ST72324BJ4B6 [STMICROELECTRONICS]

MICROCONTROLLER;
ST72324BJ4B6
型号: ST72324BJ4B6
厂家: ST    ST
描述:

MICROCONTROLLER

文件: 总193页 (文件大小:2679K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ST72324Bxx  
8-bit MCU, 3.8 to 5.5 V operating range with  
8 to 32 Kbyte Flash/ROM, 10-bit ADC, 4 timers, SPI, SCI  
Features  
Memories  
8 to 32 Kbyte dual voltage High Density Flash  
(HDFlash) or ROM with readout protection  
capability. In-application programming and In-  
circuit programming for HDFlash devices  
LQFP44  
10 x 10  
LQFP32  
7 x 7  
384 bytes to 1 Kbyte RAM  
HDFlash endurance: 1 kcycle at 55 °C, data  
SDIP32  
400 mil  
SDIP42  
600 mil  
retention 40 years at 85 °C  
Clock, reset and supply management  
4 timers  
Enhanced low voltage supervisor (LVD) with  
programmable reset thresholds and auxiliary  
voltage detector (AVD) with interrupt capability  
Main clock controller with real-time base, Beep  
and clock-out capabilities  
Configurable watchdog timer  
Clock sources: crystal/ceramic resonator  
16-bit Timer A with 1 input capture, 1 output  
compare, ext. clock input, PWM and pulse  
generator modes  
oscillators, int. RC osc. and ext. clock input  
PLL for 2x frequency multiplication  
4 power saving modes: Slow, Wait, Active-halt,  
16-bit Timer B with 2 input captures, 2 output  
and Halt  
compares, PWM and pulse generator modes  
Interrupt management  
2 communication interfaces  
SPI synchronous serial interface  
SCI asynchronous serial interface  
Nested interrupt controller. 10 interrupt vectors  
plus TRAP and RESET. 9/6 ext. interrupt lines  
(on 4 vectors)  
1 analog peripheral (low current coupling)  
Up to 32 I/O ports  
10-bit ADC with up to 12 input ports  
32/24 multifunctional bidirectional I/Os,  
22/17 alternate function lines,  
12/10 high sink outputs  
Development tools  
In-circuit testing capability  
Table 1.  
Device  
Device summary  
Memory  
RAM (stack)  
Voltage range Temp. range  
Package  
ST72324BK2  
ST72324BK4  
ST72324BK6  
ST72324BJ2  
ST72324BJ4  
ST72324BJ6  
Flash/ROM 8 Kbytes  
Flash/ROM 16 Kbytes  
Flash/ROM 32 Kbytes  
Flash/ROM 8 Kbytes  
Flash/ROM 16 Kbytes  
Flash/ROM 32 Kbytes  
384 (256) bytes  
512 (256) bytes  
1024 (256) bytes  
384 (256) bytes  
512 (256) bytes  
1024 (256) bytes  
LQFP32  
7x7/  
SDIP32  
up to  
3.8 to 5.5 V  
-40 to 125 °C  
LQFP44  
10x10/  
SDIP42  
March 2009  
Rev 7  
1/193  
www.st.com  
1
 
 
 
 
Contents  
ST72324Bxx  
Contents  
1
2
3
4
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Register and memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Flash program memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.1  
4.2  
4.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.3.1  
Readout protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.4  
4.5  
4.6  
4.7  
ICC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
ICP (in-circuit programming) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
IAP (in-application programming) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Related documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
4.7.1  
Flash Control/Status Register (FCSR) . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5
Central processing unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.1  
5.2  
5.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Index registers (X and Y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Program counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Condition Code register (CC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Stack Pointer register (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6
Supply, reset and clock management . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.1  
6.2  
6.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
PLL (phase locked loop) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Multi-oscillator (MO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.3.1  
6.3.2  
External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Crystal/ceramic oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
2/193  
ST72324Bxx  
Contents  
6.3.3  
Internal RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.4  
Reset sequence manager (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.4.1  
Asynchronous external RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.5  
System integrity management (SI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6.5.1  
6.5.2  
6.5.3  
6.5.4  
LVD (low voltage detector) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
AVD (auxiliary voltage detector) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
6.6  
SI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
6.6.1  
System integrity (SI) control/status register (SICSR) . . . . . . . . . . . . . . . 39  
7
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
7.1  
7.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Masking and processing flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
Servicing pending interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Different interrupt vector sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Non-maskable sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Maskable sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
7.3  
7.4  
7.5  
Interrupts and low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Concurrent and nested management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Interrupt registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
7.5.1  
7.5.2  
CPU CC register interrupt bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Interrupt software priority registers (ISPRx) . . . . . . . . . . . . . . . . . . . . . . 46  
7.6  
External interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
7.6.1  
7.6.2  
I/O port interrupt sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
External interrupt control register (EICR) . . . . . . . . . . . . . . . . . . . . . . . . 49  
8
Power saving modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
8.1  
8.2  
8.3  
8.4  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Slow mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Active-halt and Halt modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
8.4.1  
8.4.2  
Active-halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
9
I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
3/193  
Contents  
ST72324Bxx  
9.1  
9.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
9.2.1  
9.2.2  
9.2.3  
Input modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Output modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
9.3  
9.4  
9.5  
I/O port implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
9.5.1  
I/O port implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
10  
On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
10.1 Watchdog timer (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
10.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
10.1.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
10.1.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
10.1.4 How to program the Watchdog timeout . . . . . . . . . . . . . . . . . . . . . . . . . 66  
10.1.5 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
10.1.6 Hardware Watchdog option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
10.1.7 Using Halt mode with the WDG (WDGHALT option) . . . . . . . . . . . . . . . 68  
10.1.8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
10.1.9 Control register (WDGCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
10.2 Main clock controller with real-time clock and beeper (MCC/RTC) . . . . . 69  
10.2.1 Programmable CPU clock prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
10.2.2 Clock-out capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
10.2.3 Real-time clock (RTC) timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
10.2.4 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
10.2.5 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
10.2.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
10.2.7 MCC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
10.3 16-bit timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
10.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
10.3.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
10.3.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
10.3.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
10.3.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
10.3.6 Summary of timer modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
4/193  
ST72324Bxx  
Contents  
10.3.7 16-bit timer registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
10.4 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
10.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
10.4.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
10.4.3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
10.4.4 Clock phase and clock polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
10.4.5 Error flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
10.4.6 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
10.4.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
10.4.8 SPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
10.5 Serial communications interface (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
10.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
10.5.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
10.5.3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
10.5.4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
10.5.5 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
10.5.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
10.5.7 SCI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
10.6 10-bit A/D converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
10.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
10.6.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
10.6.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
10.6.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
10.6.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
10.6.6 ADC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
11  
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
11.1 CPU addressing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
11.1.1 Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
11.1.2 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
11.1.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
11.1.4 Indexed (no offset, short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
11.1.5 Indirect (short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
11.1.6 Indirect indexed (short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
11.1.7 Relative mode (direct, indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
11.2 Instruction groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
5/193  
Contents  
ST72324Bxx  
12  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
12.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
12.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
12.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
12.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
12.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
12.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
12.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
12.2.1 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
12.2.2 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
12.2.3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
12.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
12.4 LVD/AVD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
12.4.1 Operating conditions with LVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
12.4.2 Auxiliary voltage detector (AVD) thresholds . . . . . . . . . . . . . . . . . . . . . 145  
12.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
12.5.1 ROM current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
12.5.2 Flash current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
12.5.3 Supply and clock managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
12.5.4 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
12.6 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
12.6.1 General timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
12.6.2 External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
12.6.3 Crystal and ceramic resonator oscillators . . . . . . . . . . . . . . . . . . . . . . 150  
12.6.4 RC oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
12.6.5 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
12.7 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
12.7.1 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
12.7.2 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
12.8 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
12.8.1 Functional electromagnetic susceptibility (EMS) . . . . . . . . . . . . . . . . . 155  
12.8.2 Electromagnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
12.8.3 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 157  
12.9 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
12.9.1 General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
12.9.2 Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
6/193  
ST72324Bxx  
Contents  
12.10 Control pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
12.10.1 Asynchronous RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
12.10.2 ICCSEL/VPP pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
12.11 Timer peripheral characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
12.11.1 16-bit timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
12.12 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . 166  
12.12.1 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
12.13 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
12.13.1 Analog power supply and reference pins . . . . . . . . . . . . . . . . . . . . . . . 170  
12.13.2 General PCB design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
12.13.3 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
13  
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
13.1 ECOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
13.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
13.2.1 LQFP44 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
13.2.2 SDIP42 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
13.2.3 LQFP32 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
13.2.4 SDIP32 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
13.3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
14  
Device configuration and ordering information . . . . . . . . . . . . . . . . . 178  
14.1 Flash devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
14.1.1 Flash configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
14.2 ROM devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
14.2.1 Transfer of customer code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
14.3 Development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
14.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
14.3.2 Evaluation tools and starter kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
14.3.3 Development and debugging tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
14.3.4 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
14.3.5 Socket and emulator adapter information . . . . . . . . . . . . . . . . . . . . . . 184  
14.4 ST7 Application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
15  
Known limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
15.1 All Flash and ROM devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
7/193  
Contents  
ST72324Bxx  
15.1.1 Safe connection of OSC1/OSC2 pins . . . . . . . . . . . . . . . . . . . . . . . . . 185  
15.1.2 External interrupt missed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
15.1.3 Unexpected reset fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
15.1.4 Clearing active interrupts outside interrupt routine . . . . . . . . . . . . . . . 187  
15.1.5 16-bit timer PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
15.1.6 TIMD set simultaneously with OC interrupt . . . . . . . . . . . . . . . . . . . . . 188  
15.1.7 SCI wrong break duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
15.2 8/16 Kbyte Flash devices only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
15.2.1 39-pulse ICC entry mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
15.2.2 Negative current injection on pin PB0 . . . . . . . . . . . . . . . . . . . . . . . . . 189  
15.3 8/16 Kbyte ROM devices only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
15.3.1 Readout protection with LVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
15.3.2 I/O Port A and F configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
16  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
8/193  
ST72324Bxx  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Device pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Sectors available in Flash devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Flash control/status register address and reset value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Arithmetic management bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Software interrupt bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Interrupt software priority selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
ST7 clock sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Effect of low power modes on SI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
AVD interrupt control/wakeup capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
SICSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Reset source flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Interrupt software priority levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
CPU CC register interrupt bits description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Interrupt software priority levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
ISPRx interrupt vector correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Dedicated interrupt instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
EICR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Interrupt sensitivity - ei2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Interrupt sensitivity - ei3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Interrupt sensitivity - ei0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Interrupt sensitivity - ei1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Nested interrupts register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
MCC/RTC low power mode selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
DR register value and output pin status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
I/O port mode options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
I/O port configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Effect of low power modes on I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
I/O port interrupt control/wakeup capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Port configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
I/O port register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Effect of lower power modes on Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
WDGCR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Watchdog timer register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Effect of low power modes on MCC/RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
MCC/RTC interrupt control/wakeup capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
MCCSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Time base selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
MCCBCR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Beep frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Main clock controller register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Input capture byte distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Output compare byte distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Effect of low power modes on 16-bit timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
16-bit timer interrupt control/wakeup capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Summary of timer modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
9/193  
List of tables  
ST72324Bxx  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
CR1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
CR2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
CSR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
16-bit timer register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Effect of low power modes on SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
SPI interrupt control/wakeup capability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
SPICR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
SPI master mode SCK frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
SPICSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
SPI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Frame formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Effect of low power modes on SCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
SCI interrupt control/wakeup capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
SCISR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
SCICR1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
SCICR2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
SCIBRR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
SCIERPR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
SCIETPR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Baud rate selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
SCI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Effect of low power modes on ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
ADCCSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
ADCDRH register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
ADCDRL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
ADC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Addressing mode groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
CPU addressing mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Inherent instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Immediate instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Instructions supporting direct, indexed, indirect and indirect indexed  
addressing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Relative direct and indirect instructions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Instruction groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Instruction set overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Operating conditions with LVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
AVD thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
ROM current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Flash current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Oscillators, PLL and LVD current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
On-chip peripherals current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
General timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Crystal and ceramic resonator oscillators (8/16 Kbyte Flash and ROM  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
Table 84.  
Table 85.  
Table 86.  
Table 87.  
Table 88.  
Table 89.  
Table 90.  
Table 91.  
Table 92.  
Table 93.  
Table 94.  
Table 95.  
devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Crystal and ceramic resonator oscillators (32 Kbyte Flash and ROM devices) . . . . . . . . 151  
OSCRANGE selection for typical resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
RC oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Table 96.  
Table 97.  
Table 98.  
10/193  
ST72324Bxx  
List of tables  
Table 99.  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Table 100. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Table 101. Dual voltage HDFlash memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Table 102. EMS test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Table 103. EMI emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Table 104. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Table 105. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Table 106. General characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Table 107. Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Table 108. Asynchronous RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Table 109. ICCSEL/V pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
PP  
Table 110. 16-bit timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Table 111. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Table 112. 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Table 113. ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Table 114. 44-pin low profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Table 115. 42-pin dual in line package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Table 116. 32-pin low profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Table 117. 32-pin dual in-line package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Table 118. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Table 119. Flash option bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Table 120. Option byte 0 bit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Table 121. Option byte 1 bit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Table 122. Package selection (OPT7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Table 123. STMicroelectronics development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Table 124. Suggested list of socket types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Table 125. Port A and F configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Table 126. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
11/193  
List of figures  
ST72324Bxx  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Device block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
44-pin LQFP package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
42-pin SDIP package pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
32-pin LQFP package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
32-pin SDIP package pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Memory map and sector address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Typical ICC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 10. Stack manipulation example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 11. PLL block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 12. Clock, reset and supply block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 13. Reset sequence phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 14. Reset block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 15. RESET sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 16. Low voltage detector vs reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 17. Using the AVD to monitor V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
DD  
Figure 18. Interrupt processing flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 19. Priority decision process flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 20. Concurrent interrupt management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 21. Nested interrupt management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 22. External interrupt control bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 23. Power saving mode transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 24. Slow mode clock transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 25. Wait mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 26. Active-halt timing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 27. Active-halt mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 28. Halt timing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 29. Halt mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 30. I/O port general block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 31. Interrupt I/O port state transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 32. Watchdog block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 33. Approximate timeout duration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 34. Exact timeout duration (t  
and t  
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
min  
max  
Figure 35. Main clock controller (MCC/RTC) block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 36. Timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 37. 16-bit read sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 38. Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 39. Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 40. Counter timing diagram, internal clock divided by 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 41. Input capture block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 42. Input capture timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 43. Output compare block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 44. Output compare timing diagram, f  
Figure 45. Output compare timing diagram, f  
= f  
= f  
/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
/4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
TIMER  
CPU  
TIMER  
CPU  
Figure 46. One pulse mode cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 47. One Pulse mode timing example(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 48. Pulse width modulation mode timing example with two output compare functions(1)(2) . . 86  
12/193  
ST72324Bxx  
List of figures  
Figure 49. Pulse width modulation cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Figure 50. Serial peripheral interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 51. Single master/single slave application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 52. Generic SS timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 53. Hardware/software slave select management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 54. Data clock timing diagram(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 55. Clearing the WCOL bit (Write collision flag) software sequence . . . . . . . . . . . . . . . . . . . 103  
Figure 56. Single master/multiple slave configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 57. SCI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 58. Word length programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 59. SCI baud rate and extended prescaler block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Figure 60. Bit sampling in Reception mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Figure 61. ADC block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Figure 62. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Figure 63. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Figure 64.  
f
max versus V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
CPU  
DD  
Figure 65. Typical application with an external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Figure 66. Typical application with a crystal or ceramic resonator (8/16 Kbyte Flash  
and ROM devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Figure 67. Typical application with a crystal or ceramic resonator (32 Kbyte Flash  
and ROM devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Figure 68. Typical f  
vs T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
OSC(RCINT)  
A
Figure 69. Integrated PLL jitter vs signal frequency(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Figure 70. Unused I/O pins configured as input(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Figure 71. Typical I vs. V with V = V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
PU  
DD  
IN  
SS  
Figure 72. Typical V at V = 5 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
OL  
DD  
Figure 73. Typical V at V = 5 V (high-sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
OL  
DD  
Figure 74. Typical V at V = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
OH  
DD  
Figure 75. Typical V vs. V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
OL  
DD  
Figure 76. Typical V vs. V (high-sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
OL  
DD  
Figure 77. Typical V vs. V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
OH  
DD  
Figure 78. RESET pin protection when LVD is enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Figure 79. RESET pin protection when LVD is disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Figure 80. Two typical applications with ICCSEL/V pin(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
PP  
Figure 81. SPI slave timing diagram with CPHA = 0(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Figure 82. SPI slave timing diagram with CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Figure 83. SPI master timing diagram(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Figure 84.  
R
max. vs f  
with C  
= 0 pF(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
AIN  
ADC  
AIN  
Figure 85. Recommended C  
and R  
values(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
AIN  
AIN  
Figure 86. Typical A/D converter application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Figure 87. Power supply filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Figure 88. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Figure 89. 44-pin low profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Figure 90. 42-pin plastic dual in-line package, shrink 600-mil width . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Figure 91. 32-pin low profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Figure 92. 32-pin plastic dual in-line package, shrink 400-mil width . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Figure 93. ST72324Bxx ordering information scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
13/193  
Description  
ST72324Bxx  
1
Description  
The ST72324Bxx devices are members of the ST7 microcontroller family designed for mid-  
range applications running from 3.8 to 5.5 V. Different package options offer up to 32 I/O  
pins.  
All devices are based on a common industry-standard 8-bit core, featuring an enhanced  
instruction set and are available with Flash or ROM program memory. The ST7 family  
architecture offers both power and flexibility to software developers, enabling the design of  
highly efficient and compact application code.  
The on-chip peripherals include an A/D converter, two general purpose timers, an SPI  
interface and an SCI interface. For power economy, the microcontroller can switch  
dynamically into, Slow, Wait, Active-halt or Halt mode when the application is in idle or  
stand-by state.  
Typical applications include consumer, home, office and industrial products.  
Figure 1.  
Device block diagram  
8-bit CORE  
ALU  
Program  
memory  
(8 - 32 Kbytes)  
RESET  
CONTROL  
LVD  
VPP  
RAM  
(384 - 1024 bytes)  
VSS  
VDD  
WATCHDOG  
PORT A  
OSC1  
OSC2  
OSC  
MCC/RTC/BEEP  
PA7:3  
(5 bits on J devices)  
(4 bits on K devices)  
PORT F  
TIMER A  
BEEP  
PF7:6, 4, 2:0  
(6 bits on J devices)  
(5 bits on K devices)  
PB4:0  
(5 bits on J devices)  
(3 bits on K devices)  
PORT B  
PORT E  
SCI  
PE1:0  
PORT C  
TIMER B  
SPI  
(2 bits)  
PC7:0  
(8 bits)  
PORT D  
10-bit ADC  
PD5:0  
(6 bits on J devices)  
(2 bits on K devices)  
VAREF  
VSSA  
14/193  
 
 
ST72324Bxx  
Pin description  
2
Pin description  
Figure 2.  
44-pin LQFP package pinout  
44 43 42 41 40 39 38 37 36 35 34  
RDI / PE1  
PB0  
1
2
3
4
5
6
7
8
9
10  
V
V
33  
SS_1  
32  
DD_1  
PB1  
PB2  
PB3  
PA3 (HS)  
PC7/SS/AIN15  
ei0 31  
30  
ei2  
ei3  
PC6/SCK/ICCCLK  
PC5/MOSI/AIN14  
PC4 / MISO/ICCDATA  
PC3 (HS)/ICAP1_B  
PC2 (HS)/ICAP2_B  
PC1/OCMP1_B/AIN13  
PC0/OCMP2_B/AIN12  
29  
(HS) PB4  
AIN0/PD0  
AIN1/PD1  
AIN2/PD2  
AIN3/PD3  
28  
27  
26  
25  
ei1  
24  
AIN4/PD4 11  
23  
12 13 14 15 16 17 18 19 20 21 22  
(HS) 20 mA high sink capability  
eix associated external interrupt vector  
Figure 3.  
42-pin SDIP package pinout  
(HS) PB4  
PB3  
1
ei3  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
PB2  
AIN0 / PD0  
AIN1 / PD1  
AIN2 / PD2  
AIN3 / PD3  
AIN4 / PD4  
AIN5 / PD5  
2
ei2  
PB1  
3
PB0  
4
PE1 / RDI  
5
PE0 / TDO  
_2  
6
V
DD  
7
V
OSC1  
OSC2  
AREF  
8
V
SSA  
9
MCO / AIN8 / PF0  
BEEP / (HS) PF1  
V
_2  
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
RESET  
V / ICCSEL  
PP  
ei1  
(HS) PF2  
AIN10 / OCMP1_A / PF4  
ICAP1_A / (HS) PF6  
EXTCLK_A / (HS) PF7  
AIN12 / OCMP2_B / PC0  
AIN13 / OCMP1_B / PC1  
ICAP2_B/ (HS) PC2  
ICAP1_B / (HS) PC3  
ICCDATA / MISO / PC4  
AIN14 / MOSI / PC5  
PA7 (HS)  
PA6 (HS)  
PA5 (HS)  
PA4 (HS)  
V
SS_1  
DD_1  
V
PA3 (HS)  
ei0  
PC7 / SS / AIN15  
PC6 / SCK / ICCCLK  
(HS) 20 mA high sink capability  
eix associated external interrupt vector  
15/193  
 
 
Pin description  
Figure 4.  
ST72324Bxx  
32-pin LQFP package pinout  
32 31 30 29 28 27 26 25  
24  
V
V
1
2
3
4
5
6
7
8
OSC1  
OSC2  
AREF  
ei3 ei2  
23  
22  
21  
20  
19  
18  
17  
SSA  
MCO/AIN8/PF0  
BEEP/(HS) PF1  
OCMP1_A/AIN10/PF4  
ICAP1_A/(HS) PF6  
EXTCLK_A/(HS) PF7  
AIN12/OCMP2_B/PC0  
V
_
SS  
2
ei1  
RESET  
/ICCSEL  
V
PP  
PA7 (HS)  
PA6 (HS)  
PA4 (HS)  
ei0  
10 11 12 13 14 15 16  
9
(HS) 20 mA high sink capability  
eix associated external interrupt vector  
Figure 5.  
32-pin SDIP package pinout  
PB3  
PB0  
(HS) PB4  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
ei3  
ei2  
AIN0 / PD0  
AIN1 / PD1  
2
PE1 / RDI  
PE0 / TDO  
3
V
4
AREF  
V
V
5
DD_2  
SSA  
OSC1  
OSC2  
MCO / AIN8 / PF0  
BEEP / (HS) PF1  
6
ei1  
7
OCMP1_A / AIN10 / PF4  
V
8
SS_2  
ICAP1_A / (HS) PF6  
EXTCLK_A / (HS) PF7  
AIN12 / OCMP2_B / PC0  
AIN13 / OCMP1_B / PC1  
RESET  
9
V
/ ICCSEL  
PP  
10  
11  
12  
13  
14  
15  
16  
PA7 (HS)  
PA6 (HS)  
ICAP2_B / (HS) PC2  
ICAP1_B / (HS) PC3  
ICCDATA/ MISO / PC4  
AIN14 / MOSI / PC5  
PA4 (HS)  
PA3 (HS)  
ei0  
PC7 / SS / AIN15  
PC6 / SCK / ICCCLK  
(HS) 20mA high sink capability  
eix associated external interrupt vector  
See Section 12: Electrical characteristics on page 141 for external pin connection  
guidelines.  
Refer to Section 9: I/O ports on page 58 for more details on the software configuration of the  
I/O ports.  
The reset configuration of each pin is shown in bold. This configuration is valid as long as  
the device is in reset state.  
16/193  
 
ST72324Bxx  
Pin description  
Legend / Abbreviations for Table 2:  
Type:  
I = input, O = output, S = supply  
A = Dedicated analog input  
Input level:  
In/Output level: C = CMOS 0.3V /0.7  
DD  
DD  
C = CMOS 0.3V /0.7 with input trigger  
T
DD  
DD  
Output level:  
HS = 20 mA high sink (on N-buffer only)  
Port and control configuration:  
(a)  
Input: float = floating, wpu = weak pull-up, int = interrupt , ana = analog ports  
(b)  
Output: OD = open drain , PP = push-pull  
Table 2.  
Pin No.  
Device pin description  
Pin Name  
Level  
Port  
Main  
function  
(after  
Input  
Output  
Alternate Function  
reset)  
6
7
1
2
3
4
5
6
7
8
9
30  
31  
32  
1
2
3
PB4 (HS)  
PD0/AIN0  
PD1/AIN1  
PD2/AIN2  
PD3/AIN3  
PD4/AIN4  
PD5/AIN5  
I/O CT HS  
I/O CT  
I/O CT  
I/O CT  
I/O CT  
I/O CT  
I/O CT  
S
X
X
X
X
X
X
X
ei3  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Port B4  
Port D0  
Port D1  
Port D2  
Port D3  
Port D4  
X
X
X
X
X
X
ADC Analog Input 0  
ADC Analog Input 1  
ADC Analog Input 2  
ADC Analog Input 3  
ADC Analog Input 4  
8
X
9
X
10  
11  
12  
13  
14  
X
X
X
Port D5 ADC Analog Input 5  
Analog Reference Voltage for ADC  
Analog Ground Voltage  
(1)  
1
2
4
5
VAREF  
(1)  
VSSA  
S
ADC  
Analog  
Input 8  
Main clock  
15 10  
3
4
6
7
PF0/MCO/AIN8 I/O CT  
X
ei1  
X
X
X
X
Port F0  
out (fCPU  
)
16 11  
17 12  
PF1 (HS)/BEEP I/O CT HS  
X
X
ei1  
ei1  
X
X
X
X
Port F1  
Port F2  
Beep signal output  
PF2 (HS)  
I/O CT HS  
Timer A  
Output  
ADC  
Analog  
PF4/OCMP1_A/  
AIN10  
18 13  
5
8
I/O CT  
X
X
X
X
Port F4  
Compare 1 Input 10  
PF6  
(HS)/ICAP1_A  
19 14  
20 15  
6
7
9
I/O CT HS  
I/O CT HS  
X
X
X
X
X
X
X
X
Port F6  
Port F7  
Timer A Input Capture 1  
PF7 (HS)/  
EXTCLK_A  
Timer A External Clock  
Source  
10  
a. In the interrupt input column, “eiX” defines the associated external interrupt vector. If the weak pull-up column  
(wpu) is merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input, else the  
configuration is floating interrupt input.  
b. In the open drain output column, ‘T’ defines a true open drain I/O (P-Buffer and protection diode to VDD are not  
implemented). See Section 9: I/O ports and Section 12.9: I/O port pin characteristics for more details.  
17/193  
 
Pin description  
ST72324Bxx  
Table 2.  
Pin No.  
Device pin description (continued)  
Level  
Port  
Main  
function  
(after  
Input  
Output  
Pin Name  
Alternate Function  
reset)  
(1)  
21  
22  
VDD_0  
S
S
Digital Main Supply Voltage  
Digital Ground Voltage  
(1)  
VSS_0  
Timer B  
Output  
Compare 2 Input 12  
ADC  
Analog  
PC0/OCMP2_B  
/AIN12  
23 16  
24 17  
8
9
11  
12  
I/O CT  
I/O CT  
X
X
X
X
X
X
X
X
X
X
Port C0  
Port C1  
Timer B  
Output  
Compare 1 Input 13  
ADC  
Analog  
PC1/OCMP1_B  
/AIN13  
PC2 (HS)/  
ICAP2_B  
25 18 10 13  
26 19 11 14  
I/O CT HS  
I/O CT HS  
X
X
X
X
X
X
X
X
Port C2  
Port C3  
Timer B Input Capture 2  
PC3 (HS)/  
ICAP1_B  
Timer B Input Capture 1  
SPI Master  
ICC Data  
In / Slave  
Input  
PC4/MISO/ICC  
DATA  
27 20 12 15  
I/O CT  
X
X
X
X
Port C4  
Out Data  
SPI Master ADC  
Out / Slave Analog  
PC5/MOSI/  
AIN14  
28 21 13 16  
29 22 14 17  
I/O CT  
I/O CT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Port C5  
Port C6  
Port C7  
Port A3  
In Data  
Input 14  
PC6/SCK/  
ICCCLK  
SPI Serial  
Clock  
ICC Clock  
Output  
SPI Slave  
Select  
ADC  
Analog  
30 23 15 18 PC7/SS/AIN15 I/O CT  
(active low) Input 15  
ei  
0
31 24 16 19 PA3 (HS)  
I/O CT HS  
(1)  
32 25  
33 26  
VDD_1  
S
Digital Main Supply Voltage  
Digital Ground Voltage  
Port A4  
(1)  
VSS_1  
S
34 27 17 20 PA4 (HS)  
35 28 PA5 (HS)  
I/O CT HS  
I/O CT HS  
I/O CT HS  
I/O CT HS  
X
X
X
X
X
X
X
X
T
T
X
X
Port A5  
36 29 18 21 PA6 (HS)  
37 30 19 22 PA7 (HS)  
Port A6 (2)  
Port A7 (2)  
Must be tied low. In the flash  
programming mode, this pin acts as  
the programming voltage input VPP  
.
38 31 20 23 VPP /ICCSEL  
39 32 21 24 RESET  
I
See Section 12.10.2 for more details.  
High voltage must not be applied to  
ROM devices.  
I/O CT  
S
Top priority non maskable interrupt.  
Digital Ground Voltage  
(1)  
40 33 22 25 VSS_2  
18/193  
ST72324Bxx  
Pin description  
Alternate Function  
Table 2.  
Pin No.  
Device pin description (continued)  
Level  
Port  
Main  
function  
(after  
Input  
Output  
Pin Name  
reset)  
41 34 23 26 OSC2(3)  
42 35 24 27 OSC1(3)  
O
I
Resonator oscillator inverter output  
External clock input or Resonator  
oscillator inverter input  
(1)  
43 36 25 28 VDD_2  
S
Digital Main Supply Voltage  
44 37 26 29 PE0/TDO  
I/O CT  
I/O CT  
X
X
X
X
X
X
X
X
Port E0  
Port E1  
SCI Transmit Data Out  
SCI Receive Data In  
1
38 27 30 PE1/RDI  
Caution: Negative current  
injection not allowed on  
this pin(4)  
2
39 28 31 PB0  
I/O CT  
X
ei2  
X
X
Port B0  
3
4
40  
41  
PB1  
PB2  
I/O CT  
I/O CT  
X
X
ei2  
ei2  
X
X
X
X
Port B1  
Port B2  
ei  
2
5
42 29 32 PB3  
I/O CT  
X
X
X
Port B3  
1. It is mandatory to connect all available VDD and VREF pins to the supply voltage and all VSS and VSSA pins to ground.  
2. On the chip, each I/O port has eight pads. Pads that are not bonded to external pins are in input pull-up configuration after  
reset. The configuration of these pads must be kept at reset state to avoid added current consumption.  
3. OSC1 and OSC2 pins connect a crystal/ceramic resonator, or an external source to the on-chip oscillator; see Section 1:  
Description and Section 12.6: Clock and timing characteristics for more details.  
4. For details refer to Section 12.9.1 on page 158  
19/193  
 
 
Register and memory map  
ST72324Bxx  
3
Register and memory map  
As shown in Figure 6, the MCU is capable of addressing 64 Kbytes of memories and I/O  
registers.  
The available memory locations consist of 128 bytes of register locations, up to 1024 bytes  
of RAM and up to 32 Kbytes of user program memory. The RAM space includes up to 256  
bytes for the stack from 0100h to 01FFh.  
The highest address bytes contain the user reset and interrupt vectors.  
Caution:  
Never access memory locations marked as ‘Reserved’. Accessing a reserved area can  
have unpredictable effects on the device.  
Figure 6.  
Memory map  
0000h  
0080h  
HW registers  
Short addressing  
RAM (zero page)  
(see Table 3)  
007Fh  
0080h  
00FFh  
0100h  
RAM  
256 bytes stack  
(1024, 512 or 384 bytes)  
01FFh  
0200h  
047Fh  
0480h  
16-bit addressing  
RAM  
Reserved  
027Fh  
or 047Fh  
7FFFh  
8000h  
8000h  
C000h  
Program memory  
(32, 16 or 8 Kbytes)  
32 Kbytes  
16 Kbytes  
FFDFh  
FFE0h  
E000h  
FFFFh  
Interrupt and reset vectors  
8 Kbytes  
(see Table 25)  
FFFFh  
Table 3.  
Address  
Hardware register map  
Block  
Register label  
Register name  
Port A data register  
Port A data direction register  
Port A option register  
Reset status Remarks  
0000h  
0001h  
0002h  
PADR  
00h(2)  
00h  
R/W  
R/W  
R/W  
Port A(1) PADDR  
PAOR  
00h  
0003h  
0004h  
0005h  
PBDR  
Port B(1) PBDDR  
PBOR  
Port B data register  
Port B data direction register  
Port B option register  
00h(2)  
00h  
00h  
R/W  
R/W  
R/W  
0006h  
0007h  
0008h  
PCDR  
PCDDR  
PCOR  
Port C data register  
Port C data direction register  
Port C option register  
00h(2)  
00h  
00h  
R/W  
R/W  
R/W  
Port C  
0009h  
000Ah  
000Bh  
PDADR  
Port D data register  
Port D data direction register  
Port D option register  
00h(2)  
00h  
00h  
R/W  
R/W  
R/W  
Port D(1) PDDDR  
PDOR  
000Ch  
000Dh  
000Eh  
PEDR  
Port E(1) PEDDR  
PEOR  
Port E data register  
Port E data direction register  
Port E option register  
00h(2)  
00h  
00h  
R/W  
R/W(1)  
R/W(1)  
20/193  
 
 
ST72324Bxx  
Register and memory map  
Reset status Remarks  
Table 3.  
Address  
Hardware register map (continued)  
Block  
Register label  
Register name  
000Fh  
0010h  
0011h  
PFDR  
Port F data register  
Port F data direction register  
Port F option register  
00h(2)  
00h  
00h  
R/W  
R/W  
R/W  
Port F(1) PFDDR  
PFOR  
0012h to  
0020h  
Reserved area (15 bytes)  
0021h  
0022h  
0023h  
SPIDR  
SPICR  
SPICSR  
SPI data I/O register  
SPI control register  
SPI control/status register  
xxh  
0xh  
00h  
R/W  
R/W  
R/W  
SPI  
0024h  
0025h  
0026h  
0027h  
ISPR0  
ISPR1  
ISPR2  
ISPR3  
Interrupt software priority register 0  
Interrupt software priority register 1  
Interrupt software priority register 2  
Interrupt software priority register 3  
FFh  
FFh  
FFh  
FFh  
R/W  
R/W  
R/W  
R/W  
ITC  
0028h  
0029h  
002Ah  
002Bh  
EICR  
External interrupt control register  
Flash control/status register  
00h  
00h  
7Fh  
R/W  
R/W  
R/W  
Flash  
FCSR  
Watchdog WDGCR  
Watchdog control register  
SI  
SICSR  
System integrity control/status register  
000x 000xb R/W  
002Ch  
002Dh  
MCCSR  
MCCBCR  
Main clock control/status register  
Main clock controller: beep control register  
00h  
00h  
R/W  
R/W  
MCC  
002Eh to  
0030h  
Reserved area (3 bytes)  
0031h  
0032h  
0033h  
0034h  
0035h  
0036h  
0037h  
0038h  
0039h  
003Ah  
003Bh  
003Ch  
003Dh  
003Eh  
003Fh  
TACR2  
TACR1  
TACSR  
TAIC1HR  
TAIC1LR  
TAOC1HR  
TAOC1LR  
Timer A control register 2  
Timer A control register 1  
Timer A control/status register  
Timer A input capture 1 high register  
Timer A input capture 1 low register  
Timer A output compare 1 high register  
Timer A output compare 1 low register  
Timer A counter high register  
00h  
00h  
xxxx x0xxb  
xxh  
R/W  
R/W  
R/W  
Read only  
Read only  
R/W  
xxh  
80h  
00h  
FFh  
FCh  
FFh  
FCh  
xxh  
xxh  
80h  
R/W  
Timer A TACHR  
TACLR  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
R/W  
Timer A counter low register  
TAACHR  
TAACLR  
TAIC2HR  
TAIC2LR  
TAOC2HR  
TAOC2LR  
Timer A alternate counter high register  
Timer A alternate counter low register  
Timer A input capture 2 high register  
Timer A input capture 2 low register  
Timer A output compare 2 high register  
Timer A output compare 2 low register  
00h  
R/W  
0040h  
Reserved area (1 byte)  
21/193  
Register and memory map  
ST72324Bxx  
Table 3.  
Address  
Hardware register map (continued)  
Block  
Register label  
Register name  
Reset status Remarks  
0041h  
0042h  
0043h  
0044h  
0045h  
0046h  
0047h  
0048h  
0049h  
004Ah  
004Bh  
004Ch  
004Dh  
004Eh  
004Fh  
TBCR2  
TBCR1  
TBCSR  
TBIC1HR  
TBIC1LR  
TBOC1HR  
TBOC1LR  
Timer B control register 2  
Timer B control register 1  
Timer B control/status register  
Timer B input capture 1 high register  
Timer B input capture 1 low register  
Timer B output compare 1 high register  
Timer B output compare 1 low register  
Timer B counter high register  
00h  
00h  
xxxx x0xxb  
xxh  
R/W  
R/W  
R/W  
Read only  
Read only  
R/W  
xxh  
80h  
00h  
FFh  
FCh  
FFh  
FCh  
xxh  
xxh  
80h  
R/W  
Timer B TBCHR  
TBCLR  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
R/W  
Timer B counter low register  
TBACHR  
TBACLR  
TBIC2HR  
TBIC2LR  
TBOC2HR  
TBOC2LR  
Timer B alternate counter high register  
Timer B alternate counter low register  
Timer B input capture 2 high register  
Timer B input capture 2 low register  
Timer B output compare 2 high register  
Timer B output compare 2 low register  
00h  
R/W  
0050h  
0051h  
0052h  
0053h  
0054h  
0055h  
0056h  
0057h  
SCISR  
SCIDR  
SCIBRR  
SCICR1  
SCICR2  
SCI status register  
SCI data register  
SCI baud rate register  
SCI control register 1  
SCI control register 2  
SCI extended receive prescaler register  
Reserved area  
C0h  
xxh  
00h  
Read only  
R/W  
R/W  
x000 0000b R/W  
SCI  
00h  
00h  
---  
R/W  
R/W  
SCIERPR  
SCIETPR  
SCI extended transmit prescaler register  
00h  
R/W  
0058h to  
006Fh  
Reserved area (24 bytes)  
0070h  
0071h  
0072h  
ADCCSR  
ADCDRH  
ADCDRL  
Control/status register  
Data high register  
Data low register  
00h  
00h  
00h  
R/W  
Read only  
Read only  
ADC  
0073h  
007Fh  
Reserved area (13 bytes)  
1. The bits associated with unavailable pins must always keep their reset value.  
2. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the  
I/O pins are returned instead of the DR register contents.  
Legend: x = undefined, R/W = read/write  
22/193  
ST72324Bxx  
Flash program memory  
4
Flash program memory  
4.1  
Introduction  
The ST7 dual voltage High Density Flash (HDFlash) is a non-volatile memory that can be  
electrically erased as a single block or by individual sectors and programmed on a byte-by-  
byte basis using an external V supply.  
PP  
The HDFlash devices can be programmed and erased off-board (plugged in a programming  
tool) or on-board using ICP (in-circuit programming) or IAP (in-application programming).  
The array matrix organization allows each sector to be erased and reprogrammed without  
affecting other sectors.  
4.2  
Main features  
3 Flash programming modes:  
Insertion in a programming tool. In this mode, all sectors including option bytes  
can be programmed or erased.  
ICP (in-circuit programming). In this mode, all sectors including option bytes can  
be programmed or erased without removing the device from the application board.  
IAP (in-application programming). In this mode, all sectors, except Sector 0, can  
be programmed or erased without removing the device from the application board  
and while the application is running.  
ICT (in-circuit testing) for downloading and executing user application test patterns in  
RAM  
Readout protection  
Register Access Security System (RASS) to prevent accidental programming or  
erasing  
4.3  
Structure  
The Flash memory is organized in sectors and can be used for both code and data storage.  
Depending on the overall Flash memory size in the microcontroller device, there are up to  
three user sectors (seeTable 4). Each of these sectors can be erased independently to avoid  
unnecessary erasing of the whole Flash memory when only a partial erasing is required.  
The first two sectors have a fixed size of 4 Kbytes (see Figure 7). They are mapped in the  
upper part of the ST7 addressing space so the reset and interrupt vectors are located in  
Sector 0 (F000h-FFFFh).  
Table 4.  
Sectors available in Flash devices  
Flash size  
Available sectors  
4 Kbytes  
8 Kbytes  
>8 Kbytes  
Sector 0  
Sectors 0, 1  
Sectors 0, 1, 2  
23/193  
 
