ST72681/R20 [STMICROELECTRONICS]

USB 2.0 high-speed Flash drive controller; USB 2.0高速闪存驱动器控制器
ST72681/R20
型号: ST72681/R20
厂家: ST    ST
描述:

USB 2.0 high-speed Flash drive controller
USB 2.0高速闪存驱动器控制器

驱动器 闪存 控制器
文件: 总32页 (文件大小:610K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ST72681  
USB 2.0 high-speed Flash drive controller  
Features  
USB 2.0 interface compatible with mass  
storage device class  
– Integrated USB 2.0 PHYSupports USB  
high speed and full speed  
– Suspend and Resume operations  
TQFP48 7x7  
Clock management  
– Integrated PLL for generating core and  
USB 2.0 clock sources using an external  
12 MHz crystal oscillator  
Mass storage controller interface (MSCI)  
– Supports all types of NAND Flash devices  
including ST, Hynix, Samsung, Toshiba,  
Micron, Renesas  
Data protection  
– Write protect switch control  
– Public/private partitions support  
– Reed-Solomon encoder/decoder on-the-fly  
correction (4 bytes of a 512-byte block)  
– Flash identification support  
Production tool device configurability:  
– Up to 12 MB/s for read and 8 MB/s for write  
operations in single channel  
– Up to 4 NAND devices supported in a  
single channel  
– USB vendor ID/product ID (VID/PID), serial  
number and USB strings with foreign  
language support  
– SCSI strings  
Embedded ST7 8-bit MCU  
– One or two LED outputs  
– Adjustable NAND Flash bus frequency to  
reach highest performance  
Supply management  
– 3.3 V operation  
Code update in the NAND Flash memory  
– Integrated 3.3-1.8 V voltage regulator  
®
TQFP48 7x7 ECOPACK package  
USB 2.0 low-power device compliant  
– Less than 100 mA during write operation  
with two NAND Flash devices  
– Less than 500 µA in suspend mode  
AutoRun CDROM partition support  
Bootability support (HDD mode)  
Development support  
– Complete reference design including  
schematics, BOM and gerber files  
Supports Windows (Vista, XP, 2000, ME),  
Linux and MacOS. Drivers available for  
Windows 98 SE  
Table 1.  
Device summary  
Features  
Orderable part numbers  
ST72681/R20  
ST72681/R21  
USB interface  
USB 2.0 high speed  
Number of NAND devices supported (1)  
up to 1  
up to 4  
R/W speed  
11MB/s and 7MB/s  
12MB/s and 8MB/s  
Operating voltage  
3.0 to 3.6 V  
0 to +70 °C  
Operating temperature  
Package  
TQFP48 7x7 / Die form  
1. Number of NAND devices supported in a single channel.  
August 2007  
Rev 5  
1/32  
www.st.com  
1
Contents  
ST72681  
Contents  
1
2
3
4
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
NAND interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.1  
4.2  
NAND support table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
NAND error correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.2.1  
4.2.2  
Hardware error correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Firmware error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.3  
Management of bad NAND blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.3.1  
4.3.2  
4.3.3  
Bad block identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Bad block replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Late fail block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.4  
4.5  
Wear levelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.4.1  
LUT usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
NAND interface configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5
Mass storage implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.1  
5.2  
USB characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
BOT / SCSI implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.2.1  
5.2.2  
5.2.3  
BOT specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
SCSI specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Bootability specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.3  
5.4  
Multi-LUN device characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
Public drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Private drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Additional drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
CD-ROM considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Mass storage interface configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
6
Human interface implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
6.1  
6.2  
LED behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Read only switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
7
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2/32  
ST72681  
Contents  
7.1  
7.2  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
7.1.1  
7.1.2  
7.1.3  
7.1.4  
7.1.5  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.2.1  
7.2.2  
7.2.3  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.3  
7.4  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
7.3.1  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
7.4.1  
7.4.2  
RUN and SUSPEND modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Supply and clock managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
7.5  
7.6  
Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.5.1  
7.5.2  
General timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Crystal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.6.1  
7.6.2  
7.6.3  
Functional EMS (electro magnetic susceptibility) . . . . . . . . . . . . . . . . . 20  
Electromagnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 21  
7.7  
I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.7.1  
7.7.2  
General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
7.8  
7.9  
Control pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.8.1  
Asynchronous RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Other communication interface characteristics . . . . . . . . . . . . . . . . . . . . 26  
7.9.1  
7.9.2  
MSCI parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Universal serial bus interface (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Device ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
9
10  
3/32  
Introduction  
ST72681  
1
Introduction  
The ST72681 is a USB 2.0 high-speed Flash drive controller. The USB 2.0 high-speed  
interface including PHY and function supports USB 2.0 mass storage device class.  
The mass storage controller interface (MSCI) combined with the Reed-Solomon  
encoder/decoder on-the-fly correction (4-byte on 512-byte data blocks) provides a flexible,  
high transfer rate solution for interfacing a wide of range NAND Flash memory device types.  
The internal 60 MHz PLL driven by the 12 MHz oscillator is used to generate the 480 MHz  
frequency for the USB 2.0 PHY.  
The ST7 8-bit CPU runs the application program from the internal ROM and RAM. USB data  
and patch code are stored in internal RAM.  
I/O ports provide functions for EEPROM connection, LEDs and write protect switch control.  
The internal 3.3 to 1.8 V voltage regulator provides the 1.8 V supply voltage to the digital  
part of the circuit.  
Figure 1.  
Device block diagram  
8-bit  
CPU  
12 MHz  
OSC  
ROM  
RAM  
Mass  
Storage  
Controller  
Interface Correction  
Reed-  
NAND  
I/F  
USB 2.0  
Function  
USB 2.0  
PHY  
Solomon  
Error  
3.3 V to 1.8 V  
voltage  
GPIO  
regulator  
4/32  
 
ST72681  
Pin description  
2
Pin description  
Figure 2 shows the TQFP48 package pinout, while Table 2, Table 3, Table 4, and Table 5  
give the pin description.  
The legend and abbreviations used in these tables are the following:  
Type  
I = input  
O = output  
S = supply  
Input level: A = Dedicated analog input  
In/Output level  
C = CMOS 0.3V /0.7V with input trigger  
T DD DD  
T = TTL 0.8V / 2V with Schmitt trigger  
T
Output level  
D8 = 8mA drive  
D4 = 4mA drive  
D2 = 2mA drive  
Figure 2.  
48-pin TQFP package pinout  
48 47 46 45 44 43 42 41 40 39 38 37  
36  
NAND WP  
READ ONLY  
EEPROM SCL  
VSS_2  
1
2
3
4
5
6
7
8
9
10  
VDDA  
OSCIN  
OSCOUT  
VSSA  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
RREF  
VDD33_2  
NC(1)  
VSSC  
ST72681  
VDDC  
NC(1)  
VDD3  
RESET  
LED2  
LED1  
USBDP  
USBDM  
VSSBL  
VDDBL  
11  
12  
NAND ALE/EEPROM SDA  
VSS_3  
24  
13 14 15 16 17 18 19 20 21 22 23  
1. Must remain NOT connected in the application.  
5/32  
 
