ST72215G [STMICROELECTRONICS]

8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY, ADC, 16-BIT TIMERS, SPI, I2C INTERFACES; 8位MCU单电压闪存, ADC , 16位定时器, SPI , I2C INTERFACES
ST72215G
型号: ST72215G
厂家: ST    ST
描述:

8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY, ADC, 16-BIT TIMERS, SPI, I2C INTERFACES
8位MCU单电压闪存, ADC , 16位定时器, SPI , I2C INTERFACES

闪存
文件: 总135页 (文件大小:902K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ST72104G, ST72215G,  
ST72216G, ST72254G  
8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY,  
2
ADC, 16-BIT TIMERS, SPI, I C INTERFACES  
PRELIMINARY DATA  
Memories  
– 4K or 8K bytes Program memory (ROM and  
single voltage FLASH) with read-out protec-  
tion and in-situ programming (remote ISP)  
– 256 bytes RAM  
Clock, Reset and Supply Management  
– Enhanced reset system  
SDIP32  
SO28  
– Enhanced low voltage supply supervisor with  
3 programmable levels  
– Clock sources: crystal/ceramic resonator os-  
cillators or RC oscillators, external clock,  
backup Clock Security System  
– Clock-out capability  
– 3 Power Saving Modes: Halt, Wait and Slow  
Interrupt Management  
– 7 interrupt vectors plus TRAP and RESET  
– 22 external interrupt lines (on 2 vectors)  
22 I/O Ports  
Instruction Set  
– 8-bit data manipulation  
– 63 basic instructions  
– 17 main addressing modes  
– 8 x 8 unsigned multiply instruction  
– True bit manipulation  
– 22 multifunctional bidirectional I/O lines  
– 14 alternate function lines  
– 8 high sink outputs  
3 Timers  
– Configurable watchdog timer  
– Two 16-bittimers with: 2 input captures, 2 out-  
put compares, external clock input on one tim-  
er, PWM and Pulse generator modes  
Development Tools  
– Full hardware/softwaredevelopment package  
(one only on ST72104Gx and ST72216G1)  
2 Communications Interfaces  
– SPI synchronous serial interface  
– I2C multimaster interface  
(only on ST72254Gx)  
1 Analog peripheral  
– 8-bit ADC with 6 input channels  
(except on ST72104Gx)  
Device Summary  
Features  
ST72104G1  
ST72104G2  
ST72216G1  
ST72215G2  
ST72254G1  
ST72254G2  
Program memory -bytes  
RAM (stack) - bytes  
4K  
8K  
4K  
8K  
4K  
8K  
256 (128)  
Watchdog timer,  
One 16-bit timer,  
SPI  
Watchdog timer, Watchdog timer,  
One 16-bit timer, Two 16-bit timers,  
Watchdog timer,  
Two 16-bit timers,  
SPI, I C, ADC  
Peripherals  
SPI, ADC  
SPI, ADC  
Operating Supply  
CPU Frequency  
Operating Temperature  
Packages  
3.0V to 5.5V  
Up to 8 MHz (with oscillator up to 16 MHz)  
-40°C to +85°C (-40°C to +105/125°C optional)  
SO28 / SDIP32  
Rev. 2.2  
February 2000  
1/135  
This ispreliminary information on a new product in development or undergoing evaluation. Details aresubject to change without notice.  
1
Table of Contents  
1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2 PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3 REGISTER & MEMORY MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4 FLASH PROGRAM MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.3 STRUCTURAL ORGANISATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.4 IN-SITU PROGRAMMING (ISP) MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.5 MEMORY READ-OUT PROTECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5 CENTRAL PROCESSING UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.3 CPU REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
6 SUPPLY, RESET AND CLOCK MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.1 LOW VOLTAGE DETECTOR (LVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.2 RESET SEQUENCE MANAGER (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.2.2 Asynchronous External RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.2.3 Internal Low Voltage Detection RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.2.4 Internal Watchdog RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.3 MULTI-OSCILLATOR (MO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.4 CLOCK SECURITY SYSTEM (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.4.1 Clock Filter Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.4.2 Safe Oscillator Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.4.3 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.4.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.5 CLOCK RESET AND SUPPLY REGISTER DESCRIPTION (CRSR) . . . . . . . . . . . . . . . 23  
6.6 MAIN CLOCK CONTROLLER (MCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.1 NON MASKABLE SOFTWARE INTERRUPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.2 EXTERNAL INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.3 PERIPHERAL INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
8 POWER SAVING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8.2 SLOW MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8.3 WAIT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.4 HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
9 I/O PORTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
9.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
9.2 FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
9.2.1 Input Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
135  
9.2.2 Output Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
9.2.3 Alternate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
9.3 I/O PORT IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
2/135  
2
Table of Contents  
9.4 LOW POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
9.5 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
9.6 REGISTER DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10 MISCELLANEOUS REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
10.1 I/O PORT INTERRUPT SENSITIVITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
10.2 I/O PORT ALTERNATE FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
10.3 MISCELLANEOUS REGISTER DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
11 ON-CHIP PERIPHERALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
11.1 WATCHDOG TIMER (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
11.1.1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
11.1.2Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
11.1.3Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
11.1.4Hardware Watchdog Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
11.1.5Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
11.1.6Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
11.1.7Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
11.2 16-BIT TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
11.2.1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
11.2.2Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
11.2.3Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
11.2.4Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
11.2.5Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
11.2.6Summary of Timer modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
11.2.7Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
11.3 SERIAL PERIPHERAL INTERFACE (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
11.3.1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
11.3.2Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
11.3.3General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
11.3.4Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
11.3.5Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
11.3.6Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
11.3.7Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
11.4 I2C BUS INTERFACE (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
11.4.1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
11.4.2Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
11.4.3General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
11.4.4Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
11.4.5Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
11.4.6Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
11.4.7Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
11.5 8-BIT A/D CONVERTER (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
11.5.1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
11.5.2Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
11.5.3Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
11.5.4Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
11.5.5Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
11.5.6Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
3/135  
3
ST72104G, ST72215G, ST72216G, ST72254G  
12 INSTRUCTION SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
12.1 ST7 ADDRESSING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
12.1.1Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
12.1.2Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
12.1.3Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
12.1.4Indexed (No Offset, Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
12.1.5Indirect (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
12.1.6Indirect Indexed (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
12.1.7Relative mode (Direct, Indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
12.2 INSTRUCTION GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
13 ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
13.1 PARAMETER CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
13.1.1Minimum and Maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
13.1.2Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
13.1.3Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
13.1.4Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
13.1.5Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
13.2 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
13.2.1Voltage Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
13.2.2Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
13.2.3Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
13.3 OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
13.3.1General Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
13.3.2Operating Conditions with Low Voltage Detector (LVD) . . . . . . . . . . . . . . . . . . . . . 99  
13.4 SUPPLY CURRENT CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
13.4.1RUN and SLOW Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
13.4.2WAIT and SLOW WAIT Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
13.4.3HALT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
13.4.4Supply and Clock Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
13.4.5On-Chip Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
13.5 CLOCK AND TIMING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
13.5.1General Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
13.5.2External Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
13.5.3Crystal and Ceramic Resonator Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
13.5.4RC Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
13.5.5Clock Security System (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
13.6 MEMORY CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
13.6.1RAM and Hardware Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
13.6.2FLASH Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
13.7 EMC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
13.7.1Functional EMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
13.7.2Absolute Electrical Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
13.7.3ESD Pin Protection Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
13.8 I/O PORT PIN CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
13.8.1General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
13.8.2Output Driving Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
13.9 CONTROL PIN CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
4/135  
ST72104G, ST72215G, ST72216G, ST72254G  
13.9.1Asynchronous RESET Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
13.9.2ISPSEL Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
13.10 TIMER PERIPHERAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
13.10.1Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
13.10.216-Bit Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
13.11 COMMUNICATION INTERFACE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . 121  
13.11.1SPI - Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
13.11.2I2C - Inter IC Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
13.12 8-BIT ADC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
14 PACKAGE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
14.1 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
14.2 THERMAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
14.3 SOLDERING AND GLUEABILITY INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
14.4 PACKAGE/SOCKET FOOTPRINT PROPOSAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
15 DEVICE CONFIGURATION AND ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . 129  
15.1 OPTION BYTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
15.2 DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE . . . . 130  
15.3 DEVELOPMENT TOOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
15.4 ST7 APPLICATION NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
15.5 TO GET MORE INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
16 SUMMARY OF CHANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
5/135  
ST72104G, ST72215G, ST72216G, ST72254G  
1 INTRODUCTION  
The ST72104G, ST72215G, ST72216G and  
ST72254G devices are members of the ST7 mi-  
crocontroller family. They can be grouped as fol-  
lows:  
Under software control, all devices can be placed  
in WAIT, SLOW, or HALT mode, reducing power  
consumption when the application is in idle or  
standby state.  
– ST72254G devices are designed for mid-range  
applications with ADC and I C interface capabili-  
ties.  
The enhanced instruction set and addressing  
modes of the ST7 offer both power and flexibility to  
software developers, enabling the design of highly  
efficient and compact application code. In addition  
to standard 8-bit data management, all ST7 micro-  
controllers feature true bit manipulation, 8x8 un-  
signed multiplication and indirect addressing  
modes.  
– ST72215/6G devices target the same range of  
applications but without I C interface.  
– ST72104G devices are for applications that do  
not need ADC and I C peripherals.  
All devices are based on a common industry-  
standard 8-bit core, featuring an enhanced instruc-  
tion set.  
For easy reference, all parametric data are located  
in Section 13 on page 96.  
The ST72C104G, ST72C215G, ST72C216G and  
ST72C254G versions feature single-voltage  
FLASH memory with byte-by-byte In-Situ Pro-  
gramming (ISP) capability.  
Figure 1. General Block Diagram  
Internal  
CLOCK  
OSC1  
OSC2  
MULTI OSC  
+
2
I C  
CLOCK FILTER  
PA7:0  
(8 bits)  
PORT A  
LVD  
V
SPI  
DD  
POWER  
SUPPLY  
PB7:0  
V
SS  
PORT B  
16-BIT TIMER A  
PORT C  
(8 bits)  
RESET  
CONTROL  
8-BIT CORE  
ALU  
PC5:0  
(6 bits)  
PROGRAM  
MEMORY  
8-BIT ADC  
(4 or 8K Bytes)  
16-BIT TIMER B  
RAM  
(256 Bytes)  
WATCHDOG  
6/135  
4
ST72104G, ST72215G, ST72216G, ST72254G  
2 PIN DESCRIPTION  
Figure 2. 28-Pin SO Package Pinout  
RESET  
V
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
DD  
OSC1  
OSC2  
V
2
SS  
ISPSEL  
3
SS/PB7  
ISPCLK/SCK/PB6  
ISPDATA/MISO/PB5  
MOSI/PB4  
PA0 (HS)  
PA1 (HS)  
PA2 (HS)  
PA3 (HS)  
PA4 (HS)/SCLI  
PA5 (HS)  
4
5
6
7
ei1  
ei0  
OCMP2_A/PB3  
8
ICAP2_A/PB2  
OCMP1_A/PB1  
9
10  
11  
12  
PA6 (HS)/SDAI  
PA7 (HS)  
ICAP1_A/PB0  
AIN5/EXTCLK_A/PC5  
AIN4/OCMP2_B/PC4  
PC0/ICAP1_B/AIN0  
PC1/OCMP1_B/AIN1  
PC2/MCO/AIN2  
13  
14  
ei0 or ei1  
AIN3/ICAP2_B/PC3  
(HS) 20mA high sink capability  
eiX associated external interrupt vector  
Figure 3. 32-Pin SDIP Package Pinout  
V
RESET  
1
2
3
4
5
6
7
8
9
DD  
32  
V
OSC1  
OSC2  
SS  
31  
30  
29  
ISPSEL  
SS/PB7  
PA0 (HS)  
PA1 (HS)  
PA2 (HS)  
PA3 (HS)  
ISPCLK/SCK/PB6  
ISPDATA/MISO/PB5  
MOSI/PB4  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
ei1  
ei0  
NC  
NC  
NC  
OCMP2_A/PB3  
NC  
PA4 (HS)/SCLI  
10  
ICAP2_A/PB2  
11  
12  
13  
14  
15  
16  
PA5 (HS)  
ei1 ei0  
ei0or ei1  
OCMP1_A/PB1  
PA6 (HS)/SDAI  
PA7 (HS)  
ICAP1_A/PB0  
AIN5/EXTCLK_A/PC5  
AIN4/OCMP2_B/PC4  
AIN3/ICAP2_B/PC3  
PC0/ICAP1_B/AIN0  
PC1/OCMP1_B/AIN1  
PC2/MCO/AIN2  
(HS) 20mA high sink capability  
eiX associated external interrupt vector  
7/135  
5
ST72104G, ST72215G, ST72216G, ST72254G  
PIN DESCRIPTION (Cont’d)  
For external pin connection guidelines, refer to Section 13 ”ELECTRICAL CHARACTERISTICS” on page  
96.  
Legend / Abbreviations for Table 1:  
Type:  
I = input, O = output, S = supply  
A = Dedicated analog input  
Input level:  
In/Output level: C = CMOS 0.3V /0.7V  
,
DD  
DD  
C = CMOS 0.3V /0.7V with input trigger  
T
DD  
DD  
Output level:  
HS = 20mA high sink (on N-buffer only)  
Port and control configuration:  
1)  
– Input:  
float = floating, wpu = weak pull-up, int = interrupt , ana = analog  
2)  
– Output:  
OD = open drain , PP = push-pull  
Refer to Section 9 ”I/O PORTS” on page 30 for more details on the software configuration of the I/O ports.  
The RESET configuration of each pin is shown in bold. This configuration is valid as long as the device is  
in reset state.  
Table 1. Device Pin Description  
Pin n°  
Level  
Port / Control  
Main  
Function  
(after reset)  
Input  
Output  
Pin Name  
Alternate Function  
1
2
1
2
RESET  
I/O  
I
C
X
X
Top priority non maskable interrupt (active low)  
T
External clock input or Resonator oscillator in-  
verter input or resistor input for RC oscillator  
3)  
OSC1  
OSC2  
Resonator oscillator inverter output or capaci-  
tor input for RC oscillator  
3)  
3
3
O
4
5
4
5
PB7/SS  
I/O  
I/O  
C
X
X
ei1  
ei1  
X
X
X
X
Port B7  
Port B6  
SPI Slave Select (active low)  
SPI Serial Clock or ISP Clock  
T
PB6/SCK/ISPCLK  
C
C
C
T
SPI Master In/ Slave Out Data  
or ISP Data  
6
6
7
PB5/MISO/ISPDATA I/O  
X
X
ei1  
ei1  
X
X
X
X
Port B5  
Port B4  
T
T
7
8
PB4/MOSI  
NC  
I/O  
SPI Master Out / Slave In Data  
Not Connected  
9
NC  
10  
11  
8
9
PB3/OCMP2_A  
PB2/ICAP2_A  
I/O  
I/O  
I/O  
I/O  
C
C
C
C
X
X
X
X
ei1  
ei1  
ei1  
ei1  
X
X
X
X
X
X
X
X
Port B3  
Port B2  
Port B1  
Port B0  
Timer A Output Compare 2  
Timer A Input Capture 2  
Timer A Output Compare 1  
Timer A Input Capture 1  
T
T
T
T
12 10 PB1 /OCMP1_A  
13 11 PB0 /ICAP1_A  
Timer A Input Clock or ADC  
Analog Input 5  
14 12 PC5/EXTCLK_A/AIN5 I/O  
15 13 PC4/OCMP2_B/AIN4 I/O  
16 14 PC3/ ICAP2_B/AIN3 I/O  
C
C
C
C
X
X
X
X
ei0/ei1  
ei0/ei1  
ei0/ei1  
ei0/ei1  
X
X
X
X
X
X
X
X
Port C5  
Port C4  
Port C3  
Port C2  
T
T
T
T
Timer B Output Compare 2 or  
ADC Analog Input 4  
Timer B Input Capture 2 or  
ADC Analog Input 3  
X
X
Main clock output (f  
) or  
CPU  
17 15 PC2/MCO/AIN2  
I/O  
ADC Analog Input 2  
8/135  
6
ST72104G, ST72215G, ST72216G, ST72254G  
Pin n°  
Level  
Port / Control  
Main  
Function  
(after reset)  
Input  
Output  
Pin Name  
Alternate Function  
Timer B Output Compare 1 or  
ADC Analog Input 1  
18 16 PC1/OCMP1_B/AIN1 I/O  
C
C
X
X
ei0/ei1  
ei0/ei1  
X
X
X
X
X
Port C1  
Port C0  
T
Timer B Input Capture 1 or  
ADC Analog Input 0  
19 17 PC0/ICAP1_B/AIN0  
I/O  
X
X
T
20 18 PA7  
I/O  
I/O  
I/O  
I/O  
C
C
C
C
HS  
X
X
X
X
ei0  
ei0  
ei0  
ei0  
X
T
X
T
Port A7  
Port A6  
Port A5  
Port A4  
T
2
21 19 PA6 /SDAI  
22 20 PA5  
HS  
HS  
HS  
I C Data  
T
T
T
X
2
23 21 PA4 /SCLI  
I C Clock  
24  
25  
NC  
NC  
Not Connected  
26 22 PA3  
27 23 PA2  
28 24 PA1  
29 25 PA0  
I/O  
I/O  
I/O  
I/O  
C
C
C
C
HS  
HS  
HS  
HS  
X
X
X
X
ei0  
ei0  
ei0  
ei0  
X
X
X
X
X
X
X
X
Port A3  
Port A2  
Port A1  
Port A0  
T
T
T
T
In situ programming selection (Should be tied  
low in standard user mode).  
30 26 ISPSEL  
I
C
X
31 27 V  
32 28 V  
S
S
Ground  
SS  
DD  
Main power supply  
Notes:  
1. In the interrupt input column, “eiX” defines the associated external interrupt vector. If the weak pull-up  
column (wpu) is merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input,  
else the configuration is floating interrupt input.  
2. In the open drain output column, “T” defines a true open drain I/O (P-Buffer and protection diode to V  
DD  
are not implemented). See Section 9 ”I/O PORTS” on page 30 and Section 13.8 ”I/O PORT PIN CHAR-  
ACTERISTICS” on page 114 for more details.  
3. OSC1 and OSC2 pins connect a crystal or ceramic resonator, an external RC, or an external source to  
the on-chip oscillator see Section 2 ”PIN DESCRIPTION” on page 7 and Section 13.5 ”CLOCK AND TIM-  
ING CHARACTERISTICS” on page 104 for more details.  
9/135  
ST72104G, ST72215G, ST72216G, ST72254G  
3 REGISTER & MEMORY MAP  
As shown in the Figure 4, the MCU is capable of  
addressing 64K bytes of memories and I/O regis-  
ters.  
IMPORTANT: Memory locations marked as “Re-  
served” must never be accessed. Accessing a re-  
seved area can have unpredicable effects on the  
device.  
The available memory locations consist of 128  
bytes of register location, 256 bytes of RAM and  
up to 8Kbytes of user program memory. The RAM  
space includes up to 128 bytes for the stack from  
0100h to 017Fh.  
The highest address bytes contain the user reset  
and interrupt vectors.  
Figure 4. Memory Map  
0000h  
HW Registers  
(see Table 2)  
0080h  
Short Addressing RAM  
007Fh  
0080h  
Zero page  
(128 Bytes)  
00FFh  
256 Bytes RAM  
0100h  
Stack or  
16-bit Addressing RAM  
017Fh  
0180h  
(128 Bytes)  
017Fh  
Reserved  
DFFFh  
E000h  
Program Memory  
E000h  
(4K, 8 KBytes)  
FFDFh  
8 KBytes  
F000h  
FFE0h  
Interrupt & Reset Vectors  
4 KBytes  
FFFFh  
(see Table 5 on page 26)  
FFFFh  
10/135  
ST72104G, ST72215G, ST72216G, ST72254G  
Table 2. Hardware Register Map  
Register  
Reset  
Status  
Address  
Block  
Register Name  
Port C Data Register  
Port C Data Direction Register  
Port C Option Register  
Remarks  
Label  
1)  
2)  
0000h  
0001h  
0002h  
PCDR  
PCDDR  
PCOR  
00h  
R/W  
2)  
2)  
Port C  
00h  
00h  
R/W  
R/W  
0003h  
Reserved (1 Byte)  
1)  
0004h  
0005h  
0006h  
PBDR  
PBDDR  
PBOR  
Port B Data Register  
Port B Data Direction Register  
Port B Option Register  
00h  
R/W  
R/W  
R/W.  
Port B  
Port A  
00h  
00h  
0007h  
Reserved (1 Byte)  
1)  
R/W  
R/W  
0008h  
0009h  
000Ah  
PADR  
PADDR  
PAOR  
Port A Data Register  
Port A Data Direction Register  
Port A Option Register  
00h  
00h  
00h  
R/W  
000Bh  
to  
Reserved (21 Bytes)  
001Fh  
0020h  
MISCR1  
Miscellaneous Register 1  
00h  
R/W  
0021h  
0022h  
0023h  
SPIDR  
SPICR  
SPISR  
SPI Data I/O Register  
SPI Control Register  
SPI Status Register  
xxh  
0xh  
00h  
R/W  
R/W  
Read Only  
SPI  
0024h  
0025h  
WATCHDOG WDGCR  
CRSR  
Watchdog Control Register  
7Fh  
R/W  
Clock, Reset, Supply Control / Status Register 000x 000x R/W  
Reserved (2 bytes)  
0026h  
0027h  
0028h  
0029h  
002Ah  
002Bh  
002Ch  
002Dh  
002Eh  
I2CCR  
I2CSR1  
I2CSR2  
I2CCCR  
I2COAR1  
I2COAR2  
I2CDR  
Control Register  
Status Register 1  
Status Register 2  
Clock Control Register  
Own Address Register 1  
Own Address Register 2  
Data Register  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
R/W  
Read Only  
Read Only  
R/W  
R/W  
R/W  
2
I C  
R/W  
002Fh  
to  
Reserved (4 Bytes)  
0030h  
11/135  
ST72104G, ST72215G, ST72216G, ST72254G  
Register  
Label  
Reset  
Status  
Address  
Block  
Register Name  
Remarks  
R/W  
0031h  
0032h  
0033h  
0034h  
0035h  
0036h  
0037h  
0038h  
0039h  
003Ah  
003Bh  
003Ch  
003Dh  
003Eh  
003Fh  
TACR2  
TACR1  
TASR  
TAIC1HR  
TAIC1LR  
TAOC1HR  
TAOC1LR  
TACHR  
Timer A Control Register 2  
Timer A Control Register 1  
Timer A Status Register  
Timer A Input Capture 1 High Register  
Timer A Input Capture 1 Low Register  
Timer A Output Compare 1 High Register  
Timer A Output Compare 1 Low Register  
Timer A Counter High Register  
00h  
00h  
xxh  
xxh  
xxh  
80h  
00h  
FFh  
FCh  
FFh  
FCh  
xxh  
xxh  
80h  
00h  
R/W  
Read Only  
Read Only  
Read Only  
R/W  
R/W  
TIMER A  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
R/W  
TACLR  
Timer A Counter Low Register  
TAACHR  
TAACLR  
TAIC2HR  
TAIC2LR  
TAOC2HR  
TAOC2LR  
Timer A Alternate Counter High Register  
Timer A Alternate Counter Low Register  
Timer A Input Capture 2 High Register  
Timer A Input Capture 2 Low Register  
Timer A Output Compare 2 High Register  
Timer A Output Compare 2 Low Register  
R/W  
0040h  
MISCR2  
Miscellaneous Register 2  
00h  
R/W  
0041h  
0042h  
0043h  
0044h  
0045h  
0046h  
0047h  
0048h  
0049h  
004Ah  
004Bh  
004Ch  
004Dh  
004Eh  
004Fh  
TBCR2  
TBCR1  
TBSR  
TBIC1HR  
TBIC1LR  
TBOC1HR  
TBOC1LR  
TBCHR  
Timer B Control Register 2  
Timer B Control Register 1  
Timer B Status Register  
Timer B Input Capture 1 High Register  
Timer B Input Capture 1 Low Register  
Timer B Output Compare 1 High Register  
Timer B Output Compare 1 Low Register  
Timer B Counter High Register  
00h  
00h  
xxh  
xxh  
xxh  
80h  
00h  
FFh  
FCh  
FFh  
FCh  
xxh  
xxh  
80h  
00h  
R/W  
R/W  
Read Only  
Read Only  
Read Only  
R/W  
R/W  
TIMER B  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
R/W  
TBCLR  
Timer B Counter Low Register  
TBACHR  
TBACLR  
TBIC2HR  
TBIC2LR  
TBOC2HR  
TBOC2LR  
Timer B Alternate Counter High Register  
Timer B Alternate Counter Low Register  
Timer B Input Capture 2 High Register  
Timer B Input Capture 2 Low Register  
Timer B Output Compare 2 High Register  
Timer B Output Compare 2 Low Register  
R/W  
0050h  
to  
Reserved (32 Bytes)  
006Fh  
0070h  
0071h  
ADCDR  
ADCCSR  
Data Register  
Control/Status Register  
00h  
00h  
Read Only  
R/W  
ADC  
0072h  
to  
Reserved (14 Bytes)  
007Fh  
Legend: x=undefined, R/W=read/write  
Notes:  
1. The contents of the I/O port DR registers are readable only in output configuration. In input configura-  
tion, the values of the I/O pins are returned instead of the DR register contents.  
2. The bits associated with unavailable pins must always keep their reset value.  
12/135  
ST72104G, ST72215G, ST72216G, ST72254G  
4 FLASH PROGRAM MEMORY  
4.1 INTRODUCTION  
This mode needs five signals (plus the V signal  
if necessary) to be connected to the programming  
tool. This signals are:  
DD  
FLASH devices have a single voltage non-volatile  
FLASH memory that may be programmed in-situ  
(or plugged in a programming tool) on a byte-by-  
byte basis.  
– RESET: device reset  
– V : device ground power supply  
SS  
– ISPCLK: ISP output serial clock pin  
– ISPDATA: ISP input serial data pin  
4.2 MAIN FEATURES  
– ISPSEL: Remote ISP mode selection. This pin  
must be connected to V on the application  
Remote In-Situ Programming (ISP) mode  
Up to 16 bytes programmed in the same cycle  
MTP memory (Multiple Time Programmable)  
Read-out memory protection against piracy  
SS  
board through a pull-down resistor.  
If any of these pins are used for other purposes on  
the application, a serial resistor has to be imple-  
mented to avoid a conflict if the other device forces  
the signal level.  
4.3 STRUCTURAL ORGANISATION  
Figure 5 shows a typical hardware interface to a  
standard ST7 programming tool. For more details  
on the pin locations, refer to the device pinout de-  
scription.  
The FLASH program memory is organised in a  
single 8-bit wide memory block which can be used  
for storing both code and data constants.  
Figure 5. Typical Remote ISP Interface  
The FLASH program memory is mapped in the up-  
per part of the ST7 addressing space and includes  
the reset and interrupt user vector area .  
HE10 CONNECTOR TYPE  
TO PROGRAMMING TOOL  
XTAL  
4.4 IN-SITU PROGRAMMING (ISP) MODE  
1
C
C
L0  
L1  
The FLASH program memory can be programmed  
using Remote ISP mode. This ISP mode allows  
the contents of the ST7 program memory to be up-  
dated using a standard ST7 programming tools af-  
ter the device is mounted on the application board.  
This feature can be implemented with a minimum  
number of added components and board area im-  
pact.  
ISPSEL  
10KΩ  
V
SS  
RESET  
ISPCLK  
An exampleRemote ISP hardware interface to the  
standard ST7 programming tool is described be-  
low. For more details on ISP programming, refer to  
the ST7 Programming Specification.  
ST7  
ISPDATA  
47KΩ  
Remote ISP Overview  
The Remote ISP mode is initiated by a specific se-  
quence on the dedicated ISPSEL pin.  
APPLICATION  
The Remote ISP is performed in three steps:  
– Selection of the RAM execution mode  
– Download of Remote ISP code in RAM  
4.5 MEMORY READ-OUT PROTECTION  
The read-out protection is enabled through an op-  
tion bit.  
– Execution of Remote ISP code in RAM to pro-  
gram the user program into the FLASH  
For FLASH devices, when this option is selected,  
the program and data stored in the FLASH memo-  
ry are protected against read-out piracy (including  
a re-write protection). When this protection option  
is removed the entire FLASH program memory is  
Remote ISP hardware configuration  
In Remote ISP mode, the ST7 has to be supplied  
2
with power (V and V ) and a clock signal (os-  
DD  
SS  
first automatically erased. However, the E PROM  
cillator and application crystal circuit for example).  
data memory (when available) can be protected  
only with ROM devices.  
13/135  
ST72104G, ST72215G, ST72216G, ST72254G  
5 CENTRAL PROCESSING UNIT  
5.1 INTRODUCTION  
Accumulator (A)  
The Accumulator is an 8-bit general purpose reg-  
ister used to hold operands and the results of the  
arithmetic and logic calculations and to manipulate  
data.  
This CPU has a full 8-bit architecture and contains  
six internal registers allowing efficient 8-bit data  
manipulation.  
Index Registers (X and Y)  
5.2 MAIN FEATURES  
In indexed addressing modes, these 8-bit registers  
are used to create either effective addresses or  
temporary storage areas for data manipulation.  
(The Cross-Assembler generates a precede in-  
struction (PRE) to indicate that the following in-  
struction refers to the Y register.)  
63 basic instructions  
Fast 8-bit by 8-bit multiply  
17 main addressing modes  
Two 8-bit index registers  
16-bit stack pointer  
The Y register is not affected by the interrupt auto-  
matic procedures (not pushed to and popped from  
the stack).  
Low power modes  
Maskable hardware interrupts  
Non-maskable software interrupt  
Program Counter (PC)  
The program counter is a 16-bit register containing  
the address of the next instruction to be executed  
by the CPU. It is made of two 8-bit registers PCL  
(Program Counter Low which is the LSB) and PCH  
(Program Counter High which is the MSB).  
5.3 CPU REGISTERS  
The 6 CPU registers shown in Figure 6 are not  
present in the memory mapping and are accessed  
by specific instructions.  
Figure 6. CPU Registers  
7
0
ACCUMULATOR  
RESET VALUE = XXh  
7
0
0
X INDEX REGISTER  
Y INDEX REGISTER  
RESET VALUE = XXh  
7
RESET VALUE = XXh  
PCL  
PCH  
7
8
15  
0
PROGRAM COUNTER  
RESET VALUE = RESET VECTOR @ FFFEh-FFFFh  
7
1
0
1
1
1
1
H I N Z  
C
CONDITION CODE REGISTER  
RESET VALUE =  
8
1
X 1 X X X  
0
15  
7
STACK POINTER  
RESET VALUE = STACK HIGHER ADDRESS  
X = Undefined Value  
14/135  
ST72104G, ST72215G, ST72216G, ST72254G  
CPU REGISTERS (Cont’d)  
CONDITION CODE REGISTER (CC)  
Read/Write  
the interrupt routine. If the I bit is cleared by soft-  
ware in the interrupt routine, pending interrupts are  
serviced regardless of the priority level of the cur-  
rent interrupt routine.  
Reset Value: 111x1xxx  
7
0
Bit 2 = N Negative.  
1
1
1
H
I
N
Z
C
This bit is set and cleared by hardware. It is repre-  
sentative of the result sign of the last arithmetic,  
The 8-bit Condition Code register contains the in-  
terrupt mask and four flags representative of the  
result of the instruction just executed. This register  
can also be handled by the PUSH and POP in-  
structions.  
th  
logical or data manipulation. It is a copy of the 7  
bit of the result.  
0: The result of the last operation is positive or null.  
1: The result of the last operation is negative  
(i.e. the most significant bit is a logic 1).  
These bits can be individually tested and/or con-  
trolled by specific instructions.  
This bit is accessed by the JRMI and JRPL instruc-  
tions.  
Bit 4 = H Half carry.  
Bit 1 = Z Zero.  
This bit is set by hardware when a carry occurs be-  
tween bits 3 and 4 of the ALU during an ADD or  
ADC instruction. It is reset by hardware during the  
same instructions.  
0: No half carry has occurred.  
1: A half carry has occurred.  
This bit is set and cleared by hardware. This bit in-  
dicates that the result of the last arithmetic, logical  
or data manipulation is zero.  
0: The result of the last operation is different from  
zero.  
1: The result of the last operation is zero.  
This bit is tested using the JRH or JRNH instruc-  
tion. The H bit is useful in BCD arithmetic subrou-  
tines.  
This bit is accessed by the JREQ and JRNE test  
instructions.  
Bit 3 = I Interrupt mask.  
Bit 0 = C Carry/borrow.  
This bit is set and cleared by hardware and soft-  
ware. It indicates an overflow or an underflow has  
occurred during the last arithmetic operation.  
0: No overflow or underflow has occurred.  
1: An overflow or underflow has occurred.  
This bit is set by hardware when entering in inter-  
rupt or by software to disable all interrupts except  
the TRAP software interrupt. This bit is cleared by  
software.  
0: Interrupts are enabled.  
1: Interrupts are disabled.  
This bit is driven by the SCF and RCF instructions  
and tested by the JRC and JRNC instructions. It is  
also affected by the “bit test and branch”, shift and  
rotate instructions.  
This bit is controlled by the RIM, SIM and IRET in-  
structions and is tested by the JRM and JRNM in-  
structions.  
Note: Interrupts requested while I is set are  
latched and can be processed when I is cleared.  
By default an interrupt routine is not interruptable  
because the I bit is set by hardware when you en-  
ter it and reset by the IRET instruction at the end of  
15/135  
ST72104G, ST72215G, ST72216G, ST72254G  
CENTRAL PROCESSING UNIT (Cont’d)  
Stack Pointer (SP)  
The least significant byte of the Stack Pointer  
(called S) can be directly accessed by a LD in-  
struction.  
Read/Write  
Reset Value: 01 7Fh  
Note: When the lower limit is exceeded, the Stack  
Pointer wraps around to the stack upper limit, with-  
out indicating the stack overflow. The previously  
stored information is then overwritten and there-  
fore lost. The stack also wraps in case of an under-  
flow.  
15  
8
1
0
0
0
0
0
0
0
7
0
The stack is used to save the return address dur-  
ing a subroutine call and the CPU context during  
an interrupt. The user may also directly manipulate  
the stack by means of the PUSH and POP instruc-  
tions. In the case of an interrupt, the PCL is stored  
at the first location pointed to by the SP. Then the  
other registers are stored in the next locations as  
shown in Figure 7.  
0
SP6  
SP5  
SP4  
SP3  
SP2  
SP1  
SP0  
The Stack Pointer is a 16-bit register which is al-  
ways pointing to the next free location in the stack.  
It is then decremented after data has been pushed  
onto the stack and incremented before data is  
popped from the stack (see Figure 7).  
– When an interrupt is received, the SP is decre-  
mented and the context is pushed on the stack.  
Since the stack is 128 bytes deep, the 9th most  
significant bits are forced by hardware. Following  
an MCU Reset, or after a Reset Stack Pointer in-  
struction (RSP), the Stack Pointer contains its re-  
set value (the SP6 to SP0 bits are set) which is the  
stack higher address.  
– On return from interrupt, the SP is incremented  
and the context is popped from the stack.  
A subroutine call occupies two locations and an in-  
terrupt five locations in the stack area.  
Figure 7. Stack Manipulation Example  
CALL  
Subroutine  
RET  
or RSP  
PUSH Y  
POP Y  
IRET  
Interrupt  
Event  
@ 0100h  
SP  
SP  
SP  
Y
CC  
A
CC  
CC  
A
A
X
X
X
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
SP  
SP  
PCH  
PCH  
PCL  
SP  
@ 017Fh PCL  
Stack Higher Address = 017Fh  
0100h  
Stack Lower Address =  
16/135  
ST72104G, ST72215G, ST72216G, ST72254G  
6 SUPPLY, RESET AND CLOCK MANAGEMENT  
The ST72104G, ST72215G, ST72216G and  
ST72254G microcontrollers include a range of util-  
ity features for securing the application in critical  
situations (for example in case of a power brown-  
out), and reducing the number of external compo-  
nents. An overview is shown in Figure 8.  