 
Flash program memory  
ST72324Bxx  
4.3.1  
Readout protection  
Readout protection, when selected, provides a protection against program memory content  
extraction and against write access to Flash memory. Even if no protection can be  
considered as totally unbreakable, the feature provides a very high level of protection for a  
general purpose microcontroller.  
In Flash devices, this protection is removed by reprogramming the option. In this case, the  
entire program memory is first automatically erased.  
Readout protection selection depends on the device type:  
In Flash devices it is enabled and removed through the FMP_R bit in the option byte.  
In ROM devices it is enabled by mask option specified in the option list.  
Figure 7.  
Memory map and sector address  
8K  
16K  
32K  
Flash  
memory size  
7FFFh  
BFFFh  
Sector 2  
8 Kbytes  
4 Kbytes  
4 Kbytes  
24 Kbytes  
DFFFh  
EFFFh  
FFFFh  
Sector 1  
Sector 0  
24/193  
 
ST72324Bxx  
Flash program memory  
4.4  
ICC interface  
ICC needs a minimum of 4 and up to 6 pins to be connected to the programming tool (see  
Figure 8). These pins are:  
RESET: device reset  
: device power supply ground  
V
SS  
ICCCLK: ICC output serial clock pin  
ICCDATA: ICC input/output serial data pin  
ICCSEL/V : programming voltage  
PP  
OSC1 (or OSCIN): main clock input for external source (optional)  
V
: application board power supply (optional, see Figure 8, Note 3)  
DD  
Figure 8.  
Typical ICC interface  
Programming tool  
Mandatory for  
8/16 Kbyte Flash devices  
(see note 4)  
ICC connector  
ICC cable  
Application board  
(See note 3)  
ICC connector  
HE10 connector type  
9
7
5
6
3
1
2
10  
8
4
Application  
reset source  
See note 2  
10 kΩ  
Application  
power supply  
See note 1  
Application  
I/O  
ST7  
1. If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal isolation is  
necessary. As soon as the programming tool is plugged to the board, even if an ICC session is not in  
progress, the ICCCLK and ICCDATA pins are not available for the application. If they are used as inputs by  
the application, isolation such as a serial resistor has to be implemented in case another device forces the  
signal. Refer to the Programming Tool documentation for recommended resistor values.  
2. During the ICC session, the programming tool must control the RESET pin. This can lead to conflicts  
between the programming tool and the application reset circuit if it drives more than 5mA at high level  
(PUSH-pull output or pull-up resistor <1 kΩ). A schottky diode can be used to isolate the application reset  
circuit in this case. When using a classical RC network with R>1kΩ or a reset management IC with open  
drain output and pull-up resistor >1 kΩ, no additional components are needed. In all cases the user must  
ensure that no external reset is generated by the application during the ICC session.  
3. The use of Pin 7 of the ICC connector depends on the programming tool architecture. This pin must be  
connected when using most ST programming tools (it is used to monitor the application power supply).  
Please refer to the programming tool manual.  
4. Pin 9 has to be connected to the OSC1 (OSCIN) pin of the ST7 when the clock is not available in the  
application or if the selected clock option is not programmed in the option byte. ST7 devices with multi-  
oscillator capability need to have OSC2 grounded in this case.  
Caution:  
External clock ICC entry mode is mandatory in ST72F324B 8/16 Kbyte Flash devices. In  
this case pin 9 must be connected to the OSC1 (OSCIN) pin of the ST7 and OSC2 must be  
grounded. 32 Kbyte Flash devices may use external clock or application clock ICC entry  
mode.  
25/193  
 
Flash program memory  
ST72324Bxx  
4.5  
ICP (in-circuit programming)  
To perform ICP the microcontroller must be switched to ICC (in-circuit communication) mode  
by an external controller or programming tool.  
Depending on the ICP code downloaded in RAM, Flash memory programming can be fully  
customized (number of bytes to program, program locations, or selection serial  
communication interface for downloading).  
When using an STMicroelectronics or third-party programming tool that supports ICP and  
the specific microcontroller device, the user needs only to implement the ICP hardware  
interface on the application board (see Figure 8). For more details on the pin locations, refer  
to the device pinout description.  
4.6  
IAP (in-application programming)  
This mode uses a BootLoader program previously stored in Sector 0 by the user (in ICP  
mode or by plugging the device in a programming tool).  
This mode is fully controlled by user software. This allows it to be adapted to the user  
application, (such as user-defined strategy for entering programming mode, choice of  
communications protocol used to fetch the data to be stored). For example, it is possible to  
download code from the SPI, SCI, USB or CAN interface and program it in the Flash. IAP  
mode can be used to program any of the Flash sectors except Sector 0, which is write/erase  
protected to allow recovery in case errors occur during the programming operation.  
4.7  
Related documentation  
For details on Flash programming and ICC protocol, refer to the ST7 Flash Programming  
Reference Manual and to the ST7 ICC Protocol Reference Manual.  
4.7.1  
Flash Control/Status Register (FCSR)  
This register is reserved for use by programming tool software. It controls the Flash  
programming and erasing operations.  
FCSR  
7
Reset value:0000 0000 (00h)  
6
0
5
0
4
0
3
0
2
0
1
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5.  
Flash control/status register address and reset value  
Address (Hex)  
Register label  
7
6
5
4
3
2
1
0
0029h  
FCSR reset value  
0
0
0
0
0
0
0
0
26/193  
ST72324Bxx  
Central processing unit (CPU)  
5
Central processing unit (CPU)  
5.1  
Introduction  
This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-  
bit data manipulation.  
5.2  
Main features  
Enable executing 63 basic instructions  
Fast 8-bit by 8-bit multiply  
17 main addressing modes (with indirect addressing mode)  
Two 8-bit index registers  
16-bit stack pointer  
Low power Halt and Wait modes  
Priority maskable hardware interrupts  
Non-maskable software/hardware interrupts  
5.3  
CPU registers  
The six CPU registers shown in Figure 9 are not present in the memory mapping and are  
accessed by specific instructions.  
Figure 9.  
CPU registers  
7
0
0
0
Accumulator  
Reset value = XXh  
7
X index register  
Y index register  
Reset value = XXh  
7
Reset value = XXh  
PCL  
PCH  
7
8
15  
0
0
Program counter  
Condition code register  
Stack pointer  
Reset value = reset vector @ FFFEh-FFFFh  
7
1 1 I1 H I0 N Z C  
Reset value =1 1 1 X 1 X X X  
15  
8 7  
0
Reset value = stack higher address  
X = undefined value  
27/193  
 
Central processing unit (CPU)  
ST72324Bxx  
5.3.1  
5.3.2  
Accumulator (A)  
The Accumulator is an 8-bit general purpose register used to hold operands and the results  
of the arithmetic and logic calculations and to manipulate data.  
Index registers (X and Y)  
These 8-bit registers are used to create effective addresses or as temporary storage areas  
for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to  
indicate that the following instruction refers to the Y register.)  
The Y register is not affected by the interrupt automatic procedures.  
5.3.3  
5.3.4  
Program counter (PC)  
The program counter is a 16-bit register containing the address of the next instruction to be  
executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is  
the LSB) and PCH (Program Counter High which is the MSB).  
Condition Code register (CC)  
The 8-bit Condition Code register contains the interrupt masks and four flags representative  
of the result of the instruction just executed. This register can also be handled by the PUSH  
and POP instructions. These bits can be individually tested and/or controlled by specific  
instructions.  
CC  
Reset value: 111x1xxx  
7
1
6
1
5
I1  
4
H
3
I0  
2
N
1
Z
0
C
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 6.  
Arithmetic management bits  
BIt Name  
Function  
Half carry  
This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU  
during an ADD or ADC instructions. It is reset by hardware during the same  
instructions.  
0: No half carry has occurred.  
1: A half carry has occurred.  
4
2
H
N
This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD  
arithmetic subroutines.  
Negative  
This bit is set and cleared by hardware. It is representative of the result sign of the last  
arithmetic, logical or data manipulation. It is a copy of the result 7th bit.  
0: The result of the last operation is positive or null.  
1: The result of the last operation is negative (that is, the most significant bit is a logic  
1.  
This bit is accessed by the JRMI and JRPL instructions.  
28/193  
 
ST72324Bxx  
Central processing unit (CPU)  
Table 6.  
Arithmetic management bits (continued)  
Function  
BIt Name  
Zero (Arithmetic Management bit)  
This bit is set and cleared by hardware. This bit indicates that the result of the last  
arithmetic, logical or data manipulation is zero.  
0: The result of the last operation is different from zero.  
1: The result of the last operation is zero.  
1
0
Z
This bit is accessed by the JREQ and JRNE test instructions.  
Carry/borrow  
This bit is set and cleared by hardware and software. It indicates an overflow or an  
underflow has occurred during the last arithmetic operation.  
0: No overflow or underflow has occurred.  
C
1: An overflow or underflow has occurred.  
This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC  
instructions. It is also affected by the ‘bit test and branch’, shift and rotate instructions.  
Table 7.  
Software interrupt bits  
Function  
BIt Name  
Software Interrupt Priority 1  
5
3
I1  
I0  
The combination of the I1 and I0 bits determines the current interrupt software priority  
(see Table 8).  
Software Interrupt Priority 0  
The combination of the I1 and I0 bits determines the current interrupt software priority  
(see Table 8).  
Table 8.  
Interrupt software priority selection  
Interrupt software priority  
Level  
I1  
I0  
Level 0 (main)  
Level 1  
1
0
0
1
0
1
0
1
Low  
Level 2  
High  
Level 3 (= interrupt disable)  
These two bits are set/cleared by hardware when entering in interrupt. The loaded value is  
given by the corresponding bits in the interrupt software priority registers (ISPRx). They can  
be also set/cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP  
instructions.  
See Section 7: Interrupts on page 41 for more details.  
29/193  
 
Central processing unit (CPU)  
ST72324Bxx  
5.3.5  
Stack Pointer register (SP)  
SP  
15  
Reset value: 01 FFh  
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
1
7
6
5
4
3
2
1
0
0
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0  
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
The Stack Pointer is a 16-bit register which is always pointing to the next free location in the  
stack. It is then decremented after data has been pushed onto the stack and incremented  
before data is popped from the stack (see Figure 10).  
Since the stack is 256 bytes deep, the 8 most significant bits are forced by hardware.  
Following an MCU reset, or after a Reset Stack Pointer instruction (RSP), the Stack Pointer  
contains its reset value (the SP7 to SP0 bits are set) which is the stack higher address.  
The least significant byte of the Stack Pointer (called S) can be directly accessed by an LD  
instruction.  
Note:  
When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit,  
without indicating the stack overflow. The previously stored information is then overwritten  
and therefore lost. The stack also wraps in case of an underflow.  
The stack is used to save the return address during a subroutine call and the CPU context  
during an interrupt. The user may also directly manipulate the stack by means of the PUSH  
and POP instructions. In the case of an interrupt, the PCL is stored at the first location  
pointed to by the SP. Then the other registers are stored in the next locations as shown in  
Figure 10.  
When an interrupt is received, the SP is decremented and the context is pushed on the  
stack.  
On return from interrupt, the SP is incremented and the context is popped from the  
stack.  
A subroutine call occupies two locations and an interrupt five locations in the stack area.  
Figure 10. Stack manipulation example  
Call  
subroutine  
RET  
or RSP  
Push Y  
Pop Y  
IRET  
Interrupt  
event  
@ 0100h  
SP  
SP  
SP  
Y
CC  
A
CC  
A
CC  
A
X
X
X
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
SP  
SP  
PCH  
PCL  
PCH  
PCL  
SP  
@ 01FFh  
Stack Higher Address = 01FFh  
0100h  
Stack Lower Address =  
30/193  
 
ST72324Bxx  
Supply, reset and clock management  
6
Supply, reset and clock management  
6.1  
Introduction  
The device includes a range of utility features for securing the application in critical  
situations (for example in case of a power brown-out), and reducing the number of external  
components. An overview is shown in Figure 12.  
For more details, refer to dedicated parametric section.  
Main features  
Optional Phase Locked Loop (PLL) for multiplying the frequency by 2 (not to be used  
with internal RC oscillator in order to respect the max. operating frequency)  
Multi-Oscillator clock management (MO)  
5 crystal/ceramic resonator oscillators  
1 Internal RC oscillator  
Reset Sequence Manager (RSM)  
System Integrity management (SI)  
Main supply low voltage detection (LVD)  
Auxiliary voltage detector (AVD) with interrupt capability for monitoring the main  
supply  
6.2  
PLL (phase locked loop)  
If the clock frequency input to the PLL is in the range 2 to 4 MHz, the PLL can be used to  
multiply the frequency by two to obtain an f  
of 4 to 8 MHz. The PLL is enabled by option  
OSC2  
byte. If the PLL is disabled, then f  
= f  
/2.  
OSC2  
OSC  
Caution:  
The PLL is not recommended for applications where timing accuracy is required.  
Furthermore, it must not be used with the internal RC oscillator.  
Figure 11. PLL block diagram  
PLL x 2  
/ 2  
0
fOSC  
fOSC2  
1
PLL option bit  
31/193  
Supply, reset and clock management  
ST72324Bxx  
Figure 12. Clock, reset and supply block diagram  
Main Clock  
Multi-  
oscillator  
(MO)  
fOSC  
fOSC2  
fCPU  
OSC2  
OSC1  
PLL  
(option)  
Controller  
with Real-time  
Clock (MCC/RTC)  
System integrity management  
AVD interrupt request  
Reset sequence  
manager  
Watchdog  
timer (WDG)  
RESET  
SICSR  
AVD AVD  
LVD  
RF  
WDG  
RF  
(RSM)  
0
0
0
0
IE  
F
Low voltage  
detector  
(LVD)  
VSS  
VDD  
Auxiliary voltage  
detector  
(AVD)  
6.3  
Multi-oscillator (MO)  
The main clock of the ST7 can be generated by three different source types coming from the  
multi-oscillator block:  
an external source  
4 crystal or ceramic resonator oscillators  
an internal high frequency RC oscillator  
Each oscillator is optimized for a given frequency range in terms of consumption and is  
selectable through the option byte. The associated hardware configurations are shown in  
Table 9. Refer to the electrical characteristics section for more details.  
Caution:  
The OSC1 and/or OSC2 pins must not be left unconnected. For the purposes of Failure  
Mode and Effect Analysis, it should be noted that if the OSC1 and/or OSC2 pins are left  
unconnected, the ST7 main oscillator may start and, in this configuration, could generate an  
f
clock frequency in excess of the allowed maximum (> 16 MHz.), putting the ST7 in an  
OSC  
unsafe/undefined state. The product behavior must therefore be considered undefined when  
the OSC pins are left unconnected.  
6.3.1  
External clock source  
In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle  
has to drive the OSC1 pin while the OSC2 pin is tied to ground.  
32/193  
 
ST72324Bxx  
Supply, reset and clock management  
6.3.2  
Crystal/ceramic oscillators  
This family of oscillators has the advantage of producing a very accurate rate on the main  
clock of the ST7. The selection within a list of four oscillators with different frequency ranges  
has to be done by option byte in order to reduce consumption (refer to Section 14.1 on page  
179 for more details on the frequency ranges). In this mode of the multi-oscillator, the  
resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and start-up stabilization time. The loading  
capacitance values must be adjusted according to the selected oscillator.  
These oscillators are not stopped during the reset phase to avoid losing time in the oscillator  
start-up phase.  
6.3.3  
Internal RC oscillator  
This oscillator allows a low cost solution for the main clock of the ST7 using only an internal  
resistor and capacitor. Internal RC oscillator mode has the drawback of a lower frequency  
accuracy and should not be used in applications that require accurate timing.  
In this mode, the two oscillator pins have to be tied to ground.  
In order not to exceed the maximum operating frequency, the internal RC oscillator must not  
be used with the PLL.  
Table 9.  
ST7 clock sources  
Hardware configuration  
ST7  
OSC1  
OSC2  
External  
source  
ST7  
OSC2  
OSC1  
CL1  
CL2  
Load  
capacitors  
ST7  
OSC1  
OSC2  
33/193  
Supply, reset and clock management  
ST72324Bxx  
6.4  
Reset sequence manager (RSM)  
The reset sequence manager includes three reset sources as shown in Figure 14:  
External reset source pulse  
Internal LVD reset  
Internal Watchdog reset  
These sources act on the RESET pin and it is always kept low during the delay phase.  
The reset service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory  
map.  
The basic reset sequence consists of three phases as shown in Figure 13:  
Active Phase depending on the reset source  
256 or 4096 CPU clock cycle delay (selected by option byte)  
Reset vector fetch  
Caution:  
When the ST7 is unprogrammed or fully erased, the Flash is blank and the RESET vector is  
not programmed. For this reason, it is recommended to keep the RESET pin in low state  
until programming mode is entered, in order to avoid unwanted behavior.  
The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilize and ensures that  
recovery has taken place from the reset state. The shorter or longer clock cycle delay  
should be selected by option byte to correspond to the stabilization time of the external  
oscillator used in the application.  
The reset vector fetch phase duration is two clock cycles.  
Figure 13. Reset sequence phases  
RESET  
INTERNAL RESET  
256 or 4096 CLOCK CYCLES  
FETCH  
VECTOR  
ACTIVE PHASE  
6.4.1  
Asynchronous external RESET pin  
The RESET pin is both an input and an open-drain output with integrated R weak pull-up  
ON  
resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It  
can be pulled low by external circuitry to reset the device. See the Electrical characteristics  
section for more details.  
A reset signal originating from an external source must have a duration of at least t  
h(RSTL)in  
in order to be recognized (see Figure 15). This detection is asynchronous and therefore the  
MCU can enter reset state even in Halt mode.  
34/193  
 
ST72324Bxx  
Figure 14. Reset block diagram  
Supply, reset and clock management  
V
DD  
R
ON  
Internal  
reset  
Filter  
RESET  
Watchdog reset  
LVD reset  
Pulse  
generator  
The RESET pin is an asynchronous signal which plays a major role in EMS performance. In  
a noisy environment, it is recommended to follow the guidelines mentioned in the electrical  
characteristics section.  
External power-on reset  
If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must  
ensure by means of an external reset circuit that the reset signal is held low until V is over  
DD  
the minimum level specified for the selected f  
frequency.  
OSC  
A proper reset signal for a slow rising V supply can generally be provided by an external  
DD  
RC network connected to the RESET pin.  
Internal LVD reset  
Two different reset sequences caused by the internal LVD circuitry can be distinguished:  
Power-On reset  
Voltage Drop reset  
The device RESET pin acts as an output that is pulled low when V < V (rising edge) or  
DD  
IT+  
V
< V (falling edge) as shown in Figure 15.  
DD  
IT-  
The LVD filters spikes on V larger than t  
to avoid parasitic resets.  
g(VDD)  
DD  
Internal Watchdog reset  
The reset sequence generated by a internal Watchdog counter overflow is shown in  
Figure 15.  
Starting from the Watchdog counter underflow, the device RESET pin acts as an output that  
is pulled low during at least t  
.
w(RSTL)out  
35/193  
Supply, reset and clock management  
Figure 15. RESET sequences  
ST72324Bxx  
V
DD  
V
V
IT+(LVD)  
IT-(LVD)  
LVD  
External  
reset  
Watchdog  
reset  
reset  
Run  
Run  
Run  
Run  
Active  
phase  
Active  
phase  
Active phase  
t
t
w(RSTL)out  
h(RSTL)in  
External  
RESET  
source  
RESET pin  
Watchdog  
reset  
Watchdog underflow  
Internal reset (256 or 4096 T  
Vector fetch  
)
CPU  
6.5  
System integrity management (SI)  
The system integrity management block contains the LVD and auxiliary voltage detector  
(AVD) functions. It is managed by the SICSR register.  
6.5.1  
LVD (low voltage detector)  
The LVD function generates a static reset when the V supply voltage is below a V  
DD  
IT-  
reference value. This means that it secures the power-up as well as the power-down  
keeping the ST7 in reset.  
The V reference value for a voltage drop is lower than the V reference value for power-  
IT-  
IT+  
on in order to avoid a parasitic reset when the MCU starts running and sinks current on the  
supply (hysteresis).  
The LVD reset circuitry generates a reset when V is below:  
DD  
V
V
when V is rising  
DD  
IT+  
IT-  
when V is falling  
DD  
The LVD function is illustrated in Figure 15.  
The voltage threshold can be configured by option byte to be low, medium or high.  
36/193  
 
ST72324Bxx  
Supply, reset and clock management  
Provided the minimum V value (guaranteed for the oscillator frequency) is above V , the  
DD  
IT-  
MCU can only be in two modes:  
under full software control  
in static safe reset  
In these conditions, secure operation is always ensured for the application without the need  
for external reset hardware.  
During an LVD reset, the RESET pin is held low, thus permitting the MCU to reset other  
devices.  
Note:  
1
2
The LVD allows the device to be used without any external reset circuitry.  
If the medium or low thresholds are selected, the detection may occur outside the specified  
operating voltage range. Below 3.8 V, device operation is not guaranteed.  
3
4
The LVD is an optional function which can be selected by option byte.  
It is recommended to make sure that the V supply voltage rises monotonously when the  
DD  
device is exiting from reset, to ensure the application functions properly.  
Figure 16. Low voltage detector vs reset  
V
DD  
V
hys  
V
V
IT+  
IT-  
RESET  
6.5.2  
AVD (auxiliary voltage detector)  
The AVD is based on an analog comparison between a V  
and V  
reference  
IT+(AVD)  
IT-(AVD)  
value and the V main supply. The V reference value for falling voltage is lower than the  
DD  
IT-  
V
reference value for rising voltage in order to avoid parasitic detection (hysteresis).  
IT+  
The output of the AVD comparator is directly readable by the application software through a  
real-time status bit (AVDF) in the SICSR register. This bit is read only.  
Caution:  
The AVD function is active only if the LVD is enabled through the option byte (see  
Section 14.1 on page 179).  
Monitoring the VDD main supply  
The AVD voltage threshold value is relative to the selected LVD threshold configured by  
option byte (see Section 14.1 on page 179).  
If the AVD interrupt is enabled, an interrupt is generated when the voltage crosses the  
V
or V  
threshold (AVDF bit toggles).  
IT+(AVD)  
IT-(AVD)  
In the case of a drop in voltage, the AVD interrupt acts as an early warning, allowing  
software to shut down safely before the LVD resets the microcontroller. See Figure 17.  
37/193  
 
Supply, reset and clock management  
ST72324Bxx  
The interrupt on the rising edge is used to inform the application that the V warning state  
DD  
is over.  
If the voltage rise time t is less than 256 or 4096 CPU cycles (depending on the reset delay  
rv  
selected by option byte), no AVD interrupt will be generated when V  
is reached.  
IT+(AVD)  
If t is greater than 256 or 4096 cycles then:  
rv  
If the AVD interrupt is enabled before the V  
interrupts will be received: the first when the AVDIE bit is set, and the second when the  
threshold is reached.  
threshold is reached, then 2 AVD  
IT+(AVD)  
If the AVD interrupt is enabled after the V  
AVD interrupt will occur.  
threshold is reached then only one  
IT+(AVD)  
Figure 17. Using the AVD to monitor V  
DD  
V
DD  
Early warning interrupt  
(power has dropped, MCU not  
not yet in reset)  
V
hyst  
V
IT+(AVD)  
V
IT-(AVD)  
V
V
IT+(LVD)  
t
Voltage rise time  
rv  
IT-(LVD)  
1
1
AVDF bit  
0
Reset value  
0
AVD Interrupt  
Request  
if AVDIE bit = 1  
Interrupt process  
Interrupt process  
LVD RESET  
6.5.3  
6.5.4  
Low power modes  
Table 10. Effect of low power modes on SI  
Mode  
Description  
Wait  
Halt  
No effect on SI. AVD interrupt causes the device to exit from Wait mode.  
The CRSR register is frozen.  
Interrupts  
The AVD interrupt event generates an interrupt if the AVDIE bit is set and the interrupt mask  
in the CC register is reset (RIM instruction).  
M
Table 11. AVD interrupt control/wakeup capability  
Interrupt event  
Event flag  
Enable control bit Exit from Wait  
AVDIE Yes  
Exit from Halt  
AVD event  
AVDF  
No  
38/193  
 
ST72324Bxx  
Supply, reset and clock management  
6.6  
SI registers  
6.6.1  
System integrity (SI) control/status register (SICSR)  
SICSR  
7
Reset value: 000x 000x (00h)  
6
5
4
3
2
1
0
Res  
-
AVDIE  
AVDF  
LVDRF  
Reserved  
WDGRF  
R/W  
RO  
R/W  
-
R/W  
Table 12. SICSR register description  
Bit Name  
Function  
7
-
Reserved, must be kept cleared  
Voltage detector interrupt enable  
This bit is set and cleared by software. It enables an interrupt to be generated  
when the AVDF flag changes (toggles). The pending interrupt information is  
automatically cleared when software enters the AVD interrupt routine  
0: AVD interrupt disabled  
6
AVDIE  
1: AVD interrupt enabled  
Voltage detector flag  
This read-only bit is set and cleared by hardware. If the AVDIE bit is set, an  
interrupt request is generated when the AVDF bit changes value. Refer to  
Figure 17 and to Section 6.5.2: AVD (auxiliary voltage detector) for additional  
details.  
5
AVDF  
0: VDD over VIT+(AVD) threshold  
1: VDD under VIT-(AVD) threshold  
LVD Reset flag  
This bit indicates that the last reset was generated by the LVD block. It is set by  
hardware (LVD reset) and cleared by software (writing zero). See WDGRF flag  
description for more details. When the LVD is disabled by option byte, the LVDRF  
bit value is undefined.  
4
3:1  
0
LVDRF  
-
Reserved, must be kept cleared  
Watchdog Reset flag  
This bit indicates that the last reset was generated by the Watchdog peripheral. It is  
set by hardware (watchdog reset) and cleared by software (writing zero) or an LVD  
reset (to ensure a stable cleared state of the WDGRF flag when CPU starts).  
Combined with the LVDRF information, the flag description is given in Table 13.  
WDGRF  
Table 13. Reset source flags  
Reset sources  
LVDRF  
WDGRF  
External RESET pin  
Watchdog  
0
0
1
0
1
X
LVD  
39/193  
 
Supply, reset and clock management  
Application notes  
ST72324Bxx  
The LVDRF flag is not cleared when another reset type occurs (external or watchdog); the  
LVDRF flag remains set to keep trace of the original failure. In this case, a watchdog reset  
can be detected by software while an external reset cannot.  
Caution:  
When the LVD is not activated with the associated option byte, the WDGRF flag can not be  
used in the application.  
40/193  
ST72324Bxx  
Interrupts  
7
Interrupts  
7.1  
Introduction  
The ST7 enhanced interrupt management provides the following features:  
Hardware interrupts  
Software interrupt (TRAP)  
Nested or concurrent interrupt management with flexible interrupt priority and level  
management:  
up to 4 software programmable nesting levels  
up to 16 interrupt vectors fixed by hardware  
2 non-maskable events: reset, TRAP  
This interrupt management is based on:  
Bit 5 and bit 3 of the CPU CC register (I1:0)  
Interrupt software priority registers (ISPRx)  
Fixed interrupt vector addresses located at the high addresses of the memory map  
(FFE0h to FFFFh) sorted by hardware priority order  
This enhanced interrupt controller guarantees full upward compatibility with the standard  
(not nested) ST7 interrupt controller.  
7.2  
Masking and processing flow  
The interrupt masking is managed by the I1 and I0 bits of the CC register and the ISPRx  
registers which give the interrupt software priority level of each interrupt vector (see  
Table 14). The processing flow is shown in Figure 18.  
When an interrupt request has to be serviced:  
Normal processing is suspended at the end of the current instruction execution.  
The PC, X, A and CC registers are saved onto the stack.  
I1 and I0 bits of CC register are set according to the corresponding values in the ISPRx  
registers of the serviced interrupt vector.  
The PC is then loaded with the interrupt vector of the interrupt to service and the first  
instruction of the interrupt service routine is fetched (refer to Table 25: Interrupt  
mapping for vector addresses).  
The interrupt service routine should end with the IRET instruction which causes the  
contents of the saved registers to be recovered from the stack.  
Note:  
As a consequence of the IRET instruction, the I1 and I0 bits will be restored from the stack  
and the program in the previous level will resume.  
41/193  
 
Interrupts  
ST72324Bxx  
I0  
Table 14. Interrupt software priority levels  
Interrupt software priority  
Level  
I1  
Level 0 (main)  
Level 1  
Low  
1
0
0
1
0
1
0
1
Level 2  
Level 3 (= interrupt disable)  
High  
Figure 18. Interrupt processing flowchart  
Y
Y
Pending  
Interrupt  
Reset  
TRAP  
Interrupt has the same or a  
N
N
lower software priority  
than current one  
I1:0  
Fetch next  
Instruction  
The interrupt  
stays pending  
Y
“IRET”  
N
RESTORE PC, X, A, CC  
from stack  
Execute  
instruction  
Stack PC, X, A, CC  
load I1:0 from interrupt SW reg.  
load PC from interrupt vector  
7.2.1  
Servicing pending interrupts  
As several interrupts can be pending at the same time, the interrupt to be taken into account  
is determined by the following two-step process:  
the highest software priority interrupt is serviced,  
if several interrupts have the same software priority then the interrupt with the highest  
hardware priority is serviced first.  
Figure 19 describes this decision process.  
Figure 19. Priority decision process flowchart  
PENDING  
INTERRUPTS  
Different  
Same  
SOFTWARE  
PRIORITY  
HIGHEST SOFTWARE  
PRIORITY SERVICED  
HIGHEST HARDWARE  
PRIORITY SERVICED  
42/193  
 
 
ST72324Bxx  
Interrupts  
When an interrupt request is not serviced immediately, it is latched and then processed  
when its software priority combined with the hardware priority becomes the highest one.  
Note:  
1
2
The hardware priority is exclusive while the software one is not. This allows the previous  
process to succeed with only one interrupt.  
Reset and TRAP can be considered as having the highest software priority in the decision  
process.  
7.2.2  
7.2.3  
Different interrupt vector sources  
Two interrupt source types are managed by the ST7 interrupt controller: the non-maskable  
type (reset, TRAP) and the maskable type (external or from internal peripherals).  
Non-maskable sources  
These sources are processed regardless of the state of the I1 and I0 bits of the CC register  
(see Figure 18). After stacking the PC, X, A and CC registers (except for reset), the  
corresponding vector is loaded in the PC register and the I1 and I0 bits of the CC are set to  
disable interrupts (level 3). These sources allow the processor to exit Halt mode.  
TRAP (non-maskable software interrupt)  
This software interrupt is serviced when the TRAP instruction is executed. It will be serviced  
according to the flowchart in Figure 18.  
Reset  
The reset source has the highest priority in the ST7. This means that the first current routine  
has the highest software priority (level 3) and the highest hardware priority.  
See the reset chapter for more details.  
7.2.4  
Maskable sources  
Maskable interrupt vector sources can be serviced if the corresponding interrupt is enabled  
and if its own interrupt software priority (in ISPRx registers) is higher than the one currently  
being serviced (I1 and I0 in CC register). If any of these two conditions is false, the interrupt  
is latched and thus remains pending.  
External interrupts  
External interrupts allow the processor to Exit from Halt low power mode. External interrupt  
sensitivity is software selectable through the External Interrupt Control register (EICR).  
External interrupt triggered on edge will be latched and the interrupt request automatically  
cleared upon entering the interrupt service routine.  
If several input pins of a group connected to the same interrupt line are selected  
simultaneously, these will be logically ORed.  
Peripheral interrupts  
Usually the peripheral interrupts cause the MCU to Exit from Halt mode except those  
mentioned in Table 25: Interrupt mapping. A peripheral interrupt occurs when a specific flag  
is set in the peripheral status registers and if the corresponding enable bit is set in the  
43/193  
Interrupts  
ST72324Bxx  
peripheral control register. The general sequence for clearing an interrupt is based on an  
access to the status register followed by a read or write to an associated register.  
Note:  
The clearing sequence resets the internal latch. A pending interrupt (that is, waiting to be  
serviced) is therefore lost if the clear sequence is executed.  
7.3  
Interrupts and low power modes  
All interrupts allow the processor to exit the Wait low power mode. On the contrary, only  
external and other specified interrupts allow the processor to exit from the Halt modes (see  
column Exit from Halt in Table 25: Interrupt mapping). When several pending interrupts are  
present while exiting Halt mode, the first one serviced can only be an interrupt with Exit from  
Halt mode capability and it is selected through the same decision process shown in  
Figure 19.  
Note:  
If an interrupt, that is not able to exit from Halt mode, is pending with the highest priority  
when exiting Halt mode, this interrupt is serviced after the first one serviced.  
7.4  
Concurrent and nested management  
Figure 20 and Figure 21 show two different interrupt management modes. The first is called  
concurrent mode and does not allow an interrupt to be interrupted, unlike the nested mode  
in Figure 21. The interrupt hardware priority is given in order from the lowest to the highest  
as follows: MAIN, IT4, IT3, IT2, IT1, IT0. Software priority is given for each interrupt.  
Warning: A stack overflow may occur without notifying the software of  
the failure.  
Figure 20. Concurrent interrupt management  
Software  
priority  
I1  
I0  
level  
TRAP  
3
1
1
1
1
1
1
1
1
1
1
1
1
IT0  
3
IT1  
IT1  
3
IT2  
3
IT3  
3
RIM  
IT4  
3
Main  
Main  
3/0  
10  
11/10  
44/193  
 
ST72324Bxx  
Interrupts  
Figure 21. Nested interrupt management  
Software  
priority  
level  
I1  
I0  
TRAP  
3
1
1
0
0
1
1
1
1
0
1
1
1
IT0  
3
IT1  
IT1  
2
IT2  
IT2  
1
IT3  
3
RIM  
IT4  
IT4  
3
Main  
Main  
3/0  
11 / 10  
10  
7.5  
Interrupt registers  
7.5.1  
CPU CC register interrupt bits  
CPU CC  
Reset value: 111x 1010(xAh)  
7
1
6
1
5
4
3
2
1
Z
0
I1  
H
I0  
R/W  
N
C
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 15. CPU CC register interrupt bits description  
Bit Name Function  
5
3
I1  
I0  
Software Interrupt Priority 1  
Software Interrupt Priority 0  
Table 16. Interrupt software priority levels  
Interrupt software priority  
Level  
I1  
I0  
Level 0 (main)  
Low  
1
0
0
1
0
1
0
1
Level 1  
Level 2  
Level 3 (= interrupt disable)(1)  
High  
1. TRAP and RESET events can interrupt a level 3 program.  
These two bits indicate the current interrupt software priority (see Table 16) and are  
set/cleared by hardware when entering in interrupt. The loaded value is given by the  
corresponding bits in the interrupt software priority registers (ISPRx).  
They can be also set/cleared by software with the RIM, SIM, HALT, WFI, IRET and  
PUSH/POP instructions (see Table 18: Dedicated interrupt instruction set).  
45/193  
 
Interrupts  
ST72324Bxx  
7.5.2  
Interrupt software priority registers (ISPRx)  
ISPRx  
Reset value: 1111 1111 (FFh)  
7
6
5
4
3
2
1
0
ISPR0  
ISPR1  
ISPR2  
I1_3  
I0_3  
I1_2  
I0_2  
I1_1  
I0_1  
I1_0  
I0_0  
I1_7  
I1_11  
R/W  
1
I0_7  
I0_11  
R/W  
1
I1_6  
I1_10  
R/W  
1
I0_6  
I0_10  
R/W  
1
I1_5  
I1_9  
R/W  
I1_13  
R/W  
I0_5  
I0_9  
R/W  
I0_13  
R/W  
I1_4  
I1_8  
R/W  
I1_12  
R/W  
I0_4  
I0_8  
R/W  
I0_12  
R/W  
ISPR3  
RO  
RO  
RO  
RO  
These four registers contain the interrupt software priority of each interrupt vector.  
Each interrupt vector (except reset and TRAP) has corresponding bits in these  
registers where its own software priority is stored. This correspondence is shown in the  
following Table 17.  
Table 17. ISPRx interrupt vector correspondence  
Vector address  
ISPRx bits  
FFFBh-FFFAh  
FFF9h-FFF8h  
...  
I1_0 and I0_0 bits  
I1_1 and I0_1 bits  
...  
FFE1h-FFE0h  
I1_13 and I0_13 bits  
Each I1_x and I0_x bit value in the ISPRx registers has the same meaning as the I1  
and I0 bits in the CC register.  
Level 0 cannot be written (I1_x = 1, I0_x = 0). In this case, the previously stored value  
is kept (for example, previous value = CFh, write = 64h, result = 44h).  
The reset, and TRAP vectors have no software priorities. When one is serviced, the I1 and  
I0 bits of the CC register are both set.  
Caution:  
If the I1_x and I0_x bits are modified while the interrupt x is executed the following behavior  
has to be considered: If the interrupt x is still pending (new interrupt or flag not cleared) and  
the new software priority is higher than the previous one, the interrupt x is re-entered.  
Otherwise, the software priority stays unchanged up to the next interrupt request (after the  
IRET of the interrupt x).  
(1)  
Table 18. Dedicated interrupt instruction set  
Instruction  
New description  
Function/example  
I1  
H
I0  
N
Z
C
HALT  
IRET  
JRM  
Entering Halt mode  
Interrupt routine return  
Jump if I1:0=11 (level 3)  
Jump if I1:0<>11  
1
0
POP CC, A, X, PC  
I1:0=11 ?  
I1  
H
I0  
N
Z
C
JRNM  
I1:0<>11 ?  
46/193  
 
ST72324Bxx  
Table 18. Dedicated interrupt instruction set (continued)  
Interrupts  
(1)  
Instruction  
New description  
Function/example  
I1  
H
I0  
N
Z
C
POP CC  
RIM  
POP CC from the Stack  
Mem => CC  
I1  
1
1
1
1
H
I0  
0
N
Z
C
Enable interrupt (level 0 set) Load 10 in I1:0 of CC  
Disable interrupt (level 3 set) Load 11 in I1:0 of CC  
SIM  
1
TRAP  
WFI  
Software TRAP  
Wait for interrupt  
Software NMI  
1
0
1. During the execution of an interrupt routine, the HALT, POP CC, RIM, SIM and WFI instructions change  
the current software priority up to the next IRET instruction or one of the previously mentioned instructions.  
47/193  
Interrupts  
ST72324Bxx  
7.6  
External interrupts  
7.6.1  
I/O port interrupt sensitivity  
The external interrupt sensitivity is controlled by the IPA, IPB and ISxx bits of the EICR  
register (Figure 22). This control allows up to four fully independent external interrupt source  
sensitivities.  
Each external interrupt source can be generated on four (or five) different events on the pin:  
Falling edge  
Rising edge  
Falling and rising edge  
Falling edge and low level  
Rising edge and high level (only for ei0 and ei2)  
To guarantee correct functionality, the sensitivity bits in the EICR register can be modified  
only when the I1 and I0 bits of the CC register are both set to 1 (level 3). This means that  
interrupts must be disabled before changing sensitivity.  
The pending interrupts are cleared by writing a different value in the ISx[1:0], IPA or IPB bits  
of the EICR.  
Figure 22. External interrupt control bits  
EICR  
Port A3 interrupt  
IS20 IS21  
PAOR.3  
PADDR.3  
ei0 interrupt source  
Sensitivity  
control  
PA3  
IPA BIT  
EICR  
Port F [2:0] interrupts  
IS20 IS21  
PFOR.2  
PFDDR.2  
PF2  
PF1  
PF0  
Sensitivity  
control  
ei1 interrupt source  
PF2  
EICR  
Port B [3:0] interrupts  
IS10 IS11  
PBOR.3  
PBDDR.3  
PB3  
PB2  
PB1  
PB0  
Sensitivity  
control  
PB3  
ei2 interrupt source  
IPB BIT  
EICR  
Port B4 interrupt  
IS10 IS11  
PBOR.4  
PBDDR.4  
ei3 interrupt source  
Sensitivity  
control  
PB4  
48/193  
 
ST72324Bxx  
Interrupts  
7.6.2  
External interrupt control register (EICR)  
EICR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
IS11  
IS10  
IPB  
IS21  
IS20  
IPA  
Reserved  
-
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 19. EICR register description  
Bit Name  
Function  
ei2 and ei3 sensitivity  
The interrupt sensitivity, defined using the IS1[1:0] bits, is applied to the following  
external interrupts:  
- ei2 for port B [3:0] (see Table 20)  
7:6 IS1[1:0]  
- ei3 for port B4 (see Table 21)  
Bits 7 and 6 can only be written when I1 and I0 of the CC register are both set to 1  
(level 3).  
Interrupt Polarity (for port B)  
This bit is used to invert the sensitivity of port B [3:0] external interrupts. It can be  
set and cleared by software only when I1 and I0 of the CC register are both set to 1  
(level 3).  
5
IPB  
0: No sensitivity inversion  
1: Sensitivity inversion  
ei0 and ei1 sensitivity  
The interrupt sensitivity, defined using the IS2[1:0] bits, is applied to the following  
external interrupts:  
4:3 IS2[1:0]  
- ei0 for port A[3:0] (see Table 22)  
- ei1 for port F[2:0] (see Table 23)  
Bits 4 and 3 can only be written when I1 and I0 of the CC register are both set to 1  
(level 3).  
Interrupt Polarity (for port A)  
This bit is used to invert the sensitivity of port A [3:0] external interrupts. It can be  
set and cleared by software only when I1 and I0 of the CC register are both set to 1  
(level 3).  
0: No sensitivity inversion.  
1: Sensitivity inversion.  
2
IPA  
-
1:0  
Reserved, must always be kept cleared  
Table 20. Interrupt sensitivity - ei2  
External interrupt sensitivity  
IS11  
IS10  
IPB bit = 0  
IPB bit = 1  
0
0
1
1
0
1
0
1
Falling edge and low level  
Rising edge only  
Rising edge and high level  
Falling edge only  
Falling edge only  
Rising edge only  
Rising and falling edge  
49/193  
 