Pin description  
ST72681  
Table 2.  
Power supply  
Pin name  
Pin  
Description  
48  
47  
33  
32  
25  
24  
14  
15  
13  
VSS_1  
VDD33_1  
VSS_2  
S
S
S
S
S
S
S
S
S
Ground  
I/Os and regulator supply voltage  
Ground  
VDD33_2  
VSS_3  
I/Os and regulator supply voltage  
Ground  
VDD33_3  
VSS_4  
I/Os and regulator supply voltage  
Ground  
VDD33_4  
VDDOUSB  
I/Os and regulator supply voltage  
USB2 PHY, OSC and PLL power supply output (1.8 V)  
Table 3.  
Pin  
USB 2.0 interface  
Pin name  
Description  
12  
11  
10  
9
VDDBL  
VSSBL  
USBDM  
USBDP  
VDD3  
S
S
Supply voltage for buffers and deserialization flip flops (1.8 V)  
Ground for buffers and deserialization flip flops (1.8 V)  
I/O USB2 DATA -  
I/O USB2 DATA +  
8
S
S
S
Supply voltage for the FS compliance (3.3 V)  
7
VDDC  
Supply voltage for DLL & XOR tree (1.8 V)  
Ground for DLL & XOR tree (1.8 V)  
6
VSSC  
Ref. resistor for integrated impedance process adaptation  
(11.3 kOhms 1% pull down)  
5
RREF  
I/O  
Table 4.  
Pin  
USB 2.0 and core clock system  
Pin name  
Description  
4
3
2
1
VSSA  
S
O
I
Ground for osc & PLL (1.8 V)  
OSCOUT  
OSCIN  
VDDA  
12 MHz oscillator output  
12 MHz oscillator input  
S
Supply voltage for osc & PLL (1.8 V)  
6/32  
ST72681  
Pin description  
Table 5.  
General Purpose I/O Ports / Mass Storage I/Os  
Level  
Main function  
(after reset)  
Pin name  
45  
44  
43  
42  
41  
40  
39  
38  
26  
22  
21  
20  
19  
18  
17  
16  
37  
36  
35  
34  
28  
27  
NAND D[0]  
NAND D[1]  
NAND D[2]  
NAND D[3]  
NAND D[4]  
NAND D[5]  
NAND D[6]  
NAND D[7]  
NAND ALE  
NAND CLE  
NAND WE  
NAND RE  
NAND CE1  
NAND CE2  
NAND CE3  
NAND CE4  
NAND RnB  
NAND WP  
READ ONLY  
EEPROM SCL  
LED2  
I/O TT D4 NAND Data [0]  
I/O TT D4 NAND Data [1]  
I/O TT D4 NAND Data [2]  
I/O TT D4 NAND Data [3]  
I/O TT D4 NAND Data [4]  
I/O TT D4 NAND Data [5]  
I/O TT D4 NAND Data [6]  
I/O TT D4 NAND Data [7]  
I/O TT D8 NAND Address Latch Enable  
O
O
O
O
O
O
O
I
TT D8 NAND Command Latch Enable  
TT D8 NAND WRite Enable  
TT D8 NAND read enable  
TT D4 NAND Chip Enable 1  
TT D4 NAND Chip Enable 2  
TT D4 NAND Chip Enable 3  
TT D4 NAND Chip Enable 4  
TT D2 NAND Ready/Busy  
TT D2 NAND Write Protect  
O
I
TT D2 Read -only switch (“0”: Read/Write; “1”: Read only)  
TT D2 EEPROM serial clock  
O
O
O
TT D8 Green LED (USB access)  
LED1  
TT D8 Red LED (NAND memory access)  
7/32  
Application schematics  
ST72681  
3
Application schematics  
Figure 3.  
Application schematic  
V33  
USB_V5  
On BoardFlash1  
On BoardFlash2  
U1  
1
2
3
5
Vi  
n
Vout  
GND  
C4  
4.7uF  
4
+
V33  
V33  
INHIBIT BYPASS  
LD3985M33R_SOT23-5L  
C3  
C5  
10nF  
220nF  
UU1  
Decoupling capacitor  
s
to  
be located close  
V33  
to U2,U3,U4& U5 V33 inputs  
3
2
U2  
U3  
Vin  
Vout  
GND  
C18  
100nF  
C19  
100nF  
C20  
100nF  
C21  
100nF  
AME8800_SOT23  
NAND_W  
P
NAND_WP  
R_Toshiba_config  
R7  
NAND_RnB2  
0
V33  
V33  
R_Multi_CE_config  
R8  
R_Single_CE_config  
R9  
R_Dual_CE_config  
0
NAND_CE2  
0
NAND_CE3  
R10  
0
V33  
Decoupling capacitors to be located close to U1 V33 inputs  
On BoardFlash3  
On BoardFlash4  
V33  
R3  
4.7K  
C6  
10nF  
C7  
10nF  
C8  
10nF  
C9  
10nF  
C10  
10nF  
V33  
V33  
NAND_RnB  
V33  
R4  
10K  
V18_USB  
XT1  
V18_USB  
U4  
U5  
U?  
ST72681_QFP48  
C15  
4
2
1
C16  
18pF  
18pF  
3
S1  
CRYSTAL 12MH_NX4025DA  
R6  
1
2
3
4
5
6
7
8
9
36  
VDDA  
NAND W P  
READ ONL Y  
EEPROM SCL  
VSS_2  
VDD33_2  
NC  
NC  
RESET  
LED2  
LED1  
NAND ALE  
VSS_3  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
RO  
OSCIN  
OSCOUT  
VSSA  
RREF  
VSSC  
Read Only  
500  
R5  
V33  
C17  
11.3K 1%  
VDDC  
RESET  
NAND_W  
LED1  
P
NAND_WP  
V33  
VDD3  
USBDP  
USBDM  
VSSBL  
VDDBL  
DP  
DM  
USB_V5  
10  
11  
12  
100nF  
R1  
LED2  
V33  
V33  
220  
GREEN  
LED2  
LED  
C1  
C2  
R2  
LED1  
V33  
100nF  
1uF  
220  
RED LED  
V18_USB  
On Board Flash 2-4 only available on ST72681 /R21  
C14  
10nF  
C13  
10nF  
C12  
10nF  
C11  
470nF  
J1  
1
2
3
4
VBUS  
D-  
D+  
GND  
V33  
V33  
USB CON  
ST72681/R20 only supports single NAND Flash Chip Enable configuration (one NAND  
device with one Chip Enable signal). Note that pins NAND_RnB2, NAND_CE2, NAND_CE3  
and NAND_CE4 should remain unconnected.  
ST72681/R21 can support up to four NAND Flash Chip Enable signals. The application can  
use one of the following configurations:  
One NAND device with four Chip Enable signals; NAND_CE1, NAND_CE2,  
NAND_CE3 and NAND_CE4 are used.  
One NAND device with two Chip Enable signals; NAND_CE1 and NAND_CE2 are  
used.  
One NAND device with one Chip Enable signal; only NAND_CE1 is used.  
Two NAND devices with two Chip Enable signals; NAND_CE1 and NAND_CE2 are  
used to select the first NAND device and NAND_CE3 and NAND_CE4 to select the  
second NAND device.  
Two NAND devices with one Chip Enable signal; NAND_CE1 and NAND_CE2 are  
used to select is used to select the first NAND device and the 2nd NAND device,  
respectively.  
4 NAND devices with 1Chip Enable signal; NAND_CE1 selects the first NAND device,  
NAND_CE2 the 2nd NAND device, NAND_CE3 to select the third, and NAND_CE4 to  
select the fourth NAND device.  
8/32  
 