See Section 13 ”ELECTRICAL CHARACTERIS-  
TICS” on page 96 for more details.  
Main Features  
Supply Manager with main supply low voltage  
detection (LVD)  
Reset Sequence Manager (RSM)  
Multi-Oscillator (MO)  
– 4 Crystal/Ceramic resonator oscillators  
– 1 External RC oscillator  
– 1 Internal RC oscillator  
Clock Security System (CSS)  
– Clock Filter  
– Backup Safe Oscillator  
Figure 8. Clock, Reset and Supply Block Diagram  
MCO  
CLOCK SECURITY SYSTEM  
(CSS)  
MAIN CLOCK  
CONTROLLER  
(MCC)  
MULTI-  
OSCILLATOR  
(MO)  
f
f
CPU  
OSC2  
OSC1  
OSC  
CLOCK  
FILTER  
SAFE  
OSC  
RESET SEQUENCE  
MANAGER  
FROM  
RESET  
WATCHDOG  
PERIPHERAL  
(RSM)  
VDD  
VSS  
LOW VOLTAGE  
DETECTOR  
(LVD)  
LVD  
CSS  
WDG  
RF  
CRSR  
0
0
0
RF  
0
IE  
D
CSS INTERRUPT  
17/135  
ST72104G, ST72215G, ST72216G, ST72254G  
6.1 LOW VOLTAGE DETECTOR (LVD)  
To allow the integration of power management  
features in the application, the Low Voltage Detec-  
tor function (LVD) generates a static reset when  
In these conditions, secure operation is always en-  
sured for the application without the need for ex-  
ternal reset hardware.  
the V  
supply voltage is below a V reference  
DD  
IT-  
During a Low Voltage Detector Reset, the RESET  
pin is held low, thus permitting the MCU to reset  
other devices.  
value. This means that it secures the power-up as  
well as the power-down keeping the ST7 in reset.  
The V reference value for a voltage drop is lower  
IT-  
Notes:  
than the V reference value for power-on in order  
1. The LVD allows the device to be used without  
any external RESET circuitry.  
IT+  
to avoida parasitic reset when the MCU starts run-  
ning and sinks current on the supply (hysteresis).  
2. Three different reference levels are selectable  
through the option byte according to the applica-  
tion requirement.  
The LVD Reset circuitry generates a reset when  
V
is below:  
DD  
LVD application note  
– V when V is rising  
IT+  
DD  
– V when V is falling  
The LVD function is illustrated in the Figure 9.  
Application software can detect a reset caused by  
the LVD by reading the LVDRF bit in the CRSR  
register.  
IT-  
DD  
Provided the minimum V  
value (guaranteed for  
DD  
This bit is set by hardware when a LVD reset is  
generated and cleared by software (writing zero).  
the oscillator frequency) is below V , the MCU  
IT-  
can only be in two modes:  
– under full software control  
– in static safe reset  
Figure 9. Low Voltage Detector vs Reset  
V
DD  
V
hyst  
V
V
IT+  
IT-  
RESET  
18/135  
ST72104G, ST72215G, ST72216G, ST72254G  
6.2 RESET SEQUENCE MANAGER (RSM)  
6.2.1 Introduction  
The 4096 CPU clock cycle delay allows the oscil-  
lator to stabilise and ensures that recovery has  
taken place from the Reset state.  
The reset sequence manager includes three RE-  
SET sources as shown in Figure 11:  
The RESET vector fetch phase duration is 2 clock  
cycles.  
External RESET source pulse  
Internal LVD RESET (Low Voltage Detection)  
Internal WATCHDOG RESET  
Figure 10. RESET Sequence Phases  
These sources act on the RESET pin and it is al-  
ways kept low during the delay phase.  
RESET  
The RESET service routine vector is fixed at ad-  
dresses FFFEh-FFFFh in the ST7 memory map.  
INTERNAL RESET  
FETCH  
DELAY  
4096 CLOCK CYCLES  
VECTOR  
The basic RESET sequence consists of 3 phases  
as shown in Figure 10:  
Delay depending on the RESET source  
4096 CPU clock cycle delay  
RESET vector fetch  
Figure 11. Reset Block Diagram  
INTERNAL  
RESET  
V
DD  
f
CPU  
R
ON  
RESET  
WATCHDOG RESET  
LVD RESET  
19/135  
ST72104G, ST72215G, ST72216G, ST72254G  
RESET SEQUENCE MANAGER (Cont’d)  
6.2.2 Asynchronous External RESET pin  
6.2.3 Internal Low Voltage Detection RESET  
The RESET pin is both an input and an open-drain  
Two different RESET sequences caused by the in-  
ternal LVD circuitry can be distinguished:  
output with integrated R  
weak pull-up resistor.  
ON  
This pull-up has no fixed value but varies in ac-  
cordance with the input voltage. It can be pulled  
low by external circuitry to reset the device. See  
electrical characteristics section for more details.  
Power-On RESET  
Voltage Drop RESET  
The device RESET pin acts as an output that is  
pulled low when V <V  
(rising edge) or  
DD  
IT+  
A RESET signal originating from an external  
V
<V (falling edge) as shown in Figure 12.  
DD  
IT-  
source must have a duration of at least t  
in  
h(RSTL)in  
The LVD filters spikes on V larger than t  
avoid parasitic resets.  
to  
order to be recognized. This detection is asynchro-  
nous and therefore the MCU can enter reset state  
even in HALT mode.  
DD  
g(VDD)  
6.2.4 Internal Watchdog RESET  
The RESET pin is an asynchronous signal which  
plays a major role in EMS performance. In a noisy  
environment, it is recommended to follow the  
guidelines mentioned in the electrical characteris-  
tics section.  
The RESET sequence generated by a internal  
Watchdog counter overflow is shown in Figure 12.  
Starting from the Watchdog counter underflow, the  
device RESET pin acts as an output that is pulled  
low during at least t  
.
w(RSTL)out  
Two RESET sequences can be associated with  
this RESET source: short or long external reset  
pulse (see Figure 12).  
Starting from the external RESET pulse recogni-  
tion, the device RESET pin acts as an output that  
is pulled low during at least t  
.
w(RSTL)out  
Figure 12. RESET Sequences  
V
DD  
V
V
IT+  
IT-  
LVD  
RESET  
SHORT EXT.  
RESET  
LONG EXT.  
RESET  
WATCHDOG  
RESET  
RUN  
RUN  
RUN  
RUN  
RUN  
DELAY  
DELAY  
DELAY  
DELAY  
t
t
w(RSTL)out  
h(RSTL)in  
t
w(RSTL)out  
t
h(RSTL)in  
EXTERNAL  
RESET  
SOURCE  
RESET PIN  
WATCHDOG  
RESET  
WATCHDOG UNDERFLOW  
INTERNAL RESET (4096 TCPU  
)
FETCH VECTOR  
20/135  
ST72104G, ST72215G, ST72216G, ST72254G  
6.3 MULTI-OSCILLATOR (MO)  
The main clock of the ST7 can be generated by  
four different source types coming from the multi-  
oscillator block:  
Table 3. ST7 Clock Sources  
Hardware Configuration  
an external source  
4 crystal or ceramic resonator oscillators  
an external RC oscillator  
ST7  
OSC1  
OSC2  
an internal high frequency RC oscillator  
Each oscillator is optimized for a given frequency  
range in terms of consumption and is selectable  
through the option byte. The associated hardware  
configuration are shown in Table 3. Refer to the  
electrical characteristics section for more details.  
EXTERNAL  
SOURCE  
External Clock Source  
ST7  
OSC1  
OSC2  
In this external clock mode, a clock signal (square,  
sinus or triangle) with ~50% duty cycle has to drive  
the OSC1 pin while the OSC2 pin is tied to ground.  
Crystal/Ceramic Oscillators  
This family of oscillators has the advantage of pro-  
ducing a very accurate rate on the main clock of  
the ST7. The selection within a list of 4 oscillators  
with different frequency ranges has to be done by  
option byte in order to reduce consumption. In this  
mode of the multi-oscillator, the resonator and the  
load capacitors have to be placed as close as pos-  
sible to the oscillator pins in order to minimize out-  
put distortion and start-up stabilization time. The  
loading capacitance values must be adjusted ac-  
cording to the selected oscillator.  
C
C
L2  
L1  
LOAD  
CAPACITORS  
ST7  
OSC1  
OSC2  
R
C
EX  
EX  
These oscillators are not stopped during the  
RESET phase to avoid losing time in the oscillator  
start-up phase.  
External RC Oscillator  
ST7  
This oscillator allows a low cost solution for the  
main clock of the ST7 using only an external resis-  
tor and an external capacitor. The frequency of the  
external RC oscillator (in the range of some MHz.)  
is fixed by the resistor and the capacitor values.  
Consequently in this MO mode, the accuracy of  
the clock is directly linked to the accuracy of the  
discrete components.  
OSC1  
OSC2  
Internal RC Oscillator  
The internal RC oscillator mode is based on the  
same principle as the external RC oscillator includ-  
ing the resistance and the capacitance of the de-  
vice. This mode is the most cost effective one with  
the drawback of a lower frequency accuracy. Its  
frequency is in the range of several MHz.  
In this mode, the two oscillator pins have to be tied  
to ground.  
21/135  
ST72104G, ST72215G, ST72216G, ST72254G  
6.4 CLOCK SECURITY SYSTEM (CSS)  
The Clock Security System (CSS) protects the  
ST7 against main clock problems. To allow the in-  
tegration of the security features in the applica-  
tions, it is based on a clock filter control and an In-  
ternal safe oscillator. The CSS can be enabled or  
disabled by option byte.  
Limitation detection  
The automatic safe oscillator selection is notified  
by hardware setting the CSSD bit of the CRSR  
register. An interrupt can be generated if the CS-  
SIE bit has been previously set.  
These two bits are described in the CRSR register  
description.  
6.4.1 Clock Filter Control  
6.4.3 Low Power Modes  
The clock filter is based on a clock frequency limi-  
tation function.  
Mode  
WAIT  
Description  
This filter function is able to detect and filter high  
frequency spikes on the ST7 main clock.  
No effect on CSS. CSS interrupt cause the  
device to exit from Wait mode.  
If the oscillator is not working properly (e.g. work-  
ing at a harmonic frequency of the resonator), the  
current active oscillator clock can be totally fil-  
tered, and then no clock signal is available for the  
ST7 from this oscillator anymore. If the original  
clock source recovers, the filtering is stopped au-  
tomatically and the oscillator supplies the ST7  
clock.  
The CRSR register is frozen. The CSS (in-  
cluding the safe oscillator) is disabled until  
HALT mode is exited. The previous CSS  
configuration resumes when the MCU is  
woken up by an interrupt with “exit from  
HALT mode” capability or from the counter  
reset value when the MCU is woken up by a  
RESET.  
HALT  
6.4.2 Safe Oscillator Control  
6.4.4 Interrupts  
The safe oscillator of the CSS block is a low fre-  
quency back-up clock source (see Figure 13).  
The CSS interrupt event generates an interrupt if  
the corresponding Enable Control Bit (CSSIE) is  
set and the interrupt mask in the CC register is re-  
set (RIM instruction).  
If the clock signal disappears (due to a broken or  
disconnected resonator...) during a safe oscillator  
period, the safe oscillator delivers a low frequency  
clock signalwhich allows the ST7 to perform some  
rescue operations.  
Enable Exit  
Control from  
Exit  
from  
Halt  
Event  
Flag  
Interrupt Event  
Bit  
Wait  
Automatically, the ST7 clock source switches back  
from the safe oscillator if the original clock source  
recovers.  
CSS event detection  
(safe oscillator acti- CSSD CSSIE  
vated as main clock)  
Yes  
No  
Figure 13. Clock Filter Function and Safe Oscillator Function  
f
/2  
OSC  
f
CPU  
f
/2  
OSC  
f
SFOSC  
f
CPU  
22/135  
ST72104G, ST72215G, ST72216G, ST72254G  
6.5 CLOCK RESET AND SUPPLY REGISTER DESCRIPTION (CRSR)  
Read/Write  
Bit 1 = CSSD Clock security system detection  
This bit indicates that the safe oscillator of the  
clock security system block has been selected by  
hardware due to a disturbance on the main clock  
Reset Value: 000x 000x (XXh)  
7
0
signal (f  
). It is set by hardware and cleared by  
OSC  
reading the CRSR registerwhen the original oscil-  
lator recovers.  
LVD  
RF  
CSS CSS WDG  
0
0
0
0
IE  
D
RF  
0: Safe oscillator is not active  
1: Safe oscillator has been activated  
When the CSS is disabled by option byte, the  
CSSD bit value is forced to 0.  
Bit 7:5 = Reserved, always read as 0.  
Bit 4 = LVDRF LVD reset flag  
This bit indicates that the last RESET was gener-  
ated by the LVD block. It is set by hardware (LVD  
reset) and cleared by software (writing zero). See  
WDGRF flag description for more details. When  
the LVD is disabled by option byte, the LVDRF bit  
value is undefined.  
Bit 0 = WDGRF Watchdog reset flag  
This bit indicates that the last RESET was gener-  
ated by the watchdog peripheral. It is set by hard-  
ware (Watchdog RESET) and cleared by software  
(writing zero) or an LVD RESET (to ensure a sta-  
ble cleared state of the WDGRF flag when the  
CPU starts).  
Combined with the LVDRF flag information, the  
flag description is given by the following table.  
Bit 3 = Reserved, always read as 0.  
RESET Sources  
LVDRF WDGRF  
Bit 2 = CSSIE Clock security syst interrupt enable  
.
External RESET pin  
Watchdog  
0
0
1
0
1
This bit enables the interrupt when a disturbance  
is detected by the clock security system (CSSD bit  
set). It is set and cleared by software.  
LVD  
X
0: Clock security system interrupt disabled  
1: Clock security system interrupt enabled  
Refer to Table 5, “Interrupt Mapping,” on page 26  
for more details on the CSS interrupt vector. When  
the CSS is disabled by option byte, the CSSIE bit  
has no effect.  
Application notes  
The LVDRF flag is not cleared when another RE-  
SET type occurs (external or watchdog), the  
LVDRF flag remains set to keep trace of the origi-  
nal failure.  
In this case, a watchdog reset can be detected by  
software while an external reset can not.  
Table 4. Clock, Reset and Supply Register Map and Reset Values  
Address  
(Hex.)  
Register  
Label  
7
6
5
4
3
2
1
0
CRSR  
Reset Value  
LVDRF  
x
CSSIE  
0
CSSD  
0
WDGRF  
x
0025h  
0
0
0
0
23/135  
ST72104G, ST72215G, ST72216G, ST72254G  
6.6 MAIN CLOCK CONTROLLER (MCC)  
The Main Clock Controller (MCC) supplies the  
clock for the ST7 CPU and its internal peripherals.  
It allows SLOW power saving mode to be man-  
aged by the application.  
The prescaler allows the selection of the main  
clock frequency and is controlled by three bits of  
the MISCR1: CP1, CP0 and SMS.  
The clock-out capability consists of a dedicated  
All functions are managed by the Miscellaneous  
register 1 (MISCR1).  
I/O port pin configurable as an f  
clock output to  
CPU  
drive external devices. It is controlled by the MCO  
bit in the MISCR1 register.  
The MCC block consists of:  
A programmable CPU clock prescaler  
A clock-out signal to supply external devices  
See Section 10 ”MISCELLANEOUS REGIS-  
TERS” on page 36 for more details.  
Figure 14. Main Clock Controller (MCC) Block Diagram  
CLOCK TO CAN  
PERIPHERAL  
PORT  
ALTERNATE  
FUNCTION  
MCO  
f
/2  
OSC  
MISCR1  
-
-
MCO  
-
-
CP1 CP0 SMS  
f
OSC  
DIV 2  
DIV2, 4, 8, 16  
CPU CLOCK  
TO CPU AND  
PERIPHERALS  
f
CPU  
24/135  
ST72104G, ST72215G, ST72216G, ST72254G  
7 INTERRUPTS  
The ST7 core may be interrupted by one of two dif-  
ferent methods: maskable hardware interrupts as  
listed in the Interrupt Mapping Table and a non-  
maskable software interrupt (TRAP). The Interrupt  
processing flowchart is shown in Figure 15.  
The maskable interrupts must be enabled clearing  
the I bit in order to be serviced. However, disabled  
interrupts may be latched and processed when  
they are enabled (see external interrupts subsec-  
tion).  
It will be serviced according to the flowchart on  
Figure 15.  
7.2 EXTERNAL INTERRUPTS  
External interrupt vectors can be loaded into the  
PC register if the corresponding external interrupt  
occurred and if the I bit is cleared. These interrupts  
allow the processor to leave the Halt low power  
mode.  
When an interrupt has to be serviced:  
The external interrupt polarity is selected through  
the miscellaneous register or interrupt register (if  
available).  
– Normal processing is suspended at the end of  
the current instruction execution.  
An external interrupt triggered on edge will be  
latched and the interrupt request automatically  
cleared upon entering the interrupt service routine.  
– The PC, X, A and CC registers are saved onto  
the stack.  
– The I bit of the CC register is set to prevent addi-  
tional interrupts.  
If several input pins, connected to the same inter-  
rupt vector, are configured as interrupts, their sig-  
nals are logically ANDed before entering the edge/  
level detection block.  
– ThePC is then loaded with the interrupt vector of  
the interrupt to service and the first instruction of  
the interrupt service routine is fetched (refer to  
the Interrupt Mapping Table for vector address-  
es).  
Caution: The type of sensitivity defined in the Mis-  
cellaneous or Interrupt register (if available) ap-  
plies to the ei source. In case of an ANDed source  
(as described on the I/O ports section), a low level  
on an I/O pin configured as input with interrupt,  
masks the interrupt request even in case of rising-  
edge sensitivity.  
The interrupt service routine should finish with the  
IRET instruction which causes the contents of the  
saved registers to be recovered from the stack.  
Note: As a consequence of the IRET instruction,  
the I bit will be cleared and the main program will  
resume.  
7.3 PERIPHERAL INTERRUPTS  
Priority management  
Different peripheral interrupt flags in the status  
register are able to cause an interrupt when they  
are active if both:  
By default, a servicing interrupt cannot be inter-  
rupted because the I bit is set by hardware enter-  
ing in interrupt routine.  
– The I bit of the CC register is cleared.  
In the case when severalinterrupts are simultane-  
ously pending, an hardware priority defines which  
one will be serviced first (see the Interrupt Map-  
ping Table).  
– The corresponding enable bit is set in the control  
register.  
If any of these two conditions is false, the interrupt  
is latched and thus remains pending.  
Interrupts and Low power mode  
Clearing an interrupt request is done by:  
All interrupts allow the processor to leave the  
WAIT low power mode. Only external and specifi-  
cally mentioned interrupts allow the processor to  
leave the HALT low power mode (refer to the “Exit  
from HALT“ column in the Interrupt Mapping Ta-  
ble).  
– Writing “0” to the corresponding bit in the status  
register or  
– Access to the status register while the flag is set  
followed by a read or write of an associated reg-  
ister.  
Note: the clearing sequence resets the internal  
latch. A pending interrupt (i.e. waiting for being en-  
abled) will therefore be lost if the clear sequence is  
executed.  
7.1 NON MASKABLE SOFTWARE INTERRUPT  
This interrupt is entered when the TRAP instruc-  
tion is executed regardless of the state of the I bit.  
25/135  
ST72104G, ST72215G, ST72216G, ST72254G  
INTERRUPTS (Cont’d)  
Figure 15. Interrupt Processing Flowchart  
FROM RESET  
N
I BIT SET?  
N
Y
INTERRUPT  
PENDING?  
Y
FETCH NEXT INSTRUCTION  
N
IRET?  
STACK PC, X, A, CC  
SET I BIT  
Y
LOAD PC FROM INTERRUPT VECTOR  
EXECUTE INSTRUCTION  
RESTORE PC, X, A, CC FROM STACK  
THIS CLEARS I BIT BY DEFAULT  
Table 5. Interrupt Mapping  
Exit  
from  
HALT  
Source  
Block  
Register Priority  
Address  
Vector  
N°  
Description  
Label  
Order  
RESET  
TRAP  
ei0  
Reset  
yes  
no  
FFFEh-FFFFh  
FFFCh-FFFDh  
FFFAh-FFFBh  
FFF8h-FFF9h  
FFF6h-FFF7h  
FFF4h-FFF5h  
FFF2h-FFF3h  
FFF0h-FFF1h  
FFEEh-FFEFh  
FFECh-FFEDh  
FFEAh-FFEBh  
FFE8h-FFE9h  
FFE6h-FFE7h  
FFE4h-FFE5h  
FFE2h-FFE3h  
FFE0h-FFE1h  
Highest  
Priority  
Software Interrupt  
N/A  
1
0
1
External Interrupt Port A7..0 (C5..0 )  
yes  
1
ei1  
External Interrupt Port B7..0 (C5..0 )  
2
CSS  
Clock Filter Interrupt  
SPI Peripheral Interrupts  
TIMER A Peripheral Interrupts  
Not used  
CRSR  
SPISR  
TASR  
3
SPI  
no  
4
TIMER A  
5
6
TIMER B  
TIMER B Peripheral Interrupts  
Not used  
TBSR  
no  
no  
7
8
Not used  
9
Not used  
10  
11  
12  
13  
Not used  
I C  
I C Peripheral Interrupt  
Not Used  
I2CSRx  
Lowest  
Priority  
Not Used  
Note  
1. Configurable by option byte.  
26/135  
ST72104G, ST72215G, ST72216G, ST72254G  
8 POWER SAVING MODES  
8.1 INTRODUCTION  
8.2 SLOW MODE  
To give a large measure of flexibility to the applica-  
tion in terms of power consumption, three main  
power saving modes are implemented in the ST7  
(see Figure 16).  
This mode has two targets:  
– Toreduce powerconsumption by decreasingthe  
internal clock in the device,  
– To adapt the internal clock frequency (f  
the available supply voltage.  
) to  
CPU  
After a RESET the normal operating mode is se-  
lected by default (RUN mode). This mode drives  
the device (CPU and embedded peripherals) by  
means of a master clock which is based on the  
SLOW mode is controlled by three bits in the  
MISCR1 register: the SMS bit which enables or  
disables Slow mode and two CPx bits which select  
main oscillator frequency divided by 2 (f  
).  
CPU  
the internal slow frequency (f  
).  
CPU  
From Run mode, the different power saving  
modes may be selected by setting the relevant  
register bits or by calling the specific ST7 software  
instruction whose action depends on the the oscil-  
lator status.  
In this mode, the oscillator frequency can be divid-  
ed by 4, 8, 16 or 32 instead of 2 in normal operat-  
ing mode. The CPU and peripherals are clocked at  
this lower frequency.  
Note: SLOW-WAIT mode is activated when enter-  
ring the WAIT mode while the device is already in  
SLOW mode.  
Figure 16. Power Saving Mode Transitions  
High  
RUN  
Figure 17. SLOW Mode Clock Transitions  
f
/4  
f
/8  
f
/2  
OSC  
OSC  
OSC  
f
f
CPU  
SLOW  
WAIT  
/2  
OSC  
00  
01  
CP1:0  
SMS  
SLOW WAIT  
HALT  
NORMAL RUN MODE  
REQUEST  
NEW SLOW  
FREQUENCY  
REQUEST  
Low  
POWER CONSUMPTION  
27/135  
ST72104G, ST72215G, ST72216G, ST72254G  
POWER SAVING MODES (Cont’d)  
8.3 WAIT MODE  
Figure 18. WAIT Mode Flow-chart  
WAIT mode places the MCU in a low power con-  
sumption mode by stopping the CPU.  
This power saving mode is selected by calling the  
“WFI” ST7 software instruction.  
OSCILLATOR  
PERIPHERALS  
CPU  
I BIT  
ON  
ON  
OFF  
0
WFI INSTRUCTION  
All peripherals remain active. During WAIT mode,  
the I bit of the CC register is forced to 0, to enable  
all interrupts. All other registers and memory re-  
main unchanged. The MCU remains in WAIT  
mode until an interrupt or Reset occurs, whereup-  
on the Program Counter branches to the starting  
address of the interrupt or Reset service routine.  
The MCU will remain in WAIT mode until a Reset  
or an Interrupt occurs, causing it to wake up.  
N
RESET  
Y
N
INTERRUPT  
Y
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
OFF  
ON  
1
Refer to Figure 18.  
I BIT  
4096 CPU CLOCK CYCLE  
DELAY  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
ON  
ON  
1)  
I BIT  
X
FETCH RESET VECTOR  
OR SERVICE INTERRUPT  
Note:  
1. Before servicing an interrupt, the CC register is  
pushed on the stack. The I bit of the CC register is  
set during the interrupt routine and cleared when  
the CC register is popped.  
28/135  
ST72104G, ST72215G, ST72216G, ST72254G  
POWER SAVING MODES (Cont’d)  
8.4 HALT MODE  
Figure 20. HALT Mode Flow-chart  
The HALT mode is the lowest power consumption  
mode of the MCU. It is entered by executing the  
ST7 HALT instruction (see Figure 20).  
HALT INSTRUCTION  
ENABLE  
The MCU can exit HALT mode on reception of ei-  
ther a specific interrupt (see Table 5, “Interrupt  
Mapping,” on page 26) or a RESET. When exiting  
HALT mode by means of a RESET or an interrupt,  
the oscillator is immediately turned on and the  
4096 CPU cycle delay is used to stabilize the os-  
cillator. After the start up delay, the CPU resumes  
operation by servicing the interrupt or by fetching  
the reset vector which woke it up (see Figure 19).  
When entering HALT mode, the I bit in the CC reg-  
ister is forced to 0 to enable interrupts. Therefore,  
if an interrupt is pending, the MCU wakes immedi-  
ately.  
WATCHDOG  
0
DISABLE  
WDGHALT 1)  
1
WATCHDOG  
RESET  
OSCILLATOR  
OFF  
PERIPHERALS 2)  
OFF  
OFF  
0
CPU  
I BIT  
N
RESET  
In the HALT mode the main oscillator is turned off  
causing all internal processing to be stopped, in-  
cluding the operation of the on-chip peripherals.  
All peripherals are not clocked except the ones  
which get their clock supply from another clock  
generator (such as an external or auxiliary oscilla-  
tor).  
Y
N
INTERRUPT 3)  
OSCILLATOR  
PERIPHERALS  
CPU  
Y
ON  
OFF  
ON  
1
The compatibility of Watchdog operation with  
HALT mode is configured by the “WDGHALT” op-  
tion bit of the option byte. The HALT instruction  
when executed while the Watchdog system is en-  
abled, can generate a Watchdog RESET (see  
Section 15.1 ”OPTION BYTES” on page 129 for  
more details).  
I BIT  
4096 CPU CLOCK CYCLE  
DELAY  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
ON  
ON  
X 4)  
Figure 19. HALT Mode Timing Overview  
I BIT  
4096 CPU CYCLE  
RUN  
HALT  
RUN  
DELAY  
FETCH RESET VECTOR  
OR SERVICE INTERRUPT  
Notes:  
HALT  
INSTRUCTION  
1. WDGHALT is an option bit. See option byte sec-  
tion for more details.  
2. Peripheral clocked with an external clock source  
can still be active.  
RESET  
OR  
INTERRUPT  
FETCH  
VECTOR  
3. Only some specific interrupts can exit the MCU  
from HALT mode (such as external interrupt). Re-  
fer to Table 5, “Interrupt Mapping,” on page 26 for  
more details.  
4. Before servicing an interrupt, the CC register is  
pushed on the stack. The I bit of the CC register is  
set during the interrupt routine and cleared when  
the CC register is popped.  
29/135  
ST72104G, ST72215G, ST72216G, ST72254G  
9 I/O PORTS  
9.1 INTRODUCTION  
programmable using the sensitivity bits in the Mis-  
cellaneous register.  
The I/O ports offer different functional modes:  
– transfer of data through digitalinputs and outputs  
Each external interrupt vector is linked to a dedi-  
cated group of I/O port pins (see pinout description  
and interrupt section). If several input pins are se-  
lected simultaneously as interrupt source, these  
are logically ANDed. For this reason if one of the  
interrupt pins is tied low, it masks the other ones.  
and for specific pins:  
– external interrupt generation  
– alternate signal input/output for the on-chip pe-  
ripherals.  
An I/O port contains up to 8 pins. Each pin can be  
programmed independently as digital input (with or  
without interrupt generation) or digital output.  
In case of a floating input with interrupt configura-  
tion, special care must be taken when changing  
the configuration (see Figure 22).  
The external interrupts are hardware interrupts,  
which means that the request latch (not accessible  
directly by the application) is automatically cleared  
when the corresponding interrupt vector is  
fetched. To clear an unwanted pending interrupt  
by software, the sensitivity bits in the Miscellane-  
ous register must be modified.  
9.2 FUNCTIONAL DESCRIPTION  
Each port has 2 main registers:  
– Data Register (DR)  
– Data Direction Register (DDR)  
and one optional register:  
– Option Register (OR)  
9.2.2 Output Modes  
The output configuration is selected by setting the  
corresponding DDR register bit. In this case, writ-  
ing the DR register applies this digital value to the  
I/O pin through the latch. Then reading the DR reg-  
ister returns the previously stored value.  
Each I/O pin may be programmed using the corre-  
sponding register bits in the DDR and OR regis-  
ters: bit X corresponding to pin X of the port. The  
same correspondence is used for the DR register.  
The following description takes into account the  
OR register, (for specific ports which do not pro-  
vide this register refer to the I/O Port Implementa-  
tion section). The generic I/O block diagram is  
shown in Figure 21  
Two different output modes can be selected by  
software through the OR register: Output push-pull  
and open-drain.  
DR register value and output pin status:  
9.2.1 Input Modes  
DR  
0
Push-pull  
Open-drain  
Vss  
V
The input configuration is selected by clearing the  
corresponding DDR register bit.  
SS  
1
V
Floating  
DD  
In this case, reading the DR register returns the  
digital value applied to the external I/O pin.  
9.2.3 Alternate Functions  
When an on-chip peripheral is configured to use a  
pin, the alternate function is automatically select-  
ed. This alternate function takes priority over the  
standard I/O programming.  
Different input modes can be selected by software  
through the OR register.  
Notes:  
1. Writing the DR register modifies the latch value  
but does not affect the pin status.  
When the signal is coming from an on-chip periph-  
eral, the I/O pin is automatically configured in out-  
put mode (push-pull or open drain according to the  
peripheral).  
2. When switching from input to output mode, the  
DR register has to be written first to drive the cor-  
rect level on the pin as soon as the port is config-  
ured as an output.  
When the signal is going to an on-chip peripheral,  
the I/O pin must be configured in input mode. In  
this case, the pin state is also digitally readable by  
addressing the DR register.  
External interrupt function  
When an I/O is configured as Input with Interrupt,  
an event on this I/O can generate anexternal inter-  
rupt request to the CPU.  
Note: Input pull-up configuration can cause unex-  
pected value at the input of the alternate peripheral  
input. When an on-chip peripheral use a pin as in-  
put and output, this pin has to be configured in in-  
put floating mode.  
Each pin can independently generate an interrupt  
request. The interrupt sensitivity is independently  
30/135  
ST72104G, ST72215G, ST72216G, ST72254G  
I/O PORTS (Cont’d)  
Figure 21. I/O Port General Block Diagram  
ALTERNATE  
OUTPUT  
1
0
REGISTER  
ACCESS  
P-BUFFER  
(see table below)  
V
DD  
ALTERNATE  
ENABLE  
PULL-UP  
(see table below)  
DR  
V
DD  
DDR  
PULL-UP  
CONDITION  
PAD  
OR  
If implemented  
OR SEL  
DDR SEL  
DR SEL  
N-BUFFER  
DIODES  
(see table below)  
ANALOG  
INPUT  
CMOS  
SCHMITT  
TRIGGER  
1
0
ALTERNATE  
INPUT  
EXTERNAL  
INTERRUPT  
SOURCE (ei )  
FROM  
OTHER  
BITS  
x
POLARITY  
SELECTION  
Table 6. I/O Port Mode Options  
Configuration Mode  
Diodes  
Pull-Up  
P-Buffer  
to V  
to V  
SS  
DD  
Floating with/without Interrupt  
Pull-up with/without Interrupt  
Push-pull  
Off  
On  
Input  
Off  
On  
On  
Off  
NI  
On  
Off  
NI  
Output  
Open Drain (logic level)  
True Open Drain  
NI (see note)  
Legend: NI - not implemented  
Off - implemented not activated  
On - implemented and activated  
Note: The diode to V  
is not implemented in the  
DD  
true open drain pads. A local protection between  
the pad and V is implemented to protect the de-  
SS  
vice against positive stress.  
31/135  
ST72104G, ST72215G, ST72216G, ST72254G  
I/O PORTS (Cont’d)  
Table 7. I/O Port Configurations  
Hardware Configuration  
DR REGISTER ACCESS  
NOT IMPLEMENTED IN  
TRUE OPEN DRAIN  
I/O PORTS  
V
DD  
PULL-UP  
CONDITION  
R
PU  
DR  
REGISTER  
W
R
DATABUS  
PAD  
ALTERNATE INPUT  
FROM  
OTHER  
PINS  
EXTERNAL INTERRUPT  
SOURCE (ei )  
x
INTERRUPT  
CONDITION  
POLARITY  
SELECTION  
ANALOG INPUT  
NOT IMPLEMENTED IN  
TRUE OPEN DRAIN  
I/O PORTS  
DR REGISTER ACCESS  
V
DD  
R
PU  
R/W  
DR  
REGISTER  
DATA BUS  
PAD  
ALTERNATE  
ENABLE  
ALTERNATE  
OUTPUT  
NOT IMPLEMENTED IN  
TRUE OPEN DRAIN  
I/O PORTS  
DR REGISTER ACCESS  
V
DD  
R
PU  
R/W  
DR  
REGISTER  
DATA BUS  
PAD  
ALTERNATE  
ENABLE  
ALTERNATE  
OUTPUT  
Notes:  
1. When the I/O port is in input configuration and the associated alternate function is enabled as an output,  
reading the DR register will read the alternate function output status.  
2. When the I/O port is in output configuration and the associated alternate function is enabled as an input,  
the alternate function reads the pin status given by the DR register content.  
32/135  
ST72104G, ST72215G, ST72216G, ST72254G  
Figure 22. Interrupt I/O Port State Transitions  
I/O PORTS (Cont’d)  
CAUTION: The alternate function must not be ac-  
tivated as long as the pin is configured as input  
with interrupt, in order to avoid generating spurious  
interrupts.  
01  
00  
10  
11  
Analog alternate function  
INPUT  
floating/pull-up  
interrupt  
INPUT  
floating  
(reset state)  
OUTPUT  
open-drain  
OUTPUT  
push-pull  
When the pin is used as an ADC input, the I/O  
must be configured as floating input. The analog  
multiplexer (controlled by the ADC registers)  
switches the analog voltage present on the select-  
ed pin to the common analog rail which is connect-  
ed to the ADC input.  
= DDR, OR  
XX  
The I/O port register configurations are summa-  
rized as follows.  
It is recommended not to change the voltage level  
or loading on any port pin while conversion is in  
progress. Furthermore it is recommended not to  
have clocking pins located close to a selected an-  
alog pin.  
Interrupt Ports  
PA7, PA5, PA3:0, PB7:0, PC5:0 (with pull-up)  
MODE  
DDR  
OR  
WARNING: The analog input voltage level must  
be within the limits stated in the absolute maxi-  
mum ratings.  
floating input  
0
0
1
1
0
1
0
1
pull-up interrupt input  
open drain output  
push-pull output  
9.3 I/O PORT IMPLEMENTATION  
The hardware implementation on each I/O port de-  
pends onthe settings in the DDR and OR registers  
and specificfeature of the I/O port such as ADC In-  
put or true open drain.  