Interrupts  
ST72324Bxx  
Table 21. Interrupt sensitivity - ei3  
IS11  
IS10  
External interrupt sensitivity  
0
0
1
1
0
1
0
1
Falling edge and low level  
Rising edge only  
Falling edge only  
Rising and falling edge  
Table 22. Interrupt sensitivity - ei0  
External interrupt sensitivity  
IS21  
IS20  
IPA bit = 0  
IPA bit = 1  
0
0
1
1
0
1
0
1
Falling edge and low level  
Rising edge only  
Rising edge and high level  
Falling edge only  
Falling edge only  
Rising edge only  
Rising and falling edge  
Table 23. Interrupt sensitivity - ei1  
IS21  
IS20  
External interrupt sensitivity  
0
0
1
1
0
1
0
1
Falling edge and low level  
Rising edge only  
Falling edge only  
Rising and falling edge  
Table 24. Nested interrupts register map and reset values  
Address (Hex.) Register label  
7
6
5
4
3
2
1
0
ei1  
ei0  
MCC + SI  
I1_1 I0_1  
0024h  
0025h  
0026h  
ISPR0  
reset value  
I1_3  
1
I0_3  
1
I1_2  
1
I0_2  
1
1
1
1
1
SPI  
ei3  
ei2  
ISPR1  
reset value  
I1_7  
1
I0_7  
1
I1_6  
1
I0_6  
1
I1_5  
1
I0_5  
1
I1_4  
1
I0_4  
1
AVD  
SCI  
Timer B  
Timer A  
ISPR2  
reset value  
I1_11 I0_11 I1_10 I0_10 I1_9  
1
I0_9  
1
I1_8  
1
I0_8  
1
1
1
1
1
ISPR3  
reset value  
I1_13 I0_13 I1_12 I0_12  
0027h  
0028h  
1
1
1
1
1
1
1
0
1
0
EICR  
reset value  
IS11 IS10  
0
IPB  
0
IS21 IS20  
IPA  
0
0
0
0
50/193  
ST72324Bxx  
Interrupts  
Table 25. Interrupt mapping  
Source  
Register Priority  
Exit from  
No.  
Description  
Address vector  
block  
label  
order Halt/Active-halt  
Reset  
TRAP  
Reset  
yes  
no  
FFFEh-FFFFh  
FFFCh-FFFDh  
FFFAh-FFFBh  
N/A  
Software interrupt  
0
1
Not used  
Main clock controller time base  
interrupt  
Higher  
yes  
MCC/RTC  
MCCSR  
N/A  
FFF8h-FFF9h  
priority  
2
3
ei0  
ei1  
ei2  
ei3  
External interrupt port A3..0  
External interrupt port F2..0  
External interrupt port B3..0  
External interrupt port B7..4  
Not used  
yes  
FFF6h-FFF7h  
FFF4h-FFF5h  
FFF2h-FFF3h  
FFF0h-FFF1h  
FFEEh-FFEFh  
FFECh-FFEDh  
FFEAh-FFEBh  
FFE8h-FFE9h  
FFE6h-FFE7h  
FFE4h-FFE5h  
yes  
yes  
yes  
4
5
6
7
SPI  
SPI peripheral interrupts  
SPICSR  
TASR  
yes  
no  
8
Timer A Timer A peripheral interrupts  
Timer B Timer B peripheral interrupts  
9
TBSR  
no  
10  
11  
SCI  
SCI peripheral interrupts  
SCISR  
no  
Lower  
priority  
AVD  
Auxiliary voltage detector interrupt SICSR  
no  
51/193  
 
Power saving modes  
ST72324Bxx  
8
Power saving modes  
8.1  
Introduction  
To give a large measure of flexibility to the application in terms of power consumption, four  
main power saving modes are implemented in the ST7 (see Figure 23): Slow, Wait (Slow  
Wait), Active-halt and Halt.  
After a reset the normal operating mode is selected by default (Run mode). This mode  
drives the device (CPU and embedded peripherals) by means of a master clock which is  
based on the main oscillator frequency divided or multiplied by 2 (f  
).  
OSC2  
From Run mode, the different power saving modes may be selected by setting the relevant  
register bits or by calling the specific ST7 software instruction whose action depends on the  
oscillator status.  
Figure 23. Power saving mode transitions  
High  
Run  
Slow  
Wait  
Slow Wait  
Active Halt  
Halt  
Low  
Power consumption  
8.2  
Slow mode  
This mode has two targets:  
To reduce power consumption by decreasing the internal clock in the device,  
To adapt the internal clock frequency (f ) to the available supply voltage.  
CPU  
Slow mode is controlled by three bits in the MCCSR register: the SMS bit which enables or  
disables Slow mode and two CPx bits which select the internal slow frequency (f ).  
CPU  
In this mode, the master clock frequency (f  
) can be divided by 2, 4, 8 or 16. The CPU  
OSC2  
and peripherals are clocked at this lower frequency (f  
).  
CPU  
Note:  
Slow-Wait mode is activated when entering the Wait mode while the device is already in  
Slow mode.  
52/193  
 
 
ST72324Bxx  
Power saving modes  
Figure 24. Slow mode clock transitions  
f
/2  
f
/4  
f
OSC2  
OSC2  
OSC2  
f
CPU  
f
OSC2  
00  
01  
CP1:0  
SMS  
Normal Run mode request  
New Slow  
frequency  
request  
8.3  
Wait mode  
Wait mode places the MCU in a low power consumption mode by stopping the CPU.  
This power saving mode is selected by calling the ‘WFI’ instruction.  
All peripherals remain active. During Wait mode, the I[1:0] bits of the CC register are forced  
to ‘10’, to enable all interrupts. All other registers and memory remain unchanged. The MCU  
remains in Wait mode until an interrupt or reset occurs, whereupon the Program Counter  
branches to the starting address of the interrupt or reset service routine. The MCU will  
remain in Wait mode until a reset or an interrupt occurs, causing it to wake up. Refer to  
Figure 25.  
Figure 25. Wait mode flowchart  
Oscillator  
Peripherals  
CPU  
on  
on  
off  
10  
WFI instruction  
I[1:0] bits  
N
Reset  
Y
N
Interrupt  
Y
Oscillator  
Peripherals  
CPU  
I[1:0] bits  
on  
off  
on  
10  
256 or 4096 CPU clock  
cycle delay  
Oscillator  
Peripherals  
CPU  
on  
on  
on  
(1)  
I[1:0] bits  
XX  
Fetch reset vector  
or service interrupt  
1. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are  
set to the current software priority level of the interrupt routine and recovered when the CC register is  
popped.  
53/193  
 
Power saving modes  
ST72324Bxx  
8.4  
Active-halt and Halt modes  
Active-halt and Halt modes are the two lowest power consumption modes of the MCU. They  
are both entered by executing the ‘HALT’ instruction. The decision to enter either in Active-  
halt or Halt mode is given by the MCC/RTC interrupt enable flag (OIE bit in the MCCSR  
register).  
Table 26. MCC/RTC low power mode selection  
MCCSR OIE bit  
Power saving mode entered when HALT instruction is executed  
Halt mode  
Active-halt mode  
0
1
8.4.1  
Active-halt mode  
Active-halt mode is the lowest power consumption mode of the MCU with a real-time clock  
available. It is entered by executing the ‘HALT’ instruction when the OIE bit of the Main Clock  
Controller Status register (MCCSR) is set (see Section 10.2: Main clock controller with real-  
time clock and beeper (MCC/RTC) on page 69 for more details on the MCCSR register).  
The MCU can exit Active-halt mode on reception of either an MCC/RTC interrupt, a specific  
interrupt (see Table 25: Interrupt mapping) or a reset. When exiting Active-halt mode by  
means of an interrupt, no 256 or 4096 CPU cycle delay occurs. The CPU resumes operation  
by servicing the interrupt or by fetching the reset vector which woke it up (see Figure 27).  
When entering Active-halt mode, the I[1:0] bits in the CC register are forced to ‘10b’ to  
enable interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.  
In Active-halt mode, only the main oscillator and its associated counter (MCC/RTC) are  
running to keep a wakeup time base. All other peripherals are not clocked except those  
which get their clock supply from another clock generator (such as external or auxiliary  
oscillator).  
The safeguard against staying locked in Active-halt mode is provided by the oscillator  
interrupt.  
Note:  
As soon as the interrupt capability of one of the oscillators is selected (MCCSR.OIE bit set),  
entering Active-halt mode while the Watchdog is active does not generate a reset.  
This means that the device cannot spend more than a defined delay in this power saving  
mode.  
Caution:  
When exiting Active-halt mode following an interrupt, OIE bit of MCCSR register must not be  
cleared before t  
after the interrupt occurs (t  
= 256 or 4096 t  
delay depending  
DELAY  
DELAY  
CPU  
on option byte). Otherwise, the ST7 enters Halt mode for the remaining t  
period.  
DELAY  
Figure 26. Active-halt timing overview  
Active  
Halt  
256 or 4096 CPU  
cycle delay  
Run  
Run  
(1)  
Reset  
or  
interrupt  
Halt  
instruction  
Fetch  
vector  
[MCCSR.OIE = 1]  
1. This delay occurs only if the MCU exits Active-halt mode by means of a reset.  
54/193  
 
ST72324Bxx  
Power saving modes  
Figure 27. Active-halt mode flowchart  
Oscillator  
Peripherals  
CPU  
on  
off  
off  
10  
(1)  
Halt instruction  
(MCCSR.OIE = 1)  
I[1:0] bits  
N
Reset  
N
Y
(2)  
Interrupt  
Oscillator  
Peripherals  
CPU  
on  
off  
on  
Y
(3)  
I[1:0] bits  
XX  
256 or 4096 CPU clock  
cycle delay  
Oscillator  
Peripherals  
CPU  
on  
on  
on  
(3)  
I[1:0] bits  
XX  
Fetch reset vector  
or service interrupt  
1. Peripheral clocked with an external clock source can still be active.  
2. Only the MCC/RTC interrupt and some specific interrupts can exit the MCU from Active-halt mode (such as  
external interrupt). Refer to Table 25: Interrupt mapping on page 51 for more details.  
3. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are  
set to the current software priority level of the interrupt routine and restored when the CC register is  
popped.  
8.4.2  
Halt mode  
The Halt mode is the lowest power consumption mode of the MCU. It is entered by  
executing the ‘HALT’ instruction when the OIE bit of the Main Clock Controller Status  
register (MCCSR) is cleared (see Section 10.2: Main clock controller with real-time clock  
and beeper (MCC/RTC) on page 69 for more details on the MCCSR register).  
The MCU can exit Halt mode on reception of either a specific interrupt (see Table 25:  
Interrupt mapping) or a reset. When exiting Halt mode by means of a reset or an interrupt,  
the oscillator is immediately turned on and the 256 or 4096 CPU cycle delay is used to  
stabilize the oscillator. After the start up delay, the CPU resumes operation by servicing the  
interrupt or by fetching the reset vector which woke it up (see Figure 29).  
When entering Halt mode, the I[1:0] bits in the CC register are forced to ‘10b’ to enable  
interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.  
In Halt mode, the main oscillator is turned off causing all internal processing to be stopped,  
including the operation of the on-chip peripherals. All peripherals are not clocked except the  
ones which get their clock supply from another clock generator (such as an external or  
auxiliary oscillator).  
The compatibility of Watchdog operation with Halt mode is configured by the “WDGHALT”  
option bit of the option byte. The HALT instruction when executed while the Watchdog  
system is enabled, can generate a Watchdog reset (see Section 14.1 on page 179) for more  
details.  
55/193  
Power saving modes  
Figure 28. Halt timing overview  
ST72324Bxx  
256 or 4096 CPU  
cycle delay  
Run  
Halt  
Run  
Reset  
or  
interrupt  
Halt  
instruction  
[MCCSR.OIE = 0]  
Fetch  
vector  
Figure 29. Halt mode flowchart  
Halt instruction  
(MCCSR.OIE = 0)  
Enable  
Watchdog  
0
Disable  
(1)  
WDGHALT  
1
Watchdog  
reset  
Oscillator  
Peripherals  
CPU  
off  
off  
off  
10  
(2)  
I[1:0] bits  
N
Reset  
Y
N
(3)  
Interrupt  
on  
off  
on  
Y
Oscillator  
Peripherals  
CPU  
I[1:0] bits  
(4)  
XX  
256 or 4096 CPU clock  
cycle delay  
Oscillator  
Peripherals  
CPU  
on  
on  
on  
(4)  
I[1:0] bits  
XX  
Fetch reset vector  
or service interrupt  
1. WDGHALT is an option bit. See Section 14.1 on page 179 for more details.  
2. Peripheral clocked with an external clock source can still be active.  
3. Only some specific interrupts can exit the MCU from Halt mode (such as external interrupt). Refer to  
Table 25: Interrupt mapping for more details.  
4. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are  
set to the current software priority level of the interrupt routine and recovered when the CC register is  
popped.  
56/193  
ST72324Bxx  
Power saving modes  
Halt mode recommendations  
Make sure that an external event is available to wake up the microcontroller from Halt  
mode.  
When using an external interrupt to wake up the microcontroller, reinitialize the  
corresponding I/O as “Input Pull-up with Interrupt” before executing the HALT  
instruction. The main reason for this is that the I/O may be wrongly configured due to  
external interference or by an unforeseen logical condition.  
For the same reason, reinitialize the sensitivity level of each external interrupt as a  
precautionary measure.  
The opcode for the HALT instruction is 0x8E. To avoid an unexpected HALT instruction  
due to a program counter failure, it is advised to clear all occurrences of the data value  
0x8E from memory. For example, avoid defining a constant in ROM with the value  
0x8E.  
As the HALT instruction clears the interrupt mask in the CC register to allow interrupts,  
the user may choose to clear all pending interrupt bits before executing the HALT  
instruction. This avoids entering other peripheral interrupt routines after executing the  
external interrupt routine corresponding to the wakeup event (reset or external  
interrupt).  
57/193  
I/O ports  
ST72324Bxx  
9
I/O ports  
9.1  
Introduction  
The I/O ports offer different functional modes:  
transfer of data through digital inputs and outputs,  
and for specific pins:  
external interrupt generation,  
alternate signal input/output for the on-chip peripherals.  
An I/O port contains up to 8 pins. Each pin can be programmed independently as digital  
input (with or without interrupt generation) or digital output.  
9.2  
Functional description  
Each port has two main registers:  
Data Register (DR)  
Data Direction Register (DDR)  
and one optional register:  
Option Register (OR)  
Each I/O pin may be programmed using the corresponding register bits in the DDR and OR  
registers: bit X corresponding to pin X of the port. The same correspondence is used for the  
DR register.  
The following description takes into account the OR register, (for specific ports which do not  
provide this register refer to Section 9.3: I/O port implementation on page 62). The generic  
I/O block diagram is shown in Figure 30.  
9.2.1  
Input modes  
The input configuration is selected by clearing the corresponding DDR register bit.  
In this case, reading the DR register returns the digital value applied to the external I/O pin.  
Different input modes can be selected by software through the OR register.  
Writing the DR register modifies the latch value but does not affect the pin status.  
Note:  
1
2
When switching from input to output mode, the DR register has to be written first to drive the  
correct level on the pin as soon as the port is configured as an output.  
3
Do not use read/modify/write instructions (BSET or BRES) to modify the DR register as this  
might corrupt the DR content for I/Os configured as input.  
58/193  
 
 
ST72324Bxx  
I/O ports  
External interrupt function  
When an I/O is configured as ‘Input with Interrupt’, an event on this I/O can generate an  
external interrupt request to the CPU.  
Each pin can independently generate an interrupt request. The interrupt sensitivity is  
independently programmable using the sensitivity bits in the EICR register.  
Each external interrupt vector is linked to a dedicated group of I/O port pins (see pinout  
description and interrupt section). If several input pins are selected simultaneously as  
interrupt sources, these are first detected according to the sensitivity bits in the EICR  
register and then logically ORed.  
The external interrupts are hardware interrupts, which means that the request latch (not  
accessible directly by the application) is automatically cleared when the corresponding  
interrupt vector is fetched. To clear an unwanted pending interrupt by software, the  
sensitivity bits in the EICR register must be modified.  
9.2.2  
Output modes  
The output configuration is selected by setting the corresponding DDR register bit. In this  
case, writing the DR register applies this digital value to the I/O pin through the latch. Then  
reading the DR register returns the previously stored value.  
Two different output modes can be selected by software through the OR register: Output  
push-pull and open-drain.  
Table 27. DR register value and output pin status  
DR  
Push-pull  
Open-drain  
0
1
VSS  
VDD  
VSS  
Floating  
9.2.3  
Alternate functions  
When an on-chip peripheral is configured to use a pin, the alternate function is automatically  
selected. This alternate function takes priority over the standard I/O programming.  
When the signal is coming from an on-chip peripheral, the I/O pin is automatically  
configured in output mode (push-pull or open drain according to the peripheral).  
When the signal is going to an on-chip peripheral, the I/O pin must be configured in input  
mode. In this case, the pin state is also digitally readable by addressing the DR register.  
Note:  
Input pull-up configuration can cause unexpected value at the input of the alternate  
peripheral input. When an on-chip peripheral use a pin as input and output, this pin has to  
be configured in input floating mode.  
59/193  
I/O ports  
ST72324Bxx  
Figure 30. I/O port general block diagram  
Alternate  
output  
1
0
Register  
access  
P-buffer  
(see table 24 below)  
V
DD  
Alternate  
enable  
Pull-up  
(see table 24 below)  
DR  
V
DD  
DDR  
Pull-up  
condition  
Pad  
OR  
If implemented  
OR SEL  
N-buffer  
Diodes  
(see table 24 below)  
DDR SEL  
DR SEL  
Analog  
input  
CMOS  
Schmitt  
trigger  
1
0
Alternate  
input  
External  
interrupt  
source (ei )  
x
Table 28. I/O port mode options  
Configuration mode  
Diodes  
Pull-up  
P-buffer  
(1)  
(2)  
to VDD  
to VSS  
Floating with/without Interrupt  
Input  
Off(3)  
On(4)  
Off  
Pull-up with/without Interrupt  
On  
Push-pull  
On  
Off  
NI  
On  
Off  
Output Open drain (logic level)  
True open drain  
NI  
NI(5)  
1. The diode to VDD is not implemented in the true open drain pads.  
2. A local protection between the pad and VSS is implemented to protect the device against positive stress.  
3. Off = implemented not activated.  
4. On = implemented and activated.  
5. NI = not implemented  
60/193  
ST72324Bxx  
I/O ports  
Table 29. I/O port configurations  
Hardware configuration  
DR register access  
Not implemented in  
V
DD  
true open drain  
I/O ports  
Pull-up  
condition  
R
DR  
W
PU  
register  
Data bus  
Pad  
R
Alternate input  
External interrupt  
source (ei )  
x
Interrupt  
condition  
Analog input  
Not implemented in  
true open drain  
I/O ports  
DR register access  
V
DD  
R
PU  
R/W  
DR  
register  
Data bus  
Pad  
Alternate  
enable  
Alternate  
output  
Not implemented in  
true open drain  
I/O ports  
DR register access  
R/W  
V
DD  
R
PU  
DR  
register  
Data bus  
Pad  
Alternate  
output  
Alternate  
enable  
1. When the I/O port is in input configuration and the associated alternate function is enabled as an output,  
reading the DR register will read the alternate function output status.  
2. When the I/O port is in output configuration and the associated alternate function is enabled as an input,  
the alternate function reads the pin status given by the DR register content.  
Caution:  
The alternate function must not be activated as long as the pin is configured as input with  
interrupt, in order to avoid generating spurious interrupts.  
61/193  
I/O ports  
ST72324Bxx  
Analog alternate function  
When the pin is used as an ADC input, the I/O must be configured as floating input. The  
analog multiplexer (controlled by the ADC registers) switches the analog voltage present on  
the selected pin to the common analog rail which is connected to the ADC input.  
It is recommended not to change the voltage level or loading on any port pin while  
conversion is in progress. Furthermore it is recommended not to have clocking pins located  
close to a selected analog pin.  
Warning: The analog input voltage level must be within the limits  
stated in the absolute maximum ratings.  
9.3  
I/O port implementation  
The hardware implementation on each I/O port depends on the settings in the DDR and OR  
registers and specific feature of the I/O port such as ADC Input or true open drain.  
Switching these I/O ports from one state to another should be done in a sequence that  
prevents unwanted side effects. Recommended safe transitions are illustrated in Figure 31.  
Other transitions are potentially risky and should be avoided, since they are likely to present  
unwanted side-effects such as spurious interrupt generation.  
Figure 31. Interrupt I/O port state transitions  
00  
10  
11  
01  
Input  
floating/pull-up  
interrupt  
Input  
floating  
(reset state)  
Output  
open-drain  
Output  
push-pull  
= DDR, OR  
XX  
9.4  
Low power modes  
Table 30. Effect of low power modes on I/O ports  
Mode  
Description  
Wait  
Halt  
No effect on I/O ports. External interrupts cause the device to exit from Wait mode.  
No effect on I/O ports. External interrupts cause the device to exit from Halt mode.  
9.5  
Interrupts  
The external interrupt event generates an interrupt if the corresponding configuration is  
selected with DDR and OR registers and the interrupt mask in the CC register is not active  
(RIM instruction).  
62/193  
 
ST72324Bxx  
I/O ports  
Table 31. I/O port interrupt control/wakeup capability  
Interrupt event  
Event flag Enable Control bit Exit from Wait Exit from Halt  
External interrupt on selected  
external event  
-
DDRx, ORx Yes Yes  
9.5.1  
I/O port implementation  
The I/O port register configurations are summarized Table 32.  
Table 32. Port configuration  
Input (DDR = 0)  
Output (DDR = 1)  
Port  
Pin name  
OR = 0  
OR = 1  
OR = 0  
OR = 1  
PA7:6  
Floating  
True open-drain (high sink)  
Port A PA5:4  
PA3  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
Pull-up  
Open drain  
Open drain  
Open drain  
Open drain  
Open drain  
Open drain  
Open drain  
Open drain  
Open drain  
Push-pull  
Push-pull  
Push-pull  
Push-pull  
Push-pull  
Push-pull  
Push-pull  
Push-pull  
Push-pull  
Floating interrupt  
Floating interrupt  
Pull-up  
PB3  
Port B  
PB4, PB2:0  
Port C PC7:0  
Port D PD5:0  
Port E PE1:0  
Pull-up  
Pull-up  
Pull-up  
PF7:6, 4  
PF2:0  
Pull-up  
Port F  
Pull-up  
Table 33. I/O port register map and reset values  
Address (Hex.)  
Register label  
7
6
5
4
3
2
1
0
Reset value of all I/O port registers  
0
0
0
0
0
0
0
0
0000h  
0001h  
0002h  
0003h  
0004h  
0005h  
0006h  
0007h  
0008h  
0009h  
000Ah  
000Bh  
PADR  
PADDR  
PAOR  
MSB  
MSB  
MSB  
MSB  
LSB  
LSB  
LSB  
LSB  
PBDR  
PBDDR  
PBOR  
PCDR  
PCDDR  
PCOR  
PDDR  
PDDDR  
PDOR  
63/193  
 
 
I/O ports  
ST72324Bxx  
Table 33. I/O port register map and reset values  
Address (Hex.)  
Register label  
7
6
5
4
3
2
1
0
000Ch  
000Dh  
000Eh  
000Fh  
0010h  
0011h  
PEDR  
PEDDR  
PEOR  
PFDR  
MSB  
LSB  
PFDDR  
PFOR  
MSB  
LSB  
64/193  
ST72324Bxx  
On-chip peripherals  
10  
On-chip peripherals  
10.1  
Watchdog timer (WDG)  
10.1.1  
Introduction  
The Watchdog timer is used to detect the occurrence of a software fault, usually generated  
by external interference or by unforeseen logical conditions, which causes the application  
program to abandon its normal sequence. The Watchdog circuit generates an MCU reset on  
expiry of a programmed time period, unless the program refreshes the counter’s contents  
before the T6 bit becomes cleared.  
10.1.2  
Main features  
Programmable free-running downcounter  
Programmable reset  
Reset (if Watchdog activated) when the T6 bit reaches zero  
Optional reset on HALT instruction (configurable by option byte)  
Hardware Watchdog selectable by option byte  
10.1.3  
Functional description  
The counter value stored in the Watchdog Control register (WDGCR bits T[6:0]), is  
decremented every 16384 f  
cycles (approx.), and the length of the timeout period can  
OSC2  
be programmed by the user in 64 increments.  
If the watchdog is activated (the WDGA bit is set) and when the 7-bit timer (bits T[6:0]) rolls  
over from 40h to 3Fh (T6 becomes cleared), it initiates a reset cycle pulling low the reset pin  
for typically 30µs.  
The application program must write in the WDGCR register at regular intervals during  
normal operation to prevent an MCU reset. This downcounter is free-running: it counts down  
even if the watchdog is disabled. The value to be stored in the WDGCR register must be  
between FFh and C0h:  
The WDGA bit is set (Watchdog enabled)  
The T6 bit is set to prevent generating an immediate reset  
The T[5:0] bits contain the number of increments which represents the time delay  
before the Watchdog produces a reset (see Figure 33: Approximate timeout duration).  
The timing varies between a minimum and a maximum value due to the unknown  
status of the prescaler when writing to the WDGCR register (see Figure 34).  
Following a reset, the watchdog is disabled. Once activated it cannot be disabled, except by  
a reset.  
The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is  
cleared).  
If the Watchdog is activated, the HALT instruction generates a reset.  
65/193  
 
On-chip peripherals  
Figure 32. Watchdog block diagram  
ST72324Bxx  
Reset  
f
OSC2  
MCC/RTC  
Watchdog Control register (WDGCR)  
T5  
T0  
Div 64  
WDGA T6  
T1  
T4  
T2  
T3  
6-bit downcounter (CNT)  
12-bit MCC  
RTC counter  
WDG prescaler  
div 4  
TB[1:0] bits  
(MCCSR  
register)  
LSB  
MSB  
0
6 5  
11  
10.1.4  
How to program the Watchdog timeout  
Figure 33 shows the linear relationship between the 6-bit value to be loaded in the  
Watchdog Counter (CNT) and the resulting timeout duration in milliseconds. This can be  
used for a quick calculation without taking the timing variations into account. If more  
precision is needed, use the formulae in Figure 34.  
Caution:  
When writing to the WDGCR register, always write 1 in the T6 bit to avoid generating an  
immediate reset.  
Figure 33. Approximate timeout duration  
3F  
38  
30  
28  
20  
18  
10  
08  
00  
1.5  
18  
34  
50  
65  
82  
98  
114  
128  
Watchdog timeout (ms) @ 8 MHz. f  
OSC2  
66/193  
 
ST72324Bxx  
On-chip peripherals  
Figure 34. Exact timeout duration (t  
and t  
)
min  
max  
WHERE:  
t
= (LSB + 128) x 64 x t  
OSC2  
min0  
tmax0 = 16384 x t  
OSC2  
t
= 125 ns if f  
= 8 MHz  
OSC2  
OSC2  
CNT = value of T[5:0] bits in the WDGCR register (6 bits)  
MSB and LSB are values from the table below depending on the timebase selected by the TB[1:0] bits in the MCCSR  
register  
TB1 bit  
(MCCSR reg.)  
TB0 bit  
(MCCSR reg.)  
Selected MCCSR timebase  
MSB  
LSB  
0
0
1
1
0
1
0
1
2 ms  
4 ms  
4
8
59  
53  
35  
54  
10 ms  
25 ms  
20  
49  
To calculate the minimum Watchdog timeout (t ):  
min  
MSB  
4
IF  
------------- THEN  
CNT <  
t
= t  
+ 16384 × CNT × t  
min0 osc2  
min  
4CNT  
----------------  
4CNT  
----------------  
ELSE  
t
= t  
+
16384 × CNT –  
+ (192 + LSB) × 64 ×  
× t  
osc2  
min  
min0  
MSB  
MSB  
To calculate the maximum Watchdog timeout (t  
):  
max  
MSB  
4
IF  
------------- THEN  
t
CNT ≤  
= t  
+ 16384 × CNT × t  
max  
max0  
osc2  
4CNT  
MSB  
4CNT  
----------------  
ELSE  
----------------  
t
= t  
+
16384 × CNT –  
+ (192 + LSB) × 64 ×  
× t  
osc2  
max  
max0  
MSB  
NOTE: In the above formulae, division results must be rounded down to the next integer value.  
EXAMPLE: With 2ms timeout selected in MCCSR register  
Value of T[5:0] bits in WDGCR register  
(Hex.)  
Min. Watchdog timeout (ms)  
Max. Watchdog timeout (ms)  
t
t
min  
max  
00  
3F  
1.496  
128  
2.048  
128.552  
67/193  
On-chip peripherals  
ST72324Bxx  
10.1.5  
Low power modes  
Table 34. Effect of lower power modes on Watchdog  
Mode  
Description  
Slow  
Wait  
No effect on Watchdog  
OIE bit in  
WDGHALT bit in  
MCCSR register  
option byte  
No Watchdog reset is generated. The MCU enters  
Halt mode. The Watchdog counter is decremented  
once and then stops counting and is no longer able to  
generate a watchdog reset until the MCU receives an  
external interrupt or a reset.  
0
0
If an external interrupt is received, the Watchdog  
restarts counting after 256 or 4096 CPU clocks. If a  
reset is generated, the Watchdog is disabled (reset  
state) unless Hardware Watchdog is selected by  
option byte. For application recommendations, see  
Section 10.1.7 below.  
Halt  
0
1
1
x
A reset is generated.  
No reset is generated. The MCU enters Active-halt  
mode. The Watchdog counter is not decremented. It  
stop counting. When the MCU receives an oscillator  
interrupt or external interrupt, the Watchdog restarts  
counting immediately. When the MCU receives a  
reset the Watchdog restarts counting after 256 or  
4096 CPU clocks.  
10.1.6  
10.1.7  
10.1.8  
Hardware Watchdog option  
If Hardware Watchdog is selected by option byte, the watchdog is always active and the  
WDGA bit in the WDGCR is not used. Refer to the option byte description in Section 14.1:  
Flash devices.  
Using Halt mode with the WDG (WDGHALT option)  
The following recommendation applies if Halt mode is used when the watchdog is enabled:  
Before executing the HALT instruction, refresh the WDG counter to avoid an unexpected  
WDG reset immediately after waking up the microcontroller.  
Interrupts  
None.  
68/193  
 
ST72324Bxx  
On-chip peripherals  
10.1.9  
Control register (WDGCR)  
WDGCR  
Reset value: 0111 1111 (7Fh)  
7
6
5
4
3
2
1
0
WDGA  
T[6:0]  
R/W  
R/W  
Table 35. WDGCR register description  
Bit Name  
Function  
Activation bit  
This bit is set by software and only cleared by hardware after a reset. When  
WDGA = 1, the watchdog can generate a reset.  
0: Watchdog disabled  
7
WDGA  
1: Watchdog enabled  
Note: This bit is not used if the hardware watchdog option is enabled by option byte.  
7-bit counter (MSB to LSB)  
These bits contain the value of the Watchdog counter, which is decremented every  
16384 fOSC2 cycles (approx.). A reset is produced when it rolls over from 40h to 3Fh  
(T6 is cleared).  
6:0 T[6:0]  
Table 36. Watchdog timer register map and reset values  
Address (Hex.) Register label  
7
6
5
4
3
2
1
0
WDGCR  
002Ah  
WDGA  
0
T6  
1
T5  
1
T4  
1
T3  
1
T2  
1
T1  
1
T0  
1
reset value  
10.2  
Main clock controller with real-time clock and beeper  
(MCC/RTC)  
The main clock controller consists of three different functions:  
a programmable CPU clock prescaler  
a clock-out signal to supply external devices  
a real-time clock timer with interrupt capability  
Each function can be used independently and simultaneously.  
10.2.1  
Programmable CPU clock prescaler  
The programmable CPU clock prescaler supplies the clock for the ST7 CPU and its internal  
peripherals. It manages Slow power saving mode (see Section 8.2: Slow mode on page 52  
for more details).  
The prescaler selects the f  
main clock frequency and is controlled by three bits in the  
CPU  
MCCSR register: CP[1:0] and SMS.  
69/193  
 
On-chip peripherals  
ST72324Bxx  
10.2.2  
Clock-out capability  
The clock-out capability is an alternate function of an I/O port pin that outputs the f  
to drive external devices. It is controlled by the MCO bit in the MCCSR register.  
clock  
CPU  
Caution:  
When selected, the clock out pin suspends the clock during Active-halt mode.  
10.2.3  
Real-time clock (RTC) timer  
The counter of the real-time clock timer allows an interrupt to be generated based on an  
accurate real-time clock. Four different time bases depending directly on f are available.  
OSC2  
The whole functionality is controlled by four bits of the MCCSR register: TB[1:0], OIE and  
OIF.  
When the RTC interrupt is enabled (OIE bit set), the ST7 enters Active-halt mode when the  
HALT instruction is executed. See Section 8.4: Active-halt and Halt modes on page 54 for  
more details.  
10.2.4  
Beeper  
The beep function is controlled by the MCCBCR register. It can output three selectable  
frequencies on the Beep pin (I/O port alternate function).  
Figure 35.  
Main clock controller (MCC/RTC) block diagram  
BC1 BC0  
MCCBCR  
Beep  
MCO  
Beep signal  
selection  
12-bit MCC RTC  
counter  
To  
Watchdog  
timer  
Div 64  
MCO CP1 CP0 SMS TB1 TB0 OIE OIF  
MCCSR  
MCC/RTC interrupt  
f
OSC2  
Div 2, 4, 8, 16  
1
0
f
CPU clock  
to CPU and  
peripherals  
CPU  
70/193  
ST72324Bxx  
On-chip peripherals  
10.2.5  
Low power modes  
Table 37. Effect of low power modes on MCC/RTC  
Mode  
Description  
No effect on MCC/RTC peripheral. MCC/RTC interrupt causes the device to exit  
from Wait mode.  
Wait  
No effect on MCC/RTC counter (OIE bit is set), the registers are frozen.  
MCC/RTC interrupt causes the device to exit from Active-halt mode.  
Active-halt  
Halt  
MCC/RTC counter and registers are frozen. MCC/RTC operation resumes when  
the MCU is woken up by an interrupt with Exit from Halt capability.  
10.2.6  
Interrupts  
The MCC/RTC interrupt event generates an interrupt if the OIE bit of the MCCSR register is  
set and the interrupt mask in the CC register is not active (RIM instruction).  
Table 38. MCC/RTC interrupt control/wakeup capability  
Interrupt event  
Event flag  
Enable control bit Exit from Wait Exit from Halt  
OIE Yes  
No(1)  
Time base overflow event  
OIF  
1. The MCC/RTC interrupt wakes up the MCU from Active-halt mode, not from Halt mode.  
10.2.7  
MCC registers  
MCC control/status register (MCCSR)  
)
MCCSR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
MCO  
CP[1:0]  
R/W  
SMS  
OIE  
OIF  
TB[1:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 39. MCCSR register description  
Bit Name  
Function  
Main Clock Out selection  
This bit enables the MCO alternate function on the PF0 I/O port. It is set and  
cleared by software.  
0: MCO alternate function disabled (I/O pin free for general-purpose I/O).  
1: MCO alternate function enabled (fCPU on I/O port).  
Note: To reduce power consumption, the MCO function is not active in Active-halt  
mode.  
7
MCO  
71/193  
On-chip peripherals  
ST72324Bxx  
Table 39. MCCSR register description (continued)  
Bit Name Function  
CPU Clock Prescaler  
These bits select the CPU clock prescaler which is applied in different slow modes.  
Their action is conditioned by the setting of the SMS bit. These two bits are set and  
cleared by software:  
6:5 CP[1:0]  
00: fCPU in Slow mode = fOSC2/2  
01: fCPU in Slow mode = fOSC2/4  
10: fCPU in Slow mode = fOSC2/8  
11: fCPU in Slow mode = fOSC2/16  
Slow Mode Select  
This bit is set and cleared by software.  
0: Normal mode. fCPU = fOSC2  
1: Slow mode. fCPU is given by CP1, CP0.  
See Section 8.2: Slow mode and Section 10.2: Main clock controller with real-time  
clock and beeper (MCC/RTC) for more details.  
.
4
3:2  
1
SMS  
Time Base control  
These bits select the programmable divider time base. They are set and cleared by  
software (see Table 40). A modification of the time base is taken into account at the  
end of the current period (previously set) to avoid an unwanted time shift. This  
allows to use this time base as a real-time clock.  
TB[1:0]  
OIE  
Oscillator interrupt Enable  
This bit set and cleared by software.  
0: Oscillator interrupt disabled  
1: Oscillator interrupt enabled  
This interrupt can be used to exit from Active-halt mode. When this bit is set, calling  
the ST7 software HALT instruction enters the Active-halt power saving mode  
.
Oscillator interrupt Flag  
This bit is set by hardware and cleared by software reading the MCCSR register. It  
indicates when set that the main oscillator has reached the selected elapsed time  
(TB1:0).  
0
OIF  
0: Timeout not reached  
1: Timeout reached  
Caution: The BRES and BSET instructions must not be used on the MCCSR  
register to avoid unintentionally clearing the OIF bit.  
.
Table 40. Time base selection  
Counter prescaler  
Time base  
TB1  
TB0  
fOSC2 = 4 MHz  
fOSC2 = 8 MHz  
16000  
32000  
80000  
200000  
4 ms  
8 ms  
2 ms  
4 ms  
0
0
1
1
0
1
0
1
20 ms  
50 ms  
10 ms  
25 ms  
72/193  
 
ST72324Bxx  
On-chip peripherals  
MCC beep control register (MCCBCR)  
MCCBCR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
Reserved  
-
BC[1:0]  
R/W  
Table 41. MCCBCR register description  
Bit Name  
Function  
7:2  
-
Reserved, must be kept cleared  
Beep Control  
These 2 bits select the PF1 pin beep capability (see Table 42). The beep output  
signal is available in Active-halt mode but has to be disabled to reduce the  
consumption.  
1:0 BC[1:0]  
Table 42. Beep frequency selection  
BC1  
BC0  
Beep mode with fOSC2 = 8 MHz  
0
0
1
1
0
1
0
1
Off  
~2 kHz  
Output  
Beep signal  
~50% duty cycle  
~1 kHz  
~500 Hz  
Table 43. Main clock controller register map and reset values  
Address  
Register label  
7
6
5
4
3
2
1
0
(Hex.)  
SICSR  
Reset value  
AVDIE AVDF LVDRF  
WDGRF  
x
002Bh  
0
0
0
x
0
0
0
MCCSR  
Reset value  
MCO  
0
CP1  
0
CP0  
0
SMS  
0
TB1  
0
TB0  
0
OIE  
0
OIF  
0
002Ch  
002Dh  
MCCBCR  
Reset value  
BC1  
0
BC0  
0
0
0
0
0
0
0
73/193  
 
