operating Conditions  
(VREFLO = 0V, VSS = VSSA_ADC = 0V, VDDA = VDDA_ADC = VDDA_OSC_PLL  
)
Characteristic  
Supply voltage  
Symbol  
Notes  
Min  
3
Typ  
3.3  
3.3  
MaxUnit  
3.6  
V
V
V
DD_IO  
V
V
must be  
REFH  
3
3.6  
ADC Supply Voltage  
DDA_ADC,  
less than or equal  
to V  
V
REFH  
DDA_ADC  
V
V
V
V
3
3.3  
2.5  
3.6  
Oscillator / PLL Supply Voltage  
DDA_OSC  
_PLL  
OCR_DIS is High  
2.25  
2.75  
Internal Logic Core Supply  
Voltage  
DD_CORE  
MHz  
V
FSYSCLK  
0
2
60  
Device Clock Frequency  
Input High Voltage (digital)  
Pin Groups  
1, 2, 5, 6, 9, 10  
V
5.5  
IH  
Pin Group 13  
Pin Group11  
V
V
V
2
VDDA+0.3  
VDDA+0.3  
Input High Voltage (analog)  
IHA  
V
VDDA-0.8  
Input High Voltage (XTAL/EXTAL,  
XTAL is not driven by an external  
clock)  
IHC  
Pin Group 11  
V
V
V
2
VDDA+0.3  
0.8  
Input high voltage (XTAL/EXTAL,  
XTAL is driven by an external clock)  
IHC  
Pin Groups  
1, 2, 5, 6, 9, 10,  
11, 13,  
V
-0.3  
Input Low Voltage  
IL  
Pin Groups 1, 2, 3  
Pin Groups 5, 6, 7  
Pin Groups 8  
mA  
mA  
I
-4  
-8  
Output High Source Current  
VOH = 2.4V (VOH min.)  
OH  
-12  
4
Pin Groups  
1, 2, 3, 4, 14  
I
Output Low Sink Current  
VOL = 0.4V (VOL max)  
OL  
Pin Groups 5, 6, 7  
Pin Group 8  
8
12  
°C  
T
-40  
Ambient Operating Temperature  
(Automotive)  
125 -  
A
(R  
(R  
X P )  
θJA  
D
°C  
T
-40  
10,000  
10,000  
15  
Ambient Operating Temperature  
(Industrial)  
105 -  
A
X P )  
θJA  
D
T = -40°C to  
Cycles  
Cycles  
Years  
N
Flash Endurance (Automotive)  
(Program Erase Cycles)  
A
F
125°C  
T = -40°C to  
N
Flash Endurance (Industrial)  
(Program Erase Cycles)  
A
F
105°C  
T <= 70°C avg  
T
Flash Data Retention  
J
R
Note: Total chip source or sink current cannot exceed 200mA  
See Pin Groups in Table 10-1.  
56F8357 Technical Data  
Preliminary  
125  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
10.2 DC Electrical Characteristics  
Table 10-5 DC Electrical Characteristics  
Over Recommended Operating Conditions, VDDA = VDDA_ADC, VDDA_OSC_PLL  
Test  
Conditions  
Characteristic  
Symbol  
Notes  
Min  
Typ  
MaxUnit  
V
V
I
= I  
= I  
V
2.4  
0
0.4  
Output High Voltage  
Output Low Voltage  
OH  
OHmax  
OLmax  
OH  
I
V
OL  
OL  
Pin Groups  
1, 2, 5, 6, 9,  
µA  
V
V
= 3.0V to  
5.5V  
I
+/- 2.5  
Digital Input Current High  
pull-up enabled or disabled  
IN  
IN  
IH  
Pin Group 10  
µA  
= 3.0V to  
5.5V  
I
40  
80  
160  
Digital Input Current High  
with pull-down  
IH  
Pin Group 13  
Pin Group 12  
µA  
µA  
µA  
V
= V  
I
0
0
+/- 2.5  
+/- 10  
-50  
Analog Input Current High  
ADC Input Current High  
IN  
DDA  
DDA  
IHA  
V
= V  
I
IN  
IHADC  
Pin Groups  
1, 2, 5, 6, 9,  
V
V
V
= 0V  
I
-200  
-100  
Digital Input Current Low  
pull-up enabled  
IN  
IN  
IN  
IN  
IL  
Pin Groups  
1, 2, 5, 6, 9,  
µA  
µA  
= 0V  
= 0V  
I
0
0
+/- 2.5  
+/- 2.5  
Digital Input Current Low  
pull-up disabled  
IL  
Pin Group 10  
I
Digital Input Current Low  
with pull-down  
IL  
Pin Group 13  
Pin Group 12  
µA  
µA  
µA  
V
V
= 0V  
= 0V  
=
I
0
0
0
+/- 2.5  
+/- 10  
+/- 2.5  
Analog Input Current Low  
ADC Input Current Low  
ILA  
I
IN  
ILADC  
V
I
EXTAL Input Current Low  
clock input  
IN  
EXTAL  
V
or 0V  
DDA  
CLKMODE =  
High  
µA  
µA  
µA  
V
=
I
0
0
+/- 2.5  
200  
XTAL Input Current Low  
clock input  
IN  
XTAL  
V
or 0V  
DDA  
CLKMODE =  
Low  
V
=
IN  
V
or 0V  
DDA  
Pin Groups  
1, 2, 3, 4, 5, 6,  
7, 8  
V
= 3.0V  
I
+/- 2.5  
Output Current  
High Impedance State  
OUT  
OZ  
to 5.5V or 0V  
Pin Groups  
2, 6, 9, 10  
V
V
0.3  
4.5  
5.5  
Schmitt Trigger Input  
Hysteresis  
HYS  
pF  
pF  
C
Input Capacitance  
(EXTAL/XTAL)  
INC  
C
Output Capacitance  
(EXTAL/XTAL)  
OUTC  
pF  
pF  
C
6
6
Input Capacitance  
Output Capacitance  
IN  
C
OUT  
See Pin Groups in Table 10-1.  
126  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
 