True Open Drain Interrupt Ports  
PA6, PA4 (without pull-up)  
MODE  
DDR  
OR  
Switching these I/O ports from one state to anoth-  
er should be done in a sequence that prevents un-  
wanted side effects. Recommended safe transi-  
tions are illustrated in Figure 22 Other transitions  
are potentially risky and should be avoided, since  
they are likely to present unwanted side-effects  
such as spurious interrupt generation.  
floating input  
0
0
1
0
1
floating interrupt input  
open drain (high sink ports)  
X
Table 8. Port Configuration  
Input (DDR = 0)  
Output (DDR = 1)  
Port  
Pin name  
OR = 0  
OR = 1  
OR = 0  
OR = 1  
High-Sink  
PA7  
floating  
floating  
floating  
floating  
floating  
floating  
floating  
pull-up interrupt  
floating interrupt  
pull-up interrupt  
floating interrupt  
pull-up interrupt  
pull-up interrupt  
pull-up interrupt  
open drain  
push-pull  
PA6  
true open-drain  
Port A  
PA5  
open drain  
push-pull  
Yes  
PA4  
true open-drain  
PA3:0  
PB7:0  
PC7:0  
open drain  
open drain  
open drain  
push-pull  
push-pull  
push-pull  
Port B  
Port C  
No  
33/135  
ST72104G, ST72215G, ST72216G, ST72254G  
I/O PORTS (Cont’d)  
9.4 LOW POWER MODES  
DATA DIRECTION REGISTER (DDR)  
Port x Data Direction Register  
PxDDR with x = A, B or C.  
Mode  
WAIT  
HALT  
Description  
No effect on I/O ports. External interrupts  
cause the device to exit from WAIT mode.  
Read/Write  
Reset Value: 0000 0000 (00h)  
No effect on I/O ports. External interrupts  
cause the device to exit from HALT mode.  
7
0
9.5 INTERRUPTS  
DD7  
DD6  
DD5  
DD4  
DD3  
DD2  
DD1  
DD0  
The external interrupt event generates an interrupt  
if the corresponding configuration is selected with  
DDR and OR registers and the I-bit in the CC reg-  
ister is reset (RIM instruction).  
Bit 7:0 = DD[7:0] Data direction register 8 bits.  
The DDR register gives the input/output direction  
configuration of the pins. Each bit is set and  
cleared by software.  
Enable Exit  
Control from  
Exit  
from  
Halt  
Event  
Flag  
Interrupt Event  
0: Input mode  
1: Output mode  
Bit  
Wait  
External interrupt on  
selected external  
event  
DDRx  
ORx  
OPTION REGISTER (OR)  
-
Yes  
Yes  
Port x Option Register  
PxOR with x = A, B or C.  
9.6 REGISTER DESCRIPTION  
DATA REGISTER (DR)  
Read/Write  
Reset Value: 0000 0000 (00h)  
Port x Data Register  
PxDR with x = A, B or C.  
7
0
Read/Write  
O7  
O6  
O5  
O4  
O3  
O2  
O1  
O0  
Reset Value: 0000 0000 (00h)  
Bit 7:0 = O[7:0] Option register 8 bits.  
7
0
For specific I/O pins, this register is not implement-  
ed. In this case the DDR register is enough to se-  
lect the I/O pin configuration.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
The OR register allows to distinguish: in input  
mode if the pull-up with interrupt capability or the  
basic pull-up configuration is selected, in output  
mode if the push-pull or open drain configuration is  
selected.  
Bit 7:0 = D[7:0] Data register 8 bits.  
The DR register has a specific behaviour accord-  
ing to the selected input/output configuration. Writ-  
ing the DR register is always taken into account  
even if the pin is configured as an input; this allows  
always having the expected level on the pin when  
toggling to output mode. Reading the DR register  
returns either the DR register latch content (pin  
configured as output) or the digital value applied to  
the I/O pin (pin configured as input).  
Each bit is set and cleared by software.  
Input mode:  
0: Floating input  
1: Pull-up input with or without interrupt  
Output mode:  
0: Output open drain (with P-Buffer unactivated)  
1: Output push-pull (when available)  
34/135  
ST72104G, ST72215G, ST72216G, ST72254G  
I/O PORTS (Cont’d)  
Table 9. I/O Port Register Map and Reset Values  
Address  
(Hex.)  
Register  
Label  
7
6
5
4
3
2
1
0
Reset Value  
of all I/O port registers  
0
0
0
0
0
0
0
0
0000h  
0001h  
0002h  
0004h  
0005h  
0006h  
0008h  
0009h  
000Ah  
PCDR  
PCDDR  
PCOR  
PBDR  
PBDDR  
PBOR  
PADR  
PADDR  
PAOR  
MSB  
MSB  
MSB  
LSB  
LSB  
LSB  
35/135  
ST72104G, ST72215G, ST72216G, ST72254G  
10 MISCELLANEOUS REGISTERS  
The miscellaneous registers allow control over  
several different features such as the external in-  
terrupts or the I/O alternate functions.  
Figure 23. Ext. Interrupt Sensitivity (EXTIT=0)  
MISCR1  
IS00 IS01  
PA7  
ei0  
10.1 I/O PORT INTERRUPT SENSITIVITY  
INTERRUPT  
SOURCE  
The external interrupt sensitivity is controlled by  
the ISxx bits of the Miscellaneous register and the  
OPTION BYTE. This control allows having two ful-  
ly independent external interrupt source sensitivi-  
ties with configurable sources (using EXTIT option  
bit) as shown in Figure 23 and Figure 24.  
SENSITIVITY  
CONTROL  
PA0  
PC5  
PC0  
MISCR1  
Each external interrupt source can be generated  
on four different events on the pin:  
IS10  
IS11  
ei1  
PB7  
PB0  
INTERRUPT  
SOURCE  
Falling edge  
Rising edge  
Falling and rising edge  
Falling edge and low level  
SENSITIVITY  
CONTROL  
To guarantee correct functionality, the sensitivity  
bits in the MISCR1 register must be modified only  
when the I bit of the CC register is set to 1 (inter-  
rupt masked). See I/O port register and Miscella-  
neous register descriptions for more details on the  
programming.  
Figure 24. Ext. Interrupt Sensitivity (EXTIT=1)  
MISCR1  
IS00  
IS01  
ei0  
PA7  
INTERRUPT  
SOURCE  
SENSITIVITY  
CONTROL  
10.2 I/O PORT ALTERNATE FUNCTIONS  
PA0  
PB7  
The MISCR registers manage four I/O port miscel-  
laneous alternate functions:  
MISCR1  
Main clock signal (f  
) output on PC2  
CPU  
IS10  
IS11  
ei1  
SPI pin configuration:  
INTERRUPT  
SOURCE  
– SS pin internal control to use the PB7 I/O port  
function while the SPI is active.  
SENSITIVITY  
CONTROL  
PB0  
PC5  
– Master output capability on MOSI pin (PB4)  
deactivated while the SPI is active.  
– Slave output capability on MISO pin (PB5) de-  
activated while the SPI is active.  
PC0  
These functions are described in detail in the Sec-  
tion 10.3 ”MISCELLANEOUS REGISTER DE-  
SCRIPTION” on page 37.  
36/135  
ST72104G, ST72215G, ST72216G, ST72254G  
MISCELLANEOUS REGISTERS (Cont’d)  
10.3 MISCELLANEOUS REGISTER DESCRIPTION  
MISCELLANEOUS REGISTER 1 (MISCR1)  
Read/Write  
Bit 2:1 = CP[1:0] CPU clock prescaler  
These bits select the CPU clock prescaler which is  
applied in the different slow modes. Their action is  
conditioned by the setting of the SMS bit. These  
two bits are set and cleared by software  
Reset Value: 0000 0000 (00h)  
7
0
f
in SLOW mode  
CP1  
CP0  
CPU  
IS11 IS10 MCO IS01 IS00 CP1 CP0 SMS  
f
f
/ 4  
/ 8  
0
1
0
1
0
0
1
1
OSC  
OSC  
f
/ 16  
/ 32  
OSC  
Bit 7:6 = IS1[1:0] ei1 sensitivity  
f
OSC  
The interrupt sensitivity, defined using the IS1[1:0]  
bits, is applied to the ei1 external interrupts. These  
two bits can be written only when the I bit of the CC  
register is set to 1 (interrupt masked).  
Bit 0 = SMS Slow mode select  
This bit is set and cleared by software.  
0: Normal mode. f = fOSC / 2  
ei1: Port B (C optional)  
CPU  
1: Slow mode. f  
is given by CP1, CP0  
CPU  
External Interrupt Sensitivity  
IS11 IS10  
See low power consumption mode and MCC  
chapters for more details.  
Falling edge & low level  
Rising edge only  
0
0
1
1
0
1
0
1
Falling edge only  
Rising and falling edge  
Bit 5 = MCO Main clock out selection  
This bit enables the MCO alternate function on the  
PC2 I/O port. It is set and cleared by software.  
0: MCO alternate function disabled (I/O pin free for  
general-purpose I/O)  
1: MCO alternate function enabled (f  
port)  
on I/O  
CPU  
Bit 4:3 = IS0[1:0] ei0 sensitivity  
The interrupt sensitivity, defined using the IS0[1:0]  
bits, is applied to the ei0 external interrupts. These  
two bits can be written only when the I bit of the CC  
register is set to 1 (interrupt masked).  
ei0: Port A (C optional)  
External Interrupt Sensitivity  
IS01 IS00  
Falling edge & low level  
Rising edge only  
0
0
1
1
0
1
0
1
Falling edge only  
Rising and falling edge  
37/135  
ST72104G, ST72215G, ST72216G, ST72254G  
MISCELLANEOUS REGISTERS (Cont’d)  
MISCELLANEOUS REGISTER 2 (MISCR2)  
Read/Write  
Reset Value: 0000 0000 (00h)  
7
0
0
0
0
0
MOD SOD SSM SSI  
Bit 7:4 = Reserved always read as 0  
Bit 5 = MOD SPI Master Output Disable  
This bit is set and cleared by software. When set, it  
disables the SPI Master (MOSI) output signal.  
0: SPI Master Output enabled.  
1: SPI Master Output disabled.  
Bit 4 = SOD SPI Slave Output Disable  
This bit is set and cleared by software. When set it  
disable the SPI Slave (MISO) output signal.  
0: SPI Slave Output enabled.  
1: SPI Slave Output disabled.  
Bit 1 = SSM SS mode selection  
This bit is set and cleared by software.  
0: Normal mode - the level of the SPI SS signal is  
input from the external SS pin.  
1: I/O mode, the level of the SPI SS signal is read  
from the SSI bit.  
Bit 0 = SSI SS internal mode  
This bit replaces the SS pin of the SPI when the  
SSM bit is set to 1. (see SPI description). It is set  
and cleared by software.  
Table 10. Miscellaneous Register Map and Reset Values  
Address  
(Hex.)  
Register  
Label  
7
6
5
4
3
2
1
0
MISCR1  
Reset Value  
IS11  
0
IS10  
0
MCO  
0
IS01  
0
IS00  
0
CP1  
0
CP0  
0
SMS  
0
0020h  
0040h  
MISCR2  
Reset Value  
MOD  
0
SOD  
0
SSM  
0
SSI  
0
0
0
0
0
38/135  
ST72104G, ST72215G, ST72216G, ST72254G  
11 ON-CHIP PERIPHERALS  
11.1 WATCHDOG TIMER (WDG)  
11.1.1 Introduction  
cles, and the length of the timeout period can be  
programmed by the user in 64 increments.  
The Watchdog timer is used to detect the occur-  
rence of a software fault, usually generated by ex-  
ternal interference or by unforeseen logical condi-  
tions, which causes the application program to  
abandon its normal sequence. The Watchdog cir-  
cuit generates an MCU reset on expiry of a pro-  
grammed time period, unless the program refresh-  
es the counter’s contents before the T6 bit be-  
comes cleared.  
If the watchdog is activated (the WDGA bit is set)  
and when the 7-bit timer (bits T6:T0) rolls over  
from 40h to 3Fh (T6 becomes cleared), it initiates  
a reset cycle pulling low the reset pin for typically  
500ns.  
The application program must write in the CR reg-  
ister at regular intervals during normal operation to  
prevent an MCU reset. The value to be stored in  
the CR register must be between FFh and C0h  
(see Table 11 . Watchdog Timing (fCPU = 8  
MHz)):  
11.1.2 Main Features  
Programmable timer (64 increments of 12288  
CPU cycles)  
– The WDGA bit is set (watchdog enabled)  
Programmable reset  
– The T6 bit is set to prevent generating an imme-  
diate reset  
Reset (if watchdog activated) when the T6 bit  
reaches zero  
Optional  
reset  
on  
HALT  
instruction  
– The T5:T0 bits contain the number of increments  
which represents the time delay before the  
watchdog produces a reset.  
(configurable by option byte)  
Hardware Watchdog selectable by option byte.  
11.1.3 Functional Description  
The counter value stored in the CR register (bits  
T6:T0), is decremented every 12,288 machine cy-  
Figure 25. Watchdog Block Diagram  
RESET  
WATCHDOG CONTROL REGISTER (CR)  
T5 T0  
WDGA T6  
T4  
T1  
T2  
T3  
7-BIT DOWNCOUNTER  
CLOCK DIVIDER  
f
CPU  
÷12288  
39/135  
ST72104G, ST72215G, ST72216G, ST72254G  
WATCHDOG TIMER (Cont’d)  
Table 11. Watchdog Timing (f  
= 8 MHz)  
reset immediately after waking up the microcon-  
troller.  
CPU  
CR Register  
initial value  
WDG timeout period  
(ms)  
– When using an external interrupt to wake up the  
microcontroller, reinitialize the corresponding I/O  
as “Input Pull-up with Interrupt” before executing  
the HALT instruction. The main reason for this is  
that the I/O may be wrongly configured due to ex-  
ternal interference or by an unforeseen logical  
condition.  
Max  
Min  
FFh  
C0h  
98.304  
1.536  
Notes: Following a reset, the watchdog is disa-  
bled. Once activated it cannot be disabled, except  
by a reset.  
– For the same reason, reinitialize the level sensi-  
tiveness of each external interrupt as a precau-  
tionary measure.  
The T6 bit can be used to generate a software re-  
set (the WDGA bit is set and the T6 bit is cleared).  
– The opcode for the HALT instruction is 0x8E. To  
avoid an unexpected HALT instruction due to a  
program counter failure, it is advised to clear all  
occurrences of the data value 0x8E from memo-  
ry. For example, avoid defining a constant in  
ROM with the value 0x8E.  
11.1.4 Hardware Watchdog Option  
If Hardware Watchdog is selected by option byte,  
the watchdog is always active and the WDGA bit in  
the CR is not used.  
– As the HALT instruction clears the I bit in the CC  
register to allow interrupts, the user may choose  
to clear all pending interrupt bits before execut-  
ing the HALT instruction. This avoids entering  
other peripheral interrupt routines afterexecuting  
the external interrupt routine corresponding to  
the wake-up event (reset or external interrupt).  
Refer to the device-specific Option Byte descrip-  
tion.  
11.1.5 Low Power Modes  
WAIT Instruction  
No effect on Watchdog.  
HALT Instruction  
11.1.6 Interrupts  
If the Watchdog reset on HALT option is selected  
by option byte, a HALT instruction causes an im-  
mediate reset generation if the Watchdog is acti-  
vated (WDGA bit is set).  
None.  
11.1.7 Register Description  
CONTROL REGISTER (CR)  
Read/Write  
11.1.5.1 Using Halt Modewith the WDG (option)  
If the Watchdog reset on HALT option is not se-  
lected by option byte, the Halt mode can be used  
when the watchdog is enabled.  
Reset Value: 0111 1111 (7Fh)  
7
0
In this case, the HALT instruction stops the oscilla-  
tor. When the oscillator is stopped, the WDG stops  
counting and is no longer able to generate a reset  
until the microcontroller receives an external inter-  
rupt or a reset.  
WDGA T6  
T5  
T4  
T3  
T2  
T1  
T0  
Bit 7 = WDGA Activation bit.  
This bit is set by software and only cleared by  
hardware after a reset. When WDGA = 1, the  
watchdog can generate a reset.  
0: Watchdog disabled  
1: Watchdog enabled  
If an external interrupt is received, the WDG re-  
starts counting after 4096 CPU clocks. If a reset is  
generated, the WDG is disabled (reset state).  
Recommendations  
– Make sure that an external event is available to  
wake up the microcontroller from Halt mode.  
Bit 6:0 = T[6:0] 7-bit timer (MSB to LSB).  
These bits contain the decremented value. A reset  
is produced when it rolls over from 40h to 3Fh (T6  
becomes cleared).  
– Before executing the HALT instruction, refresh  
the WDG counter, to avoidan unexpected WDG  
40/135  
ST72104G, ST72215G, ST72216G, ST72254G  
WATCHDOG TIMER (Cond’t)  
Table 12. Watchdog Timer Register Map and Reset Values  
Address  
(Hex.)  
Register  
Label  
7
6
5
4
3
2
1
0
WDGCR  
Reset Value  
WDGA  
0
T6  
1
T5  
1
T4  
1
T3  
1
T2  
1
T1  
1
T0  
1
0024h  
41/135  
ST72104G, ST72215G, ST72216G, ST72254G  
11.2 16-BIT TIMER  
11.2.1 Introduction  
11.2.3 Functional Description  
11.2.3.1 Counter  
The timer consists of a 16-bit free-running counter  
driven by a programmable prescaler.  
The main block of the Programmable Timer is a  
16-bit free running upcounter and its associated  
16-bit registers. The 16-bit registers are made up  
of two 8-bit registers called high & low.  
It may be used for a variety of purposes, including  
pulse length measurement of up to two input sig-  
nals (input capture) or generation of up to two out-  
put waveforms (output compare and PWM).  
Counter Register (CR):  
Pulse lengths and waveform periods can be mod-  
ulated from a few microseconds to several milli-  
seconds using the timer prescaler and the CPU  
clock prescaler.  
– Counter High Register (CHR) is the most sig-  
nificant byte (MS Byte).  
– Counter Low Register (CLR) is the least sig-  
nificant byte (LS Byte).  
Some ST7 devices have two on-chip 16-bit timers.  
They are completely independent, and do not  
share any resources. They are synchronized after  
a MCU reset as long as the timer clock frequen-  
cies are not modified.  
Alternate Counter Register (ACR)  
– Alternate Counter High Register (ACHR) is the  
most significant byte (MS Byte).  
– Alternate Counter Low Register (ACLR) is the  
least significant byte (LS Byte).  
This description covers one or two 16-bit timers. In  
ST7 devices with two timers, register names are  
prefixed with TA (Timer A) or TB (Timer B).  
These two read-only 16-bit registers contain the  
same value but with the difference that reading the  
ACLR register does not clear the TOF bit (Timer  
overflow flag), located in the Status register, (SR),  
(see note at the end of paragraph titled 16-bit read  
sequence).  
11.2.2 Main Features  
Programmable prescaler:fCPU dividedby2, 4or8.  
Overflow status flag and maskable interrupt  
External clock input (must be at least 4 times  
slower thantheCPUclock speed)withthechoice  
of active edge  
Output compare functions with  
– 2 dedicated 16-bit registers  
– 2 dedicated programmable signals  
– 2 dedicated status flags  
Writing in the CLR register or ACLR register resets  
the free running counter to the FFFCh value.  
Both counters have a reset value of FFFCh (this is  
the only value which is reloaded in the 16-bit tim-  
er). The reset value of both counters is also  
FFFCh in One Pulse mode and PWM mode.  
The timer clock depends on the clock control bits  
of the CR2 register, as illustrated in Table 13 Clock  
Control Bits. The value in the counter register re-  
peats every 131.072, 262.144 or 524.288 CPU  
clock cycles depending on the CC[1:0] bits.  
– 1 dedicated maskable interrupt  
Input capture functions with  
– 2 dedicated 16-bit registers  
– 2 dedicated active edge selection signals  
– 2 dedicated status flags  
The timer frequency can be f  
or an external frequency.  
/2, f  
/4, f  
/8  
CPU  
CPU  
CPU  
– 1 dedicated maskable interrupt  
Pulse width modulation mode (PWM)  
One pulse mode  
5 alternatefunctionson I/O ports (ICAP1,ICAP2,  
OCMP1, OCMP2, EXTCLK)*  
The Block Diagram is shown in Figure 26.  
*Note: Some timer pins may not available (not  
bonded) in some ST7 devices. Refer to the device  
pin out description.  
When reading an input signal on a non-bonded  
pin, the value will always be ‘1’.  
42/135  
ST72104G, ST72215G, ST72216G, ST72254G  
16-BIT TIMER (Cont’d)  
Figure 26. Timer Block Diagram  
ST7 INTERNAL BUS  
f
CPU  
MCU-PERIPHERAL INTERFACE  
8 low  
8-bit  
8 high  
8
8
8
8
8
8
8
8
buffer  
EXEDG  
h
w
h
w
h
w
h
low  
16  
INPUT  
CAPTURE  
REGISTER  
INPUT  
CAPTURE  
REGISTER  
OUTPUT  
COMPARE  
REGISTER  
OUTPUT  
COMPARE  
REGISTER  
1
1/2  
1/4  
1/8  
COUNTER  
REGISTER  
1
2
2
ALTERNATE  
COUNTER  
REGISTER  
EXTCLK  
pin  
16  
16  
16  
CC[1:0]  
TIMER INTERNAL BUS  
16 16  
OVERFLOW  
DETECT  
EDGE DETECT  
CIRCUIT1  
OUTPUT COMPARE  
CIRCUIT  
ICAP1  
pin  
CIRCUIT  
6
EDGE DETECT  
CIRCUIT2  
ICAP2  
pin  
OCMP1  
pin  
LATCH1  
LATCH2  
ICF1 OCF1 TOF ICF2 OCF2  
0
0
0
OCMP2  
pin  
(Status Register) SR  
ICIE OCIE TOIE FOLV2 FOLV1OLVL2 IEDG1 OLVL1  
OC1E  
OPM PWM CC1 CC0 IEDG2 EXEDG  
OC2E  
(Control Register 1) CR1  
(Control Register 2) CR2  
(See note)  
Note: If IC, OC and TO interrupt requests have separate vectors  
then the last OR is not present (See device Interrupt Vector Table)  
TIMER INTERRUPT  
43/135  
ST72104G, ST72215G, ST72216G, ST72254G  
16-BIT TIMER (Cont’d)  
16-bit read sequence: (from either the Counter  
Register or the Alternate Counter Register).  
Clearing the overflow interrupt request is done in  
two steps:  
1.Reading the SR register while the TOF bit is set.  
2.An access (read or write) to the CLR register.  
Beginning of the sequence  
Read  
LS Byte  
Notes: The TOF bit is not cleared by accesses to  
ACLR register. The advantage of accessing the  
ACLR register rather than the CLR register is that  
it allows simultaneous use of the overflow function  
and reading the free running counter at random  
times (for example, to measure elapsed time) with-  
out the risk of clearing the TOF bit erroneously.  
MS Byte  
At t0  
is buffered  
Other  
instructions  
Returns the buffered  
LS Byte value at t0  
Read  
LS Byte  
At t0 +t  
The timer is not affected by WAIT mode.  
In HALT mode, the counter stops counting until the  
mode is exited. Counting then resumes from the  
previous count (MCU awakened by an interrupt) or  
from the reset count (MCU awakened by a Reset).  
Sequence completed  
The user must read the MS Byte first, then the LS  
Byte value is buffered automatically.  
This buffered value remains unchanged until the  
16-bit read sequence is completed, even if the  
user reads the MS Byte several times.  
11.2.3.2 External Clock  
The external clock (where available) is selected if  
CC0=1 and CC1=1 in CR2 register.  
After a complete reading sequence, if only the  
CLR register or ACLR register are read, they re-  
turn the LS Byte of the count value at the time of  
the read.  
The status of the EXEDG bit in the CR2 register  
determines the type of level transition on the exter-  
nal clock pin EXTCLK that will trigger the free run-  
ning counter.  
Whatever the timer mode used (input capture, out-  
put compare, one pulse mode or PWM mode) an  
overflow occurs when the counter rolls over from  
FFFFh to 0000h then:  
The counter is synchronised with the falling edge  
of the internal CPU clock.  
A minimum of four falling edges of the CPU clock  
must occur between two consecutive active edges  
of the external clock; thus the external clock fre-  
quency must be less than a quarter of the CPU  
clock frequency.  
– The TOF bit of the SR register is set.  
– A timer interrupt is generated if:  
– TOIE bit of the CR1 register is set and  
– I bit of the CC register is cleared.  
If one of these conditions is false, the interrupt re-  
mains pending to be issued as soon as they are  
both true.  
44/135  
ST72104G, ST72215G, ST72216G, ST72254G  
16-BIT TIMER (Cont’d)  
Figure 27. Counter Timing Diagram, internal clock divided by 2  
CPU CLOCK  
INTERNAL RESET  
TIMER CLOCK  
FFFD FFFE FFFF 0000 0001 0002 0003  
COUNTER REGISTER  
TIMER OVERFLOW FLAG (TOF)  
Figure 28. Counter Timing Diagram, internal clock divided by 4  
CPU CLOCK  
INTERNAL RESET  
TIMER CLOCK  
FFFC  
FFFD  
0000  
0001  
COUNTER REGISTER  
TIMER OVERFLOW FLAG (TOF)  
Figure 29. Counter Timing Diagram, internal clock divided by 8  
CPU CLOCK  
INTERNAL RESET  
TIMER CLOCK  
0000  
FFFC  
FFFD  
COUNTER REGISTER  
TIMER OVERFLOW FLAG (TOF)  
Note: The MCU is in reset state when the internal reset signal is high, when it is low the MCU is running.  
45/135  
ST72104G, ST72215G, ST72216G, ST72254G  
16-BIT TIMER (Cont’d)  
11.2.3.3 Input Capture  
When an input capture occurs:  
– ICFi bit is set.  
In this section, the index, i, may be 1 or 2 because  
there are 2 input capture functions in the 16-bit  
timer.  
– The ICiR register contains the value of the free  
running counter on the active transition on the  
ICAPi pin (see Figure 31).  
The two input capture 16-bit registers (IC1R and  
IC2R) are used to latch the value of the free run-  
ning counter after a transition detected by the  
ICAPi pin (see figure 5).  
– A timer interrupt is generated if the ICIE bit is set  
and the I bit is cleared in the CC register. Other-  
wise, the interrupt remains pending until both  
conditions become true.  
MS Byte  
ICiHR  
LS Byte  
ICiLR  
ICiR  
Clearing the Input Capture interrupt request (i.e.  
clearing the ICFi bit) is done in two steps:  
ICiR register is a read-only register.  
1. Reading the SR register while the ICFi bit is set.  
2. An access (read or write) to the ICiLR register.  
The active transition is software programmable  
through the IEDGi bit of Control Registers (CRi).  
Timing resolution is one count of the free running  
Notes:  
counter: (f  
/CC[1:0]).  
CPU  
1. After reading the ICiHR register, transfer of  
input capture data is inhibited and ICFi will  
never be set until the ICiLR register is also  
read.  
Procedure:  
To use the input capture function select the follow-  
ing in the CR2 register:  
2. The ICiR register contains the free running  
counter value which corresponds to the most  
recent input capture.  
– Select the timer clock (CC[1:0]) (see Table 13  
Clock Control Bits).  
3. The 2 input capture functions can be used  
together even if the timer also uses the 2 output  
compare functions.  
– Select the edge of the active transition on the  
ICAP2 pin with the IEDG2 bit (the ICAP2 pin  
must be configured as floating input).  
4. In One pulse Mode and PWM mode only the  
input capture 2 can be used.  
And select the following in the CR1 register:  
– Set the ICIE bit to generate an interrupt after an  
input capture coming from either the ICAP1 pin  
or the ICAP2 pin  
5. The alternate inputs (ICAP1 & ICAP2) are  
always directly connected to the timer. So any  
transitions on these pins activate the input cap-  
ture function.  
– Select the edge of the active transition on the  
ICAP1 pin with theIEDG1 bit (the ICAP1pin must  
be configured as floating input).  
Moreover if one of the ICAPi pin is configured  
as an input and the second one as an output,  
an interrupt can be generated if the user toggle  
the output pin and if the ICIE bit is set.  
This can be avoided if the input capture func-  
tion i is disabled by reading the ICiHR (see note  
1).  
6. The TOF bit can be used with interrupt in order  
to measure event that go beyond the timer  
range (FFFFh).  
46/135  
ST72104G, ST72215G, ST72216G, ST72254G  
16-BIT TIMER (Cont’d)  
Figure 30. Input Capture Block Diagram  
ICAP1  
pin  
(Control Register 1) CR1  
EDGE DETECT  
CIRCUIT2  
EDGE DETECT  
CIRCUIT1  
ICIE  
IEDG1  
ICAP2  
pin  
(Status Register) SR  
ICF1  
ICF2  
0
0
0
IC2R Register  
IC1R Register  
(Control Register 2) CR2  
16-BIT  
16-BIT FREE RUNNING  
COUNTER  
IEDG2  
CC0  
CC1  
Figure 31. Input Capture Timing Diagram  
TIMER CLOCK  
FF01  
FF02  
FF03  
COUNTER REGISTER  
ICAPi PIN  
ICAPi FLAG  
FF03  
ICAPi REGISTER  
Note: Active edge is rising edge.  
47/135  
ST72104G, ST72215G, ST72216G, ST72254G  
16-BIT TIMER (Cont’d)  
11.2.3.4 Output Compare  
– The OCMPi pin takes OLVLi bit value (OCMPi  
pin latch is forced low during reset).  
In this section, the index, i, may be 1 or 2 because  
there are 2 output compare functions in the 16-bit  
timer.  
– A timer interrupt is generated if the OCIE bit is  
set in the CR2 register and the I bit is cleared in  
the CC register (CC).  
This function can be used to control an output  
waveform or indicate when a period of time has  
elapsed.  
The OCiR register value required for aspecific tim-  
ing application can be calculated using the follow-  
ing formula:  
When a match is found between the Output Com-  
pare register and the free running counter, the out-  
put compare function:  
– Assigns pins with a programmable value if the  
OCIE bit is set  
t f  
* CPU  
PRESC  
OCiR =  
– Sets a flag in the status register  
– Generates an interrupt if enabled  
Where:  
t  
= Output compare period (in seconds)  
= CPU clock frequency (in hertz)  
Two 16-bit registers Output Compare Register 1  
(OC1R) and Output Compare Register 2 (OC2R)  
contain the value to be compared to the counter  
register each timer clock cycle.  
f
CPU  
= Timer prescaler factor (2, 4 or 8 de-  
pending on CC[1:0] bits, see Table 13  
Clock Control Bits)  
PRESC  
MS Byte  
OCiHR  
LS Byte  
OCiLR  
OCiR  
If the timer clock is an external clock, the formula  
is:  
These registers are readable and writable and are  
not affected by the timer hardware. A reset event  
changes the OCiR value to 8000h.  
OCiR = t f  
* EXT  
Timing resolution is one count of the free running  
Where:  
counter: (f  
).  
CC[1:0]  
CPU/  
t  
= Output compare period (in seconds)  
= External timer clock frequency (in hertz)  
f
EXT  
Procedure:  
To use the output compare function, select the fol-  
lowing in the CR2 register:  
Clearing the output compare interrupt request (i.e.  
clearing the OCFi bit) is done by:  
– Set the OCiE bit if an output is needed then the  
OCMPi pin is dedicated to the output compare i  
signal.  
1. Reading the SR register while the OCFi bit is  
set.  
2. An access (read or write) to the OCiLR register.  
– Select the timer clock (CC[1:0]) (see Table 13  
Clock Control Bits).  
The following procedure is recommended to pre-  
vent the OCFi bit from being set between the time  
it is read and the write to the OCiR register:  
And select the following in the CR1 register:  
– Select theOLVLi bit to applied to theOCMPi pins  
after the match occurs.  
– Write to the OCiHR register (further compares  
are inhibited).  
– Set the OCIE bit to generate an interrupt if it is  
needed.  
– Read the SR register (first step of the clearance  
of the OCFi bit, which may be already set).  
When a match is found between OCRi register  
and CR register:  
– Write to the OCiLR register (enables the output  
compare function and clears the OCFi bit).  
– OCFi bit is set.  
48/135  
ST72104G, ST72215G, ST72216G, ST72254G  
Forced Compare Output capability  
16-BIT TIMER (Cont’d)  
Notes:  
1. After a processor write cycle to the OCiHR reg-  
ister, the output compare function is inhibited  
until the OCiLR register is also written.  
When the FOLVi bit is set by software, the OLVLi  
bit is copied to the OCMPi pin. The OLVi bit has to  
be toggled in order to toggle the OCMPi pin when  
it is enabled (OCiE bit=1). The OCFi bit is then not  
set by hardware, and thus no interrupt request is  
generated.  
2. If the OCiE bit is not set, the OCMPi pin is a  
general I/O port and the OLVLi bit will not  
appear when a match is found but an interrupt  
could be generated if the OCIE bit is set.  
3. When the timer clock is f  
/2, OCFi and  
FOLVLi bits have no effect in both one pulse mode  
and PWM mode.  
CPU  
OCMPi are set while the counter value equals  
the OCiR register value (see Figure 33 on page  
49). This behaviour is the same in OPM or  
PWM mode.  
When the timer clock is f  
/4, f  
/8 or in  
CPU  
CPU  
external clock mode, OCFi and OCMPi are set  
while the counter value equals the OCiR regis-  
ter value plus 1 (see Figure 34 on page 49).  
4. The output compare functions can be used both  
for generating external events on the OCMPi  
pins even if the input capture mode is also  
used.  
5. The value in the 16-bit OCiR register and the  
OLVi bit should be changed after each suc-  
cessful comparison in order to control an output  
waveform or establish a new elapsed timeout.  
Figure 32. Output Compare Block Diagram  
16 BIT FREE RUNNING  
OC1E  
CC1 CC0  
OC2E  
COUNTER  
(Control Register 2) CR2  
16-bit  
(Control Register 1) CR1  
OUTPUT COMPARE  
CIRCUIT  
Latch  
1
OCIE  
FOLV2 FOLV1 OLVL2  
OLVL1  
OCMP1  
Pin  
16-bit  
16-bit  
Latch  
2
OCMP2  
Pin  
OC1R Register  
OCF1  
OCF2  
0
0
0
OC2R Register  
(Status Register) SR  
49/135  
ST72104G, ST72215G, ST72216G, ST72254G  
16-BIT TIMER (Cont’d)  
Figure 33. Output Compare Timing Diagram, f  
=f  
/2  
TIMER  
CPU  
INTERNAL CPU CLOCK  
TIMER CLOCK  
COUNTER REGISTER  
2ECF 2ED0 2ED1 2ED2 2ED3 2ED4  
2ED3  
OUTPUT COMPARE REGISTER i (OCRi)  
OUTPUT COMPARE FLAG i (OCFi)  
OCMPi PIN (OLVLi=1)  
Figure 34. Output Compare Timing Diagram, f  
=f  
/4  
TIMER  
CPU  
INTERNAL CPU CLOCK  
TIMER CLOCK  
2ECF 2ED0 2ED1 2ED2  
2ED3  
2ED4  
2ED3  
COUNTER REGISTER  
OUTPUT COMPARE REGISTER i (OCRi)  
COMPARE REGISTER i LATCH  
OUTPUT COMPARE FLAG i (OCFi)  
OCMPi PIN (OLVLi=1)  
50/135  
ST72104G, ST72215G, ST72216G, ST72254G  
16-BIT TIMER (Cont’d)  
11.2.3.5 One Pulse Mode  
Clearing the Input Capture interrupt request (i.e.  
clearing the ICFi bit) is done in two steps:  
One Pulse mode enables the generation of a  
pulse when an external event occurs. This mode is  
selected via the OPM bit in the CR2 register.  
1. Reading the SR register while the ICFi bit is set.  
2. An access (read or write) to the ICiLR register.  
The one pulse mode uses the Input Capture1  
function and the Output Compare1 function.  