On-chip peripherals  
ST72324Bxx  
10.3  
16-bit timer  
10.3.1  
Introduction  
The timer consists of a 16-bit free-running counter driven by a programmable prescaler.  
It may be used for a variety of purposes, including pulse length measurement of up to two  
input signals (input capture) or generation of up to two output waveforms (output compare  
and PWM).  
Pulse lengths and waveform periods can be modulated from a few microseconds to several  
milliseconds using the timer prescaler and the CPU clock prescaler.  
Some ST7 devices have two on-chip 16-bit timers. They are completely independent, and  
do not share any resources. They are synchronized after a MCU reset as long as the timer  
clock frequencies are not modified.  
This description covers one or two 16-bit timers. In ST7 devices with two timers, register  
names are prefixed with TA (Timer A) or TB (Timer B).  
10.3.2  
Main features  
Programmable prescaler: f  
divided by 2, 4 or 8  
CPU  
Overflow status flag and maskable interrupt  
External clock input (must be at least four times slower than the CPU clock speed) with  
the choice of active edge  
1 or 2 output compare functions each with:  
2 dedicated 16-bit registers  
2 dedicated programmable signals  
2 dedicated status flags  
1 dedicated maskable interrupt  
1 or 2 input capture functions each with:  
2 dedicated 16-bit registers  
2 dedicated active edge selection signals  
2 dedicated status flags  
1 dedicated maskable interrupt  
Pulse width modulation mode (PWM)  
One pulse mode  
Reduced power mode  
(c)  
5 alternate functions on I/O ports (ICAP1, ICAP2, OCMP1, OCMP2, EXTCLK)  
The timer block diagram is shown in Figure 36.  
c. Some timer pins may not be available (not bonded) in some ST7 devices. Refer to Section 2: Pin description.  
When reading an input signal on a non-bonded pin, the value will always be ‘1’.  
74/193  
ST72324Bxx  
On-chip peripherals  
10.3.3  
Functional description  
Counter  
The main block of the programmable timer is a 16-bit free running upcounter and its  
associated 16-bit registers. The 16-bit registers are made up of two 8-bit registers called  
high and low.  
Counter Register (CR)  
Counter High Register (CHR) is the most significant byte (MSB)  
Counter Low Register (CLR) is the least significant byte (LSB)  
Alternate Counter Register (ACR)  
Alternate Counter High Register (ACHR) is the most significant byte (MSB)  
Alternate Counter Low Register (ACLR) is the least significant byte (LSB)  
These two read-only 16-bit registers contain the same value but with the difference that  
reading the ACLR register does not clear the TOF bit (timer overflow flag), located in the  
Status register (SR) (see note at the end of paragraph entitled 16-bit read sequence).  
Writing in the CLR register or ACLR register resets the free running counter to the FFFCh  
value. Both counters have a reset value of FFFCh (this is the only value which is reloaded in  
the 16-bit timer). The reset value of both counters is also FFFCh in one pulse mode and  
PWM mode.  
The timer clock depends on the clock control bits of the CR2 register, as illustrated in  
Table 50. The value in the counter register repeats every 131072, 262144 or 524288 CPU  
clock cycles depending on the CC[1:0] bits. The timer frequency can be f  
/2, f  
/4,  
CPU  
CPU  
f
/8 or an external frequency.  
CPU  
75/193  
On-chip peripherals  
Figure 36. Timer block diagram  
ST72324Bxx  
ST7 internal bus  
fCPU  
MCU-peripheral interface  
8 low  
8 high  
8-bit  
buffer  
8
8
8
8
8
8
8
8
EXEDG  
16  
Input  
Capture  
register  
1
Input  
Capture  
register  
1/2  
Output  
Output  
Compare  
register  
1
Counter  
register  
Compare  
register  
2
1/4  
1/8  
2
EXTCLK  
pin  
Alternate  
Counter  
register  
16  
16  
16  
CC[1:0]  
Timer internal bus  
16  
16  
Overflow  
Detect  
circuit  
Edge Detect  
circuit 1  
Output Compare  
circuit  
ICAP1  
pin  
6
Edge Detect  
circuit 2  
ICAP2  
pin  
Latch 1  
OCMP1  
pin  
ICF1 OCF1 TOF ICF2 OCF2TIMD  
0
0
Latch 2  
OCMP2  
pin  
(Control/Status register) CSR  
ICIE OCIE TOIE FOLV2FOLV1OLVL2IEDG1OLVL1  
(Control register 1) CR1  
OC2E  
EXEDG  
OC1E  
OPM PWM CC1 CC0 IEDG2  
(Control register 2) CR2  
(See note 1)  
Timer interrupt  
1. If IC, OC and TO interrupt requests have separate vectors then the last OR is not present (see Table 25:  
Interrupt mapping on page 51).  
76/193  
ST72324Bxx  
On-chip peripherals  
16-bit read sequence  
The 16-bit read sequence (from either the Counter register or the Alternate Counter  
register) is illustrated in the following Figure 37.  
Figure 37. 16-bit read sequence  
Beginning of the sequence  
At t0  
Read MSB  
LSB is buffered  
Other  
instructions  
Returns the buffered  
LSB value at t0  
At t0 +Δt  
LSB  
Read  
Sequence completed  
The user must first read the MSB, afterwhich the LSB value is automatically buffered.  
This buffered value remains unchanged until the 16-bit read sequence is completed, even if  
the user reads the MSB several times.  
After a complete reading sequence, if only the CLR register or ACLR register are read, they  
return the LSB of the count value at the time of the read.  
Whatever the timer mode used (input capture, output compare, one pulse mode or PWM  
mode) an overflow occurs when the counter rolls over from FFFFh to 0000h then:  
The TOF bit of the SR register is set.  
A timer interrupt is generated if:  
TOIE bit of the CR1 register is set and  
I bit of the CC register is cleared.  
If one of these conditions is false, the interrupt remains pending to be issued as soon as  
they are both true.  
Clearing the overflow interrupt request is done in two steps:  
1. Reading the SR register while the TOF bit is set.  
2. An access (read or write) to the CLR register.  
Note:  
The TOF bit is not cleared by access to the ACLR register. The advantage of accessing the  
ACLR register rather than the CLR register is that it allows simultaneous use of the overflow  
function and reading the free running counter at random times (for example, to measure  
elapsed time) without the risk of clearing the TOF bit erroneously.  
The timer is not affected by Wait mode.  
In Halt mode, the counter stops counting until the mode is exited. Counting then resumes  
from the previous count (MCU awakened by an interrupt) or from the reset count (MCU  
awakened by a reset).  
77/193  
 
On-chip peripherals  
ST72324Bxx  
External clock  
The external clock (where available) is selected if CC0 = 1 and CC1 = 1 in the CR2 register.  
The status of the EXEDG bit in the CR2 register determines the type of level transition on  
the external clock pin EXTCLK that will trigger the free running counter.  
The counter is synchronized with the falling edge of the internal CPU clock.  
A minimum of four falling edges of the CPU clock must occur between two consecutive  
active edges of the external clock; thus the external clock frequency must be less than a  
quarter of the CPU clock frequency.  
Figure 38. Counter timing diagram, internal clock divided by 2  
CPU clock  
Internal reset  
Timer clock  
FFFD FFFE FFFF 0000 0001 0002 0003  
Counter register  
Timer Overflow Flag (TOF)  
Figure 39. Counter timing diagram, internal clock divided by 4  
CPU clock  
Internal reset  
Timer clock  
FFFC  
FFFD  
0000  
0001  
Counter register  
Timer Overflow Flag (TOF)  
Figure 40. Counter timing diagram, internal clock divided by 8  
CPU clock  
Internal reset  
Timer clock  
0000  
FFFC  
FFFD  
Counter register  
Timer Overflow Flag (TOF)  
Note:  
The MCU is in reset state when the internal reset signal is high, when it is low the MCU is  
running.  
78/193  
ST72324Bxx  
On-chip peripherals  
Input capture  
In this section, the index, i, may be 1 or 2 because there are two input capture functions in  
the 16-bit timer.  
The two 16-bit input capture registers (IC1R/IC2R) are used to latch the value of the free  
running counter after a transition is detected on the ICAPi pin (see Figure 42).  
Table 44. Input capture byte distribution  
Register  
MS byte  
LS byte  
ICiR  
ICiHR  
ICiLR  
The ICiR registers are read-only registers.  
The active transition is software programmable through the IEDGi bit of Control Registers  
(CRi).  
Timing resolution is one count of the free running counter: (fCPU/CC[1:0]).  
Procedure  
To use the input capture function select the following in the CR2 register:  
Select the timer clock (CC[1:0]) (see Table 50).  
Select the edge of the active transition on the ICAP2 pin with the IEDG2 bit (the ICAP2  
pin must be configured as floating input or input with pull-up without interrupt if this  
configuration is available).  
Select the following in the CR1 register:  
Set the ICIE bit to generate an interrupt after an input capture coming from either the  
ICAP1 pin or the ICAP2 pin  
Select the edge of the active transition on the ICAP1 pin with the IEDG1 bit (the  
ICAP1pin must be configured as floating input or input with pull-up without interrupt if  
this configuration is available).  
When an input capture occurs:  
ICFi bit is set.  
The ICiR register contains the value of the free running counter on the active transition  
on the ICAPi pin (see Figure 42).  
A timer interrupt is generated if the ICIE bit is set and the I bit is cleared in the CC  
register. Otherwise, the interrupt remains pending until both conditions become true.  
Clearing the Input Capture interrupt request (that is, clearing the ICFi bit) is done in two  
steps:  
1. Reading the SR register while the ICFi bit is set  
2. An access (read or write) to the ICiLR register  
79/193  
On-chip peripherals  
ST72324Bxx  
Note:  
1
2
3
After reading the ICiHR register, transfer of input capture data is inhibited and ICFi will never  
be set until the ICiLR register is also read.  
The ICiR register contains the free running counter value which corresponds to the most  
recent input capture.  
The two input capture functions can be used together even if the timer also uses the two  
output compare functions.  
4
5
In One pulse mode and PWM mode only Input Capture 2 can be used.  
The alternate inputs (ICAP1 and ICAP2) are always directly connected to the timer. So any  
transitions on these pins activates the input capture function.  
Moreover if one of the ICAPi pins is configured as an input and the second one as an output,  
an interrupt can be generated if the user toggles the output pin and if the ICIE bit is set.  
This can be avoided if the input capture function i is disabled by reading the ICiHR (see  
note 1).  
6
The TOF bit can be used with interrupt generation in order to measure events that go  
beyond the timer range (FFFFh).  
Figure 41. Input capture block diagram  
ICAP1  
pin  
(Control register 1) CR1  
IEDG1  
Edge Detect  
circuit 2  
Edge Detect  
circuit 1  
ICIE  
ICAP2  
pin  
(Status register) SR  
IC2R register  
IC1R register  
ICF1  
ICF2  
0
0
0
(Control register 2) CR2  
CC1 CC0 IEDG2  
16-bit  
16-bit free running counter  
Figure 42. Input capture timing diagram  
Timer clock  
FF01  
FF02  
FF03  
Counter register  
ICAPi pin  
ICAPi flag  
FF03  
ICAPi register  
Note: The rising edge is the active edge.  
80/193  
ST72324Bxx  
On-chip peripherals  
Output compare  
In this section, the index, i, may be 1 or 2 because there are two output compare functions in  
the 16-bit timer.  
This function can be used to control an output waveform or indicate when a period of time  
has elapsed.  
When a match is found between the Output Compare register and the free running counter,  
the output compare function:  
Assigns pins with a programmable value if the OCiE bit is set  
Sets a flag in the status register  
Generates an interrupt if enabled  
Two 16-bit registers Output Compare register 1 (OC1R) and Output Compare register 2  
(OC2R) contain the value to be compared to the counter register each timer clock cycle.  
Table 45. Output compare byte distribution  
Register  
MS byte  
LS byte  
OCiR  
OCiHR  
OCiLR  
These registers are readable and witable and are not affected by the timer hardware. A  
reset event changes the OCiR value to 8000h.  
Timing resolution is one count of the free running counter: (f  
/CC[1:0]).  
CPU  
Procedure  
To use the Output Compare function, select the following in the CR2 register:  
Set the OCiE bit if an output is needed then the OCMPi pin is dedicated to the output  
compare i signal.  
Select the timer clock (CC[1:0]) (see Table 50).  
And select the following in the CR1 register:  
Select the OLVLi bit to applied to the OCMPi pins after the match occurs.  
Set the OCIE bit to generate an interrupt if it is needed.  
When a match is found between OCRi register and CR register:  
OCFi bit is set  
The OCMPi pin takes OLVLi bit value (OCMPi pin latch is forced low during reset)  
A timer interrupt is generated if the OCIE bit is set in the CR1 register and the I bit is  
cleared in the CC register (CC).  
The OCiR register value required for a specific timing application can be calculated using  
the following formula:  
Δt f  
PRESC  
* CPU  
Δ OCiR =  
Where:  
Δt  
CPU  
= Output compare period (in seconds)  
= CPU clock frequency (in hertz)  
f
PRESC = Timer prescaler factor (2, 4 or 8 depending on CC[1:0] bits; see Table 50)  
81/193  
On-chip peripherals  
ST72324Bxx  
If the timer clock is an external clock, the formula is:  
Δ OCiR = Δt f  
* EXT  
Where:  
Δt  
EXT  
= Output compare period (in seconds)  
= External timer clock frequency (in hertz)  
f
Clearing the output compare interrupt request (that is, clearing the OCFi bit) is done by:  
1. Reading the SR register while the OCFi bit is set.  
2. An access (read or write) to the OCiLR register.  
The following procedure is recommended to prevent the OCFi bit from being set between  
the time it is read and the write to the OCiR register:  
Write to the OCiHR register (further compares are inhibited).  
Read the SR register (first step of the clearance of the OCFi bit, which may be already  
set).  
Write to the OCiLR register (enables the output compare function and clears the OCFi  
bit).  
Note:  
1
2
3
After a processor write cycle to the OCiHR register, the output compare function is inhibited  
until the OCiLR register is also written.  
If the OCiE bit is not set, the OCMPi pin is a general I/O port and the OLVLi bit will not  
appear when a match is found but an interrupt could be generated if the OCIE bit is set.  
In both internal and external clock modes, OCFi and OCMPi are set while the counter value  
equals the OCiR register value (see Figure 44 on page 83 for an example with f  
/2 and  
CPU  
Figure 45 on page 83 for an example with f  
PWM mode.  
/4). This behavior is the same in OPM or  
CPU  
4
5
The output compare functions can be used both for generating external events on the  
OCMPi pins even if the input capture mode is also used.  
The value in the 16-bit OCiR register and the OLVi bit should be changed after each  
successful comparison in order to control an output waveform or establish a new elapsed  
timeout.  
Forced output compare capability  
When the FOLVi bit is set by software, the OLVLi bit is copied to the OCMPi pin. The OLVi bit  
has to be toggled in order to toggle the OCMPi pin when it is enabled (OCiE bit = 1). The  
OCFi bit is then not set by hardware, and thus no interrupt request is generated.  
The FOLVLi bits have no effect in both one pulse mode and PWM mode.  
82/193  
ST72324Bxx  
Figure 43. Output compare block diagram  
On-chip peripherals  
16-bit free running counter  
16-bit  
OC1E OC2E  
CC1 CC0  
(Control Register 2) CR2  
(Control Register 1) CR1  
Latch  
circuit  
Output compare  
OCIE  
FOLV2FOLV1OLVL2  
OLVL1  
OCMP1  
1
Pin  
16-bit  
16-bit  
Latch  
OCMP2  
2
OC1R register  
Pin  
OCF1  
OCF2  
0
0
0
OC2R register  
(Status register) SR  
Figure 44. Output compare timing diagram, f  
= f  
/2  
CPU  
TIMER  
Internal CPU clock  
Timer clock  
Counter register  
2ECF 2ED0 2ED1 2ED2  
2ED3  
2ED4  
2ED3  
Output Compare register i (OCRi)  
Output Compare flag i (OCFi)  
OCMPi pin (OLVLi = 1)  
Figure 45. Output compare timing diagram, f  
= f  
/4  
CPU  
TIMER  
Internal CPU clock  
Timer clock  
2ECF 2ED0 2ED1 2ED2  
2ED3  
2ED4  
2ED3  
Counter register  
Output Compare register i (OCRi)  
Output Compare flag i (OCFi)  
OCMPi pin (OLVLi = 1)  
83/193  
On-chip peripherals  
ST72324Bxx  
One Pulse mode  
One Pulse mode enables the generation of a pulse when an external event occurs. This  
mode is selected via the OPM bit in the CR2 register.  
The one pulse mode uses the Input Capture1 function and the Output Compare1 function.  
Procedure  
To use One Pulse mode:  
1. Load the OC1R register with the value corresponding to the length of the pulse (see the  
formula below).  
2. Select the following in the CR1 register:  
Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after the  
pulse.  
Using the OLVL2 bit, select the level to be applied to the OCMP1 pin during the  
pulse.  
Select the edge of the active transition on the ICAP1 pin with the IEDG1 bit (the  
ICAP1 pin must be configured as floating input).  
3. Select the following in the CR2 register:  
Set the OC1E bit, the OCMP1 pin is then dedicated to the Output Compare 1  
function.  
Set the OPM bit.  
Select the timer clock CC[1:0] (see Table 50).  
Figure 46. One pulse mode cycle  
ICR1 = Counter  
OCMP1 = OLVL2  
Counter is reset  
When  
event occurs  
on ICAP1  
to FFFCh  
ICF1 bit is set  
When  
counter =  
OC1R  
OCMP1 = OLVL1  
Then, on a valid event on the ICAP1 pin, the counter is initialized to FFFCh and OLVL2 bit is  
loaded on the OCMP1 pin, the ICF1 bit is set and the value FFFDh is loaded in the IC1R  
register.  
Because the ICF1 bit is set when an active edge occurs, an interrupt can be generated if the  
ICIE bit is set.  
Clearing the Input Capture interrupt request (that is, clearing the ICFi bit) is done in two  
steps:  
1. Reading the SR register while the ICFi bit is set.  
2. An access (read or write) to the ICiLR register.  
84/193  
 
ST72324Bxx  
On-chip peripherals  
The OC1R register value required for a specific timing application can be calculated using  
the following formula:  
t f  
* CPU - 5  
PRESC  
OCiR value =  
Where:  
t
f
= Pulse period (in seconds)  
= CPU clock frequnency (in hertz)  
CPU  
PRESC = Timer prescaler factor (2, 4 or 8 depending on the CC[1:0] bits; see Table 50)  
If the timer clock is an external clock the formula is:  
OCiR = t f  
- 5  
* EXT  
Where:  
t
= Pulse period (in seconds)  
= External timer clock frequency (in hertz)  
f
EXT  
When the value of the counter is equal to the value of the contents of the OC1R register, the  
OLVL1 bit is output on the OCMP1 pin (see Figure 47).  
Note:  
1
2
The OCF1 bit cannot be set by hardware in one pulse mode but the OCF2 bit can generate  
an Output Compare interrupt.  
When the Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set, the  
PWM mode is the only active one.  
3
4
If OLVL1 = OLVL2 a continuous signal will be seen on the OCMP1 pin.  
The ICAP1 pin can not be used to perform input capture. The ICAP2 pin can be used to  
perform input capture (ICF2 can be set and IC2R can be loaded) but the user must take  
care that the counter is reset each time a valid edge occurs on the ICAP1 pin and ICF1 can  
also generates interrupt if ICIE is set.  
5
When one pulse mode is used OC1R is dedicated to this mode. Nevertheless OC2R and  
OCF2 can be used to indicate a period of time has been elapsed but cannot generate an  
output waveform because the level OLVL2 is dedicated to the one pulse mode.  
(1)  
Figure 47. One Pulse mode timing example  
2ED3  
01F8  
IC1R  
FFFC FFFD FFFE  
2ED0 2ED1 2ED2  
2ED3  
FFFC FFFD  
01F8  
Counter  
ICAP1  
OLVL2  
OLVL1  
OLVL2  
OCMP1  
Compare1  
1. IEDG1 = 1, OC1R = 2ED0h, OLVL1 = 0, OLVL2 = 1  
85/193  
 
On-chip peripherals  
ST72324Bxx  
Figure 48. Pulse width modulation mode timing example with two output compare  
(1)(2)  
functions  
2ED0 2ED1 2ED2  
34E2 FFFC  
OLVL2  
FFFC FFFD FFFE  
34E2  
Counter  
OCMP1  
OLVL2  
OLVL1  
compare2  
compare1  
compare2  
1. OC1R = 2ED0h, OC2R = 34E2, OLVL1 = 0, OLVL2 = 1  
2. On timers with only one Output Compare register, a fixed frequency PWM signal can be generated using  
the output compare and the counter overflow to define the pulse length.  
Pulse Width Modulation mode  
Pulse Width Modulation (PWM) mode enables the generation of a signal with a frequency  
and pulse length determined by the value of the OC1R and OC2R registers.  
Pulse Width Modulation mode uses the complete Output Compare 1 function plus the  
OC2R register, and so this functionality can not be used when PWM mode is activated.  
In PWM mode, double buffering is implemented on the output compare registers. Any new  
values written in the OC1R and OC2R registers are taken into account only at the end of the  
PWM period (OC2) to avoid spikes on the PWM output pin (OCMP1).  
Procedure  
To use Pulse Width Modulation mode:  
1. Load the OC2R register with the value corresponding to the period of the signal using  
the formula below.  
2. Load the OC1R register with the value corresponding to the period of the pulse if  
(OLVL1 = 0 and OLVL2 = 1) using the formula in the opposite column.  
3. Select the following in the CR1 register:  
Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after a  
successful comparison with the OC1R register.  
Using the OLVL2 bit, select the level to be applied to the OCMP1 pin after a  
successful comparison with the OC2R register.  
4. Select the following in the CR2 register:  
Set OC1E bit: the OCMP1 pin is then dedicated to the output compare 1 function.  
Set the PWM bit.  
Select the timer clock (CC[1:0]) (see Table 50).  
86/193  
 
 
ST72324Bxx  
On-chip peripherals  
Figure 49. Pulse width modulation cycle  
When  
counter  
= OC1R  
OCMP1 = OLVL1  
OCMP1 = OLVL2  
When  
counter  
= OC2R  
counter is reset  
to FFFCh  
ICF1 bit is set  
If OLVL1 = 1 and OLVL2 = 0, the length of the positive pulse is the difference between the  
OC2R and OC1R registers.  
If OLVL1 = OLVL2, a continuous signal will be seen on the OCMP1 pin.  
The OC1R register value required for a specific timing application can be calculated using  
the following formula:  
t f  
* CPU - 5  
PRESC  
OCiR value =  
Where:  
t
f
= Signal or pulse period (in seconds)  
= CPU clock frequnency (in Hertz)  
CPU  
PRESC = Timer prescaler factor (2, 4 or 8 depending on the CC[1:0] bits; see Table 50)  
If the timer clock is an external clock the formula is:  
OCiR = t f  
- 5  
* EXT  
Where:  
t
= Signal or pulse period (in seconds)  
f
= External timer clock frequency (in Hertz)  
EXT  
The Output Compare 2 event causes the counter to be initialized to FFFCh (see Figure 48).  
Note:  
1
2
3
4
After a write instruction to the OCiHR register, the output compare function is inhibited until  
the OCiLR register is also written.  
The OCF1 and OCF2 bits cannot be set by hardware in PWM mode therefore the Output  
Compare interrupt is inhibited.  
The ICF1 bit is set by hardware when the counter reaches the OC2R value and can produce  
a timer interrupt if the ICIE bit is set and the I bit is cleared.  
In PWM mode the ICAP1 pin can not be used to perform input capture because it is  
disconnected to the timer. The ICAP2 pin can be used to perform input capture (ICF2 can be  
set and IC2R can be loaded) but the user must take care that the counter is reset each  
period and ICF1 can also generates interrupt if ICIE is set.  
5
When the Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set, the  
PWM mode is the only active one.  
87/193  
On-chip peripherals  
ST72324Bxx  
10.3.4  
Low power modes  
Table 46. Effect of low power modes on 16-bit timer  
Mode  
Description  
No effect on 16-bit timer.  
Timer interrupts cause the device to exit from Wait mode.  
Wait  
16-bit timer registers are frozen.  
In Halt mode, the counter stops counting until Halt mode is exited. Counting resumes  
from the previous count when the MCU is woken up by an interrupt with Exit from Halt  
mode capability or from the counter reset value when the MCU is woken up by a reset.  
Halt  
If an input capture event occurs on the ICAPi pin, the input capture detection circuitry is  
armed. Consequently, when the MCU is woken up by an interrupt with Exit from Halt  
mode capability, the ICFi bit is set, and the counter value present when exiting from Halt  
mode is captured into the ICiR register.  
10.3.5  
Interrupts  
(1)  
Table 47. 16-bit timer interrupt control/wakeup capability  
Interrupt event  
Event flag Enable Control bit Exit from Wait Exit from Halt  
Input Capture 1 event/counter  
reset in PWM mode  
ICF1  
ICIE  
Input Capture 2 event  
ICF2  
Output Compare 1 event  
(not available in PWM mode)  
OCF1  
Yes  
No  
OCIE  
TOIE  
Output Compare 2 event  
(not available in PWM mode)  
OCF2  
TOF  
Timer Overflow event  
1. The 16-bit timer interrupt events are connected to the same interrupt vector (see Section 7: Interrupts).  
These events generate an interrupt if the corresponding Enable Control bit is set and the interrupt mask in  
the CC register is reset (RIM instruction).  
88/193  
ST72324Bxx  
On-chip peripherals  
10.3.6  
Summary of timer modes  
Table 48. Summary of timer modes  
Timer resources  
Mode  
Input  
Input  
Output  
Output  
Capture 1  
Capture 2  
Compare 1  
Compare 2  
Input Capture  
(1 and/or 2)  
Yes  
Yes  
Yes  
No  
Yes  
Output Compare  
(1 and/or 2)  
One Pulse mode  
PWM mode  
Not recommended(1)  
Not recommended(3)  
Partially(2)  
No  
No  
1. See note 4 in One Pulse mode on page 84.  
2. See note 5 in One Pulse mode on page 84.  
3. See note 4 in Pulse Width Modulation mode on page 86.  
10.3.7  
16-bit timer registers  
Each timer is associated with three control and status registers, and with six pairs of data  
registers (16-bit values) relating to the two input captures, the two output compares, the  
counter and the alternate counter.  
Control Register 1 (CR1)  
CR1  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
ICIE  
R/W  
OCIE  
TOIE  
FOLV2  
FOLV1  
OLVL2  
IEDG1  
OLVL1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
M
Table 49. CR1 register description  
Bit Name  
Function  
Input Capture Interrupt Enable  
0: Interrupt is inhibited.  
1: A timer interrupt is generated whenever the ICF1 or ICF2 bit of the SR register is  
set.  
7
ICIE  
Output Compare Interrupt Enable  
0: Interrupt is inhibited.  
1: A timer interrupt is generated whenever the OCF1 or OCF2 bit of the SR register  
is set.  
6
5
OCIE  
TOIE  
Timer Overflow Interrupt Enable  
0: Interrupt is inhibited.  
1: A timer interrupt is enabled whenever the TOF bit of the SR register is set.  
89/193  
On-chip peripherals  
ST72324Bxx  
Table 49. CR1 register description (continued)  
Bit Name Function  
Forced Output compare 2  
This bit is set and cleared by software.  
0: No effect on the OCMP2 pin.  
4
FOLV2  
1: Forces the OLVL2 bit to be copied to the OCMP2 pin, if the OC2E bit is set and  
even if there is no successful comparison.  
Forced Output compare 1  
This bit is set and cleared by software.  
0: No effect on the OCMP1 pin.  
1: Forces OLVL1 to be copied to the OCMP1 pin, if the OC1E bit is set and even if  
there is no successful comparison.  
3
2
FOLV1  
OLVL2  
Output Level 2  
This bit is copied to the OCMP2 pin whenever a successful comparison occurs with  
the OC2R register and OCxE is set in the CR2 register. This value is copied to the  
OCMP1 pin in One Pulse mode and Pulse Width modulation mode.  
Input Edge 1  
This bit determines which type of level transition on the ICAP1 pin will trigger the  
capture.  
0: A falling edge triggers the capture.  
1: A rising edge triggers the capture.  
1
0
IEDG1  
OLVL1  
Output Level 1  
The OLVL1 bit is copied to the OCMP1 pin whenever a successful comparison  
occurs with the OC1R register and the OC1E bit is set in the CR2 register.  
Control Register 2 (CR2)  
CR2  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
OC1E  
OC2E  
OPM  
PWM  
CC[1:0]  
R/W  
IEDG2  
EXEDG  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
M
Table 50. CR2 register description  
Bit Name  
Function  
Output compare 1 pin enable  
This bit is used only to output the signal from the timer on the OCMP1 pin (OLV1 in  
Output Compare mode, both OLV1 and OLV2 in PWM and One-Pulse mode).  
Whatever the value of the OC1E bit, the Output Compare 1 function of the timer  
remains active.  
0: OCMP1 pin alternate function disabled (I/O pin free for general-purpose I/O).  
1: OCMP1 pin alternate function enabled.  
7
6
OCIE  
Output compare 2 pin enable  
This bit is used only to output the signal from the timer on the OCMP2 pin (OLV2 in  
Output Compare mode). Whatever the value of the OC2E bit, the Output Compare 2  
function of the timer remains active.  
OC2E  
0: OCMP2 pin alternate function disabled (I/O pin free for general-purpose I/O).  
1: OCMP2 pin alternate function enabled.  
90/193  
ST72324Bxx  
On-chip peripherals  
Table 50. CR2 register description (continued)  
Bit Name Function  
One Pulse mode  
0: One Pulse mode is not active.  
5
4
OPM  
PWM  
1: One Pulse mode is active, the ICAP1 pin can be used to trigger one pulse on the  
OCMP1 pin; the active transition is given by the IEDG1 bit. The length of the  
generated pulse depends on the contents of the OC1R register.  
Pulse width modulation  
0: PWM mode is not active.  
1: PWM mode is active, the OCMP1 pin outputs a programmable cyclic signal; the  
length of the pulse depends on the value of OC1R register; the period depends on  
the value of OC2R register.  
Clock control  
The timer clock mode depends on these bits.  
00: Timer clock = fCPU/4  
01: Timer clock = fCPU/2  
10: Timer clock = fCPU/8  
3:2 CC[1:0]  
11: Timer clock = external clock (where available)  
Note: If the external clock pin is not available, programming the external clock  
configuration stops the counter.  
Input edge 2  
This bit determines which type of level transition on the ICAP2 pin will trigger the  
capture.  
0: A falling edge triggers the capture.  
1: A rising edge triggers the capture.  
1
0
IEDG2  
External clock edge  
This bit determines which type of level transition on the external clock pin EXTCLK  
will trigger the counter register.  
EXEDG  
0: A falling edge triggers the counter register.  
1: A rising edge triggers the counter register.  
Control/Status Register (CSR)  
CSR  
Reset value: xxxx x0xx (xxh)  
7
6
5
4
3
2
1
0
ICF1  
OCF1  
TOF  
ICF2  
OCF2  
TIMD  
Reserved  
-
RO  
RO  
RO  
RO  
RO  
R/W  
M
Table 51. CSR register description  
Bit Name  
Function  
Input capture flag 1  
0: No input capture (reset value).  
7
ICF1  
1: An input capture has occurred on the ICAP1 pin or the counter has reached the  
OC2R value in PWM mode. To clear this bit, first read the SR register, then read or  
write the low byte of the IC1R (IC1LR) register.  
91/193  
On-chip peripherals  
ST72324Bxx  
Table 51. CSR register description (continued)  
Bit Name Function  
Output compare flag 1  
0: No match (reset value).  
6
OCF1  
1: The content of the free running counter has matched the content of the OC1R  
register. To clear this bit, first read the SR register, then read or write the low byte of  
the OC1R (OC1LR) register.  
Timer overflow flag  
0: No timer overflow (reset value).  
5
4
3
TOF  
ICF2  
OCF2  
1: The free running counter rolled over from FFFFh to 0000h. To clear this bit, first  
read the SR register, then read or write the low byte of the CR (CLR) register.  
Note: Reading or writing the ACLR register does not clear TOF.  
Input capture flag 2  
0: No input capture (reset value).  
1: An Input Capture has occurred on the ICAP2 pin. To clear this bit, first read the SR  
register, then read or write the low byte of the IC2R (IC2LR) register.  
Output compare flag 2  
0: No match (reset value).  
1: The content of the free running counter has matched the content of the OC2R  
register. To clear this bit, first read the SR register, then read or write the low byte of  
the OC2R (OC2LR) register.  
Timer disable  
This bit is set and cleared by software. When set, it freezes the timer prescaler and  
counter and disabled the output functions (OCMP1 and OCMP2 pins) to reduce  
power consumption. Access to the timer registers is still available, allowing the timer  
configuration to be changed, or the counter reset, while it is disabled.  
0: Timer enabled.  
2
TIMD  
1: Timer prescaler, counter and outputs disabled.  
1:0  
-
Reserved, must be kept cleared.  
Input capture 1 high register (IC1HR)  
This is an 8-bit register that contains the high part of the counter value (transferred by the  
input capture 1 event).  
IC1HR  
7
Reset value: undefined  
6
5
4
3
2
1
0
MSB  
RO  
LSB  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
92/193  
ST72324Bxx  
On-chip peripherals  
Input capture 1 low register (IC1LR)  
This is an 8-bit register that contains the low part of the counter value (transferred by the  
input capture 1 event).  
IC1LR  
7
Reset value: undefined  
6
5
4
3
2
1
0
MSB  
RO  
LSB  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Output compare 1 high register (OC1HR)  
This is an 8-bit register that contains the high part of the value to be compared to the CHR  
register.  
OC1HR  
7
Reset value: 1000 0000 (80h)  
6
5
4
3
2
1
0
MSB  
R/W  
LSB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Output compare 1 low register (OC1LR)  
This is an 8-bit register that contains the low part of the value to be compared to the CLR  
register.  
OC1LR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
MSB  
R/W  
LSB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Output compare 2 high register (OC2HR)  
This is an 8-bit register that contains the high part of the value to be compared to the CHR  
register.  
OC2HR  
7
Reset value: 1000 0000 (80h)  
6
5
4
3
2
1
0
MSB  
R/W  
LSB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
93/193  
On-chip peripherals  
ST72324Bxx  
Output compare 2 low register (OC2LR)  
This is an 8-bit register that contains the low part of the value to be compared to the CLR  
register.  
OC2LR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
MSB  
R/W  
LSB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Counter high register (CHR)  
This is an 8-bit register that contains the high part of the counter value.  
CHR Reset value: 1111 1111 (FFh)  
7
6
5
4
3
2
1
0
MSB  
RO  
LSB  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Counter low register (CLR)  
This is an 8-bit register that contains the low part of the counter value. A write to this register  
resets the counter. An access to this register after accessing the CSR register clears the  
TOF bit.  
CLR  
Reset value: 1111 1100 (FCh)  
7
6
5
4
3
2
1
0
MSB  
RO  
LSB  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Alternate counter high register (ACHR)  
This is an 8-bit register that contains the high part of the counter value.  
ACHR  
7
Reset value: 1111 1111 (FFh)  
6
5
4
3
2
1
0
MSB  
RO  
LSB  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
94/193  
ST72324Bxx  
On-chip peripherals  
Alternate counter low register (ACLR)  
This is an 8-bit register that contains the low part of the counter value. A write to this register  
resets the counter. An access to this register after an access to CSR register does not clear  
the TOF bit in the CSR register.  
ACLR  
7
Reset value: 1111 1100 (FCh)  
6
5
4
3
2
1
0
MSB  
RO  
LSB  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Input capture 2 high register (IC2HR)  
This is an 8-bit register that contains the high part of the counter value (transferred by the  
Input Capture 2 event).  
1C2HR  
7
Reset value: undefined  
6
5
4
3
2
1
0
MSB  
RO  
LSB  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Input capture 2 low register (IC2LR)  
This is an 8-bit register that contains the low part of the counter value (transferred by the  
Input Capture 2 event).  
1C2LR  
7
Reset value: undefined  
6
5
4
3
2
1
0
MSB  
RO  
LSB  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Table 52. 16-bit timer register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
Timer A: 32  
Timer B: 42  
CR1  
Reset value  
ICIE  
0
OCIE  
0
TOIE  
0
FOLV2  
0
FOLV1  
0
OLVL2  
0
IEDG1  
0
OLVL1  
0
Timer A: 31  
Timer B: 41  
CR2  
Reset value  
OC1E  
0
OC2E  
0
OPM  
0
PWM  
0
CC1  
0
CC0  
0
IEDG2 EXEDG  
0
0
Timer A: 33  
Timer B: 43  
CSR  
Reset value  
ICF1  
x
OCF1  
x
TOF  
x
ICF2  
x
OCF2  
x
TIMD  
0
-
x
-
x
Timer A: 34  
Timer B: 44  
IC1HR  
Reset value  
MSB  
x
LSB  
x
x
x
x
x
x
x
x
x
x
x
x
x
Timer A: 35  
Timer B: 45  
IC1LR  
Reset value  
MSB  
x
LSB  
x
95/193  
On-chip peripherals  
ST72324Bxx  
Table 52. 16-bit timer register map and reset values (continued)  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
Timer A: 36  
Timer B: 46  
OC1HR  
Reset value  
MSB  
1
LSB  
0
0
0
0
0
1
1
1
1
x
x
0
0
0
0
1
1
1
1
x
x
0
0
0
0
1
1
1
1
x
x
0
0
0
0
1
1
1
1
x
x
0
0
0
0
1
1
1
1
x
x
0
0
0
0
1
0
1
0
x
x
Timer A: 37  
Timer B: 47  
OC1LR  
Reset value  
MSB  
0
LSB  
0
Timer A: 3E  
Timer B: 4E  
OC2HR  
Reset value  
MSB  
1
LSB  
0
Timer A: 3F  
Timer B: 4F  
OC2LR  
Reset value  
MSB  
0
LSB  
0
Timer A: 38  
Timer B: 48  
CHR  
Reset value  
MSB  
1
LSB  
1
Timer A: 39  
Timer B: 49  
CLR  
Reset value  
MSB  
1
LSB  
0
Timer A: 3A  
Timer B: 4A  
ACHR  
Reset value  
MSB  
1
LSB  
1
Timer A: 3B  
Timer B: 4B  
ACLR  
Reset value  
MSB  
1
LSB  
0
Timer A: 3C  
Timer B: 4C  
IC2HR  
Reset value  
MSB  
x
LSB  
x
Timer A: 3D  
Timer B: 4D  
IC2LR  
Reset value  
MSB  
x
LSB  
x
10.4  
Serial peripheral interface (SPI)  
10.4.1  
Introduction  
The serial peripheral interface (SPI) allows full-duplex, synchronous, serial communication  
with external devices. An SPI system may consist of a master and one or more slaves.  
However, the SPI interface can not be a master in a multi-master system.  
10.4.2  
Main features  
Full duplex synchronous transfers (on 3 lines)  
Simplex synchronous transfers (on 2 lines)  
Master or slave operation  
6 master mode frequencies (f  
/4 max.)  
CPU  
f
/2 max. slave mode frequency (see note)  
CPU  
SS Management by software or hardware  
Programmable clock polarity and phase  
End of transfer interrupt flag  
Write collision, Master mode fault and Overrun flags  
Note:  
In slave mode, continuous transmission is not possible at maximum frequency due to the  
software overhead for clearing status flags and to initiate the next transmission sequence.  
96/193  
ST72324Bxx  
On-chip peripherals  
10.4.3  
General description  
Figure 50 shows the serial peripheral interface (SPI) block diagram. The SPI has three  
registers:  
SPI Control Register (SPICR)  
SPI Control/Status Register (SPICSR)  
SPI Data Register (SPIDR)  
The SPI is connected to external devices through four pins:  
MISO: Master In / Slave Out data  
MOSI: Master Out / Slave In data  
SCK: Serial Clock out by SPI masters and input by SPI slaves  
SS: Slave select: This input signal acts as a ‘chip select’ to let the SPI master  
communicate with slaves individually and to avoid contention on the data lines.  
Slave SS inputs can be driven by standard I/O ports on the master MCU.  
Figure 50. Serial peripheral interface block diagram  
Data/Address bus  
Read  
SPIDR  
Interrupt  
request  
Read Buffer  
MOSI  
0
SPICSR  
7
MISO  
8-bit Shift Register  
SPIF WCOL OVR MODF  
0
SOD SSM SSI  
Write  
SOD  
bit  
1
SS  
SPI  
state  
0
SCK  
control  
0
SPICR  
7
SPIE SPE SPR2MSTR CPOL CPHA SPR1 SPR0  
Master  
control  
Serial clock  
generator  
SS  
Functional description  
A basic example of interconnections between a single master and a single slave is  
illustrated in Figure 51.  
The MOSI pins are connected together and the MISO pins are connected together. In this  
way data is transferred serially between master and slave (most significant bit first).  
97/193  
 
On-chip peripherals  
ST72324Bxx  
The communication is always initiated by the master. When the master device transmits  
data to a slave device via MOSI pin, the slave device responds by sending data to the  
master device via the MISO pin. This implies full duplex communication with both data out  
and data in synchronized with the same clock signal (which is provided by the master device  
via the SCK pin).  
To use a single data line, the MISO and MOSI pins must be connected at each node (in this  
case only simplex communication is possible).  
Four possible data/clock timing relationships may be chosen (see Figure 54) but master and  
slave must be programmed with the same timing mode.  
Figure 51. Single master/single slave application  
Master  
Slave  
MSB  
LSB  
MSB  
LSB  
8-bit Shift Register  
MISO  
MOSI  
MISO  
MOSI  
8-bit Shift Register  
SPI  
SCK  
SS  
SCK  
SS  
clock  
generator  
+5V  
Not used if SS is managed  
by software  
Slave select management  
As an alternative to using the SS pin to control the Slave Select signal, the application can  
choose to manage the Slave Select signal by software. This is configured by the SSM bit in  
the SPICSR register (see Figure 53).  
In software management, the external SS pin is free for other application uses and the  
internal SS signal level is driven by writing to the SSI bit in the SPICSR register.  
In Master mode:  
SS internal must be held high continuously  
Depending on the data/clock timing relationship, there are two cases in Slave mode (see  
Figure 52):  
If CPHA = 1 (data latched on second clock edge):  
SS internal must be held low during the entire transmission. This implies that in  
single slave applications the SS pin either can be tied to V , or made free for  
SS  
standard I/O by managing the SS function by software (SSM = 1 and SSI = 0 in  
the in the SPICSR register)  
If CPHA = 0 (data latched on first clock edge):  
SS internal must be held low during byte transmission and pulled high between  
each byte to allow the slave to write to the shift register. If SS is not pulled high, a  
Write Collision error will occur when the slave writes to the shift register (see Write  
collision error (WCOL) on page 102).  
98/193  
 