ST72681  
NAND interface  
4
NAND interface  
4.1  
NAND support table  
Table 6.  
Known NAND compatibility guide for R20 and R21 devices  
Number of NAND devices  
supported  
NAND size (Mbytes or Gbytes)  
and type  
NAND name  
R20 device  
R21 device  
Samsung K9F1G08U  
Samsung K9F2G08U  
Samsung K9F4G08U  
Samsung K9K4G08U  
Samsung K9W4G08U  
Samsung K9K8G08U  
Samsung K9W8G08U  
Samsung K9WAG08U  
Samsung K9NBG08U  
Samsung K9G4G08U  
Samsung K9L8G08U  
Samsung K9HAG08U  
Samsung K9MBG08U  
Toshiba TH58NVG0S3  
Toshiba TH58NVG1S3  
Toshiba TH58NVG2S3  
Toshiba TH58NVG1D4  
Toshiba TH58NVG2D4  
Toshiba TH58NVG3D4  
ST NAND01GW3B  
128 MB; SLC2K; Single CE  
256 MB; SLC2K; Single CE  
512 MB; SLC2K; Single CE  
512 MB; SLC2K; Single CE  
512 MB; SLC2K; Dual CE  
1 GB; SLC2K; Single CE  
1 GB; SLC2K; Dual CE  
1
1
1
1
-
1, 2, 3 or 4  
1, 2, 3 or 4  
1, 2, 3 or 4  
1, 2, 3 or 4  
1 or 2  
1
-
1, 2, 3 or 4  
1 or 2  
2 GB; SLC2K; Dual CE  
-
1 or 2  
4 GB; SLC2K; Quad CE  
512 MB; MLC2K; Single CE  
1 GB; MLC2K; Single CE  
2 GB; MLC2K; Dual CE  
-
1
1
1
-
1, 2, 3 or 4  
1, 2, 3 or 4  
1 or 2  
4 GB; MLC2K; Quad CE  
128 MB; SLC2K; Single CE  
256 MB; SLC2K; Single CE  
512 MB; SLC2K; Single CE  
256 MB; MLC2K; Single CE  
512 MB; MLC2K; Single CE  
1 GB; MLC2K; Single CE  
128 MB; SLC2K; Single CE  
256 MB; SLC2K; Single CE  
512 MB; SLC2K; Single CE  
1 GB; SLC2K; Single CE  
512 MB; MLC2K; Single CE  
128 MB; SLC2K; Single CE  
256 MB; SLC2K; Single CE  
512 MB; SLC2K; Single CE  
512 MB; SLC2K; Dual CE  
1 GB; SLC2K; Single CE  
512 MB; MLC2K; Single CE  
1 GB; MLC2K; Dual CE  
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
1, 2, 3 or 4  
1, 2, 3 or 4  
1, 2, 3 or 4  
1, 2, 3 or 4  
1, 2, 3 or 4  
1, 2, 3 or 4  
1, 2, 3 or 4  
1, 2, 3 or 4  
1, 2, 3 or 4  
1, 2, 3 or 4  
1, 2, 3 or 4  
1, 2, 3 or 4  
1, 2, 3 or 4  
1, 2, 3 or 4  
1 or 2  
ST NAND02GW3B  
ST NAND04GW3B  
ST NAND08GW3B  
ST NAND04GW3C  
Hynix HY27UF081G2M  
Hynix HY27UG082G2M  
Hynix HY27UG084G2M  
Hynix HY27UH084G5M  
Hynix HY27UH088G2M  
Hynix HY27UT084G2M  
Hynix HY27UU088G5M  
Micron 29F2G08AA  
1
1
-
1, 2, 3 or 4  
1, 2, 3 or 4  
1 or 2  
256 MB; SLC2K; Single CE  
512 MB; SLC2K; Single CE  
1 GB; SLC2K; Dual CE  
1
1
-
1, 2, 3 or 4  
1, 2, 3 or 4  
1 or 2  
Micron 29F4G08BA  
Micron 29F8G08FA  
Note:  
This list is provided as a guide only as it is not possible to automatically guarantee support  
for all the additions and updates across the listed ranges of manufacturers’ devices.  
9/32  
 