The OC1R register value required for a specific  
timing application can be calculated using the fol-  
lowing formula:  
Procedure:  
t * f  
To use one pulse mode:  
CPU - 5  
OCiR Value =  
PRESC  
1. Load the OC1R register with the value corre-  
sponding to the length of the pulse (see the for-  
mula in the opposite column).  
Where:  
t
= Pulse period (in seconds)  
2. Select the following in the CR1 register:  
f
= CPU clock frequency (in hertz)  
CPU  
– Using the OLVL1 bit, select the level to be ap-  
plied to the OCMP1 pin after the pulse.  
= Timer prescaler factor (2, 4 or 8 depend-  
ing on the CC[1:0] bits, see Table 13  
Clock Control Bits)  
PRESC  
– Using the OLVL2 bit, select the level to be ap-  
plied to the OCMP1 pin during the pulse.  
If the timer clock is an external clock the formula is:  
– Select the edge of the active transition on the  
ICAP1 pin with the IEDG1 bit (the ICAP1 pin  
must be configured as floating input).  
OCiR = t f  
-5  
* EXT  
Where:  
t
3. Select the following in the CR2 register:  
= Pulse period (in seconds)  
– Set the OC1E bit, the OCMP1 pin is then ded-  
icated to the Output Compare 1 function.  
f
= External timer clock frequency (in hertz)  
EXT  
– Set the OPM bit.  
When the value of the counter is equal to the value  
of the contents of the OC1R register, the OLVL1  
bit is output on the OCMP1 pin, (See Figure 35).  
– Select the timer clock CC[1:0] (see Table 13  
Clock Control Bits).  
One pulse mode cycle  
When  
Notes:  
1. The OCF1 bit cannot be set by hardware in one  
pulse mode but the OCF2 bit can generate an  
Output Compare interrupt.  
OCMP1 = OLVL2  
event occurs  
on ICAP1  
Counter is reset  
2. When the Pulse Width Modulation (PWM) and  
One Pulse Mode (OPM) bits are both set, the  
PWM mode is the only active one.  
to FFFCh  
ICF1 bit is set  
3. If OLVL1=OLVL2 a continuous signal will be  
seen on the OCMP1 pin.  
When  
Counter  
OCMP1 = OLVL1  
= OC1R  
4. The ICAP1 pin can not be used to perform input  
capture. The ICAP2 pin can be used to perform  
input capture (ICF2 can be set and IC2R can be  
loaded) but the user must take care that the  
counter is reset each time a valid edge occurs  
on the ICAP1 pin and ICF1 can also generates  
interrupt if ICIE is set.  
Then, on a valid event on the ICAP1 pin, the coun-  
ter is initialized to FFFCh and OLVL2 bit is loaded  
on the OCMP1 pin, the ICF1 bit is set and the val-  
ue FFFDh is loaded in the IC1R register.  
Because the ICF1 bit is set when an active edge  
occurs, an interrupt can be generated if the ICIE  
bit is set.  
5. When one pulse mode is used OC1R is dedi-  
cated to this mode. Nevertheless OC2R and  
OCF2 can be used to indicate a period of time  
has been elapsed but cannot generate an out-  
put waveform because the level OLVL2 is dedi-  
cated to the one pulse mode.  
51/135  
ST72104G, ST72215G, ST72216G, ST72254G  
16-BIT TIMER (Cont’d)  
Figure 35. One Pulse Mode Timing Example  
FFFC FFFD FFFE  
COUNTER  
2ED0 2ED1 2ED2  
2ED3  
FFFC FFFD  
ICAP1  
OLVL2  
OLVL1  
OLVL2  
OCMP1  
compare1  
Note: IEDG1=1, OC1R=2ED0h, OLVL1=0, OLVL2=1  
Figure 36. Pulse Width Modulation Mode Timing Example  
2ED0 2ED1 2ED2  
34E2 FFFC  
FFFC FFFD FFFE  
34E2  
COUNTER  
OCMP1  
OLVL2  
OLVL1  
OLVL2  
compare2  
compare1  
compare2  
Note: OC1R=2ED0h, OC2R=34E2, OLVL1=0, OLVL2= 1  
52/135  
ST72104G, ST72215G, ST72216G, ST72254G  
16-BIT TIMER (Cont’d)  
11.2.3.6 Pulse Width Modulation Mode  
Pulse Width Modulation (PWM) mode enables the  
generation of a signal with a frequency and pulse  
length determined by the value of the OC1R and  
OC2R registers.  
The OCiR register value required for aspecific tim-  
ing application can be calculated using the follow-  
ing formula:  
t * f  
CPU  
PRESC  
- 5  
OCiR Value =  
The pulse width modulation mode uses the com-  
plete Output Compare 1 function plus the OC2R  
register, and so these functionality can not be  
used when the PWM mode is activated.  
Where:  
t
= Signal or pulse period (in seconds)  
= CPU clock frequency (in hertz)  
f
Procedure  
CPU  
= Timer prescaler factor (2, 4 or 8 depend-  
ing on CC[1:0] bits, see Table 13 Clock  
Control Bits)  
To use pulse width modulation mode:  
PRESC  
1. Load the OC2R register with the value corre-  
sponding to the period of the signal using the  
formula in the opposite column.  
If the timer clock is an external clock the formula is:  
2. Load the OC1R register with the value corre-  
sponding to the period of the pulse if (OLVL1=0  
and OLVL2=1) using the formula in the oppo-  
site column.  
OCiR = t f  
-5  
* EXT  
Where:  
t
= Signal or pulse period (in seconds)  
3. Select the following in the CR1 register:  
f
= External timer clock frequency (in hertz)  
EXT  
– Using the OLVL1 bit, select the level to be ap-  
plied to the OCMP1 pin after a successful  
comparison with OC1R register.  
The Output Compare 2 event causes the counter  
to be initialized to FFFCh (See Figure 36)  
– Using the OLVL2 bit, select the level to be ap-  
plied to the OCMP1 pin after a successful  
comparison with OC2R register.  
Notes:  
1. After a write instruction to the OCiHR register,  
the output compare function is inhibited until the  
OCiLR register is also written.  
4. Select the following in the CR2 register:  
– Set OC1E bit: the OCMP1 pin is then dedicat-  
ed to the output compare 1 function.  
2. The OCF1 and OCF2 bits cannot be set by  
hardware in PWM mode therefore the Output  
Compare interrupt is inhibited.  
– Set the PWM bit.  
– Select the timer clock (CC[1:0]) (see Table 13  
Clock Control Bits).  
3. The ICF1 bit is set by hardware when the coun-  
ter reaches the OC2R value and can produce a  
timer interrupt if the ICIE bit is set and the I bit is  
cleared.  
If OLVL1=1 and OLVL2=0 the length of the posi-  
tive pulse is the difference between the OC2R and  
OC1R registers.  
4. In PWM mode the ICAP1 pin can not be used  
to perform input capture because it is discon-  
nected to the timer. The ICAP2 pin can be used  
to perform input capture (ICF2 can be set and  
IC2R can be loaded) but the user must take  
care that the counter is reset each period and  
ICF1 can also generates interrupt if ICIE is set.  
If OLVL1=OLVL2 a continuous signal will be seen  
on the OCMP1 pin.  
Pulse Width Modulation cycle  
When  
5. When the Pulse Width Modulation (PWM) and  
One Pulse Mode (OPM) bits are both set, the  
PWM mode is the only active one.  
Counter  
= OC1R  
OCMP1 = OLVL1  
OCMP1 = OLVL2  
When  
Counter  
= OC2R  
Counter is reset  
to FFFCh  
ICF1 bit is set  
53/135  
ST72104G, ST72215G, ST72216G, ST72254G  
16-BIT TIMER (Cont’d)  
11.2.4 Low Power Modes  
Mode  
WAIT  
Description  
No effect on 16-bit Timer.  
Timer interrupts cause the device to exit from WAIT mode.  
16-bit Timer registers are frozen.  
In HALT mode, the counter stops counting until Halt mode is exited. Counting resumes from the previous  
count when the MCU is woken up by an interrupt with “exit from HALT mode” capability or from the counter  
reset value when the MCU is woken up by a RESET.  
HALT  
If an input capture event occurs on the ICAPi pin, the input capture detection circuitry is armed. Consequent-  
ly, when the MCU is woken up by an interrupt with “exit from HALT mode” capability, the ICFi bit is set, and  
the counter value present when exiting from HALT mode is captured into the ICiR register.  
11.2.5 Interrupts  
Enable  
Control from  
Bit  
Exit  
Exit  
from  
Halt  
Event  
Flag  
Interrupt Event  
Wait  
Yes  
Yes  
Yes  
Yes  
Yes  
Input Capture 1 event/Counter reset in PWM mode  
Input Capture 2 event  
ICF1  
ICF2  
No  
No  
No  
No  
No  
ICIE  
Output Compare 1 event (not available in PWM mode)  
Output Compare 2 event (not available in PWM mode)  
Timer Overflow event  
OCF1  
OCF2  
TOF  
OCIE  
TOIE  
Note: The 16-bit Timer interrupt events are connected to the same interrupt vector (see Interrupts chap-  
ter). These events generate an interrupt if the corresponding Enable Control Bit is set and the interrupt  
mask in the CC register is reset (RIM instruction).  
11.2.6 Summary of Timer modes  
AVAILABLE RESOURCES  
MODES  
Input Capture 1  
Input Capture 2  
Yes  
Output Compare 1 Output Compare 2  
Input Capture (1 and/or 2)  
Output Compare (1 and/or 2)  
One Pulse Mode  
Yes  
Yes  
No  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
1)  
3)  
2)  
Not Recommended  
Not Recommended  
Partially  
No  
PWM Mode  
No  
No  
1)  
2)  
3)  
See note 4 in Section 11.2.3.5 ”One Pulse Mode” on page 50  
See note 5 in Section 11.2.3.5 ”One Pulse Mode” on page 50  
See note 4 in Section 11.2.3.6 ”Pulse Width Modulation Mode” on page 52  
54/135  
ST72104G, ST72215G, ST72216G, ST72254G  
16-BIT TIMER (Cont’d)  
11.2.7 Register Description  
Bit 4 = FOLV2 Forced Output Compare 2.  
This bit is set and cleared by software.  
0: No effect on the OCMP2 pin.  
1:Forces the OLVL2 bit to be copied to the  
OCMP2 pin, if the OC2E bit is set and even if  
there is no successful comparison.  
Each Timer is associated with three control and  
status registers, and with six pairs of data registers  
(16-bit values) relating to the two input captures,  
the two output compares, the counter and the al-  
ternate counter.  
Bit 3 = FOLV1 Forced Output Compare 1.  
This bit is set and cleared by software.  
0: No effect on the OCMP1 pin.  
CONTROL REGISTER 1 (CR1)  
Read/Write  
1: Forces OLVL1 to becopied to theOCMP1 pin, if  
the OC1E bit is set and even if there is no suc-  
cessful comparison.  
Reset Value: 0000 0000 (00h)  
7
0
ICIE OCIE TOIE FOLV2 FOLV1 OLVL2 IEDG1 OLVL1  
Bit 2 = OLVL2 Output Level 2.  
This bit is copied to the OCMP2 pin whenever a  
successful comparison occurs with the OC2R reg-  
ister and OCxE is set in the CR2 register. This val-  
ue is copied to the OCMP1 pin in One Pulse Mode  
and Pulse Width Modulation mode.  
Bit 7 = ICIE Input Capture Interrupt Enable.  
0: Interrupt is inhibited.  
1: A timer interrupt is generated whenever the  
ICF1 or ICF2 bit of the SR register is set.  
Bit 1 = IEDG1 Input Edge 1.  
Bit 6 = OCIE Output Compare Interrupt Enable.  
0: Interrupt is inhibited.  
1: A timer interrupt is generated whenever the  
OCF1 or OCF2 bit of the SR register is set.  
This bit determines which type of level transition  
on the ICAP1 pin will trigger the capture.  
0: A falling edge triggers the capture.  
1: A rising edge triggers the capture.  
Bit 5 = TOIE Timer Overflow Interrupt Enable.  
0: Interrupt is inhibited.  
1: A timer interrupt is enabled whenever the TOF  
bit of the SR register is set.  
Bit 0 = OLVL1 Output Level 1.  
The OLVL1 bit is copied to the OCMP1 pin when-  
ever a successful comparison occurs with the  
OC1R register and the OC1E bit is set in the CR2  
register.  
55/135  
ST72104G, ST72215G, ST72216G, ST72254G  
16-BIT TIMER (Cont’d)  
CONTROL REGISTER 2 (CR2)  
Read/Write  
Bit 4 = PWM Pulse Width Modulation.  
0: PWM mode is not active.  
1: PWM mode is active, the OCMP1 pin outputs a  
programmable cyclic signal; the length of the  
pulse depends on the value of OC1R register;  
the period depends on the value of OC2R regis-  
ter.  
Reset Value: 0000 0000 (00h)  
7
0
OC1E OC2E OPM PWM CC1 CC0 IEDG2 EXEDG  
Bit 3, 2 = CC[1:0] Clock Control.  
Bit 7 = OC1E Output Compare 1 Pin Enable.  
This bit is used only to output the signal from the  
timer on the OCMP1 pin (OLV1 in Output Com-  
pare mode, both OLV1 and OLV2 in PWM and  
one-pulse mode). Whatever the value of the OC1E  
bit, the Output Compare 1 function of the timer re-  
mains active.  
0: OCMP1 pin alternate function disabled (I/O pin  
free for general-purpose I/O).  
1: OCMP1 pin alternate function enabled.  
The timer clock mode depends on these bits:  
Table 13. Clock Control Bits  
Timer Clock  
fCPU / 4  
CC1  
CC0  
0
0
1
0
1
0
fCPU / 2  
fCPU / 8  
External Clock (where  
available)  
1
1
Bit 6 = OC2E Output Compare 2 Pin Enable.  
This bit is used only to output the signal from the  
timer on the OCMP2 pin (OLV2 in Output Com-  
pare mode). Whatever the value of the OC2E bit,  
the Output Compare 2 function of the timer re-  
mains active.  
0: OCMP2 pin alternate function disabled (I/O pin  
free for general-purpose I/O).  
1: OCMP2 pin alternate function enabled.  
Note: If the external clock pin is not available, pro-  
gramming the external clock configuration stops  
the counter.  
Bit 1 = IEDG2 Input Edge 2.  
This bit determines which type of level transition  
on the ICAP2 pin will trigger the capture.  
0: A falling edge triggers the capture.  
1: A rising edge triggers the capture.  
Bit 5 = OPM One Pulse Mode.  
0: One Pulse Mode is not active.  
Bit 0 = EXEDG External Clock Edge.  
This bit determines which type of level transition  
on the external clock pin EXTCLK will trigger the  
counter register.  
0: A falling edge triggers the counter register.  
1: A rising edge triggers the counter register.  
1: One Pulse Mode is active, the ICAP1 pin can be  
used to trigger one pulse on the OCMP1 pin; the  
active transition is given by the IEDG1 bit. The  
length of the generated pulse depends on the  
contents of the OC1R register.  
56/135  
ST72104G, ST72215G, ST72216G, ST72254G  
INPUT CAPTURE 1 HIGH REGISTER (IC1HR)  
16-BIT TIMER (Cont’d)  
STATUS REGISTER (SR)  
Read Only  
Read Only  
Reset Value: Undefined  
Reset Value: 0000 0000 (00h)  
The three least significant bits are not used.  
7
This is an 8-bit read only register that contains the  
high part of the counter value (transferred by the  
input capture 1 event).  
0
0
ICF1 OCF1 TOF ICF2 OCF2  
0
0
7
0
MSB  
LSB  
Bit 7 = ICF1 Input Capture Flag 1.  
0: No input capture (reset value).  
1: An input capture has occurred on the ICAP1 pin  
or the counter has reached the OC2R value in  
PWM mode. To clear this bit, first read the SR  
register, then read or write the low byte of the  
IC1R (IC1LR) register.  
INPUT CAPTURE 1 LOW REGISTER (IC1LR)  
Read Only  
Reset Value: Undefined  
This is an 8-bit read only register that contains the  
low part of the counter value (transferred by the in-  
put capture 1 event).  
Bit 6 = OCF1 Output Compare Flag 1.  
0: No match (reset value).  
1: The content of the free running counter has  
matched the content of the OC1R register. To  
clear this bit, first read the SR register, then read  
or write the low byte of the OC1R (OC1LR) reg-  
ister.  
7
0
MSB  
LSB  
OUTPUT COMPARE  
(OC1HR)  
1
HIGH REGISTER  
Bit 5 = TOF Timer Overflow Flag.  
0: No timer overflow (reset value).  
Read/Write  
Reset Value: 1000 0000 (80h)  
1: The free running counter rolled over from FFFFh  
to 0000h. To clear this bit, first read the SR reg-  
ister, then read or write the low byte of the CR  
(CLR) register.  
This is an 8-bit register that contains the high part  
of the value to be compared to the CHR register.  
Note: Reading or writing the ACLR register does  
not clear TOF.  
7
0
MSB  
LSB  
Bit 4 = ICF2 Input Capture Flag 2.  
0: No input capture (reset value).  
1: An input capture has occurred on the ICAP2  
pin. To clear this bit, first read the SR register,  
then read or write the low byte of the IC2R  
(IC2LR) register.  
OUTPUT COMPARE  
(OC1LR)  
1
LOW REGISTER  
Read/Write  
Reset Value: 0000 0000 (00h)  
Bit 3 = OCF2 Output Compare Flag 2.  
0: No match (reset value).  
1: The content of the free running counter has  
matched the content of the OC2R register. To  
clear this bit, first read the SR register, then read  
or write the low byte of the OC2R (OC2LR) reg-  
ister.  
This is an 8-bit register that contains the low part of  
the value to be compared to the CLR register.  
7
0
MSB  
LSB  
Bit 2-0 = Reserved, forced by hardware to 0.  
57/135  
ST72104G, ST72215G, ST72216G, ST72254G  
16-BIT TIMER (Cont’d)  
OUTPUT COMPARE  
(OC2HR)  
2
HIGH REGISTER  
ALTERNATE COUNTER HIGH REGISTER  
(ACHR)  
Read/Write  
Reset Value: 1000 0000 (80h)  
Read Only  
Reset Value: 1111 1111 (FFh)  
This is an 8-bit register that contains the high part  
of the value to be compared to the CHR register.  
This is an 8-bit register that contains the high part  
of the counter value.  
7
0
7
0
MSB  
LSB  
MSB  
LSB  
OUTPUT COMPARE  
(OC2LR)  
2
LOW REGISTER  
ALTERNATE COUNTER LOW REGISTER  
(ACLR)  
Read/Write  
Reset Value: 0000 0000 (00h)  
Read Only  
Reset Value: 1111 1100 (FCh)  
This is an 8-bit register that contains the low part of  
the value to be compared to the CLR register.  
This is an 8-bit register that contains the low part of  
the counter value. A write to this register resets the  
counter. An access to this register after an access  
to SR register does not clear the TOF bit in SR  
register.  
7
0
MSB  
LSB  
7
0
COUNTER HIGH REGISTER (CHR)  
MSB  
LSB  
Read Only  
Reset Value: 1111 1111 (FFh)  
INPUT CAPTURE 2 HIGH REGISTER (IC2HR)  
This is an 8-bit register that contains the high part  
of the counter value.  
Read Only  
Reset Value: Undefined  
7
0
This is an 8-bit read only register that contains the  
high part of the counter value (transferred by the  
Input Capture 2 event).  
MSB  
LSB  
7
0
MSB  
LSB  
COUNTER LOW REGISTER (CLR)  
Read Only  
Reset Value: 1111 1100 (FCh)  
This is an 8-bit register that contains the low part of  
the countervalue. A write to this register resets the  
counter. An access to this register after accessing  
the SR register clears the TOF bit.  
INPUT CAPTURE 2 LOW REGISTER (IC2LR)  
Read Only  
Reset Value: Undefined  
This is an 8-bit read only register that contains the  
low part of the counter value (transferred by the In-  
put Capture 2 event).  
7
0
MSB  
LSB  
7
0
MSB  
LSB  
58/135  
ST72104G, ST72215G, ST72216G, ST72254G  
16-BIT TIMER (Cont’d)  
Table 14. 16-Bit Timer Register Map and Reset Values  
Address  
(Hex.)  
Register  
Label  
7
6
5
4
3
2
1
0
Timer A: 32 CR1  
ICIE  
0
OCIE  
0
TOIE  
0
FOLV2  
0
FOLV1  
0
OLVL2  
0
IEDG1  
0
OLVL1  
0
Timer B: 42 Reset Value  
Timer A: 31 CR2  
OC1E  
0
OC2E  
0
OPM  
0
PWM  
0
CC1  
0
CC0  
0
IEDG2  
0
EXEDG  
0
Timer B: 41 Reset Value  
Timer A: 33 SR  
ICF1  
0
OCF1  
0
TOF  
0
ICF2  
0
OCF2  
0
-
-
-
Timer B: 43 Reset Value  
0
0
0
Timer A: 34 ICHR1  
MSB  
-
LSB  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Timer B: 44 Reset Value  
Timer A: 35 ICLR1  
MSB  
-
LSB  
-
Timer B: 45 Reset Value  
Timer A: 36 OCHR1  
MSB  
-
LSB  
-
Timer B: 46 Reset Value  
Timer A: 37 OCLR1  
MSB  
-
LSB  
-
Timer B: 47 Reset Value  
Timer A: 3E OCHR2  
MSB  
-
LSB  
-
Timer B: 4E Reset Value  
Timer A: 3F OCLR2  
MSB  
-
LSB  
-
Timer B: 4F Reset Value  
Timer A: 38 CHR  
MSB  
1
LSB  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
Timer B: 48 Reset Value  
Timer A: 39 CLR  
MSB  
1
LSB  
0
Timer B: 49 Reset Value  
Timer A: 3A ACHR  
MSB  
1
LSB  
1
Timer B: 4A Reset Value  
Timer A: 3B ACLR  
MSB  
1
LSB  
0
1
-
1
-
1
-
1
-
1
-
0
-
Timer B: 4B Reset Value  
Timer A: 3C ICHR2  
MSB  
-
LSB  
-
Timer B: 4C Reset Value  
Timer A: 3D ICLR2  
MSB  
-
LSB  
-
-
-
-
-
-
-
Timer B: 4D Reset Value  
59/135  
ST72104G, ST72215G, ST72216G, ST72254G  
11.3 SERIAL PERIPHERAL INTERFACE (SPI)  
11.3.1 Introduction  
11.3.3 General description  
The Serial Peripheral Interface (SPI) allows full-  
duplex, synchronous, serial communication with  
external devices. An SPI system may consist of a  
master and one or more slaves or a system in  
which devices may be either masters or slaves.  
The SPI is connected to external devices through  
4 alternate pins:  
– MISO: Master In Slave Out pin  
– MOSI: Master Out Slave In pin  
– SCK: Serial Clock pin  
The SPI is normally used for communication be-  
tween the microcontroller and external peripherals  
or another microcontroller.  
– SS: Slave select pin  
Refer to the Pin Description chapter for the device-  
specific pin-out.  
A basic example of interconnections between a  
single master and a single slave is illustrated on  
Figure 37.  
11.3.2 Main Features  
The MOSI pins are connected together as are  
MISO pins. In this way data is transferred serially  
between master and slave (most significant bit  
first).  
Full duplex, three-wire synchronous transfers  
Master or slave operation  
Four master mode frequencies  
Maximum slave mode frequency = fCPU/2.  
Four programmable master bit rates  
Programmable clock polarity and phase  
End of transfer interrupt flag  
When the master device transmits data to a slave  
device via MOSI pin, the slave device responds by  
sending data to the master device via the MISO  
pin. This implies full duplex transmission with both  
data out and data in synchronized with the same  
clock signal (which is provided by the master de-  
vice via the SCK pin).  
Write collision flag protection  
Master mode fault protection capability.  
Thus, the byte transmitted is replaced by the byte  
received and eliminates the need for separate  
transmit-empty and receiver-full bits. A status flag  
is used to indicate that the I/O operation is com-  
plete.  
Four possible data/clock timing relationships may  
be chosen (see Figure 40) but master and slave  
must be programmed with the same timing mode.  
Figure 37. Serial Peripheral Interface Master/Slave  
MASTER  
SLAVE  
MSBit  
LSBit  
MSBit  
LSBit  
MISO  
MOSI  
MISO  
MOSI  
8-BIT SHIFT REGISTER  
8-BIT SHIFT REGISTER  
SPI  
CLOCK  
GENERATOR  
SCK  
SS  
SCK  
SS  
+5V  
60/135  
ST72104G, ST72215G, ST72216G, ST72254G  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
Figure 38. Serial Peripheral Interface Block Diagram  
Internal Bus  
Read  
DR  
IT  
Read Buffer  
request  
MOSI  
SR  
MISO  
8-Bit Shift Register  
Write  
MODF  
WCOL  
SPIF  
-
-
-
-
-
SPI  
STATE  
CONTROL  
SCK  
SS  
CR  
SPIE SPE SPR2 MSTR CPOL CPHA SPR1 SPR0  
MASTER  
CONTROL  
SERIAL  
CLOCK  
GENERATOR  
61/135  
ST72104G, ST72215G, ST72216G, ST72254G  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
11.3.4 Functional Description  
In this configuration the MOSI pin is a data output  
and to the MISO pin is a data input.  
Figure 37 shows the serial peripheral interface  
(SPI) block diagram.  
This interface contains 3 dedicated registers:  
– A Control Register (CR)  
Transmit sequence  
The transmit sequence begins when a byte is writ-  
ten the DR register.  
– A Status Register (SR)  
The data byte is parallel loaded into the 8-bit shift  
register (from the internal bus) during a write cycle  
and then shifted out serially to the MOSI pin most  
significant bit first.  
– A Data Register (DR)  
Refer to the CR, SR and DR registers in Section  
11.3.7for the bit definitions.  
11.3.4.1 Master Configuration  
When data transfer is complete:  
– The SPIF bit is set by hardware  
In a master configuration, the serial clock is gener-  
ated on the SCK pin.  
– An interrupt is generated if the SPIE bit is set  
and the I bit in the CCR register is cleared.  
Procedure  
– Select the SPR0 & SPR1 bits to define the se-  
rial clock baud rate (see CR register).  
During the last clock cycle the SPIF bit is set, a  
copy of the data byte received in the shift register  
is moved to a buffer. When the DR register is read,  
the SPI peripheral returns this buffered value.  
– Select the CPOL and CPHA bits to define one  
of the four relationships between the data  
transfer and the serial clock (see Figure 40).  
Clearing the SPIF bit is performed by the following  
software sequence:  
– The SS pin must be connected to a high level  
signal during the complete byte transmit se-  
quence.  
1. An access to the SR register while the SPIF bit  
is set  
– The MSTR and SPE bits must be set (they re-  
main set only if the SS pin is connected to a  
high level signal).  
2. A write or a read of the DR register.  
Note: While the SPIF bit is set, all writes to the DR  
register are inhibited until the SR register is read.  
62/135  
ST72104G, ST72215G, ST72216G, ST72254G  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
11.3.4.2 Slave Configuration  
When data transfer is complete:  
– The SPIF bit is set by hardware  
In slave configuration, the serial clock is received  
on the SCK pin from the master device.  
– An interrupt is generated if SPIE bit is set and  
I bit in CCR register is cleared.  
The value of the SPR0 & SPR1 bits is not used for  
the data transfer.  
During the last clock cycle the SPIF bit is set, a  
copy of the data byte received in the shift register  
is moved to a buffer. When the DR register is read,  
the SPI peripheral returns this buffered value.  
Procedure  
– For correct data transfer, the slave device  
must be in the same timing mode as the mas-  
ter device (CPOL and CPHA bits). See Figure  
40.  
Clearing the SPIF bit is performed by the following  
software sequence:  
1. An access to the SR register while the SPIF bit  
is set.  
– The SS pin must be connected to a low level  
signal during the complete byte transmit se-  
quence.  
2. A write or a read of the DR register.  
– Clear the MSTR bit and set the SPE bit to as-  
sign the pins to alternate function.  
Notes: While the SPIF bit is set, all writes to the  
DR register are inhibited until the SR register is  
read.  
In this configuration the MOSI pin is a data input  
and the MISO pin is a data output.  
The SPIF bit can be cleared during a second  
transmission; however, it must be cleared before  
the second SPIF bit in order to prevent an overrun  
condition (see Section 11.3.4.6).  
Transmit Sequence  
The data byte is parallel loaded into the 8-bit shift  
register (from the internal bus) during a write cycle  
and then shifted out serially to the MISO pin most  
significant bit first.  
Depending on the CPHA bit, the SS pin has to be  
set to write to the DR register between each data  
byte transfer to avoid a write collision (see Section  
11.3.4.4).  
The transmit sequence begins when the slave de-  
vice receives the clock signal and the most signifi-  
cant bit of the data on its MOSI pin.  
63/135  
ST72104G, ST72215G, ST72216G, ST72254G  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
11.3.4.3 Data Transfer Format  
The master device applies data to its MOSI pin-  
clock edge before the capture clock edge.  
During an SPI transfer, data is simultaneously  
transmitted (shifted out serially) and received  
(shifted in serially). The serial clock is used to syn-  
chronize the data transfer during a sequence of  
eight clock pulses.  
CPHA bit is set  
The second edge on the SCK pin (falling edge if  
the CPOL bit is reset, rising edge if the CPOL bit is  
set) is the MSBit capture strobe. Data is latched on  
the occurrence of the second clock transition.  
The SS pin allows individual selection of a slave  
device; the other slave devices that are not select-  
ed do not interfere with the SPI transfer.  
No write collision should occur even if the SS pin  
stays low during a transfer of several bytes (see  
Figure 39).  
Clock Phase and Clock Polarity  
Four possible timing relationships may be chosen  
by software, using the CPOL and CPHA bits.  
CPHA bit is reset  
The CPOL (clock polarity) bit controls the steady  
state value of the clock when no data is being  
transferred. This bit affects both master and slave  
modes.  
The firstedge on the SCK pin (falling edge if CPOL  
bit is set, rising edge if CPOL bit is reset) is the  
MSBit capture strobe. Data is latched on the oc-  
currence of the first clock transition.  
The combination between the CPOL and CPHA  
(clock phase) bits selects the data capture clock  
edge.  
The SS pin must be toggled high and low between  
each byte transmitted (see Figure 39).  
To protect the transmission from a write collision a  
low value on the SS pin of a slave device freezes  
the data in its DR register and does not allow it to  
be altered. Therefore the SS pin must be high to  
write a new data byte in the DR without producing  
a write collision.  
Figure 40, shows an SPI transfer with the four  
combinations of the CPHA and CPOL bits. The di-  
agram may be interpreted as a master or slave  
timing diagram where the SCK pin, the MISO pin,  
the MOSI pin are directly connected between the  
master and the slave device.  
The SS pin is the slave device select input and can  
be driven by the master device.  
Figure 39. CPHA / SS Timing Diagram  
Byte 3  
Byte 2  
MOSI/MISO  
Master SS  
Byte 1  
Slave SS  
(CPHA=0)  
Slave SS  
(CPHA=1)  
VR02131A  
64/135  
ST72104G, ST72215G, ST72216G, ST72254G  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
Figure 40. Data Clock Timing Diagram  
CPHA =1  
SCLK (with  
CPOL = 1)  
SCLK (with  
CPOL = 0)  
Bit 4  
Bit 4  
Bit3  
Bit3  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
LSBit  
LSBit  
MSBit  
MSBit  
Bit 6  
Bit 6  
Bit 5  
Bit 5  
MISO  
(from master)  
MOSI  
(from slave)  
SS  
(to slave)  
CAPTURE STROBE  
CPHA =0  
CPOL = 1  
CPOL = 0  
Bit 4  
Bit 4  
Bit3  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
LSBit  
LSBit  
MSBit  
Bit 6  
Bit 6  
Bit 5  
Bit 5  
MISO  
(from master)  
MSBit  
Bit3  
MOSI  
(from slave)  
SS  
(to slave)  
CAPTURE STROBE  
Note: This figure should not be used as a replacement for parametric information.  
Refer to the Electrical Characteristics chapter.  
VR02131B  
65/135  
ST72104G, ST72215G, ST72216G, ST72254G  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
11.3.4.4 Write Collision Error  
When the CPHA bit is reset:  
A write collision occurs when the software tries to  
write to the DR register while a data transfer is tak-  
ing place with an external device. When this hap-  
pens, the transfer continues uninterrupted; and  
the software write will be unsuccessful.  
Data is latched on the occurrence of the first clock  
transition. The slave device does not have any  
way of knowing when that transition will occur;  
therefore, the slave device collision occurs when  
software attempts to write the DR register after its  
SS pin has been pulled low.  
Write collisions can occur both in master and slave  
mode.  
For this reason, the SS pin must be high, between  
each data byte transfer, to allow the CPU to write  
in the DR register without generating a write colli-  
sion.  
Note: a ”read collision” will never occur since the  
received data byte is placed in a buffer in which  
access is always synchronous with the MCU oper-  
ation.  
In Slave mode  
In Master mode  
When the CPHA bit is set:  
Collision in the master device is defined as a write  
of the DR register while the internal serial clock  
(SCK) is in the process of transfer.  
The slave device will receive a clock (SCK) edge  
prior to the latch of the first data transfer. This first  
clock edge will freeze the data in the slave device  
DR register and output the MSBit on to the exter-  
nal MISO pin of the slave device.  
The SS pin signal must be always high on the  
master device.  
The SS pin low state enables the slave device but  
the output of the MSBit onto the MISO pin does  
not take place until the first data transfer clock  
edge.  
WCOL bit  
The WCOL bit in the SR register is set if a write  
collision occurs.  
No SPI interrupt is generated when the WCOL bit  
is set (the WCOL bit is a status flag only).  
Clearing the WCOL bit is done through a software  
sequence (see Figure 41).  
Figure 41. Clearing the WCOL bit (Write Collision Flag) Software Sequence  
Clearing sequence after SPIF = 1 (end of a data byte transfer)  
Read SR  
Read SR  
1st Step  
2nd Step  
OR  
THEN  
THEN  
SPIF =0  
WCOL=0  
SPIF =0  
WCOL=0 if no transfer has started  
WCOL=1 if a transfer has started  
before the 2nd step  
Read DR  
Write DR  
Clearing sequence before SPIF = 1 (during a data byte transfer)  
Read SR  
1st Step  
THEN  
Note: Writing in DR register in-  
2nd Step  
Read DR  
stead of reading in it do not reset  
WCOL bit  
WCOL=0  
66/135  
ST72104G, ST72215G, ST72216G, ST72254G  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
11.3.4.5 Master Mode Fault  
may be restored to their original state during or af-  
ter this clearing sequence.  
Master mode fault occurs when the master device  
has its SS pin pulled low, then the MODF bit is set.  
Hardware does not allow the user to set the SPE  
and MSTR bits while the MODF bit is set except in  
the MODF bit clearing sequence.  
Master mode fault affects the SPI peripheral in the  
following ways:  
In a slave device the MODF bit can not be set, but  
in a multi master configuration the device can be in  
slave mode with this MODF bit set.  
– The MODF bit is set and an SPI interrupt is  
generated if the SPIE bit is set.  
– The SPE bit is reset. This blocks all output  
from the device and disables the SPI periph-  
eral.  
The MODF bit indicates that there might have  
been amulti-master conflict for system control and  
allows a proper exit from system operation to a re-  
set or default system state using an interrupt rou-  
tine.  
– The MSTR bit is reset, thus forcing the device  
into slave mode.  
Clearing the MODF bit is done through a software  
sequence:  
11.3.4.6 Overrun Condition  
An overrun condition occurs when the master de-  
vice has sent several data bytes and the slave de-  
vice has not cleared the SPIF bit issuing from the  
previous data byte transmitted.  
1. A read or write access to the SR register while  
the MODF bit is set.  
2. A write to the CR register.  
In this case, the receiver buffer contains the byte  
sent after the SPIF bit was last cleared. A read to  
the DR register returns this byte. All other bytes  
are lost.  