Freescale Semiconductor, Inc.  
DC Electrical Characteristics  
Table 10-6 Power-On Reset Low Voltage Parameters  
Characteristic  
POR Trip Point  
Symbol  
Min  
1.75  
Typ  
1.8  
MaxUnits  
1.9  
V
V
POR  
VEI2.5  
VEI3.3  
LVI, 2.5 volt Supply, trip point1  
2.14  
LVI, 3.3 volt supply, trip point2  
Bias Current  
2.7  
V
I bias  
110  
130  
µA  
1. When V drops below V  
, an interrupt is generated.  
, an interrupt is generated.  
DD  
EI2.5  
EI3.3  
2. When V drops below V  
DD  
Table 10-7 Current Consumption per Power Supply Pin (Typical)  
On-Chip Regulator Enabled (OCR_DIS = Low)  
1
IDD_ADC  
IDD_OSC_PLL  
Mode  
Test Conditions  
60MHz Device Clock  
IDD_IO  
RUN1_MAC  
155mA  
50mA  
2.5mA  
All peripheral clocks are enabled  
All peripherals running  
Continuous MAC instructions with fetches from  
Data RAM  
ADC powered on and clocked  
60MHz Device Clock  
Wait3  
Stop1  
91mA  
6mA  
70µA  
0µA  
2.5mA  
All peripheral clocks are enabled  
ADC powered off  
8MHz Device Clock  
All peripheral clocks are off  
ADC powered off  
155µA  
PLL powered off  
External Clock is off  
All peripheral clocks are off  
ADC powered off  
Stop2  
5.1mA  
0µA  
145µA  
PLL powered off  
1. No Output Switching  
56F8357 Technical Data  
Preliminary  
127  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 10-8 Current Consumption per Power Supply Pin (Typical)  
On-Chip Regulator Disabled (OCR_DIS = High)  
1
IDD_Core  
IDD_ADC  
IDD_OSC_PLL  
Mode  
Test Conditions  
60MHz Device Clock  
IDD_IO  
RUN1_MAC  
150mA  
13µA  
50mA  
2.5mA  
All peripheral clocks are enabled  
All peripherals running  
Continuous MAC instructions with  
fetches from Data RAM  
ADC powered on and clocked  
60MHz Device Clock  
Wait3  
Stop1  
86mA  
13µA  
13µA  
70µA  
0µA  
2.5mA  
All peripheral clocks are enabled  
ADC powered off  
8MHz Device Clock  
All peripheral clocks are off  
ADC powered off  
900µA  
155µA  
PLL powered off  
External Clock is off  
All peripheral clocks are off  
ADC powered off  
Stop2  
100µA  
13µA  
0µA  
145µA  
PLL powered off  
1. No Output Switching  
Table 10-9. Regulator Parameters  
Characteristic  
Symbol  
Min  
Typical  
MaxUnit  
Unloaded Output Voltage  
(0mA Load)  
VRNL  
2.25  
2.75  
V
V
V
Loaded Output Voltage  
(250 mA load)  
VRL  
VR  
2.25  
2.25  
2.75  
2.75  
Line Regulation @ 250 mA load  
(VDD33 ranges from 3.0 to 3.6)  
Short Circuit Current  
Iss  
700  
mA  
( output shorted to ground)  
Bias Current  
I bias  
Ipd  
5.8  
0
7
2
mA  
µA  
Power-down Current  
Short-Circuit Tolerance  
TRSC  
30  
minutes  
(output shorted to ground)  
128  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Temperature Sense  
Table 10-10. PLL Parameters  
Characteristics  
PLL Start-up time  
Symbol  
TPS  
Min  
0.3  
0.1  
120  
Typical  
0.5  
MaxUnit  
10  
1
ms  
ms  
ps  
Resonator Start-up time  
Min-Max Period Variation  
Peak-to-Peak Jitter  
TRS  
0.18  
TPV  
200  
175  
2
TPJ  
ps  
Bias Current  
IBIAS  
IPD  
1.5  
mA  
µA  
Quiescent Current, power-down mode  
100  
150  
10.3 Temperature Sense  
Table 10-11 Temperature Sense Parametrics  
Characteristics  
Symbol  
Min  
Typical  
MaxUnit  
K-factor1  
K
7
7.2  
mV/°C  
VDDA  
IDD-OFF  
IDD-ON  
TACC  
RES  
Supply Voltage  
Supply Current - OFF  
Supply Current - ON  
Accuracy  
3.0  
-2  
3.3  
3.6  
10  
250  
+2  
1
V
µA  
µA  
°C  
°C / bit2  
Resolution  
1. This is the inverse of the parameter “m” found in the Functional Description of the Temperature Sensor chapter of the  
56F8300 Peripheral User Manual.  
2. Assuming a 10-bit range from 0V to 3.6V.  
10.4 AC Electrical Characteristics  
Tests are conducted using the input levels specified in Table 10-5. Unless otherwise specified,  
propagation delays are measured from the 50% to the 50% point, and rise and fall times are  
measured between the 10% and 90% points, as shown in Figure 10-1.  
Low  
VIL  
High  
VIH  
90%  
50%  
10%  
Input Signal  
Midpoint1  
Fall Time  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Rise Time  
Figure 10-1 Input Signal Measurement References  
56F8357 Technical Data  
Preliminary  
129  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Figure 10-2 shows the definitions of the following signal states:  
Active state, when a bus or signal is driven, and enters a low impedance state  
Tri-stated, when a bus or signal is placed in a high impedance state  
Data Valid state, when a signal level has reached V or V  
OL  
OH  
Data Invalid state, when a signal level is in transition between V and V  
OL OH  
Data2 Valid  
Data2  
Data1 Valid  
Data1  
Data3 Valid  
Data3  
Data  
Tri-stated  
Data Invalid State  
Data Active  
Data Active  
Figure 10-2 Signal States  
10.5 Flash Memory Characteristics  
Table 10-12 Flash Timing Parameters  
Characteristic  
Symbol  
Tprog  
Terase  
Tme  
Min  
20  
Typ  
Max  
Unit  
µs  
Program time 1  
Erase time2  
20  
ms  
ms  
Mass erase time  
100  
1. There is additional overhead which is part of the programming sequence. See the DSP56F8300 Peripheral User Manual  
for details. Program time is per 16-bit word in Flash memory. Two words at a time can be programmed within the Program  
Flash module, as it contains two interleaved memories.  
2. Specifies page erase time. There are 512 bytes per page in the Data and Boot Flash memories. The Program Flash mod-  
ule uses two interleaved Flash memories, increasing the effective page size to 1024 bytes.  
130  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
 