 
NAND interface  
ST72681  
4.2  
NAND error correction  
No NAND Flash memory arrays are guaranteed by manufacturers to be error-free. Error  
occurrence depends on the Flash cell type (MLC or SLC).  
The ST72681 embeds hardware and firmware mechanisms to correct the errors.  
4.2.1  
Hardware error correction  
The ST72681 embeds a Reed-Solomon algorithm-based hardware cell. This cell directly  
manages 512-byte data packets on the NAND I/O system.  
Based on a data packet contents, the cell generates an 80-bit Error Correction Code (ECC)  
consisting of 8 words each containing 10 bits.  
During write operations to NAND memory, the 512-bytes of data and the ECC are stored  
together in the same page. The ECC is stored in the corresponding Redundant Area (RA),  
using 10 bytes.  
During read operations, the 512-bytes of data and the 8 ECC words are read back and are  
passed through the Reed-Solomon cell for decoding. The cell allows the correction of 4  
symbols in this 520-symbol packet (512 symbols from data + 8 symbols from ECC).  
The hardware cell gives 3 possible results:  
No error detected: the data packet can be used as it is.  
Correctable error detected: the corrected data are available in a specific 512-byte buffer  
in the Reed-Solomon cell and are ready to use.  
Uncorrectable error detected: data corruption is not repairable.  
4.2.2  
Firmware error management  
The firmware defines the error correction possibilities with the corrected data packet.  
When data is not repairable, the block is considered as bad and replaced by another one.  
See below for further information.  
4.3  
Management of bad NAND blocks  
NAND device manufacturers deliver their products with factory-marked bad blocks. This  
marking depends on the manufacturer and the NAND type (page size, memory technology,  
etc.). The ST72681 supports all bad block markings currently available on the market.  
4.3.1  
Bad block identification  
During firmware initialization, the MCU scans the entire NAND configuration to identify bad  
blocks.  
A bad block is defined as follows:  
5 different Block Status bytes are considered: 4 Status bytes from page 0 and 1 from an  
other page (page 127 for MLC NAND; page 1 for SLC NAND).  
The considered block is declared bad if 1 of these 5 bytes contains 4 bits or more at 0.  
10/32  
 
 
 
 
 
ST72681  
NAND interface  
4.3.2  
Bad block replacement  
The firmware works with groups of 1024 blocks, called zones. A complete NAND  
configuration can contain several zones.  
Each zone is described in a Look Up Table (LUT) containing 1024 entries. A LUT is  
composed of 3 parts: used blocks, free blocks and bad blocks.  
The “bad blocks” part contains as many entries as the number of bad blocks identified  
in that zone.  
The “used blocks” part can have a size of 1000, 900 or 500 entries. This size is  
configurable and also depends on the number of identified bad blocks.  
The “free blocks” part contains the remaining entries.  
The used blocks part is used to do a correspondence between NAND blocks and logical  
address ranges.  
This system allows all bad blocks to be masked from the Host. As a result, bad blocks are  
never seen. Only a range of logical addresses are visible which correspond to the sum of  
the used blocks part of all zones.  
4.3.3  
4.4  
Late fail block  
During normal application life, defects can appear in the NAND memory. Under certain  
conditions, these defects are not correctable and the corresponding block is declared as  
“bad”.  
In this case, new bad blocks are identified in the bad blocks part of the LUT and replaced by  
new blocks from the “free blocks” part.  
Wear levelling  
During normal application life, the NAND is written and erased (by block) many times. The  
NAND device is guaranteed for a limited number of writes (about 100 000 cycles). As a  
consequence, the controller must keep write/erase operations to a minimum for any  
individual block.  
A method to limit these cycles is to use a “Wear Levelling” scheme between all NAND  
blocks.  
4.4.1  
LUT usage  
The LUT is used for transfers between a logical address range and a block. It contains free  
blocks which are used in the “wear levelling” scheme.  
During write command treatment, the firmware calculates the zones, blocks and pages for  
data write access. In a block write operation, the firmware applies the following scheme to  
avoid block wearing:  
The least recently-used block is chosen from the free block part of the LUT.  
Valid data from the old block is copied to the new block.  
New data from the write command is written to the new block.  
The old block is erased.  
The LUT is updated after identifying the new block in the used block part and the old  
block in the free block part.  
11/32  
 
 
 
 
NAND interface  
ST72681  
Using this scheme, a logical address range doesn’t correspond to a constant block. A write  
command repeated several times to the same logical address writes physically into different  
blocks.  
This method shares the wearing evenly across all blocks of the concerned zone.  
4.5  
NAND interface configuration  
Applications based on ST72681 can be configured through a dedicated PC software tool.  
The NAND RE and WE signals frequencies can be independently configured to 30 MHz, 20  
MHz, 15 MHz, 12 MHz and 10 MHz.  
The logical size reduction factor can be configured to 90% or 50% in the event of having too  
many bad blocks. this option resizes the used blocks part of the LUT to 900 or 500.  
12/32  
 
ST72681  
Mass storage implementation  
5
Mass storage implementation  
5.1  
USB characteristics  
The ST72681 is compliant with USB 2.0 specification.  
It is able to operate in both high speed and full speed modes using a bidirectional control  
endpoint 0 and a bidirectional bulk endpoint 2.  
It automatically recognizes the speed to use on the bus by a process of negotiation with  
USB Host.  
5.2  
BOT / SCSI implementation  
5.2.1  
BOT specification  
The USB Mass Storage Class Bulk Only Transport (BOT) specification version 1.0 is  
implemented. It allows the device to be recognized by the host as a mass-storage USB  
device.  
5.2.2  
5.2.3  
SCSI specification  
Moreover, inside BOT transfers, SCSI commands are encapsulated for mass storage  
operations.  
The related specifications are SBC-2 revision 10 (SCSI Block Commands 2) and SPC-4  
revision 7a (SCSI Primary Commands 4).  
Bootability specification  
The USB Mass Storage Specification for Bootability revision 1.0 is implemented.  
It allows the PC host to boot the operating system from the USB mass storage application.  
In this case, the Host uses BOT LUN 0 (logical unit number).  
A specific tool must be used to format the logical drive in order to make it bootable by  
programming the correct information.  
5.3  
Multi-LUN device characteristics  
The application can be configured with a dedicated PC software tool as a multi-LUN device.  
In this case, up to 3 different drives are available: public drive, additional drive and private  
drive.  
Public and additional drives can be configured as removable drive, hard disk drive or CD-  
ROM drive.  
13/32  
 
 
 
 
 
 
 
Mass storage implementation  
ST72681  
5.3.1  
Public drive  
The public drive is the default configuration in a mono-LUN mode. In this default case, it is  
declared as a removable drive.  
The public drive is mandatory and can not be removed from the configuration. By  
customization (using PC software), it can be declared as a removable drive, a CD-ROM  
drive or a hard disk drive.  
This drive is the LUN 0 in BOT commands.  
5.3.2  
Private drive  
The Private drive is optional. Its type is “removable drive” and is not configurable.  
This drive is protected by password and cannot be directly accessed through the PC  
operating system. A PC software tool is necessary to send a command with the password to  
unlock the device. The device is then open and accessible by the PC operating system until  
reset or reception of a new command to lock the drive.  
This drive is the LUN 1 in BOT commands.  
5.3.3  
5.3.4  
Additional drive  
The additional drive is optional. Its type can be “removable drive”, “hard disk drive” or “CD-  
ROM drive”.  
This drive is LUN 1 in BOT commands if the private drive option is not active, and is LUN 2 if  
the private drive option is active.  
CD-ROM considerations  
When a drive is declared as CD-ROM, the ST72681/R21 manages this drive with a logical  
block size of 2 Kbytes. To be correctly recognized by the host, it is preferable to build a  
CDFS partition on this CD-ROM. See the ‘ST7268x Production Tool User Manual’ for more  
information.  
Note that the ST72681/R20 doesn’t consider the CD-ROM partition as a specific case. The  
logical block size is 512 bytes and any file system can be used.  
In both cases, the CD-ROM partition allows the use of the autorun operating system feature.  
During device connection, the CD-ROM partition is recognized and the host tries to run the  
application corresponding to the ‘autorun.inf’ file present into this CD-ROM partition.  
5.4  
Mass storage interface configuration  
In addition to the parameters already described as configurable in the previous chapters,  
additional customizable information includes:  
USB parameters: VID, PID, all string information  
SCSI parameters: strings for inquiry commands  
14/32  
 