Notes: To avoid any multiple slave conflicts in the  
case of a system comprising several MCUs, the  
SS pin must be pulled high during the clearing se-  
quence of the MODF bit. The SPE and MSTR bits  
This condition is not detected by the SPI peripher-  
al.  
67/135  
ST72104G, ST72215G, ST72216G, ST72254G  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
11.3.4.7 Single Master and Multimaster Configurations  
There are two types of SPI systems:  
– Single Master System  
For more security, the slave device may respond  
to the master with the received data byte. Then the  
master will receive the previous byte back from the  
slave device if all MISO and MOSI pins are con-  
nected and the slave has not written its DR regis-  
ter.  
– Multimaster System  
Single Master System  
Other transmission security methods can use  
ports for handshake lines or data bytes with com-  
mand fields.  
A typical single master system may be configured,  
using an MCU as the master and four MCUs as  
slaves (see Figure 42).  
Multi-master System  
The master device selects the individual slave de-  
vices by using four pins of a parallel port to control  
the four SS pins of the slave devices.  
A multi-master system may also be configured by  
the user. Transfer of master control could be im-  
plemented using a handshake method through the  
I/O ports or by an exchange of code messages  
through the serial peripheral interface system.  
The SS pins are pulled high during reset since the  
master device ports will be forced to be inputs at  
that time, thus disabling the slave devices.  
The multi-master system is principally handled by  
the MSTR bit in the CR register and the MODF bit  
in the SR register.  
Note: To prevent a bus conflict on the MISO line  
the master allows only one active slave device  
during a transmission.  
Figure 42. Single Master Configuration  
SS  
SS  
SS  
SS  
SCK  
SCK  
Slave  
SCK  
Slave  
SCK  
Slave  
MCU  
Slave  
MCU  
MCU  
MCU  
MOSI MISO  
MOSI MISO  
MOSI MISO  
MOSI MISO  
MOSI MISO  
SCK  
Master  
MCU  
5V  
SS  
68/135  
ST72104G, ST72215G, ST72216G, ST72254G  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
11.3.5 Low Power Modes  
Mode  
Description  
No effect on SPI.  
WAIT  
SPI interrupt events cause the device to exit from WAIT mode.  
SPI registers are frozen.  
HALT  
In HALT mode, the SPI is inactive. SPI operation resumes when the MCU is woken up by an interrupt with  
“exit from HALT mode” capability.  
11.3.6 Interrupts  
Enable  
Control from  
Bit  
Exit  
Exit  
from  
Halt  
Event  
Flag  
Interrupt Event  
Wait  
Yes  
Yes  
SPI End of Transfer Event  
Master Mode Fault Event  
SPIF  
No  
No  
SPIE  
MODF  
Note: The SPI interrupt events are connected to  
the same interrupt vector (see Interrupts chapter).  
They generate an interrupt if the corresponding  
Enable Control Bit is set and the interrupt mask in  
the CC register is reset (RIM instruction).  
69/135  
ST72104G, ST72215G, ST72216G, ST72254G  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
11.3.7 Register Description  
CONTROL REGISTER (CR)  
Read/Write  
Bit 3 = CPOL Clock polarity.  
This bit is set and cleared by software. This bit de-  
termines the steady state of the serial Clock. The  
CPOL bit affects both the master and slave  
modes.  
0: The steady state is a low value at the SCK pin.  
1: The steady state is a high value at the SCK pin.  
Reset Value: 0000xxxx (0xh)  
7
0
SPIE SPE SPR2 MSTR CPOL CPHA SPR1 SPR0  
Bit 7 = SPIE Serial peripheral interrupt enable.  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SPI interrupt is generated whenever SPIF=1  
or MODF=1 in the SR register  
Bit 2 = CPHA Clock phase.  
This bit is set and cleared by software.  
0: The first clock transition is the first data capture  
edge.  
1: The second clock transition is the first capture  
edge.  
Bit 6 = SPE Serial peripheral output enable.  
This bit is set and cleared by software. It is also  
cleared by hardware when, in master mode, SS=0  
(see Section 11.3.4.5 ”Master Mode Fault” on  
page 66).  
Bit 1:0 = SPR[1:0] Serial peripheral rate.  
These bits are set and cleared by software.Used  
with the SPR2 bit, they select one of six baud rates  
to be used as the serial clock when the device is a  
master.  
0: I/O port connected to pins  
1: SPI alternate functions connected to pins  
The SPE bit is cleared by reset, so the SPI periph-  
eral is not initially connected to the external pins.  
These 2 bits have no effect in slave mode.  
Table 15. Serial Peripheral Baud Rate  
Bit 5 = SPR2 Divider Enable.  
Serial Clock  
SPR2 SPR1 SPR0  
this bit is set and cleared by software and it is  
cleared by reset. It is used with the SPR[1:0] bits to  
set the baud rate. Refer to Table 15.  
0: Divider by 2 enabled  
f
f
/2  
/8  
1
0
0
1
0
0
0
0
0
1
1
1
0
0
1
0
0
1
CPU  
CPU  
f
f
f
/16  
/32  
/64  
CPU  
CPU  
CPU  
1: Divider by 2 disabled  
f
/128  
CPU  
Bit 4 = MSTR Master.  
This bit is set and cleared by software. It is also  
cleared by hardware when, in master mode, SS=0  
(see Section 11.3.4.5 ”Master Mode Fault” on  
page 66).  
0: Slave mode is selected  
1: Master mode is selected, the function of the  
SCK pin changes from an input to an output and  
the functions of the MISO and MOSI pins are re-  
versed.  
70/135  
ST72104G, ST72215G, ST72216G, ST72254G  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
STATUS REGISTER (SR)  
Read Only  
DATA I/O REGISTER (DR)  
Read/Write  
Reset Value: 0000 0000 (00h)  
Reset Value: Undefined  
7
0
-
7
0
SPIF  
WCOL  
-
MODF  
-
-
-
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Bit 7 = SPIF Serial Peripheral data transfer flag.  
This bit is set by hardware when a transfer has  
been completed. An interrupt is generated if  
SPIE=1 in the CR register. It is cleared by a soft-  
ware sequence (an access to the SR register fol-  
lowed by a read or write to the DR register).  
0: Data transfer is in progress or has been ap-  
proved by a clearing sequence.  
The DR register is used to transmit and receive  
data on the serial bus. In the master device only a  
write to this register will initiate transmission/re-  
ception of another byte.  
Notes: During the last clock cycle the SPIF bit is  
set, a copy of the received data byte in the shift  
register is moved to a buffer. When the user reads  
the serial peripheral data I/O register, the buffer is  
actually being read.  
1: Data transfer between the device and an exter-  
nal device has been completed.  
Warning:  
Note: While the SPIF bit is set, all writes to the DR  
register are inhibited.  
A write to the DR register places data directly into  
the shift register for transmission.  
A write to the the DR register returns the value lo-  
cated in the buffer and not the contents of the shift  
register (See Figure 38 ).  
Bit 6 = WCOL Write Collision status.  
This bit is set by hardware when a write to the DR  
register is done during a transmit sequence. It is  
cleared by a software sequence (see Figure 41).  
0: No write collision occurred  
1: A write collision has been detected  
Bit 5 = Unused.  
Bit 4 = MODF Mode Fault flag.  
This bit is set by hardware when the SS pin is  
pulled low in master mode (see Section 11.3.4.5  
”Master Mode Fault” on page 66). An SPI interrupt  
can be generated if SPIE=1 in the CR register.  
This bit is cleared by a software sequence (An ac-  
cess to the SR register while MODF=1 followed by  
a write to the CR register).  
0: No master mode fault detected  
1: A fault in master mode has been detected  
Bits 3-0 = Unused.  
71/135  
ST72104G, ST72215G, ST72216G, ST72254G  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
Table 16. SPI Register Map and Reset Values  
Address  
(Hex.)  
Register  
Label  
7
6
5
4
3
2
1
0
SPIDR  
Reset Value  
MSB  
x
LSB  
x
0021h  
0022h  
0023h  
x
x
x
x
x
x
SPICR  
Reset Value  
SPIE  
0
SPE  
0
SPR2  
0
MSTR  
0
CPOL  
x
CPHA  
x
SPR1  
x
SPR0  
x
SPISR  
Reset Value  
SPIF  
0
WCOL  
0
MODF  
0
0
0
0
0
0
72/135  
ST72104G, ST72215G, ST72216G, ST72254G  
2
11.4 I C BUS INTERFACE (I2C)  
11.4.1 Introduction  
handshake. The interrupts are enabled or disabled  
2
2
by software. The interface is connected to the I C  
The I C Bus Interface serves as an interface be-  
tween the microcontroller and the serial I C bus. It  
2
bus by a data pin (SDAI) and by a clock pin (SCLI).  
2
It can be connected both with a standard I C bus  
provides both multimaster and slave functions,  
2
2
and a Fast I C bus. This selection is made by soft-  
and controls all I C bus-specific sequencing, pro-  
2
ware.  
tocol, arbitration and timing. It supports fast I C  
mode (400kHz).  
Mode Selection  
11.4.2 Main Features  
The interface can operate in the four following  
modes:  
2
Parallel-bus/I C protocol converter  
– Slave transmitter/receiver  
Multi-master capability  
– Master transmitter/receiver  
By default, it operates in slave mode.  
7-bit/10-bit Addressing  
Transmitter/Receiver flag  
End-of-byte transmission flag  
Transfer problem detection  
The interface automatically switches from slave to  
master after it generates a START condition and  
from master to slave in case of arbitration loss or a  
STOP generation, allowing then Multi-Master ca-  
pability.  
2
I C Master Features:  
Clock generation  
2
I C bus busy flag  
Communication Flow  
Arbitration Lost Flag  
In Master mode, it initiates a data transfer and  
generates the clock signal. A serial data transfer  
always begins with a start condition and ends with  
a stop condition. Both start and stop conditions are  
generated in master mode by software.  
End of byte transmission flag  
Transmitter/Receiver Flag  
Start bit detection flag  
Start and Stop generation  
In Slave mode, the interface is capable of recog-  
nising its own address (7 or 10-bit), and the Gen-  
eral Call address. The General Call address de-  
tection may be enabled or disabled by software.  
2
I C Slave Features:  
Stop bit detection  
2
I C bus busy flag  
Data and addresses are transferred as 8-bit bytes,  
MSB first. The first byte(s) following the start con-  
dition contain the address (one in 7-bit mode, two  
in 10-bit mode). The address is always transmitted  
in Master mode.  
Detection of misplaced start or stop condition  
2
Programmable I C Address detection  
Transfer problem detection  
End-of-byte transmission flag  
Transmitter/Receiver flag  
11.4.3 General Description  
A 9th clock pulse follows the 8 clock cycles of a  
byte transfer, during which the receiver must send  
an acknowledge bit to the transmitter. Refer to Fig-  
ure 43.  
In addition to receiving and transmitting data, this  
interface converts it from serial to parallel format  
and vice versa, using either an interrupt or polled  
2
Figure 43. I C BUS Protocol  
SDA  
MSB  
ACK  
SCL  
1
2
8
9
START  
STOP  
CONDITION  
CONDITION  
VR02119B  
73/135  
ST72104G, ST72215G, ST72216G, ST72254G  
2
I C BUS INTERFACE (Cont’d)  
Acknowledge may be enabled and disabled by  
software.  
The SCL frequency (F ) is controlled by a pro-  
scl  
grammable clock divider which depends on the  
2
2
I C bus mode.  
The I C interface address and/or general call ad-  
2
dress can be selected by software.  
When the I C cell is enabled, the SDA and SCL  
2
ports must be configured as floating inputs. In this  
case, the value of the external pull-up resistor  
used depends on the application.  
The speed of the I C interface may be selected  
2
between Standard (0-100KHz) and Fast I C (100-  
400KHz).  
2
When the I C cell is disabled, the SDA and SCL  
ports revert to being standard I/O port pins.  
SDA/SCL Line Control  
Transmitter mode: the interface holds the clock  
line low before transmission to wait for the micro-  
controller to write the byte in the Data Register.  
Receiver mode: the interface holds the clock line  
low after reception to wait for the microcontroller to  
read the byte in the Data Register.  
2
Figure 44. I C Interface Block Diagram  
DATA REGISTER (DR)  
DATA CONTROL  
SDA or SDAI  
DATA SHIFT REGISTER  
COMPARATOR  
OWN ADDRESS REGISTER1 (OAR1)  
OWN ADDRESS REGISTER 2 (OAR2)  
CLOCK CONTROL  
SCL or SCLI  
CLOCK CONTROL REGISTER (CCR)  
CONTROL REGISTER (CR)  
STATUS REGISTER 1 (SR1)  
STATUS REGISTER 2 (SR2)  
CONTROL LOGIC  
INTERRUPT  
74/135  
ST72104G, ST72215G, ST72216G, ST72254G  
2
I C BUS INTERFACE (Cont’d)  
11.4.4 Functional Description  
– EVF and BTF bits are set with an interrupt if the  
ITE bit is set.  
Refer to the CR, SR1 and SR2 registers in Section  
11.4.7. for the bit definitions.  
Then the interface waits for a read of the SR1 reg-  
ister followed by a read of the DR register, holding  
the SCL line low (see Figure 45 Transfer se-  
quencing EV2).  
2
By default the I C interface operates in Slave  
mode (M/SL bit is cleared) except when it initiates  
a transmit or receive sequence.  
First the interface frequency must be configured  
using the FRi bits in the OAR2 register.  
Slave Transmitter  
Following the address reception and after SR1  
register has been read, the slave sends bytes from  
the DR register to the SDA line via the internal shift  
register.  
11.4.4.1 Slave Mode  
As soon as a start condition is detected, the  
address is received from the SDA line and sent to  
the shift register; then it is compared with the  
address of the interface or the General Call  
address (if selected by software).  
The slave waits for a read of the SR1 register fol-  
lowed by a write in the DR register, holding the  
SCL line low (see Figure 45 Transfer sequencing  
EV3).  
Note: In 10-bit addressing mode, the comparision  
includes the header sequence (11110xx0) and the  
two most significant bits of the address.  
When the acknowledge pulse is received:  
Header matched (10-bit mode only): the interface  
generates an acknowledge pulse if the ACK bit is  
set.  
– The EVF and BTF bits are set by hardware with  
an interrupt if the ITE bit is set.  
Address not matched: the interface ignores it  
Closing slave communication  
and waits for another Start condition.  
After the last data byte is transferred a Stop Con-  
dition is generated by the master. The interface  
detects this condition and sets:  
Address matched: the interface generates in se-  
quence:  
– Acknowledge pulse if the ACK bit is set.  
– EVF and STOPF bits with an interrupt if the ITE  
bit is set.  
– EVFand ADSL bits are set with an interrupt if the  
ITE bit is set.  
Then the interface waits for a read of the SR2 reg-  
ister (see Figure 45 Transfer sequencing EV4).  
Then the interface waits for a read of the SR1 reg-  
ister, holding the SCL line low (see Figure 45  
Transfer sequencing EV1).  
Next, in 7-bit mode read the DR register to deter-  
mine from the least significant bit (Data Direction  
Bit) if the slave must enter Receiver or Transmitter  
mode.  
Error Cases  
BERR: Detection of a Stop or a Start condition  
during a byte transfer. In this case, the EVF and  
the BERR bits are set with an interrupt if the ITE  
bit is set.  
If it is a Stop then the interface discards thedata,  
released the lines and waits for another Start  
condition.  
In 10-bit mode, after receiving the address se-  
quence the slave is always in receive mode. It will  
enter transmit mode on receiving a repeated Start  
condition followed by the header sequence with  
matching address bits and the least significant bit  
set (11110xx1) .  
If it is a Start then the interface discards the data  
and waits for the next slave address on the bus.  
AF: Detection of a non-acknowledge bit. In this  
case, the EVF and AF bits are set with an inter-  
rupt if the ITE bit is set.  
Slave Receiver  
Following the address reception and after SR1  
register has been read, the slave receives bytes  
from the SDA line into the DR register via the inter-  
nal shift register. After each byte the interface gen-  
erates in sequence:  
Note: In both cases, SCL line is not held low; how-  
ever, SDA line can remain low due to possible «0»  
bits transmitted last. It is then necessary to release  
both lines by software.  
– Acknowledge pulse if the ACK bit is set  
75/135  
ST72104G, ST72215G, ST72216G, ST72254G  
2
I C BUS INTERFACE (Cont’d)  
How to release the SDA / SCL lines  
After completion of this transfer (and acknowledge  
from the slave if the ACK bit is set):  
Set and subsequently clear the STOP bit while  
BTF is set. The SDA/SCL lines are released after  
the transfer of the current byte.  
– The EVF bit is set by hardware with interrupt  
generation if the ITE bit is set.  
11.4.4.2 Master Mode  
Then the master waits for a read of the SR1 regis-  
ter followed by a write in the CR register (for exam-  
ple set PE bit), holding the SCL line low (see Fig-  
ure 45 Transfer sequencing EV6).  
To switch from default Slave mode to Master  
mode a Start condition generation is needed.  
Start condition  
Next the master must enter Receiver or Transmit-  
ter mode.  
Setting the START bit while the BUSY bit is  
cleared causes the interface to switch to Master  
mode (M/SL bit set) and generates a Start condi-  
tion.  
Note: In 10-bit addressing mode, to switch the  
master to Receiver mode, software must generate  
a repeated Start condition and resend the header  
sequence with the least significant bit set  
(11110xx1).  
Once the Start condition is sent:  
– The EVF and SB bits are set by hardware with  
an interrupt if the ITE bit is set.  
Then the master waits for a read of the SR1 regis-  
ter followed by a write in the DR register with the  
Slave address, holding the SCL line low (see  
Figure 45 Transfer sequencing EV5).  
Master Receiver  
Following the address transmission and after SR1  
and CR registers have been accessed, the master  
receives bytes from the SDA line into the DR reg-  
ister via the internal shift register. After each byte  
the interface generates in sequence:  
Slave address transmission  
– Acknowledge pulse if if the ACK bit is set  
Then the slave address is sent to the SDA line via  
the internal shift register.  
– EVFand BTF bits are set by hardware withan in-  
terrupt if the ITE bit is set.  
In 7-bit addressing mode, one address byte is  
sent.  
Then the interface waits for a read of the SR1 reg-  
ister followed by a read of the DR register, holding  
the SCL line low (see Figure 45 Transfer se-  
quencing EV7).  
In 10-bit addressing mode, sending the first byte  
including the header sequence causes the follow-  
ing event:  
– The EVF bit is set by hardware with interrupt  
generation if the ITE bit is set.  
Then the master waits for a read of the SR1 regis-  
ter followed by a write in the DR register, holding  
the SCL line low (see Figure 45 Transfer se-  
quencing EV9).  
To close the communication: before reading the  
last byte from the DR register, set the STOP bit to  
generate the Stop condition. The interface goes  
automatically back to slave mode (M/SL bit  
cleared).  
Note: In order to generate the non-acknowledge  
pulse after the last received data byte, the ACK bit  
must be cleared just before reading the second  
last data byte.  
Then the second address byte is sent by the inter-  
face.  
76/135  
ST72104G, ST72215G, ST72216G, ST72254G  
2
I C BUS INTERFACE (Cont’d)  
Master Transmitter  
BERR bits are set by hardware with an interrupt  
if ITE is set.  
Following the address transmission and after SR1  
register has been read, the master sends bytes  
from the DR register to the SDA line via the inter-  
nal shift register.  
AF: Detection of a non-acknowledge bit. In this  
case, the EVF and AF bits are set by hardware  
with an interrupt if the ITE bit is set. To resume,  
set the START or STOP bit.  
The master waits for a read of the SR1 register fol-  
lowed by a write in the DR register, holding the  
SCL line low (see Figure 45 Transfer sequencing  
EV8).  
ARLO: Detection of an arbitration lost condition.  
In this case theARLO bit is set by hardware (with  
an interrupt if the ITE bit is set and the interface  
goes automatically backto slave mode (the M/SL  
bit is cleared).  
When the acknowledge bit is received, the  
interface sets:  
Note: In all these cases, the SCL line is not held  
low; however, the SDA line can remain low due to  
possible «0» bits transmitted last. It is then neces-  
sary to release both lines by software.  
– EVF and BTF bits with an interrupt if the ITE bit  
is set.  
To close the communication: after writing the last  
byte to the DR register, set the STOP bit to gener-  
ate the Stop condition. The interface goes auto-  
matically back to slave mode (M/SL bit cleared).  
Error Cases  
BERR: Detection of a Stop or a Start condition  
during a bytetransfer. In this case, the EVF and  
77/135  
ST72104G, ST72215G, ST72216G, ST72254G  
2
I C BUS INTERFACE (Cont’d)  
Figure 45. Transfer Sequencing  
7-bit Slave receiver:  
S
Address  
A
Data1  
A
Data1  
Data1  
Data2  
EV3  
A
DataN  
A
P
.....  
EV1  
EV2  
A
EV2  
A
EV2  
NA  
EV4  
7-bit Slave transmitter:  
S
Address  
A
Data2  
DataN  
P
.....  
.....  
EV1 EV3  
EV3  
EV3-1  
EV4  
7-bit Master receiver:  
S
Address  
A
A
Data2  
A
DataN NA  
P
EV5  
EV6  
EV7  
A
EV7  
A
EV7  
A
7-bit Master transmitter:  
S
Address  
A
Data1  
Data2  
DataN  
P
.....  
EV5  
EV6 EV8  
EV8  
EV8  
EV8  
10-bit Slave receiver:  
S
Header  
A
Address  
A
Data1  
A
DataN  
A
P
.....  
EV1  
EV2  
EV2  
EV4  
10-bit Slave transmitter:  
S
Header  
A
Data1  
A
A
DataN  
....  
.
A
P
r
EV1 EV3  
EV6 EV8  
EV3  
EV3-1  
EV4  
10-bit Master transmitter  
S
Header  
A
Address  
A
Data1  
DataN  
A
P
.....  
EV5  
EV9  
EV8  
A
EV8  
A
10-bit Master receiver:  
S
Header  
A
Data1  
DataN  
P
r
.....  
EV5  
EV6  
EV7  
EV7  
Legend: S=Start, S = Repeated Start, P=Stop, A=Acknowledge, NA=Non-acknowledge,  
r
EVx=Event (with interrupt if ITE=1)  
EV1: EVF=1, ADSL=1, cleared by reading SR1 register.  
EV2: EVF=1, BTF=1, cleared by reading SR1 register followed by reading DR register.  
EV3: EVF=1, BTF=1, cleared by reading SR1 register followed by writing DR register.  
EV3-1: EVF=1, AF=1, BTF=1; AF is cleared by reading SR1 register. BTF is cleared by releasing the  
lines (STOP=1, STOP=0) or by writing DR register (DR=FFh). Note: If lines are released by  
STOP=1, STOP=0, the subsequent EV4 is not seen.  
EV4: EVF=1, STOPF=1, cleared by reading SR2 register.  
EV5: EVF=1, SB=1, cleared by reading SR1 register followed by writing DR register.  
EV6: EVF=1, cleared by reading SR1 register followed by writing CR register (for example PE=1).  
EV7: EVF=1, BTF=1, cleared by reading SR1 register followed by reading DR register.  
EV8: EVF=1, BTF=1, cleared by reading SR1 register followed by writing DR register.  
EV9: EVF=1, ADD10=1, cleared by reading SR1 register followed by writing DR register.  
78/135  
ST72104G, ST72215G, ST72216G, ST72254G  
2
I C BUS INTERFACE (Cont’d)  
11.4.5 Low Power Modes  
Mode  
Description  
2
No effect on I C interface.  
WAIT  
HALT  
2
I C interrupts cause the device to exit from WAIT mode.  
2
I C registers are frozen.  
2
2
In HALT mode, the I C interface is inactive and does not acknowledge data on the bus. The I C interface  
resumes operation when the MCU is woken up by an interrupt with “exit from HALT mode” capability.  
11.4.6 Interrupts  
Figure 46. Event Flags and Interrupt Generation  
ADD10  
ITE  
BTF  
ADSL  
SB  
INTERRUPT  
EVF  
AF  
STOPF  
ARLO  
BERR  
*
* EVF can also be set by EV6 or an error from the SR2 register.  
Enable  
Control from  
Bit  
Exit  
Exit  
from  
Halt  
Event  
Flag  
Interrupt Event  
Wait  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
10-bit Address Sent Event (Master mode)  
End of Byte Transfer Event  
ADD10  
BTF  
No  
No  
No  
No  
No  
No  
No  
No  
Address Matched Event (Slave mode)  
Start Bit Generation Event (Master mode)  
Acknowledge Failure Event  
ADSEL  
SB  
ITE  
AF  
Stop Detection Event (Slave mode)  
Arbitration Lost Event (Multimaster configuration)  
Bus Error Event  
STOPF  
ARLO  
BERR  
2
Note: The I C interrupt events are connected to  
the same interrupt vector (see Interrupts chapter).  
They generate an interrupt if the corresponding  
Enable Control Bitis set and the I-bit in the CC reg-  
ister is reset (RIM instruction).  
79/135  
ST72104G, ST72215G, ST72216G, ST72254G  
2
I C BUS INTERFACE (Cont’d)  
11.4.7 Register Description  
2
Bit 2 = ACK Acknowledge enable.  
This bit is set and cleared by software. It is also  
cleared by hardware when the interface is disa-  
bled (PE=0).  
0: No acknowledge returned  
1: Acknowledge returned after an address byte or  
a data byte is received  
I C CONTROL REGISTER (CR)  
Read / Write  
Reset Value: 0000 0000 (00h)  
7
0
0
0
PE  
ENGC START ACK STOP  
ITE  
Bit 1 = STOP Generation of a Stop condition.  
This bit is set and cleared by software. It is also  
cleared by hardware in master mode. Note: This  
bit is not cleared when the interface is disabled  
(PE=0).  
Bit 7:6 = Reserved. Forced to 0 by hardware.  
Bit 5 = PE Peripheral enable.  
This bit is set and cleared by software.  
0: Peripheral disabled  
1: Master/Slave capability  
Notes:  
– When PE=0, all the bits of the CR register and  
the SR register except the Stop bit are reset. All  
outputs are released while PE=0  
– In master mode:  
0: No stop generation  
1: Stop generation after the current byte transfer  
or after the current Start condition is sent. The  
STOP bit is cleared by hardware when the Stop  
condition is sent.  
– When PE=1, the corresponding I/O pins are se-  
lected by hardware as alternate functions.  
– In slave mode:  
0: No stop generation  
1: Release the SCL and SDA lines after the cur-  
rent byte transfer (BTF=1). In this mode the  
STOP bit has to be cleared by software.  
2
– Toenable the I C interface, write the CR register  
TWICE with PE=1 as the first write only activates  
the interface (only PE is set).  
Bit 4 = ENGC Enable General Call.  
This bit is set and cleared by software. It is also  
cleared by hardware when the interface is disa-  
bled (PE=0). The 00h General Call address is ac-  
knowledged (01h ignored).  
Bit 0 = ITE Interrupt enable.  
This bit is set and cleared by software and cleared  
by hardware when the interface is disabled  
(PE=0).  
0: Interrupts disabled  
1: Interrupts enabled  
Refer to Figure 46 for the relationship between the  
events and the interrupt.  
SCL is held low when the ADD10, SB, BTF or  
ADSL flags or an EV6 event (See Figure 45) is de-  
tected.  
0: General Call disabled  
1: General Call enabled  
Bit 3 = START Generation of a Start condition.  
This bit is set and cleared by software. It is also  
cleared by hardware when the interface is disa-  
bled (PE=0) or when the Start condition is sent  
(with interrupt generation if ITE=1).  
– In master mode:  
0: No start generation  
1: Repeated start generation  
– In slave mode:  
0: No start generation  
1: Start generation when the bus is free  
80/135  
ST72104G, ST72215G, ST72216G, ST72254G  
2
I C BUS INTERFACE (Cont’d)  
2
I C STATUS REGISTER 1 (SR1)  
arbitration (ARLO=1) or when the interface is disa-  
bled (PE=0).  
0: Data byte received (if BTF=1)  
1: Data byte transmitted  
Read Only  
Reset Value: 0000 0000 (00h)  
7
0
Bit 4 = BUSY Bus busy.  
EVF ADD10 TRA BUSY BTF ADSL M/SL  
SB  
This bit is set by hardware on detection of a Start  
condition and cleared by hardware on detection of  
a Stop condition. It indicates a communication in  
progress on the bus. This information is still updat-  
ed when the interface is disabled (PE=0).  
0: No communication on the bus  
Bit 7 = EVF Event flag.  
This bit is set by hardware as soon as an event oc-  
curs. It is cleared by software reading SR2 register  
in case of error event or as described in Figure 45.  
It is also cleared by hardware when the interface is  
disabled (PE=0).  
1: Communication ongoing on the bus  
Bit 3 = BTF Byte transfer finished.  
0: No event  
1: One of the following events has occurred:  
This bit is set by hardware as soon as a byte is cor-  
rectly received or transmitted with interrupt gener-  
ation if ITE=1. It is cleared by software reading  
SR1 register followed by a read or write of DR reg-  
ister. It is also cleared by hardware when the inter-  
face is disabled (PE=0).  
– BTF=1 (Byte received or transmitted)  
– ADSL=1 (Address matched in Slave mode  
while ACK=1)  
– SB=1 (Start condition generated in Master  
mode)  
– Following a byte transmission, this bit is set after  
reception of the acknowledge clock pulse. In  
case an address byte is sent, this bit is set only  
after the EV6 event (See Figure 45). BTF is  
cleared by reading SR1 register followed by writ-  
ing the next byte in DR register.  
– AF=1 (No acknowledge received after byte  
transmission)  
– STOPF=1 (Stop condition detected in Slave  
mode)  
– Following a byte reception, this bit is set after  
transmission of the acknowledge clock pulse if  
ACK=1. BTF is cleared by reading SR1 register  
followed by reading the byte from DR register.  
– ARLO=1 (Arbitration lost in Master mode)  
– BERR=1 (Bus error, misplaced Start or Stop  
condition detected)  
– ADD10=1 (Master has sent header byte)  
The SCL line is held low while BTF=1.  
– Address byte successfully transmitted in Mas-  
ter mode.  
0: Byte transfer not done  
1: Byte transfer succeeded  
Bit 6 = ADD10 10-bit addressing in Master mode.  
This bit is set by hardware when the master has  
sent the first byte in 10-bit address mode. It is  
cleared by software reading SR2 register followed  
by a write in the DR register of the second address  
byte. It is also cleared by hardware when the pe-  
ripheral is disabled (PE=0).  
Bit 2 = ADSL Address matched (Slave mode).  
This bit is set by hardware as soon as the received  
slave address matched with the OAR register con-  
tent or a general call is recognized. An interrupt is  
generated if ITE=1. It is cleared by software read-  
ing SR1 register or by hardware when the inter-  
face is disabled (PE=0).  
0: No ADD10 event occurred.  
1: Master has sent first address byte (header)  
The SCL line is held low while ADSL=1.  
0: Address mismatched or not received  
1: Received address matched  
Bit 5 = TRA Transmitter/Receiver.  
When BTF is set, TRA=1 if a data byte has been  
transmitted. It is cleared automatically when BTF  
is cleared. It is also cleared by hardware after de-  
tection of Stop condition (STOPF=1), loss of bus  
81/135  
ST72104G, ST72215G, ST72216G, ST72254G  
2
I C BUS INTERFACE (Cont’d)  
Bit 1 = M/SL Master/Slave.  
Bit 2 = ARLO Arbitration lost.  
This bit is set by hardware as soon as the interface  
is in Master mode (writing START=1). It is cleared  
by hardware after detecting a Stop condition on  
the bus or a loss of arbitration (ARLO=1). It is also  
cleared when the interface is disabled (PE=0).  
0: Slave mode  
This bit is set by hardware when the interface los-  
es the arbitration of the bus to another master. An  
interrupt is generated if ITE=1. It is cleared by soft-  
ware reading SR2 register or by hardware when  
the interface is disabled (PE=0).  
After an ARLO event the interface switches back  
automatically to Slave mode (M/SL=0).  
1: Master mode  
The SCL line is not held low while ARLO=1.  
Bit 0 = SB Start bit (Master mode).  
This bit is set by hardware as soon as the Start  
condition is generated (following  
0: No arbitration lost detected  
1: Arbitration lost detected  
a
write  
START=1). An interrupt is generated if ITE=1. It is  
cleared by software reading SR1 register followed  
by writing the address byte in DRregister. It is also  
cleared by hardware when the interface is disa-  
bled (PE=0).  
0: No Start condition  
1: Start condition generated  
Bit 1 = BERR Bus error.  
This bit is set by hardware when the interface de-  
tects a misplaced Start or Stop condition. An inter-  
rupt is generated if ITE=1. It is cleared by software  
reading SR2 register or by hardware when the in-  
terface is disabled (PE=0).  
The SCL line is not held low while BERR=1.  
2
I C STATUS REGISTER 2 (SR2)  
0: No misplaced Start or Stop condition  
1: Misplaced Start or Stop condition  
Read Only  
Reset Value: 0000 0000 (00h)  
7
0
0
Bit 0 = GCAL General Call (Slave mode).  
This bit is set by hardware when a general call ad-  
dress is detected on the bus while ENGC=1. It is  
cleared by hardware detecting a Stop condition  
(STOPF=1) or when the interface is disabled  
(PE=0).  
0
0
AF STOPF ARLO BERR GCAL  
Bit 7:5 = Reserved. Forced to 0 by hardware.  
0: No general call address detected on bus  
1: general call address detected on bus  
Bit 4 = AF Acknowledge failure.  
This bit is set by hardware when no acknowledge  
is returned. An interrupt is generated if ITE=1. It is  
cleared by software reading SR2 register or by  
hardware when the interface is disabled (PE=0).  
The SCL line is not held low while AF=1.  
0: No acknowledge failure  
1: Acknowledge failure  
Bit 3 = STOPF Stop detection (Slave mode).  
This bit is set by hardware when a Stop condition  
is detected on the bus after an acknowledge (if  
ACK=1). An interrupt is generated if ITE=1. It is  
cleared by software reading SR2 register or by  
hardware when the interface is disabled (PE=0).  
The SCL line is not held low while STOPF=1.  
0: No Stop condition detected  
1: Stop condition detected  
82/135  
ST72104G, ST72215G, ST72216G, ST72254G  
2
I C BUS INTERFACE (Cont’d)  
2
I C CLOCK CONTROL REGISTER (CCR)  
2
Read / Write  
I C DATA REGISTER (DR)  
Reset Value: 0000 0000 (00h)  
Read / Write  
Reset Value: 0000 0000 (00h)  
7
0
7
0
FM/SM CC6  
CC5  
CC4  
CC3  
CC2  
CC1  
CC0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
2
Bit 7 = FM/SM Fast/Standard I C mode.  
This bit is set and cleared by software. It is not  
cleared when the interface is disabled (PE=0).  
2
Bit 7:0 = D7-D0 8-bit Data Register.  
These bits contain the byte to be received or trans-  
mitted on the bus.  
0: Standard I C mode  
2
1: Fast I C mode  
– Transmitter mode: Byte transmission start auto-  
matically when the software writes in the DR reg-  
ister.  
Bit 6:0 = CC6-CC0 7-bit clock divider.  
These bits select the speed of the bus (F  
) de-  
SCL  
2
pending on the I C mode. They are not cleared  
when the interface is disabled (PE=0).  
– Receiver mode: the first data byte is received au-  
tomatically in the DR register using the least sig-  
nificant bit of the address.  
Then, the following data bytes are received one  
by one after reading the DR register.  