ST72324Bxx  
On-chip peripherals  
Figure 52. Generic SS timing diagram  
Byte 3  
MOSI/MISO  
Master SS  
Byte 1  
Byte 2  
Slave SS  
(if CPHA=0)  
Slave SS  
(if CPHA=1)  
Figure 53. Hardware/software slave select management  
SSM bit  
SSI bit  
1
0
SS internal  
SS external pin  
Master mode operation  
In master mode, the serial clock is output on the SCK pin. The clock frequency, polarity and  
phase are configured by software (refer to the description of the SPICSR register).  
Note:  
The idle state of SCK must correspond to the polarity selected in the SPICSR register (by  
pulling up SCK if CPOL = 1 or pulling down SCK if CPOL = 0).  
How to operate the SPI in master mode  
To operate the SPI in master mode, perform the following steps in order:  
1. Write to the SPICR register:  
Select the clock frequency by configuring the SPR[2:0] bits.  
Select the clock polarity and clock phase by configuring the CPOL and CPHA bits.  
Figure 54 shows the four possible configurations.  
Note: The slave must have the same CPOL and CPHA settings as the master.  
2. Write to the SPICSR register:  
Either set the SSM bit and set the SSI bit or clear the SSM bit and tie the SS pin  
high for the complete byte transmit sequence.  
3. Write to the SPICR register:  
Set the MSTR and SPE bits.  
Note: MSTR and SPE bits remain set only if SS is high.  
Caution:  
If the SPICSR register is not written first, the SPICR register setting (MSTR bit) might not be  
taken into account.  
The transmit sequence begins when software writes a byte in the SPIDR register.  
99/193  
 
 
On-chip peripherals  
ST72324Bxx  
Master mode transmit sequence  
When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift  
register and then shifted out serially to the MOSI pin most significant bit first.  
When data transfer is complete:  
The SPIF bit is set by hardware  
An interrupt request is generated if the SPIE bit is set and the interrupt mask in the  
CCR register is cleared.  
Clearing the SPIF bit is performed by the following software sequence:  
1. An access to the SPICSR register while the SPIF bit is set.  
2. A read to the SPIDR register.  
Note:  
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR  
register is read.  
Slave mode operation  
In slave mode, the serial clock is received on the SCK pin from the master device.  
To operate the SPI in slave mode:  
1. Write to the SPICSR register to perform the following actions:  
Select the clock polarity and clock phase by configuring the CPOL and CPHA bits  
(see Figure 54). The slave must have the same CPOL and CPHA settings as the  
master.  
Manage the SS pin as described in Slave select management on page 98 and  
Figure 52. If CPHA = 1, SS must be held low continuously. If CPHA = 0, SS must  
be held low during byte transmission and pulled up between each byte to let the  
slave write in the shift register.  
2. Write to the SPICR register to clear the MSTR bit and set the SPE bit to enable the SPI  
I/O functions.  
Slave mode transmit sequence  
When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift  
register and then shifted out serially to the MISO pin most significant bit first.  
The transmit sequence begins when the slave device receives the clock signal and the most  
significant bit of the data on its MOSI pin.  
When data transfer is complete:  
The SPIF bit is set by hardware  
An interrupt request is generated if SPIE bit is set and interrupt mask in the CCR  
register is cleared.  
Clearing the SPIF bit is performed by the following software sequence:  
1. An access to the SPICSR register while the SPIF bit is set.  
2. A write or a read to the SPIDR register.  
Note:  
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR  
register is read.  
100/193  
ST72324Bxx  
On-chip peripherals  
The SPIF bit can be cleared during a second transmission; however, it must be cleared  
before the second SPIF bit in order to prevent an Overrun condition (see Overrun condition  
(OVR) on page 102).  
10.4.4  
Clock phase and clock polarity  
Four possible timing relationships may be chosen by software, using the CPOL and CPHA  
bits (see Figure 54).  
Note:  
The idle state of SCK must correspond to the polarity selected in the SPICSR register (by  
pulling up SCK if CPOL = 1 or pulling down SCK if CPOL = 0).  
The combination of the CPOL clock polarity and CPHA (clock phase) bits selects the data  
capture clock edge  
Figure 54 shows an SPI transfer with the four combinations of the CPHA and CPOL bits.  
The diagram may be interpreted as a master or slave timing diagram where the SCK, MISO  
and MOSI pins are directly connected between the master and the slave device.  
Note:  
If CPOL is changed at the communication byte boundaries, the SPI must be disabled by  
resetting the SPE bit.  
(1)  
Figure 54. Data clock timing diagram  
CPHA = 1  
SCK  
(CPOL = 1)  
SCK  
(CPOL = 0)  
MISO  
(from master)  
Bit 4  
Bit 4  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
LSB  
MSB  
MSB  
Bit 5  
Bit 5  
Bit3  
Bit3  
Bit 6  
Bit 6  
MOSI  
(from slave)  
LSB  
SS  
(to slave)  
Capture strobe  
CPHA = 0  
SCK  
(CPOL = 1)  
SCK  
(CPOL = 0)  
MISO  
Bit 4  
Bit 4  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
LSB  
LSB  
MSB  
Bit 5  
Bit 5  
Bit3  
Bit3  
Bit 6  
Bit 6  
(from master)  
MOSI  
(from slave)  
MSB  
SS  
(to slave)  
Capture strobe  
1. This figure should not be used as a replacement for parametric information. Refer to the Electrical  
Characteristics chapter.  
101/193  
 
On-chip peripherals  
ST72324Bxx  
10.4.5  
Error flags  
Master mode fault (MODF)  
Master mode fault occurs when the master device has its SS pin pulled low.  
When a Master mode fault occurs:  
The MODF bit is set and an SPI interrupt request is generated if the SPIE bit is  
set.  
The SPE bit is reset. This blocks all output from the device and disables the SPI  
peripheral.  
The MSTR bit is reset, thus forcing the device into slave mode.  
Clearing the MODF bit is done through a software sequence:  
1. A read access to the SPICSR register while the MODF bit is set.  
2. A write to the SPICR register.  
Note:  
To avoid any conflicts in an application with multiple slaves, the SS pin must be pulled high  
during the MODF bit clearing sequence. The SPE and MSTR bits may be restored to their  
original state during or after this clearing sequence.  
Hardware does not allow the user to set the SPE and MSTR bits while the MODF bit is set  
except in the MODF bit clearing sequence.  
Overrun condition (OVR)  
An overrun condition occurs, when the master device has sent a data byte and the slave  
device has not cleared the SPIF bit issued from the previously transmitted byte.  
When an Overrun occurs the OVR bit is set and an interrupt request is generated if the SPIE  
bit is set.  
In this case, the receiver buffer contains the byte sent after the SPIF bit was last cleared. A  
read to the SPIDR register returns this byte. All other bytes are lost.  
The OVR bit is cleared by reading the SPICSR register.  
Write collision error (WCOL)  
A write collision occurs when the software tries to write to the SPIDR register while a data  
transfer is taking place with an external device. When this happens, the transfer continues  
uninterrupted and the software write is unsuccessful.  
Write collisions can occur both in master and slave mode. See also Slave select  
management on page 98.  
Note:  
A read collision will never occur since the received data byte is placed in a buffer in which  
access is always synchronous with the MCU operation.  
The WCOL bit in the SPICSR register is set if a write collision occurs.  
No SPI interrupt is generated when the WCOL bit is set (the WCOL bit is a status flag only).  
A software sequence clears the WCOL bit (see Figure 55).  
102/193  
 
 
ST72324Bxx  
On-chip peripherals  
Figure 55. Clearing the WCOL bit (Write collision flag) software sequence  
Clearing sequence after SPIF = 1 (end of a data byte transfer)  
1st Step  
Read SPICSR  
Result  
SPIF = 0  
WCOL = 0  
2nd Step  
Read SPIDR  
Clearing sequence before SPIF = 1 (during a data byte transfer)  
1st Step  
Read SPICSR  
Result  
Note: Writing to the SPIDR register  
instead of reading it does not reset  
the WCOL bit.  
2nd Step  
Read SPIDR  
WCOL = 0  
Single master systems  
A typical single master system may be configured, using an MCU as the master and four  
MCUs as slaves (see Figure 56).  
The master device selects the individual slave devices by using four pins of a parallel port to  
control the four SS pins of the slave devices.  
The SS pins are pulled high during reset since the master device ports will be forced to be  
inputs at that time, thus disabling the slave devices.  
Note: To prevent a bus conflict on the MISO line the master allows only one active slave  
device during a transmission.  
For more security, the slave device may respond to the master with the received data byte.  
Then the master will receive the previous byte back from the slave device if all MISO and  
MOSI pins are connected and the slave has not written to its SPIDR register.  
Other transmission security methods can use ports for handshake lines or data bytes with  
command fields.  
Figure 56. Single master/multiple slave configuration  
SS  
SS  
SS  
SS  
SCK  
SCK  
SCK  
SCK  
Slave  
MCU  
Slave  
MCU  
Slave  
MCU  
Slave  
MCU  
MOSI MISO  
MOSI MISO  
MOSI MISO  
MOSI MISO  
MOSI MISO  
SCK  
Master  
MCU  
5V  
SS  
103/193  
 
 
On-chip peripherals  
ST72324Bxx  
10.4.6  
Low power modes  
Table 53. Effect of low power modes on SPI  
Mode  
Description  
No effect on SPI.  
SPI interrupt events cause the device to exit from Wait mode.  
Wait  
SPI registers are frozen.  
In Halt mode, the SPI is inactive. SPI operation resumes when the MCU is woken up by an  
interrupt with Exit from Halt mode capability. The data received is subsequently read from  
the SPIDR register when the software is running (interrupt vector fetching). If several data  
are received before the wakeup event, then an overrun error is generated. This error can  
be detected after the fetch of the interrupt routine that woke up the device.  
Halt  
Using the SPI to wake up the MCU from Halt mode  
In slave configuration, the SPI is able to wake up the ST7 device from Halt mode through a  
SPIF interrupt. The data received is subsequently read from the SPIDR register when the  
software is running (interrupt vector fetch). If multiple data transfers have been performed  
before software clears the SPIF bit, then the OVR bit is set by hardware.  
Note:  
When waking up from Halt mode, if the SPI remains in Slave mode, it is recommended to  
perform an extra communications cycle to bring the SPI from Halt mode state to normal  
state. If the SPI exits from Slave mode, it returns to normal state immediately.  
Caution:  
The SPI can wake up the ST7 from Halt mode only if the Slave Select signal (external SS  
pin or the SSI bit in the SPICSR register) is low when the ST7 enters Halt mode. Therefore,  
if Slave selection is configured as external (see Slave select management on page 98),  
make sure the master drives a low level on the SS pin when the slave enters Halt mode.  
10.4.7  
Interrupts  
(1)  
Table 54. SPI interrupt control/wakeup capability  
Interrupt event  
Event flag  
Enable control bit Exit from Wait Exit from Halt  
SPI end of transfer event  
Master mode fault event  
Overrun error  
SPIF  
MODF  
OVR  
Yes  
SPIE  
Yes  
No  
1. The SPI interrupt events are connected to the same interrupt vector (see Section 7: Interrupts). They  
generate an interrupt if the corresponding Enable Control Bit is set and the interrupt mask in the CC  
register is reset (RIM instruction).  
10.4.8  
SPI registers  
SPI control register (SPICR)  
SPICR  
7
Reset value: 0000 xxxx (0xh)  
6
5
4
3
2
1
0
SPIE  
R/W  
SPE  
SPR2  
MSTR  
CPOL  
CPHA  
SPR[1:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
104/193  
ST72324Bxx  
On-chip peripherals  
Table 55. SPICR register description  
Bit  
Name  
Function  
Serial Peripheral Interrupt Enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited.  
7
SPIE  
1: An SPI interrupt is generated whenever SPIF = 1, MODF = 1 or OVR = 1 in the  
SPICSR register.  
Serial Peripheral Output Enable  
This bit is set and cleared by software. It is also cleared by hardware when, in  
master mode, SS = 0 (see Master mode fault (MODF) on page 102). The SPE bit  
is cleared by reset, so the SPI peripheral is not initially connected to the external  
pins.  
6
SPE  
0: I/O pins free for general purpose I/O  
1: SPI I/O pin alternate functions enabled  
Divider Enable  
This bit is set and cleared by software and is cleared by reset. It is used with the  
SPR[1:0] bits to set the baud rate. Refer to Table 56: SPI master mode SCK  
frequency.  
0: Divider by 2 enabled  
1: Divider by 2 disabled  
5
4
SPR2  
MSTR  
Note: This bit has no effect in slave mode.  
Master mode  
This bit is set and cleared by software. It is also cleared by hardware when, in  
master mode, SS = 0 (see Master mode fault (MODF) on page 102).  
0: Slave mode  
1: Master mode. The function of the SCK pin changes from an input to an output  
and the functions of the MISO and MOSI pins are reversed.  
Clock Polarity  
This bit is set and cleared by software. This bit determines the idle state of the  
serial Clock. The CPOL bit affects both the master and slave modes.  
0: SCK pin has a low level idle state  
1: SCK pin has a high level idle state  
Note: If CPOL is changed at the communication byte boundaries, the SPI must be  
disabled by resetting the SPE bit.  
3
2
CPOL  
CPHA  
Clock Phase  
This bit is set and cleared by software.  
0: The first clock transition is the first data capture edge.  
1: The second clock transition is the first capture edge.  
Note: The slave must have the same CPOL and CPHA settings as the master.  
Serial clock frequency  
These bits are set and cleared by software. Used with the SPR2 bit, they select  
the baud rate of the SPI serial clock SCK output by the SPI in master mode  
(seeTable 56).  
1:0 SPR[1:0]  
Note: These 2 bits have no effect in slave mode.  
Table 56. SPI master mode SCK frequency  
Serial clock  
SPR2  
SPR1  
SPR0  
fCPU/4  
1
0
0
0
0
0
fCPU/8  
105/193  
 
On-chip peripherals  
Table 56. SPI master mode SCK frequency (continued)  
ST72324Bxx  
SPR0  
Serial clock  
SPR2  
SPR1  
fCPU/16  
0
1
0
0
0
1
1
1
1
0
0
1
f
CPU/32  
fCPU/64  
fCPU/128  
SPI control/status register (SPICSR)  
SPICSR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
SPIF  
WCOL  
OVR  
MODF  
Reserved  
SOD  
SSM  
SSI  
RO  
RO  
RO  
RO  
-
R/W  
R/W  
R/W  
Table 57. SPICSR register description  
Bit Name  
Function  
Serial peripheral data transfer flag  
This bit is set by hardware when a transfer has been completed. An interrupt is  
generated if SPIE = 1 in the SPICR register. It is cleared by a software sequence (an  
access to the SPICSR register followed by a write or a read to the SPIDR register).  
0: Data transfer is in progress or the flag has been cleared  
7
SPIF  
1: Data transfer between the device and an external device has been completed.  
Note: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the  
SPICSR register is read.  
Write collision status  
This bit is set by hardware when a write to the SPIDR register is done during a  
transmit sequence. It is cleared by a software sequence (see Figure 55).  
0: No write collision occurred  
6
5
WCOL  
OVR  
1: A write collision has been detected.  
SPI Overrun error  
This bit is set by hardware when the byte currently being received in the shift register  
is ready to be transferred into the SPIDR register while SPIF = 1 (see Overrun  
condition (OVR) on page 102). An interrupt is generated if SPIE = 1 in SPICR  
register. The OVR bit is cleared by software reading the SPICSR register.  
0: No overrun error  
1: Overrun error detected  
Mode fault flag  
This bit is set by hardware when the SS pin is pulled low in master mode (see  
Master mode fault (MODF) on page 102). An SPI interrupt can be generated if  
SPIE = 1 in the SPICSR register. This bit is cleared by a software sequence (An  
access to the SPICR register while MODF = 1 followed by a write to the SPICR  
register).  
4
3
MODF  
0: No master mode fault detected  
1: A fault in master mode has been detected.  
-
Reserved, must be kept cleared.  
106/193  
ST72324Bxx  
On-chip peripherals  
Table 57. SPICSR register description (continued)  
Bit Name Function  
SPI output disable  
This bit is set and cleared by software. When set, it disables the alternate function of  
the SPI output (MOSI in master mode / MISO in slave mode).  
0: SPI output enabled (if SPE = 1).  
2
1
0
SOD  
SSM  
SSI  
1: SPI output disabled.  
SS management  
This bit is set and cleared by software. When set, it disables the alternate function of  
the SPI SS pin and uses the SSI bit value instead. See Slave select management on  
page 98.  
0: Hardware management (SS managed by external pin).  
1: Software management (internal SS signal controlled by SSI bit. External SS pin  
free for general-purpose I/O).  
SS Internal mode  
This bit is set and cleared by software. It acts as a ‘chip select’ by controlling the  
level of the SS slave select signal when the SSM bit is set.  
0: Slave selected.  
1: Slave deselected.  
SPI data I/O register (SPIDR)  
SPIDR  
Reset value: undefined  
7
6
5
4
3
2
1
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The SPIDR register is used to transmit and receive data on the serial bus. In a master  
device, a write to this register will initiate transmission/reception of another byte.  
Note:  
During the last clock cycle the SPIF bit is set, a copy of the received data byte in the shift  
register is moved to a buffer. When the user reads the serial peripheral data I/O register, the  
buffer is actually being read.  
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR  
register is read.  
Warning: A write to the SPIDR register places data directly into the  
shift register for transmission.  
A read to the SPIDR register returns the value located in the buffer and not the content of  
the shift register (see Figure 50).  
107/193  
On-chip peripherals  
ST72324Bxx  
Table 58. SPI register map and reset values  
Address (Hex.) Register label  
7
6
5
4
3
2
1
0
SPIDR  
Reset value  
MSB  
x
LSB  
x
0021h  
0022h  
0023h  
x
x
x
x
x
x
SPICR  
Reset value  
SPIE  
0
SPE SPR2 MSTR CPOL CPHA SPR1 SPR0  
0
0
0
x
x
x
x
SPICSR  
Reset value  
SPIF WCOL OVR MODF  
0
SOD SSM  
0
SSI  
0
0
0
0
0
0
10.5  
Serial communications interface (SCI)  
10.5.1  
Introduction  
The serial communications interface (SCI) offers a flexible means of full-duplex data  
exchange with external equipment requiring an industry standard NRZ asynchronous serial  
data format. The SCI offers a very wide range of baud rates using two baud rate generator  
systems.  
10.5.2  
Main features  
Full duplex, asynchronous communications  
NRZ standard format (mark/space)  
Dual baud rate generator systems  
Independently programmable transmit and receive baud rates up to 500K baud.  
Programmable data word length (8 or 9 bits)  
Receive buffer full, Transmit buffer empty and End of Transmission flags  
2 receiver wakeup modes  
Address bit (MSB)  
Idle line  
Muting function for multiprocessor configurations  
Separate enable bits for Transmitter and Receiver  
4 error detection flags  
Overrun error  
Noise error  
Frame error  
Parity error  
5 interrupt sources with flags  
Transmit data register empty  
Transmission complete  
Receive data register full  
Idle line received  
Overrun error detected  
108/193  
ST72324Bxx  
On-chip peripherals  
Parity control  
Transmits parity bit  
Checks parity of received data byte  
Reduced power consumption mode  
10.5.3  
General description  
The interface is externally connected to another device by two pins (see Figure 58):  
TDO: Transmit Data Output. When the transmitter and the receiver are disabled, the  
output pin returns to its I/O port configuration. When the transmitter and/or the receiver  
are enabled and nothing is to be transmitted, the TDO pin is at high level.  
RDI: Receive Data Input is the serial data input. Oversampling techniques are used for  
data recovery by discriminating between valid incoming data and noise.  
Through these pins, serial data is transmitted and received as frames comprising:  
an Idle Line prior to transmission or reception  
a start bit  
a data word (8 or 9 bits) least significant bit first  
a Stop bit indicating that the frame is complete  
This interface uses two types of baud rate generator:  
a conventional type for commonly-used baud rates  
an extended type with a prescaler offering a very wide range of baud rates even with  
non-standard oscillator frequencies  
109/193  
On-chip peripherals  
ST72324Bxx  
Figure 57. SCI block diagram  
Write  
Read  
(Data Register) DR  
Received Data Register (RDR)  
Received Shift Register  
Transmit Data Register (TDR)  
TDO  
RDI  
Transmit Shift Register  
CR1  
R8 T8 SCID  
M WAKE PCE PS PIE  
Wake  
up  
unit  
Receiver  
clock  
Transmit  
control  
Receiver  
control  
CR2  
SR  
TIE TCIE RIE ILIE TE RE RWU SBK  
TDRE TC RDRF IDLE OR NF FE  
PE  
SCI  
Interrupt  
control  
Transmitter  
clock  
Transmitter rate  
control  
fCPU  
/16  
/PR  
BRR  
SCP1  
SCT2  
SCT1SCT0 SCR2 SCR1SCR0  
SCP0  
Receiver rate  
control  
Conventional baud rate generator  
110/193  
 
ST72324Bxx  
On-chip peripherals  
10.5.4  
Functional description  
The block diagram of the serial control interface is shown in Figure 57. It contains six  
dedicated registers:  
2 control registers (SCICR1 and SCICR2)  
a status register (SCISR)  
a baud rate register (SCIBRR)  
an extended prescaler receiver register (SCIERPR)  
an extended prescaler transmitter register (SCIETPR)  
Refer to the register descriptions in Section 10.5.7 for the definitions of each bit.  
Serial data format  
Word length may be selected as being either 8 or 9 bits by programming the M bit in the  
SCICR1 register (see Figure 57).  
The TDO pin is in low state during the start bit.  
The TDO pin is in high state during the stop bit.  
An Idle character is interpreted as an entire frame of ‘1’s followed by the start bit of the next  
frame which contains data.  
A Break character is interpreted on receiving ‘0’s for some multiple of the frame period. At  
the end of the last break frame the transmitter inserts an extra ‘1’ bit to acknowledge the  
start bit.  
Transmission and reception are driven by their own baud rate generator.  
Figure 58. Word length programming  
9-bit word length (M bit is set)  
Next data frame  
Possible  
Parity  
Data frame  
bit  
Next  
Start  
bit  
Start  
bit  
Stop  
bit  
bit 2  
bit 6  
bit 0 bit 1  
bit 3 bit 4 bit 5  
Idle frame  
bit 7 bit 8  
Start  
bit  
Start  
Break frame  
Extra  
bit  
’1’  
8-bit word length (M bit is reset)  
Data frame  
Possible  
Parity  
bit  
Next data frame  
Next  
Start  
Start  
Stop  
Bit  
bit 2  
bit 5 bit 6  
bit 0 bit 1  
bit 3 bit 4  
Idle frame  
bit 7  
bit  
bit  
Start  
bit  
Start  
bit  
Extra  
’1’  
Break frame  
111/193  
 
On-chip peripherals  
ST72324Bxx  
Transmitter  
The transmitter can send data words of either 8 or 9 bits depending on the M bit status.  
When the M bit is set, word length is 9 bits and the 9th bit (the MSB) has to be stored in the  
T8 bit in the SCICR1 register.  
Character transmission  
During an SCI transmission, data shifts out LSB first on the TDO pin. In this mode, the  
SCIDR register consists of a buffer (TDR) between the internal bus and the transmit shift  
register (see Figure 57).  
Procedure  
1. Select the M bit to define the word length.  
2. Select the desired baud rate using the SCIBRR and the SCIETPR registers.  
3. Set the TE bit to assign the TDO pin to the alternate function and to send a idle frame  
as first transmission.  
4. Access the SCISR register and write the data to send in the SCIDR register (this  
sequence clears the TDRE bit). Repeat this sequence for each data to be transmitted.  
Clearing the TDRE bit is always performed by the following software sequence:  
1. An access to the SCISR register  
2. A write to the SCIDR register  
The TDRE bit is set by hardware and it indicates:  
The TDR register is empty.  
The data transfer is beginning.  
The next data can be written in the SCIDR register without overwriting the previous  
data.  
This flag generates an interrupt if the TIE bit is set and the I bit is cleared in the CCR  
register.  
When a transmission is taking place, a write instruction to the SCIDR register stores the  
data in the TDR register and which is copied in the shift register at the end of the current  
transmission.  
When no transmission is taking place, a write instruction to the SCIDR register places the  
data directly in the shift register, the data transmission starts, and the TDRE bit is  
immediately set.  
When a frame transmission is complete (after the stop bit) the TC bit is set and an interrupt  
is generated if the TCIE is set and the I bit is cleared in the CCR register.  
Clearing the TC bit is performed by the following software sequence:  
1. An access to the SCISR register  
2. A write to the SCIDR register  
Note:  
The TDRE and TC bits are cleared by the same software sequence.  
112/193  
ST72324Bxx  
On-chip peripherals  
Break characters  
Setting the SBK bit loads the shift register with a break character. The break frame length  
depends on the M bit (see Figure 58).  
As long as the SBK bit is set, the SCI send break frames to the TDO pin. After clearing this  
bit by software the SCI insert a logic 1 bit at the end of the last break frame to guarantee the  
recognition of the start bit of the next frame.  
Idle characters  
Setting the TE bit drives the SCI to send an idle frame before the first data frame.  
Clearing and then setting the TE bit during a transmission sends an idle frame after the  
current word.  
Note:  
Resetting and setting the TE bit causes the data in the TDR register to be lost. Therefore,  
the best time to toggle the TE bit is when the TDRE bit is set, that is, before writing the next  
byte in the SCIDR.  
Receiver  
The SCI can receive data words of either 8 or 9 bits. When the M bit is set, word length is 9  
bits and the MSB is stored in the R8 bit in the SCICR1 register.  
Character reception  
During a SCI reception, data shifts in least significant bit first through the RDI pin. In this  
mode, the SCIDR register consists or a buffer (RDR) between the internal bus and the  
received shift register (see Figure 57).  
Procedure  
1. Select the M bit to define the word length.  
2. Select the desired baud rate using the SCIBRR and the SCIERPR registers.  
3. Set the RE bit, this enables the receiver which begins searching for a start bit.  
When a character is received:  
The RDRF bit is set. It indicates that the content of the shift register is transferred to the  
RDR.  
An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register.  
The error flags can be set if a frame error, noise or an overrun error has been detected  
during reception.  
Clearing the RDRF bit is performed by the following software sequence done by:  
1. An access to the SCISR register  
2. A read to the SCIDR register.  
The RDRF bit must be cleared before the end of the reception of the next character to avoid  
an overrun error.  
Break character  
When a break character is received, the SCI handles it as a framing error.  
Idle character  
When a idle frame is detected, there is the same procedure as a data received character  
plus an interrupt if the ILIE bit is set and the I bit is cleared in the CCR register.  
113/193  
 
On-chip peripherals  
Overrun error  
ST72324Bxx  
An overrun error occurs when a character is received when RDRF has not been reset. Data  
can not be transferred from the shift register to the RDR register as long as the RDRF bit is  
not cleared.  
When a overrun error occurs:  
The OR bit is set.  
The RDR content will not be lost.  
The shift register will be overwritten.  
An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register.  
The OR bit is reset by an access to the SCISR register followed by a SCIDR register read  
operation.  
Noise error  
Oversampling techniques are used for data recovery by discriminating between valid  
incoming data and noise. Normal data bits are considered valid if three consecutive samples  
(8th, 9th, 10th) have the same bit value, otherwise the NF flag is set. In the case of start bit  
detection, the NF flag is set on the basis of an algorithm combining both valid edge  
detection and three samples (8th, 9th, 10th). Therefore, to prevent the NF flag from being  
set during start bit reception, there should be a valid edge detection as well as three valid  
samples.  
When noise is detected in a frame:  
The NF flag is set at the rising edge of the RDRF bit.  
Data is transferred from the Shift register to the SCIDR register.  
No interrupt is generated. However this bit rises at the same time as the RDRF bit  
which itself generates an interrupt.  
The NF flag is reset by a SCISR register read operation followed by a SCIDR register read  
operation.  
During reception, if a false start bit is detected (for example, 8th, 9th, 10th samples are  
011,101,110), the frame is discarded and the receiving sequence is not started for this  
frame. There is no RDRF bit set for this frame and the NF flag is set internally (not  
accessible to the user). This NF flag is accessible along with the RDRF bit when a next valid  
frame is received.  
Note:  
If the application Start bit is not long enough to match the above requirements, then the NF  
Flag may get set due to the short Start bit. In this case, the NF flag may be ignored by the  
application software when the first valid byte is received.  
See also Noise error causes on page 119.  
114/193  
ST72324Bxx  
On-chip peripherals  
Figure 59. SCI baud rate and extended prescaler block diagram  
Transmitter  
clock  
Extended prescaler transmitter rate control  
SCIETPR  
Extended transmitter prescaler register  
SCIERPR  
Extended receiver prescaler register  
Receiver  
clock  
Extended prescaler receiver rate control  
Extended prescaler  
fCPU  
Transmitter rate  
control  
/PR  
/16  
SCIBRR  
SCP1  
SCT2  
SCT1 SCT0 SCR2 SCR1SCR0  
SCP0  
Receiver rate  
control  
Conventional baud rate generator  
Framing error  
A framing error is detected when:  
The stop bit is not recognized on reception at the expected time, following either a de-  
synchronization or excessive noise.  
A break is received.  
When the framing error is detected:  
the FE bit is set by hardware  
Data is transferred from the Shift register to the SCIDR register.  
No interrupt is generated. However this bit rises at the same time as the RDRF bit  
which itself generates an interrupt.  
The FE bit is reset by a SCISR register read operation followed by a SCIDR register read  
operation.  
115/193  
 
On-chip peripherals  
ST72324Bxx  
Conventional baud rate generation  
The baud rate for the receiver and transmitter (Rx and Tx) are set independently and  
calculated as follows:  
fCPU  
fCPU  
Rx =  
Tx =  
(16*PR)*RR  
(16*PR)*TR  
with:  
PR = 1, 3, 4 or 13 (see SCP[1:0] bits)  
TR = 1, 2, 4, 8, 16, 32, 64,128  
(see SCT[2:0] bits)  
RR = 1, 2, 4, 8, 16, 32, 64,128  
(see SCR[2:0] bits)  
All these bits are in the SCI baud rate register (SCIBRR) on page 125.  
Example: If f is 8 MHz (normal mode) and if PR = 13 and TR = RR = 1, the transmit and  
CPU  
receive baud rates are 38400 baud.  
Note:  
The baud rate registers MUST NOT be changed while the transmitter or the receiver is  
enabled.  
Extended baud rate generation  
The extended prescaler option gives a very fine tuning on the baud rate, using a 255 value  
prescaler, whereas the conventional baud rate generator retains industry standard software  
compatibility.  
The extended baud rate generator block diagram is described in Figure 59.  
The output clock rate sent to the transmitter or to the receiver will be the output from the 16  
divider divided by a factor ranging from 1 to 255 set in the SCIERPR or the SCIETPR  
register.  
The extended prescaler is activated by setting the SCIETPR or SCIERPR register to a value  
other than zero. The baud rates are calculated as follows:  
fCPU  
16*ERPR*(PR*RR)  
fCPU  
16*ETPR*(PR*TR)  
Rx =  
Tx =  
with:  
ETPR = 1,..,255, see SCI extended transmit prescaler division register (SCIETPR) on  
page 126.  
ERPR = 1,.. 255, see SCI extended receive prescaler division register (SCIERPR) on  
page 125.  
116/193  
ST72324Bxx  
On-chip peripherals  
Receiver muting and wakeup feature  
In multiprocessor configurations it is often desirable that only the intended message  
recipient should actively receive the full message contents, thus reducing redundant SCI  
service overhead for all non-addressed receivers.  
The non-addressed devices may be placed in sleep mode by means of the muting function.  
Setting the RWU bit by software puts the SCI in sleep mode:  
All the reception status bits cannot be set.  
All the receive interrupts are inhibited.  
A muted receiver may be awakened by one of the following two ways:  
by Idle Line detection if the Wake bit is reset,  
by Address Mark detection if the Wake bit is set.  
A receiver wakes up by Idle Line detection when the Receive line has recognized an Idle  
Frame. Then the RWU bit is reset by hardware but the Idle bit is not set.  
A receiver wakes up by Address Mark detection when it received a ‘1’ as the most significant  
bit of a word, thus indicating that the message is an address. The reception of this particular  
word wakes up the receiver, resets the RWU bit and sets the RDRF bit, which allows the  
receiver to receive this word normally and to use it as an address word.  
Caution:  
In Mute mode, do not write to the SCICR2 register. If the SCI is in Mute mode during the  
read operation (RWU = 1) and an address mark wakeup event occurs (RWU is reset) before  
the write operation, the RWU bit will be set again by this write operation. Consequently the  
address byte is lost and the SCI is not woken up from Mute mode.  
Parity control  
Parity control (generation of parity bit in transmission and parity checking in reception) can  
be enabled by setting the PCE bit in the SCICR1 register. Depending on the frame length  
defined by the M bit, the possible SCI frame formats are as listed in Table 59.  
(1)(2)  
Table 59. Frame formats  
M bit  
PCE bit  
SCI frame  
0
0
1
1
0
1
0
1
| SB | 8 bit data | STB |  
| SB | 7-bit data | PB | STB |  
| SB | 9-bit data | STB |  
| SB | 8-bit data PB | STB |  
1. SB = Start bit, STB = Stop bit, and PB = Parity bit.  
2. In case of wakeup by an address mark, the MSB bit of the data is taken into account and not the Parity bit.  
117/193  
 
On-chip peripherals  
Even parity  
ST72324Bxx  
The parity bit is calculated to obtain an even number of ‘1’s inside the frame made of the 7 or  
8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit, for example,  
data = 00110101; 4 bits set => Parity bit will be 0 if Even parity is selected (PS bit = 0).  
Odd parity  
The parity bit is calculated to obtain an odd number of ‘1’s inside the frame made of the 7 or  
8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit, for example,  
data = 00110101; 4 bits set => Parity bit will be 1 if Odd parity is selected (PS bit = 1).  
Transmission mode  
If the PCE bit is set then the MSB bit of the data written in the data register is not transmitted  
but is changed by the parity bit.  
Reception mode  
If the PCE bit is set then the interface checks if the received data byte has an even number  
of ‘1’s if even parity is selected (PS = 0) or an odd number of ‘1’s if odd parity is selected  
(PS = 1). If the parity check fails, the PE flag is set in the SCISR register and an interrupt is  
generated if PIE is set in the SCICR1 register.  
SCI clock tolerance  
During reception, each bit is sampled 16 times. The majority of the 8th, 9th and 10th  
samples is considered as the bit value. For a valid bit detection, all the three samples should  
have the same value otherwise the noise flag (NF) is set. For example: If the 8th, 9th and  
10th samples are 0, 1 and 1 respectively, then the bit value will be ‘1’, but the Noise flag bit  
is set because the three samples values are not the same.  
Consequently, the bit length must be long enough so that the 8th, 9th and 10th samples  
have the desired bit value. This means the clock frequency should not vary more than 6/16  
(37.5%) within one bit. The sampling clock is resynchronized at each start bit, so that when  
receiving 10 bits (one start bit, 1 data byte, 1 stop bit), the clock deviation must not exceed  
3.75%.  
Note:  
The internal sampling clock of the microcontroller samples the pin value on every falling  
edge. Therefore, the internal sampling clock and the time the application expects the  
sampling to take place may be out of sync. For example: If the baud rate is 15.625 kbaud (bit  
length is 64 µs), then the 8th, 9th and 10th samples will be at 28 µs, 32 µs and 36 µs  
respectively (the first sample starting ideally at 0 µs). But if the falling edge of the internal  
clock occurs just before the pin value changes, the samples would then be out of sync by  
~4 µs. This means the entire bit length must be at least 40µs (36 µs for the 10th sample +  
4 µs for synchronization with the internal sampling clock).  
118/193  
ST72324Bxx  
On-chip peripherals  
Clock deviation causes  
The causes which contribute to the total deviation are:  
D
: Deviation due to transmitter error (local oscillator error of the transmitter or  
TRA  
the transmitter is transmitting at a different baud rate).  
D
D
: Error due to the baud rate quantization of the receiver.  
QUANT  
: Deviation of the local oscillator of the receiver: This deviation can occur  
REC  
during the reception of one complete SCI message assuming that the deviation  
has been compensated at the beginning of the message.  
D
: Deviation due to the transmission line (generally due to the transceivers)  
TCL  
All the deviations of the system should be added and compared to the SCI clock tolerance:  
+ D + D + D < 3.75%  
D
TRA  
QUANT  
REC  
TCL  
Noise error causes  
See also the description of Noise error in Receiver on page 113.  
Start bit  
The Noise Flag (NF) is set during start bit reception if one of the following conditions occurs:  
1. A valid falling edge is not detected. A falling edge is considered to be valid if the three  
consecutive samples before the falling edge occurs are detected as ‘1’ and, after the  
falling edge occurs, during the sampling of the 16 samples, if one of the samples  
numbered 3, 5 or 7 is detected as a ‘1’.  
2. During sampling of the 16 samples, if one of the samples numbered 8, 9 or 10 is  
detected as a ‘1’.  
Therefore, a valid Start bit must satisfy both the above conditions to prevent the Noise Flag  
from being set.  
Data bits  
The Noise Flag (NF) is set during normal data bit reception if the following condition occurs:  
During the sampling of 16 samples, if all three samples numbered 8, 9 and10 are not the  
same. The majority of the 8th, 9th and 10th samples is considered as the bit value.  
Therefore, a valid Data bit must have samples 8, 9 and 10 at the same value to prevent the  
Noise Flag from being set.  
Figure 60. Bit sampling in Reception mode  
RDI line  
sampled values  
Sample  
clock  
1
2
3
4
5
6
7
8
9
10  
11  
13 14 15 16  
12  
6/16  
7/16  
7/16  
One bit time  
119/193  
On-chip peripherals  
ST72324Bxx  
10.5.5  
Low power modes  
Table 60. Effect of low power modes on SCI  
Mode  
Description  
No effect on SCI.  
Wait  
SCI interrupts cause the device to exit from Wait mode.  
SCI registers are frozen.  
Halt  
In Halt mode, the SCI stops transmitting/receiving until Halt mode is exited.  
10.5.6  
Interrupts  
The SCI interrupt events are connected to the same interrupt vector.  
These events generate an interrupt if the corresponding Enable Control bit is set and the  
interrupt mask in the CC register is reset (RIM instruction).  
Table 61. SCI interrupt control/wakeup capability  
Interrupt event  
Event flag Enable control bit Exit from Wait Exit from Halt  
Transmit data register empty  
Transmission complete  
Received data ready to be read  
Overrun error detected  
Idle line detected  
TDRE  
TC  
TIE  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
TCIE  
RDRF  
OR  
RIE  
IDLE  
PE  
ILIE  
PIE  
Parity error  
10.5.7  
SCI registers  
SCI status register (SCISR)  
SCISR  
Reset value: 1100 0000 (C0h)  
7
6
5
4
3
2
1
0
TDRE  
TC  
RDRF  
IDLE  
RO  
OR  
NF  
FE  
PE  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Table 62. SCISR register description  
Bit Name  
Function  
Transmit Data Register Empty  
This bit is set by hardware when the content of the TDR register has been transferred  
into the shift register. An interrupt is generated if the TIE bit = 1 in the SCICR2  
register. It is cleared by a software sequence (an access to the SCISR register  
followed by a write to the SCIDR register).  
7
TDRE  
0: Data is not transferred to the shift register.  
1: Data is transferred to the shift register.  
Note: Data will not be transferred to the shift register unless the TDRE bit is cleared.  
120/193  
ST72324Bxx  
On-chip peripherals  
Table 62. SCISR register description (continued)  
Bit Name Function  
Transmission complete  
This bit is set by hardware when transmission of a frame containing data is complete.  
An interrupt is generated if TCIE = 1 in the SCICR2 register. It is cleared by a  
software sequence (an access to the SCISR register followed by a write to the  
SCIDR register).  
0: Transmission is not complete  
1: Transmission is complete  
6
5
4
TC  
Note: TC is not set after the transmission of a Preamble or a Break.  
Received data ready flag  
This bit is set by hardware when the content of the RDR register has been  
transferred to the SCIDR register. An interrupt is generated if RIE = 1 in the SCICR2  
register. It is cleared by a software sequence (an access to the SCISR register  
followed by a read to the SCIDR register).  
0: Data is not received  
1: Received data is ready to be read  
RDRF  
Idle line detect  
This bit is set by hardware when a Idle Line is detected. An interrupt is generated if  
the ILIE = 1 in the SCICR2 register. It is cleared by a software sequence (an access  
to the SCISR register followed by a read to the SCIDR register).  
0: No idle line is detected  
IDLE  
1: Idle line is detected  
Note: The IDLE bit is not reset until the RDRF bit has itself been set (that is, a new  
idle line occurs).  
Overrun error  
This bit is set by hardware when the word currently being received in the shift register  
is ready to be transferred into the RDR register while RDRF = 1. An interrupt is  
generated if RIE = 1 in the SCICR2 register. It is cleared by a software sequence (an  
access to the SCISR register followed by a read to the SCIDR register).  
0: No overrun error  
3
OR  
1: Overrun error is detected  
Note: When this bit is set RDR register content is not lost but the shift register is  
overwritten.  
Noise flag  
This bit is set by hardware when noise is detected on a received frame. It is cleared  
by a software sequence (an access to the SCISR register followed by a read to the  
SCIDR register).  
2
NF  
0: No noise is detected  
1: Noise is detected  
Note: This bit does not generate interrupt as it appears at the same time as the  
RDRF bit which itself generates an interrupt.  
Framing error  
This bit is set by hardware when a desynchronization, excessive noise or a break  
character is detected. It is cleared by a software sequence (an access to the SCISR  
register followed by a read to the SCIDR register).  
0: No framing error is detected  
1: Framing error or break character is detected  
1
FE  
Note: This bit does not generate interrupt as it appears at the same time as the  
RDRF bit which itself generates an interrupt. If the word currently being transferred  
causes both Frame Error and Overrun error, it is transferred and only the OR bit will  
be set.  
121/193  
On-chip peripherals  
ST72324Bxx  
Table 62. SCISR register description (continued)  
Bit Name Function  
Parity error  
This bit is set by hardware when a parity error occurs in receiver mode. It is cleared  
by a software sequence (a read to the status register followed by an access to the  
SCIDR data register). An interrupt is generated if PIE = 1 in the SCICR1 register.  
0: No parity error  
0
PE  
1: Parity error  
SCI Control Register 1 (SCICR1)  
SCICR1  
Reset value: x000 0000 (x0h)  
7
6
5
4
M
3
2
1
0
R8  
T8  
SCID  
R/W  
WAKE  
R/W  
PCE  
R/W  
PS  
PIE  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 63. SCICR1 register description  
Bit Name  
Function  
Receive data bit 8  
7
6
R8  
T8  
This bit is used to store the 9th bit of the received word when M = 1.  
Transmit data bit 8  
This bit is used to store the 9th bit of the transmitted word when M = 1.  
Disabled for low power consumption  
When this bit is set the SCI prescalers and outputs are stopped and the end of the  
current byte transfer in order to reduce power consumption.This bit is set and  
cleared by software.  
5
SCID  
0: SCI enabled  
1: SCI prescaler and outputs disabled  
Word length  
This bit determines the word length. It is set or cleared by software.  
0: 1 Start bit, 8 data bits, 1 Stop bit  
1: 1 Start bit, 9 data bits, 1 Stop bit  
Note: The M bit must not be modified during a data transfer (both transmission and  
reception).  
4
3
M
Wakeup method  
This bit determines the SCI wakeup method, it is set or cleared by software.  
0: Idle line  
WAKE  
1: Address mark  
Parity control enable  
This bit selects the hardware parity control (generation and detection). When the  
parity control is enabled, the computed parity is inserted at the MSB position (9th bit  
if M = 1; 8th bit if M = 0) and parity is checked on the received data. This bit is set  
and cleared by software. Once it is set, PCE is active after the current byte (in  
reception and in transmission).  
2
PCE  
0: Parity control disabled  
1: Parity control enabled  
122/193  
ST72324Bxx  
On-chip peripherals  
Table 63. SCICR1 register description (continued)  
Bit Name Function  
Parity selection  
This bit selects the odd or even parity when the parity generation/detection is  
enabled (PCE bit set). It is set and cleared by software. The parity will be selected  
after the current byte.  
0: Even parity  
1
0
PS  
1: Odd parity  
Parity interrupt enable  
This bit enables the interrupt capability of the hardware parity control when a parity  
error is detected (PE bit set). It is set and cleared by software.  
0: Parity error interrupt disabled  
PIE  
1: Parity error interrupt enabled  
SCI control register 2 (SCICR2)  
SCICR2  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
TIE  
TCIE  
RIE  
ILIE  
TE  
RE  
RWU  
SBK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 64. SCICR2 register description  
Bit Name  
Function  
Transmitter interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SCI interrupt is generated whenever TDRE = 1 in the SCISR register.  
7
6
TIE  
Transmission complete interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
TCIE  
1: An SCI interrupt is generated whenever TC = 1 in the SCISR register.  
Receiver interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SCI interrupt is generated whenever OR = 1 or RDRF = 1 in the SCISR  
register.  
5
4
RIE  
ILIE  
Idle line interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SCI interrupt is generated whenever IDLE = 1 in the SCISR register.  
123/193  
On-chip peripherals  
ST72324Bxx  
Table 64. SCICR2 register description (continued)  
Bit Name Function  
Transmitter enable  
This bit enables the transmitter. It is set and cleared by software.  
0: Transmitter is disabled  
1: Transmitter is enabled  
Notes:  
- During transmission, a ‘0’ pulse on the TE bit (‘0’ followed by ‘1’) sends a preamble  
(Idle line) after the current word.  
3
TE  
- When TE is set there is a 1 bit-time delay before the transmission starts.  
Caution: The TDO pin is free for general purpose I/O only when the TE and RE bits  
are both cleared (or if TE is never set).  
Receiver enable  
This bit enables the receiver. It is set and cleared by software.  
0: Receiver is disabled  
1: Receiver is enabled and begins searching for a start bit  
Note: Before selecting Mute mode (setting the RWU bit), the SCI must first receive  
some data, otherwise it cannot function in Mute mode with wakeup by Idle line  
detection.  
2
RE  
Receiver wakeup  
This bit determines if the SCI is in mute mode or not. It is set and cleared by  
software and can be cleared by hardware when a wakeup sequence is recognized.  
0: Receiver in Active mode  
1
0
RWU  
SBK  
1: Receiver in Mute mode  
Send break  
This bit set is used to send break characters. It is set and cleared by software.  
0: No break character is transmitted.  
1: Break characters are transmitted.  
Note: If the SBK bit is set to ‘1’ and then to ‘0’, the transmitter will send a Break word  
at the end of the current word.  
SCI data register (SCIDR)  
This register contains the received or transmitted data character, depending on whether it is  
read from or written to.  
SCIDR  
7
Reset value: undefined  
6
5
4
3
2
1
0
DR7  
R/W  
DR6  
DR5  
DR4  
DR3  
DR2  
DR1  
DR0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The Data register performs a double function (read and write) since it is composed of two  
registers, one for transmission (TDR) and one for reception (RDR).  
The TDR register provides the parallel interface between the internal bus and the output  
shift register (see Figure 57). The RDR register provides the parallel interface between the  
input shift register and the internal bus (see Figure 57).  
124/193  
ST72324Bxx  
On-chip peripherals  
SCI baud rate register (SCIBRR)  
SCIBRR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
SCP[1:0]  
R/W  
SCT[2:0]  
SCR[2:0]  
R/W  
R/W  
Table 65. SCIBRR register description  
Bit Name  
Function  
First SCI prescaler  
These 2 prescaling bits allow several standard clock division ranges.  
00: PR prescaling factor = 1  
01: PR prescaling factor = 3  
7:6 SCP[1:0]  
10: PR prescaling factor = 4  
11: PR prescaling factor = 13  
SCI Transmitter rate divisor  
These 3 bits, in conjunction with the SCP1 and SCP0 bits, define the total division  
applied to the bus clock to yield the transmit rate clock in conventional baud rate  
generator mode.  
000: TR dividing factor = 1  
001: TR dividing factor = 2  
010: TR dividing factor = 4  
5:3 SCT[2:0]  
011: TR dividing factor = 8  
100: TR dividing factor = 16  
101: TR dividing factor = 32  
110: TR dividing factor = 64  
111: TR dividing factor = 128  
SCI Receiver rate divisor  
These 3 bits, in conjunction with the SCP[1:0] bits, define the total division applied  
to the bus clock to yield the receive rate clock in conventional baud rate generator  
mode.  
000: RR dividing factor = 1  
001: RR dividing factor = 2  
010: RR dividing factor = 4  
2:0 SCR[2:0]  
011: RR dividing factor = 8  
100: RR dividing factor = 16  
101: RR dividing factor = 32  
110: RR dividing factor = 64  
111: RR dividing factor = 128  
SCI extended receive prescaler division register (SCIERPR)  
This register is used to set the Extended Prescaler rate division factor for the receive circuit.  
SCIERPR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
ERPR[7:0]  
R/W  
125/193  
On-chip peripherals  
ST72324Bxx  
Table 66. SCIERPR register description  
Bit Name  
Function  
8-bit extended receive prescaler register  
The extended baud rate generator is activated when a value different from 00h  
is stored in this register. Therefore the clock frequency issued from the 16  
divider (see Figure 59) is divided by the binary factor set in the SCIERPR  
register (in the range 1 to 255).  
7:0 ERPR[7:0]  
The extended baud rate generator is not used after a reset.  
SCI extended transmit prescaler division register (SCIETPR)  
This register is used to set the External Prescaler rate division factor for the transmit circuit.  
SCIETPR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
ETPR[7:0]  
R/W  
Table 67. SCIETPR register description  
Bit Name  
Function  
8-bit Extended Transmit Prescaler Register  
The extended baud rate generator is activated when a value different from 00h  
is stored in this register. Therefore the clock frequency issued from the 16  
divider (see Figure 59) is divided by the binary factor set in the SCIETPR  
register (in the range 1 to 255).  
7:0 ETPR[7:0]  
The extended baud rate generator is not used after a reset.  
Table 68. Baud rate selection  
Conditions  
Symbol  
Parameter  
Standard Baud rate Unit  
Accuracy vs.  
Prescaler  
fCPU  
Standard  
Conventional mode  
TR (or RR) = 128, PR = 13  
TR (or RR) = 32, PR = 13  
TR (or RR) = 16, PR = 13  
TR (or RR) = 8, PR = 13  
TR (or RR) = 4, PR = 13  
TR (or RR) = 16, PR = 3  
TR (or RR) = 2, PR =13  
TR (or RR) = 1, PR = 13  
300  
1200  
2400  
4800  
9600  
10400  
19200  
38400  
~300.48  
~1201.92  
~2403.84  
~4807.69  
~9615.38  
~10416.67  
~19230.77  
~38461.54  
~0.16%  
~0.79%  
fTx  
fRx  
Communication  
frequency  
8 MHz  
Hz  
Extended mode  
ETPR (or ERPR) = 35,  
TR (or RR)= 1, PR = 1  
14400  
~14285.71  
126/193  
ST72324Bxx  
On-chip peripherals  
Table 69. SCI register map and reset values  
Address (Hex.) Register label  
7
6
5
4
3
2
1
0
SCISR  
0050h  
TDRE  
1
TC  
1
RDRF  
0
IDLE  
0
OR  
0
NF  
0
FE  
0
PE  
0
Reset value  
SCIDR  
0051h  
MSB  
x
LSB  
x
Reset value  
x
x
x
x
x
x
SCIBRR  
0052h  
SCP1  
0
SCP0  
0
SCT2  
0
SCT1  
0
SCT0  
0
SCR2  
0
SCR1  
0
SCR0  
0
Reset value  
SCICR1  
0053h  
R8  
x
T8  
0
SCID  
0
M
0
WAKE  
0
PCE  
0
PS  
0
PIE  
0
Reset value  
SCICR2  
0054h  
TIE  
0
TCIE  
0
RIE  
0
ILIE  
0
TE  
0
RE  
0
RWU  
0
SBK  
0
Reset value  
SCIERPR  
0055h  
MSB  
0
LSB  
0
Reset value  
0
0
0
0
0
0
0
0
0
0
0
0
SCIPETPR  
0057h  
MSB  
0
LSB  
0
Reset value  
127/193  
On-chip peripherals  
ST72324Bxx  
10.6  
10-bit A/D converter (ADC)  
10.6.1  
Introduction  
The on-chip analog-to-digital converter (ADC) peripheral is a 10-bit, successive  
approximation converter with internal sample and hold circuitry. This peripheral has up to 16  
multiplexed analog input channels (refer to device pin out description) that allow the  
peripheral to convert the analog voltage levels from up to 16 different sources.  
The result of the conversion is stored in a 10-bit Data Register. The A/D converter is  
controlled through a Control/Status Register.  
10.6.2  
Main features  
10-bit conversion  
Up to 16 channels with multiplexed input  
Linear successive approximation  
Data register (DR) which contains the results  
Conversion complete status flag  
On/off bit (to reduce consumption)  
The block diagram is shown in Figure 61.  
Figure 61. ADC block diagram  
fCPU  
Div 4  
0
1
fADC  
Div 2  
ADCCSR  
EOC SPEED ADON  
0
CH3 CH2 CH1 CH0  
4
AIN0  
AIN1  
Analog to Digital  
Converter  
Analog  
MUX  
AINx  
ADCDRH  
D9 D8 D7 D6 D5 D4 D3 D2  
ADCDRL  
0
0
0
0
0
0
D1 D0  
128/193  
 
ST72324Bxx  
On-chip peripherals  
10.6.3  
Functional description  
The conversion is monotonic, meaning that the result never decreases if the analog input  
does not increase.  
If the input voltage (V ) is greater than V  
(high-level voltage reference) then the  
AIN  
AREF  
conversion result is FFh in the ADCDRH register and 03h in the ADCDRL register (without  
overflow indication).  
If the input voltage (V ) is lower than V  
(low-level voltage reference) then the  
SSA  
AIN  
conversion result in the ADCDRH and ADCDRL registers is 00 00h.  
The A/D converter is linear and the digital result of the conversion is stored in the ADCDRH  
and ADCDRL registers. The accuracy of the conversion is described in the Electrical  
Characteristics Section.  
R
is the maximum recommended impedance for an analog input signal. If the impedance  
AIN  
is too high, this will result in a loss of accuracy due to leakage and sampling not being  
completed in the allotted time.  
A/D converter configuration  
The analog input ports must be configured as input, no pull-up, no interrupt. Refer to  
Section 9: I/O ports. Using these pins as analog inputs does not affect the ability of the port  
to be read as a logic input.  
In the ADCCSR register:  
Select the CS[3:0] bits to assign the analog channel to convert.  
Starting the conversion  
In the ADCCSR register:  
Set the ADON bit to enable the A/D converter and to start the conversion. From this  
time on, the ADC performs a continuous conversion of the selected channel.  
When a conversion is complete:  
the EOC bit is set by hardware  
the result is in the ADCDR registers  
A read to the ADCDRH or a write to any bit of the ADCCSR register resets the EOC bit.  
To read the 10 bits, perform the following steps:  
1. Poll the EOC bit.  
2. Read the ADCDRL register  
3. Read the ADCDRH register. This clears EOC automatically.  
Note:  
The data is not latched, so both the low and the high data register must be read before the  
next conversion is complete. Therefore, it is recommended to disable interrupts while  
reading the conversion result.  
To read only 8 bits, perform the following steps:  
1. Poll the EOC bit.  
2. Read the ADCDRH register. This clears EOC automatically.  
129/193  
 
On-chip peripherals  
ST72324Bxx  
Changing the conversion channel  
The application can change channels during conversion. When software modifies the  
CH[3:0] bits in the ADCCSR register, the current conversion is stopped, the EOC bit is  
cleared, and the A/D converter starts converting the newly selected channel.  
10.6.4  
Low power modes  
Note:  
The A/D converter may be disabled by resetting the ADON bit. This feature allows reduced  
power consumption when no conversion is needed.  
.
Table 70. Effect of low power modes on ADC  
Mode  
Description  
Wait  
No effect on A/D converter.  
A/D converter disabled.  
After wakeup from Halt mode, the A/D converter requires a stabilization time tSTAB  
(see Section 12: Electrical characteristics) before accurate conversions can be  
performed.  
Halt  
10.6.5  
10.6.6  
Interrupts  
None.  
ADC registers  
ADC control/status register (ADCCSR)  
ADCCSR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
EOC  
SPEED  
ADON  
Reserved  
CH[3:0]  
RW  
RO  
R/W  
RW  
-
Table 71. ADCCSR register description  
Bit Name  
Function  
End of Conversion  
This bit is set by hardware. It is cleared by hardware when software reads the  
ADCDRH register or writes to any bit of the ADCCSR register.  
0: Conversion is not complete  
7
EOC  
1: Conversion complete  
ADC clock selection  
This bit is set and cleared by software.  
0: fADC = fCPU/4  
1: fADC = fCPU/2  
6
5
SPEED  
ADON  
A/D Converter on  
This bit is set and cleared by software.  
0: Disable ADC and stop conversion  
1: Enable ADC and start conversion  
130/193  
ST72324Bxx  
On-chip peripherals  
Table 71. ADCCSR register description (continued)  
Bit Name Function  
4
-
Reserved, must be kept cleared.  
Channel selection  
These bits are set and cleared by software. They select the analog input to convert.  
0000: Channel pin = AIN0  
0001: Channel pin = AIN1  
0010: Channel pin = AIN2  
0011: Channel pin = AIN3  
0100: Channel pin = AIN4  
0101: Channel pin = AIN5  
0110: Channel pin = AIN6  
0111: Channel pin = AIN7  
1000: Channel pin = AIN8  
3:0 CH[3:0]  
1001: Channel pin = AIN9  
1010: Channel pin = AIN10  
1011: Channel pin = AIN11  
1100: Channel pin = AIN12  
1101: Channel pin = AIN13  
1110: Channel pin = AIN14  
1111: Channel pin = AIN15  
Note: The number of channels is device dependent. Refer to Section 2: Pin  
description.  
ADC data register high (ADCDRH)  
ADCDRH  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
D[9:2]  
RO  
Table 72. ADCDRH register description  
Bit Name  
Function  
7:0 D[9:2] MSB of converted analog value  
131/193  
On-chip peripherals  
ST72324Bxx  
ADC data register low (ADCDRL)  
ADCDRL  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
Reserved  
-
D[1:0]  
RO  
Table 73. ADCDRL register description  
Bit Name  
Function  
7:2  
-
Reserved. Forced by hardware to 0.  
1:0 D[1:0] LSB of converted analog value  
Table 74. ADC register map and reset values  
Address (Hex.) Register label  
7
6
5
4
3
2
1
0
ADCCSR  
0070h  
EOC SPEED ADON  
CH3  
0
CH2  
0
CH1  
0
CH0  
0
Reset value  
0
0
0
0
ADCDRH  
0071h  
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
Reset value  
ADCDRL  
0072h  
D1  
0
D0  
0
Reset value  
0
0
0
0
0
0
132/193  
ST72324Bxx  
Instruction set  
11  
Instruction set  
11.1  
CPU addressing modes  
The CPU features 17 different addressing modes which can be classified in 7 main groups  
(see Table 75).  
:
Table 75. Addressing mode groups  
Addressing mode  
Example  
Inherent  
Immediate  
Direct  
nop  
ld A,#$55  
ld A,$55  
Indexed  
Indirect  
ld A,($55,X)  
ld A,([$55],X)  
jrne loop  
Relative  
Bit operation  
bset byte,#5  
The CPU Instruction Set is designed to minimize the number of bytes required per  
instruction: To do so, most of the addressing modes may be divided in two submodes called  
long and short:  
Long addressing mode is more powerful because it can use the full 64 Kbyte address  
space, however it uses more bytes and more CPU cycles.  
Short addressing mode is less powerful because it can generally only access page  
zero (0000h - 00FFh range), but the instruction size is more compact, and faster. All  
memory to memory instructions use short addressing modes only (CLR, CPL, NEG,  
BSET, BRES, BTJT, BTJF, INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP)  
The ST7 Assembler optimizes the use of long and short addressing modes.  
Table 76. CPU addressing mode overview  
Pointer address Pointer size Length  
Mode  
Syntax  
Destination  
(Hex.)  
(Hex.)  
(bytes)  
Inherent  
Immediate  
Short  
nop  
+ 0  
ld A,#$55  
ld A,$10  
+ 1  
+ 1  
+ 2  
+ 0  
+ 1  
+ 2  
+ 2  
+ 2  
+ 2  
+ 2  
Direct  
Direct  
Direct  
Direct  
Direct  
Indirect  
Indirect  
00..FF  
Long  
ld A,$1000  
0000..FFFF  
00..FF  
No offset  
Short  
Indexed ld A,(X)  
Indexed ld A,($10,X)  
Indexed ld A,($1000,X)  
ld A,[$10]  
00..1FE  
Long  
0000..FFFF  
00..FF  
Short  
00..FF  
00..FF  
00..FF  
00..FF  
byte  
word  
byte  
word  
Long  
ld A,[$10.w]  
0000..FFFF  
00..1FE  
Short  
Indirect Indexed ld A,([$10],X)  
Indirect Indexed ld A,([$10.w],X)  
Long  
0000..FFFF  
133/193  
 
Instruction set  
ST72324Bxx  
Table 76. CPU addressing mode overview (continued)  
Relative  
Relative  
Bit  
Direct  
jrne loop  
PC+/-127  
PC+/-127  
00..FF  
+ 1  
+ 2  
+ 1  
+ 2  
+ 2  
+ 3  
Indirect  
Direct  
jrne [$10]  
00..FF  
00..FF  
00..FF  
byte  
byte  
byte  
bset $10,#7  
Bit  
Indirect  
Direct  
bset [$10],#7  
00..FF  
Bit  
Relative btjt $10,#7,skip  
00..FF  
Bit  
Indirect Relative btjt [$10],#7,skip  
00..FF  
11.1.1  
Inherent  
All Inherent instructions consist of a single byte. The opcode fully specifies all the required  
information for the CPU to process the operation.  
Table 77. Inherent instructions  
Instruction  
Function  
NOP  
No operation  
S/W interrupt  
TRAP  
WFI  
Wait for interrupt (low power mode)  
Halt oscillator (lowest power mode)  
Sub-routine return  
HALT  
RET  
IRET  
SIM  
Interrupt sub-routine return  
Set interrupt mask (level 3)  
Reset interrupt mask (level 0)  
Set carry flag  
RIM  
SCF  
RCF  
Reset carry flag  
RSP  
Reset stack pointer  
Load  
LD  
CLR  
Clear  
PUSH/POP  
INC/DEC  
TNZ  
Push/Pop to/from the stack  
Increment/decrement  
Test negative or zero  
1 or 2 complement  
CPL, NEG  
MUL  
Byte multiplication  
SLL, SRL, SRA, RLC, RRC  
SWAP  
Shift and rotate operations  
Swap nibbles  
11.1.2  
Immediate  
Immediate instructions have two bytes: The first byte contains the opcode and the second  
byte contains the operand value.  
134/193  
ST72324Bxx  
Instruction set  
.
Table 78. Immediate instructions  
Instruction  
Function  
LD  
Load  
CP  
Compare  
BCP  
Bit compare  
Logical operations  
Arithmetic operations  
AND, OR, XOR  
ADC, ADD, SUB, SBC  
11.1.3  
Direct  
In Direct instructions, the operands are referenced by their memory address. The direct  
addressing mode consists of two submodes:  
Direct (short)  
The address is a byte, thus requiring only one byte after the opcode, but only allows  
00 - FF addressing space.  
Direct (long)  
The address is a word, thus allowing 64 Kbyte addressing space, but requires 2 bytes after  
the opcode.  
11.1.4  
Indexed (no offset, short, long)  
In this mode, the operand is referenced by its memory address, which is defined by the  
unsigned addition of an index register (X or Y) with an offset.  
The indexed addressing mode consists of three submodes:  
Indexed (no offset)  
There is no offset, (no extra byte after the opcode), and it allows 00 - FF addressing space.  
Indexed (short)  
The offset is a byte, thus requiring only one byte after the opcode and allows 00 - 1FE  
addressing space.  
Indexed (long)  
The offset is a word, thus allowing 64 Kbyte addressing space and requires 2 bytes after the  
opcode.  
11.1.5  
Indirect (short, long)  
The required data byte to do the operation is found by its memory address, located in  
memory (pointer).  
The pointer address follows the opcode. The indirect addressing mode consists of two  
submodes:  
135/193  
Instruction set  
ST72324Bxx  
Indirect (short)  
The pointer address is a byte, the pointer size is a byte, thus allowing 00 - FF addressing  
space, and requires 1 byte after the opcode.  
Indirect (long)  
The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing  
space, and requires 1 byte after the opcode.  
11.1.6  
Indirect indexed (short, long)  
This is a combination of indirect and short indexed addressing modes. The operand is  
referenced by its memory address, which is defined by the unsigned addition of an index  
register value (X or Y) with a pointer value located in memory. The pointer address follows  
the opcode.  
The indirect indexed addressing mode consists of two submodes:  
Indirect indexed (short)  
The pointer address is a byte, the pointer size is a byte, thus allowing 00 - 1FE addressing  
space, and requires 1 byte after the opcode.  
Indirect indexed (long)  
The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing  
space, and requires 1 byte after the opcode.  
I
Table 79. Instructions supporting direct, indexed, indirect and indirect indexed  
addressing modes  
Instructions  
Function  
LD  
Load  
CP  
Compare  
Long and short  
AND, OR, XOR  
ADC, ADD, SUB, SBC  
BCP  
Logical operations  
Arithmetic additions/subtractions operations  
Bit Compare  
CLR  
Clear  
INC, DEC  
Increment/decrement  
Test negative or zero  
1 or 2 complement  
TNZ  
CPL, NEG  
BSET, BRES  
BTJT, BTJF  
SLL, SRL, SRA, RLC, RRC  
SWAP  
Short only  
Bit operations  
Bit test and jump operations  
Shift and rotate operations  
Swap nibbles  
CALL, JP  
Call or jump sub-routine  
136/193  
ST72324Bxx  
Instruction set  
11.1.7  
Relative mode (direct, indirect)  
This addressing mode is used to modify the PC register value, by adding an 8-bit signed  
offset to it.  
.
Table 80. Relative direct and indirect instructions and functions  
Available relative direct/indirect instructions  
Function  
JRxx  
Conditional Jump  
Call Relative  
CALLR  
The relative addressing mode consists of two submodes:  
Relative (direct)  
The offset follows the opcode.  
Relative (indirect)  
The offset is defined in the memory, the address of which follows the opcode.  
11.2  
Instruction groups  
The ST7 family devices use an Instruction Set consisting of 63 instructions. The instructions  
may be subdivided into 13 main groups as illustrated in the following table:  
Table 81. Instruction groups  
Group  
Load and transfer  
Instructions  
LD  
CLR  
Stack operation  
PUSH POP  
RSP  
Increment/decrement  
Compare and tests  
INC  
CP  
DEC  
TNZ  
OR  
BCP  
XOR  
Logical operations  
AND  
CPL NEG  
Bit operation  
BSET BRES  
BTJT BTJF  
Conditional bit test and branch  
Arithmetic operations  
Shift and rotates  
ADC  
SLL  
ADD  
SRL  
JRT  
SUB  
SRA  
JRF  
SBC MUL  
RLC RRC SWAP SLA  
Unconditional jump or call  
Conditional branch  
JRA  
JRxx  
JP  
CALL CALLR NOP RET  
Interruption management  
Condition code flag modification  
TRAP WFI  
SIM RIM  
HALT IRET  
SCF RCF  
137/193  
Instruction set  
ST72324Bxx  
Using a prebyte  
The instructions are described with one to four opcodes.  
In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three  
different prebyte opcodes are defined. These prebytes modify the meaning of the instruction  
they precede.  
The whole instruction becomes:  
PC-2  
PC-1  
PC  
End of previous instruction  
Prebyte  
Opcode  
PC+1  
Additional word (0 to 2) according to the number of bytes required to compute the  
effective address  
These prebytes enable the instruction in Y as well as indirect addressing modes to be  
implemented. They precede the opcode of the instruction in X or the instruction using direct  
addressing mode. The prebytes are:  
PDY 90 Replace an X based instruction using immediate, direct, indexed, or inherent  
addressing mode by a Y one.  
PIX 92  
PIY 91  
Replace an instruction using direct, direct bit, or direct relative addressing mode  
to an instruction using the corresponding indirect addressing mode.  
It also changes an instruction using X indexed addressing mode to an instruction  
using indirect X indexed addressing mode.  
Replace an instruction using X indirect indexed addressing mode by a Y one.  
138/193  
ST72324Bxx  
Instruction set  
Table 82. Instruction set overview  
Mnemo  
Description  
Add with Carry  
Function/example  
Dst  
Src  
I1  
H
I0  
N
Z
C
ADC  
ADD  
AND  
BCP  
A = A + M + C  
A = A + M  
A
M
M
M
M
H
H
N
N
N
N
Z
Z
Z
Z
C
C
Addition  
A
Logical And  
A = A . M  
A
Bit compare A, memory  
Bit reset  
tst (A . M)  
A
BRES  
BSET  
BTJF  
BTJT  
CALL  
CALLR  
CLR  
bres Byte, #3  
bset Byte, #3  
btjf Byte, #3, Jmp1  
btjt Byte, #3, Jmp1  
M
M
M
M
Bit set  
Jump if bit is false (0)  
Jump if bit is true (1)  
Call sub-routine  
Call sub-routine relative  
Clear  
C
C
reg, M  
reg  
0
N
N
N
1
Z
Z
Z
CP  
Arithmetic Compare  
One Complement  
Decrement  
tst(Reg - M)  
A = FFH-A  
dec Y  
M
C
1
CPL  
reg, M  
reg, M  
DEC  
HALT  
IRET  
INC  
Halt  
1
0
Interrupt routine return  
Increment  
Pop CC, A, X, PC  
inc X  
I1  
H
I0  
N
N
Z
Z
C
reg, M  
JP  
Absolute Jump  
Jump relative always  
Jump relative  
jp [TBL.w]  
JRA  
JRT  
JRF  
Never jump  
jrf *  
JRIH  
JRIL  
Jump if ext. INT pin = 1  
Jump if ext. INT pin = 0  
Jump if H = 1  
(ext. INT pin high)  
(ext. INT pin low)  
H = 1 ?  
JRH  
JRNH  
JRM  
Jump if H = 0  
H = 0 ?  
Jump if I1:0 = 11  
Jump if I1:0 <> 11  
Jump if N = 1 (minus)  
Jump if N = 0 (plus)  
Jump if Z = 1 (equal)  
Jump if Z = 0 (not equal)  
Jump if C = 1  
I1:0 = 11 ?  
I1:0 <> 11 ?  
N = 1 ?  
JRNM  
JRMI  
JRPL  
JREQ  
JRNE  
JRC  
N = 0 ?  
Z = 1 ?  
Z = 0 ?  
C = 1 ?  
JRNC  
JRULT  
JRUGE  
Jump if C = 0  
C = 0 ?  
Jump if C = 1  
Unsigned <  
Jmp if unsigned >=  
Jump if C = 0  
139/193  
Instruction set  
ST72324Bxx  
Table 82. Instruction set overview (continued)  
Mnemo  
Description  
Function/example  
Dst  
Src  
I1  
H
I0  
N
Z
C
JRUGT  
JRULE  
LD  
Jump if (C + Z = 0)  
Jump if (C + Z = 1)  
Load  
Unsigned >  
Unsigned <=  
dst <= src  
X,A = X * A  
neg $10  
reg, M  
M, reg  
N
N
N
N
Z
Z
Z
Z
MUL  
NEG  
NOP  
OR  
Multiply  
A, X, Y X, Y, A  
reg, M  
0
0
Negate (2's compl)  
No Operation  
OR operation  
C
A = A + M  
A
M
pop reg  
reg  
CC  
M
M
POP  
Pop from the Stack  
pop CC  
M
I1  
1
H
I0  
0
C
0
PUSH  
RCF  
RIM  
Push onto the Stack  
Reset carry flag  
Enable Interrupts  
Rotate Left true C  
Rotate Right true C  
Reset Stack Pointer  
Subtract with Carry  
Set CARRY FLAG  
Disable Interrupts  
Shift Left Arithmetic  
Shift Left Logic  
push Y  
reg, CC  
C = 0  
I1:0 = 10 (level 0)  
C <= A <= C  
C => A => C  
S = Max allowed  
A = A - M - C  
C = 1  
RLC  
RRC  
RSP  
SBC  
SCF  
SIM  
reg, M  
reg, M  
N
N
Z
Z
C
C
A
M
N
Z
C
1
I1:0 = 11 (level 3)  
C <= A <= 0  
C <= A <= 0  
0 => A => C  
A7 => A => C  
A = A - M  
1
1
SLA  
reg, M  
reg, M  
reg, M  
reg, M  
A
N
N
0
Z
Z
Z
Z
Z
Z
Z
C
C
C
C
C
SLL  
SRL  
SRA  
SUB  
SWAP  
TNZ  
TRAP  
WFI  
Shift Right Logic  
Shift Right Arithmetic  
Subtraction  
N
N
N
N
M
M
SWAP nibbles  
A7-A4 <=> A3-A0  
tnz lbl1  
reg, M  
Test for Neg and Zero  
S/W TRAP  
S/W interrupt  
1
1
1
0
Wait for Interrupt  
Exclusive OR  
XOR  
A = A XOR M  
A
N
Z
140/193  
ST72324Bxx  
Electrical characteristics  
12  
Electrical characteristics  
12.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
12.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25°C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3Σ).  
12.1.2  
12.1.3  
12.1.4  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 5 V. They are given  
only as design guidelines and are not tested.  
A
DD  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 62.  
Figure 62. Pin loading conditions  
ST7 pin  
C
L
141/193  
 
Electrical characteristics  
ST72324Bxx  
12.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 63.  
Figure 63. Pin input voltage  
ST7 pin  
V
IN  
12.2  
Absolute maximum ratings  
Stresses above those listed as “absolute maximum ratings” may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
12.2.1  
Voltage characteristics  
Table 83. Voltage characteristics  
Symbol  
Ratings  
Maximum value Unit  
V
DD - VSS  
Supply voltage  
6.5  
13  
VPP - VSS  
Programming voltage  
V
Input voltage on true open drain pin  
Input voltage on any other pin  
VSS - 0.3 to 6.5  
(1)(2)  
VIN  
VSS - 0.3 to  
VDD + 0.3  
|ΔVDDx| and |ΔVSSx| Variations between different digital power pins  
50  
50  
mV  
|VSSA - VSSx  
VESD(HBM)  
VESD(MM)  
|
Variations between digital and analog ground pins  
Electrostatic discharge voltage (human body model)  
Electrostatic discharge voltage (machine model)  
see Section 12.8.3 on  
page 157  
1. Directly connecting the RESET and I/O pins to VDD or VSS could damage the device if an unintentional  
internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a  
corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up  
or pull-down resistor (typical: 4.7 kΩ for RESET, 10 kΩ for I/Os). For the same reason, unused I/O pins  
must not be directly tied to VDD or VSS  
.
2. IINJ(PIN) must never be exceeded. This is implicitly ensured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. For true open-drain  
pads, there is no positive injection current, and the corresponding VIN maximum must always be  
respected.  
142/193  
 
ST72324Bxx  
Electrical characteristics  
12.2.2  
Current characteristics  
Table 84. Current characteristics  
Symbol  
Ratings  
Max value Unit  
32-pin devices  
75  
150  
75  
150  
20  
40  
- 25  
5
IVDD  
Total current into VDD power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
44-pin devices  
32-pin devices  
44-pin devices  
IVSS  
Output current sunk by any standard I/O and control pin  
Output current sunk by any high sink I/O pin  
Output current source by any I/Os and control pin  
Injected current on VPP pin  
IIO  
mA  
Injected current on RESET pin  
5
Injected current on OSC1 and OSC2 pins  
Injected current on ROM and 32 Kbyte Flash devices PB0 pin  
Injected current on 8/16 Kbyte Flash devices PB0 pin  
Injected current on any other pin(4)(5)  
5
(2)(3)  
IINJ(PIN)  
5
+ 5  
5
(2)  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(4)  
25  
1. All power (VDD) and ground (VSS) lines must always be connected to the external supply.  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. For true open-drain  
pads, there is no positive injection current, and the corresponding VIN maximum must always be respected.  
3. Negative injection degrades the analog performance of the device. See note in Section 12.13.3: ADC  
accuracy on page 171. If the current injection limits given in Table 106: General characteristics on  
page 158 are exceeded, general device malfunction may result.  
4. When several inputs are submitted to a current injection, the maximum SIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on  
characterization with SIINJ(PIN) maximum current injection on four I/O port pins of the device.  
5. True open drain I/O port pins do not accept positive injection.  
12.2.3  
Thermal characteristics  
Table 85. Thermal characteristics  
Symbol  
Ratings  
Storage temperature range  
Value  
Unit  
TSTG  
TJ  
-65 to +150  
°C  
Maximum junction temperature (see Section 13.3: Thermal characteristics)  
143/193  
 
 
 
 
Electrical characteristics  
ST72324Bxx  
12.3  
Operating conditions  
Table 86. Operating conditions  
Symbol  
Parameter  
Internal clock frequency  
Conditions  
Min Max Unit  
fCPU  
0
8
MHz  
V
Operating voltage (except Flash Write/Erase)  
Operating Voltage for Flash Write/Erase  
3.8  
4.5  
0
5.5  
5.5  
70  
VDD  
VPP = 11.4 to 12.6 V  
1-suffix version  
5-suffix version  
6-suffix version  
7-suffix version  
3-suffix version  
-10  
-40  
-40  
-40  
85  
TA  
Ambient temperature range  
85  
°C  
105  
125  
Figure 64. f  
max versus V  
DD  
CPU  
f
[MHz]  
CPU  
Functionality  
8
guaranteed  
in this area  
(unless  
Functionality  
not guaranteed  
in this area  
6
4
2
otherwise  
specified  
in the tables  
of parametric  
data)  
1
0
3.5  
3.84.0  
4.5  
5.5  
Supply voltage [V]  
Note:  
Some temperature ranges are only available with a specific package and memory size.  
Refer to Section 14: Device configuration and ordering information.  
Warning: Do not connect 12 V to V before V is powered on, as this  
PP  
DD  
may damage the device.  
144/193  
ST72324Bxx  
Electrical characteristics  
12.4  
LVD/AVD characteristics  
12.4.1  
Operating conditions with LVD  
Subject to general operating conditions for T .  
A
Table 87. Operating conditions with LVD  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VD level = high in option byte  
4.0(1)  
4.2  
4.5  
4.0(1)  
VIT+(LVD) Reset release threshold (VDD rise)  
VD level = med. in option byte(2) 3.55(1) 3.75  
VD level = low in option byte(2)  
2.95(1) 3.15  
3.35(1)  
4.25(1)  
3.75(1)  
3.15(1)  
250  
V
VD level = high in option byte  
3.8 4.0  
VIT-(LVD) Reset generation threshold (VDD fall) VD level = med. in option byte(2) 3.35(1) 3.55  
VD level = low in option byte(2)  
2.8(1)  
3.0  
Vhys(LVD) LVD voltage threshold hysteresis(1)  
VtPOR VDD rise time(1)  
VIT+(LVD)-VIT-(LVD)  
150  
200  
mV  
Flash devices  
100ms/V  
20ms/V  
ms/V  
40  
8/16 Kbyte ROM devices  
32 Kbyte ROM devices  
Not detected by the LVD  
6µs/V  
(1)  
tg(VDD) Filtered glitch delay on VDD  
ns  
1. Data based on characterization results, tested in production for ROM devices only.  
2. If the medium or low thresholds are selected, the detection may occur outside the specified operating voltage range.  
12.4.2  
Auxiliary voltage detector (AVD) thresholds  
Subject to general operating conditions for T .  
A
Table 88. AVD thresholds  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
VD level = high in option byte  
4.4(1) 4.6  
4.9  
1 0 AVDF flag toggle threshold  
(VDD rise)  
VIT+(AVD)  
VD level = med. in option byte 3.95(1) 4.15 4.4(1)  
VD level = low in option byte  
3.4(1) 3.6 3.8(1)  
4.2  
4.4 4.65(1)  
V
VD level = high in option byte  
0 1 AVDF flag toggle threshold  
VIT-(AVD)  
VD level = med. in option byte 3.75(1) 4.0 4.2(1)  
(VDD fall)  
VD level = low in option byte  
VIT+(AVD)-VIT-(AVD)  
3.2(1) 3.4 3.6(1)  
Vhys(AVD) AVD voltage threshold hysteresis  
200  
mV  
Voltage drop between AVD flag set and  
LVD reset activated  
ΔVIT-  
VIT-(AVD)-VIT-(LVD)  
450  
1. Data based on characterization results, tested in production for ROM devices only.  
145/193  
 
 
 
Electrical characteristics  
ST72324Bxx  
12.5  
Supply current characteristics  
The following current consumption specified for the ST7 functional operating modes over  
temperature range does not take into account the clock source current consumption. To  
obtain the total device consumption, the two current values must be added (except for Halt  
mode for which the clock is stopped).  
12.5.1  
ROM current consumption  
Table 89. ROM current consumption  
32 Kbyte ROM  
devices  
16/8 Kbyte  
ROM devices  
Symbol  
Parameter  
Conditions  
Unit  
Typ  
Max(1) Typ Max(1)  
fOSC = 2 MHz, fCPU = 1 MHz  
fOSC = 4 MHz, fCPU = 2 MHz  
fOSC = 8 MHz, fCPU = 4 MHz  
fOSC = 16 MHz, fCPU = 8 MHz  
0.55  
1.10  
2.20  
4.38  
0.87  
1.75  
3.5  
0.46  
0.93  
1.9  
0.69  
1.4  
2.7  
5.5  
Supply current in Run mode(2)  
Supply current in Slow mode(2)  
Supply current in Wait mode(2)  
mA  
µA  
7.0  
3.7  
fOSC = 2 MHz, fCPU = 62.5 kHz  
fOSC = 4 MHz, fCPU = 125 kHz  
fOSC = 8 MHz, fCPU = 250 kHz  
53  
100  
194  
87  
30  
70  
150  
310  
60  
175  
350  
700  
120  
250  
500  
fOSC = 16 MHz, fCPU = 500 kHz 380  
fOSC = 2 MHz, fCPU = 1 MHz  
fOSC = 4 MHz, fCPU = 2 MHz  
fOSC = 8 MHz, fCPU = 4 MHz  
fOSC = 16 MHz, fCPU = 8 MHz  
0.31  
0.61  
1.22  
2.44  
0.5  
1.0  
2.0  
4.0  
0.22  
0.45  
0.91  
1.82  
0.37  
0.75  
1.5  
3
mA  
IDD  
fOSC = 2 MHz, fCPU = 62.5 kHz  
fOSC = 4 MHz, fCPU = 125 kHz  
fOSC = 8 MHz, fCPU = 250 kHz  
36  
69  
133  
63  
20  
40  
90  
40  
90  
180  
350  
Supply current in Slow Wait  
mode(2)  
125  
250  
500  
fOSC = 16 MHz, fCPU = 500 kHz 260  
190  
-40 °C < TA < +85 °C  
-40 °C < TA < +125 °C  
<1  
<1  
10  
50  
<1  
<1  
10  
50  
Supply current in Halt mode(3)  
µA  
fOSC = 2 MHz  
fOSC = 4 MHz  
fOSC = 8 MHz  
fOSC = 16 MHz  
15  
28  
55  
20  
38  
75  
11  
22  
43  
85  
15  
30  
60  
Supply current in Active-halt  
mode(4)  
107  
200  
150  
1. Data based on characterization results, tested in production at VDD max. and fCPU max.  
2. Measurements are done in the following conditions:  
- Program executed from RAM, CPU running with RAM access. The increase in consumption when executing from Flash is  
50%.  
- All I/O pins in input mode with a static value at VDD or VSS (no load)  
- All peripherals in reset state  
- LVD disabled.  
- Clock input (OSC1) driven by external square wave  
- In Slow and Slow Wait modes, fCPU is based on fOSC divided by 32  
To obtain the total current consumption of the device, add the clock source (Section 12.6.3) and the peripheral power  
consumption (Section 12.5.4).  
3. All I/O pins in push-pull 0 mode (when applicable) with a static value at VDD or VSS (no load), LVD disabled. Data based on  
characterization results, tested in production at VDD max. and fCPU max.  
4. Data based on characterization results, not tested in production. All I/O pins in push-pull 0 mode (when applicable) with a  
static value at VDD or VSS (no load); clock input (OSC1) driven by external square wave, LVD disabled. To obtain the total  
current consumption of the device, add the clock source consumption (Section 12.6.3).  
146/193  
 
 
ST72324Bxx  
Electrical characteristics  
12.5.2  
Flash current consumption  
Table 90. Flash current consumption  
32 Kbyte  
Flash  
16/8 Kbyte  
Flash  
Symbol  
Parameter  
Conditions  
Unit  
Typ Max(1)  
Typ  
Max(1)  
fOSC = 2 MHz, fCPU = 1 MHz  
fOSC = 4 MHz, fCPU = 2 MHz  
fOSC = 8 MHz, fCPU = 4 MHz  
fOSC = 16 MHz, fCPU = 8 MHz  
1.3  
2.0  
3.6  
7.1  
3.0  
5.0  
8.0  
1
2.3  
3.5  
5.3  
7.0  
1.4  
2.4  
4.4  
Supply current in Run mode(2)  
15.0  
fOSC = 2 MHz, fCPU = 62.5 kHz  
fOSC = 4 MHz, fCPU = 125 kHz  
fOSC = 8 MHz, fCPU = 250 kHz  
0.6  
0.7  
0.8  
2.7  
3.0  
3.6  
4.0  
0.48  
0.53  
0.63  
0.80  
1
Supply current in Slow  
mode(2)  
1.1  
1.2  
1.4  
mA  
fOSC = 16 MHz, fCPU = 500 kHz 1.1  
fOSC = 2 MHz, fCPU = 1 MHz  
fOSC = 4 MHz, fCPU = 2 MHz  
fOSC = 8 MHz, fCPU = 4 MHz  
0.8  
1.2  
2.0  
3.5  
3.0  
4.0  
5.0  
7.0  
0.6  
0.9  
1.3  
2.3  
1.8  
2.2  
2.6  
3.6  
Supply current in Wait mode(2)  
fOSC = 16 MHz, fCPU = 8 MHz  
IDD  
fOSC = 2 MHz, fCPU = 62.5 kHz  
fOSC = 4 MHz, fCPU = 125 kHz  
fOSC = 8 MHz, fCPU = 250 kHz  
580  
650  
770  
1200  
1300  
1800  
430  
470  
530  
660  
950  
Supply current in Slow Wait  
mode(2)  
1000  
1050  
1200  
fOSC = 16 MHz, fCPU = 500 kHz 1050 2000  
-40°C < TA < +85°C  
-40°C < TA < +125°C  
<1  
5
10  
50  
<1  
<1  
10  
50  
Supply current in Halt mode(3)  
µA  
fOSC = 2 MHz  
fOSC = 4 MHz  
fOSC = 8 MHz  
fOSC = 16 MHz  
365  
380  
410  
500  
475  
500  
550  
650  
315  
330  
360  
460  
425  
450  
500  
600  
Supply current in Active-halt  
mode(4)  
1. Data based on characterization results, tested in production at VDD max. and fCPU max.  
2. Measurements are done in the following conditions:  
- Program executed from RAM, CPU running with RAM access. The increase in consumption when executing from Flash is  
50%.  
- All I/O pins in input mode with a static value at VDD or VSS (no load)  
- All peripherals in reset state  
- LVD disabled  
- Clock input (OSC1) driven by external square wave  
- In Slow and Slow Wait modes, fCPU is based on fOSC divided by 32  
- To obtain the total current consumption of the device, add the clock source (Section 12.6.3) and the peripheral power  
consumption (Section 12.5.4).  
3. All I/O pins in push-pull 0 mode (when applicable) with a static value at VDD or VSS (no load), LVD disabled. Data based on  
characterization results, tested in production at VDD max. and fCPU max.  
4. Data based on characterization results, not tested in production. All I/O pins in push-pull 0 mode (when applicable) with a  
static value at VDD or VSS (no load); clock input (OSC1) driven by external square wave, LVD disabled. To obtain the total  
current consumption of the device, add the clock source consumption (Section 12.6.3).  
147/193  
 
 
Electrical characteristics  
ST72324Bxx  
12.5.3  
Supply and clock managers  
The previous current consumption specified for the ST7 functional operating modes over  
temperature range does not take into account the clock source current consumption. To  
obtain the total device consumption, the two current values must be added (except for Halt  
mode).  
Table 91. Oscillators, PLL and LVD current consumption  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
IDD(RCINT) Supply current of internal RC oscillator  
IDD(RES) Supply current of resonator oscillator(1)(2)  
625  
see Section 12.6.3  
on page 150  
µA  
IDD(PLL) PLL supply current  
IDD(LVD) LVD supply current  
360  
VDD = 5V  
150  
300  
1. Data based on characterization results done with the external components specified in Section 12.6.3, not  
tested in production.  
2. As the oscillator is based on a current source, the consumption does not depend on the voltage.  
12.5.4  
On-chip peripherals  
.
Table 92. On-chip peripherals current consumption  
Symbol  
Parameter  
Conditions  
Typ Unit  
IDD(TIM) 16-bit timer supply current(1)  
IDD(SPI) SPI supply current(2)  
50  
TA = 25 °C, fCPU = 4 MHz,  
VDD = 5.0 V  
µA  
IDD(SCI) SCI supply current(3)  
400  
IDD(ADC) ADC supply current when converting(4)  
1. Data based on a differential IDD measurement between reset configuration (timer counter running at  
fCPU/4) and timer counter stopped (only TIMD bit set). Data valid for one timer.  
2. Data based on a differential IDD measurement between reset configuration (SPI disabled) and a permanent  
SPI master communication at maximum speed (data sent equal to 55h). This measurement includes the  
pad toggling consumption.  
3. Data based on a differential IDD measurement between SCI low power state (SCID = 1) and a permanent  
SCI data transmit sequence.  
4. Data based on a differential IDD measurement between reset configuration and continuous A/D  
conversions.  
148/193  
 
ST72324Bxx  
Electrical characteristics  
12.6  
Clock and timing characteristics  
Subject to general operating conditions for V , f  
, and T .  
A
DD CPU  
12.6.1  
General timings  
Table 93. General timings  
Symbol  
Parameter  
Conditions Min Typ(1) Max Unit  
2
fCPU = 8 MHz 250  
10  
3
12  
tCPU  
ns  
tc(INST) Instruction cycle time  
375 1500  
22  
tCPU  
µs  
tv(IT)  
Interrupt reaction time tv(IT) = Δtc(INST) + 10(2)  
fCPU = 8 MHz 1.25  
2.75  
1. Data based on typical application software.  
2. Time measured between interrupt event and interrupt vector fetch. Δtc(INST) is the number of tCPU cycles  
needed to finish the current instruction execution.  
12.6.2  
External clock source  
Table 94. External clock source  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
VOSC1H OSC1 input pin high level voltage  
VOSC1L OSC1 input pin low level voltage  
VDD-1  
VSS  
VDD  
V
VSS+1  
tw(OSC1H)  
tw(OSC1L)  
OSC1 high or low time(1)  
5
See Figure 65.  
ns  
15  
tr(OSC1)  
tf(OSC1)  
OSC1 rise or fall time(1)  
Ilkg  
OSC1 input leakage current  
VSS < VIN < VDD  
1
µA  
1. Data based on design simulation and/or technology characteristics, not tested in production.  
Figure 65. Typical application with an external clock source  
90%  
V
V
OSC1H  
OSC1L  
10%  
t
t
w(OSC1H)  
t
t
w(OSC1L)  
f(OSC1)  
r(OSC1)  
OSC2  
Not connected internally  
f
OSC  
External  
clock source  
I
lkg  
OSC1  
ST72XXX  
149/193  
 
 
Electrical characteristics  
ST72324Bxx  
12.6.3  
Crystal and ceramic resonator oscillators  
The ST7 internal clock can be supplied with four different crystal/ceramic resonator  
oscillators. All the information given in this paragraph are based on characterization results  
with specified typical external components. In the application, the resonator and the load  
capacitors have to be placed as close as possible to the oscillator pins in order to minimize  
output distortion and start-up stabilization time. Refer to the crystal/ceramic resonator  
manufacturer for more details (frequency, package, accuracy...).  
8/16 Kbyte Flash and ROM devices  
Table 95. Crystal and ceramic resonator oscillators (8/16 Kbyte Flash and ROM  
devices)  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
LP: low power oscillator  
1
2
4
8
MP: medium power oscillator  
MS: medium speed oscillator  
HS: high speed oscillator  
>2  
>4  
>8  
fOSC  
Oscillator frequency(1)  
Feedback resistor(2)  
MHz  
kΩ  
16  
RF  
20  
40  
Recommended load capacitance RS = 200 Ω  
LP oscillator  
MP oscillator  
MS oscillator  
HS oscillator  
22  
22  
18  
15  
56  
46  
33  
33  
CL1  
CL2  
versus equivalent serial  
resistance of the crystal or  
ceramic resonator (RS)(3)  
RS = 200 Ω  
RS = 200 Ω  
RS = 100 Ω  
pF  
VDD = 5V, VIN = VSS  
LP oscillator  
80 150  
160 250  
310 460  
610 910  
i2  
OSC2 driving current  
µA  
MP oscillator  
MS oscillator  
HS oscillator  
1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with  
small RS value. Refer to crystal/ceramic resonator manufacturer for more details.  
2. Data based on characterization results, not tested in production. The relatively low value of the RF resistor,  
offers a good protection against issues resulting from use in a humid environment, due to the induced  
leakage and the bias condition change. However, it is recommended to take this point into account if the  
microcontroller is used in tough humidity conditions.  
3. For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to 25 pF range (typ.)  
designed for high-frequency applications and selected to match the requirements of the crystal or  
resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load  
capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be  
included when sizing CL1 and CL2 (10 pF can be used as a rough estimate of the combined pin and board  
capacitance).  
150/193  
 
 
ST72324Bxx  
Electrical characteristics  
Figure 66. Typical application with a crystal or ceramic resonator (8/16 Kbyte Flash  
and ROM devices)  
When resonator with  
integrated capacitors  
i
2
f
OSC  
C
L1  
OSC1  
OSC2  
Resonator  
R
F
C
L2  
ST72XXX  
32 Kbyte Flash and ROM devices  
Table 96. Crystal and ceramic resonator oscillators (32 Kbyte Flash and ROM  
devices)  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
fOSC Oscillator frequency(1)  
1
16 MHz  
RF  
Feedback resistor(2)  
20  
40  
kΩ  
Recommended load  
capacitance versus equivalent  
fOSC = 1 to 2 MHz  
fOSC = 2 to 4 MHz  
20  
20  
15  
15  
60  
50  
35  
35  
CL1  
CL2  
pF  
serial resistance of the crystal or fOSC = 4 to 8 MHz  
ceramic resonator (RS)(3)  
fOSC = 8 to 16 MHz  
VDD = 5V, VIN = VSS  
80  
150  
250  
460  
910  
LP oscillator  
i2  
OSC2 driving current  
160  
310  
610  
µA  
MP oscillator  
MS oscillator  
HS oscillator  
1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with  
small RS value. Refer to crystal/ceramic resonator manufacturer for more details.  
2. Data based on characterization results, not tested in production. The relatively low value of the RF resistor,  
offers a good protection against issues resulting from use in a humid environment, due to the induced  
leakage and the bias condition change. However, it is recommended to take this point into account if the  
microcontroller is used in tough humidity conditions.  
3. For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5-pF to 25-pF range (typ.)  
designed for high-frequency applications and selected to match the requirements of the crystal or  
resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load  
capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be  
included when sizing CL1 and CL2 (10 pF can be used as a rough estimate of the combined pin and board  
capacitance).  
151/193  
Electrical characteristics  
ST72324Bxx  
Figure 67. Typical application with a crystal or ceramic resonator (32 Kbyte Flash  
and ROM devices)  
When resonator with  
integrated capacitors  
f
OSC  
Power down  
logic  
C
OSC1  
L1  
Linear  
amplifier  
Feedback  
loop  
i
2
VDD/2  
ref  
Resonator  
R
F
C
L2  
OSC2  
ST72XXX  
Table 97. OSCRANGE selection for typical resonators  
Typical ceramic resonators(1)  
fOSC  
(MHz)  
Supplier  
Recommended OSCRANGE  
option bit configuration  
Reference  
2
4
CSTCC2M00G56A-R0  
CSTCR4M00G55B-R0  
CSTCE8M00G52A-R0  
CSTCE16M0V51A-R0  
MP mode(2)  
MS mode  
HS mode  
HS mode  
Murata  
8
16  
1. Resonator characteristics given by the ceramic resonator manufacturer.  
2. LP mode is not recommended for 2 MHz resonator because the peak to peak amplitude is too small  
(>0.8 V). For more information on these resonators, please consult www.murata.com.  
12.6.4  
RC oscillators  
Table 98. RC oscillators  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Internal RC oscillator frequency TA = 25 °C,  
fOSC (RCINT)  
2
3.5  
5.6 MHz  
(see Figure 68)  
VDD = 5 V  
Figure 68. Typical f  
vs T  
A
OSC(RCINT)  
4
Vdd = 5V  
Vdd = 5.5V  
3.8  
3.6  
3.4  
3.2  
3
-45  
0
25  
70  
130  
T(°C)  
A
152/193  
 
 
ST72324Bxx  
Electrical characteristics  
Note:  
To reduce disturbance to the RC oscillator, it is recommended to place decoupling  
capacitors between V and V as shown in Figure 87 on page 170.  
DD  
SS  
12.6.5  
PLL characteristics  
Table 99. PLL characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fOSC  
PLL input frequency range  
Instantaneous PLL jitter(1)  
2
4
2
MHz  
%
Δ fCPU CPU  
/f  
fOSC = 4 MHz  
0.7  
1. Data characterized but not tested  
The user must take the PLL jitter into account in the application (for example in serial  
communication or sampling of high frequency signals). The PLL jitter is a periodic effect,  
which is integrated over several CPU cycles. Therefore the longer the period of the  
application signal, the less it will be impacted by the PLL jitter.  
Figure 69 shows the PLL jitter integrated on application signals in the range 125 kHz to  
2 MHz. At frequencies of less than 125 kHz, the jitter is negligible.  
(1)  
Figure 69. Integrated PLL jitter vs signal frequency  
+/-Jitter (%)  
1.2  
Max  
Typ  
1
0.8  
0.6  
0.4  
0.2  
0
4 MHz 2 MHz 1 MHz 500 kHz 250 kHz 125 kHz  
Application Frequency  
1. Measurement conditions: fCPU = 8 MHz  
12.7  
Memory characteristics  
12.7.1  
RAM and hardware registers  
Table 100. RAM and hardware registers  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VRM  
Data retention mode(1)  
Halt mode (or reset)  
1.6  
V
1. Minimum VDD supply voltage without losing data stored in RAM (in Halt mode or under reset) or in  
hardware registers (only in Halt mode). Not tested in production.  
153/193  
 
Electrical characteristics  
ST72324Bxx  
12.7.2  
Flash memory  
Table 101. Dual voltage HDFlash memory  
Symbol  
Parameter  
Conditions  
Read mode  
Min(1) Typ Max(1) Unit  
0
1
8
8
fCPU  
Operating frequency  
MHz  
Write/Erase mode  
4.5 V < VDD < 5.5 V  
Write/Erase  
VPP  
IDD  
Programming voltage(2)  
Supply current(3)  
11.4  
12.6  
V
<10  
10  
µA  
µA  
mA  
µs  
Read (VPP = 12 V)  
Write/Erase  
200  
30  
IPP  
VPP current(3)  
tVPP  
Internal VPP stabilization time  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
TA=85 °C  
40  
15  
tRET  
Data retention  
years  
7
100  
1000  
cycles  
cycles  
NRW  
Write erase cycles  
TA=55 °C  
TPROG Programming or erasing  
TERASE temperature range  
-40  
25  
85  
°C  
1. Data based on characterization results, not tested in production.  
2. VPP must be applied only during the programming or erasing operation and not permanently for reliability  
reasons.  
3. Data based on simulation results, not tested in production.  
154/193  
 
 
 
 
ST72324Bxx  
Electrical characteristics  
12.8  
EMC characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
12.8.1  
Functional electromagnetic susceptibility (EMS)  
Based on a simple running application on the product (toggling two LEDs through I/O ports),  
the product is stressed by two electromagnetic events until a failure occurs (indicated by the  
LEDs).  
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device  
until a functional disturbance occurs. This test conforms with the IEC 1000-4-2  
standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
DD SS  
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms  
with the IEC 1000-4-4 standard.  
A device reset allows normal operations to be resumed. The test results given in Table 102  
on page 156 are based on the EMS levels and classes defined in application note AN1709.  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
corrupted program counter  
unexpected reset  
critical data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
155/193  
Electrical characteristics  
ST72324Bxx  
Table 102. EMS test results  
Symbol  
Parameter  
Conditions  
Level/class  
32 Kbyte Flash or ROM device:  
VDD = 5 V, TA = +25 °C, fOSC = 8 MHz  
conforms to IEC 1000-4-2  
3B  
8 or 16 Kbyte ROM device:  
VDD = 5 V, TA = +25°C, fOSC = 8 MHz  
conforms to IEC 1000-4-2  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
4A  
4B  
4A  
8 or 16 Kbyte Flash device:  
VDD = 5 V, TA = +25 °C, fOSC = 8 MHz  
conforms to IEC 1000-4-2  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VDD  
pins to induce a functional disturbance  
VDD = 5 V, TA = +25 °C, fOSC = 8 MHz  
conforms to IEC 1000-4-4  
VFFTB  
12.8.2  
Electromagnetic interference (EMI)  
Based on a simple application running on the product (toggling two LEDs through the I/O  
ports), the product is monitored in terms of emission. This emission test is in line with the  
norm SAE J 1752/3 which specifies the board and the loading of each pin.  
Table 103. EMI emissions  
Max vs [fOSC/fCPU  
]
Monitored  
frequency band  
Symbol Parameter  
Conditions  
Device/package(1)  
Unit  
8/4 MHz 16/8 MHz  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
SAE EMI Level  
12  
19  
15  
3
18  
25  
22  
3.5  
14  
25  
21  
3.5  
15  
26  
20  
3.5  
21  
30  
23  
3.5  
dBµV  
8/16 Kbyte Flash  
LQFP32 and LQFP44  
-
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
SAE EMI Level  
13  
20  
16  
3.0  
12  
23  
15  
3.0  
17  
24  
18  
3.0  
dBµV  
32 Kbyte Flash  
LQFP32 and LQFP44  
VDD = 5 V  
-
TA = +25 °C  
conforming to  
SAE J 1752/3  
SEMI Peak level(2)  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
SAE EMI Level  
dBµV  
8/16 Kbyte ROM  
LQFP32 and LQFP44  
-
dBµV  
-
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
SAE EMI Level  
32 Kbyte ROM  
LQFP32 and LQFP44  
1. Refer to application note AN1709 for data on other package types.  
2. Not tested in production.  
156/193  
 
 
ST72324Bxx  
Electrical characteristics  
12.8.3  
Absolute maximum ratings (electrical sensitivity)  
Based on two different tests (ESD and LU) using specific measurement methods, the  
product is stressed in order to determine its performance in terms of electrical sensitivity.  
For more details, refer to the application note AN1181.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models  
can be simulated: human body model and machine model. This test conforms to the  
JESD22-A114A/A115A standard.  
Table 104. Absolute maximum ratings  
Symbol  
Ratings  
Conditions  
Maximum value(1) Unit  
Electrostatic discharge voltage  
(human body model)  
VESD(HBM)  
2000  
TA = +25 °C  
V
Electrostatic discharge voltage  
(charged device model)  
VESD(CDM)  
750  
1. Data based on characterization results, not tested in production.  
Static latch-up  
LU: two complementary static tests are required on 6 parts to assess the latch-up  
performance. A supply overvoltage (applied to each power supply pin) and a current  
injection (applied to each input, output and configurable I/O pin) are performed on each  
sample. This test conforms to the EIA/JESD 78 IC latch-up standard.  
Table 105. Electrical sensitivities  
Test  
specification  
Symbol  
Parameter  
Conditions  
Class  
TA = +25 °C  
LU  
Static latch-up class  
TA = +85 °C  
JESD 78  
II level A  
TA = +125 °C  
157/193  
 
Electrical characteristics  
ST72324Bxx  
12.9  
I/O port pin characteristics  
12.9.1  
General characteristics  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD OSC  
Table 106. General characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Input low level voltage  
VIL  
0.3xVDD  
(standard voltage devices)(1)  
Input high level voltage(1)  
V
VIH  
0.7xVDD  
Vhys  
Schmitt trigger voltage hysteresis(2)  
0.7  
Injected current on I/O pins other than  
pin PB0(4)  
4
Injected current on ROM and 32 Kbyte  
Flash devices pin PB0  
(3)  
IINJ(PIN)  
VDD = 5 V  
mA  
Injected current on 8/16 Kbyte Flash  
devices pin PB0  
0
+4  
Total injected current  
(sum of all I/O and control pins)  
(3)  
ΣIINJ(PIN)  
V
DD = 5 V  
25  
1
mA  
µA  
Ilkg  
IS  
Input leakage current  
VSS < VIN < VDD  
Static current consumption induced by  
each floating input pin  
Floating input mode(5)(6)  
VIN = VSS, VDD = 5 V  
200  
RPU  
CIO  
Weak pull-up equivalent resistor(7)  
50  
120  
5
250  
kΩ  
I/O pin capacitance  
pF  
tf(IO)out  
tr(IO)out  
tw(IT)in  
Output high to low level fall time(1)  
Output low to high level rise time(1)  
External interrupt pulse time(8)  
25  
25  
CL = 50 pF  
between 10% and 90%  
ns  
1
tCPU  
1. Data based on characterization results, not tested in production.  
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.  
3. When the current limitation is not possible, the VIN maximum must be respected, otherwise refer to the IINJ(PIN)  
specification. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. Refer to  
Section 12.2.2 on page 143 for more details.  
4. No negative current injection allowed on 8/16 Kbyte Flash devices  
5. Static peak current value taken at a fixed VIN value, based on design simulation and technology characteristics, not tested  
in production. This value depends on VDD and temperature values.  
6. The Schmitt trigger that is connected to every I/O port is disabled for analog inputs only when ADON bit is ON and the  
particular ADC channel is selected (with port configured in input floating mode). When the ADON bit is OFF, static current  
consumption may result. This can be avoided by keeping the input voltage of this pin close to VDD or VSS  
.
7. The RPU pull-up equivalent resistor is based on a resistive transistor (corresponding IPU current characteristics described in  
Figure 71).  
8. To generate an external interrupt, a minimum pulse width has to be applied on an I/O port pin configured as an external  
interrupt source.  
158/193  
 
 
 
 
 
 
 
ST72324Bxx  
Electrical characteristics  
Figure 70. Unused I/O pins configured as input(1)  
V
DD  
ST7XXX  
10 kΩ  
Unused I/O port  
Unused I/O port  
ST7XXX  
10 kΩ  
1. I/O can be left unconnected if it is configured as output (0 or 1) by the software. This has the advantage of  
greater EMC robustness and lower cost.  
Figure 71. Typical I vs. V with V = V  
PU  
DD  
IN  
SS  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Ta=140°C  
Ta=95°C  
Ta=25°C  
Ta=-45°C  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Vdd(V)  
12.9.2  
Output driving current  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD CPU  
Table 107. Output driving current  
Symbol  
Parameter  
Conditions  
Min  
Max  
1.2  
Unit  
Output low level voltage for a standard I/O  
pin when 8 pins are sunk at same time  
(see Figure 72)  
IIO = +5 mA  
IIO = +2 mA  
0.5  
(1)  
VOL  
IIO = +20 mA  
TA < 85 °C  
TA > 85 °C  
Output low level voltage for a high sink I/O  
pin when 4 pins are sunk at same time  
(see Figure 73 and Figure 75)  
1.3  
1.5  
VDD = 5V  
V
IIO = +8 mA  
0.6  
IIO = -5 mA,  
TA < 85 °C  
TA > 85 °C  
Output high level voltage for an I/O pin  
when 4 pins are sourced at same time  
(see Figure 74 and Figure 77)  
V
DD - 1.4  
(2)  
VOH  
VDD - 1.6  
IIO = -2 mA  
VDD - 0.7  
1. The IIO current sunk must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of IIO (I/O  
ports and control pins) must not exceed IVSS  
.
2. The IIO current sourced must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of IIO  
(I/O ports and control pins) must not exceed IVDD. True open drain I/O pins do not have VOH  
.
159/193  
Electrical characteristics  
ST72324Bxx  
Figure 72. Typical V at V = 5 V (standard ports)  
OL  
DD  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
Ta=140°C  
Ta=95°C  
Ta=25°C  
Ta=-45°C  
"
5
10
15
IIO (mA)  
Figure 73. Typical V at V = 5 V (high-sink ports)  
OL  
DD  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Ta= 140°C  
Ta=95°C  
Ta=25°C  
Ta=-45°C  
3210  
I
IO (mA)  
Figure 74. Typical V at V = 5 V  
OH  
DD  
5.5  
5
4.5  
4
3.5  
3
Vdd=5V 140°C min  
Vdd=5v 95°C min  
Vdd=5v 25°C min  
Vdd=5v -45°C min  
2.5  
2
-10  
-8  
-6  
-4  
-2  
0
I
(mA)  
IO
160/193  
ST72324Bxx  
Electrical characteristics  
Figure 75. Typical V vs. V (standard ports)  
OL  
DD  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.45  
0.4  
Ta= -45°C  
Ta= 25°C  
Ta=-45°C  
Ta=25°C  
Ta=95°C  
Ta=140°C  
Ta= 95°C  
0.35  
0.3  
Ta= 140°C  
0.25  
0.2  
0.15  
0.1  
0.05  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Vdd(V)  
Vdd(V)  
Figure 76. Typical V vs. V (high-sink ports)  
OL  
DD  
1.6  
1.4  
1.2  
1
0.6  
Ta= 140°C  
Ta=95°C  
Ta=25°C  
Ta=-45°C  
0.5  
0.4  
0.3  
0.2  
0.8  
0.6  
0.4  
0.2  
0
Ta= 140°C  
Ta=95°C  
Ta=25°C  
Ta=-45°C  
0.1  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Vdd(V )  
V dd(V )  
Figure 77. Typical V vs. V  
OH  
DD  
5.5  
5
6
Ta=-45°C  
Ta=25°C  
Ta=95°C  
Ta=140°C  
5
4
3
2
1
0
4.5  
4
3.5  
3
Ta=-45°C  
Ta=25°C  
Ta=95°C  
Ta=140°C  
2.5  
2
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Vdd(V)  
Vdd(V)  
161/193  
Electrical characteristics  
ST72324Bxx  
12.10  
Control pin characteristics  
12.10.1 Asynchronous RESET pin  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD CPU  
Table 108. Asynchronous RESET pin  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
VIH  
Vhys  
VOL  
IIO  
Input low level voltage(1)  
0.3xVDD  
V
Input high level voltage(1)  
0.7xVDD  
Schmitt trigger voltage hysteresis(2)  
Output low level voltage(3)  
2.5  
0.2  
2
VDD = 5 V, IIO = +2 mA  
0.5  
V
mA  
kΩ  
µs  
Driving current on RESET pin  
Weak pull-up equivalent resistor  
RON  
VDD = 5V  
20  
20  
30  
30  
120  
tw(RSTL)out Generated reset pulse duration  
th(RSTL)in External reset pulse hold time(5)  
tg(RSTL)in Filtered glitch duration(6)  
Internal reset sources  
42(4)  
2.5  
µs  
200  
ns  
1. Data based on characterization results, not tested in production.  
2. Hysteresis voltage between Schmitt trigger switching levels.  
3. The IIO current sunk must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of IIO (I/O  
ports and control pins) must not exceed IVSS  
.
4. Data guaranteed by design, not tested in production.  
5. To guarantee the reset of the device, a minimum pulse has to be applied to the RESET pin. All short pulses applied on the  
RESET pin with a duration below th(RSTL)in can be ignored.  
6. The reset network (the resistor and two capacitors) protects the device against parasitic resets, especially in noisy  
environments.  
162/193  
 
 
ST72324Bxx  
Electrical characteristics  
RESET pin protection when LVD is enabled  
When the LVD is enabled, it is recommended to protect the RESET pin as shown in  
Figure 78 and follow these guidelines:  
1. The reset network protects the device against parasitic resets.  
2. The output of the external reset circuit must have an open-drain output to drive the ST7  
reset pad. Otherwise the device can be damaged when the ST7 generates an internal  
reset (LVD or watchdog).  
3. Whatever the reset source is (internal or external), the user must ensure that the level  
on the RESET pin can go below the V max. level specified in Section 12.10.1.  
IL  
Otherwise the reset will not be taken into account internally.  
4. Because the reset circuit is designed to allow the internal RESET to be output in the  
RESET pin, the user must ensure that the current sunk on the RESET pin (by an  
external pull-up for example) is less than the absolute maximum value specified for  
I
in Section 12.2.2 on page 143.  
INJ(RESET)  
5. When the LVD is enabled, it is mandatory not to connect a pull-up resistor. A 10nF pull-  
down capacitor is recommended to filter noise on the reset line.  
6. In case a capacitive power supply is used, it is recommended to connect a 1M ohm  
pull-down resistor to the RESET pin to discharge any residual voltage induced by this  
capacitive power supply (this will add 5 µA to the power consumption of the MCU).  
Tips when using the LVD:  
Check that all recommendations related to reset circuit have been applied (see section  
above)  
Check that the power supply is properly decoupled (100 nF + 10 µF close to the MCU).  
Refer to AN1709. If this cannot be done, it is recommended to put a 100 nF + 1 M Ohm  
pull-down on the RESET pin.  
The capacitors connected on the RESET pin and also the power supply are key to  
avoiding any start-up marginality. In most cases, steps 1 and 2 above are sufficient for a  
robust solution. Otherwise: Replace 10 nF pull-down on the RESET pin with a 5 µF to  
20 µF capacitor.  
Figure 78. RESET pin protection when LVD is enabled  
V
ST72XXX  
DD  
Recommended  
0.01 µF  
Optional  
(note 6)  
R
ON  
External  
reset  
Internal  
reset  
Filter  
1 MΩ  
Watchdog  
LVD reset  
Pulse  
generator  
163/193  
 
Electrical characteristics  
ST72324Bxx  
RESET pin protection when LVD is disabled  
When the LVD is disabled, it is recommended to protect the RESET pin as shown in  
Figure 79 and follow these guidelines:  
1. The reset network protects the device against parasitic resets.  
2. The output of the external reset circuit must have an open-drain output to drive the ST7  
reset pad. Otherwise the device can be damaged when the ST7 generates an internal  
reset (LVD or watchdog).  
3. Whatever the reset source is (internal or external), the user must ensure that the level  
on the RESET pin can go below the V max. level specified in Section 12.10.1.  
IL  
Otherwise the reset will not be taken into account internally.  
4. Because the reset circuit is designed to allow the internal RESET to be output in the  
RESET pin, the user must ensure that the current sunk on the RESET pin (by an  
external pull-up for example) is less than the absolute maximum value specified for  
I
in Section 12.2.2 on page 143.  
INJ(RESET)  
Figure 79. RESET pin protection when LVD is disabled  
V
ST72XXX  
DD  
V
DD  
R
ON  
4.7kΩ  
User  
external  
reset  
Internal  
reset  
Filter  
circuit  
0.01µF  
Pulse  
generator  
Watchdog  
Required  
164/193  
 
ST72324Bxx  
Electrical characteristics  
12.10.2 ICCSEL/V pin  
PP  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
DD CPU  
A
Table 109. ICCSEL/V pin  
PP  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Flash versions  
ROM versions  
Flash versions  
ROM versions  
VIN = VSS  
VSS  
VSS  
0.2  
0.3 x VDD  
12.6  
VIL  
Input low level voltage(1)  
V
VDD - 0.1  
0.7 x VDD  
VIH  
Ilkg  
Input high level voltage(1)  
Input leakage current  
VDD  
1
µA  
1. Data based on design simulation and/or technology characteristics, not tested in production.  
(1)  
Figure 80. Two typical applications with ICCSEL/V pin  
PP  
ICCSEL/V  
V
PP  
PP  
Programming  
tool  
10kΩ  
ST72XXX  
ST72XXX  
1. When ICC mode is not required by the application ICCSEL/VPP pin must be tied to VSS  
.
12.11  
Timer peripheral characteristics  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD OSC  
Refer to I/O port characteristics for more details on the input/output alternate function  
characteristics (output compare, input capture, external clock, PWM output...).  
Data based on design simulation and/or characterization results, not tested in production.  
12.11.1 16-bit timer  
Table 110. 16-bit timer  
Symbol Parameter  
Conditions  
Min Typ  
Max  
Unit  
tw(ICAP)in Input capture pulse time  
tres(PWM) PWM resolution time  
1
2
tCPU  
tCPU  
ns  
fCPU = 8 MHz  
250  
fEXT  
Timer external clock frequency  
PWM repetition rate  
0
fCPU/4 MHz  
fPWM  
ResPWM PWM resolution  
16  
bit  
165/193  
 
Electrical characteristics  
ST72324Bxx  
12.12  
Communication interface characteristics  
12.12.1 Serial peripheral interface (SPI)  
The following characteristics are ubject to general operating conditions for V , f  
, and T  
A
DD CPU  
unless otherwise specified. The data is based on design simulation and/or characterization  
results, not tested in production.  
When no communication is on-going the data output line of the SPI (MOSI in master mode,  
MISO in slave mode) has its alternate function capability released. In this case, the pin  
status depends on the I/O port configuration. Refer to the I/O port characteristics for more  
details on the input/output alternate function characteristics (SS, SCK, MOSI, MISO).  
Table 111. SPI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Master fCPU = 8 MHz  
Slave fCPU = 8 MHz  
fCPU/128 = 0.0625  
0
fCPU/4 = 2  
fCPU/2 = 4  
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall time  
see I/O port pin description  
tCPU + 50  
tsu(SS)  
SS setup time(2)  
SS hold time  
Slave  
Slave  
(1)  
(1)  
th(SS)  
120  
(1)  
tw(SCKH)  
tw(SCKL)  
Master  
Slave  
100  
90  
SCK high and low time  
Data input setup time  
Data input hold time  
(1)  
(1)  
tsu(MI)  
tsu(SI)  
Master  
Slave  
100  
100  
(1)  
(1)  
th(MI)  
th(SI)  
Master  
Slave  
100  
100  
(1)  
ns  
(1)  
ta(SO)  
Data output access time  
Data output disable time  
Data output valid time  
Data output hold time  
Data output valid time  
Data output hold time  
Slave  
Slave  
0
120  
240  
120  
(1)  
tdis(SO)  
(1)  
tv(SO)  
th(SO)  
tv(MO)  
th(MO)  
Slave (after enable edge)  
Master (after enable edge)  
(1)  
0
0
(1)  
(1)  
120  
1. Data based on design simulation and/or characterization results, not tested in production.  
2. Depends on fCPU. For example, if fCPU = 8 MHz, then tCPU = 1 / fCPU = 125 ns and tsu(SS) = 175 ns.  
166/193  
 
ST72324Bxx  
Figure 81. SPI slave timing diagram with CPHA = 0  
Electrical characteristics  
(1)  
SS  
INPUT  
t
t
t
su(SS)  
c(SCK)  
h(SS)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
t
t
w(SCKH)  
w(SCKL)  
t
t
t
t
h(SO)  
dis(SO)  
v(SO)  
a(SO)  
t
f(SCK)  
r(SCK)  
t
See  
MISO  
See note 2  
Bit 6 OUT  
LSB OUT  
LSB IN  
OUTPUT  
INPUT  
MSB OUT  
note 2  
t
su(SI)  
t
h(SI)  
MSB IN  
Bit 1 IN  
MOSI  
1. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD  
.
2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave  
mode) has its alternate function capability released. In this case, the pin status depends on the I/O port  
configuration.  
(1)  
Figure 82. SPI slave timing diagram with CPHA = 1  
SS  
INPUT  
t
t
su(SS)  
c(SCK)  
t
h(SS)  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
w(SCKH)  
w(SCKL)  
t
t
t
h(SO)  
dis(SO)  
v(SO)  
t
t
f(SCK)  
r(SCK)  
a(SO)  
t
see  
note 2  
see  
MISO  
MOSI  
OUTPUT  
INPUT  
HZ  
MSB OUT  
Bit 6 OUT  
LSB OUT  
note 2  
t
t
su(SI)  
h(SI)  
MSB IN  
Bit 1 IN  
LSB IN  
1. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD  
.
2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave  
mode) has its alternate function capability released. In this case, the pin status depends on the I/O port  
configuration.  
167/193  
Electrical characteristics  
ST72324Bxx  
(1)  
Figure 83. SPI master timing diagram  
SS INPUT  
tc(SCK)  
CPHA = 0  
CPOL = 0  
CPHA = 0  
CPOL = 1  
CPHA = 1  
CPOL = 0  
CPHA = 1  
CPOL = 1  
tw(SCKH)  
tw(SCKL)  
tr(SCK)  
tf(SCK)  
th(MI)  
tsu(MI)  
MISO INPUT  
MSB IN  
BIT6 IN  
LSB IN  
tv(MO)  
th(MO)  
MSB OUT  
LSB OUT  
See note 2  
BIT6 OUT  
See note 2  
MOSI OUTPUT  
1. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD  
.
2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave  
mode) has its alternate function capability released. In this case, the pin status depends on the I/O port  
configuration.  
12.13  
10-bit ADC characteristics  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD CPU  
Table 112. 10-bit ADC characteristics  
Symbol  
Parameter  
ADC clock frequency  
Conditions  
Min  
Typ  
Max  
Unit  
fADC  
0.4  
3.8  
2
VDD  
VAREF  
250  
1
MHz  
VAREF Analog reference voltage  
0.7*VDD < VAREF < VDD  
V
VAIN  
Conversion voltage range(1)  
VSSA  
-40 °C < TA < +85 °C  
nA  
µA  
kΩ  
pF  
Hz  
pF  
Input leakage current for analog  
input(2)  
Ilkg  
Other TA ranges  
RAIN External input impedance  
See  
figures  
84 and  
85  
CAIN External capacitor on analog input  
fAIN  
Variation freq. of analog input signal  
CADC Internal sample and hold capacitor  
12  
168/193  
 
ST72324Bxx  
Electrical characteristics  
Table 112. 10-bit ADC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Conversion time (Sample + Hold)  
fCPU = 8 MHz, Speed = 0,  
fADC = 2 MHz  
7.5  
µs  
tADC  
No. of sample capacitor loading cycles  
No. of Hold conversion cycles  
4
11  
1/fADC  
1. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than 10kΩ). Data  
based on characterization results, not tested in production.  
2. Injecting negative current on adjacent pins may result in increased leakage currents. Software filtering of the converted  
analog value is recommended.  
(1)  
Figure 84. R  
max. vs f  
with C = 0 pF  
AIN  
AIN  
ADC  
45  
40  
35  
30  
25  
20  
15  
10  
5
2 MHz  
1 MHz  
0
0
10  
30  
70  
CPARASITIC (pF)  
1. CPARASITIC represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus  
the pad capacitance (3 pF). A high CPARASITIC value will downgrade conversion accuracy. To remedy this,  
fADC should be reduced.  
(1)  
Figure 85. Recommended C  
and R  
values  
AIN  
AIN  
1000  
Cain 10 nF  
Cain 22 nF  
Cain 47 nF  
100  
10  
1
0.1  
0.01  
0.1  
1
10  
fAIN(KHz)  
1. This graph shows that, depending on the input signal variation (fAIN), CAIN can be increased for  
stabilization time and decreased to allow the use of a larger serial resistor (RAIN)  
.
Figure 86. Typical A/D converter application  
V
DD  
ST72XXX  
V
T
0.6 V  
R
AIN  
2 kΩ (max)  
AINx  
10-bit A/D  
conversion  
V
AIN  
C
V
T
0.6 V  
AIN  
C
12 pF  
I
ADC  
lkg  
169/193  
 