 
 
 
 
ST72681  
Human interface implementation  
6
Human interface implementation  
6.1  
LED behavior  
The application is designed to manage 2 LEDs. This behavior is configurable through PC  
dedicated software: ‘ST7268x Production Tool’.  
By default, LED 1 responds to NAND access activity and LED 2 responds to USB activity.  
Use of LED 1 is optional. When this option is not active, LED 2 reacts to both USB and  
NAND activity.  
6.2  
Read only switch  
The READ ONLY pin of the ST72681 is an input pin to be connected to VDD or GND  
depending on the behavior of the device.  
When this pin is connected to GND, no limitations are applied on the PC command  
received.  
When this pin is connected to VDD or unconnected, the firmware filters all accesses to  
the NAND which modify the NAND state (write, erase, etc.) and returns an error to the  
PC.  
15/32  
 
 
 
Electrical characteristics  
ST72681  
7
Electrical characteristics  
7.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
7.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the Devices with an ambient temperature at T = 25°C and T =T max (given by the  
A
A
A
selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3Σ).  
7.1.2  
7.1.3  
7.1.4  
Typical values  
Unless otherwise specified, typical data are based on T = 25°C and V  
given only as design guidelines and are not tested.  
= 3.3V. They are  
DD33  
A
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 4.  
Figure 4.  
Pin loading conditions  
DEVICE PIN  
C
L
7.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 5.  
Figure 5.  
Pin input voltage  
DEVICE PIN  
V
IN  
16/32  
 
 
 
 
 
 
 
ST72681  
Electrical characteristics  
7.2  
Absolute maximum ratings  
Stresses above those listed as “absolute maximum ratings” may cause permanent damage  
to the Device. This is a stress rating only and functional operation of the Device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
7.2.1  
Voltage characteristics  
Table 7.  
Symbol  
Voltage characteristics  
Ratings  
Maximum value Unit  
VDD33 - VSS  
Supply voltage  
4.0  
V
V
V
SS - 0.3 to  
VDD33 + 0.3  
(1) (2)  
VIN  
Input voltage on any other pin  
VESD(HBM)  
VESD(MM)  
Electro-static discharge voltage (Human Body Model)  
Electro-static discharge voltage (Machine Model)  
See Section 7.6.3 on  
page 21  
1. Directly connecting the RESET and I/O pins to VDD33 or VSS could damage the device if an unintentional  
internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a  
corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up  
or pull-down resistor (typical: 4.7kΩ for RESET, 10kΩ for I/Os). For the same reason, unused I/O pins must  
not be directly tied to VDD33 or VSS  
.
2. When the current limitation is not possible, the VIN absolute maximum rating must be respected, otherwise  
refer to IINJ(PIN) specification. A positive injection is induced by VIN > VDD33 while a negative injection is  
induced by VIN < VSS  
.
7.2.2  
Current characteristics  
Table 8.  
Symbol  
IVDD33  
IVSS  
Current characteristics  
Ratings  
Maximum value Unit  
Total current into VDD33 power lines (source) (1)  
Total current out of VSS ground lines (sink) (1)  
Output current sunk by any I/O (type D2)  
Output current sunk by any I/O (type D4)  
Output current sunk by any I/O (type D8)  
Output current source by any I/Os and control pin  
200  
200  
25  
mA  
35  
(2)  
IIO  
50  
-25  
1. All power supply (VDD33) and ground (VSS) lines must always be connected to the external supply.  
2. Refer to Table 5: General Purpose I/O Ports / Mass Storage I/Os for the output drive capability of each of  
the I/Os.  
7.2.3  
Thermal characteristics  
Table 9.  
Symbol  
Thermal characteristics  
Ratings  
Value  
Unit  
TSTG  
Storage temperature range  
-65 to +150  
120  
°C  
°C  
TJMAX  
Maximum junction temperature  
17/32  
 
 
 
 
Electrical characteristics  
ST72681  
7.3  
Operating conditions  
7.3.1  
General operating conditions  
Table 10. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fCPU  
VDD33  
TA  
Internal clock frequency  
Power supply  
0
3.0  
0
30  
3.6  
70  
MHz  
V
Ambient temperature range  
°C  
Figure 6.  
Guaranteed functionality range  
fCPU [MHz]  
FUNCTIONALITY  
GUARANTEED  
IN THIS AREA  
30  
FUNCTIONALITY  
NOT GUARANTEED  
IN THIS AREA  
15  
6
3
SUPPLY VOLTAGE [VDD33  
]
0
3.3  
2.7  
2.0  
2.5  
3.0  
3.6  
7.4  
Supply current characteristics  
7.4.1  
RUN and SUSPEND modes  
Table 11. RUN and SUSPEND modes  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
Supply current in RUN mode  
fOSC = 12 MHz  
15  
25  
90  
35  
mA  
µA  
IDD  
Supply current in SUSPEND mode VDD33 = 3.3V, TA = +25°C 60  
190  
7.4.2  
Supply and clock managers  
Table 12. Supply and clock managers  
Symbol  
Parameter  
Conditions  
Typ. (1) Max. (2)  
Unit  
µA  
IDD(CK) Supply current of crystal oscillator (3)  
1000  
2000  
1. Typical data are based on TA = 25°C and fCPU = 12 MHz.  
2. Not tested in production, guaranteed by characterization.  
3. Data based on characterization results done with the external components specified in Section 7.5.2:  
Crystal oscillator, not tested in production.  
18/32  
 
 
 
 
 