– Standard mode (FM/SM=0): F  
<= 100kHz  
SCL  
F
= F  
/(2x([CC6..CC0]+2))  
SCL  
CPU  
– Fast mode (FM/SM=1): F  
> 100kHz  
SCL  
F
= F  
/(3x([CC6..CC0]+2))  
SCL  
CPU  
Note: The programmed F  
SCL and SDA lines.  
assumes no load on  
SCL  
83/135  
ST72104G, ST72215G, ST72216G, ST72254G  
2
I C BUS INTERFACE (Cont’d)  
2
2
I C OWN ADDRESS REGISTER (OAR1)  
I C OWN ADDRESS REGISTER (OAR2)  
Read / Write  
Reset Value: 0000 0000 (00h)  
Read / Write  
Reset Value: 0100 0000 (40h)  
7
0
7
0
0
ADD7 ADD6 ADD5 ADD4 ADD3 ADD2 ADD1 ADD0  
FR1  
FR0  
0
0
0
ADD9 ADD8  
7-bit Addressing Mode  
Bit 7:6 = FR1-FR0 Frequency bits.  
Bit 7:1 = ADD7-ADD1 Interface address.  
These bits define the I C bus address of the inter-  
face. They are not cleared when the interface is  
disabled (PE=0).  
These bits are set by software only when the inter-  
face is disabled(PE=0). To configure the interface  
2
2
to I C specifed delays select the value corre-  
sponding to the microcontroller frequency F  
.
CPU  
F
Range (MHz)  
2.5 - 6  
FR1  
0
FR0  
CPU  
Bit 0 = ADD0 Address direction bit.  
This bit is don’t care, the interface acknowledges  
either 0 or 1. It is not cleared when the interface is  
disabled (PE=0).  
0
1
0
1
6 -10  
0
10 - 14  
1
14 - 24  
1
Note: Address 01h is always ignored.  
Bit 5:3 = Reserved  
Bit 2:1 = ADD9-ADD8 Interface address.  
These are the most significant bits of the I C bus  
address of the interface (10-bit mode only). They  
are not cleared when the interface is disabled  
(PE=0).  
10-bit Addressing Mode  
Bit 7:0 = ADD7-ADD0 Interface address.  
These are the least significant bits of the I C bus  
address of the interface. They are not cleared  
when the interface is disabled (PE=0).  
2
2
Bit 0 = Reserved.  
84/135  
ST72104G, ST72215G, ST72216G, ST72254G  
I C BUS INTERFACE (Cont’d)  
2
Table 17. I C Register Map and Reset Values  
Address  
(Hex.)  
Register  
Label  
7
6
5
4
3
2
1
0
I2CCR  
Reset Value  
PE  
0
ENGC  
0
START  
0
ACK  
0
STOP  
0
ITE  
0
0028h  
0029h  
002Ah  
02Bh  
0
0
I2CSR1  
Reset Value  
EVF  
0
ADD10  
0
TRA  
0
BUSY  
0
BTF  
0
ADSL  
0
M/SL  
0
SB  
0
I2CSR2  
Reset Value  
AF  
0
STOPF  
0
ARLO  
0
BERR  
0
GCAL  
0
0
0
0
I2CCCR  
Reset Value  
FM/SM  
0
CC6  
0
CC5  
0
CC4  
0
CC3  
0
CC2  
0
CC1  
0
CC0  
0
I2COAR1  
Reset Value  
ADD7  
0
ADD6  
0
ADD5  
0
ADD4  
0
ADD3  
0
ADD2  
0
ADD1  
0
ADD0  
0
02Ch  
I2COAR2  
Reset Value  
FR1  
0
FR0  
1
ADD9  
0
ADD8  
0
002Dh  
002Eh  
0
0
0
0
0
0
0
I2CDR  
Reset Value  
MSB  
0
LSB  
0
0
0
0
85/135  
ST72104G, ST72215G, ST72216G, ST72254G  
11.5 8-BIT A/D CONVERTER (ADC)  
11.5.1 Introduction  
11.5.3 Functional Description  
11.5.3.1 Analog Power Supply  
The on-chip Analog to Digital Converter (ADC) pe-  
ripheral is a 8-bit, successive approximation con-  
verter with internal sample and hold circuitry. This  
peripheral has up to 16 multiplexed analog input  
channels (refer to device pin out description) that  
allow the peripheral to convert the analog voltage  
levels from up to 16 different sources.  
V
and V  
are the high and low level refer-  
SSA  
DDA  
ence voltage pins. In some devices (refer to device  
pin out description) they are internally connected  
to the V and V pins.  
DD  
SS  
Conversion accuracy may therefore be impacted  
by voltage drops and noise in the event of heavily  
loaded or badly decoupled power supply lines.  
The result of the conversion is stored in a 8-bit  
Data Register. The A/D converter is controlled  
through a Control/Status Register.  
See electrical characteristics section for more de-  
tails.  
11.5.2 Main Features  
8-bit conversion  
Up to 16 channels with multiplexed input  
Linear successive approximation  
Data register (DR) which contains the results  
Conversion complete status flag  
On/off bit (to reduce consumption)  
The block diagram is shown in Figure 47.  
Figure 47. ADC Block Diagram  
f
f
ADC  
CPU  
DIV 2  
COCO  
0
ADON  
4
0
CH3 CH2 CH1 CH0  
ADCCSR  
AIN0  
AIN1  
HOLD CONTROL  
R
ADC  
ANALOG TO DIGITAL  
CONVERTER  
ANALOG  
MUX  
AINx  
C
ADC  
ADCDR  
D7  
D6  
D5  
D4 D3  
D2  
D1  
D0  
86/135  
ST72104G, ST72215G, ST72216G, ST72254G  
8-BIT A/D CONVERTER (ADC) (Cont’d)  
11.5.3.2 Digital A/D Conversion Result  
The analog input ports must be configured as in-  
put, no pull-up, no interrupt. Refer to the «I/O  
ports» chapter. Using these pins as analog inputs  
does not affect the ability of the port to be read as  
a logic input.  
The conversion is monotonic, meaning that the re-  
sult never decreases if the analog input does not  
and never increases if the analog input does not.  
If the input voltage (V ) is greater than or equal  
AIN  
In the CSR register:  
to V  
(high-level voltage reference) then the  
DDA  
conversion result in the DR register is FFh (full  
scale) without overflow indication.  
– Select the CH[3:0] bits to assign the analog  
channel to be converted.  
ADC Conversion  
If input voltage (V ) is lower than or equal to  
AIN  
V
(low-level voltage reference) then the con-  
SSA  
In the CSR register:  
version result in the DR register is 00h.  
– Set the ADON bit to enable the A/D converter  
and to start the first conversion. From this time  
on, the ADC performs a continuous conver-  
sion of the selected channel.  
The A/D converter is linear and the digital result of  
the conversion is stored in the ADCDR register.  
The accuracy of the conversion is described in the  
parametric section.  
When a conversion is complete  
– The COCO bit is set by hardware.  
– No interrupt is generated.  
– The result is in the DR register and remains  
valid until the next conversion has ended.  
A write to the CSR register (with ADON set) aborts  
the current conversion, resets the COCO bit and  
starts a new conversion.  
R
is the maximum recommended impedance  
AIN  
for an analog input signal. If the impedance is too  
high, this will result in a loss of accuracy due to  
leakage and sampling not being completed in the  
alloted time.  
11.5.3.3 A/D Conversion Phases  
The A/D conversion is based on two conversion  
phases as shown in Figure 48:  
Figure 48. ADC Conversion Timings  
Sample capacitor loading [duration: t  
]
LOAD  
During this phase, the V  
input voltage to be  
AIN  
ADON  
measured is loaded into the C  
capacitor.  
sample  
ADC  
ADCCSR WRITE  
OPERATION  
t
CONV  
A/D conversion [duration: t  
]
CONV  
During this phase, the A/D conversion is  
computed (8 successive approximations cycles)  
HOLD  
CONTROL  
and the C  
sample capacitor is disconnected  
ADC  
from the analog input pin to get the optimum  
analog to digital conversion accuracy.  
t
LOAD  
COCO BIT SET  
While the ADC is on, these two phases are contin-  
uously repeated.  
11.5.4 Low Power Modes  
At the end of each conversion, the sample capaci-  
tor is kept loaded with the previous measurement  
load. The advantage of this behaviour is that it  
minimizes the current consumption on the analog  
pin in case of single input channel measurement.  
Mode  
WAIT  
Description  
No effect on A/D Converter  
A/D Converter disabled.  
After wakeup from Halt mode, the A/D Con-  
verter requires a stabilisation time before ac-  
curate conversions can be performed.  
HALT  
11.5.3.4 Software Procedure  
Refer to the control/status register (CSR) and data  
register (DR) in Section 11.5.6 for the bit defini-  
tions and to Figure 48 for the timings.  
Note: The A/D converter may be disabled by reset-  
ting the ADON bit. This feature allows reduced  
power consumption when no conversion is needed  
and between single shot conversions.  
ADC Configuration  
The total duration of the A/D conversion is 12 ADC  
11.5.5 Interrupts  
clock periods (1/f  
=2/f  
).  
ADC  
CPU  
None  
87/135  
ST72104G, ST72215G, ST72216G, ST72254G  
8-BIT A/D CONVERTER (ADC) (Cont’d)  
11.5.6 Register Description  
CONTROL/STATUSREGISTER (CSR)  
Read/Write  
DATA REGISTER (DR)  
Read Only  
Reset Value: 0000 0000 (00h)  
Reset Value: 0000 0000 (00h)  
7
0
7
0
COCO  
0
ADON  
0
CH3  
CH2  
CH1  
CH0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Bit 7 = COCO Conversion Complete  
This bit is set by hardware. It is cleared by soft-  
ware readingthe result in the DR register or writing  
to the CSR register.  
0: Conversion is not complete  
1: Conversion can be read from the DR register  
Bit 7:0 = D[7:0] Analog Converted Value  
This register contains the converted analog value  
in the range 00h to FFh.  
Note: Reading this register reset the COCO flag.  
Bit 6 = Reserved. must always be cleared.  
Bit 5 = ADON A/D Converter On  
This bit is set and cleared by software.  
0: A/D converter is switched off  
1: A/D converter is switched on  
Bit 4 = Reserved. must always be cleared.  
Bit 3:0 = CH[3:0] Channel Selection  
These bits are set and cleared by software. They  
select the analog input to convert.  
Channel Pin*  
CH3 CH2 CH1 CH0  
AIN0  
AIN1  
AIN2  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
AIN9  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
*Note: The number of pins AND the channel selec-  
tion varies accordingto the device. Refer to the de-  
vice pinout.  
88/135  
ST72104G, ST72215G, ST72216G, ST72254G  
8-BIT A/D CONVERTER (ADC) (Cont’d)  
Table 18. ADC Register Map and Reset Values  
Address  
(Hex.)  
Register  
Label  
7
6
5
4
3
2
1
0
ADCDR  
Reset Value  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
0070h  
0071h  
ADCCSR  
Reset Value  
COCO  
0
ADON  
0
CH3  
0
CH2  
0
CH1  
0
CH0  
0
0
0
89/135  
ST72104G, ST72215G, ST72216G, ST72254G  
12 INSTRUCTION SET  
12.1 ST7 ADDRESSING MODES  
so, most of the addressing modes may be subdi-  
vided in two sub-modes called long and short:  
The ST7 Core features 17 different addressing  
modes which can be classified in 7 main groups:  
– Long addressing mode is more powerful be-  
cause itcan use the full 64 Kbyte address space,  
however it uses more bytes and more CPU cy-  
cles.  
Addressing Mode  
Inherent  
Example  
nop  
– Short addressing mode is less powerful because  
it can generally only access page zero (0000h -  
00FFh range), but the instruction size is more  
compact, and faster. All memory to memory in-  
structions use short addressing modes only  
(CLR, CPL, NEG, BSET, BRES, BTJT, BTJF,  
INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP)  
Immediate  
Direct  
ld A,#$55  
ld A,$55  
ld A,($55,X)  
ld A,([$55],X)  
jrne loop  
Indexed  
Indirect  
Relative  
Bit operation  
bset byte,#5  
The ST7 Assembler optimizes the use of long and  
short addressing modes.  
The ST7 Instruction set is designed to minimize  
the number of bytes required per instruction: To do  
Table 19. ST7 Addressing Mode Overview  
Pointer Pointer  
Destination/  
Source  
Length  
(Bytes)  
Mode  
Syntax  
Address  
(Hex.)  
Size  
(Hex.)  
Inherent  
Immediate  
Short  
nop  
+ 0  
+ 1  
+ 1  
+ 2  
ld A,#$55  
ld A,$10  
Direct  
Direct  
00..FF  
Long  
ld A,$1000  
0000..FFFF  
+ 0 (with X register)  
+ 1 (with Y register)  
No Offset  
Direct  
Indexed  
ld A,(X)  
00..FF  
Short  
Long  
Short  
Long  
Short  
Long  
Relative  
Relative  
Bit  
Direct  
Indexed  
Indexed  
ld A,($10,X)  
ld A,($1000,X)  
ld A,[$10]  
00..1FE  
+ 1  
+ 2  
+ 2  
+ 2  
+ 2  
+ 2  
+ 1  
+ 2  
+ 1  
+ 2  
+ 2  
+ 3  
Direct  
0000..FFFF  
00..FF  
Indirect  
Indirect  
Indirect  
Indirect  
Direct  
00..FF  
00..FF  
00..FF  
00..FF  
byte  
word  
byte  
word  
ld A,[$10.w]  
ld A,([$10],X)  
0000..FFFF  
00..1FE  
Indexed  
Indexed  
ld A,([$10.w],X) 0000..FFFF  
1)  
1)  
jrne loop  
PC-128/PC+127  
Indirect  
Direct  
jrne [$10]  
PC-128/PC+127  
00..FF  
00..FF  
00..FF  
00..FF  
byte  
byte  
byte  
bset $10,#7  
bset [$10],#7  
Bit  
Indirect  
Direct  
00..FF  
Bit  
Relative  
Relative  
btjt $10,#7,skip 00..FF  
btjt [$10],#7,skip 00..FF  
Bit  
Indirect  
Note 1. At the time the instruction is executed, the Program Counter (PC) points to the instruction follow-  
ing JRxx.  
90/135  
ST72104G, ST72215G, ST72216G, ST72254G  
12.1.3 Direct  
ST7 ADDRESSING MODES (Cont’d)  
12.1.1 Inherent  
All Inherent instructions consist of a single byte.  
The opcode fully specifies all the required informa-  
tion for the CPU to process the operation.  
In Direct instructions, the operands are referenced  
by their memory address.  
The direct addressing mode consists of two sub-  
modes:  
Inherent Instruction  
Function  
No operation  
Direct (short)  
NOP  
The address is a byte, thus requires only one byte  
after the opcode, but only allows 00 - FF address-  
ing space.  
TRAP  
S/W Interrupt  
Wait For Interrupt (Low Power  
Mode)  
WFI  
Direct (long)  
Halt Oscillator (Lowest Power  
Mode)  
HALT  
The address is a word, thus allowing 64 Kbyte ad-  
dressing space, but requires 2 bytes after the op-  
code.  
RET  
Sub-routine Return  
Interrupt Sub-routine Return  
Set Interrupt Mask  
Reset Interrupt Mask  
Set Carry Flag  
IRET  
SIM  
12.1.4 Indexed (No Offset, Short, Long)  
RIM  
In this mode, the operand is referenced by its  
memory address, which is defined by the unsigned  
addition of an index register (X or Y) with an offset.  
SCF  
RCF  
Reset Carry Flag  
Reset Stack Pointer  
Load  
The indirect addressing mode consists of three  
sub-modes:  
RSP  
LD  
Indexed (No Offset)  
CLR  
Clear  
There is no offset, (no extra byte after the opcode),  
and allows 00 - FF addressing space.  
PUSH/POP  
INC/DEC  
TNZ  
Push/Pop to/from the stack  
Increment/Decrement  
Test Negative or Zero  
1 or 2 Complement  
Byte Multiplication  
Indexed (Short)  
The offset is a byte, thus requires only one byte af-  
ter the opcode and allows 00 - 1FE addressing  
space.  
CPL, NEG  
MUL  
Indexed (long)  
SLL, SRL, SRA, RLC,  
RRC  
Shift and Rotate Operations  
Swap Nibbles  
The offset is a word, thus allowing 64 Kbyte ad-  
dressing space and requires 2 bytes after the op-  
code.  
SWAP  
12.1.2 Immediate  
Immediate instructions have two bytes, the first  
byte contains the opcode, the second byte con-  
tains the operand value.  
12.1.5 Indirect (Short, Long)  
The required data byte to do the operation is found  
by its memory address, located in memory (point-  
er).  
Immediate Instruction  
Function  
The pointer address follows the opcode. The indi-  
rect addressing mode consists of two sub-modes:  
LD  
Load  
CP  
Compare  
Indirect (short)  
BCP  
Bit Compare  
The pointer address is a byte, the pointer size is a  
byte, thus allowing 00 - FF addressing space, and  
requires 1 byte after the opcode.  
AND, OR, XOR  
ADC, ADD, SUB, SBC  
Logical Operations  
Arithmetic Operations  
Indirect (long)  
The pointer address is a byte, the pointer size is a  
word, thus allowing 64 Kbyte addressing space,  
and requires 1 byte after the opcode.  
91/135  
ST72104G, ST72215G, ST72216G, ST72254G  
ST7 ADDRESSING MODES (Cont’d)  
12.1.6 Indirect Indexed (Short, Long)  
12.1.7 Relative mode (Direct, Indirect)  
This is a combination of indirect and short indexed  
addressing modes. The operand is referenced by  
its memory address, which is defined by the un-  
signed addition of an index register value (X or Y)  
with a pointer value located in memory. The point-  
er address follows the opcode.  
This addressing mode is used to modify the PC  
register value, by adding an 8-bit signed offset to  
it.  
Available Relative Direct/  
Function  
Indirect Instructions  
JRxx  
Conditional Jump  
Call Relative  
The indirect indexed addressing mode consists of  
two sub-modes:  
CALLR  
Indirect Indexed (Short)  
The pointer address is a byte, the pointer size is a  
byte, thus allowing 00 - 1FE addressing space,  
and requires 1 byte after the opcode.  
The relative addressing mode consists of two sub-  
modes:  
Relative (Direct)  
The offset follows the opcode.  
Relative (Indirect)  
Indirect Indexed (Long)  
The pointer address is a byte, the pointer size is a  
word, thus allowing 64 Kbyte addressing space,  
and requires 1 byte after the opcode.  
The offset is defined in memory, of which the ad-  
dress follows the opcode.  
Table 20. Instructions Supporting Direct,  
Indexed, Indirect and Indirect Indexed  
Addressing Modes  
Long and Short  
Function  
Instructions  
LD  
Load  
CP  
Compare  
AND, OR, XOR  
Logical Operations  
Arithmetic Addition/subtrac-  
tion operations  
ADC, ADD, SUB, SBC  
BCP  
Bit Compare  
Short Instructions Only  
CLR  
Function  
Clear  
INC, DEC  
Increment/Decrement  
Test Negative or Zero  
1 or 2 Complement  
Bit Operations  
TNZ  
CPL, NEG  
BSET, BRES  
Bit Test and Jump Opera-  
tions  
BTJT, BTJF  
SLL, SRL, SRA, RLC,  
RRC  
Shift and Rotate Operations  
SWAP  
Swap Nibbles  
CALL, JP  
Call or Jump subroutine  
92/135  
ST72104G, ST72215G, ST72216G, ST72254G  
12.2 INSTRUCTION GROUPS  
The ST7 family devices use an Instruction Set  
consisting of 63 instructions. The instructions may  
be subdivided into 13 main groups as illustrated in  
the following table:  
Load and Transfer  
LD  
CLR  
Stack operation  
PUSH  
INC  
POP  
DEC  
TNZ  
OR  
RSP  
Increment/Decrement  
Compare and Tests  
Logical operations  
CP  
BCP  
XOR  
AND  
BSET  
BTJT  
ADC  
SLL  
CPL  
NEG  
Bit Operation  
BRES  
BTJF  
ADD  
SRL  
JRT  
Conditional Bit Test and Branch  
Arithmetic operations  
Shift and Rotates  
SUB  
SRA  
JRF  
SBC  
RLC  
JP  
MUL  
RRC  
CALL  
SWAP  
CALLR  
SLA  
Unconditional Jump or Call  
Conditional Branch  
JRA  
JRxx  
TRAP  
SIM  
NOP  
RET  
Interruption management  
Code Condition Flag modification  
WFI  
RIM  
HALT  
SCF  
IRET  
RCF  
Using a pre-byte  
The instructions are described with one to four  
bytes.  
These prebytes enable instruction in Y as well as  
indirect addressing modes to be implemented.  
They precede the opcode of the instruction in X or  
the instruction using direct addressing mode. The  
prebytes are:  
In order to extend the number of available op-  
codes for an 8-bit CPU (256 opcodes), three differ-  
ent prebyte opcodes are defined. These prebytes  
modify the meaning of the instruction they pre-  
cede.  
PDY 90  
Replace an X based instruction  
using immediate, direct, indexed, or inherent ad-  
dressing mode by a Y one.  
The whole instruction becomes:  
PIX 92  
Replace an instruction using di-  
PC-2  
PC-1  
PC  
End of previous instruction  
Prebyte  
rect, direct bit, or direct relative addressing mode  
to an instruction using the corresponding indirect  
addressing mode.  
It also changes an instruction using X indexed ad-  
dressing mode to an instruction using indirect X in-  
dexed addressing mode.  
opcode  
PC+1  
Additional word (0 to 2) according  
to the number of bytes required to compute the ef-  
fective address  
PIY 91  
Replace an instruction using X in-  
direct indexed addressing mode by a Y one.  
93/135  
ST72104G, ST72215G, ST72216G, ST72254G  
INSTRUCTION GROUPS (Cont’d)  
Mnemo  
ADC  
ADD  
AND  
BCP  
Description  
Add with Carry  
Function/Example  
A = A + M + C  
A = A + M  
Dst  
Src  
H
H
H
I
N
N
N
N
N
Z
Z
Z
Z
Z
C
C
C
A
M
M
M
M
Addition  
A
Logical And  
A = A . M  
A
Bit compare A, Memory  
Bit Reset  
tst (A . M)  
A
BRES  
BSET  
BTJF  
BTJT  
CALL  
CALLR  
CLR  
bres Byte, #3  
bset Byte, #3  
btjf Byte, #3, Jmp1  
btjt Byte, #3, Jmp1  
M
M
M
M
Bit Set  
Jump if bit is false (0)  
Jump if bit is true (1)  
Call subroutine  
Call subroutine relative  
Clear  
C
C
reg, M  
reg  
0
N
N
N
1
Z
Z
Z
CP  
Arithmetic Compare  
One Complement  
Decrement  
tst(Reg - M)  
A = FFH-A  
dec Y  
M
C
1
CPL  
reg, M  
reg, M  
DEC  
HALT  
IRET  
INC  
Halt  
0
I
Interrupt routine return  
Increment  
Pop CC, A, X, PC  
inc X  
H
N
N
Z
Z
C
reg, M  
JP  
Absolute Jump  
Jump relative always  
Jump relative  
jp [TBL.w]  
JRA  
JRT  
JRF  
Never jump  
jrf *  
JRIH  
JRIL  
Jump if ext. interrupt = 1  
Jump if ext. interrupt = 0  
Jump if H = 1  
JRH  
H = 1 ?  
JRNH  
JRM  
Jump if H = 0  
H = 0 ?  
Jump if I = 1  
I = 1 ?  
JRNM  
JRMI  
JRPL  
JREQ  
JRNE  
JRC  
Jump if I = 0  
I = 0 ?  
Jump if N = 1 (minus)  
Jump if N = 0 (plus)  
Jump if Z = 1 (equal)  
Jump if Z = 0 (not equal)  
Jump if C = 1  
N = 1 ?  
N = 0 ?  
Z = 1 ?  
Z = 0 ?  
C = 1 ?  
JRNC  
JRULT  
Jump if C = 0  
C = 0 ?  
Jump if C = 1  
Unsigned <  
Jmp if unsigned >=  
Unsigned >  
JRUGE Jump if C = 0  
JRUGT Jump if (C + Z = 0)  
94/135  
ST72104G, ST72215G, ST72216G, ST72254G  
INSTRUCTION GROUPS (Cont’d)  
Mnemo  
JRULE  
LD  
Description  
Jump if (C + Z = 1)  
Load  
Function/Example  
Unsigned <=  
dst <= src  
Dst  
Src  
H
I
N
N
N
N
N
Z
Z
Z
Z
Z
C
reg, M  
A, X, Y  
reg, M  
M, reg  
MUL  
NEG  
NOP  
OR  
Multiply  
X,A = X * A  
X, Y, A  
0
0
Negate (2’s compl)  
No Operation  
OR operation  
Pop from the Stack  
neg $10  
C
A = A + M  
pop reg  
pop CC  
push Y  
C = 0  
A
M
POP  
reg  
CC  
M
M
M
H
I
C
0
PUSH  
RCF  
RET  
RIM  
Push onto the Stack  
Reset carry flag  
Subroutine Return  
Enable Interrupts  
Rotate left true C  
Rotate right true C  
Reset Stack Pointer  
Subtract with Carry  
Set carry flag  
reg, CC  
I = 0  
0
RLC  
RRC  
RSP  
SBC  
SCF  
SIM  
C <= Dst <= C  
C => Dst => C  
S = Max allowed  
A = A - M - C  
C = 1  
reg, M  
reg, M  
N
N
Z
Z
C
C
A
M
N
Z
C
1
Disable Interrupts  
Shift left Arithmetic  
Shift left Logic  
I = 1  
1
SLA  
C <= Dst <= 0  
C <= Dst <= 0  
0 => Dst => C  
Dst7 => Dst => C  
A = A - M  
reg, M  
reg, M  
reg, M  
reg, M  
A
N
N
0
Z
Z
Z
Z
Z
Z
Z
C
C
C
C
C
SLL  
SRL  
SRA  
SUB  
SWAP  
TNZ  
TRAP  
WFI  
Shift right Logic  
Shift right Arithmetic  
Subtraction  
N
N
N
N
M
SWAP nibbles  
Dst[7..4] <=> Dst[3..0] reg, M  
tnz lbl1  
Test for Neg & Zero  
S/W trap  
S/W interrupt  
1
0
Wait for Interrupt  
Exclusive OR  
XOR  
A = A XOR M  
A
M
N
Z
95/135  
ST72104G, ST72215G, ST72216G, ST72254G  
13 ELECTRICAL CHARACTERISTICS  
13.1 PARAMETER CONDITIONS  
Unless otherwise specified, all voltages are re-  
13.1.5 Pin input voltage  
ferred to V  
.
SS  
The input voltage measurement on a pin of the de-  
vice is described in Figure 50.  
13.1.1 Minimum and Maximum values  
Unless otherwise specified the minimum and max-  
imum values are guaranteed in the worst condi-  
tions of ambient temperature, supply voltage and  
frequencies by tests in production on 100% of the  
Figure 50. Pin input voltage  
devices with an ambient temperature at T =25°C  
A
ST7 PIN  
and T =T max (given by the selected temperature  
A
A
range).  
V
Data based on characterization results, design  
simulation and/or technology characteristics are  
indicated in the table footnotes and are not tested  
in production. Based on characterization, the min-  
imum and maximum values refer to sample tests  
and represent the mean value plus or minus three  
times the standard deviation (mean±3Σ).  
IN  
13.1.2 Typical values  
Unless otherwise specified, typical data are based  
on T =25°C, V =5V (for the 4.5VV 5.5V  
A
DD  
DD  
voltage range) and V =3.3V (for the 3VV 4V  
DD  
DD  
voltage range). They are given only as design  
guidelines and are not tested.  
13.1.3 Typical curves  
Unless otherwise specified, all typical curves are  
given only as design guidelines and are not tested.  
13.1.4 Loading capacitor  
The loading conditions used for pin parameter  
measurement are shown in Figure 49.  
Figure 49. Pin loading conditions  
ST7 PIN  
C
L
96/135  
ST72104G, ST72215G, ST72216G, ST72254G  
13.2 ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed as “absolute maxi-  
mum ratings” may cause permanent damage to  
the device. This is a stress rating only and func-  
tional operation of the device under these condi-  
tions is not implied. Exposure to maximum rating  
conditions for extended periods may affect device  
reliability.  
13.2.1 Voltage Characteristics  
Symbol  
Ratings  
Maximum value  
6.5  
Unit  
V
- V  
Supply voltage  
DD  
SS  
V
1) & 2)  
V
Input voltage on any pin  
VSS-0.3 to VDD+0.3  
IN  
V
Electro-static discharge voltage (Human Body Model)  
Electro-static discharge voltage (Machine Model)  
see Section 13.7.2 ”Absolute Elec-  
trical Sensitivity” on page 110  
ESD(HBM)  
V
ESD(MM)  
13.2.2 Current Characteristics  
Symbol  
Ratings  
Maximum value  
Unit  
3)  
3)  
I
Total current into V  
power lines (source)  
DD  
80  
80  
VDD  
I
Total current out of V ground lines (sink)  
SS  
VSS  
Output current sunk by any standard I/O and control pin  
Output current sunk by any high sink I/O pin  
Output current source by any I/Os and control pin  
Injected current on ISPSEL pin  
25  
I
50  
IO  
- 25  
± 5  
± 5  
± 5  
± 5  
± 20  
mA  
Injected current on RESET pin  
2) & 4)  
I
INJ(PIN)  
Injected current on OSC1 and OSC2 pins  
5) & 6)  
Injected current on any other pin  
2)  
5)  
ΣI  
Total injected current (sum of all I/O and control pins)  
INJ(PIN)  
13.2.3 Thermal Characteristics  
Symbol  
Ratings  
Value  
Unit  
T
Storage temperature range  
Maximum junction temperature  
(see Section 14.2 ”THERMAL CHARACTERISTICS” on page 127 )  
-65 to +150  
°C  
STG  
T
J
Notes:  
1. Directly connecting the RESET and I/O pins to V or V could damage the device if an unintentional internal reset  
DD  
SS  
is generated or an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter).  
To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: 4.7kfor  
RESET, 10kfor I/Os). Unused I/O pins must be tied in the same way to V orV according to their reset configuration.  
DD  
SS  
2. When the current limitation is not possible, the V absolute maximum rating must be respected, otherwise refer to  
IN  
I
specification. A positive injection is induced by V >V while a negative injection is induced by V <V  
.
INJ(PIN)  
IN  
DD  
IN  
SS  
3. All power (V ) and ground (V ) lines must always be connected to the external supply.  
DD  
SS  
4. Negative injection disturbs the analog performance of the device. In particular, it induces leakage currents throughout  
the device including the analog inputs. To avoid undesirable effects on the analog functions, care must be taken:  
- Analog input pins must have a negative injection less than 0.8 mA (assuming that the impedance of the analog voltage  
is lower than the specified limits)  
- Pure digital pins must have a negative injection less than 1.6mA. In addition, it is recommended to inject the current as  
far as possible from the analog input pins.  
5. When several inputs are submitted to a current injection, the maximum ΣI  
is the absolute sum of the positive  
INJ(PIN)  
and negative injected currents (instantaneous values). These results are based on characterisation with ΣI  
maxi-  
INJ(PIN)  
mum current injection on four I/O port pins of the device.  
6. True open drain I/O port pins do not accept positive injection.  
97/135  
ST72104G, ST72215G, ST72216G, ST72254G  
13.3 OPERATING CONDITIONS  
13.3.1 General Operating Conditions  
Symbol  
Parameter  
Supply voltage  
Conditions  
Min  
Max  
Unit  
V
see Figure 51 and Figure 52  
3.0  
5.5  
V
DD  
V
V
3.5V for ROM devices  
4.5V for FLASH devices  
1)  
DD  
DD  
0
16  
f
External clock frequency  
MHz  
OSC  
1)  
V
3.0V  
0
8
DD  
1 Suffix Version  
6 Suffix Version  
7 Suffix Version  
3 Suffix Version  
0
70  
-40  
-40  
-40  
85  
T
Ambient temperature range  
°C  
A
105  
125  
2)  
Figure 51. f  
Maximum Operating Frequency Versus VDD Supply Voltage for ROM devices  
OSC  
f
[MHz]  
FUNCTIONALITY  
GUARANTEED  
IN THIS AREA  
OSC  
16  
FUNCTIONALITY  
NOT GUARANTEED  
IN THIS AREA  
FUNCTIONALITY  
NOT GUARANTEED  
IN THIS AREA  
8
4
1)  
WITH RESONATOR  
1
0
SUPPLY VOLTAGE [V]  
2)  
2.5  
3
3.5  
4
4.5  
5
5.5  
Figure 52. f  
Maximum Operating Frequency Versus VDD Supply Voltage for FLASH devices  
OSC  
FUNCTIONALITY NOT GUARANTEED IN THIS AREA  
3)  
FOR TEMPERATURE HIGHER THAN 85°C  
f
[MHz]  
OSC  
FUNCTIONALITY  
GUARANTEED  
IN THIS AREA  
3)  
16  
FUNCTIONALITY  
NOT GUARANTEED  
IN THIS AREA  
FUNCTIONALITY  
NOT GUARANTEED  
IN THIS AREA  
8
4
1)  
WITH RESONATOR  
1
0
SUPPLY VOLTAGE [V]  
2.5  
3
3.5  
3.85  
4
4.5  
5
5.5  
Notes:  
1. Guaranteed by construction. A/D operation and resonator oscillator start-up are not guaranteed below 1MHz.  
2. Operating conditions with T =-40 to +125°C.  
A
3. FLASH programming tested in production at maximum T with two different conditions: V =5.5V, f =8MHz and  
CPU  
A
DD  
V
=3V, f  
=4MHz.  
CPU  
DD  
98/135  
ST72104G, ST72215G, ST72216G, ST72254G  
OPERATING CONDITIONS (Cont’d)  
13.3.2 Operating Conditions with Low Voltage Detector (LVD)  
Subject to general operating conditions for V , f , and T .  