Electrical characteristics  
ST72324Bxx  
12.13.1 Analog power supply and reference pins  
Depending on the MCU pin count, the package may feature separate V  
and V  
SSA  
AREF  
analog power supply pins. These pins supply power to the A/D converter cell and function  
as the high and low reference voltages for the conversion. In some packages, V and  
AREF  
V
pins are not available (refer to Section 2 on page 15). In this case the analog supply  
SSA  
and reference pads are internally bonded to the V and V pins.  
DD  
SS  
Separation of the digital and analog power pins allow board designers to improve A/D  
performance. Conversion accuracy can be impacted by voltage drops and noise in the event  
of heavily loaded or badly decoupled power supply lines (see Section 12.13.2: General PCB  
design guidelines).  
12.13.2 General PCB design guidelines  
To obtain best results, some general design and layout rules should be followed when  
designing the application PCB to shield the noise-sensitive, analog physical interface from  
noise-generating CMOS logic signals.  
Use separate digital and analog planes. The analog ground plane should be connected  
to the digital ground plane via a single point on the PCB.  
Filter power to the analog power planes. It is recommended to connect capacitors, with  
good high frequency characteristics, between the power and ground lines, placing  
0.1µF and optionally, if needed 10 pF capacitors as close as possible to the ST7 power  
supply pins and a 1 to 10 µF capacitor close to the power source (see Figure 87).  
The analog and digital power supplies should be connected in a star network. Do not  
use a resistor, as V  
is used as a reference voltage by the A/D converter and any  
AREF  
resistance would cause a voltage drop and a loss of accuracy.  
Properly place components and route the signal traces on the PCB to shield the analog  
inputs. Analog signals paths should run over the analog ground plane and be as short  
as possible. Isolate analog signals from digital signals that may switch while the analog  
inputs are being sampled by the A/D converter. Do not toggle digital outputs on the  
same I/O port as the A/D input being converted.  
Figure 87. Power supply filtering  
ST72XXX  
1 to 10 µF  
0.1 µF  
V
SS  
ST7  
digital noise  
filtering  
V
DD  
V
DD  
Power  
supply  
source  
0.1 µF  
V
AREF  
External  
noise  
filtering  
V
SSA  
170/193  
 
 
ST72324Bxx  
Electrical characteristics  
12.13.3 ADC accuracy  
Table 113. ADC accuracy  
Max(1)  
ROM and  
8/16 Kbyte  
Flash  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
32 Kbyte  
Flash  
|ET|  
|EO|  
|EG|  
|ED|  
|EL|  
Total unadjusted error(2)  
Offset error(2)  
3
2
4
3
3
6
5
Gain error(2)  
CPU in run mode @ fADC 2 MHz 0.5  
4.5  
2
LSB  
Differential linearity error(2)  
Integral linearity error(2)  
1
2
3
1. Data based on characterization results, monitored in production to guarantee 99.73% within max value from -40°C to  
125 °C ( 3σ distribution limits).  
2. ADC accuracy vs. negative injection current: Injecting negative current may reduce the accuracy of the conversion being  
performed on another analog input. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in  
Section 12.9 does not affect the ADC accuracy.  
Figure 88. ADC accuracy characteristics  
Digital result ADCDR  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) End point correlation line.  
E
G
1023  
1022  
1021  
V
V  
AREF  
SSA  
1LSB  
= --------------------------------------------  
IDEAL  
1024  
E
= Total Unadjusted Error: maximum  
T
deviation between the actual and the ideal  
transfer curves.  
(2)  
E
= Offset Error: deviation between the first  
O
E
actual transition and the first ideal one.  
E = Gain Error: deviation between the last  
G
T
(3)  
7
6
5
4
3
2
1
(1)  
ideal transition and the last actual one.  
= Differential Linearity Error: maximum  
E
D
deviation between actual steps and the ideal  
one.  
E
E
O
L
E
= Integral Linearity Error: maximum  
L
deviation between any actual transition and the  
end point correlation line.  
E
D
1 LSB  
IDEAL  
V
(LSB  
)
in  
IDEAL  
0
1
2
3
4
5
6
7
1021  
1023  
V
V
AREF  
SSA  
171/193  
 
 
Package characteristics  
ST72324Bxx  
13  
Package characteristics  
13.1  
ECOPACK  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
13.2  
Package mechanical data  
13.2.1  
LQFP44 package mechanical data  
Figure 89. 44-pin low profile quad flat package outline  
D
A
D1  
A2  
A1  
b
e
E
E1  
c
L1  
L
h
Table 114. 44-pin low profile quad flat package mechanical data  
mm  
Typ  
inches (1)  
Dim.  
Min  
Max  
1.60  
0.15  
1.45  
0.45  
0.20  
Min  
Typ  
Max  
A
A1  
A2  
b
0.0630  
0.0059  
0.0571  
0.0177  
0.0079  
0.05  
1.35  
0.30  
0.09  
0.0020  
0.0531  
0.0118  
0.0035  
1.40  
0.37  
0.0551  
0.0146  
C
D
12.00  
0.4724  
D1  
E
10.00  
12.00  
0.3937  
0.4724  
172/193  
 
 
 
ST72324Bxx  
Package characteristics  
Table 114. 44-pin low profile quad flat package mechanical data (continued)  
mm  
Typ  
inches (1)  
Typ  
Dim.  
Min  
Max  
Min  
Max  
E1  
e
10.00  
0.80  
3.5°  
0.3937  
0.0315  
3.5°  
θ
0°  
7°  
0°  
7°  
L
0.45  
0.60  
1.00  
0.75  
0.0177  
0.0236  
0.0394  
0.0295  
L1  
Number of pins  
N
44  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
13.2.2  
SDIP42 package mechanical data  
Figure 90. 42-pin plastic dual in-line package, shrink 600-mil width  
E
A2  
A
L
A1  
c
E1  
b2  
b
e
eA  
eB  
E
D
0.015  
GAGE PLANE  
eC  
eB  
Table 115. 42-pin dual in line package mechanical data  
mm  
inches (1)  
Typ  
Dim.  
Min  
Typ  
Max  
Min  
Max  
A
A1  
A2  
b
5.08  
0.2000  
0.51  
3.05  
0.38  
0.89  
0.23  
36.58  
0.0201  
0.1201  
0.0150  
0.0350  
0.0091  
1.4402  
3.81  
0.46  
1.02  
0.25  
36.83  
4.57  
0.56  
1.14  
0.38  
37.08  
0.1500  
0.0181  
0.0402  
0.0098  
1.4500  
0.1799  
0.0220  
0.0449  
0.0150  
1.4598  
b2  
c
D
173/193  
Package characteristics  
Table 115. 42-pin dual in line package mechanical data  
ST72324Bxx  
mm  
Typ  
inches (1)  
Typ  
Dim.  
Min  
Max  
Min  
Max  
E
E1  
e
15.24  
12.70  
16.00  
14.48  
0.6000  
0.5000  
0.6299  
0.5701  
13.72  
1.78  
0.5402  
0.0701  
0.6000  
eA  
eB  
eC  
L
15.24  
18.54  
1.52  
3.56  
0.7299  
0.0598  
0.1402  
2.54  
3.30  
0.1000  
0.1299  
Number of pins  
N
42  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
13.2.3  
LQFP32 package mechanical data  
Figure 91. 32-pin low profile quad flat package outline  
D
A
D1  
A2  
A1  
e
E1 E  
b
c
L1  
L
h
Table 116. 32-pin low profile quad flat package mechanical data  
mm  
Typ  
inches (1)  
Dim.  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.45  
0.20  
0.0630  
0.0059  
0.0571  
0.0177  
0.0079  
0.05  
1.35  
0.30  
0.09  
0.0020  
0.0531  
0.0118  
0.0035  
1.40  
0.37  
0.0551  
0.0146  
C
D
9.00  
7.00  
0.3543  
0.2756  
D1  
174/193  
 
ST72324Bxx  
Package characteristics  
Table 116. 32-pin low profile quad flat package mechanical data (continued)  
mm  
Typ  
inches (1)  
Typ  
Dim.  
Min  
Max  
Min  
Max  
E
E1  
e
9.00  
7.00  
0.80  
3.5°  
0.60  
1.00  
0.3543  
0.2756  
0.0315  
3.5°  
θ
0°  
7°  
0°  
7°  
L
0.45  
0.75  
0.0177  
0.0236  
0.0394  
0.0295  
L1  
Number of pins  
N
32  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
13.2.4  
SDIP32 package mechanical data  
Figure 92. 32-pin plastic dual in-line package, shrink 400-mil width  
E
eC  
A2  
A
L
A1  
E1  
C
eA  
eB  
b
b2  
e
D
Table 117. 32-pin dual in-line package mechanical data  
mm  
inches(1)  
Dim.  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
3.56  
0.51  
3.05  
0.36  
0.76  
0.20  
27.43  
3.76  
5.08  
0.1402  
0.0201  
0.1201  
0.0142  
0.0299  
0.0079  
1.0799  
0.1480  
0.2000  
3.56  
0.46  
1.02  
0.25  
4.57  
0.58  
1.40  
0.36  
28.45  
0.1402  
0.0181  
0.0402  
0.0098  
0.1799  
0.0228  
0.0551  
0.0142  
1.1201  
b1  
C
D
175/193  
Package characteristics  
Table 117. 32-pin dual in-line package mechanical data (continued)  
ST72324Bxx  
mm  
Typ  
inches(1)  
Dim.  
Min  
Max  
Min  
Typ  
Max  
E
E1  
e
9.91  
7.62  
10.41  
8.89  
11.05  
9.40  
0.3902  
0.3000  
0.4098  
0.3500  
0.0701  
0.4000  
0.4350  
0.3701  
1.78  
eA  
eB  
eC  
L
10.16  
12.70  
1.40  
3.81  
0.5000  
0.0551  
0.1500  
2.54  
3.05  
0.1000  
0.1201  
Number of pins  
N
42  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
176/193  
ST72324Bxx  
Package characteristics  
13.3  
Thermal characteristics  
Table 118. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
Package thermal resistance (junction to ambient):  
LQFP44 10x10  
LQFP32 7x7  
DIP42 600mil  
SDIP32 200mil  
52  
70  
55  
50  
RthJA  
°C/W  
PD  
Power dissipation(1)  
500  
150  
mW  
°C  
TJmax  
Maximum junction temperature(2)  
1. The maximum power dissipation is obtained from the formula PD = (TJ -TA) / RthJA. The power dissipation  
of an application can be defined by the user with the formula: PD = PINT + PPORT where PINT is the chip  
internal power (IDD x VDD) and PPORT is the port power dissipation depending on the ports used in the  
application.  
2. The maximum chip-junction temperature is based on technology characteristics.  
177/193  
 
Device configuration and ordering information  
ST72324Bxx  
14  
Device configuration and ordering information  
Each device is available for production in user programmable versions (Flash) as well as in  
factory coded versions (ROM/FASTROM).  
ST72324Bxx devices are ROM versions. ST72P324B devices are Factory Advanced  
Service Technique ROM (FASTROM) versions: They are factory-programmed HDFlash  
devices. Flash devices are shipped to customers with a default content (FFh), while ROM  
factory coded parts contain the code supplied by the customer. This implies that Flash  
devices have to be configured by the customer using the Option bytes while the ROM  
devices are factory-configured.  
Figure 93. ST72324Bxx ordering information scheme  
Example:  
ST72  
F
324B  
K
2
B
5
Family  
ST7 microcontroller family  
Version  
F = Flash  
P = FASTROM  
Blank = ROM  
Sub-family  
324B  
No. of pins  
K = 32  
J = 42 or 44  
Memory size  
2 = 8 Kbytes  
4 = 16 Kbytes  
6 = 32 Kbytes  
Package  
B = DIP 1)  
M = SO  
U = DFN  
Temperature range  
1 = 0 to +70 °C  
5 = -10 to +85 °C  
6 = -40 to +85 °C  
7 = -40 to +105 °C  
3 = -40 to +125 °C  
For a list of available options (e.g. memory size, package) and orderable part numbers or for  
further information on any aspect of this device, please contact the ST sales office nearest to you.  
178/193  
 
 
ST72324Bxx  
Device configuration and ordering information  
14.1  
Flash devices  
14.1.1  
Flash configuration  
Table 119. Flash option bytes  
Static option byte 0  
Static option byte 1  
7
6
5
4
3
2
1
0
1
7
6
1
5
4
3
2
1
0
1
WDG  
HALT SW  
VD  
OSCTYPE  
OSCRANGE  
Res  
Reserved  
PKG1  
1
0
0
0
1
1
0
0
2
1
1
0
See  
note  
1
Default  
1
1
1
1
1
0
1
1. Depends on device type as defined in Table 122: Package selection (OPT7) on page 181.  
The option bytes allow the hardware configuration of the microcontroller to be selected.  
They have no address in the memory map and can be accessed only in programming mode  
(for example using a standard ST7 programming tool). The default content of the Flash is  
fixed to FFh. To program directly the Flash devices using ICP, Flash devices are shipped to  
customers with the internal RC clock source. In masked ROM devices, the option bytes are  
fixed in hardware by the ROM code (see option list).  
Table 120. Option byte 0 bit description  
Bit  
Name  
Function  
Watchdog reset on Halt  
This option bit determines if a reset is generated when entering Halt  
mode while the Watchdog is active.  
OPT7  
WDG HALT  
0: No reset generation when entering Halt mode  
1: Reset generation when entering Halt mode  
Hardware or software Watchdog  
This option bit selects the Watchdog type.  
0: Hardware (Watchdog always enabled)  
1: Software (Watchdog to be enabled by software)  
OPT6  
OPT5  
WDG SW  
-
Reserved, must be kept at default value.  
Voltage detection  
These option bits enable the voltage detection block (LVD and AVD)  
with a selected threshold for the LVD and AVD.  
00: Selected LVD = Highest threshold (VDD~4V).  
01: Selected LVD = Medium threshold (VDD~3.5V).  
10: Selected LVD = Lowest threshold (VDD~3V).  
11: LVD and AVD off  
Caution: If the medium or low thresholds are selected, the detection  
may occur outside the specified operating voltage range. Below 3.8V,  
device operation is not guaranteed. For details on the AVD and LVD  
threshold levels refer to Section 12.4.1 on page 145.  
OPT4:3  
OPT2:1  
VD[1:0]  
-
Reserved, must be kept at default value  
179/193  
 
Device configuration and ordering information  
ST72324Bxx  
Table 120. Option byte 0 bit description (continued)  
Bit Name Function  
Flash memory readout protection  
Readout protection, when selected, provides a protection against  
program memory content extraction and against write access to Flash  
memory.  
Erasing the option bytes when the FMP_R option is selected causes  
the whole user memory to be erased first, afterwhich the device can  
be reprogrammed. Refer to Section 4.3.1 on page 24 and the ST7  
Flash Programming Reference Manual for more details.  
0: Readout protection enabled  
OPT0  
FMP_R  
1: Readout protection disabled  
Table 121. Option byte 1 bit description  
Bit  
Name  
Function  
Pin package selection bit  
This option bit selects the package (see Table 122).  
Note: On the chip, each I/O port has eight pads. Pads that are not  
bonded to external pins are in input pull-up configuration after reset.  
The configuration of these pads must be kept at reset state to avoid  
added current consumption.  
OPT7  
PKG1  
Reset clock cycle selection  
This option bit selects the number of CPU cycles applied during the  
reset phase and when exiting Halt mode. For resonator oscillators, it  
is advised to select 4096 due to the long crystal stabilization time.  
0: Reset phase with 4096 CPU cycles  
OPT6  
RSTC  
1: Reset phase with 256 CPU cycles  
Oscillator type  
These option bits select the ST7 main clock source type.  
00: Clock source = Resonator oscillator  
01: Reserved  
OPT5:4 OSCTYPE[1:0]  
10: Clock source = Internal RC oscillator  
11: Clock source = External source  
Oscillator range  
When the resonator oscillator type is selected, these option bits select  
the resonator oscillator current source corresponding to the frequency  
range of the used resonator. When the external clock source is  
selected, these bits are set to medium power (2 ~ 4 MHz).  
000: Typ. frequency range (LP) = 1 ~ 2 MHz  
OPT3:1 OSCRANGE[2:0]  
001: Typ. frequency range (MP) = 2 ~ 4 MHz  
010: Typ. frequency range (MS) = 4 ~ 8 MHz  
011: Typ. frequency range (HS) = 8 ~ 16 MHz  
180/193  
ST72324Bxx  
Device configuration and ordering information  
Table 121. Option byte 1 bit description (continued)  
Bit  
Name  
Function  
PLL activation  
This option bit activates the PLL which allows multiplication by two of  
the main input clock frequency. The PLL must not be used with the  
internal RC oscillator. The PLL is guaranteed only with an input  
frequency between 2 and 4 MHz.  
OPT0  
PLL OFF  
0: PLL x2 enabled  
1: PLL x2 disabled  
Caution: The PLL can be enabled only if the “OSCRANGE” (OPT3:1)  
bits are configured to “MP - 2~4 MHz”. Otherwise, the device  
functionality is not guaranteed.  
Table 122. Package selection (OPT7)  
Version  
Selected package  
PKG1  
J
LQFP44/SDIP42  
LQFP32/SDIP32  
1
0
K
14.2  
ROM devices  
14.2.1  
Transfer of customer code  
Customer code is made up of the ROM/FASTROM contents and the list of the selected  
options (if any). The ROM/FASTROM contents are to be sent with the S19 hexadecimal file  
generated by the development tool. All unused bytes must be set to FFh. Complete the  
appended ST72324Bxx MICROCONTROLLER OPTION LIST on page 182 to communicate  
the selected options to STMicroelectronics.  
Refer to application note AN1635 for information on the counter listing returned by ST after  
code has been transferred.  
Figure 93: ST72324Bxx ordering information scheme on page 178 serves as a guide for  
ordering. The STMicroelectronics sales organization will be pleased to provide detailed  
information on contractual points.  
Caution:  
The readout protection binary value is inverted between ROM and Flash products. The  
option byte checksum differs between ROM and Flash.  
181/193  
 
 
Device configuration and ordering information  
ST72324Bxx  
ST72324Bxx MICROCONTROLLER OPTION LIST  
(Last update: March 2009)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Customer:  
Address:  
Contact:  
Phone No:  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Reference/ROM Code* : . . . . . . . . . . . . . . . . . . . . . . . . . . .  
*The ROM code name is assigned by STMicroelectronics.  
ROM code must be sent in .S19 format. .Hex extension cannot be processed.  
Device type/memory size/package (check only one option):  
---------------------------------  
-------------------------------------  
-------------------------------------  
-------------------------------------  
|
|
|
ROM DEVICE:  
32K  
16K  
8K  
-------------------------------------  
-------------------------------------  
---------------------------------  
-------------------------------------  
LQFP32:  
DIP32:  
LQFP44 :  
DIP42:  
|
|
|
|
[ ]  
[ ]  
[ ]  
[ ]  
|
|
|
|
[ ]  
[ ]  
[ ]  
[ ]  
|
|
|
|
[ ]  
[ ]  
[ ]  
[ ]  
---------------------------------  
---------------------------------------  
---------------------------------------  
--------------------------------------  
DIE FORM:  
|
32K  
|
16K  
|
8K  
---------------------------------  
---------------------------------------  
---------------------------------------  
---------------------------------------  
32-pin:  
44-pin:  
|
|
[ ]  
[ ]  
|
|
[ ]  
[ ]  
|
|
[ ]  
[ ]  
Conditioning (check only one option):  
------------------------------------------------------------------------  
------------------------------------------------------------------------  
-----------------------------------------------------  
-----------------------------------------------------  
|
|
Packaged product  
Die product (dice tested at 25 °C only)  
LQFP: [ ] Tape & reel  
DIP: [ ] Tube  
[ ] Tray  
|
|
|
[ ] Tape & Reel  
[ ] Inked wafer  
[ ] Sawn wafer on sticky foil  
Power supply range:  
[ ] 3.8 to 5.5 V  
Temp. range (do not check for die product).  
[ ]  
[ ]  
[ ]  
[ ]  
[ ]  
0 °C to +70 °C  
-10 °C to +85 °C  
-40 °C to +85 °C  
-40 °C to +105 °C  
-40 °C to +125 °C  
Special marking:  
[ ] No  
[ ] Yes "_ _ _ _ _ _ _ _ _ _ " (LQFP32 7 char., other pkg. 10 char. max)  
Authorized characters are letters, digits, '.', '-', '/' and spaces only.  
Clock source selection:  
[ ] Resonator:  
[ ] LP: Low power resonator (1 to 2 MHz)  
[ ] MP: Medium power resonator (2 to 4 MHz)  
[ ] MS: Medium speed resonator (4 to 8 MHz)  
[ ] HS: High speed resonator (8 to 16 MHz)  
[ ] Internal RC  
[ ] External clock  
PLL  
[ ] Disabled  
[ ] Enabled  
LVD Reset [ ] Disabled  
Reset Delay  
[ ] High threshold  
[ ] 256 Cycles  
[ ] Med. threshold  
[ ] Low threshold  
[ ] 4096 Cycles  
Watchdog selection:  
Watchdog Reset on Halt:  
[ ] Software activation  
[ ] Reset  
[ ] Hardware activation  
[ ] No Reset  
Readout protection:  
[ ] Disabled  
[ ] Enabled  
Date  
Signature  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Caution: The readout protection binary value is inverted between ROM and Flash products. The option byte check-  
sum will differ between ROM and Flash.  
182/193  
ST72324Bxx  
Device configuration and ordering information  
14.3  
Development tools  
14.3.1  
Introduction  
Development tools for the ST7 microcontrollers include a complete range of hardware  
systems and software tools from STMicroelectronics and third-party tool suppliers. The  
range of tools includes solutions to help you evaluate microcontroller peripherals, develop  
and debug your application, and program your microcontrollers.  
14.3.2  
14.3.3  
Evaluation tools and starter kits  
ST offers complete, affordable starter kits and full-featured evaluation boards that allow  
you to evaluate microcontroller features and quickly start developing ST7 applications.  
Starter kits are complete, affordable hardware/software tool packages that include features  
and samples to help you quickly start developing your application. ST evaluation boards are  
open-design, embedded systems, which are developed and documented to serve as  
references for your application design. They include sample application software to help you  
demonstrate, learn about and implement your ST7’s features.  
Development and debugging tools  
Application development for ST7 is supported by fully optimizing C Compilers and the ST7  
Assembler-Linker toolchain, which are all seamlessly integrated in the ST7 integrated  
development environments in order to facilitate the debugging and fine-tuning of your  
application. The Cosmic C Compiler is available in a free version that outputs up to  
16 Kbytes of code.  
The range of hardware tools includes cost effective ST7-DVP3 series emulators. These  
tools are supported by the ST7 Toolset from STMicroelectronics, which includes the STVD7  
integrated development environment (IDE) with high-level language debugger, editor,  
project manager and integrated programming interface.  
14.3.4  
Programming tools  
During the development cycle, the ST7-DVP3 and ST7-EMU3 series emulators and the  
RLink provide in-circuit programming capability for programming the Flash microcontroller  
on your application board.  
ST also provides dedicated a low-cost dedicated in-circuit programmer, the ST7-STICK, as  
well as ST7 socket boards which provide all the sockets required for programming any of the  
devices in a specific ST7 subfamily on a platform that can be used with any tool with in-  
circuit programming capability for ST7.  
For production programming of ST7 devices, ST’s third-party tool partners also provide a  
complete range of gang and automated programming solutions, which are ready to integrate  
into your production environment.  
For additional ordering codes for spare parts, accessories and tools available for the ST7  
(including from third party manufacturers), refer to the online product selector at  
www.st.com/mcu.  
183/193  
Device configuration and ordering information  
ST72324Bxx  
Programming  
Table 123. STMicroelectronics development tools  
Emulation  
Supported  
products  
ST7 DVP3 series  
ST7 EMU3 series  
ICC socket  
board  
Active probe  
Emulator  
Connection kit  
Emulator  
and TEB  
ST72324BJ,  
ST72F324BJ  
ST7MDT20-  
T44/DVP  
ST7MDT20-  
DVP3  
ST7MDT20J-EMU3  
ST7MDT20J-TEB  
ST7SB20J/xx(1)  
ST72324BK,  
ST72F324BK  
ST7MDT20-  
T32/DVP  
1. Add suffix /EU, /UK, /US for the power supply of your region.  
14.3.5  
Socket and emulator adapter information  
For information on the type of socket that is supplied with the emulator, refer to the  
suggested list of sockets in Table 124.  
Note:  
Before designing the board layout, it is recommended to check the overall dimensions of the  
socket as they may be greater than the dimensions of the device.  
For footprint and other mechanical information about these sockets and adapters, refer to  
the manufacturer’s datasheet (www.yamaichi.de for LQFP44 10x10 and  
www.ironwoodelectronics.com for LQFP32 7x7).  
Table 124. Suggested list of socket types  
Socket  
Emulator adapter  
(supplied with ST7MDT20J-EMU3)  
Device  
(supplied with ST7MDT20J-EMU3)  
LQFP32 7X7  
IRONWOOD SF-QFE32SA-L-01  
IRONWOOD SK-UGA06/32A-01  
YAMAICHI ICP-044-5  
LQFP44 10X10 YAMAICHI IC149-044-*52-*5  
14.4  
ST7 Application notes  
All relevant ST7 application notes can be found on www.st.com.  
184/193  
 
 
ST72324Bxx  
Known limitations  
15  
Known limitations  
15.1  
All Flash and ROM devices  
15.1.1  
Safe connection of OSC1/OSC2 pins  
The OSC1 and/or OSC2 pins must not be left unconnected, otherwise the ST7 main  
oscillator may start and, in this configuration, could generate an f clock frequency in  
OSC  
excess of the allowed maximum (> 16 MHz), putting the ST7 in an unsafe/undefined state.  
Refer to Section 6.3 on page 32.  
15.1.2  
External interrupt missed  
To avoid any risk of generating a parasitic interrupt, the edge detector is automatically  
disabled for one clock cycle during an access to either DDR and OR. Any input signal edge  
during this period will not be detected and will not generate an interrupt.  
This case can typically occur if the application refreshes the port configuration registers at  
intervals during runtime.  
Workaround  
The workaround is based on software checking the level on the interrupt pin before and after  
writing to the PxOR or PxDDR registers. If there is a level change (depending on the  
sensitivity programmed for this pin) the interrupt routine is invoked using the call instruction  
with three extra PUSH instructions before executing the interrupt routine (this is to make the  
call compatible with the IRET instruction at the end of the interrupt service routine).  
But detection of the level change does not make sure that edge occurs during the critical  
one cycle duration and the interrupt has been missed. This may lead to occurrence of same  
interrupt twice (one hardware and another with software call).  
To avoid this, a semaphore is set to ‘1’ before checking the level change. The semaphore is  
changed to level '0' inside the interrupt routine. When a level change is detected, the  
semaphore status is checked and if it is ‘1’ this means that the last interrupt has been  
missed. In this case, the interrupt routine is invoked with the call instruction.  
There is another possible case that is, if writing to PxOR or PxDDR is done with global  
interrupts disabled (interrupt mask bit set). In this case, the semaphore is changed to ‘1’  
when the level change is detected. Detecting a missed interrupt is done after the global  
interrupts are enabled (interrupt mask bit reset) and by checking the status of the  
semaphore. If it is ‘1’ this means that the last interrupt was missed and the interrupt routine  
is invoked with the call instruction.  
To implement the workaround, the following software sequence is to be followed for writing  
into the PxOR/PxDDR registers. The example is for Port PF1 with falling edge interrupt  
sensitivity. The software sequence is given for both cases (global interrupt  
disabled/enabled).  
185/193  
 
 
Known limitations  
Case 1: Writing to PxOR or PxDDR with global interrupts enabled:  
ST72324Bxx  
LD A,#01  
LD sema,A; set the semaphore to '1'  
LD A,PFDR  
AND A,#02  
LD X,A; store the level before writing to PxOR/PxDDR  
LD A,#$90  
LD PFDDR,A ; Write to PFDDR  
LD A,#$ff  
LD PFOR,A ; Write to PFOR  
LD A,PFDR  
AND A,#02  
LD Y,A; store the level after writing to PxOR/PxDDR  
LD A,X; check for falling edge  
cp A,#02  
jrne OUT  
TNZ Y  
jrne OUT  
LD A,sema ; check the semaphore status if edge is detected  
CP A,#01  
jrne OUT  
call call_routine ; call the interrupt routine  
OUT:LD A,#00  
LD sema,A  
.call_routine ; entry to call_routine  
PUSH A  
PUSH X  
PUSH CC  
.ext1_rt ; entry to interrupt routine  
LD A,#00  
LD sema,A  
IRET  
Case 2: Writing to PxOR or PxDDR with global interrupts disabled:  
SIM ; set the interrupt mask  
LD A,PFDR  
AND A,#$02  
LD X,A ; store the level before writing to PxOR/PxDDR  
LD A,#$90  
LD PFDDR,A ; Write into PFDDR  
LD A,#$ff  
LD PFOR,A ; Write to PFOR  
LD A,PFDR  
AND A,#$02  
LD Y,A ; store the level after writing to PxOR/PxDDR  
LD A,X ; check for falling edge  
cp A,#$02  
jrne OUT  
TNZ Y  
jrne OUT  
LD A,#$01  
LD sema,A ; set the semaphore to '1' if edge is detected  
186/193  
ST72324Bxx  
Known limitations  
RIM ; reset the interrupt mask  
LD A,sema ; check the semaphore status  
CP A,#$01  
jrne OUT  
call call_routine ; call the interrupt routine  
RIM  
OUT:RIM  
JP while_loop  
.call_routine ; entry to call_routine  
PUSH A  
PUSH X  
PUSH CC  
.ext1_rt ; entry to interrupt routine  
LD A,#$00  
LD sema,A  
IRET  
15.1.3  
Unexpected reset fetch  
If an interrupt request occurs while a “POP CC” instruction is executed, the interrupt  
controller does not recognize the source of the interrupt and, by default, passes the reset  
vector address to the CPU.  
Workaround  
To solve this issue, a “POP CC” instruction must always be preceded by a “SIM” instruction.  
15.1.4  
Clearing active interrupts outside interrupt routine  
When an active interrupt request occurs at the same time as the related flag is being  
cleared, an unwanted reset may occur.  
Note:  
Clearing the related interrupt mask will not generate an unwanted reset.  
Concurrent interrupt context  
The symptom does not occur when the interrupts are handled normally, that is, when:  
The interrupt flag is cleared within its own interrupt routine  
The interrupt flag is cleared within any interrupt routine  
The interrupt flag is cleared in any part of the code while this interrupt is disabled  
If these conditions are not met, the symptom can be avoided by implementing the following  
sequence:  
Perform SIM and RIM operation before and after resetting an active interrupt request.  
Example:  
SIM  
Reset interrupt flag  
RIM  
187/193  
 
Known limitations  
ST72324Bxx  
Nested interrupt context  
The symptom does not occur when the interrupts are handled normally, that is, when:  
The interrupt flag is cleared within its own interrupt routine  
The interrupt flag is cleared within any interrupt routine with higher or identical priority  
level  
The interrupt flag is cleared in any part of the code while this interrupt is disabled  
If these conditions are not met, the symptom can be avoided by implementing the following  
sequence:  
PUSH CC  
SIM  
Reset interrupt flag  
POP CC  
15.1.5  
15.1.6  
16-bit timer PWM mode  
In PWM mode, the first PWM pulse is missed after writing the value FFFCh in the OC1R  
register (OC1HR, OC1LR). It leads to either full or no PWM during a period, depending on  
the OLVL1 and OLVL2 settings.  
TIMD set simultaneously with OC interrupt  
If the 16-bit timer is disabled at the same time the output compare event occurs then output  
compare flag gets locked and cannot be cleared before the timer is enabled again.  
Impact on the application  
If output compare interrupt is enabled, then the output compare flag cannot be cleared in the  
timer interrupt routine. Consequently the interrupt service routine is called repeatedly.  
Workaround  
Disable the timer interrupt before disabling the timer. Again while enabling, first enable the  
timer then the timer interrupts.  
Perform the following to disable the timer:  
TACR1 or TBCR1 = 0x00h; // Disable the compare interrupt  
TACSR I or TBCSR I = 0x40; // Disable the timer  
Perform the following to enable the timer again:  
TACSR & or TBCSR & = ~0x40; // Enable the timer  
TACR1 or TBCR1 = 0x40; // Enable the compare interrupt  
15.1.7  
SCI wrong break duration  
Description  
A single break character is sent by setting and resetting the SBK bit in the SCICR2 register.  
In some cases, the break character may have a longer duration than expected:  
20 bits instead of 10 bits if M = 0  
22 bits instead of 11 bits if M = 1  
188/193  
ST72324Bxx  
Known limitations  
In the same way, as long as the SBK bit is set, break characters are sent to the TDO pin.  
This may lead to generate one break more than expected.  
Occurrence  
The occurrence of the problem is random and proportional to the baud rate. With a transmit  
frequency of 19200 baud (f  
occurrence is around 1%.  
= 8MHz and SCIBRR = 0xC9), the wrong break duration  
CPU  
Workaround  
If this wrong duration is not compliant with the communication protocol in the application,  
software can request that an Idle line be generated before the break character. In this case,  
the break duration is always correct assuming the application is not doing anything between  
the idle and the break. This can be ensured by temporarily disabling interrupts.  
The exact sequence is:  
1. Disable interrupts  
2. Reset and set TE (IDLE request)  
3. Set and reset SBK (break request)  
4. Re-enable interrupts  
15.2  
8/16 Kbyte Flash devices only  
15.2.1  
39-pulse ICC entry mode  
ICC mode entry using ST7 application clock (39 pulses) is not supported. External clock  
mode must be used (36 pulses). Refer to the ST7 Flash Programming Reference Manual.  
15.2.2  
Negative current injection on pin PB0  
Negative current injection on pin PB0 degrades the performance of the device and is not  
allowed on this pin.  
15.3  
8/16 Kbyte ROM devices only  
15.3.1  
Readout protection with LVD  
Readout protection is not supported if the LVD is enabled.  
15.3.2  
I/O Port A and F configuration  
When using an external quartz crystal or ceramic resonator, a few f  
clock periods may  
OSC2  
be lost when the signal pattern in Table 125 occurs. This is because this pattern causes the  
device to enter test mode and return to user mode after a few clock periods. User program  
execution and I/O status are not changed, only a few clock cycles are lost.  
This happens with either one of the following configurations  
PA3 = 0, PF4 = 1, PF1 = 0 while PLL option is disabled and PF0 is toggling  
PA3 = 0, PF4 = 1, PF1 = 0, PF0 = 1 while PLL option is enabled  
This is detailed in Table 125.  
189/193  
Known limitations  
ST72324Bxx  
Table 125. Port A and F configuration  
PLL  
PA3  
PF4  
PF1  
PF0  
Clock disturbance  
Maximum 2 clock cycles lost at each rising or falling  
edge of PF0  
Off  
On  
0
0
1
1
0
0
Toggling  
1
Maximum 1 clock cycle lost out of every 16  
As a consequence, for cycle-accurate operations, these configurations are prohibited in  
either input or output mode.  
Workaround  
To avoid this from occurring, it is recommended to connect one of these pins to GND (PF4  
or PF0) or V (PA3 or PF1).  
DD  
190/193  
ST72324Bxx  
Revision history  
16  
Revision history  
Table 126. Document revision history  
Date  
Revision  
Changes  
Merged ST72F324 Flash with ST72324B ROM datasheet.  
Vt POR max modified in Section 12.4 on page 145  
Added Figure 79 on page 164  
05-May-2004  
2.0  
Modified VAREF min in “10-bit ADC characteristics” on page 168  
Modified I INJ for PB0 in Section 12.9 on page 158  
Added “Clearing active interrupts outside interrupt routine” on page 187  
Modified “32K ROM DEVICES ONLY” on page 165  
Removed Clock Security System (CSS) throughout document  
Added notes on ST72F324B 8K/16K Flash devices in Table 27  
Corrected MCO description in Section 10.2 on page 69  
Modified VtPOR in Section 12.4 on page 145  
Static current consumption modified in Section 12.9 on page 158  
Updated footnote and Figure 78 on page 163 and Figure 79 on page 164  
Modified Soldering information in Section 13.6  
Updated Section 14 on page 178  
30-Mar-2005  
3
Added Table 27  
Modified Figure 8 on page 25 and note 4 in “Flash program memory” on  
page 23  
Added limitation on ICC entry mode with 39 pulses to “Known limitations”  
on page 185  
Added Section 16 on page 166 for ST72F324B 8K/16K Flash devices  
Modified “Internal Sales Types on box label” in Table 29 on page 157  
Removed notes related to ST72F324, refer to datasheet rev 3 for  
specifications on older devices.  
Note: This datasheet rev refers only to ST72F324B and ST72324B.  
Changed character transmission procedure in Section on page 112  
Updated Vt POR max in Section 12.4 on page 145  
Updated Current Consumption for in Section 12.5 on page 146  
Added oscillator diagram and table to Section 12.6.3 on page 150  
Increased Data retention max. parameter in Section 12.7.2 on page 154  
Updated ordering Section 14.3 on page 155 and Section 14.5 on page  
157  
12-Sep-2005  
4
Updated Development tools Section 14.3 on page 183  
Added “external interrupt missed” in Section 15.1 on page 185  
Added description of SICSR register at address 2Bh in Table 3 on  
page 20  
Changed description on port PF2 to add internal pull-up in Section 9.5.1  
on page 63  
06-Feb-2006  
5
Highlighted note in SPI “Master mode operation” on page 99  
Changed “Static latch-up” on page 157  
Added note 5 on analog input static current consumption “General  
characteristics” on page 158  
Updated notes in “Thermal characteristics” on page 177  
191/193  
Revision history  
Table 126. Document revision history (continued)  
ST72324Bxx  
Date  
Revision  
Changes  
Removed references to automotive versions (these are covered by  
separate ST72324B-Auto datasheet).  
Changed Flash endurance to 1 Kcycles at 55°C  
Replaced TQFP with LQFP in package outline and device summary on  
page 1  
Figure 1 on page 14: Replaced 60 Kbytes with 32 Kbytes in program  
memory block  
Replaced TQFP with LQFP in Figure 2 on page 15, in Figure 4 on  
page 16 and in Table 2 on page 17  
Changed note 3 in Section 9.2.1 on page 58  
Changed Section 10.1.3 on page 65  
Changed Master mode operation on page 99  
10-Oct-2007  
6
Added unit of measure to LVD supply current in Section 12.5.3 on page  
148  
Replaced TQFP with LQFP in Section 12.8.2 on page 156  
Changed note 4 in Section 12.9.1 on page 158  
Changed Figure 78 on page 163  
Removed EMC protective circuitry in Figure 79 on page 164 (device  
works correctly without these components)  
Changed titles of Figure 89 on page 172 and Figure 91 on page 174  
Replaced TQFP with LQFP in Section 13.3 on page 177  
Changed Section 13.6 on page 171  
Replaced TQFP with LQFP in Section 14.1 on page 179, in Table 122 on  
page 181, in Section Table 122. on page 182 and in Section 14.3.5 on  
page 184  
Removed soldering information section.  
In Section 10.6.3: Functional description on page 129, modified “Starting  
the conversion” paragraph: added “ or a write to any bit of the ADCCSR  
register”.  
Modified tRET values in Table 101: Dual voltage HDFlash memory on  
page 154 .  
Section 13.2: Package mechanical data on page 172 modified (values in  
inches rounded to 4 decimal digits).  
17-Mar-2009  
7
Modified Section 12.8.3: Absolute maximum ratings (electrical sensitivity)  
on page 157 (removed DLU and VESD (MM)).  
Added Section 13.1: ECOPACK on page 172.  
Modified “Device configuration and ordering information” on page 178.  
192/193  
ST72324Bxx  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2009 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
193/193  

相关型号:

ST72324BJ4B7

MICROCONTROLLER
STMICROELECTR

ST72324BJ4B7/XXX

8-BIT, MROM, 8MHz, MICROCONTROLLER, PDIP42, 0.600 INCH, SHRINK, PLASTIC, DIP-42
STMICROELECTR

ST72324BJ4BB/XXX

8-BIT, MROM, 8MHz, MICROCONTROLLER, PDIP42, 0.600 INCH, SHRINK, PLASTIC, DIP-42
STMICROELECTR

ST72324BJ4TA/XXX

8-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP44, 10 X 10 MM, PLASTIC, TQFP-44
STMICROELECTR

ST72324BJ4TA/XXXE

8-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP44, 10 X 10 MM, ROHS COMPLIANT, LQFP-44
STMICROELECTR

ST72324BJ4TA/XXXRS

8-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP44, 10 X 10 MM, ROHS COMPLIANT, LQFP-44
STMICROELECTR

ST72324BJ4TA/XXXXE

8-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP44, 10 X 10 MM, ROHS COMPLIANT, LQFP-44
STMICROELECTR

ST72324BJ4TB/XXX

8-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP44, 10 X 10 MM, PLASTIC, TQFP-44
STMICROELECTR

ST72324BJ4TC/XXXE

8-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP44, 10 X 10 MM, ROHS COMPLIANT, LQFP-44
STMICROELECTR

ST72324BJ4TD/XXXXE

8-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP44, 10 X 10 MM, ROHS COMPLIANT, LQFP-44
STMICROELECTR

ST72324BJ6

8-bit MCU, 3.8 to 5.5 V operating range with 8 to 32 Kbyte Flash/ROM, 10-bit ADC, 4 timers, SPI, SCI
STMICROELECTR

ST72324BJ6B1

MICROCONTROLLER
STMICROELECTR