ST72681  
Electrical characteristics  
7.5  
Clock and timing characteristics  
Subject to general operating conditions for V  
, f  
, and T .  
DD33 OSC A  
7.5.1  
General timings  
Table 13. General timing characteristics  
Symbol  
Parameter  
Conditions  
Min. Typ. (1) Max.  
Unit  
2
3
12  
800  
22  
tCPU  
ns  
tc(INST) Instruction cycle time  
fCPU = 15 MHz  
fCPU = 12 MHz  
133  
10  
200  
Interrupt reaction time (2)  
tv(IT)  
tCPU  
µs  
tv(IT) = Δtc(INST) + 10  
0.666  
1.466  
1. Data based on typical application software.  
2. Time measured between interrupt event and interrupt vector fetch. Δtc(INST) is the number of tCPU cycles  
required to finish executing the current instruction.  
7.5.2  
Crystal oscillator  
The ST72681 internal clock is supplied from a crystal oscillator. All the information given in  
this paragraph are based on characterization results with specified typical external  
components. In the application the load capacitors have to be placed as close as possible to  
the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer  
to the crystal manufacturer for more details (frequency, package, accuracy...).  
Table 14. Crystal oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
fOSC  
Oscillator frequency  
12  
MHz  
ppm  
%
CKACC  
αOSC  
Total crystal oscillator accuracy abs. value + temp + aging  
Crystal oscillator duty cycle (1)  
60  
55  
45  
50  
1. The crystal oscillator duty cycle has to be adjusted through the two CL capacitors. Refer to the crystal  
manufacturer for more details.  
Figure 7.  
Typical application with a crystal oscillator  
C
V
L
DDA  
OSCIN  
CRYSTAL  
C
L
OSCOUT  
Device  
(1)  
R
sOscout  
1. Depending on the crystal oscillator power dissipation, a serial resistor RsOscout may be added. Refer to the  
crystal oscillator manufacturer for more details.  
Table 15. Typical C and R values by crystal oscillator  
L
S
Supplier  
Typical crystal oscillator  
CL (pF)  
RsOscout (Ω)  
NDK  
AT51 or AT41  
16  
560  
19/32  
 
 
 
Electrical characteristics  
ST72681  
7.6  
EMC characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
7.6.1  
Functional EMS (electro magnetic susceptibility)  
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),  
the product is stressed by two electromagnetic events until a failure occurs (indicated by the  
LEDs).  
ESD: Electro-Static Discharge (positive and negative) is applied on all pins of the device  
until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V  
and  
DD33  
V
through a 100pF capacitor, until a functional disturbance occurs. This test conforms  
SS33  
with the IEC 1000-4-4 standard.  
A device reset allows normal operations to be resumed. The test results are given in the  
table below based on the EMS levels and classes defined in application note AN1709.  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Table 16. EMC characterization and optimization values  
Level/  
Symbol  
Parameter  
Conditions  
Class  
VDD33 = 3.3V, TA = +25°C, fOSC = 12 MHz  
complies with IEC 1000-4-2  
specifications  
Voltage limits to be applied on any I/O  
pin to induce a functional disturbance  
VFESD  
4B  
Fast transient voltage burst limits to be  
applied through 100pF on VDD33 and  
VSS33 pins to induce a functional  
disturbance  
VDD33 = 3.3V, TA = +25°C, fOSC = 12 MHz  
complies with IEC 1000-4-4  
specifications  
VFFTB  
4A  
20/32  
 
 
ST72681  
Electrical characteristics  
7.6.2  
Electromagnetic interference (EMI)  
Based on a simple application running on the product (toggling 2 LEDs through the I/O  
ports), the product is monitored in terms of emission. This emission test is in line with the  
norm SAE J 1752/3 which specifies the board and the loading of each pin.  
Table 17. Electromagnetic interference  
Monitored  
Frequency Band [fOSC@12 MHz]  
Max vs.  
Symbol Parameter  
Conditions(1)  
Unit  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
SAE EMI Level  
20  
25  
25  
4
VDD33 = 3.3V, TA = +25°C,  
Peak level complies with SAE J 1752/3  
specifications  
dBµV  
-
SEMI  
1. Refer to Application Note AN1709 for data on other package types.  
7.6.3  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU and DLU) using specific measurement methods, the  
product is stressed in order to determine its performance in terms of electrical sensitivity.  
For more details, refer to the application note AN1181.  
Electro-static discharge (ESD)  
Electro-Static Discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test  
conforms to the JESD22-A114A/A115A standard.  
Table 18. Absolute Maximum Ratings  
Symbol  
Ratings  
Conditions  
Max.(1) Unit  
2000  
VESD(HBM) Electro-static discharge voltage (Human Body Model) TA = +25°C  
V
1. Data based on characterization results, not tested in production.  
Static and dynamic latch-up  
LU: 3 complementary static tests are required on 10 parts to assess the latch-up  
performance. A supply overvoltage (applied to each power supply pin) and a current  
injection (applied to each input, output and configurable I/O pin) are performed on each  
sample. This test complies with EIA/JESD 78 IC latch-up specifications. For more details,  
refer to the application note AN1181.  
DLU: Electro-static discharges (one positive then one negative test) are applied to each  
pin of 3 samples when the micro is running to assess the latch-up performance in dynamic  
mode. Power supplies are set to the typical values, the oscillator is connected as near as  
possible to the pins of the micro and the component is put in reset mode. This test  
complies with IEC1000-4-2 and SAEJ1752/3 specifications. For more details, refer to the  
application note AN1181.  
21/32  
 
 
Electrical characteristics  
ST72681  
Table 19. Electrical sensitivity values  
Symbol  
Parameter  
Conditions  
Class (1)  
LU  
Static latch-up class  
TA = +25°C  
VDD33 = 3.3V, fOSC = 12 MHz, TA = +25°C  
A
A
DLU  
Dynamic latch-up class  
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the  
JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B  
Class strictly covers all the JEDEC criteria (international standard).  
7.7  
I/O port pin characteristics  
7.7.1  
General characteristics  
Subject to general operating conditions for V  
, f  
, and T unless otherwise specified.  
DD33 OSC A  
Table 20. General I/O port pin characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ. Max. Unit  
0.16 x  
VDD33  
VIL  
Input low level voltage  
V
TTL ports  
0.85 x  
VDD33  
VIH  
Vhys  
IL  
Input high level voltage  
Schmitt trigger voltage hysteresis (1)  
Input leakage current  
400  
mV  
VSS VIN VDD33  
standard I/Os  
,
1
µA  
VSS VIN VDD33  
10  
IL5V  
5V tolerant input leakage current  
VIN = 5V, 25°C  
30  
50  
VDD33  
3.3V  
=
RPU  
Weak pull-up equivalent resistor (2) VIN = VSS  
32  
75  
kΩ  
1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested  
in production.  
2. The RPU pull-up equivalent resistor is based on a resistive transistor. This data is based on  
characterization results, tested in production at VDD33 max.  
Figure 8.  
Typical V and V standard I/Os  
IL  
IH  
Vil/Vih (V)  
2.5  
2
1.5  
1
0.5  
0
2.7 2.8 2.9  
3
3.1 3.2 3.3 3.4 3.5 3.6  
Vdd (V)  
22/32  
 