DD OSC  
Conditions  
High Threshold  
Med. Threshold  
Low Threshold  
A
1)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
2)  
4.10  
3.75  
3.25  
4.30  
3.90  
3.35  
4.50  
4.05  
3.45  
Reset release threshold  
2)  
2)  
V
IT+  
(V rise)  
DD  
V
High Threshold  
Med. Threshold  
Low Threshold  
3.85  
3.50  
3.00  
4.05  
3.65  
3.10  
4.25  
3.80  
3.20  
Reset generation threshold  
V
V
IT-  
(V fall)  
DD  
LVD voltage threshold hysteresis  
V
-V  
IT+ IT-  
200  
0.2  
250  
300  
50  
mV  
V/ms  
ns  
hyst  
3)  
Vt  
V
rise time rate  
DD  
POR  
2)  
t
Filtered glitch delay on V  
Not detected by the LVD  
40  
g(VDD)  
DD  
3)  
Figure 53. High LVD Threshold Versus VDD and f  
for FLASH devices  
OSC  
FUNCTIONALITY AND RESET NOT GUARANTEED IN THIS AREA  
FOR TEMPERATURES HIGHER THAN 85°C  
f
[MHz]  
FUNCTIONALITY  
NOT GUARANTEED  
IN THIS AREA  
OSC  
16  
DEVICE UNDER  
RESET  
IN THIS AREA  
FUNCTIONAL AREA  
8
0
SUPPLY VOLTAGE [V]  
V
3.85  
IT-  
2.5  
3
3.5  
4
4.5  
5
5.5  
3)  
Figure 54. Medium LVD Threshold Versus VDD and f  
for FLASH devices  
OSC  
FUNCTIONALITY AND RESET NOT GUARANTEED IN THIS AREA  
FOR TEMPERATURES HIGHER THAN 85°C  
f
[MHz]  
FUNCTIONALITY  
NOT GUARANTEED  
IN THIS AREA  
OSC  
16  
DEVICE UNDER  
RESET  
IN THIS AREA  
FUNCTIONAL AREA  
8
0
SUPPLY VOLTAGE [V]  
2.5  
3
V
IT-3.5V  
4
4.5  
5
5.5  
2)  
Figure 55. Low LVD Threshold Versus VDD and f  
for FLASH devices  
OSC  
FUNCTIONALITY NOT GUARANTEED IN THIS AREA  
FOR TEMPERATURES HIGHER THAN 85°C  
f
[MHz]  
FUNCTIONALITY  
NOT GUARANTEED  
IN THIS AREA  
OSC  
16  
DEVICE UNDER  
RESET  
IN THIS AREA  
FUNCTIONAL AREA  
8
0
SUPPLY VOLTAGE [V]  
2.5  
V
IT-3V  
3.5  
4
4.5  
5
5.5  
Notes:  
1. LVD typical data are based on T =25°C. They are given only as design guidelines and are not tested.  
A
2. Data based on characterization results, not tested in production.  
3. The V rise time rate condition isneeded to insure a correct device power-on and LVD reset. Not tested in production.  
DD  
99/135  
ST72104G, ST72215G, ST72216G, ST72254G  
FUNCTIONAL OPERATING CONDITIONS (Cont’d)  
2)  
Figure 56. High LVD Threshold Versus VDD and f  
for ROM devices  
OSC  
f
[MHz]  
FUNCTIONALITY  
NOT GUARANTEED  
IN THIS AREA  
OSC  
16  
DEVICE UNDER  
RESET  
IN THIS AREA  
FUNCTIONAL AREA  
8
0
SUPPLY VOLTAGE [V]  
V
3.85  
IT-  
2.5  
3
3.5  
4
4.5  
5
5.5  
5.5  
5.5  
2)  
Figure 57. Medium LVD Threshold Versus VDD and f  
for ROM devices  
OSC  
f
[MHz]  
FUNCTIONALITY  
NOT GUARANTEED  
IN THIS AREA  
OSC  
16  
DEVICE UNDER  
RESET  
IN THIS AREA  
FUNCTIONAL AREA  
8
0
SUPPLY VOLTAGE [V]  
2.5  
3
V
IT-3.5V  
4
4.5  
5
2)  
Figure 58. Low LVD Threshold Versus VDD and f  
for ROM devices  
OSC  
f
[MHz]  
FUNCTIONALITY  
NOT GUARANTEED  
IN THIS AREA  
OSC  
16  
DEVICE UNDER  
RESET  
IN THIS AREA  
FUNCTIONAL AREA  
8
0
SUPPLY VOLTAGE [V]  
2.5  
V
IT-3.00V  
3.5  
4
4.5  
5
Notes:  
1. LVD typical data are based on T =25°C. They are given only as design guidelines and are not tested.  
A
2. The minimum V rise time rate is needed to insure a correct device power-on and LVD reset. Not tested in production.  
DD  
100/135  
ST72104G, ST72215G, ST72216G, ST72254G  
13.4 SUPPLY CURRENT CHARACTERISTICS  
The following current consumption specified for  
the ST7 functional operating modes over tempera-  
ture range does not take into account the clock  
source current consumption. To get the total de-  
vice consumption, the two current values must be  
added (except for HALT mode for which the clock  
is stopped).  
Symbol  
I  
Parameter  
Conditions  
Max  
Unit  
Supply current variation vs. temperature  
Constant V and f  
10  
%
DD(Ta)  
DD  
CPU  
13.4.1 RUN and SLOW Modes  
1)  
2)  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
500  
1500  
5600  
900  
2500  
9000  
f
f
f
=1MHz, f  
=500kHz  
=2MHz  
=8MHz  
3)  
OSC  
OSC  
OSC  
CPU  
Supply current in RUN mode  
(see Figure 59)  
=4MHz, f  
CPU  
=16MHz, f  
CPU  
150  
250  
670  
450  
550  
1250  
f
f
f
=1MHz, f  
=31.25kHz  
=125kHz  
=500kHz  
4)  
4)  
OSC  
OSC  
OSC  
CPU  
Supply current in SLOW mode  
(see Figure 60)  
=4MHz, f  
=16MHz, f  
CPU  
CPU  
I
µA  
DD  
300  
970  
3600  
550  
1350  
4500  
f
f
f
=1MHz, f  
=500kHz  
=2MHz  
=8MHz  
3)  
OSC  
OSC  
OSC  
CPU  
Supply current in RUN mode  
(see Figure 59)  
=4MHz, f  
CPU  
=16MHz, f  
CPU  
100  
170  
420  
250  
300  
700  
f
f
f
=1MHz, f  
=31.25kHz  
=125kHz  
=500kHz  
OSC  
OSC  
OSC  
CPU  
Supply current in SLOW mode  
(see Figure 60)  
=4MHz, f  
CPU  
=16MHz, f  
CPU  
Figure 59. Typical I in RUN vs. f  
Figure 60. Typical I in SLOW vs. f  
CPU  
DD  
CPU  
DD  
IDD [mA]  
IDD [mA]  
7
500kHz  
250kHz  
125kHz  
31.25kHz  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
8MHz  
4MHz  
2MHz  
6
5
4
3
500kHz  
2
1
0
3
3.5  
4
4.5  
5
5.5  
3
3.5  
4
4.5  
5
5.5  
VDD [V]  
VDD [V]  
Notes:  
1. Typical data are based on T =25°C, V =5V (4.5VV 5.5V range) and V =3.3V (3VV 3.6V range).  
A
DD  
DD  
DD  
DD  
2. Data based on characterization results, tested in production at V max. and f  
max.  
DD  
CPU  
3. CPU running with memory access, all I/O pins in input mode with a static value at V or V (no load), all peripherals  
DD  
SS  
in reset state; clock input (OSC1) driven by external square wave, CSS and LVD disabled.  
4. SLOW mode selected with f  
SS  
based on f  
divided by 32. All I/O pins in input mode with a static value at V or  
CPU  
OSC DD  
V
(no load), all peripherals in reset state; clock input (OSC1) driven by external square wave, CSS and LVD disabled.  
101/135  
ST72104G, ST72215G, ST72216G, ST72254G  
SUPPLY CURRENT CHARACTERISTICS (Cont’d)  
13.4.2 WAIT and SLOW WAIT Modes  
1)  
2)  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
150  
560  
2200  
280  
900  
3000  
f
f
f
=1MHz, f  
=500kHz  
=2MHz  
=8MHz  
3)  
OSC  
OSC  
OSC  
CPU  
Supply current in WAIT mode  
(see Figure 61)  
=4MHz, f  
CPU  
=16MHz, f  
CPU  
20  
90  
340  
70  
190  
850  
f
f
f
=1MHz, f  
=31.25kHz  
=125kHz  
=500kHz  
4)  
4)  
OSC  
OSC  
OSC  
CPU  
Supply current in SLOW WAIT mode  
(see Figure 62)  
=4MHz, f  
=16MHz, f  
CPU  
CPU  
I
µA  
DD  
90  
350  
1370  
200  
550  
1900  
f
f
f
=1MHz, f  
=500kHz  
=2MHz  
=8MHz  
3)  
OSC  
OSC  
OSC  
CPU  
Supply current in WAIT mode  
=4MHz, f  
CPU  
(see Figure 61)  
=16MHz, f  
CPU  
10  
50  
200  
20  
80  
350  
f
f
f
=1MHz, f  
=31.25kHz  
=125kHz  
=500kHz  
OSC  
OSC  
OSC  
CPU  
Supply current in SLOW WAIT mode  
(see Figure 62)  
=4MHz, f  
CPU  
=16MHz, f  
CPU  
Figure 61. Typical I in WAIT vs. f  
Figure 62. Typical I in SLOW-WAIT vs. f  
DD  
CPU  
DD  
CPU  
IDD [mA]  
3
IDD [mA]  
0.35  
500kHz  
250kHz  
125kHz  
8MHz  
4MHz  
2MHz  
0.3  
2.5  
2
31.25kHz  
500kHz  
0.25  
0.2  
1.5  
1
0.15  
0.1  
0.05  
0
0.5  
0
3
3.5  
4
4.5  
5
5.5  
3
3.5  
4
4.5  
5
5.5  
VDD [V]  
VDD [V]  
Notes:  
1. Typical data are based on T =25°C, V =5V (4.5VV 5.5V range) and V =3.3V (3VV 3.6V range).  
A
DD  
DD  
DD  
DD  
2. Data based on characterization results, tested in production at V max. and f  
max.  
CPU  
DD  
3. All I/O pins in input mode with a static value at V or V (no load), all peripherals in reset state; clock input (OSC1)  
DD  
SS  
driven by external square wave, CSS and LVD disabled.  
4. SLOW-WAIT mode selected with f  
based on f  
divided by 32. All I/O pins in input mode with a static value at  
OSC  
CPU  
V
or V (no load), all peripherals in reset state; clock input (OSC1) driven by external square wave, CSS and LVD  
DD  
SS  
disabled.  
102/135  
ST72104G, ST72215G, ST72216G, ST72254G  
SUPPLY CURRENT CHARACTERISTICS (Cont’d)  
13.4.3 HALT Mode  
1)  
Symbol  
Parameter  
Conditions  
-40°CT +85°C  
Typ  
Max  
10  
50  
6
Unit  
A
V
V
=5.5V  
=3.6V  
DD  
-40°CT +125°C  
A
2)  
I
Supply current in HALT mode  
0
µA  
DD  
-40°CT +85°C  
A
DD  
-40°CT +125°C  
50  
A
13.4.4 Supply and Clock Managers  
The previous current consumption specified for  
the ST7 functional operating modes over tempera-  
ture range does not take into account the clock  
source current consumption. To get the total de-  
vice consumption, the two current values must be  
added (except for HALT mode).  
1)  
3)  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
Supply current of internal RC oscillator  
Supply current of external RC oscillator  
500  
525  
750  
750  
4)  
200  
300  
450  
700  
400  
550  
750  
LP: Low power oscillator  
I
DD(CK)  
MP: Medium power oscillator  
MS: Medium speed oscillator  
HS: High speed oscillator  
4) & 5)  
Supply current of resonator oscillator  
µA  
1000  
Clock security system supply current  
LVD supply current  
150  
100  
350  
150  
I
HALT mode  
DD(LVD)  
13.4.5 On-Chip Peripherals  
Symbol  
Parameter  
Conditions  
Typ  
50  
Unit  
V
V
V
V
V
V
V
V
=3.3V  
=5.0V  
=3.3V  
=5.0V  
=3.3V  
=5.0V  
=3.3V  
=5.0V  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
6)  
I
16-bit Timer supply current  
f
f
f
f
=8MHz  
=8MHz  
=8MHz  
=4MHz  
DD(TIM)  
CPU  
CPU  
CPU  
ADC  
150  
250  
350  
250  
350  
800  
1100  
7)  
8)  
I
SPI supply current  
DD(SPI)  
µA  
2
I
I C supply current  
DD(I2C)  
9)  
I
ADC supply current when converting  
DD(ADC)  
Notes:  
1. Typical data are based on T =25°C.  
A
2. All I/O pins in input mode with a static value at V or V (no load), CSS and LVD disabled. Data based on charac-  
DD  
SS  
CPU  
terization results, tested in production at V  
max. and f  
max.  
DD  
3. Data based on characterization results, not tested in production.  
4. Data based on characterization results done with the external components specified in Section 13.5.3 and Section  
13.5.4, not tested in production.  
5. As the oscillator is based on a current source, the consumption does not depend on the voltage.  
6. Data based on a differential I measurement between reset configuration (timer counter running at f  
/4) and timer  
CPU  
DD  
counter stopped (selecting external clock capability). Data valid for one timer.  
7. Data based on a differential I measurement between reset configuration and a permanent SPI master communica-  
DD  
tion (data sent equal to 55h).  
8. Data based on a differential I measurement between reset configuration and I2C peripheral enabled (PE bit set).  
DD  
9. Data based on a differential I measurement between reset configuration and continuous A/D conversions.  
DD  
103/135  
ST72104G, ST72215G, ST72216G, ST72254G  
13.5 CLOCK AND TIMING CHARACTERISTICS  
Subject to general operating conditions for V , f  
, and T .  
DD OSC  
A
13.5.1 General Timings  
1)  
Symbol  
Parameter  
Conditions  
Min  
2
Typ  
Max  
12  
Unit  
tCPU  
ns  
3
t
Instruction cycle time  
c(INST)  
f
f
=8MHz  
250  
10  
375  
1500  
22  
CPU  
2)  
tCPU  
µs  
Interrupt reaction time  
t
v(IT)  
t
= t  
+ 10  
=8MHz  
1.25  
2.75  
v(IT)  
c(INST)  
CPU  
13.5.2 External Clock Source  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
OSC1 input pin high level voltage  
OSC1 input pin low level voltage  
0.7xV  
V
V
DD  
OSC1H  
DD  
V
V
0.3xV  
DD  
OSC1L  
SS  
t
t
3)  
w(OSC1H)  
see Figure 63  
OSC1 high or low time  
15  
w(OSC1L)  
ns  
t
t
3)  
r(OSC1)  
OSC1 rise or fall time  
15  
f(OSC1)  
I
OSCx Input leakage current  
V
V V  
DD  
±1  
µA  
L
SS IN  
Figure 63. Typical Application with an External Clock Source  
90%  
V
V
OSC1H  
OSC1L  
10%  
t
t
w(OSC1H)  
t
t
w(OSC1L)  
f(OSC1)  
r(OSC1)  
OSC2  
Not connected internally  
f
OSC  
EXTERNAL  
CLOCK SOURCE  
I
L
OSC1  
ST72XXX  
Notes:  
1. Data based on typical application software.  
2. Time measured between interrupt event and interrupt vector fetch. tc(INST) is the number of tCPU cycles needed to finish  
the current instruction execution.  
3. Data based on design simulation and/or technology characteristics, not tested in production.  
104/135  
ST72104G, ST72215G, ST72216G, ST72254G  
CLOCK AND TIMING CHARACTERISTICS (Cont’d)  
13.5.3 Crystal and Ceramic Resonator Oscillators  
The ST7 internal clock can be supplied with four  
different Crystal/Ceramic resonator oscillators. All  
the information given in this paragraph are based  
on characterization results with specified typical  
external componants. In the application, the reso-  
nator and the load capacitors have to be placed as  
close as possible to the oscillator pins in order to  
minimize output distortion and start-up stabiliza-  
tion time. Refer to the crystal/ceramic resonator  
manufacturer for more details (frequency, pack-  
age, accuracy...).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
MHz  
kΩ  
LP: Low power oscillator  
1
2
4
8
MP: Medium power oscillator  
MS: Medium speed oscillator  
HS: High speed oscillator  
>2  
>4  
>8  
3)  
f
Oscillator Frequency  
OSC  
16  
R
Feedback resistor  
20  
40  
F
R =200Ω  
LP oscillator  
MP oscillator  
MS oscillator  
HS oscillator  
38  
32  
18  
15  
56  
46  
26  
21  
S
Recommanded load capacitances ver-  
sus equivalent serial resistance of the  
C
C
R =200Ω  
L1  
L2  
S
pF  
R =200Ω  
S
crystal or ceramic resonator (R )  
S
R =100Ω  
S
V
=5V  
LP oscillator  
MP oscillator  
MS oscillator  
HS oscillator  
40  
100  
190  
360  
700  
DD  
V =V  
110  
180  
400  
IN  
SS  
i
OSC2 driving current  
µA  
2
Typical Crystal or Ceramic Resonators  
C
C
L1 L2  
t
SU(osc)  
Oscil.  
2)  
1)  
[ms]  
[pF] [pF]  
Reference  
Freq.  
2MHz  
4MHz  
8MHz  
16MHz  
2MHz  
4MHz  
8MHz  
16MHz  
Characteristic  
LP  
MP  
MS  
HS  
LP  
S-200-30-30/50  
SS3-400-30-30/30  
SS3-800-30-30/30  
SS3-1600-30-30/30  
CSA2.00MG  
f  
f  
f  
f  
f  
f  
f  
f  
=[±30ppm  
=[±30ppm  
=[±30ppm  
=[±30ppm  
,±30ppm ], Typ. R =200Ω  
33 34 10~15  
33 34 7~10  
33 34 2.5~3  
33 34 1~1.5  
OSC  
OSC  
OSC  
OSC  
OSC  
OSC  
OSC  
OSC  
25°C  
Ta  
S
,±30ppm ], Typ. R =60Ω  
25°C  
Ta  
S
,±30ppm ], Typ. R =25Ω  
25°C  
Ta  
S
,±30ppm ], Typ. R =15Ω  
25°C  
Ta  
S
=[±0.5%  
=[±0.5%  
=[±0.5%  
=[±0.5%  
,±0.3% ,±0.3%  
,±x.x%  
,±x.x%  
,±x.x%  
,±x.x%  
]
]
]
]
33 30  
33 30  
33 30  
33 30  
4.2  
2.1  
1.1  
0.7  
tolerance  
tolerance  
tolerance  
tolerance  
Ta  
aging  
aging  
aging  
aging  
correl  
correl  
correl  
correl  
MP  
MS  
HS  
CSA4.00MG  
,±0.3% ,±0.3%  
Ta  
CSA8.00MTZ  
,±0.5% ,±0.3%  
Ta  
CSA16.00MXZ040  
,±0.3% ,±0.3%  
Ta  
Figure 64. Typical Application with a Crystal or Ceramic Resonator  
WHEN RESONATOR WITH  
INTEGRATEDCAPACITORS  
i
2
f
OSC  
C
L1  
OSC1  
OSC2  
RESONATOR  
R
F
C
L2  
ST72XXX  
Notes:  
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. t  
is the typical oscillator start-up time measured between V =2.8V and the fetch of the first instruction (with a  
SU(OSC)  
DD  
quick V  
ramp-up from 0 to 5V (<50µs).  
DD  
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small R value.  
S
Refer to crystal/ceramic resonator manufacturer for more details.  
105/135  
ST72104G, ST72215G, ST72216G, ST72254G  
CLOCK CHARACTERISTICS (Cont’d)  
13.5.4 RC Oscillators  
The ST7 internal clock can be supplied with an RC  
oscillator. This oscillator can be used with internal  
or external components (selectable by option  
byte).  
Symbol  
Parameter  
Conditions  
see Figure 66  
Min  
3.60  
1
Typ  
Max  
5.10  
14  
Unit  
1)  
Internal RC oscillator frequency  
f
t
MHz  
OSC  
2)  
External RC oscillator frequency  
Internal RC Oscillator Start-up Time  
3)  
2.0  
R
R
R
R
=47KΩ,  
=47KΩ,  
=10KΩ,  
=10KΩ,  
C
C
C
C
=”0”pF  
=100pF  
=6.8pF  
=470pF  
1.0  
6.5  
0.7  
3.0  
EX  
EX  
EX  
EX  
EX  
EX  
EX  
EX  
ms  
SU(OSC)  
3)  
External RC Oscillator Start-up Time  
4)  
R
C
Oscillator external resistor  
10  
47  
KΩ  
EX  
EX  
see Figure 67  
5)  
Oscillator external capacitor  
0
470  
pF  
Figure 65. Typical Application with RC oscillator  
ST72XXX  
V
DD  
INTERNAL RC  
Current copy  
EXTERNAL RC  
+
-
V
f
REF  
OSC  
R
EX  
OSC2  
C
EX  
OSC1  
Voltage generator  
C
EX discharge  
Figure 66. Typical Internal RC Oscillator  
Figure 67. Typical External RC Oscillator  
fosc [MHz]  
fosc [MHz]  
Rex=10KOhm  
-40°C  
+85°C  
20  
15  
10  
5
4.3  
4.2  
4.1  
4
Rex=15KOhm  
Rex=22KOhm  
Rex=33KOhm  
Rex=39KOhm  
Rex=47KOhm  
+25°C  
+125°C  
3.9  
3.8  
0
3
5.5  
0
6.8  
22  
47  
100  
270  
470  
VDD [V]  
Cex [pF]  
Notes:  
1. Data based on characterization results.  
2. Guaranteed frequency range with the specified C and R ranges taking into account the device process variation.  
EX  
EX  
Data based on design simulation.  
3. Data based on characterization results done with V nominal at 5V, not tested in production.  
DD  
4. R must have a positive temperature coefficient (ppm/°C), carbon resistors should therefore not be used.  
EX  
5. Important: when no external C is applied, the capacitance to be considered is the global parasitic capacitance which  
EX  
is subject to high variation (package, application...). In this case, the RC oscillator frequency tuning has to be done by  
trying out several resistor values.  
106/135  
ST72104G, ST72215G, ST72216G, ST72254G  
CLOCK CHARACTERISTICS (Cont’d)  
13.5.5 Clock Security System (CSS)  
Symbol  
Parameter  
Conditions  
T =25°C, V =5.0V  
Min  
250  
190  
Typ  
340  
260  
30  
Max  
430  
330  
Unit  
kHz  
A
DD  
1)  
f
f
Safe Oscillator Frequency  
SFOSC  
GFOSC  
T =25°C, V =3.3V  
A
DD  
2)  
Glitch Filtered Frequency  
MHz  
Figure 68. Typical Safe Oscillator Frequencies  
fosc [kHz]  
-40°C  
+85°C  
400  
350  
300  
250  
200  
+25°C  
+125°C  
3
5.5  
VDD [V]  
Note:  
1. Data based on characterization results, tested in production between 90KHz and 500KHz.  
2. Filtered glitch on the f signal. See functional description in Section 6.5 on page 23 for more details.  
OSC  
107/135  
ST72104G, ST72215G, ST72216G, ST72254G  
13.6 MEMORY CHARACTERISTICS  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD OSC  
13.6.1 RAM and Hardware Registers  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1)  
V
Data retention mode  
HALT mode (or RESET)  
1.6  
V
RM  
13.6.2 FLASH Program Memory  
Symbol  
Parameter  
Conditions  
Min  
Typ  
25  
8
Max  
70  
Unit  
°C  
2)  
T
Programming temperature range  
0
A(prog)  
3)  
T =+25°C  
25  
Programming time for 1~16 bytes  
ms  
A
t
prog  
T =+25°C  
2.1  
6.4  
Programming time for 4 or 8kBytes  
sec  
A
5)  
4)  
t
Data retention  
T =+55°C  
20  
years  
cycles  
ret  
A
5)  
N
Write erase cycles  
T =+25°C  
100  
RW  
A
Notes:  
1. Minimum V  
supply voltage without losing data stored in RAM (in in HALT mode or under RESET) or in hardware  
DD  
registers (only in HALT mode). Guaranteed by construction, not tested in production.  
2. Data based on characterization results, tested in production at T =25°C.  
A
3. Up to 16 bytes can be programmed at a time for a 4kBytes FLASH block (then up to 32 bytes at a time for an 8k device)  
4. The data retention time increases when the T decreases.  
A
5. Data based on reliability test results and monitored in production.  
108/135  
ST72104G, ST72215G, ST72216G, ST72254G  
13.7 EMC CHARACTERISTICS  
Susceptibility tests are performed on a sample ba-  
sis during product characterization.  
ESD: Electro-Static Discharge (positive and  
negative) is applied on all pins of the device until  
a functional disturbance occurs. This test  
conforms with the IEC 1000-4-2 standard.  
13.7.1 Functional EMS  
(Electro Magnetic Susceptibility)  
FTB: A Burst of Fast Transient voltage (positive  
Based on a simple running application on the  
product (toggling 2 LEDs through I/O ports), the  
product is stressed by two electro magnetic events  
until a failure occurs (indicated by the LEDs).  
and negative) is applied to V and V through  
DD  
SS  
a 100pF capacitor, until a functional disturbance  
occurs. This test conforms with the IEC 1000-4-  
4 standard.  
A device reset allows normal operations to be re-  
sumed.  
1)  
1)  
Symbol  
Parameter  
Conditions  
=5V, T =+25°C, f  
conforms to IEC 1000-4-2  
Neg  
Pos  
Unit  
Voltage limits to be applied on any I/O pin  
to induce a functional disturbance  
V
=8MHz  
OSC  
DD  
A
V
-1  
1
FESD  
kV  
Fast transient voltage burst limits to be ap-  
V
=5V, T =+25°C, f  
=8MHz  
OSC  
DD  
A
V
plied through 100pF on V and V pins  
-4  
4
FFTB  
DD  
DD  
conforms to IEC 1000-4-4  
to induce a functional disturbance  
2)  
Figure 69. EMC Recommended star network power supply connection  
ST72XXX  
10nF 0.1µF  
V
V
DD  
SS  
ST7  
DIGITAL NOISE  
FILTERING  
V
DD  
POWER  
SUPPLY  
SOURCE  
V
V
SSA  
DDA  
EXTERNAL  
NOISE  
FILTERING  
0.1µF  
Notes:  
1. Data based on characterization results, not tested in production.  
2. The suggested 10nF and 0.1µF decoupling capacitors on the power supply lines are proposed as a good price vs. EMC  
performance tradeoff. They have to be put as close as possible to the device power supply pins. Other EMC recommen-  
dations are given in other sections (I/Os, RESET, OSCx pin characteristics).  
109/135  
ST72104G, ST72215G, ST72216G, ST72254G  
EMC CHARACTERISTICS (Cont’d)  
13.7.2 Absolute Electrical Sensitivity  
Machine Model Test Sequence  
Based on three different tests (ESD, LU and DLU)  
using specific measurement methods, the product  
is stressed in order to determine its performance in  
terms of electrical sensitivity. For more details, re-  
fer to the AN1181 ST7 application note.  
– C is loaded through S1 by the HV pulse gener-  
ator.  
L
– S1 switches position from generator to ST7.  
– A discharge from C to the ST7 occurs.  
L
– S2 must be closed 10 to 100ms after the pulse  
delivery period to ensure the ST7 is not left in  
charge state. S2 must be opened at least 10ms  
prior to the delivery of the next pulse.  
13.7.2.1 Electro-Static Discharge (ESD)  
Electro-Static Discharges (3 positive then 3 nega-  
tive pulses separated by 1 second) are applied to  
the pins of each sample according to each pin  
combination. The sample size depends of the  
number of supply pins of the device (3 parts*(n+1)  
supply pin). Two models are usually simulated:  
Human Body Model and Machine Model. This test  
conforms to the JESD22-A114A/A115A standard.  
See Figure 70 and the following test sequences.  
– R (machine resistance), in series with S2, en-  
sures a slow discharge of the ST7.  
Human Body Model Test Sequence  
– C is loaded through S1 by the HV pulse gener-  
L
ator.  
– S1 switches position from generator to R.  
Adischarge from C through R(body resistance)  
L
to the ST7 occurs.  
– S2 must be closed 10 to 100ms after the pulse  
delivery period to ensure the ST7 is not left in  
charge state. S2 must be opened at least 10ms  
prior to the delivery of the next pulse.  
Absolute Maximum Ratings  
1)  
Symbol  
Ratings  
Conditions  
Maximum value  
Unit  
Electro-static discharge voltage  
(Human Body Model)  
T =+25°C  
V
2000  
A
ESD(HBM)  
V
Electro-static discharge voltage  
(Machine Model)  
V
T =+25°C  
200  
ESD(MM)  
A
Figure 70. Typical Equivalent ESD Circuits  
S1  
R=1500Ω  
S1  
HIGH VOLTAGE  
PULSE  
GENERATOR  
HIGH VOLTAGE  
PULSE  
GENERATOR  
ST7  
ST7  
C =100pF  
S2  
L
S2  
C =200pF  
L
HUMAN BODY MODEL  
MACHINE MODEL  
Notes:  
1. Data based on characterization results, not tested in production.  
110/135  
ST72104G, ST72215G, ST72216G, ST72254G  
EMC CHARACTERISTICS (Cont’d)  
13.7.2.2 Static and Dynamic Latch-Up  
DLU: Electro-Static Discharges (one positive  
then one negative test) are applied to each pin  
of 3 samples when the micro is running to  
assess the latch-up performance in dynamic  
mode. Power supplies are set to the typical  
values, the oscillator is connected as near as  
possible to the pins of the micro and the  
component is put in reset mode. This test  
conforms to the IEC1000-4-2 and SAEJ1752/3  
standards and is described in Figure 71. For  
more details, refer to the AN1181 ST7  
application note.  
LU: 3 complementary static tests are required  
on 10parts to assess the latch-up performance.  
A supply overvoltage (applied to each power  
supply pin), a current injection (applied to each  
input, output and configurable I/O pin) and a  
power supply switch sequence are performed  
on each sample. This test conforms to the EIA/  
JESD 78 IC latch-up standard. For more details,  
refer to the AN1181 ST7 application note.  
Electrical Sensitivities  
1)  
Symbol  
LU  
Parameter  
Static latch-up class  
Dynamic latch-up class  
Conditions  
Class  
T =+25°C  
A
A
A
T =+85°C  
A
V
=5.5V, f  
=4MHz, T =+25°C  
DLU  
A
DD  
OSC  
A
Figure 71. Simplified Diagram of the ESD Generator for DLU  
R
2)  
=50MΩ  
R =330Ω  
D
CH  
DISCHARGE TIP  
V
V
DD  
SS  
HV RELAY  
C =150pF  
S
ST7  
ESD  
GENERATOR  
DISCHARGE  
RETURN CONNECTION  
Notes:  
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC spec-  
ifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B Class strictly covers all the  
JEDEC criteria (international standard).  
2. Schaffner NSG435 with a pointed test finger.  
111/135  
ST72104G, ST72215G, ST72216G, ST72254G  
EMC CHARACTERISTICS (Cont’d)  
13.7.3 ESD Pin Protection Strategy  
Standard Pin Protection  
To protect an integrated circuit against Electro-  
Static Discharge the stress must be controlled to  
prevent degradation or destruction of the circuit el-  
ements. The stress generally affects the circuit el-  
ements which are connected to the pads but can  
also affect the internal devices when the supply  
pads receive the stress. The elements to be pro-  
tected must not receive excessive current, voltage  
or heating within their structure.  
To protect the output structure the following ele-  
ments are added:  
– A diode to V (3a) and a diode from V (3b)  
DD  
SS  
– A protection device between V and V (4)  
DD  
SS  
To protect the input structure the following ele-  
ments are added:  
– A resistor in series with the pad (1)  
– A diode to V (2a) and a diode from V (2b)  
DD  
SS  
– A protection device between V and V (4)  
DD  
SS  
An ESD network combines the different input and  
output ESD protections. This network works, by al-  
lowing safe discharge paths for the pins subjected  
to ESD stress. Two critical ESD stress cases are  
presented in Figure 72 and Figure 73 for standard  
pins and in Figure 74 and Figure 75 for true open  
drain pins.  
Figure 72. Positive Stress on a Standard Pad vs. V  
SS  
V
V
DD  
DD  
(3a)  
(2a)  
(1)  
(4)  
OUT  
IN  
Main path  
(3b)  
(2b)  
Path to avoid  
V
V
V
SS  
SS  
DD  
Figure 73. Negative Stress on a Standard Pad vs. V  
DD  
V
DD  
(3a)  
(2a)  
(1)  
(4)  
OUT  
IN  
Main path  
(3b)  
(2b)  
V
V
SS  
SS  
112/135  
ST72104G, ST72215G, ST72216G, ST72254G  
Multisupply Configuration  
EMC CHARACTERISTICS (Cont’d)  
True Open Drain Pin Protection  
The centralized protection (4) is not involved in the  
discharge of the ESD stresses applied to true  
open drain pads due to the fact that a P-Buffer and  
When several types of ground (V , V  
, ...) and  
SS  
SSA  
power supply (V , V  
, ...) are available for any  
DD  
DDA  
reason (better noise immunity...), the structure  
shown in Figure 76 is implemented to protect the  
device against ESD.  
diode to V  
are not implemented. An additional  
DD  
local protection between the pad and V (5a &  
SS  
5b) is implemented to completly absorb the posi-  
tive ESD discharge.  
Figure 74. Positive Stress on a True Open Drain Pad vs. V  
SS  
V
V
DD  
DD  
Main path  
(1)  
Path to avoid  
OUT  
(4)  
IN  
(5a)  
(5b)  
(3b)  
(2b)  
V
V
V
SS  
SS  
Figure 75. Negative Stress on a True Open Drain Pad vs. V  
DD  
V
DD  
DD  
Main path  
(1)  
OUT  
(4)  
IN  
(3b)  
(3b)  
(3b)  
(2b)  
V
V
SS  
SS  
Figure 76. Multisupply Configuration  
V
DD  
V
DDA  
V
DDA  
V
SS  
BACK TO BACK DIODE  
BETWEEN GROUNDS  
V
SSA  
V
SSA  
113/135  
ST72104G, ST72215G, ST72216G, ST72254G  
13.8 I/O PORT PIN CHARACTERISTICS  
13.8.1 General Characteristics  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
DD OSC  
A
1)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
2)  
V
Input low level voltage  
0.3xVDD  
IL  
2)  
V
Input high level voltage  
0.7xVDD  
IH  
3)  
V
Schmitt trigger voltage hysteresis  
Input leakage current  
400  
mV  
µA  
hys  
I
V
SSV V  
DD  
±1  
L
IN  
4)  
I
Static current consumption  
Floating input mode  
200  
250  
230  
S
V
V
=5V  
80  
120  
200  
5
DD  
DD  
5)  
R
Weak pull-up equivalent resistor  
V =V  
SS  
kΩ  
pF  
ns  
PU  
IN  
=3.3V  
170  
C
I/O pin capacitance  
IO  
6)  
t
Output high to low level fall time  
25  
25  
C =50pF  
Between 10% and 90%  
f(IO)out  
r(IO)out  
L
6)  
t
Output low to high level rise time  
7)  
t
External interrupt pulse time  
1
t
CPU  
w(IT)in  
Figure 77. Two typical Applications with unused I/O Pin  
V
DD  
ST72XXX  
UNUSED I/O PORT  
10kΩ  
10kΩ  
UNUSED I/O PORT  
ST72XXX  
Figure 78. Typical I vs. V with V =V  
PU  
DD  
IN  
SS  
Ipu [µA]  
70  
Ta=-40°C  
Ta=25°C  
Ta=85°C  
60  
Ta=125°C  
50  
40  
30  
20  
10  
0
3
3.5  
4
4.5  
5
5.5  
Vdd [V]  
Notes:  
1. Unless otherwise specified, typical data are based on T =25°C and V =5V.  
A
DD  
2. Data based on characterization results, not tested in production.  
3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.  
4. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of the I/O for  
example or an external pull-up or pull-down resistor (see Figure 77). Data based on design simulation and/or technology  
characteristics, not tested in production.  
5. The R  
pull-up equivalent resistor is based on a resistive transistor (corresponding I current characteristics de-  
PU  
PU  
scribed in Figure 78). This data is based on characterization results, tested in production at V max.  
DD  
6. Data based on characterization results, not tested in production.  
7. To generate an external interrupt, a minimum pulse width has to be applied on an I/O port pin configured as an external  
interrupt source.  
114/135  
ST72104G, ST72215G, ST72216G, ST72254G  
I/O PORT PIN CHARACTERISTICS (Cont’d)  
13.8.2 Output Driving Current  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD OSC  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Output low level voltage for a standard I/O pin  
when 8 pins are sunk at same time  
(see Figure 79 and Figure 82)  
I
I
I
=+5mA  
1.2  
IO  
IO  
IO  
=+2mA  
0.5  
1)  
V
OL  
=+20mA,T 85°C  
1.3  
1.5  
A
Output low level voltage for a high sink I/O pin  
when 4 pins are sunk at same time  
(see Figure 80 and Figure 83)  
T 85°C  
A
V
I
I
=+8mA  
0.6  
IO  
=-5mA, T 85°C  
V
V
-1.4  
-1.6  
IO  
A
Output high level voltage for an I/O pin  
when 4 pins are sourced at same time  
(see Figure 81 and Figure 84)  
DD  
DD  
2)  
T 85°C  
V
A
OH  
I
=-2mA  
V
-0.7  
IO  
DD  
Figure 79. Typical V at V =5V (standard)  
Figure 81. Typical V -V at V =5V  
DD OH DD  
OL  
DD  
Vol [V] at Vdd=5V  
2.5  
Vdd-Voh [V] at Vdd=5V  
6
Ta=-40°C  
Ta=85°C  
2
5
4
3
2
1
Ta=25°C  
Ta=125°C  
1.5  
Ta=-40°C  
Ta=25°C  
Ta=85°C  
Ta=125°C  
1
0.5  
0
0
2
4
6
8
10  
-8  
-6  
-4  
Iio [mA]  
-2  
0
Iio [mA]  
Figure 80. Typical V at V =5V (high-sink)  
OL  
DD  
Vol [V] at Vdd=5V  
2
Ta=-40°C  
Ta=85°C  
1.5  
Ta=25°C  
Ta=125°C  
1
0.5  
0
0
5
10  
15  
Iio [mA]  
20  
25  
30  
Notes:  
1. The I current sunk must always respect the absolute maximum rating specified in Section 13.2.2 and the sum of I  
IO  
IO  
(I/O ports and control pins) must not exceed I  
.