Freescale Semiconductor, Inc.  
External Clock Operation Timing  
10.6 External Clock Operation Timing  
1
Table 10-13 External Clock Operation Timing Requirements  
Characteristic  
Symbol  
fosc  
Min  
Typ  
MaxUnit  
Frequency of operation (external clock driver)2  
Clock Pulse Width3  
0
120  
MHz  
ns  
tPW  
3.0  
External clock input rise time4  
trise  
10  
ns  
External clock input fall time5  
tfall  
10  
ns  
1. Parameters listed are guaranteed by design.  
2. See Figure 10-3 for details on using the recommended connection of an external clock driver.  
3. The high or low pulse width must be no smaller than 8.0ns or the chip will not function.  
4. External clock input rise time is measured from 10% to 90%.  
5. External clock input fall time is measured from 90% to 10%.  
VIH  
External  
Clock  
90%  
50%  
10%  
90%  
50%  
10%  
VIL  
tfall  
trise  
tPW  
tPW  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Figure 10-3 External Clock Timing  
10.7 Phase Locked Loop Timing  
Table 10-14 PLL Timing  
Characteristic  
Symbol  
fosc  
Min  
4
Typ  
8
MaxUnit  
External reference crystal frequency for the PLL1  
8
MHz  
MHz  
PLL output frequency2 (fOUT  
PLL stabilization time3 -40° to +125°C  
)
fop  
160  
260  
tplls  
1
10  
ms  
1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work  
correctly. The PLL is optimized for 8MHz input crystal.  
2. ZCLK may not exceed 60MHz. For additional information on ZCLK and (f  
/2), please refer to the OCCS chapter in the  
OUT  
56F8300 Peripheral User Manual.  
3. This is the minimum time required after the PLL set up is changed to ensure reliable operation.  
56F8357 Technical Data  
Preliminary  
131  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
10.8 Crystal Oscillator Timing  
Table 10-15 Crystal Oscillator Parameters  
Characteristic  
Crystal Start-up time  
Symbol  
TCS  
Min  
4
Typ  
5
MaxUnit  
10  
ms  
ms  
ohms  
ps  
Resonator Start-up time  
TRS  
0.1  
0.18  
1
Crystal ESR  
RESR  
TD  
120  
250  
1.5  
Crystal Peak-to-Peak Jitter  
Crystal Min-Max Period Variation  
Resonator Peak-to-Peak Jitter  
Resonator Min-Max Period Variation  
Bias Current, high-drive mode  
Bias Current, low-drive mode  
Quiescent Current, power-down mode  
70  
0.12  
TPV  
ns  
TRJ  
300  
300  
290  
110  
1
ps  
TRP  
ps  
IBIASH  
IBIASL  
IPD  
250  
80  
0
µA  
µA  
µA  
10.9 External Memory Interface Timing  
The External Memory Interface is designed to access static memory and peripheral devices.  
Figure 10-4 shows sample timing and parameters that are detailed in Table 10-16.  
The timing of each parameter consists of both a fixed delay portion and a clock related portion, as  
well as user controlled wait states. The equation:  
t = D + P * (M + W)  
should be used to determine the actual time of each parameter. The terms in this equation are defined  
as:  
t
= Parameter delay time  
D
P
= Fixed portion of the delay, due to on-chip path delays  
= Period of the system clock, which determines the execution rate of the part  
(i.e., when the device is operating at 60MHz, P = 16.67 ns)  
M
W
= Fixed portion of a clock period inherent in the design; this number is adjusted to account  
for possible derating of clock duty cycle  
= Sum of the applicable wait state controls. The “Wait State Controls” column of  
Table 10-16 shows the applicable controls for each parameter and the EMI chapter of the  
56F8300 Peripheral User Manual details what each wait state field controls.  
When using the XTAL clock input directly as the chip clock without prescaling (ZSRC selects  
prescaler clock and prescaler set to 1), the EMI quadrature clock is generated using both edges  
÷
of the EXTAL clock input. In this one situation parameter values need to be adjusted for the duty  
cycle at XTAL. DCAOE and DCAEO are used to make this duty cycle adjustment where needed.  
132  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
External Memory Interface Timing  
DCAOE and DCAEO are calculated as follows:  
DCAOE = 0.5 - MAX XTAL duty cycle, if ZSRC selects prescaler clock and the prescaler is set to  
= 0.0 all other cases  
÷
÷
1
1
DCAEO = MIN XTAL duty cycle - 0.5, if ZSRC selects prescaler clock and the prescaler is set to  
= 0.0 all other cases  
Example of DCAOE and DCAEO calculation:  
Assuming prescaler is set for  
÷ 1 and prescaler clock is selected by ZSRC, if XTAL duty cycle  
ranges between 45% and 60% high;  
DCAOE = .50 - .60 = - 0.1  
DCAEO = .45 - .50 = - 0.05  
The timing of write cycles is different when WWS = 0 than when WWS > 0. Therefore, some  
parameters contain two sets of numbers to account for this difference. Use the “Wait States  
Configuration” column of Table 10-16 to make the appropriate selection.  
A0-Axx,CS  
tRD  
tARDD  
tRDA  
tRDRD  
tARDA  
RD  
tWAC  
tWRRD  
tAWR  
tWRWR  
tWR  
tRDWR  
WR  
tDWR  
tDOH  
tRDD  
tDOS  
Data Out  
tAD  
tDRD  
Data In  
D0-D15  
Note: During read-modify-write instructions and internal instructions, the address lines do not change state.  
Figure 10-4 External Memory Interface Timing  
Note:  
When multiple lines are given for the same wait state configuration, calculate each and then  
select the smallest or most negative.  
56F8357 Technical Data  
Preliminary  
133  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 10-16 External Memory Interface Timing  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98 V, V  
= V  
= 3.0–3.6V, T = –40° to +125°C, C 50pF  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA  
A
L
Wait States  
Configuration  
Wait States  
Controls  
Characteristic  
Symbol  
tAWR  
D
M
Unit  
ns  
WWS=0  
WWS>0  
WWS=0  
WWS>0  
WWS=0  
WWS=0  
WWS>0  
WWS>0  
-1.477  
0.50  
Address Valid to WR Asserted  
WWSS  
WWS  
-1.564 0.75 + DCAOE  
-0.186 0.25 + DCAOE  
WR Width Asserted to WR  
Deasserted  
tWR  
ns  
-0.256  
1.00  
-9.568 0.25 + DCAEO  
Data Out Valid to WR Asserted  
-1.721  
-9.227  
0.00  
0.50  
tDWR  
WWSS  
ns  
-1.808 0.25 + DCAOE  
-2.287 0.25 + DCAEO  
-1.622 0.25 + DCAOE  
Valid Data Out Hold Time after WR  
Deasserted  
tDOH  
WWSH  
WWS,WWSS  
WWSH  
ns  
ns  
ns  
Valid Data Out Set Up Time to WR  
Deasserted  
tDOS  
tWAC  
-9.041  
0.50  
Valid Address after WR  
Deasserted  
-3.918 0.25 + DCAEO  
tRDA  
-2.229  
-1.887  
0.00  
1.00  
RWSH  
ns  
ns  
RD Deasserted to Address Invalid  
Address Valid to RD Deasserted  
tARDD  
RWSS,RWS  
Valid Input Data Hold after RD  
Deasserted  
N/A1  
tDRD  
tRD  
0.00  
RWS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.212  
1.00  
1.00  
RD Assertion Width  
-14.427  
Address Valid to Input Data Valid  
tAD  
RWSS,RWS  
RWSS  
-19.751 1.25 + DCAOE  
tARDA  
tRDD  
tWRRD  
tRDRD  
-2.121  
0.00  
1.00  
Address Valid to RD Asserted  
-12.306  
RD Asserted to Input Data Valid  
RWSS,RWS  
-17.630 1.25 + DCAOE  
-1.923 0.25 + DCAEO  
WWSH,RWSS  
WR Deasserted to RD Asserted  
RD Deasserted to RD Asserted  
RWSS,RWSH  
MDAR3  
-0.2342  
0.00  
WWS=0  
WWS>0  
WWS=0  
WWS>0  
-1.279 0.75 + DCAEO  
WR Deasserted to WR Asserted  
RD Deasserted to WR Asserted  
tWRWR  
WWSS, WWSH  
ns  
ns  
-0.938  
-0.046  
1.00  
0.50  
RWSH, WWSS,  
MDAR3  
tRDWR  
0.052 0.75 + DCAOE  
1.N/A since device captures data before it deasserts RD  
2.If RWSS = RWSH = 0, RD does not deassert during back-to-back reads and D = 0.00 should be used.  
3.Substitute BMDAR for MDAR if there is no chip select  
134  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Reset, Stop, Wait, Mode Select, and Interrupt Timing  
10.10 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
1,2  
Table 10-17 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Typical  
Min  
Typical  
Max  
Characteristic  
Symbol  
Unit  
See Figure  
10-5  
RESET Assertion to Address, Data and  
Control Signals High Impedance  
tRAZ  
21  
ns  
Minimum RESET Assertion Duration  
tRA  
16T  
63T  
ns  
ns  
10-5  
10-5  
RESET Deassertion to First External Address  
Output3  
tRDA  
64T  
Edge-sensitive Interrupt Request Width  
tIRW  
tIDM  
1.5T  
18  
ns  
ns  
10-6  
10-7  
IRQA, IRQB Assertion to External Data  
Memory Access Out Valid, caused by first  
instruction execution in the interrupt service  
routine  
tIDM - FAST  
14  
IRQA, IRQB Assertion to General Purpose  
Output Valid, caused by first instruction  
execution in the interrupt service routine  
tIG  
tIG - FAST  
tIRI  
18  
14  
ns  
ns  
ns  
ns  
10-7  
10-8  
10-9  
10-9  
Delay from IRQA Assertion (exiting Wait) tto  
External Data Memory Access4  
22  
tIRI -FAST  
tIF  
18  
Delay from IRQA Assertion to External Data  
Memory Access (exiting Stop)  
tIF - FAST  
tIW  
IRQA Width Assertion to Recover from Stop  
State5  
1.5T  
1. In the formulas, T = clock cycle. For an operating frequency of 60MHz, T = 16.67ns. At 8MHz (used during Reset and Stop  
modes), T = 125ns.  
2. Parameters listed are guaranteed by design.  
21  
3. During Power-On Reset, it is possible to use the 56F8357 internal reset stretching circuitry to extend this period to 2 T.  
4. The minimum is specified for the duration of an edge-sensitive IRQA interrupt required to recover from the Stop state. This  
is not the minimum required so that the IRQA interrupt is accepted.  
5. The interrupt instruction fetch is visible on the pins only in Mode 3.  
56F8357 Technical Data  
Preliminary  
135  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
RESET  
tRA  
tRAZ  
tRDA  
First Fetch  
A0–A15,  
D0–D15  
PS, DS,  
RD, WR  
First Fetch  
Figure 10-5 Asynchronous Reset Timing  
IRQA,  
IRQB  
tIRW  
Figure 10-6 External Interrupt Timing (Negative-Edge Sensitive)  
A0–A15,  
PS, DS,  
RD, WR  
First Interrupt Instruction Execution  
tIDM  
IRQA,  
IRQB  
a) First Interrupt Instruction Execution  
General  
Purpose  
I/O Pin  
tIG  
IRQA,  
IRQB  
b) General Purpose I/O  
Figure 10-7 External Level-Sensitive Interrupt Timing  
136  
56F8357 Technical Data  
Preliminary  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI) Timing  
IRQA,  
IRQB  
tIRI  
A0–A15,  
PS, DS,  
RD, WR  
First Interrupt Vector  
Instruction Fetch  
Figure 10-8 Interrupt from Wait State Timing  
tIW  
IRQA  
tIF  
A0–A15,  
PS, DS,  
RD, WR  
First Instruction Fetch  
Not IRQA Interrupt Vector  
Figure 10-9 Recovery from Stop State Using Asynchronous Interrupt Timing  
10.11 Serial Peripheral Interface (SPI) Timing  
1
Table 10-18 SPI Timing  
Characteristic  
Symbol  
Min  
MaxUnit  
See  
Figure  
Cycle time  
Master  
Slave  
tC  
10-10, 10-11,  
10-12, 10-13  
50  
50  
ns  
ns  
Enable lead time  
Master  
Slave  
tELD  
tELG  
tCH  
tCL  
10-13  
10-13  
25  
ns  
ns  
Enable lag time  
Master  
Slave  
100  
ns  
ns  
Clock (SCK) high time  
Master  
Slave  
10-10, 10-11,  
10-12, 10-13  
17.6  
25  
ns  
ns  
Clock (SCK) low time  
Master  
Slave  
10-13  
24.1  
25  
ns  
ns  
Data set-up time required for inputs  
Master  
Slave  
tDS  
10-10, 10-11,  
10-12, 10-13  
20  
0
ns  
ns  
56F8357 Technical Data  
Preliminary  
137  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
1
Table 10-18 SPI Timing (Continued)  
Characteristic  
Symbol  
Min  
MaxUnit  
See  
Figure  
Data hold time required for inputs  
Master  
Slave  
tDH  
10-10, 10-11,  
10-12, 10-13  
0
2
ns  
ns  
Access time (time to data active from  
high-impedance state)  
Slave  
tA  
10-13  
10-13  
4.8  
3.7  
15  
ns  
ns  
Disable time (hold time to high-impedance state)  
Slave  
tD  
15.2  
Data Valid for outputs  
Master  
Slave (after enable edge)  
tDV  
10-10, 10-11,  
10-12, 10-13  
4.5  
20.4  
ns  
ns  
Data invalid  
Master  
Slave  
tDI  
tR  
tF  
10-10, 10-11,  
0
0
ns  
ns  
10-12  
Rise time  
Master  
Slave  
10-10, 10-11,  
10-12, 10-13  
11.5  
10.0  
ns  
ns  
Fall time  
Master  
Slave  
10-10, 10-11,  
10-12, 10-13  
9.7  
9.0  
ns  
ns  
1. Parameters listed are guaranteed by design.  
138  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI) Timing  
SS  
(Input)  
SS is held High on master  
tC  
tR  
tF  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tF  
tR  
tCL  
SCLK (CPOL = 1)  
(Output)  
tDH  
tCH  
tDS  
MISO  
MSB in  
tDI  
Bits 14–1  
tDV  
Bits 14–1  
LSB in  
tDI(ref)  
(Input)  
MOSI  
Master MSB out  
tF  
Master LSB out  
tR  
(Output)  
Figure 10-10 SPI Master Timing (CPHA = 0)  
SS  
(Input)  
SS is held High on master  
tC  
tF  
tR  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tF  
tCL  
SCLK (CPOL = 1)  
(Output)  
tCH  
tDS  
tR  
tDH  
MISO  
MSB in  
tDI  
Bits 14–1  
tDV  
Bits 14– 1  
LSB in  
tDI(ref)  
(Input)  
tDV(ref)  
MOSI  
Master MSB out  
tF  
Master LSB out  
tR  
(Output)  
Figure 10-11 SPI Master Timing (CPHA = 1)  
56F8357 Technical Data  
Preliminary  
139  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
SS  
(Input)  
tC  
tF  
tELG  
tCL  
tR  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tCH  
tF  
tA  
tR  
tD  
MISO  
Slave MSB out  
Bits 14–1  
tDV  
Slave LSB out  
tDI  
(Output)  
tDS  
tDI  
tDH  
MOSI  
MSB in  
Bits 14–1  
LSB in  
(Input)  
Figure 10-12 SPI Slave Timing (CPHA = 0)  
SS  
(Input)  
tF  
tC  
tR  
tCL  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELG  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tDV  
tCH  
tR  
tD  
Slave LSB out  
tDI  
tA  
tF  
MISO  
Slave MSB out  
Bits 14–1  
tDV  
(Output)  
tDS  
tDH  
MOSI  
MSB in  
Bits 14–1  
LSB in  
(Input)  
Figure 10-13 SPI Slave Timing (CPHA = 1)  
140  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Quad Timer Timing  
10.12 Quad Timer Timing  
1, 2  
Table 10-19 Timer Timing  
Characteristic  
Timer input period  
Symbol  
PIN  
Min  
MaxUnit  
See  
ns  
Figure  
10-14  
2T + 6  
1T + 3  
1T - 3  
Timer input high / low period  
Timer output period  
PINHL  
POUT  
ns  
10-14  
ns  
10-14  
Timer output high / low period  
POUTHL  
0.5T - 3  
ns  
10-14  
1. In the formulas listed, T = the clock cycle. For 60MHz operation, T = 16.67ns.  
2. Parameters listed are guaranteed by design.  
Timer Inputs  
PINHL  
PINHL  
PIN  
Timer Outputs  
POUTHL  
POUTHL  
POUT  
Figure 10-14 Timer Timing  
10.13 Quadrature Decoder Timing  
1, 2  
Table 10-20 Quadrature Decoder Timing  
Characteristic  
Symbol  
PIN  
Min  
MaxUnit  
See  
Figure  
10-15  
Quadrature input period  
4T + 12  
2T + 6  
1T + 3  
ns  
Quadrature input high / low period  
Quadrature phase period  
PHL  
ns  
ns  
10-15  
PPH  
10-15  
1. In the formulas listed, T = the clock cycle. For 60MHz operation, T=16.67ns.  
2. Parameters listed are guaranteed by design.  
56F8357 Technical Data  
Preliminary  
141  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
PPH PPH PPH PPH  
Phase A  
(Input)  
PHL  
PIN  
PHL  
Phase B  
(Input)  
PHL  
PIN  
PHL  
Figure 10-15 Quadrature Decoder Timing  
10.14 Serial Communication Interface (SCI) Timing  
1
Table 10-21 SCI Timing  
Operating Conditions: V = V  
= 0V, V  
= V  
= V  
= 3.0–3.6V, T = –40° to +125°C, C 50pF  
SS  
SSA_ADC  
DD_IO  
DDA_ADC  
DDA_OSC_PLL A L  
Characteristic  
Baud Rate2  
Symbol  
BR  
Min  
MaxUnit  
(fMAX/16)  
1.04/BR  
See  
Mbps  
ns  
Figure  
RXD3 Pulse Width  
TXD4 Pulse Width  
RXDPW  
TXDPW  
0.965/BR  
0.965/BR  
10-16  
1.04/BR  
ns  
10-17  
1. Parameters listed are guaranteed by design.  
2. is the frequency of operation of the system clock, ZCLK, in MHz, which is 60MHz for the 56F8357 device.  
f
MAX  
3. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.  
4. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.  
RXD  
SCI receive  
data pin  
RXDPW  
(Input)  
Figure 10-16 RXD Pulse Width  
TXD  
SCI receive  
data pin  
TXDPW  
(Input)  
Figure 10-17 TXD Pulse Width  
142  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
 
 
Freescale Semiconductor, Inc.  
Controller Area Network (CAN) Timing  
10.15 Controller Area Network (CAN) Timing  
1
Table 10-22 CAN Timing  
Characteristic  
Baud Rate  
Bus Wake Up detection  
Symbol  
BRCAN  
Min  
MaxUnit  
See  
Mbps  
µs  
Figure  
1
5
T WAKEUP  
10-18  
1. Parameters listed are guaranteed by design  
CAN_RX  
CAN receive  
data pin  
T WAKEUP  
(Input)  
Figure 10-18 Bus Wakeup Detection  
10.16 JTAG Timing  
Table 10-23 JTAG Timing  
Operating Conditions: V = V  
SS  
= 0V, V  
= V  
= V  
= 3.0–3.6V, T = –40  
°
to +125°C, C 50pF  
L
SSA_ADC  
DD_IO  
DDA_ADC  
DDA_OSC_PLL  
A
Characteristic  
Symbol  
Min  
MaxUnit  
SYS_CLK/8  
See  
Figure  
10-19  
TCK frequency of operation  
using EOnCE1  
fOP  
DC  
DC  
MHz  
MHz  
TCK frequency of operation not  
using EOnCE1  
fOP  
SYS_CLK/4  
10-19  
TCK clock pulse width  
TMS, TDI data set-up time  
TMS, TDI data hold time  
TCK low to TDO data valid  
TCK low to TDO tri-state  
TRST assertion time  
tPW  
tDS  
50  
5
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
10-19  
10-20  
10-20  
10-20  
10-20  
10-21  
tDH  
5
tDV  
tTS  
2T2  
tTRST  
1. TCK frequency of operation must be less than 1/8 the processor rate.  
2. T = processor clock period (nominally 1/60MHz)  
56F8357 Technical Data  
Preliminary  
143  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
1/fOP  
tPW  
tPW  
VIH  
VM  
VM  
TCK  
(Input)  
VIL  
VM = VIL + (VIH – VIL)/2  
Figure 10-19 Test Clock Input Timing Diagram  
TCK  
(Input)  
tDS  
tDH  
TDI  
TMS  
Input Data Valid  
(Input)  
tDV  
TDO  
(Output)  
Output Data Valid  
tTS  
TDO  
(Output)  
tDV  
TDO  
(Output)  
Output Data Valid  
Figure 10-20 Test Access Port Timing Diagram  
TRST  
(Input)  
tTRST  
Figure 10-21 TRST Timing Diagram  
144  
56F8357 Technical Data  
Preliminary  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Analog-to-Digital Converter (ADC) Parameters  
10.17 Analog-to-Digital Converter (ADC) Parameters  
Table 10-24 ADC Parameters  
Characteristic  
Input voltages  
Symbol  
VADIN  
RES  
Min  
VREFL  
12  
Typ  
MaxUnit  
VREFH  
12  
V
Resolution  
Bits  
Integral Non-Linearity1  
Differential Non-Linearity  
LSB2  
LSB2  
INL  
+/- 1  
> -1  
+/- 2.4  
+/- 0.7  
+/- 3.2  
< +1  
DNL  
Monotonicity  
GUARANTEED  
ADC internal clock  
fADIC  
RAD  
0.5  
VREFL  
5
5
MHz  
V
Conversion range  
6
VREFH  
16  
tAIC cycles3  
ms  
ADC channel power-up time  
tADPU  
ADC reference circuit power-up time4  
Conversion time  
tVREF  
tADC  
6
25  
tAIC cycles3  
tAIC cycles3  
Sample time  
tADS  
1
Input capacitance  
CADI  
IADI  
.99  
5
3
pF  
mA  
mA  
mA  
mA  
Input injection current5, per pin  
Input injection current, total  
IADIT  
20  
VREFH current  
IVREFH  
IADCA  
IADCB  
IADCQ  
EGAIN  
VOFFSET  
AECAL  
CF1  
1.2  
3
ADC A current  
25  
25  
ADC B current  
mA  
µA  
Quiescent current  
Uncalibrated Gain Error  
Uncalibrated Offset Voltage  
0
10  
.996 to 1.004  
+/- 18  
1.01  
+/- 30  
mV  
LSBs  
Calibrated Absolute Error6  
Calibration Factor 17  
See Figure 10-22  
0.010380  
-31.7  
Calibration Factor 27  
CF2  
Crosstalk between channels  
Common Mode Voltage  
-60  
dB  
V
Vcommon  
(VREFH - VREFLO) / 2  
Signal-to-noise ratio  
SNR  
64.6  
SINAD—  
60.6  
59.1  
db  
Signal-to-noise  
plus  
distortion  
ratio  
db  
Total Harmonic Distortion  
THD  
SFDR  
ENOB  
db  
Spurious Free Dynamic Range  
61.1  
db  
Effective Number Of Bits8  
9.6  
Bits  
56F8357 Technical Data  
Preliminary  
145  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
1. INL measured from V = .1V  
to V = .9V  
in REFH  
in  
REFH  
10% to 90% Input Signal Range  
2. LSB = Least Significant Bit  
3. ADC clock cycles  
4. Assumes each voltage reference pin is bypassed with 0.1µF ceramic capacitors to ground  
5. The current that can be injected or sourced from an unselected ADC signal input without impacting the performance of  
the ADC. This allows the ADC to operate in noisy industrial environments where inductive flyback is possible.  
6. Absolute error includes the effects of both gain error and offset error.  
7. Please see the 56F8300 Peripheral User’s Manual for additional information on ADC calibration.  
8. ENOB = (SINAD - 1.76)/6.02  
Figure 10-22 ADC Absolute Error Over Processing and Temperature Extremes  
Before and After Calibration for VDC = 0.60V and 2.70V  
in  
Note: The absolute error data shown in the graphs above reflects the effects of both gain error and  
offset error. The data was taken on 14 parts: three each from three processing corner lots and two  
from the fourth processing corner lot, as well as three from one nominally processed lot, each at  
three temperatures: -40°C, 27°C, and 150°C (giving the 42 data points shown above), for two input  
DC voltages: 0.60V and 2.70V. The data indicates that for the given population of parts, calibration  
significantly reduced (by as much as 28%) the collective variation (spread) of the absolute error of  
the population. It also significantly reduced (by as much as 80%) the mean (average) of the  
146  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Equivalent Circuit for ADC Inputs  
absolute error and thereby brought it significantly closer to the ideal value of zero. Although not  
guaranteed, it is believed that calibration will produce results similar to those shown above for any  
population of parts, including those which represent processing and temperature extremes.  
10.18 Equivalent Circuit for ADC Inputs  
Figure 10-23 illustrates the ADC input circuit during sample & hold. S1 and S2 are always  
open/closed at the same time that S3 is closed/open. When S1/S2 are closed & S3 is open, one input  
of the sample and hold circuit moves to V  
- V  
/ 2, while the other charges to the analog  
REFH  
REFH  
input voltage. When the switches are flipped, the charge on C1 and C2 are averaged via S3, with  
the result that a single-ended analog input is switched to a differential voltage centered about  
V
- V  
/ 2. The switches switch on every cycle of the ADC clock (open one-half ADC  
REFH  
REFH  
clock, closed one-half ADC clock). Note that there are additional capacitances associated with the  
analog input pad, routing, etc., but these do not filter into the S/H output voltage, as S1 provides  
isolation during the charge-sharing phase.  
One aspect of this circuit is that there is an on-going input current, which is a function of the analog  
input voltage, V  
and the ADC clock frequency.  
REF  
Analog Input  
3
4
S1  
C1  
C2  
S/H  
S3  
VREFH - VREFH / 2  
S2  
2
1
C1 = C2 = 1pF  
1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling; 1.8pf  
2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing; 2.04pf  
3. Equivalent resistance for the ESD isolation resistor and the channel select mux; 500 ohms  
4. Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input and is  
only connected to it at sampling time; 1pf  
Figure 10-23 Equivalent Circuit for A/D Loading  
10.19 Power Consumption  
This section provides additional detail which can be used to optimize power consumption for a  
given application.  
Power consumption is given by the following equation:  
Total power =  
A: internal [static component]  
+ B: internal [state-dependent component]  
+ C: internal [dynamic component]  
+ D: external [dynamic component]  
+ E: external [static]  
A, the internal [static component], is comprised of the DC bias currents for the oscillator, leakage  
current, PLL, and voltage references. These sources operate independently of processor state or  
operating frequency.  
56F8357 Technical Data  
Preliminary  
147  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
B, the internal [state-dependent component], reflects the supply current required by certain on-chip  
resources only when those resources are in use. These include RAM, Flash memory and the ADCs.  
2
C, the internal [dynamic component], is classic C*V *F CMOS power dissipation corresponding  
to the 56800E core and standard cell logic.  
D, the external [dynamic component], reflects power dissipated on-chip as a result of capacitive  
2
loading on the external pins of the chip. This is also commonly described as C*V *F, although  
simulations on two of the IO cell types used on the 56F8357 reveal that the power-versus-load  
curve does have a non-zero Y-intercept.  
Table 10-25 IO Loading Coefficients at 10MHz  
Intercept  
Slope  
PDU08DGZ_ME  
PDU04DGZ_ME  
1.3  
0.11mW / pF  
0.11mW / pF  
1.15mW  
Power due to capacitive loading on output pins is (first order) a function of the capacitive load and  
frequency at which the outputs change. Table 10-25 provides coefficients for calculating power  
dissipated in the IO cells as a function of capacitive load. In these cases:  
TotalPower = Σ((Intercept +Slope*Cload)*frequency/10MHz)  
where:  
Summation is performed over all output pins with capacitive loads  
TotalPower is expressed in mW  
Cload is expressed in pF  
Because of the low duty cycle on most device pins, power dissipation due to capacitive loads was  
found to be fairly low when averaged over a period of time. The one possible exception to this is  
if the chip is using the external address and data buses at a rate approaching the maximum system  
rate. In this case, power from these buses can be significant.  
E, the external [static component], reflects the effects of placing resistive loads on the outputs of  
2
the device. Sum the total of all V /R or IV to arrive at the resistive load contribution to power.  
Assume V = 0.5 for the purposes of these rough calculations. For instance, if there is a total of 8  
PWM outputs driving 10mA into LEDs, then P = 8*.5*.01 = 40mW.  
In previous discussions, power consumption due to parasitics associated with pure input pins is  
ignored, as it is assumed to be negligible.  
148  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
 
Freescale Semiconductor, Inc.  
Package and Pin-Out Information 56F8357  
Part 11 Packaging  
11.1 Package and Pin-Out Information 56F8357  
This section contains package and pin-out information for the 56F8357. This device comes in a  
160-pin Low-profile Quad Flat Pack (LQFP). Figure 11-1 shows the package outline for the  
160-pin LQFP package, Figure 11-2 shows the mechanical parameters for this package, and  
Table 11-1 lists the pin-out for the 160-pin LQFP.  
Orientation Mark  
V
ANB4  
DD_IO  
V
2
ANB3  
ANB2  
ANB1  
ANB0  
PP  
CLKO  
TXD0  
RXD0  
121  
Pin 1  
PHASEA1  
V
SSA_ADC  
PHASEB1  
INDEX1  
V
V
DDA_ADC  
REFH  
Motorola  
56F8357  
HOME1  
A1  
V
V
V
V
REFP  
REFMID  
REFN  
A2  
A3  
A4  
A5  
REFLO  
TEMP_SENSE  
ANA7  
ANA6  
ANA5  
V
4
CAP  
V
DD_IO  
A6  
ANA4  
A7  
A8  
ANA3  
ANA2  
A9  
ANA1  
A10  
A11  
A12  
A13  
ANA0  
CLKMODE  
RESET  
RSTO  
V
V
A14  
A15  
DD_IO  
3
CAP  
V
EXTAL  
XTAL  
VDDA_OSC_PL  
OCR_DIS  
D6  
SS  
D7  
D8  
D9  
V
DD_IO  
D10  
D5  
GPIOB0  
GPIOB1  
GPIOB2  
GPIOB3  
GPIOB4  
D4  
FAULTA3  
D3  
FAULTA2  
FAULTA1  
PWMB0  
PWMB1  
PWMB2  
81  
D2  
41  
FAULTA0  
PWMA5  
Figure 11-1 Top View, 56F8357 160-Pin LQFP Package  
56F8357 Technical Data  
Preliminary  
149  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Table 11-1 56F8357 160-Pin LQFP Package Identification by Pin Number  
Signal  
Name  
Pin No.  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
1
2
VDD_IO  
41  
42  
VSS  
81  
82  
PWMA5  
121  
122  
ANB5  
ANB6  
VPP2  
VDD_IO  
FAULTA0  
3
4
5
CLKO  
TXD0  
RXD0  
43  
44  
45  
PWMB3  
PWMB4  
PWMB5  
83  
84  
85  
D2  
123  
124  
125  
ANB7  
EXTBOOT  
VSS  
FAULTA1  
FAULTA2  
6
7
PHASEA1  
PHASEB1  
INDEX1  
HOME1  
A1  
46  
47  
48  
49  
50  
51  
52  
GPIOB5  
GPIOB6  
GPIOB7  
TXD1  
RXD1  
WR  
86  
87  
88  
89  
90  
91  
92  
D3  
FAULTA3  
D4  
126  
127  
128  
129  
130  
131  
132  
ISA0  
ISA1  
ISA2  
TD0  
TD1  
TD2  
TD3  
8
9
D5  
10  
11  
12  
D6  
A2  
OCR_DIS  
VDDA_OSC_PLL  
A3  
RD  
13  
14  
A4  
A5  
53  
54  
PS  
DS  
93  
94  
XTAL  
133  
134  
TC0  
EXTAL  
VDD_IO  
15  
16  
VCAP4*  
VDD_IO  
55  
56  
GPIOD0  
GPIOD1  
95  
96  
VCAP3*  
VDD_IO  
135  
136  
TC1  
TRST  
17  
18  
19  
20  
21  
A6  
A7  
57  
58  
59  
60  
61  
GPIOD2  
GPIOD3  
GPIOD4  
GPIOD5  
ISB0  
97  
98  
RSTO  
RESET  
CLKMODE  
ANA0  
137  
138  
139  
140  
141  
TCK  
TMS  
TDI  
A8  
99  
A9  
100  
101  
TDO  
A10  
ANA1  
VPP1  
22  
A11  
62  
V
CAP1*  
102  
ANA2  
142  
CAN_TX  
23  
24  
A12  
A13  
63  
64  
ISB1  
ISB2  
103  
104  
ANA3  
ANA4  
143  
144  
CAN_RX  
VCAP2*  
25  
26  
27  
A14  
A15  
VSS  
65  
66  
67  
IRQA  
IRQB  
105  
106  
107  
ANA5  
ANA6  
ANA7  
145  
146  
147  
SS0  
SCLK0  
MISO0  
FAULTB0  
28  
29  
D7  
D8  
68  
69  
FAULTB1  
FAULTB2  
108  
109  
TEMP_SENSE  
VREFLO  
148  
149  
MOSI0  
D11  
* When the on-chip regulator is disabled, these four pins become 2.5V V  
.
DD_CORE  
150  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Package and Pin-Out Information 56F8357  
Table 11-1 56F8357 160-Pin LQFP Package Identification by Pin Number  
Signal  
Name  
Pin No.  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
30  
31  
32  
33  
34  
35  
D9  
70  
71  
72  
73  
74  
75  
D0  
D1  
110  
111  
112  
113  
114  
115  
VREFN  
VREFMID  
VREFP  
150  
151  
152  
153  
154  
155  
D12  
D13  
VDD_IO  
D10  
FAULTB3  
PWMA0  
VSS  
D14  
GPIOB0  
GPIOB1  
GPIOB2  
VREFH  
D15  
VDDA_ADC  
VSSA_ADC  
A0  
PWMA1  
PHASEA0  
36  
37  
GPIOB3  
GPIOB4  
76  
77  
PWMA2  
VDD_IO  
116  
117  
ANB0  
ANB1  
156  
157  
PHASEB0  
INDEX0  
38  
39  
40  
PWMB0  
PWMB1  
PWMB2  
78  
79  
80  
PWMA3  
PWMA4  
VSS  
118  
119  
120  
ANB2  
ANB3  
ANB4  
158  
159  
160  
HOME0  
EMI_MODE  
VSS  
56F8357 Technical Data  
Preliminary  
151  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
160X  
0.20 C A-B D  
D
b
GG  
D
2
6
D
(b)  
SECTION G-G  
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
3. DATUMS A, B, AND D TO BE DETERMINED  
WHERE THE LEADS EXIT THE PLASTICBODY  
AT DATUM PLANE H.  
4. DIMENSIONS D1 AND E1 DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE  
PROTRUSION IS 0.25mm PER SIDE.  
DIMENSIONS D1 AND E1 ARE MAXIMUM  
PLASTIC BODY SIZE DIMENSIONS  
INCLUDING MOLD MISMATCH.  
D1  
2
5. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL NOT CAUSE THE LEAD  
WIDTH TO EXCEED THE MAXIMUM b  
DIMENSION BY MORE THAN 0.08mm.  
DAMBAR CAN NOT BE LOCATED ON THE  
LOWER RADIUS OR THE FOOT. MINIMUM  
SPACE BETWEEN A PROTRUSION AND AN  
ADJACENT LEAD IS 0.07mm.  
D1  
4X  
0.20 H A-B D  
DETAIL F  
6. EXACT SHAPE OF CORNERS MAY VARY.  
0.08 C  
156X e  
C
MILLIMETERS  
DIM MIN MAX  
4X e/2  
SEATING  
PLANE  
160X e  
A
A1  
A2  
b
b1  
c
c1  
D
D1  
e
---  
0.05  
1.35  
0.17  
0.17  
0.09  
0.09  
1.60  
0.15  
1.45  
0.27  
0.23  
0.20  
0.16  
M
0.08  
C A-B D  
θ2  
θ1  
H
26.00 BSC  
24.00 BSC  
0.50 BSC  
R1  
R2  
E
E1  
L
26.00 BSC  
24.00 BSC  
0.45  
0.75  
L1  
R1  
R2  
S
1.00 REF  
θ3  
0.25  
0.08  
0.08  
0.20  
---  
0.20  
---  
θ
GAGE  
PLANE  
S
L
(L1)  
θ
0
0
11  
11  
7
---  
13  
13  
°
°
°
°
°
θ 1  
θ 2  
θ 3  
°
°
DETAIL F  
CASE 1259-01  
ISSUE O  
Figure 11-2 56F8357 160-pin LQFP Mechanical Information  
152  
56F8357 Technical Data  
Preliminary  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Thermal Design Considerations  
Part 12 Design Considerations  
12.1 Thermal Design Considerations  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
θJΑ x P )  
D
J
A
where:  
o
T
R
= Ambient temperature for the package ( C)  
A
o
= Junction-to-ambient thermal resistance ( C/W)  
θJΑ  
P
= Power dissipation in the package (W)  
D
The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and  
easy estimation of thermal performance. Unfortunately, there are two values in common usage: the  
value determined on a single-layer board and the value obtained on a board with two planes. For  
packages such as the PBGA, these values can be different by a factor of two. Which value is closer  
to the application depends on the power dissipated by other components on the board. The value  
obtained on a single-layer board is appropriate for the tightly packed printed circuit board. The  
value obtained on the board with the internal planes is usually appropriate if the board has  
low-power dissipation and the components are well separated.  
When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case  
thermal resistance and a case-to-ambient thermal resistance:  
R
R
R
θJΑ = θJΧ + θCΑ  
where:  
R
R
R
= Package junction-to-ambient thermal resistance °C/W  
= Package junction-to-case thermal resistance °C/W  
= Package case-to-ambient thermal resistance °C/W  
θJA  
θJC  
θCA  
R θJC is device-related and cannot be influenced by the user. The user controls the thermal  
environment to change the case-to-ambient thermal resistance, R θCA . For instance, the user can  
change the size of the heat sink, the air flow around the device, the interface material, the mounting  
arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board  
surrounding the device.  
To determine the junction temperature of the device in the application when heat sinks are not used,  
the Thermal Characterization Parameter (Ψ ) can be used to determine the junction temperature  
JT  
with a measurement of the temperature at the top center of the package case using the following  
equation:  
T = T + (Ψ x P )  
J
T
JT  
D
where:  
o
T
Ψ
= Thermocouple temperature on top of package ( C)  
= Thermal characterization parameter ( C)/W  
T
o
JT  
P
= Power dissipation in package (W)  
D
56F8357 Technical Data  
Preliminary  
153  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge  
type T thermocouple epoxied to the top center of the package case. The thermocouple should be  
positioned so that the thermocouple junction rests on the package. A small amount of epoxy is  
placed over the thermocouple junction and over about 1mm of wire extending from the junction.  
The thermocouple wire is placed flat against the package case to avoid measurement errors caused  
by cooling effects of the thermocouple wire.  
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the  
interface between the case of the package and the interface material. A clearance slot or hole is  
normally required in the heat sink. Minimizing the size of the clearance is important to minimize  
the change in thermal performance caused by removing part of the thermal interface to the heat  
sink. Because of the experimental difficulties with this technique, many engineers measure the heat  
sink temperature and then back-calculate the case temperature using a separate measurement of the  
thermal resistance of the interface. From this case temperature, the junction temperature is  
determined from the junction-to-case thermal resistance.  
12.2 Electrical Design Considerations  
CAUTION  
This device contains protective circuitry to guard  
against damage due to high static voltage or electrical  
fields. However, normal precautions are advised to  
avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit.  
Reliability of operation is enhanced if unused inputs are  
tied to an appropriate voltage level.  
Use the following list of considerations to assure correct operation:  
Provide a low-impedance path from the board power supply to each V pin on the hybrid  
DD  
controller, and from the board ground to each V (GND) pin  
SS  
The minimum bypass requirement is to place six 0.01–0.1µF capacitors positioned as close as  
possible to the package supply pins. The recommended bypass configuration is to place one bypass  
capacitor on each of the V /V pairs, including V  
/V  
Ceramic and tantalum capacitors  
DD SS  
DDA SSA.  
tend to provide better performance tolerances.  
Ensure that capacitor leads and associated printed circuit traces that connect to the chip V and  
DD  
V
(GND) pins are less than 0.5 inch per capacitor lead  
SS  
Use at least a four-layer Printed Circuit Board (PCB) with two inner layers for V and V  
DD SS  
Bypass the V and V layers of the PCB with approximately 100µF, preferably with a high-grade  
DD  
SS  
capacitor such as a tantalum capacitor  
Because the 56F8357’s output signals have fast rise and fall times, PCB trace lengths should be  
minimal  
Consider all device loads as well as parasitic capacitance due to PCB traces when calculating  
capacitance. This is especially critical in systems with higher capacitive loads that could create  
higher transient currents in the V and V circuits.  
DD  
SS  
154  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Power Distribution and I/O Ring Implementation  
Take special care to minimize noise levels on the V , V  
and V  
pins  
SSA  
REF DDA  
Designs that utilize the TRST pin for JTAG port or EOnCE module functionality (such as  
development or debugging systems) should allow a means to assert TRST whenever RESET is  
asserted, as well as a means to assert TRST independently of RESET. Designs that do not require  
debugging functionality, such as consumer products, should tie these pins together.  
Because the Flash memory is programmed through the JTAG/EOnCE port, the designer should  
provide an interface to this port to allow in-circuit Flash programming  
12.3 Power Distribution and I/O Ring Implementation  
Figure 12-1 illustrates the general power control incorporated in the 56F8357. This chip contains  
an internal regulator which cannot be disabled. The regulator takes regulated 3.3V power from the  
V
pins and provides 2.5V to the internal logic of the chip. This means the entire part is  
DD_IO  
powered from the 3.3V supply.  
Notes:  
Flash, RAM and internal logic are powered from the core regulator output  
V 1 and V 2 are not connected in the customer system  
PP  
PP  
All circuitry, analog and digital, shares a common V bus  
SS  
VDDA_OSC_PLL  
VDD  
VDDA_ADC  
VREFH  
VREFP  
VREFMID  
VREFN  
VREFLO  
VCAP  
REG  
REG  
OCS  
I/O  
ADC  
CORE  
ROSC  
VSS  
VSSA_ADC  
Figure 12-1 56F8357 Power Management  
56F8357 Technical Data  
Preliminary  
155  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Part 13 Ordering Information  
Table 13-1 lists the pertinent information needed to place an order. Consult a Motorola  
Semiconductor sales office or authorized distributor to determine availability and to order parts.  
Table 13-1 56F8357 Ordering Information  
Supply  
Voltage  
Pin  
Count  
Frequency  
(MHz)  
Temperature  
Range  
Part  
Package Type  
Order Number  
MC56F8357  
MC56F8357  
3.0–3.6 V  
3.0–3.6 V  
160  
160  
60  
60  
-40° to + 105° C  
-40° to + 125° C  
MC56F8357VPY60  
MC56F8357MPY60  
Low-Profile Quad Flat Pack (LQFP)  
Low-Profile Quad Flat Pack (LQFP)  
156  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
 
Freescale Semiconductor, Inc.  
Power Distribution and I/O Ring Implementation  
56F8357 Technical Data  
Preliminary  
157  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
158  
56F8357 Technical Data  
For More Information On This Product,  
Go to: www.freescale.com  
Preliminary  
Freescale Semiconductor, Inc.  
Power Distribution and I/O Ring Implementation  
56F8357 Technical Data  
Preliminary  
159  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
HOW TO REACH US:  
USA/EUROPE/LOCATIONS NOT LISTED:  
Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217  
1-303-675-2140 or 1-800-441-2447  
JAPAN:  
Motorola Japan Ltd.; SPS, Technical Information Center,  
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan  
81-3-3440-3569  
ASIA/PACIFIC:  
Information in this document is provided solely to enable system and software  
implementers to use Motorola products. There are no express or implied copyright licenses  
granted hereunder to design or fabricate any integrated circuits or integrated circuits based  
on the information in this document.  
Motorola Semiconductors H.K. Ltd.;  
Silicon Harbour Centre, 2 Dai King Street,  
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong  
852-26668334  
Motorola reserves the right to make changes without further notice to any products herein.  
Motorola makes no warranty, representation or guarantee regarding the suitability of its  
products for any particular purpose, nor does Motorola assume any liability arising out of  
the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation consequential or incidental damages. “Typical”  
parameters which may be provided in Motorola data sheets and/or specifications can and  
do vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals” must be validated for each customer application by  
customer’s technical experts. Motorola does not convey any license under its patent rights  
nor the rights of others. Motorola products are not designed, intended, or authorized for use  
as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the  
Motorola product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use Motorola products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Motorola and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
TECHNICAL INFORMATION CENTER:  
1-800-521-6274  
HOME PAGE:  
http://motorola.com/semiconductors  
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office.  
digital dna is a trademark of Motorola, Inc. This product incorporates SuperFlash®  
technology licensed from SST. All other product or service names are the property of their  
respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
© Motorola, Inc. 2004  
MC56F8357/D  
For More Information On This Product,  
Go to: www.freescale.com  

相关型号:

ST62P09LD1/OTP

8-BIT MCUs WITH A/D CONVERTER, TWO TIMERS, OSCILLATOR SAFEGUARD & SAFE RESET
STMICROELECTR

ST62P09LD3/OTP

8-BIT MCUs WITH A/D CONVERTER, TWO TIMERS, OSCILLATOR SAFEGUARD & SAFE RESET
STMICROELECTR

ST62P09LD6/OTP

8-BIT MCUs WITH A/D CONVERTER, TWO TIMERS, OSCILLATOR SAFEGUARD & SAFE RESET
STMICROELECTR

ST62P09LM1/OTP

8-BIT MCUs WITH A/D CONVERTER, TWO TIMERS, OSCILLATOR SAFEGUARD & SAFE RESET
STMICROELECTR

ST62P09LM3/OTP

8-BIT MCUs WITH A/D CONVERTER, TWO TIMERS, OSCILLATOR SAFEGUARD & SAFE RESET
STMICROELECTR

ST62P09LM6/OTP

8-BIT MCUs WITH A/D CONVERTER, TWO TIMERS, OSCILLATOR SAFEGUARD & SAFE RESET
STMICROELECTR

ST62P09LN1/OTP

8-BIT MCUs WITH A/D CONVERTER, TWO TIMERS, OSCILLATOR SAFEGUARD & SAFE RESET
STMICROELECTR

ST62P09LN3/OTP

8-BIT MCUs WITH A/D CONVERTER, TWO TIMERS, OSCILLATOR SAFEGUARD & SAFE RESET
STMICROELECTR

ST62P09LN6/OTP

8-BIT MCUs WITH A/D CONVERTER, TWO TIMERS, OSCILLATOR SAFEGUARD & SAFE RESET
STMICROELECTR

ST62P09LT1/OTP

8-BIT MCUs WITH A/D CONVERTER, TWO TIMERS, OSCILLATOR SAFEGUARD & SAFE RESET
STMICROELECTR

ST62P09LT3/OTP

8-BIT MCUs WITH A/D CONVERTER, TWO TIMERS, OSCILLATOR SAFEGUARD & SAFE RESET
STMICROELECTR

ST62P09LT6/OTP

8-BIT MCUs WITH A/D CONVERTER, TWO TIMERS, OSCILLATOR SAFEGUARD & SAFE RESET
STMICROELECTR