 
ST72681  
Electrical characteristics  
Figure 9.  
Typical R vs. V  
with V =V  
PU  
DD33 IN SS  
I/Os pullup resistance  
60  
55  
50  
45  
40  
35  
30  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Vdd (V)  
Figure 10. Two typical Applications with unused I/O Pin  
V
DD33  
10kΩ  
Device  
UNUSEDI/OPORTO PORT  
10kΩ 1Ω  
UNUSED I/O PORT  
DeviceDevice  
7.7.2  
Output driving current  
Subject to general operating conditions for V  
, f  
, and T unless otherwise specified.  
DD33 OSC A  
Table 21. Output driving current  
Symbol  
Parameter  
Conditions  
Min. Max. Unit  
Output low level voltage for a D2 I/O pin when 8  
pins are sunk at same time (see Figure 11)  
IIO = 2 mA  
300  
Output low level voltage for a D4 I/O pin when 8  
pins are sunk at same time (see Figure 12)  
(1)  
VOL  
I
IO = 4 mA  
400  
500  
600  
600  
600  
mV  
mV  
Output low level voltage for a D8 I/O pin when 8  
pins are sunk at same time (see Figure 13 )  
IIO = 8 mA  
IIO = 2 mA  
Output high level voltage for a D2 I/O pin when 8  
pins are sourced at same time (see Figure 14)  
VDD33  
-
Output high level voltage for a D4 I/O pin when 8  
pins are sourced at same time (see Figure 15 )  
IIO = 4 mA  
(2)  
VOH  
Output high level voltage for a D8 I/O pin when 8  
pins are sourced at same time (see Figure 16)  
IIO = 8 mA  
1. The IIO current sunk must always respect the absolute maximum rating specified in Section 7.2.2: Current  
characteristics and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. The IIO current sourced must always respect the absolute maximum rating specified in Section 7.2.2:  
Current characteristics and the sum of IIO (I/O ports and control pins) must not exceed IVDD33. True open  
drain I/O pins do not have VOH  
.
23/32  
 
Electrical characteristics  
Figure 11. Typical V at V  
ST72681  
= 3.3V (I/O D2)  
DD33  
OL  
140  
120  
100  
80  
60  
40  
20  
0
0
1
2
3
4
Iol (mA)  
Figure 12. Typical V at V  
= 3.3V (I/O D4)  
OL  
DD33  
140  
120  
100  
80  
60  
40  
20  
0
0
1
2
3
4
5
6
Iol (mA)  
Figure 13. Typical V at V  
= 3.3V (I/O D8)  
DD33  
OL  
140  
120  
100  
80  
60  
40  
20  
0
0
2
4
6
8
10  
Iol (mA)  
Figure 14. Typical V  
-V vs. V  
(I/O D2)  
DD33 OH  
DD33  
200  
150  
100  
50  
0
0
1
2
3
4
Ioh (mA)  
Figure 15. Typical V  
-V vs. V  
(I/O D4)  
DD33 OH  
DD33  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
1
2
3
4
5
6
Ioh (mA)  
24/32  
ST72681  
Electrical characteristics  
Figure 16. Typical V  
-V vs. V  
(I/O D8)  
DD33  
DD33 OH  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
2
4
6
8
10  
Ioh (mA)  
7.8  
Control pin characteristics  
7.8.1  
Asynchronous RESET pin  
T = 0 to +55 °C unless otherwise specified.  
A
Table 22. RESET pin characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
0.16 x  
VDD33  
VIL  
Input low level voltage (1)  
V
0.85 x  
VDD33  
VIH  
Input high level voltage  
Vhys  
Schmitt trigger voltage hysteresis1)  
450  
40  
mV  
VDD33 = 3.3V  
20  
2.5  
500  
80  
RON  
Pull-up equivalent resistor  
kΩ  
VDD33 = 2V  
100  
teh(RSTL) External reset pulse hold time (2)  
tg(RSTL) Filtered glitch duration (3)  
tew(RSTL) External reset pulse duration (4)  
µs  
ns  
200  
µs  
tiw(RSTL) Internal reset pulse duration  
2
tCPU  
1. The level on the RESET pin must be free to go below the VIL max. level specified in Section 7.8.1:  
Asynchronous RESET pin. Otherwise the reset will not be taken into account internally.  
2. To guarantee the reset of the Device, a minimum pulse has to be applied to the RESET pin. All short  
pulses applied on RESET pin with a duration below teh(RSTL) can be ignored. Not tested in production,  
guaranteed by design.  
3. The reset network protects the device against parasitic resets.  
4. The external reset duration must respect this timing to guarantee a correct start-up of the internal regulator  
at power-up. Not tested in production, guaranteed by design.  
Figure 17. Typical R on RESET pin  
ON  
100  
90  
80  
70  
60  
50  
40  
2
2.5  
3
3.5  
Vdd (V)  
25/32  
 
 
Electrical characteristics  
ST72681  
7.9  
Other communication interface characteristics  
7.9.1  
MSCI parallel interface  
Figure 18. Timing diagrams for input mode (with max load on CTRL signal = 50 pF)  
CTRL  
external  
DATA  
DATA(i)  
DATA(i+1)  
ext device  
t
DS  
t
is the setup time for data sampling  
DS  
Figure 19. Timing diagrams for output mode (with max CTRL signal = 50 pF, DATA)  
CTRL  
external  
DATA  
external  
DATA(i)  
DATA(i+1)  
t
DO  
t
is the data output time for data sampling  
DO  
Table 23. MSCI Parallel Interface: DC Characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ. (1)  
Max.  
Unit  
tDS  
tDO  
CCTRL  
CDATA  
Data Setup Time  
Data Output time  
11  
6
ns  
ns  
pF  
pF  
CTRL line capacitance  
Data line capacitance  
50  
50  
1. Data based on design simulation and not tested in production.  
26/32  
 
 
ST72681  
Electrical characteristics  
7.9.2  
Universal serial bus interface (USB)  
Table 24. DC characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max. Unit  
V
DD33 = 3.3V, Powerdown  
IDDsuspend Suspend current  
Pull-up resistor (2)  
Full speed mode  
VTERM Termination voltage  
VOH  
60  
90  
190  
uA  
mode, 25°C (1)  
RPU  
1.5  
kΩ  
0.8  
2.8  
2.0  
3.6  
0.8  
2.0  
V
V
V
V
High level output voltage  
Low level output voltage  
Crossover voltage  
VOL  
VCRS  
1.3  
High speed mode  
VHSOH HS data signalling high  
VHSOL HS data signalling low  
400  
5
mV  
mV  
1. The values provided do not take into account the current through both the 1.5kΩ pull-up resistor (on the  
device-side) and the 15kΩ pull-down resistor (on the host-side).  
2. Not tested in production, guaranteed by characterization.  
Table 25. Timing characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Max.  
Unit  
Full speed mode  
tFR  
tFF  
High speed mode  
tHSR Rise time  
tHSF Fall time  
tHSDRAT HS data rate  
Rise time  
CL= 50 pF  
CL= 50 pF  
4
4
20  
20  
ns  
ns  
Fall time  
500 (1)  
500 (1)  
480.24  
ps  
ps  
479.76  
Mb/s  
1. Not tested in production, guaranteed by characterization.  
Table 26. USB High Speed Transmit Waveform requirements  
Voltage Level (DP - DN)  
Time  
Unit Interval (UI)  
Level 1  
-
2.082 to 2.084 ns  
475 mV  
-475 mV  
0V  
-
Level 2  
-
Point 1  
5% UI  
95% UI  
35% UI  
65% UI  
35% UI  
65% UI  
Point 2  
0V  
Point 3  
300 mV  
300 mV  
-300 mV  
-300 mV  
Point 4  
Point 5  
Point 6  
27/32  
 
Electrical characteristics  
Figure 20. USB signal eye diagram  
ST72681  
28/32  
ST72681  
Package mechanical data  
8
Package mechanical data  
®
In order to meet environmental requirements, ST offers these devices in ECOPACK  
packages. These packages have a Lead-free second level interconnect. The category of  
second Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97.  
The maximum ratings related to soldering conditions are also marked on the inner box label.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
Figure 21. 48-pin low profile quad flat package outline  
D
A
A2  
D1  
A1  
b
e
E1  
E
c
L1  
L
θ
Table 27. 48-pin low profile quad flat package dimensions  
mm  
inches(1)  
Typ.  
Dim.  
Min.  
Typ.  
Max.  
Min.  
Max.  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.27  
0.20  
0.063  
0.006  
0.057  
0.011  
0.008  
0.05  
1.35  
0.17  
0.09  
0.002  
0.053  
0.007  
0.004  
1.40  
0.22  
0.055  
0.009  
C
D
9.00  
7.00  
9.00  
7.00  
0.50  
3.5°  
0.60  
1.00  
0.354  
0.276  
0.354  
0.276  
0.020  
3.5°  
D1  
E
E1  
e
θ
0°  
7°  
0°  
7°  
L
0.45  
0.75  
0.018  
0.024  
0.039  
0.030  
L1  
Number of Pins  
48  
N
1. Values in inches are converted from mm and rounded to 3 decimal digits.  
29/32  
 
Device ordering information  
ST72681  
9
Device ordering information  
Table 28. Feature comparison table  
Features added in the  
ST72681/R21 versus ST72681/R20  
Description  
Firmware revision R21 upgrades the number of  
supported NAND Flash devices from 1 to 4 in a  
single channel.  
Support for up to 4 NAND Flash devices  
AutoRun runs a program when the USB Flash Drive  
is inserted into a computer.  
Continued AutoRun CDROM partition support  
Table 29. Ordering information  
Part number  
Operating  
voltage  
Temperature  
range  
Package  
ST72681/R20  
TQFP48 7x7mm  
3.0V to 3.6V  
3.0V to 3.6V  
0°C to +70°C  
0°C to +70°C  
ST72681/R21 (latest firmware revision) TQFP48 7x7mm  
30/32  
 
ST72681  
Revision history  
10  
Revision history  
Table 30. Document revision history  
Date  
Revision  
Changes  
Changed status of the document  
Changed description on 1st page  
Removed unconnected pins in Table 5 on page 7  
Changed Table 4 on page 6  
27-May-2005  
1.0  
Changed pin 5 description in Table 3 on page 6  
Changed section 3 on page 7  
Changed Figure 3 on page 8 and Figure 4  
Electrical Characteristics section added, Section 4 on page 9  
Additional features listed on front page  
Status of document changed to Datasheet  
18-Nov-2005  
2.0  
Application schematics modified, Figure 4 removed  
Section 4.6 (Memory Characteristics) removed  
VDDOUSB marked as O (output) in Table 2 on page 6  
Additional features listed on front page  
Application schematics modified, Figure 3 on page 8  
Feature comparison table added for R20 firmware update, Table 28  
Figure 3 on page 8 updated, with note added  
06-Feb-2006  
09-Jan-2007  
3.0  
4.0  
Additional features listed on front page related to firmware release  
R21. Application schematics updated for R21, Figure 3 on page 8  
Feature comparison table added for R21 firmware update, Table 28  
IDDsuspend values and note updated, Table 24  
Updated information in Table 6: Known NAND compatibility guide for  
R20 and R21 devices on page 9.  
Added Section 4.2: NAND error correction on page 10, Section 4.3:  
Management of bad NAND blocks on page 10, Section 4.4: Wear  
levelling on page 11 and Section 4.5: NAND interface configuration  
on page 12.  
30-Aug-2007  
5.0  
Added Section 5: Mass storage implementation on page 13 and  
Section 6: Human interface implementation on page 15.  
Added internal clock frequency (fCPU) value in Table 10: General  
operating conditions on page 18.  
31/32  
 
ST72681  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
32/32  

相关型号:

ST72681/R21

USB 2.0 high-speed Flash drive controller
STMICROELECTR

ST72681/S13

8-BIT, MROM, 30MHz, MICROCONTROLLER, PQFP48, 7 X 7 MM, LEAD FREE, TQFP-48
STMICROELECTR

ST72681_07

USB 2.0 high-speed Flash drive controller
STMICROELECTR

ST72682

USB 2.0 high-speed Flash drive controller
STMICROELECTR

ST72682/R20

8-BIT, FLASH, 30MHz, MICROCONTROLLER, PQFP64, 10 X 10 MM, TQFP-64
STMICROELECTR

ST72682R20

USB 2.0 high-speed Flash drive controller
STMICROELECTR

ST72682R21

USB 2.0 high-speed Flash drive controller
STMICROELECTR

ST7271

8-BIT HCMOS MCUs WITH EEPROM AND TV/MONITOR DEDICATED FUNCTIONS
STMICROELECTR

ST7271J1

8-BIT HCMOS MCUs WITH EEPROM AND TV/MONITOR DEDICATED FUNCTIONS
STMICROELECTR

ST7271J1B1

8-Bit Microcontroller
ETC

ST7271N1

8-BIT HCMOS MCUs WITH EEPROM AND TV/MONITOR DEDICATED FUNCTIONS
STMICROELECTR

ST7271N1B1

8-Bit Microcontroller
ETC