VSS  
2. The I current sourced must always respect the absolute maximum rating specified in Section 13.2.2 and the sum of  
IO  
I
(I/O ports and control pins) must not exceed I  
. True open drain I/O pins does not have V  
.
IO  
VDD  
OH  
115/135  
ST72104G, ST72215G, ST72216G, ST72254G  
I/O PORT PIN CHARACTERISTICS (Cont’d)  
Figure 82. Typical V vs. V (standard I/Os)  
OL  
DD  
Ta=-40°C  
Ta=85°C  
Ta=-40°C  
Ta=25°C  
Ta=85°C  
Vol [V] at Iio=2mA  
0.5  
Vol [V] at Iio=5mA  
1.4  
1.3  
Ta=25°C  
Ta=125°C  
Ta=125°C  
0.45  
0.4  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.35  
0.3  
0.25  
0.2  
3
3.5  
4
4.5  
5
5.5  
3
3.5  
4
Vdd [V]  
4.5  
5
5.5  
Vdd [V]  
Figure 83. Typical V vs. V (high-sink I/Os)  
OL  
DD  
Ta=-40°C  
Ta=25°C  
Ta=85°C  
Ta=-40°C  
Ta=25°C  
Ta=85°C  
Vol [V] at Iio=8mA  
Vol [V] at Iio=20mA  
1.5  
0.55  
0.5  
Ta=125°C  
Ta=125°C  
1.3  
1.1  
0.9  
0.7  
0.5  
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
3
3.5  
4
4.5  
5
5.5  
3
3.5  
4
Vdd [V]  
4.5  
5
5.5  
Vdd [V]  
Figure 84. Typical V -V vs. V  
DD OH  
DD  
Vdd-Voh [V] at Iio=-2mA  
Vdd-Voh [V] at Iio=-5mA  
5
5.5  
5
4
3
2
1
0
4.5  
4
Ta=-40°C  
Ta=25°C  
Ta=85°C  
3.5  
Ta=-40°C  
Ta=25°C  
Ta=85°C  
3
2.5  
2
Ta=125°C  
Ta=125°C  
3
3.5  
4
4.5  
5
5.5  
3.5  
4
4.5  
Vdd [V]  
5
5.5  
Vdd [V]  
116/135  
ST72104G, ST72215G, ST72216G, ST72254G  
13.9 CONTROL PIN CHARACTERISTICS  
13.9.1 Asynchronous RESET Pin  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
DD OSC  
A
1)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
2)  
V
Input low level voltage  
0.3xVDD  
IL  
2)  
V
Input high level voltage  
0.7xVDD  
IH  
3)  
V
Schmitt trigger voltage hysteresis  
400  
mV  
V
hys  
4)  
I
I
=+5mA  
=+2mA  
0.68  
0.28  
40  
0.95  
0.45  
60  
Output low level voltage  
IO  
V
V
=5V  
DD  
OL  
(see Figure 87, Figure 88)  
IO  
V
V
=5V  
20  
80  
DD  
DD  
5)  
R
Weak pull-up equivalent resistor  
Generated reset pulse duration  
V =V  
SS  
kΩ  
ON  
IN  
=3.3V  
100  
120  
External pin or  
internal reset sources  
6
30  
1/f  
SFOSC  
t
w(RSTL)out  
µs  
6)  
t
External reset pulse hold time  
20  
µs  
h(RSTL)in  
7)  
t
Filtered glitch duration  
100  
ns  
g(RSTL)in  
8)  
Figure 85. Typical Application with RESET pin  
ST72XXX  
V
DD  
V
V
DD  
DD  
INTERNAL  
RESET CONTROL  
R
ON  
0.1µF  
0.1µF  
4.7kΩ  
USER  
EXTERNAL  
RESET  
RESET  
8)  
CIRCUIT  
WATCHDOG RESET  
LVD RESET  
Notes:  
1. Unless otherwise specified, typical data are based on T =25°C and V =5V.  
A
DD  
2. Data based on characterization results, not tested in production.  
3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.  
4. The I current sunk must always respect the absolute maximum rating specified in Section 13.2.2 and the sum of I  
IO  
IO  
(I/O ports and control pins) must not exceed I  
.
VSS  
5. The R  
pull-up equivalent resistor is based on a resistive transistor (corresponding I current characteristics de-  
ON  
ON  
scribed in Figure 86). This data is based on characterization results, not tested in production.  
5. To guarantee the reset of the device, a minimum pulse has to be applied to RESET pin.  
6. All short pulse applied on RESET pin with a duration below t  
can be ignored.  
h(RSTL)in  
7. The reset network (the resistor and two capacitors) protects the device against parasitic resets, especially in a noisy  
environment.  
8. The output of the external reset circuit must have an open-drain output to drive theST7 reset pad. Otherwise the device  
can be damaged when the ST7 generates an internal reset (LVD or watchdog).  
117/135  
ST72104G, ST72215G, ST72216G, ST72254G  
CONTROL PIN CHARACTERISTICS (Cont’d)  
Figure 86. Typical I vs. V with V =V  
Figure 87. Typical V at V =5V (RESET)  
OL DD  
ON  
DD  
IN  
SS  
Ion [µA]  
Vol [V] at Vdd=5V  
2
Ta=-40°C  
Ta=25°C  
Ta=85°C  
Ta=125°C  
200  
Ta=-40°C  
Ta=25°C  
Ta=85°C  
Ta=125°C  
150  
100  
50  
1.5  
1
0.5  
0
0
0
1
2
3
4
5
6
7
8
3
3.5  
4
4.5  
5
5.5  
Iio [mA]  
Vdd [V]  
Figure 88. Typical V vs. V (RESET)  
OL  
DD  
Vol [V] at Iio=2mA  
0.55  
Vol [V] at Iio=5mA  
Ta=-40°C  
Ta=25°C  
Ta=85°C  
Ta=-40°C  
Ta=85°C  
Ta=125°C  
Ta=25°C  
Ta=125°C  
1.2  
1
0.5  
0.45  
0.4  
0.35  
0.3  
0.8  
0.6  
0.4  
0.25  
0.2  
0.15  
3
3.5  
4
4.5  
5
5.5  
3
3.5  
4
Vdd [V]  
4.5  
5
5.5  
Vdd [V]  
118/135  
ST72104G, ST72215G, ST72216G, ST72254G  
CONTROL PIN CHARACTERISTICS (Cont’d)  
13.9.2 ISPSEL Pin  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD OSC  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
V
1)  
V
Input low level voltage  
V
0.2  
IL  
IH  
L
SS  
1)  
V
I
Input high level voltage  
Input leakage current  
V
-0.1 12.6  
DD  
V
=V  
±1  
µA  
IN  
SS  
2)  
Figure 89. Two typical Applications with ISPSEL Pin  
ISPSEL  
ISPSEL  
PROGRAMMING  
TOOL  
10kΩ  
ST72XXX  
ST72XXX  
Notes:  
1. Data based on design simulation and/or technology characteristics, not tested in production.  
2. When the ISP Remote mode is not required by the application ISPSEL pin must be tied to V  
.
SS  
119/135  
ST72104G, ST72215G, ST72216G, ST72254G  
13.10 TIMER PERIPHERAL CHARACTERISTICS  
Subject to general operating conditions for V  
,
Refer to I/O port characteristics for more details on  
the input/output alternate function characteristics  
(output compare, input capture, external clock,  
PWM output...).  
DD  
f
, and T unless otherwise specified.  
OSC  
A
13.10.1 Watchdog Timer  
Symbol  
Parameter  
Conditions  
Min  
12,288  
1.54  
Typ  
Max  
786,432  
98.3  
Unit  
tCPU  
ms  
t
Watchdog time-out duration  
w(WDG)  
fCPU=8MHz  
13.10.2 16-Bit Timer  
Symbol  
Parameter  
Conditions  
Min  
1
Typ  
Max  
Unit  
t
Input capture pulse time  
t
t
w(ICAP)in  
CPU  
2
CPU  
t
PWM resolution time  
res(PWM)  
f
=8MHz  
250  
0
ns  
CPU  
f
Timer external clock frequency  
PWM repetition rate  
f
/4  
MHz  
MHz  
bit  
EXT  
CPU  
f
0
f
/4  
PWM  
CPU  
Res  
PWM resolution  
16  
PWM  
120/135  
ST72104G, ST72215G, ST72216G, ST72254G  
13.11 COMMUNICATION INTERFACE CHARACTERISTICS  
13.11.1 SPI - Serial Peripheral Interface  
Refer to I/O port characteristics for more details on  
the input/output alternate function characteristics  
(SS, SCK, MOSI, MISO).  
Subject to general operating conditions for V  
,
DD  
f
, and T unless otherwise specified.  
OSC  
A
Symbol  
Parameter  
Conditions  
Min  
/128  
0.0625  
Max  
Unit  
Master  
Slave  
f
f
f
/4  
CPU  
2
CPU  
f
=8MHz  
=8MHz  
f
CPU  
SCK  
SPI clock frequency  
MHz  
1/t  
/2  
c(SCK)  
CPU  
0
f
4
CPU  
t
t
r(SCK)  
f(SCK)  
SPI clock rise and fall time  
see I/O port pin description  
t
SS setup time  
SS hold time  
Slave  
Slave  
120  
120  
su(SS)  
t
h(SS)  
t
t
Master  
Slave  
100  
90  
w(SCKH)  
SCK high and low time  
Data input setup time  
Data input hold time  
w(SCKL)  
t
Master  
Slave  
100  
100  
su(MI)  
t
su(SI)  
ns  
t
Master  
Slave  
100  
100  
h(MI)  
t
h(SI)  
t
Data output access time  
Data output disable time  
Data output valid time  
Data output hold time  
Data output valid time  
Data output hold time  
Slave  
Slave  
0
120  
240  
120  
a(SO)  
t
dis(SO)  
t
v(SO)  
Slave (after enable edge)  
t
0
h(SO)  
v(MO)  
h(MO)  
t
0.25  
0.25  
Master (before capture edge)  
t
CPU  
t
Figure 90. SPI Slave Timing Diagram with CPHA=0 3)  
SS  
INPUT  
t
t
su(SS)  
c(SCK)  
t
h(SS)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
t
t
w(SCKH)  
w(SCKL)  
t
t
t
t
dis(SO)  
a(SO)  
v(SO)  
h(SO)  
t
t
r(SCK)  
f(SCK)  
see  
note 2  
MISO  
OUTPUT  
INPUT  
see note 2  
MSB OUT  
BIT6 OUT  
LSB OUT  
t
t
h(SI)  
su(SI)  
MSB IN  
BIT1 IN  
LSB IN  
MOSI  
Notes:  
1. Data based on design simulation and/or characterisation results, not tested in production.  
2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has  
its alternate function capability released. In this case, the pin status depends on the I/O port configuration.  
3. Measurement points are done at CMOS levels: 0.3xV  
and 0.7xV  
.
DD  
DD  
121/135  
ST72104G, ST72215G, ST72216G, ST72254G  
COMMUNICATION INTERFACE CHARACTERISTICS (Cont’d)  
Figure 91. SPI Slave Timing Diagram with CPHA=11)  
SS  
INPUT  
t
t
su(SS)  
c(SCK)  
t
h(SS)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
t
t
w(SCKH)  
w(SCKL)  
t
t
dis(SO)  
a(SO)  
t
t
h(SO)  
v(SO)  
t
t
r(SCK)  
f(SCK)  
see  
note 2  
see  
note 2  
MISO  
OUTPUT  
HZ  
MSB OUT  
t
BIT6 OUT  
LSB OUT  
t
su(SI)  
h(SI)  
MSB IN  
LSB IN  
BIT1 IN  
MOSI  
INPUT  
Figure 92. SPI Master Timing Diagram 1)  
SS  
INPUT  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
w(SCKH)  
t
r(SCK)  
t
w(SCKL)  
t
f(SCK)  
t
t
h(MI)  
su(MI)  
MISO  
MOSI  
INPUT  
MSB IN  
h(MO)  
BIT6 IN  
LSB IN  
t
t
v(MO)  
MSB OUT  
LSB OUT  
see note 2  
BIT6 OUT  
see note 2  
OUTPUT  
Notes:  
1. Measurement points are done at CMOS levels: 0.3xV and 0.7xV  
.
DD  
DD  
2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has  
its alternate function capability released. In this case, the pin status depends of the I/O port configuration.  
122/135  
ST72104G, ST72215G, ST72216G, ST72254G  
COMMUNICATION INTERFACE CHARACTERISTICS (Cont’d)  
2
13.11.2 I C - Inter IC Control Interface  
Refer to I/O port characteristics for more details on  
the input/output alternate function characteristics  
Subject to general operating conditions for V  
,
DD  
2
(SDAI and SCLI). The ST7 I C interfacemeets the  
f
, and T unless otherwise specified.  
OSC  
A
2
requirements of the Standard I C communication  
protocol described in the following table.  
2
2
Standard mode I C  
Fast mode I C  
Symbol  
Parameter  
Unit  
1)  
1)  
1)  
1)  
Min  
Max  
Min  
Max  
t
SCL clock low time  
SCL clock high time  
SDA setup time  
4.7  
4.0  
1.3  
0.6  
100  
w(SCLL)  
µs  
t
w(SCLH)  
t
250  
su(SDA)  
3)  
2)  
3)  
t
SDA data hold time  
0
0
900  
h(SDA)  
t
t
r(SDA)  
ns  
SDA and SCL rise time  
SDA and SCL fall time  
1000  
300  
20+0.1C  
20+0.1C  
300  
300  
b
b
r(SCL)  
t
t
f(SDA)  
f(SCL)  
t
START condition hold time  
4.0  
4.7  
4.0  
4.7  
0.6  
0.6  
0.6  
1.3  
h(STA)  
µs  
t
Repeated START condition setup time  
STOP condition setup time  
su(STA)  
t
ns  
ms  
pF  
su(STO)  
t
STOP to START condition time (bus free)  
Capacitive load for each bus line  
w(STO:STA)  
C
400  
400  
b
2
Figure 93. Typical Application with I C Bus and Timing Diagram 4)  
V
V
DD  
DD  
4.7kΩ  
4.7kΩ  
100Ω  
100Ω  
SDAI  
SCLI  
2
I C BUS  
ST72XXX  
REPEATED START  
START  
t
t
su(STA)  
w(STO:STA)  
START  
SDA  
t
t
r(SDA)  
f(SDA)  
STOP  
t
t
h(SDA)  
su(SDA)  
SCK  
t
t
t
t
t
su(STO)  
t
h(STA)  
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
Notes:  
2
1. Data based on standard I C protocol requirement, not tested in production.  
2. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined  
region of the falling edge of SCL.  
3. The maximum hold time of the START condition has only to be met if the interface does not stretch the low period of  
SCL signal.  
4. Measurement points are done at CMOS levels: 0.3xV  
and 0.7xV  
.
DD  
DD  
123/135  
ST72104G, ST72215G, ST72216G, ST72254G  
13.12 8-BIT ADC CHARACTERISTICS  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
DD OSC  
A
1)  
Symbol  
Parameter  
ADC clock frequency  
Conversion range voltage  
External input resistor  
Conditions  
Min  
Typ  
Max  
Unit  
MHz  
V
f
4
ADC  
2)  
V
V
V
AIN  
SSA  
DDA  
3)  
R
10  
kΩ  
AIN  
C
t
Internal sample and hold capacitor  
Stabilization time after ADC enable  
Conversion time (Sample+Hold)  
6
pF  
ADC  
4)  
0
STAB  
µs  
3
f
=8MHz, f  
=4MHz  
ADC  
CPU  
t
- Sample capacitor loading time  
- Hold conversion time  
4
8
ADC  
1/f  
ADC  
Figure 94. Typical Application with ADC  
V
DD  
V
T
0.6V  
R
AIN  
AINx  
V
AIN  
ADC  
V
0.6V  
T
C
~2pF  
I
L
±1µA  
IO  
V
DD  
V
V
DDA  
SSA  
0.1µF  
ST72XXX  
Notes:  
1. Unless otherwise specified, typical data are based on T =25°C and V -V =5V. They are given only as design guide-  
A
DD SS  
lines and are not tested.  
2. When V and V  
pins are not available on the pinout, the ADC refer to V and V .  
SS  
DDA  
SSA  
DD  
3. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than 10k). Data  
based on characterization results, not tested in production.  
4. The stabilization time of the AD converter is masked by the first t  
always valid.  
. The first conversion after the enable is then  
LOAD  
124/135  
ST72104G, ST72215G, ST72216G, ST72254G  
8-BIT ADC CHARACTERISTICS (Cont’d)  
ADC Accuracy  
Symbol  
|E |  
Parameter  
Conditions  
Min  
Max  
1
Unit  
1)  
Total unadjusted error  
T
1)  
-0.5  
-0.5  
0.5  
0.5  
0.5  
0.5  
E
E
Offset error  
O
G
3)  
V
=5.0V,  
1)  
DD  
LSB  
Gain Error  
f
=8MHz  
CPU  
1)  
|E |  
Differential linearity error  
D
1)  
|E |  
Integral linearity error  
L
Figure 95. ADC Accuracy Characteristics  
Digital Result ADCDR  
E
G
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(3) End point correlation line  
255  
V
V  
254  
253  
DDA  
SSA  
1LSB  
= ----------------------------------------  
IDEAL  
256  
(2)  
E =Total Unadjusted Error: maximum deviation  
T
E
between the actual and the ideal transfer curves.  
T
(3)  
7
6
5
4
3
2
1
E =Offset Error: deviation between the first actual  
O
(1)  
transition and the first ideal one.  
E =Gain Error: deviation between the last ideal  
G
transition and the last actual one.  
E
O
E
L
E =Differential Linearity Error: maximum deviation  
D
between actual steps and the ideal one.  
E =Integral Linearity Error: maximum deviation  
L
E
between any actual transition and the end point  
correlation line.  
D
1 LSB  
IDEAL  
7
V
(LSB  
)
in  
IDEAL  
0
1
2
3
4
5
6
253 254 255 256  
V
V
DDA  
SSA  
Notes:  
1. ADC Accuracy vs. Negative Injection Current:  
For I =0.8mA, the typical leakage induced inside the die is 1.6µA and the effect on the ADC accuracy is a loss of 1 LSB  
INJ-  
for each 10Kincrease of the external analog source impedance. This effect on the ADC accuracy has been observed  
under worst-case conditions for injection:  
- negative injection  
- injection to an Input with analog capability, adjacent to the enabled Analog Input  
- at 5V V supply, and worst case temperature.  
DD  
3. Data based on characterization results over the whole temperature range, monitored in production.  
125/135  
ST72104G, ST72215G, ST72216G, ST72254G  
14 PACKAGE CHARACTERISTICS  
14.1 PACKAGE MECHANICAL DATA  
Figure 96. 32-Pin Shrink Plastic Dual In Line Package  
mm  
inches  
Dim.  
E
Min Typ Max Min Typ Max  
A
A1  
A2  
b
3.56 3.76 5.08 0.140 0.148 0.200  
See Lead Detail  
0.51  
0.020  
3.05 3.56 4.57 0.120 0.140 0.180  
0.36 0.46 0.58 0.014 0.018 0.023  
C
eA  
b1  
b
b1 0.76 1.02 1.40 0.030 0.040 0.055  
e
B
C
D
0.20 0.25 0.36 0.008 0.010 0.014  
27.43 27.94 28.45 1.080 1.100 1.120  
9.91 10.41 11.05 0.390 0.410 0.435  
7.62 8.89 9.40 0.300 0.350 0.370  
e
3
D
E
E1  
e
A
2
N
1.78  
0.070  
0.400  
A
L
eA  
eB  
L
10.16  
E
1
A
1
12.70  
0.500  
e
2.54 3.05 3.81 0.100 0.120 0.150  
VR01725J  
1
N/2  
Number of Pins  
N
32  
Figure 97. 28-Pin Plastic Small Outline Package, 300-mil Width  
mm  
inches  
Typ  
Dim.  
Min Typ Max Min  
Max  
A
2.35  
2.65 0.0926  
0.30 0.0040  
0.51 0.013  
0.32 0.0091  
18.10 0.6969  
7.60 0.2914  
0.1043  
0.0118  
0.020  
A1 0.10  
B
C
D
E
e
0.33  
0.23  
0.0125  
0.7125  
0.2992  
17.70  
7.40  
1.27  
0.0500  
H
h
10.01  
0.25  
10.64 0.394  
0.74 0.010  
0°  
0.419  
0.029  
8°  
K
L
0.41  
1.27 0.016  
0.10  
0.050  
0.004  
G
SO28  
Number of Pins  
N
28  
126/135  
ST72104G, ST72215G, ST72216G, ST72254G  
14.2 THERMAL CHARACTERISTICS  
Symbol  
Ratings  
Value  
Unit  
Package thermal resistance (junction to ambient)  
SDIP32  
SO28  
R
60  
75  
°C/W  
thJA  
1)  
P
Power dissipation  
Maximum junction temperature  
500  
150  
mW  
D
2)  
T
°C  
Jmax  
Notes:  
1. The power dissipation is obtained from the formula P =P +P  
where P  
is the chip internal power (I xV  
)
D
INT  
PORT  
INT  
DD DD  
and P  
is the port power dissipation determined by the user.  
PORT  
2. The average chip-junction temperature can be obtained from the formula T = T + P x RthJA.  
J
A
D
127/135  
ST72104G, ST72215G, ST72216G, ST72254G  
14.3 SOLDERING AND GLUEABILITY INFORMATION  
Recommended soldering information given only  
as design guidelines in Figure 98 and Figure 99.  
Recommended glue for SMD plastic packages  
dedicated to molding compound with silicone:  
Heraeus: PD945, PD955  
Loctite: 3615, 3298  
Figure 98. Recommended Wave Soldering Profile (with 37% Sn and 63% Pb)  
250  
COOLING PHASE  
(ROOM TEMPERATURE)  
5 sec  
200  
150  
100  
50  
SOLDERING  
PHASE  
80°C  
Temp. [°C]  
PREHEATING  
PHASE  
Time [sec]  
0
20  
40  
60  
80  
100  
120  
140  
160  
Figure 99. Recommended Reflow Soldering Oven Profile (MID JEDEC)  
250  
Tmax=220+/-5°C  
for 25 sec  
200  
150  
100  
50  
150 sec above 183°C  
90 sec at 125°C  
Temp. [°C]  
ramp down natural  
2°C/sec max  
ramp up  
2°C/sec for 50sec  
Time [sec]  
0
100  
200  
300  
400  
14.4 PACKAGE/SOCKET FOOTPRINT PROPOSAL  
Table 21. Suggested List of SDIP32 Socket Types  
Same  
Footprint  
Package / Probe  
Adaptor / Socket Reference  
Socket Type  
Textool  
SDIP32  
EMU PROBE  
TEXTOOL  
232-1291-00  
X
Table 22. Suggested List of SO28 Socket Types  
Same  
Footprint  
Package / Probe  
Adaptor / Socket Reference  
Socket Type  
ENPLAS  
OTS-28-1.27-04  
IC51-0282-334-1  
Open Top  
SO28  
YAMAICHI  
Clamshell  
EMU PROBE  
Adapter from SO28 to SDIP32 footprint (delivered with emulator)  
X
SMD to SDIP  
128/135  
ST72104G, ST72215G, ST72216G, ST72254G  
15 DEVICE CONFIGURATION AND ORDERING INFORMATION  
Each device is available for production in user pro-  
grammable versions (FLASH) as well as in factory  
coded versions (ROM). FLASH devices are  
shipped to customers with a default content (FFh),  
while ROM factory coded parts contain the code  
supplied by the customer. This implies that FLASH  
devices have to be configured by the customer us-  
ing the Option Bytes while the ROM devices are  
factory-configured.  
USER OPTION BYTE 1  
Bit 7 = CFC Clock filter control on/off  
This option bit enables or disables the clock filter  
(CF) features.  
0: Clock filter enabled  
1: Clock filter disabled  
Bit 6:4 = OSC[2:0] Oscillator selection  
These three option bits can be used to select the  
main oscillator as shown in Table 24.  
Bit 3:2 = LVD[1:0] Low voltage detection selection  
These option bits enable the LVD block with a se-  
lected threshold as shown in Table 25.  
15.1 OPTION BYTES  
The two option bytes allow the hardware configu-  
ration of the microcontroller to be selected.  
The option bytes have no address in the memory  
map and can be accessed only in programming  
mode (for example using a standard ST7 program-  
ming tool). The default content of the FLASH is  
fixed to FFh.  
In masked ROM devices, the option bytes are  
fixed in hardware by the ROM code (see option  
list).  
Bit 1 = WDG HALT Watchdog and halt mode  
This option bit determines if a RESET is generated  
when entering HALT mode while the Watchdog is  
active.  
0: No Reset generation when entering Halt mode  
1: Reset generation when entering Halt mode  
Bit 0 = WDG SW Hardware or software watchdog  
This option bit selects the watchdog type.  
0: Hardware (watchdog always enabled)  
USER OPTION BYTE 0  
1: Software (watchdog to be enabled by software)  
Table 24. Main Oscillator Configuration  
Bit 7:2 = Reserved, must always be 1.  
Bit 1 = EXTIT External Interrupt Configuration.  
This option bit allows the external interrupt map-  
ping to be configured as shown in Table 23.  
Selected Oscillator  
External Clock (Stand-by)  
~4 MHz Internal RC  
OSC2 OSC1 OSC0  
1
1
1
0
0
0
0
1
1
0
1
1
0
0
1
0
X
1
0
1
0
Table 23. External Interrupt Configuration  
1~14 MHz External RC  
External IT0  
External IT1  
EXTIT  
Low Power Resonator (LP)  
Medium Power Resonator (MP)  
Medium Speed Resonator (MS)  
High Speed Resonator (HS)  
Ports PB7-PB0  
Ports PC5-PC0  
Ports PA7-PA0  
1
Ports PA7-PA0  
Ports PC5-PC0  
Ports PB7-PB0  
0
Table 25. LVD Threshold Configuration  
Bit 0 = FMP Full memory protection.  
Configuration  
LVD1 LVD0  
This option bit enables or disables external access  
to the internal program memory (read-out protec-  
tion). Clearing this bit causes the erasing (to 00h)  
of the whole memory (including the option byte).  
0: Program memory not read-out protected  
1: Program memory read-out protected  
1
1
0
0
1
0
1
0
LVD Off  
Highest Voltage Threshold ( 4.50V)  
Medium Voltage Threshold ( 4.05V)  
Lowest Voltage Threshold ( 3.45V)  
USER OPTIONBYTE 0  
USER OPTION BYTE 1  
7
0
7
0
OSC OSC OSC  
WDG WDG  
HALT SW  
Reserved  
EXTIT FMP CFC  
LVD1 LVD0  
2
1
0
Default  
Value  
1
1
1
1
1
1
1
0
1
1
1
0
1
1
1
1
129/135  
ST72104G, ST72215G, ST72216G, ST72254G  
15.2 DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE  
Customer code is made up of the ROM contents  
and the list of the selected options (if any). The  
ROM contents are to be sent on diskette, or by  
electronic means, with the S19 hexadecimal file  
generated by the development tool. All unused  
bytes must be set to FFh.  
The selected options are communicated to  
STMicroelectronics using the correctly completed  
OPTION LIST appended.  
The STMicroelectronics Sales Organization will be  
pleased to provide detailed information on con-  
tractual points.  
Figure 100. ROM Factory Coded Device Types  
TEMP.  
PACKAGE RANGE  
/
XXX  
DEVICE  
Code name (defined by STMicroelectronics)  
1= standard 0 to +70 °C  
6= industrial -40 to +85 °C  
7= automotive -40 to +105°C  
3 = automotive -40 to +125 °C  
B= Plastic DIP  
M= Plastic SOIC  
ST72104G1, ST72104G2,  
ST72215G2, ST72216G1,  
ST72254G1, ST72254G2  
Figure 101. FLASH User Programmable Device Types  
TEMP.  
DEVICE PACKAGE RANGE  
1= standard 0 to +70 °C  
6= industrial -40 to +85 °C  
7= automotive -40 to +105°C  
3 = automotive -40 to +125 °C  
B= Plastic DIP  
M= Plastic SOIC  
ST72C104G1, ST72C104G2,  
ST72C215G2, ST72C216G1,  
ST72C254G1, ST72C254G2  
130/135  
ST72104G, ST72215G, ST72216G, ST72254G  
TRANSFER OF CUSTOMER CODE (Cont’d)  
MICROCONTROLLEROPTION LIST  
Customer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Address  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Contact  
Phone No . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
STMicroelectronics references  
Device:  
[ ] ST72104G1  
[ ] ST72104G2  
[ ] ST72215G2  
[ ] ST72216G1  
[ ] ST72254G1  
[ ] ST72254G2  
Package:  
[ ] SDIP32  
[ ] SO28 with Standard conditionning (tube)  
[ ] SO28 with Tape & Reel conditionning  
External Interrupt:  
[ ] IT0 interrupt vector Port A, IT1 interrupt vector Port B & C  
[ ] IT0 interrupt vector Port A & C, IT1 interrupt vector Port B  
Temperature Range:  
[ ] 0°C to + 70°C  
[ ] - 40°C to + 85°C  
[ ] - 40°C to + 105°C  
[ ] - 40°C to + 125°C  
Clock Source Selection:  
[ ] Resonator:  
[ ] LP: Low power resonator (1 to 2 MHz)  
[ ] MP: Medium power resonator (2 to 4 MHz)  
[ ] MS: Medium speed resonator (4 to 8 MHz)  
[ ] HS: High speed resonator (8 to 16 MHz)  
[ ] RC Network: [ ] Internal  
[ ] External  
[ ] External Clock  
Clock Security System:  
[ ] Disabled  
[ ] Enabled  
Watchdog Selection:  
Halt when Watchdog on:  
[ ] SoftwareActivation  
[ ] Reset  
[ ] Hardware Activation  
[ ] No reset  
Readout Protection:  
LVD Reset  
[ ] Disabled  
[ ] Enabled  
[ ] Disabled  
[ ] Enabled: [ ] Highest threshold (4.05V/4.30V)  
[ ] Medium threshold (3.65V/3.90V)  
[ ] Lowest threshold (3.10V/3.35V)  
Comments : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Supply Operating Range in the application: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Notes  
Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
131/135  
ST72104G, ST72215G, ST72216G, ST72254G  
15.3 DEVELOPMENT TOOLS  
STmicroelectronics offers a range of hardware  
and software development tools for the ST7 micro-  
controller family. Full details of tools available for  
the ST7 from third party manufacturers can be ob-  
tain from the STMicroelectronics Internet site:  
http//mcu.st.com.  
STMicroelectronics Tools  
Three types of development tool are offered by  
ST, all of them connect to a PC via a parallel (LPT)  
port: see Table 26 and Table 27 for more details.  
Third Party Tools  
ACTUM  
BP  
COSMIC  
CMX  
DATA I/O  
HITEX  
HIWARE  
ISYSTEM  
KANDA  
LEAP  
Tools from these manufacturers include C compli-  
ers, emulators and gang programmers.  
Table 26. STMicroelectronic Tool Features  
1)  
In-Circuit Emulation  
Programming Capability  
Software Included  
ST7 CD ROM with:  
Yes. (Same features as  
ST7 Development Kit  
ST7 HDS2 Emulator  
HDS2 emulator but without Yes (DIP packages only)  
logic analyzer)  
– ST7 Assembly toolchain  
– STVD7 and WGDB7 powerful  
Source Level Debugger for Win  
3.1, Win 95 and NT  
– C compiler demo versions  
– ST Realizer for Win 3.1 and Win  
95.  
Yes, powerful emulation  
features including trace/  
logic analyzer  
No  
ST7 Programming Board  
No  
Yes (All packages)  
– Windows Programming Tools  
for Win 3.1, Win 95 and NT  
Table 27. Dedicated STMicroelectronics Development Tools  
Supported Products  
ST7 Development Kit  
ST7 HDS2 Emulator  
ST7 Programming Board  
ST72254G1, ST72C254G1  
ST72254G2, ST72C254G2  
ST72215G2, ST72C215G2  
ST72216G1, ST72C216G1  
ST72104G1, ST72C104G1,  
ST72104G2, ST72C104G2  
ST7MDT1-EPB2/EU  
ST7MDT1-EPB2/US  
ST7MDT1-EPB2/UK  
ST7MDT1-DVP2  
ST7MDT1-EMU2B  
Note:  
1. In-Situ Programming (ISP) interface for FLASH devices.  
132/135  
ST72104G, ST72215G, ST72216G, ST72254G  
15.4 ST7 APPLICATION NOTES  
Identification  
Description  
PROGRAMMING AND TOOLS  
AN985  
Executing code in ST7 RAM  
Using the ST7 indirect addressing mode  
AN986  
AN987  
ST7 in-circuit programming  
AN988  
Starting with ST7 assembly tool chain  
Starting with ST7 Hiware C  
AN989  
AN1039  
AN1064  
AN1179  
EXAMPLE DRIVERS  
AN969  
ST7 math utility routines  
Writing optimized hiware C language for ST7  
Programming ST7 Flash Microcontrollers in Remote ISP Mode (In-Situ Programming)  
ST7 SCI communication between the ST7 and a PC  
ST7 SPI communication between the ST7 and E PROM  
ST7 I C communication between the ST7 and E PROM  
ST7 software SPI master communication  
AN970  
AN971  
AN972  
AN973  
SCI software communication with a PC using ST72251 16-bit timer  
Real time clock with the ST7 timer output compare  
Driving a buzzer using the ST7 PWM function  
AN974  
AN976  
AN979  
Driving an analog keyboard with the ST7 ADC  
AN980  
ST7 keypad decoding techniques, implementing wake-up on keystroke  
Using the ST7 USB microcontroller  
AN1017  
AN1041  
AN1042  
AN1044  
AN1045  
AN1047  
AN1048  
AN1048  
Using ST7 PWM signal to generate analog output (sinusoid)  
ST7 routine for I C slave mode management  
Multiple interrupt sources management for ST7 MCUs  
ST7 software implementation of I C bus master  
Managing reception errors with the ST7 SCI peripheral  
ST7 software LCD driver  
ST7 timer PWM duty cycle switch for true 0% or 100% duty cycle  
PRODUCT OPTIMIZATION  
AN982  
Using ceramic resonators with the ST7  
AN1014  
AN1070  
How to minimize the ST7 power consumption  
ST7 checksum selfchecking capability  
PRODUCT EVALUATION  
AN910  
AN990  
AN1181  
ST7 and ST9 performance benchmarking  
ST7 benefits versus industry standard  
Electrostatic discharge sensitivity measurement  
APPLICATION EXAMPLES  
AN1086  
ST7 / ST10U435 CAN-Do solutions for car multiplexing  
15.5 TO GET MORE INFORMATION  
To get the latest information on this product please use the ST web server.http://mcu.st.com/  
133/135  
ST72104G, ST72215G, ST72216G, ST72254G  
16 SUMMARY OF CHANGES  
Description of the changes between the current release of the specification and the previous one.  
Rev.  
Main changes  
Date  
2.2 Power saving mode corrected in Figure 18 on page 28 and Figure 20 on page 29.  
Feb-00  
134/135  
ST72104G, ST72215G, ST72216G, ST72254G  
Notes:  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of useof such information nor for any infringement of patents or other rights of third parties which may result from its use. No license isgranted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
2000 STMicroelectronics - All Rights Reserved.  
Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an  
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.  
STMicroelectronics Group of Companies  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain  
Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
135/135  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX