ST72C314J4B7 [STMICROELECTRONICS]

8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY, ADC, 16-BIT TIMERS, SPI, SCI INTERFACES; 8位MCU单电压闪存, ADC , 16位定时器, SPI , SCI INTERFACES
ST72C314J4B7
型号: ST72C314J4B7
厂家: ST    ST
描述:

8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY, ADC, 16-BIT TIMERS, SPI, SCI INTERFACES
8位MCU单电压闪存, ADC , 16位定时器, SPI , SCI INTERFACES

闪存
文件: 总125页 (文件大小:769K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ST72334J/N,  
ST72314J/N, ST72124J  
8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY,  
ADC, 16-BIT TIMERS, SPI, SCI INTERFACES  
PRODUCT PREVIEW  
8K or 16K Program memory  
(ROM or Single voltage FLASH)  
with read-out protection  
256-bytes EEPROM Data memory  
In-Situ Programming (Remote ISP)  
Enhanced Reset System  
Low voltage supply supervisor with  
3 programmable levels  
Low consumption resonator or RC oscillators  
and by-pass for external clock source, with safe  
control capabilities  
PSDIP42  
PSDIP56  
4 Power saving modes  
Standard Interrupt Controller  
44 or 32 multifunctional bidirectional I/O lines:  
– External interrupt capability (4 vectors)  
– 21 or 19 alternate function lines  
– 12 or 8 high sink outputs  
Real time base, Beep and Clock-out capabilities  
TQFP64  
14 x 14  
TQFP44  
10 x 10  
Configurable watchdog reset  
Two 16-bit timers with:  
– 2 input captures (only one on timer A)  
– 2 output compares (only one on timer A)  
– External clock input on timer A  
8-bit data manipulation  
63 basic instructions  
17 main addressing modes  
– PWM and Pulse generator modes  
SPI synchronous serial interface  
8 x 8 unsigned multiply instruction  
True bit manipulation  
SCI asynchronous serial interface  
8-bit ADC with 8 input pins  
(6 only on ST72334Jx,  
not available on ST72124J2)  
Full hardware/software development package  
Device Summary  
Features  
ST72124J2 ST72314J2 ST72314J4 ST72314N2 ST72314N4 ST72334J2 ST72334J4 ST72334N2 ST72334N4  
Program memory - bytes  
RAM (stack) - bytes  
EEPROM - bytes  
8K  
8K  
16K  
8K  
16K  
512 (256)  
-
8K  
384 (256)  
256  
16K  
512 (256)  
256  
8K  
384 (256)  
256  
16K  
512 (256)  
256  
384 (256)  
-
384 (256) 512 (256)  
384 (256)  
-
-
-
Watchdog,  
16-bit Tim-  
ers, SPI,  
SCI  
Peripherals  
Watchdog, 16-bit Timers, SPI, SCI, ADC  
Operating Supply  
CPU Frequency  
Operating Temperature  
Packages  
3.0V to 5.5V  
500 kHz to 8 MHz (with 1 to 16 MHz oscillator)  
-40°C to +85°C (-40°C to +105/125°C optional)  
TQFP44 / SDIP42  
TQFP64 / SDIP56  
TQFP44 / SDIP42  
TQFP64 / SDIP56  
Rev. 1.0  
1/125  
September 1999  
This is preliminary information on a new product in development or undergoing evaluation. Details are subject to change without notice.  
1
Table of Contents  
1 PREAMBLE: ST72C334 VERSUS ST72E331 SPECIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2 GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.2 PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.3 REGISTER & MEMORY MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.4 FLASH PROGRAM MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.4.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.4.3 Structural organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.4.4 In-Situ Programming (ISP) mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.5 PROGRAM MEMORY READ-OUT PROTECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.6 DATA EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.6.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.6.3 Memory Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.6.4 Data EEPROM and Power Saving Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.6.5 Data EEPROM Access Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.6.6 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3 CENTRAL PROCESSING UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.3 CPU REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4 SUPPLY, RESET AND CLOCK MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.1 LOW VOLTAGE DETECTOR (LVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.2 RESET SEQUENCE MANAGER (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
4.3 CLOCK SECURITY SYSTEM (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.3.1 Clock Filter Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.3.2 Safe Oscillator Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.4 SUPPLY, RESET AND CLOCK REGISTER DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . 33  
4.5 MAIN CLOCK CONTROLLER (MCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
5 INTERRUPTS & POWER SAVING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
5.1 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
5.2 POWER SAVING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5.2.2 HALT Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5.2.3 WAIT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
5.2.4 SLOW Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
6 ON-CHIP PERIPHERALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
6.1 I/O PORTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
6.1.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
6.1.3 I/O Port Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
6.1.4 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
125  
6.2 MISCELLANEOUS REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
6.2.1 I/O Port Interrupt Sensitivity Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
2/125  
2
Table of Contents  
6.2.2 I/O Port Alternate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
6.2.3 Miscellaneous Registers Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
6.3 WATCHDOG TIMER (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
6.3.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
6.3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
6.3.4 Hardware Watchdog Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
6.3.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
6.3.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
6.3.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
6.4 16-BIT TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
6.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
6.4.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
6.4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
6.4.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
6.4.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
6.4.6 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
6.5 SERIAL PERIPHERAL INTERFACE (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
6.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
6.5.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
6.5.3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
6.5.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
6.5.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
6.5.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
6.5.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
6.6 SERIAL COMMUNICATIONS INTERFACE (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
6.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
6.6.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
6.6.3 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
6.6.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
6.6.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
6.6.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
6.6.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
6.7 8-BIT A/D CONVERTER (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
6.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
6.7.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
6.7.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
6.7.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
6.7.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
6.7.6 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
7 INSTRUCTION SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
7.1 ST7 ADDRESSING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
7.1.1 Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
7.1.2 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
7.1.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
7.1.4 Indexed (No Offset, Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
7.1.5 Indirect (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
7.1.6 Indirect Indexed (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
3/125  
3
Table of Contents  
7.1.7 Relative mode (Direct, Indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
7.2 INSTRUCTION GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
8 ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
8.1 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
8.2 RECOMMENDED OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
8.3 DC ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
8.4 GENERAL TIMING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
8.5 I/O PORT CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
8.6 SUPPLY, RESET AND CLOCK CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
8.6.1 Supply Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
8.6.2 Reset Sequence Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
8.6.3 Multi-Oscillator, Clock Security System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
8.7 MEMORY AND PERIPHERAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
9 GENERAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
9.1 PACKAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
9.1.1 Package Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
9.1.2 User-supplied TQFP64 Adaptor / Socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
9.1.3 User-supplied TQFP44 Adaptor / Socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
9.2 DEVICE CONFIGURATION AND ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . 121  
9.2.1 Option Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
9.2.2 Transfer Of Customer Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
10 SUMMARY OF CHANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
125  
4/125  
Table of Contents  
1 PREAMBLE: ST72C334 VERSUS ST72E331 SPECIFICATION  
New Features available on the ST72C334  
8 or 16K FLASH/ROM with In-Situ Programming and Read-out protection  
New ADC with a better accuracy and conversion time  
New configurable Clock, Reset and Supply system  
New power saving mode with real time base: Active Halt  
Beep capability on PF1  
New interrupt source: Clock security system (CSS) or Main clock controller (MCC)  
ST72C334 I/O Confuguration and Pinout  
Same pinout as ST72E331  
PA6 and PA7 are true open drain I/O ports without pull-up (same as ST72E331)  
PA3, PB3, PB4 and PF2 have no pull-up configuration (all IOs present on TQFP44)  
PA5:4, PC3:2, PE7:4 and PF7:6 have high sink capabilities (20mA on N-buffer, 2mA on P-buffer and  
pull-up). On the ST72E331, all these pads (except PA5:4) were 2mA push-pull pad without high sink  
capabilities. PA4 and PA5 were 20mA true open drain.  
New Memory Locations in ST72C334  
20h: MISCR register becomes MISCR1 register (naming change)  
29h: new control/status register for the MCC module  
2Bh: new control/status register for the Clock, Reset and Supply control. This register replaces the  
WDGSR register keeping the WDOGF flag compatibility.  
40h: new MISCR2 register  
5/125  
4
ST72334J/N, ST72314J/N, ST72124J  
2 GENERAL DESCRIPTION  
2.1 INTRODUCTION  
The ST72334J/N, ST72314J/N and ST72124J de-  
vices are members of the ST7 microcontroller fam-  
ily. They can be grouped as follows:  
The  
ST72C334J/N,  
ST72C314J/N  
and  
ST72C124J versions feature single-voltage  
FLASH memory with byte-by-byte In-Situ Pro-  
gramming (ISP) capability.  
– ST72334J/Ndevices are designed for mid-range  
applications with Data EEPROM, ADC, SPI and  
SCI interface capabilities.  
Under software control, all devices can be placed  
in WAIT, SLOW, ACTIVE-HALT or HALT mode,  
reducing power consumption when the application  
is in idle or standby state.  
– ST72314J/N devices target the same range of  
applications but without Data EEPROM.  
The enhanced instruction set and addressing  
modes of the ST7 offer both power and flexibility to  
software developers, enabling the design of highly  
efficient and compact application code. In addition  
to standard 8-bit data management, all ST7 micro-  
controllers feature true bit manipulation, 8x8 un-  
signed multiplication and indirect addressing  
modes.  
– ST72124J devices are for applications that do  
not need Data EEPROM and the ADC peripher-  
al.  
All devices are based on a common industry-  
standard 8-bit core, featuring an enhanced instruc-  
tion set.  
Figure 1. Device Block Diagram  
MULTI OSC  
+
CLOCK FILTER  
Internal  
CLOCK  
OSC1  
OSC2  
PA7:0  
(8 bits for N versions)  
(5 bits for J versions)  
PORT A  
V
SS  
POWER  
SUPPLY  
PORT B  
PB7:0  
(8 bits for N versions)  
(5 bits for J versions)  
V
DD  
TIMER B  
PORT C  
SPI  
PORT D  
PD7:0  
(8 bits for N versions)  
(6 bits for J versions)  
PC7:0  
(8 bits)  
8-BIT ADC  
V
SSA  
V
DDA  
PORT F  
PF7,6,4,2:0  
(6 bits)  
RESET  
/TEST  
CONTROL  
AND LVD  
TIMER A  
V
PP  
8-BIT CORE  
ALU  
PORT E  
SCI  
PE7:0  
(6 bits for N versions)  
(2 bits for J versions)  
PROGRAM  
MEMORY  
(8 or 16K Bytes)  
WATCHDOG  
Data-EEPROM  
(256 Bytes)  
RAM  
(384 or 512 Bytes)  
6/125  
5
ST72334J/N, ST72314J/N, ST72124J  
2.2 PIN DESCRIPTION  
Figure 2. 64-Pin TQFP Package Pinout (N versions)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
V
V
(HS) PE4  
1
(HS) PE5  
2
(HS) PE6  
3
(HS) PE7  
4
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
SS_1  
DD_1  
PA3  
PA2  
EI0  
PA1  
PB0  
5
PB1  
6
PB2  
7
PA0  
EI2  
PC7 / SS  
PC6 / SCK / ISPCLK  
PC5 / MOSI  
PC4 / MISO / ISPDATA  
PC3 (HS) / ICAP1_B  
PC2 (HS) / ICAP2_B  
PC1 / OCMP1_B  
PC0 / OCMP2_B  
PB3  
PB4  
8
9
PB5  
10  
11  
12  
13  
14  
15  
16  
EI3  
PB6  
PB7  
AIN0 / PD0  
AIN1 / PD1  
AIN2 / PD2  
AIN3 / PD3  
EI1  
V
SS_0  
V
DD_0  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
7/125  
6
ST72334J/N, ST72314J/N, ST72124J  
PIN DESCRIPTION (Cont’d)  
Figure 3. 56-Pin SDIP Package Pinout (N versions)  
1
PB4  
PB5  
PB3  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
2
PB2  
EI3  
EI2  
PB6  
3
PB1  
PB7  
4
PB0  
PE7 (HS)  
AIN0 / PD0  
AIN1 / PD1  
AIN2 / PD2  
AIN3 / PD3  
AIN4 / PD4  
AIN5 / PD5  
AIN6 / PD6  
AIN7 / PD7  
5
6
PE6 (HS)  
PE5 (HS)  
PE4 (HS)  
PE1 / RDI  
PE0 / TDO  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
V
_2  
DD  
OSC1  
OSC2  
V
DDA  
V
V
_2  
SSA  
SS  
MCO / PF0  
BEEP / PF1  
RESET  
ISPSEL  
EI1  
PF2  
PA7 (HS)  
PA6 (HS)I  
PA5 (HS)  
PA4 (HS)  
OCMP1_A / PF4  
ICAP1_A / (HS) PF6  
EXTCLK_A / (HS) PF7  
V
V
V
DD_0  
SS_1  
V
SS_0  
DD_1  
OCMP2_B / PC0  
OCMP1_B / PC1  
PA3  
PA2  
EI0  
ICAP2_B / (HS) PC2  
ICAP1_B / (HS) PC3  
ISPDATA/ MISO / PC4  
MOSI / PC5  
PA1  
PA0  
PC7 / SS  
PC6 / SCK / ISPCLK  
8/125  
ST72334J/N, ST72314J/N, ST72124J  
PIN DESCRIPTION (Cont’d)  
Figure 4. 44-Pin TQFP and 42-Pin SDIP Package Pinouts (J versions)  
44 43 42 41 40 39 38 37 36 35 34  
PE1 / RDI  
PB0  
V
V
1
33  
SS_1  
DD_1  
2
32  
PB1  
PA3  
3
EI0 31  
30  
EI2  
EI3  
PB2  
PC7 / SS  
4
PB3  
PC6 / SCK / ISPCLK  
PC5 / MOSI  
5
29  
PB4  
6
28  
AIN0 / PD0  
AIN1 / PD1  
AIN2 / PD2  
AIN3 / PD3  
AIN4 / PD4  
PC4 / MISO / ISPDATA  
PC3 (HS) / ICAP1_B  
PC2 (HS) / ICAP2_B  
PC1 / OCMP1_B  
PC0 / OCMP2_B  
7
27  
8
26  
9
25  
EI1  
10  
24  
11  
23  
12 13 14 15 16 17 18 19 20 21 22  
1
PB4  
EI3  
PB3  
PB2  
PB1  
PB0  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
AIN0 / PD0  
AIN1 / PD1  
AIN2 / PD2  
AIN3 / PD3  
AIN4 / PD4  
AIN5 / PD5  
2
EI2  
3
4
PE1 / RDI  
5
6
PE0 / TDO  
V
_2  
7
DD  
V
8
OSC1  
OSC2  
DDA  
V
9
SSA  
MCO / PF0  
BEEP / PF1  
V
_2  
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
RESET  
EI1  
PF2  
ISPSEL  
OCMP1_A / PF4  
ICAP1_A / (HS) PF6  
EXTCLK_A / (HS) PF7  
OCMP2_B / PC0  
PA7 (HS)  
PA6 (HS)  
PA5 (HS)  
PA4 (HS)  
OCMP1_B / PC1  
ICAP2_B/ (HS) PC2  
ICAP1_B / (HS) PC3  
ISPDATA / MISO / PC4  
MOSI / PC5  
V
SS_1  
V
DD_1  
PA3  
EI0 24  
23  
PC7 / SS  
PC6 / SCK / ISPCLK  
22  
9/125  
ST72334J/N, ST72314J/N, ST72124J  
PIN DESCRIPTION (Cont’d)  
Legend / Abbreviations:  
Type:  
I = input, O = output, S = supply  
A = Dedicated analog input  
Input level:  
In/Output level: C = CMOS 0.3V /0.7V  
,
DD  
DD  
C = CMOS 0.3V /0.7V with input trigger  
T
DD  
DD  
Output level:  
HS = high sink (on N-buffer only),  
Port configuration capabilities:  
– Input:  
float = floating, wpu = weak pull-up, int = interrupt, ana = analog  
OD = open drain, T = true open drain, PP = push-pull  
– Output:  
Note: the Reset configuration of each pin is shown in bold.  
Table 1. Device Pin Description  
Pin n°  
Level  
Port  
Main  
function  
(after  
Input  
Output  
Pin Name  
Alternate function  
reset)  
1 49  
PE4 (HS)  
I/O C HS  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Port E4  
Port E5  
Port E6  
Port E7  
Port B0  
Port B1  
Port B2  
Port B3  
Port B4  
Port B5  
Port B6  
Port B7  
T
2 50  
3 51  
4 52  
PE5 (HS)  
PE6 (HS)  
PE7 (HS)  
I/O C HS  
X
T
I/O C HS  
X
T
I/O C HS  
X
T
5 53 2 39 PB0  
6 54 3 40 PB1  
7 55 4 41 PB2  
8 56 5 42 PB3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
S
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
EI2  
EI2  
EI2  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
EI2  
EI3  
EI3  
9
1
6
1
PB4  
10 2  
11 3  
12 4  
13 5  
14 6  
15 7  
PB5  
PB6  
EI3  
EI3  
PB7  
7
8
9
2
3
4
PD0/AIN0  
PD1/AIN1  
PD2/AIN2  
X
X
X
X
X
X
X
X
X
Port D0 ADC Analog Input 0  
Port D1 ADC Analog Input 1  
Port D2 ADC Analog Input 2  
Port D3 ADC Analog Input 3  
Port D4 ADC Analog Input 4  
Port D5 ADC Analog Input 5  
Port D6 ADC Analog Input 6  
Port D7 ADC Analog Input 7  
Analog Power Supply Voltage  
Analog Ground Voltage  
X
X
X
X
X
X
X
16 8 10 5 PD3/AIN3  
17 9 11 6 PD4/AIN4  
18 10 12 7 PD5/AIN5  
19 11  
PD6/AIN6  
PD7/AIN7  
20 12  
21 13 13 8  
22 14 14 9  
23  
V
V
V
V
DDA  
SSA  
S
S
Digital Main Supply Voltage  
Digital Ground Voltage  
DD_3  
SS_3  
24  
S
25 15 15 10 PF0/MCO  
26 16 16 11 PF1/BEEP  
27 17 17 12 PF2  
I/O  
I/O  
I/O  
C
C
C
X
X
X
EI1  
EI1  
EI1  
X
X
X
X
X
X
Port F0 Main clock output (f  
Port F1 Beep signal output  
Port F2  
/2)  
OSC  
T
T
T
28  
NC  
Not Connected  
10/125  
ST72334J/N, ST72314J/N, ST72124J  
Pin n°  
Level  
Port  
Main  
function  
(after  
Input  
Output  
Pin Name  
Alternate function  
reset)  
29 18 18 13 PF4/OCMP1_A  
30 NC  
31 19 19 14 PF6 (HS)/ICAP1_A  
I/O  
I/O  
C
X
X
X
X
Port F4 Timer A Output Compare 1  
T
Not Connected  
C
C
HS  
X
X
X
X
X
X
X
Port F6 Timer A Input Capture 1  
T
32 20 20 15 PF7 (HS)/EXTCLK_A I/O  
HS  
X
Port F7 Timer A External Clock Source  
Digital Main Supply Voltage  
Digital Ground Voltage  
Port C0 Timer B Output Compare 2  
Port C1 Timer B Output Compare 1  
Port C2 Timer B Input Capture 2  
Port C3 Timer B Input Capture 1  
Port C4 SPI Master In / Slave Out Data  
Port C5 SPI Master Out / Slave In Data  
Port C6 SPI Serial Clock  
Port C7 SPI Slave Select (active low)  
Port A0  
T
33 21 21  
34 22 22  
V
V
S
S
DD_0  
SS_0  
35 23 23 16 PC0/OCMP2_B  
36 24 24 17 PC1/OCMP1_B  
I/O  
I/O  
C
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
T
C
X
T
37 25 25 18 PC2 (HS)/ICAP2_B I/O  
38 26 26 19 PC3 (HS)/ICAP1_B I/O  
C
C
HS  
X
T
HS  
X
T
39 27 27 20 PC4/MISO  
40 28 28 21 PC5/MOSI  
41 29 29 22 PC6/SCK  
42 30 30 23 PC7/SS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
S
C
X
T
C
C
C
C
C
C
C
X
T
T
T
T
T
T
T
X
X
43 31  
44 32  
45 33  
PA0  
PA1  
PA2  
EI0  
EI0  
EI0  
Port A1  
Port A2  
46 34 31 24 PA3  
EI0  
Port A3  
47 35 32 25 V  
48 36 33 26 V  
Digital Main Supply Voltage  
Digital Ground Voltage  
Port A4  
DD_1  
SS_1  
S
49 37 34 27 PA4 (HS)  
50 38 35 28 PA5 (HS)  
51 39 36 29 PA6 (HS)  
52 40 37 30 PA7 (HS)  
I/O  
I/O  
I/O  
I/O  
C
C
C
C
HS  
X
X
X
X
X
X
X
X
T
T
X
X
T
HS  
HS  
HS  
Port A5  
T
T
T
Port A6  
Port A7  
Must be tied low in user mode. In pro-  
gramming mode when available, this pin  
acts as In-Situ Programming mode se-  
lection.  
53 41 38 31 ISPSEL  
I
Top priority non maskable interrupt (ac-  
tive low)  
54 42 39 32 RESET  
I/O  
C
X
X
55  
56  
NC  
NC  
Not Connected  
Digital Ground Voltage  
57 43 40 33 V  
S
SS_3  
58 44 41 34 OSC2  
59 45 42 35 OSC1  
These pins connect a parallel-resonant  
crystal or an external clock source to the  
on-chip main oscillator.  
60 46 43 36 V  
S
Digital Main Supply Voltage  
Port E0 SCI Transmit Data Out  
Port E1 SCI Receive Data In  
DD_3  
61 47 44 37 PE0/TDO  
62 48 1 38 PE1/RDI  
I/O  
I/O  
C
X
X
X
X
X
X
X
X
T
C
T
63  
64  
NC  
NC  
Not Connected  
11/125  
ST72334J/N, ST72314J/N, ST72124J  
2.3 REGISTER & MEMORY MAP  
As shown in the Figure 5, the MCU is capable of  
addressing 64K bytes of memories and I/O regis-  
ters.  
8 Kbytes of user program memory. The RAM  
space includes up to 256 bytes for the stack from  
0100h to 01FFh.  
The available memory locations consist of 128  
bytes of register locations, 384 or 512 bytes of  
RAM, up to 256 bytes of data EEPROM and 4 or  
The highest address bytes contain the user reset  
and interrupt vectors.  
Figure 5. Memory Map  
0000h  
0080h  
HW Registers  
Short Addressing  
(see Table 2)  
RAM (zero page)  
00FFh  
007Fh  
0080h  
0100h  
256 Bytes Stack or  
384 Bytes RAM  
01FFh  
16-bit Addressing RAM  
01FFh  
512 Bytes RAM  
027Fh  
0200h / 0280h  
Reserved  
0080h  
Short Addressing  
RAM (zero page)  
0BFFh  
00FFh  
0100h  
0C00h  
256 Bytes Data EEPROM  
0CFFh  
0D00h  
256 Bytes Stack or  
Reserved  
BFFFh  
16-bit Addressing RAM  
C000h  
01FFh  
0200h  
16K Bytes  
E000h  
16-bit Addressing  
RAM  
8K Bytes  
Program  
Memory  
Program  
Memory  
027Fh  
FFDFh  
FFE0h  
Interrupt & Reset Vectors  
(see Table 6 page 37)  
FFFFh  
12/125  
ST72334J/N, ST72314J/N, ST72124J  
REGISTER & MEMORY MAP (Cont’d)  
Table 2. Hardware Register Map  
Register  
Label  
Reset  
Status  
Address  
Block  
Register Name  
Remarks  
0000h  
0001h  
0002h  
PADR  
PADDR  
PAOR  
Port A Data Register  
Port A Data Direction Register  
Port A Option Register  
00h  
00h  
00h  
R/W  
R/W  
R/W  
Port A  
1)  
0003h  
Reserved Area (1 Byte)  
0004h  
0005h  
0006h  
PCDR  
PCDDR  
PCOR  
Port C Data Register  
Port C Data Direction Register  
Port C Option Register  
00h  
00h  
00h  
R/W  
R/W  
R/W  
Port C  
Port B  
Port E  
Port D  
Port F  
0007h  
Reserved Area (1 Byte)  
R/W  
R/W  
0008h  
0009h  
000Ah  
PBDR  
PBDDR  
PBOR  
Port B Data Register  
Port B Data Direction Register  
Port B Option Register  
00h  
00h  
00h  
1)  
1)  
1)  
R/W  
000Bh  
Reserved Area (1 Byte)  
000Ch  
000Dh  
000Eh  
PEDR  
PEDDR  
PEOR  
Port E Data Register  
Port E Data Direction Register  
Port E Option Register  
00h  
00h  
00h  
R/W  
R/W  
R/W  
000Fh  
Reserved Area (1 Byte)  
0010h  
0011h  
0012h  
PDDR  
PDDDR  
PDOR  
Port D Data Register  
Port D Data Direction Register  
Port D Option Register  
00h  
00h  
00h  
R/W  
R/W  
R/W  
0013h  
Reserved Area (1 Byte)  
0014h  
0015h  
0016h  
PFDR  
PFDDR  
PFOR  
Port F Data Register  
Port F Data Direction Register  
Port F Option Register  
00h  
00h  
00h  
R/W  
R/W  
R/W  
0017h  
to  
001Fh  
Reserved Area (9 Bytes)  
Miscellaneous Register 1  
0020h  
MISCR1  
00h  
R/W  
0021h  
0022h  
0023h  
SPIDR  
SPICR  
SPISR  
SPI Data I/O Register  
SPI Control Register  
SPI Status Register  
xxh  
0xh  
00h  
R/W  
R/W  
Read Only  
SPI  
0024h  
to  
Reserved Area (5 Bytes)  
0028h  
0029h  
MCC  
MCCSR  
Main Clock Control / Status Register  
01h  
R/W  
13/125  
ST72334J/N, ST72314J/N, ST72124J  
Register  
Label  
Reset  
Status  
Address  
Block  
Register Name  
Remarks  
002Ah  
002Bh  
002Ch  
WATCHDOG WDGCR  
CRSR  
Watchdog Control Register  
7Fh  
00h  
00h  
R/W  
Clock, Reset, Supply Control / Status Register  
Data-EEPROM Control/Status Register  
R/W  
R/W  
Data-EEPROM EECSR  
002Dh  
0030h  
Reserved Area (4 Bytes)  
0031h  
0032h  
0033h  
0034h  
0035h  
0036h  
0037h  
0038h  
0039h  
003Ah  
003Bh  
003Ch  
003Dh  
003Eh  
003Fh  
TACR2  
TACR1  
TASR  
TAIC1HR  
TAIC1LR  
TAOC1HR  
TAOC1LR  
TACHR  
TACLR  
TAACHR  
TAACLR  
TAIC2HR  
TAIC2LR  
TAOC2HR  
TAOC2LR  
Timer A Control Register 2  
Timer A Control Register 1  
Timer A Status Register  
Timer A Input Capture 1 High Register  
Timer A Input Capture 1 Low Register  
Timer A Output Compare 1 High Register  
Timer A Output Compare 1 Low Register  
Timer A Counter High Register  
00h  
00h  
xxh  
xxh  
xxh  
80h  
00h  
FFh  
FCh  
FFh  
FCh  
xxh  
xxh  
80h  
00h  
R/W  
R/W  
Read Only  
Read Only  
Read Only  
R/W  
R/W  
TIMER A  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Timer A Counter Low Register  
Timer A Alternate Counter High Register  
Timer A Alternate Counter Low Register  
Timer A Input Capture 2 High Register  
Timer A Input Capture 2 Low Register  
Timer A Output Compare 2 High Register  
Timer A Output Compare 2 Low Register  
2)  
2)  
2)  
R/W  
R/W  
2)  
0040h  
MISCR2  
Miscellaneous Register 2  
00h  
R/W  
0041h  
0042h  
0043h  
0044h  
0045h  
0046h  
0047h  
0048h  
0049h  
004Ah  
004Bh  
004Ch  
004Dh  
004Eh  
004Fh  
TBCR2  
TBCR1  
TBSR  
TBIC1HR  
TBIC1LR  
TBOC1HR  
TBOC1LR  
TBCHR  
Timer B Control Register 2  
Timer B Control Register 1  
Timer B Status Register  
Timer B Input Capture 1 High Register  
Timer B Input Capture 1 Low Register  
Timer B Output Compare 1 High Register  
Timer B Output Compare 1 Low Register  
Timer B Counter High Register  
00h  
00h  
xxh  
xxh  
xxh  
80h  
00h  
FFh  
FCh  
FFh  
FCh  
xxh  
xxh  
80h  
00h  
R/W  
R/W  
Read Only  
Read Only  
Read Only  
R/W  
R/W  
TIMER B  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
R/W  
TBCLR  
Timer B Counter Low Register  
TBACHR  
TBACLR  
TBIC2HR  
TBIC2LR  
TBOC2HR  
TBOC2LR  
Timer B Alternate Counter High Register  
Timer B Alternate Counter Low Register  
Timer B Input Capture 2 High Register  
Timer B Input Capture 2 Low Register  
Timer B Output Compare 2 High Register  
Timer B Output Compare 2 Low Register  
R/W  
0050h  
0051h  
0052h  
0053h  
0054h  
0055h  
0056h  
0057h  
SCISR  
SCIDR  
SCIBRR  
SCICR1  
SCICR2  
SCIERPR  
SCI Status Register  
SCI Data Register  
SCI Baud Rate Register  
SCI Control Register 1  
SCI Control Register 2  
SCI Extended Receive Prescaler Register  
Reserved area  
SCI Extended Transmit Prescaler Register  
C0h  
xxh  
Read Only  
R/W  
00xx xxxx R/W  
xxh  
00h  
00h  
---  
R/W  
R/W  
R/W  
SCI  
SCIETPR  
00h  
R/W  
14/125  
ST72334J/N, ST72314J/N, ST72124J  
Register  
Label  
Reset  
Status  
Address  
Block  
Register Name  
Remarks  
0058h  
006Fh  
Reserved Area (24 Bytes)  
0070h  
0071h  
ADCDR  
ADCCSR  
Data Register  
Control/Status Register  
xxh  
00h  
Read Only  
R/W  
ADC  
0072h  
to  
Reserved Area (14 Bytes)  
007Fh  
Notes:  
1) The bits corresponding to unavailable pins are forced to 1 by hardware, this affects the reset status value.  
2) External pin not available.  
3) Not used in versions without Low Voltage Detector Reset.  
15/125  
ST72334J/N, ST72314J/N, ST72124J  
2.4 FLASH PROGRAM MEMORY  
2.4.1 Introduction  
This mode needs five signals (plus the V signal  
if necessary) to be connected to the programming  
tool. This signals are:  
DD  
Flash devices have a single voltage non-volatile  
FLASH memory that may be programmed in-situ  
(or plugged in a programming tool) on a byte-by-  
byte basis.  
– RESET: device reset  
– V : device ground power supply  
SS  
– ISPCLK: ISP output serial clock pin  
– ISPDATA: ISP input serial data pin  
2.4.2 Main features  
Remote In-Situ Programming (ISP) mode  
Up to 16 bytes programmed in the same cycle  
MTP memory (Multiple Time Programmable)  
Read-out memory protection against piracy  
2.4.3 Structural organisation  
– ISPSEL: Remote ISP mode selection. This pin  
must be connected to V on the application  
SS  
board  
If any of these pins are used for other purposes on  
the application, a serial resistor has to be imple-  
mented to avoid a conflict if the other device forces  
the signal level.  
The FLASH program memory is organised in a  
single 8-bit wide memory block which can be used  
for storing both code and data constants.  
Figure 6 shows a typical hardware interface to a  
standard ST7 programming tool. For more details  
on the pin locations, refer to the device pinout de-  
scription.  
The FLASH program memory is mapped in the up-  
per part of the ST7 addressing space (F000h-  
FFFFh) and includes the reset and interrupt user  
vector area .  
Figure 6. Typical Remote ISP Interface  
HE10 CONNECTOR TYPE  
2.4.4 In-Situ Programming (ISP) mode  
TO PROGRAMMING TOOL  
XTAL  
The FLASH program memory can be programmed  
using Remote ISP mode. This ISP mode allows  
the contents of the ST7 program memory to be up-  
dated using a standard ST7 programming tools af-  
ter the device is mounted on the application board.  
This feature can be implemented with a minimum  
number of added components and board area im-  
pact.  
1
C
C
L1  
L0  
ISPSEL  
10kΩ  
An exampleRemote ISP hardware interface to the  
standard ST7 programming tool is described be-  
low. For more details on ISP programming, refer to  
the ST7 Programming Specification.  
V
SS  
RESET  
ISPCLK  
Remote ISP Overview  
ST7  
ISPDATA  
The Remote ISP mode is initiated by a specific se-  
quence on the dedicated ISPSEL pin.  
4.7kΩ  
The Remote ISP is performed in three steps:  
– Selection of the RAM execution mode  
– Download of Remote ISP code in RAM  
APPLICATION  
– Execution of Remote ISP code in RAM to pro-  
gram the user program into the FLASH  
2.5 Program Memory Read-out Protection  
The read-out protection is enabled through an op-  
tion bit.  
Remote ISP hardware configuration  
In Remote ISP mode, the ST7 has to be supplied  
For FLASH devices, when this option is selected,  
the program and data stored in the FLASH memo-  
ry are protected against read-out piracy (including  
a re-write protection). When this protection option  
is removed the entire FLASH program memory is  
first automatically erased.  
with power (V and V ) and a clock signal (os-  
DD  
SS  
cillator and application crystal circuit for example).  
1
16/125  
ST72334J/N, ST72314J/N, ST72124J  
2.6 DATA EEPROM  
2.6.1 Introduction  
2.6.2 Main Features  
Up to 16 Bytes programmed in the same cycle  
EEPROM mono-voltage (charge pump)  
Chained erase and programming cycles  
The Electrically Erasable Programmable Read  
Only Memory can be used as a non volatile back-  
up for storing data. Using the EEPROM requires a  
basic access protocol described in this chapter.  
Internal control of the global programming cycle  
duration  
End of programming cycle interrupt flag  
WAIT mode management  
Figure 7. EEPROM Block Diagram  
FALLING  
EDGE  
DETECTOR  
EEPROM INTERRUPT  
HIGH VOLTAGE  
PUMP  
RESERVED  
EEPROM  
EECSR  
0
0
0
0
0
IE LAT PGM  
EEPROM  
ADDRESS  
DECODER  
ROW  
4
MEMORY MATRIX  
(1 ROW = 16 x 8 BITS)  
DECODER  
128  
128  
DATA  
MULTIPLEXER  
16 x 8 BITS  
4
4
DATA LATCHES  
ADDRESS BUS  
DATA BUS  
17/125  
ST72334J/N, ST72314J/N, ST72124J  
DATA EEPROM (Cont’d)  
2.6.3 Memory Access  
When PGM bit is set by the software, all the previ-  
ous bytes written in the data latches (up to 16) are  
programmed in the EEPROM cells. The effective  
high address (row) is determined by the last EEP-  
ROM write sequence. To avoid wrong program-  
ming, the user must take care that all the bytes  
written between two programming sequences  
have the same high address: only the four Least  
Significant Bits of the address can change.  
The Data EEPROM memory read/write access  
modes are controlled by the LAT bit of the EEP-  
ROM Control/Status register (EECSR). The flow-  
chart in Figure 8 describes these different memory  
access modes.  
Read Operation (LAT=0)  
The EEPROM can be read as a normal ROM loca-  
tion when the LAT bit of the EECSR register is  
cleared. In a read cycle, the byte to be accessed is  
put on the data bus in less than 1 CPU clock cycle.  
This means that reading data from EEPROM  
takes the same time as reading data from  
EPROM, but this memory cannot be used to exe-  
cute machine code.  
At the end of the programming cycle, the PGM and  
LAT bits are cleared simultaneously, and an inter-  
rupt is generated if the IE bit is set. The Data EEP-  
ROM interrupt request is cleared by hardware  
when the Data EEPROM interrupt vector is  
fetched.  
Note: Care should be taken during the program-  
ming cycle. Writing to the same memory location  
will over-program the memory (logical AND be-  
tween the two write access data result) because  
the data latches are only cleared at the end of the  
programming cycle and by the falling edge of LAT  
bit.  
Write Operation (LAT=1)  
To access the write mode, the LAT bit has to be  
set by software (the PGM bit remains cleared).  
When a write access to the EEPROM area occurs,  
the value is latched inside the 16 data latches ac-  
cording to its address.  
It is not possible to read the latched data.  
This note is ilustrated by the Figure 9.  
Figure 8. Data EEPROM Programming Flowchart  
READ MODE  
LAT=0  
WRITE MODE  
LAT=1  
PGM=0  
PGM=0  
WRITE UP TO 16 BYTES  
IN EEPROM AREA  
(with the same 12 MSB of the address)  
READ BYTES  
IN EEPROM AREA  
START PROGRAMMING CYCLE  
LAT=1  
PGM=1 (set by software)  
INTERRUPT GENERATION  
IF IE=1  
0
1
LAT  
CLEARED BY HARDWARE  
18/125  
ST72334J/N, ST72314J/N, ST72124J  
2.6.5 Data EEPROM Access Error Handling  
DATA EEPROM (Cont’d)  
2.6.4 Data EEPROM and Power Saving Modes  
Wait mode  
If a read access occurs while LAT=1, then the data  
bus will not be driven.  
The DATA EEPROM can enter WAIT mode on ex-  
ecution of the WFI instruction of the microcontrol-  
ler. The DATA EEPROM will immediately enter  
this mode if there is no programming in progress,  
otherwise the DATA EEPROM will finish the cycle  
and then enter WAIT mode.  
If a write access occurs while LAT=0, then the  
data on the bus will not be latched.  
If a programming cycle is interrupted (by software/  
RESET action), the memory data will not be guar-  
anteed.  
Halt mode  
The DATA EEPROM immediatly enters HALT  
mode if the microcontroller executes the HALT in-  
struction. Therefore the EEPROM will stop the  
function in progress, and data may be corrupted.  
Figure 9. Data EEPROM Programming Cycle  
READ OPERATION NOT POSSIBLE  
READ OPERATION POSSIBLE  
INTERNAL  
PROGRAMMING  
VOLTAGE  
ERASE CYCLE  
WRITE CYCLE  
WRITE OF  
DATA LATCHES  
tPROG  
LAT  
PGM  
EEPROM INTERRUPT  
19/125  
ST72334J/N, ST72314J/N, ST72124J  
DATA EEPROM (Cont’d)  
2.6.6 Register Description  
CONTROL/STATUS REGISTER (CSR)  
Read/Write  
Reset Value: 0000 0000 (00h)  
7
0
0
0
0
0
0
IE  
LAT  
PGM  
Bit 7:3 = Reserved, forced by hardware to 0.  
Bit 2 = IE Interrupt enable  
This bitisset andclearedby software. Itenables the  
Data EEPROM interrupt capability when the PGM  
bit is cleared by hardware. The interrupt request is  
automatically cleared when the software enters the  
interrupt routine.  
0: Interrupt disabled  
1: Interrupt enabled  
Bit 1 = LAT Latch Access Transfer  
This bit is set by software. It is cleared by hard-  
ware at the end of the programming cycle. It can  
only be cleared by software if PGM bit is cleared.  
0: Read mode  
1: Write mode  
Bit 0 = PGM Programming control and status  
This bit is set by software to begin the programming  
cycle. At the end of the programming cycle, this bit  
is clearedby hardware and aninterrupt isgenerated  
if the ITE bit is set.  
0: Programming finished or not yet started  
1: Programming cycle is in progress  
Note: if the PGM bit is cleared during the program-  
ming cycle, the memory data is not guaranteed.  
Table 3. DATA EEPROM Register Map and Reset Values  
Address  
(Hex.)  
Register  
Label  
7
6
5
4
3
2
1
0
EECSR  
IE  
0
RWM  
0
PGM  
0
002Ch  
0
0
0
0
0
Reset Value  
20/125  
ST72334J/N, ST72314J/N, ST72124J  
3 CENTRAL PROCESSING UNIT  
3.1 INTRODUCTION  
Accumulator (A)  
The Accumulator is an 8-bit general purpose reg-  
ister used to hold operands and the results of the  
arithmetic and logic calculations and to manipulate  
data.  
This CPU has a full 8-bit architecture and contains  
six internal registers allowing efficient 8-bit data  
manipulation.  
Index Registers (X and Y)  
3.2 MAIN FEATURES  
In indexed addressing modes, these 8-bit registers  
are used to create either effective addresses or  
temporary storage areas for data manipulation.  
(The Cross-Assembler generates a precede in-  
struction (PRE) to indicate that the following in-  
struction refers to the Y register.)  
63 basic instructions  
Fast 8-bit by 8-bit multiply  
17 main addressing modes  
Two 8-bit index registers  
16-bit stack pointer  
The Y register is not affected by the interrupt auto-  
matic procedures (not pushed to and popped from  
the stack).  
Low power modes  
Maskable hardware interrupts  
Non-maskable software interrupt  
Program Counter (PC)  
The program counter is a 16-bit register containing  
the address of the next instruction to be executed  
by the CPU. It is made of two 8-bit registers PCL  
(Program Counter Low which is the LSB) and PCH  
(Program Counter High which is the MSB).  
3.3 CPU REGISTERS  
The 6 CPU registers shown in Figure 10 are not  
present in the memory mapping and are accessed  
by specific instructions.  
Figure 10. CPU Registers  
7
0
ACCUMULATOR  
RESET VALUE = XXh  
7
0
0
X INDEX REGISTER  
Y INDEX REGISTER  
RESET VALUE = XXh  
7
RESET VALUE = XXh  
PCL  
PCH  
7
8
15  
0
PROGRAM COUNTER  
RESET VALUE = RESET VECTOR @ FFFEh-FFFFh  
7
1
0
1
1
1
1
H I N Z  
C
X
CONDITION CODE REGISTER  
RESET VALUE =  
8
1
X 1 X X  
15  
7
0
STACK POINTER  
RESET VALUE = STACK HIGHER ADDRESS  
X = Undefined Value  
21/125  
ST72334J/N, ST72314J/N, ST72124J  
CENTRAL PROCESSING UNIT (Cont’d)  
CONDITION CODE REGISTER (CC)  
Read/Write  
Bit 2 = N Negative.  
This bit is set and cleared by hardware. It is repre-  
sentative of the result sign of the last arithmetic,  
logical or data manipulation. It is a copy of the 7  
Reset Value: 111x1xxx  
th  
7
0
bit of the result.  
0: The result of the last operation is positive or null.  
1: The result of the last operation is negative  
(i.e. the most significant bit is a logic 1).  
1
1
1
H
I
N
Z
C
This bit is accessed by the JRMI and JRPL instruc-  
tions.  
The 8-bit Condition Code register contains the in-  
terrupt mask and four flags representative of the  
result of the instruction just executed. This register  
can also be handled by the PUSH and POP in-  
structions.  
Bit 1 = Z Zero.  
This bit is set and cleared by hardware. This bit in-  
dicates that the result of the last arithmetic, logical  
or data manipulation is zero.  
These bits can be individually tested and/or con-  
trolled by specific instructions.  
0: The result of the last operation is different from  
zero.  
Bit 4 = H Half carry.  
1: The result of the last operation is zero.  
This bit is set by hardware when a carry occurs be-  
tween bits 3 and 4 of the ALU during an ADD or  
ADC instruction. It is reset by hardware during the  
same instructions.  
This bit is accessed by the JREQ and JRNE test  
instructions.  
0: No half carry has occurred.  
1: A half carry has occurred.  
Bit 0 = C Carry/borrow.  
This bit is tested using the JRH or JRNH instruc-  
tion. The H bit is useful in BCD arithmetic subrou-  
tines.  
This bit is set and cleared by hardware and soft-  
ware. It indicates an overflow or an underflow has  
occurred during the last arithmetic operation.  
0: No overflow or underflow has occurred.  
1: An overflow or underflow has occurred.  
Bit 3 = I Interrupt mask.  
This bit is driven by the SCF and RCF instructions  
and tested by the JRC and JRNC instructions. It is  
also affected by the “bit test and branch”, shift and  
rotate instructions.  
This bit is set by hardware when entering in inter-  
rupt or by software to disable all interrupts except  
the TRAP software interrupt. This bit is cleared by  
software.  
0: Interrupts are enabled.  
1: Interrupts are disabled.  
This bit is controlled by the RIM, SIM and IRET in-  
structions and is tested by the JRM and JRNM in-  
structions.  
Note: Interrupts requested while I is set are  
latched and can be processed when I is cleared.  
By default an interrupt routine is not interruptable  
because the I bit is set by hardware when you en-  
ter it and reset by the IRET instruction at the end of  
the interrupt routine. If the I bit is cleared by soft-  
ware in the interrupt routine, pending interrupts are  
serviced regardless of the priority level of the cur-  
rent interrupt routine.  
22/125  
ST72334J/N, ST72314J/N, ST72124J  
CENTRAL PROCESSING UNIT (Cont’d)  
Stack Pointer (SP)  
The least significant byte of the Stack Pointer  
(called S) can be directly accessed by a LD in-  
struction.  
Read/Write  
Reset Value: 01 FFh  
Note: When the lower limit is exceeded, the Stack  
Pointer wraps around to the stack upper limit, with-  
out indicating the stack overflow. The previously  
stored information is then overwritten and there-  
fore lost. The stack also wraps in case of an under-  
flow.  
15  
8
1
0
7
0
0
0
0
0
0
0
The stack is used to save the return address dur-  
ing a subroutine call and the CPU context during  
an interrupt. The user may also directly manipulate  
the stack by means of the PUSH and POP instruc-  
tions. In the case of an interrupt, the PCL is stored  
at the first location pointed to by the SP. Then the  
other registers are stored in the next locations as  
shown in Figure 11.  
SP7  
SP6  
SP5  
SP4  
SP3  
SP2  
SP1  
SP0  
The Stack Pointer is a 16-bit register which is al-  
ways pointing to the next free location in the stack.  
It is then decremented after data has been pushed  
onto the stack and incremented before data is  
popped from the stack (see Figure 11).  
– When an interrupt is received, the SP is decre-  
mented and the context is pushed on the stack.  
Since the stack is 256 bytes deep, the 8th most  
significant bits are forced by hardware. Following  
an MCU Reset, or after a Reset Stack Pointer in-  
struction (RSP), the Stack Pointer contains its re-  
set value (the SP7 to SP0 bits are set) which is the  
stack higher address.  
– On return from interrupt, the SP is incremented  
and the context is popped from the stack.  
A subroutine call occupies two locations and an in-  
terrupt five locations in the stack area.  
Figure 11. Stack Manipulation Example  
CALL  
Subroutine  
RET  
or RSP  
PUSH Y  
POP Y  
IRET  
Interrupt  
Event  
@ 0100h  
SP  
SP  
SP  
Y
CC  
A
CC  
CC  
A
A
X
X
X
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
SP  
SP  
PCH  
PCH  
PCL  
SP  
@ 01FFh PCL  
Stack Higher Address = 01FFh  
0100h  
Stack Lower Address =  
23/125  
ST72334J/N, ST72314J/N, ST72124J  
4 SUPPLY, RESET AND CLOCK MANAGEMENT  
The ST72334J/N, ST72314J/N and ST72124J mi-  
crocontrollers include a range of utility features for  
securing the application in critical situations (for  
example in case of a power brown-out), and re-  
ducing the number of external components. An  
overview is shown in Figure 12.  
Reset Sequence Manager (RSM)  
Multi-Oscillator (MO)  
– 4 Crystal/Ceramic resonator oscillators  
– 1 External RC oscillator  
– 1 Internal RC oscillator  
Clock Security System (CSS)  
Main Features  
– Clock Filter  
– Backup Safe Oscillator  
Supply Manager with Main supply Low voltage  
detection (LVD)  
Figure 12. Clock, Reset and Supply Block Diagram  
MCO  
CLOCK SECURITY SYSTEM  
(CSS)  
MAIN CLOCK  
MULTI-  
OSCILLATOR  
(MO)  
OSC2  
OSC1  
f
f
CPU  
OSC  
CLOCK  
FILTER  
SAFE  
OSC  
CONTROLLER  
(MCC)  
RESET SEQUENCE  
MANAGER  
FROM  
RESET  
WATCHDOG  
PERIPHERAL  
(RSM)  
VDD  
VSS  
LOW VOLTAGE  
DETECTOR  
(LVD)  
LVD  
CSS  
WDG  
RF  
CRSR  
0
0
0
RF  
0
IE  
D
CSS INTERRUPT  
24/125  
ST72334J/N, ST72314J/N, ST72124J  
4.1 LOW VOLTAGE DETECTOR (LVD)  
To allow the integration of power management  
features in the application, the Low Voltage Detec-  
tor function (LVD) generates a static reset when  
In these conditions, secure operation is always en-  
sured for the application without the need for ex-  
ternal reset hardware.  
the V supply voltage is below a V  
reference  
DD  
LVDf  
During a Low Voltage Detector Reset, the RESET  
pin is held low, thus permitting the MCU to reset  
other devices.  
value. This means that it secures the power-up as  
well as the power-down keeping the ST7 in reset.  
The V  
lower than the V  
in order to avoid a parasitic reset when the MCU  
starts running and sinks current on the supply  
(hysteresis).  
reference value for a voltage drop is  
Notes:  
LVDf  
1) the LVD allows the device to be used without any exter-  
nal RESET circuitry.  
reference value for power-on  
LVDr  
2) three different reference levels are selectable through  
the OPTION BYTE according to the application require-  
ment.  
The LVD Reset circuitry generates a reset when  
LVD application note  
V
is below:  
DD  
Application software can detect a reset caused by  
the LVD by reading the LVDRF bit in the CRSR  
register.  
– V  
when V is rising  
DD  
when V is falling  
DD  
LVDr  
– V  
LVDf  
The LVD function is illustrated in the Figure 13.  
This bit is set by hardware when a LVD reset is  
generated and cleared by software (writing zero).  
Provided the minimum V value (guaranteed for  
the oscillator frequency) is below V  
can only be in two modes:  
DD  
, the MCU  
LVDf  
– under full software control  
– in static safe reset  
Figure 13. Low Voltage Detector vs Reset  
V
DD  
HYSTERESIS  
V
LVDhyst  
V
V
LVDr  
LVDf  
RESET  
25/125  
ST72334J/N, ST72314J/N, ST72124J  
4.2 RESET SEQUENCE MANAGER (RSM)  
The reset sequence manager includes three RE-  
SET sources as shown in Figure 15:  
EXTERNAL RESET SOURCE pulse  
Internal LVD RESET (Low Voltage Detection)  
Internal WATCHDOG RESET  
The 4096 CPU clock cycle delay allows the oscil-  
lator to stabilise and ensures that recovery has  
taken place from the Reset state.  
The RESET vector fetch phase duration is 2 clock  
cycles.  
These sources act on the RESET PIN and it is al-  
ways kept low during the delay phase.  
Figure 14. RESET Sequence Phases  
The RESET service routine vector is fixed at ad-  
dresses FFFEh-FFFFh in the ST7 memory map.  
RESET  
The basic RESET sequence consists of 3 phases  
as shown in Figure 14:  
INTERNAL RESET  
FETCH  
DELAY  
4096 CLOCK CYCLES  
VECTOR  
Delay depending on the RESET source  
4096 CPU clock cycle delay  
RESET vector fetch  
Figure 15. Reset Block Diagram  
INTERNAL  
RESET  
V
DD  
f
CPU  
R
ON  
RESET  
WATCHDOG RESET  
LVD RESET  
26/125  
ST72334J/N, ST72314J/N, ST72124J  
RESET SEQUENCE MANAGER (Cont’d)  
External RESET pin  
A RESET signal originating from an external  
source must have a duration of at least t  
in  
PULSE  
The RESET pin is both an input and an open-drain  
output with integrated R  
This pull-up has no fixed value but varies in ac-  
cordance with the input voltage. It can be pulled  
low by external circuitry to reset the device.  
order to be recognized. Two RESET sequences  
can be associated with this RESET source as  
shown in Figure 16.  
weak pull-up resistor.  
ON  
Starting from the external RESET pulse recogni-  
tion, the device RESET pin acts as an output that  
is pulled low during at least t  
.
DELAYmin  
Figure 16. External RESET Sequences  
V
DD  
V
DDnominal  
V
LVDf  
RESET  
RUN  
RUN  
INTERNAL RESET  
FETCH  
DELAY  
4096 CLOCK CYCLES VECTOR  
tDELAYmin  
tPULSE  
EXTERNAL RESET SOURCE  
RESET PIN  
WATCHDOG RESET  
V
DD  
V
DDnominal  
V
LVDf  
RESET  
RUN  
RUN  
INTERNAL RESET  
FETCH  
DELAY  
4096 CLOCK CYCLES VECTOR  
tPULSE  
EXTERNAL RESET SOURCE  
RESET PIN  
WATCHDOG RESET  
27/125  
ST72334J/N, ST72314J/N, ST72124J  
RESET SEQUENCE MANAGER (Cont’d)  
Internal Low Voltage Detection RESET  
Voltage Drop RESET  
Two different RESET sequences caused by the in-  
ternal LVD circuitry can be distinguished:  
Power-On RESET  
The device RESET pin acts as an output that is  
pulled low when V <V  
(rising edge) or  
DD  
LVDr  
V
<V  
(falling edge) as shown in Figure 9.  
DD  
LVDf  
Figure 17. LVD RESET Sequences  
V
DD  
V
V
DDnominal  
LVDr  
RESET  
RUN  
INTERNAL RESET  
FETCH  
DELAY  
4096 CLOCK CYCLES VECTOR  
EXTERNAL RESET SOURCE  
RESET PIN  
WATCHDOG RESET  
V
DD  
V
V
V
DDnominal  
LVDr  
LVDf  
RESET  
RUN  
RUN  
INTERNAL RESET  
FETCH  
DELAY  
4096 CLOCK CYCLES VECTOR  
EXTERNAL RESET SOURCE  
RESET PIN  
WATCHDOG RESET  
28/125  
ST72334J/N, ST72314J/N, ST72124J  
RESET SEQUENCE MANAGER (Cont’d)  
Internal Watchdog RESET  
Starting from the Watchdog counter underflow, the  
device RESET pin acts as an output that is pulled  
The RESET sequence generated by a internal  
Watchdog counter overflow is shown in Figure 18.  
low during at least t  
.
DELAYmin  
Figure 18. Watchdog RESET Sequence  
V
DD  
V
DDnominal  
V
LVDf  
RESET  
RUN  
RUN  
INTERNAL RESET  
FETCH  
DELAY  
4096 CLOCK CYCLES VECTOR  
EXTERNAL RESET SOURCE  
tDELAYmin  
RESET PIN  
WATCHDOG RESET  
WATCHDOG UNDERFLOW  
29/125  
ST72334J/N, ST72314J/N, ST72124J  
MULTI-OSCILLATOR (MO)  
The main clock of the ST7 can be generated by 7  
different sources coming from the multi-oscillator  
block:  
Crystal/Ceramic Oscillators  
This family of oscillators has the advantage of pro-  
ducing a high accuracy on the main clock of the  
ST7. The selection within a list of 4 oscillators with  
different frequency ranges has to be done by OP-  
TION BYTE in order to reduce the consumption. In  
this mode of the MO block, the resonator and the  
load capacitances have to be connected as shown  
in Figure 20 and have to be mounted as close as  
possible to the oscillator pins in order to minimize  
output distortion and start-up stabilization time.  
The loading capacitance values must be adjusted  
according to the selected oscillator.  
an external source  
4 crystal or ceramic resonator oscillators  
1 external RC oscillator  
1 internal high frequency RC oscillator  
Each oscillator is optimized for a given frequency  
range in terms of consumption and is selectable  
through the OPTION BYTE.  
External Clock Source  
The default OPTION BYTE value selects the Ex-  
ternal Clock in the MO block. In this mode, a clock  
signal (square, sinus or triangle) with ~50% duty  
cycle has to drive the OSC1 pin while the OSC2  
pin is tied to ground (see Figure 19).  
These oscillators, when selected via the OPTION  
BYTE, are not stopped during the RESET phase  
to avoid losing time in the oscillator start-up phase.  
Figure 20. MO Crystal/Ceramic Resonator  
Figure 19. MO External Clock  
ST7  
OSC1  
OSC2  
ST7  
OSC1  
OSC2  
C
C
L1  
L0  
EXTERNAL  
SOURCE  
LOAD  
CAPACITANCES  
30/125  
ST72334J/N, ST72314J/N, ST72124J  
MULTI-OSCILLATOR (Cont’d)  
External RC Oscillator  
Internal RC Oscillator  
This oscillator allows a low cost solution for the  
main clock of the ST7 using only an external resis-  
tor and an external capacitor (see Figure 21). The  
selection of the external RC oscillator has to be  
done by OPTION BYTE.  
The Internal RC oscillator mode is based on the  
same principle as the External RC oscillator in-  
cluding the resistance and the capacitance of the  
device. This mode is the most cost effective one  
with the drawback of a lower frequency accuracy.  
Its frequency is in the range of several MHz.  
The frequency of the external RC oscillator (in the  
range of some MHz.) is fixed by the resistor and  
the capacitor values:  
In this mode, the two oscillator pins have to be tied  
to ground as shown in Figure 22.  
1)  
4
. C  
The selection of the internal RC oscillator has to  
be done by OPTION BYTE.  
f
~
OSC  
R
EX  
EX  
The previous formula shows that in this MO mode,  
the accuracy of the clock is directly linked to the  
accuracy of the discrete components.  
Figure 21. MO External RC  
Figure 22. MO Internal RC  
ST7  
OSC1  
OSC2  
ST7  
OSC1  
OSC2  
R
C
EX  
EX  
Note:  
1) This formula provides an approximation of the frequency with typical R and C values at V =5V.  
EX  
EX  
DD  
It is given only as design guidelines.  
31/125  
ST72334J/N, ST72314J/N, ST72124J  
4.3 CLOCK SECURITY SYSTEM (CSS)  
The Clock Security System (CSS) protects the  
ST7 against main clock problems. To allow the in-  
tegration of the security features in the applica-  
tions, it is based on a clock filter control and an In-  
ternal Safe Oscillator. The CSS can be disabled by  
OPTION BYTE.  
4.3.2 Safe Oscillator Control  
The Safe Oscillator of the CSS block is a low fre-  
quency back-up clock source (see Figure 24).  
If the clock signal disappears (due to a broken or  
disconnected resonator...) during a Safe Oscillator  
period, the Safe oscillator delivers a low frequency  
clock signal which allows the ST7 to perform some  
rescue operations.  
4.3.1 Clock Filter Control  
The Clock Filter is based on a clock frequency lim-  
itation function.  
Automatically, the ST7 clock source switches back  
from the Safe Oscillator if the original clock source  
recovers.  
This filter function is able to detect and filter high  
frequency spikes on the ST7 main clock.  
If the oscillator is not working properly (e.g. work-  
ing at a harmonic frequency of the resonator), the  
current active oscillator clock can be totally fil-  
tered, and then no clock signal is available for the  
ST7 from this oscillator anymore. If the original  
clock source recovers, the filtering is stopped au-  
tomatically and the oscillator supplies the ST7  
clock.  
Limitation detection  
The automatic Safe Oscillator selection is notified  
by hardware setting the CSSD bit of the CRSR  
register. An interrupt can be generated if the CS-  
SIE bit has been previously set.  
These two bits are described in the CRSR register  
description.  
Figure 23. Clock Filter Function  
MAIN  
OSCILLATOR  
CLOCK  
INTERNAL  
ST7  
CLOCK  
Figure 24. Safe Oscillator Function  
MAIN  
OSCILLATOR  
CLOCK  
SAFE  
OSCILLATOR  
CLOCK  
INTERNAL  
ST7  
CLOCK  
32/125  
ST72334J/N, ST72314J/N, ST72124J  
4.4 SUPPLY, RESET AND CLOCK REGISTER DESCRIPTION  
CLOCK RESET AND SUPPLY REGISTER  
(CRSR)  
Bit 1 = CSSD Clock security system detection  
This bit indicates that the safe oscillator of the  
Clock Security System block has been selected by  
hardware due to a disturbance on the main clock  
Read/Write  
Reset Value: 000x 000x (00h)  
signal (f  
). It is set by hardware and cleared by  
OSC  
a read of the CRSR register when the original os-  
cillator recovers.  
7
0
0: Safe oscillator is not active  
LVD  
RF  
CSS CSS WDG  
IE RF  
0
0
0
0
1: Safe oscillator has been activated  
When the CSS is disabled by OPTION BYTE, the  
CSSD bit value is forced to 0.  
D
Bit 7:5 = Reserved, always read as 0.  
Bit 4 = LVDRF LVD reset flag  
This bit indicates that the last Reset was generat-  
ed by the LVD block. It is set by hardware (LVD re-  
set) and cleared by software (writing zero). See  
WDGRF flag description for more details. When  
the LVD is disabled by OPTION BYTE, the LVDRF  
bit value is undefined.  
Bit 0 = WDGRF Watchdog reset flag  
This bit indicates that the last Reset was generat-  
ed by the Watchdog peripheral. It is set by hard-  
ware (watchdog reset) and cleared by software  
(writing zero) or a LVD Reset (to ensure a stable  
cleared state of the WDGRF flag when CPU  
starts).  
Combined with the LVDRF flag information, the  
flag description is given by the following table.  
RESET Sources  
LVDRF WDGRF  
Bit 3 = Reserved, always read as 0.  
External RESET pin  
Watchdog  
0
0
1
0
1
Bit 2 = CSSIE Clock security syst interrupt enable  
.
This bit enables the interrupt when a disturbance  
is detected by the Clock Security System (CSSD  
bit set). It is set and cleared by software.  
0: Clock security system interrupt disabled  
1: Clock security system interrupt enabled  
When the CSS is disabled by OPTION BYTE, the  
CSSIE bit has no effect.  
LVD  
X
Application notes  
In case the LVDRF flag is not cleared upon anoth-  
er RESET type occurs (extern or watchdog), the  
LVDRF flag remains set to keep trace of the origi-  
nal failure.  
In this condition, a watchdog reset can be detect-  
ed by the software while an external reset not.  
Table 4. Clock, Reset and Supply Register Map and Reset Values  
Address  
(Hex.)  
Register  
Label  
7
6
5
4
3
2
1
0
CRSR  
Reset Value  
LVDRF  
x
CFIE  
0
CSSD  
0
WDGRF  
x
002Bh  
0
0
0
0
33/125  
ST72334J/N, ST72314J/N, ST72124J  
4.5 MAIN CLOCK CONTROLLER (MCC)  
The MCC block supplies the clock for the ST7  
CPU and its internal peripherals. It allows to man-  
age the power saving modes such as the SLOW  
and ACTIVE-HALT modes. The whole functionali-  
ty is managed by the Main Clock Control/Status  
Register (MCCSR) and the Miscellaneous Regis-  
ter 1 (MISCR1).  
The counter allows to generate an interrupt based  
on a accurate real time clock. Four different time  
bases depending directly on f  
are available.  
OSC  
The whole functionality is controlled by four bits of  
the MCCSR register: TB1, TB0, OIE and OIF.  
The clock-out capability allows to configure a ded-  
icated I/O port pin as an f  
/2 clock out to drive  
OSC  
The MCC block consists of:  
external devices. It is controlled by the MCO bit in  
the MISCR1 register.  
– a programmable CPU clock prescaler  
– a time base counter with interrupt capability  
– a clock-out signal to supply external devices  
When selected, the clock out pin suspends the  
clock during ACTIVE-HALT mode.  
The prescaler allows to select the main clock fre-  
quency and is controlled with three bits of the  
MISCR1: CP1, CP0 and SMS.  
Figure 25. Main Clock Controller (MCC) Block Diagram  
MCC  
OSC2  
f
OSC  
OSCILLATOR  
DIV 2  
OSC1  
DIV 2, 4, 8, 16  
PROGRAMMABLE  
DIVIDER  
MCCSR  
0
0
0
0
TB1 TB0 OIE OIF  
MCC INTERRUPT  
MISCR1  
-
-
MCO  
-
-
CP1 CP0 SMS  
CPU CLOCK  
TO CPU AND  
PERIPHERALS  
f
CPU  
PORT  
f
/2  
MCO  
ALTERNATE  
FUNCTION  
OSC  
34/125  
ST72334J/N, ST72314J/N, ST72124J  
MAIN CLOCK CONTROLLER (Cont’d)  
MISCELLANEOUS REGISTER 1 (MISCR1)  
A modification of the time base is taken into ac-  
count at the end of the current period (previously  
set) to avoid unwanted time shift. This allows to  
use this time base as a real time clock.  
See section 6.2 on page 47.  
MAIN CLOCK CONTROL/STATUS REGISTER  
(MCCSR)  
Read/Write  
Bit 1 = OIE Oscillator interrupt enable  
Reset Value: 0000 0001 (01h)  
This bit set and cleared by software.  
0: Oscillator interrupt disabled  
7
0
0
1: Oscillator interrupt enabled  
This interrupt allows to exit from ACTIVE-HALT  
mode.  
0
0
0
TB1  
TB0  
OIE  
OIF  
When this bit is set, calling the ST7 software HALT  
instruction enters the ACTIVE-HALT power saving  
mode  
.
Bit 7:4 = Reserved, always read as 0.  
Bit 0 = OIF Oscillator interrupt flag  
This bit is set by hardware and cleared by software  
reading the CSR register. It indicates when set  
that the main oscillator has measured the selected  
elapsed time (TB1:0).  
Bit 3:2 = TB1-TB0 Time base control  
These bits select the programmable divider time  
base. They are set and cleared by software.  
0: Timeout not reached  
1: Timeout reached  
Time Base  
Counter  
TB1 TB0  
Prescaler  
Warning: The BRES and BSET instructions must  
not be used on the MCCSR register to avoid unin-  
tentionally clearing the OIF bit.  
f
=8MHz  
f
=16MHz  
OSC  
OSC  
32000  
64000  
4ms  
8ms  
2ms  
4ms  
0
0
1
1
0
1
0
1
160000  
400000  
20ms  
50ms  
10ms  
25ms  
Table 5. MCC Register Map and Reset Values  
Address  
(Hex.)  
Register  
Label  
7
6
5
4
3
2
1
0
MCCSR  
Reset Value  
TB1  
0
TB0  
0
OIE  
0
OIF  
1
0029h  
0
0
0
0
35/125  
ST72334J/N, ST72314J/N, ST72124J  
5 INTERRUPTS & POWER SAVING MODES  
5.1 INTERRUPTS  
The ST7 core may be interrupted by one of two dif-  
ferent methods: maskable hardware interrupts as  
listed in the Interrupt Mapping Table and a non-  
maskable software interrupt (TRAP). The Interrupt  
processing flowchart is shown in Figure 26.  
The maskable interrupts must be enabled clearing  
the I bit in order to be serviced. However, disabled  
interrupts may be latched and processed when  
they are enabled (see external interrupts subsec-  
tion).  
Halt low power mode (refer to the “Exit from HALT“  
column in the Interrupt Mapping Table).  
External Interrupts  
External interrupt vectors can be loaded in the PC  
register if the corresponding external interrupt oc-  
curred and if the I bit is cleared. These interrupts  
allow the processor to leave the Halt low power  
mode.  
When an interrupt has to be serviced:  
The external interrupt polarity is selected through  
the miscellaneous register or interrupt register (if  
available).  
– Normal processing is suspended at the end of  
the current instruction execution.  
External interrupt triggered on edge will be latched  
and the interrupt request automatically cleared  
upon entering the interrupt service routine.  
– The PC, X, A and CC registers are saved onto  
the stack.  
– The I bit of the CC register is set to prevent addi-  
tional interrupts.  
If several input pins, connected to the same inter-  
rupt vector, are configured as interrupts, their sig-  
nals are logically ANDed before entering the edge/  
level detection block.  
– ThePC is then loaded with the interrupt vector of  
the interrupt to service and the first instruction of  
the interrupt service routine is fetched (refer to  
the Interrupt Mapping Table for vector address-  
es).  
Warning: The type of sensitivity defined in the  
Miscellaneous or Interrupt register (if available)  
applies to the EI source. In case of an ANDed  
source (as described on the I/O ports section), a  
low level on an I/O pin configured as input with in-  
terrupt, masks the interrupt request even in case  
of rising-edge sensitivity.  
The interrupt service routine should finish with the  
IRET instruction which causes the contents of the  
saved registers to be recovered from the stack.  
Note: As a consequence of the IRET instruction,  
the I bit will be cleared and the main program will  
resume.  
Peripheral Interrupts  
Different peripheral interrupt flags in the status  
register are able to cause an interrupt when they  
are active if both:  
Priority management  
By default, the interrupt being serviced cannot be  
interrupted because the I bit is set by hardware  
when entering an interrupt routine.  
– The I bit of the CC register is cleared.  
– The corresponding enable bit is set in the control  
register.  
If several interrupts are simultaneously pending, a  
hardware priority defines which one will be serv-  
iced first (see the Interrupt Mapping Table).  
If any of these two conditions is false, the interrupt  
is latched and thus remains pending.  
Non Maskable Software Interrupts  
Clearing an interrupt request is done by:  
This interrupt is entered when the TRAP instruc-  
tion is executed regardless of the state of the I bit.  
It will be serviced according to the flowchart on  
Figure 26.  
– writing “0” to the corresponding bit in the status  
register or  
– an access to the status register while the flag is  
set followed by a read or write of an associated  
register.  
Interrupts and Low power mode  
Note: the clearing sequence resets the internal  
latch. A pending interrupt (i.e. waiting for being en-  
abled) will therefore be lost if the clear sequence is  
executed.  
All interrupts allow the processor to leave the Wait  
low power mode. Only external and specific men-  
tioned interrupts allow the processor to leave the  
36/125  
ST72334J/N, ST72314J/N, ST72124J  
INTERRUPTS (Cont’d)  
Figure 26. Interrupt Processing Flowchart  
FROM RESET  
N
BIT I SET  
Y
N
BIT I SET  
Y
FETCH NEXT INSTRUCTION  
N
IRET  
STACK PC, X, A, CC  
SET I BIT  
Y
LOAD PC FROM INTERRUPT VECTOR  
EXECUTE INSTRUCTION  
RESTORE PC, X, A, CC FROM STACK  
THIS CLEARS I BIT BY DEFAULT  
Table 6. Interrupt Mapping  
Exit  
from  
HALT  
Source  
Block  
Register Priority  
Address  
Vector  
N°  
Description  
Label  
Order  
RESET  
TRAP  
Reset  
Highest  
Priority  
yes  
no  
FFFEh-FFFFh  
FFFCh-FFFDh  
FFFAh-FFFBh  
N/A  
Software Interrupt  
Not used  
0
1
MCC  
CSS  
Main Clock Controller Time Base Interrupt  
or Clock Security System Interrupt  
MCCSR  
CRSR  
yes  
FFF8h-FFF9h  
2
3
EI0  
EI1  
EI2  
EI3  
External Interrupt Port A3..0  
External Interrupt Port F2..0  
External Interrupt Port B3..0  
External Interrupt Port B7..4  
Not used  
FFF6h-FFF7h  
FFF4h-FFF5h  
FFF2h-FFF3h  
FFF0h-FFF1h  
FFEEh-FFEFh  
FFECh-FFEDh  
FFEAh-FFEBh  
FFE8h-FFE9h  
FFE6h-FFE7h  
FFE4h-FFE5h  
FFE2h-FFE3h  
FFE0h-FFE1h  
N/A  
4
5
6
7
SPI  
SPI Peripheral Interrupts  
TIMER A Peripheral Interrupts  
TIMER B Peripheral Interrupts  
SCI Peripheral Interrupts  
SPISR  
TASR  
no  
8
TIMER A  
TIMER B  
SCI  
9
TBSR  
10  
SCISR  
EECSR  
11 Data-EEPROM Data EEPROM Interrupt  
12  
Lowest  
Priority  
Not used  
13  
37/125  
ST72334J/N, ST72314J/N, ST72124J  
5.2 POWER SAVING MODES  
5.2.1 Introduction  
To give a large measure of flexibility to the applica-  
tion in terms of power consumption, four main  
power saving modes are implemented in the ST7.  
means of a master clock which is based on the  
main oscillator frequency divided by 2 (f ).  
CPU  
From Run mode, the different power saving  
modes may be selected by setting the relevant  
register bits or by calling the specific ST7 software  
instruction whose action depends on the the oscil-  
lator status.  
After a RESET the normal operating mode is se-  
lected by default (RUN mode). This mode drives  
the device (CPU and embedded peripherals) by  
Figure 27. Power saving mode consumption / transitions  
HALT  
ACTIVE-HALT  
SLOW WAIT  
WAIT  
SLOW  
RUN  
Low  
High  
POWER CONSUMPTION  
5.2.2 HALT Modes  
The HALT modes are the lowest power consump-  
tion modes of the MCU. They are entered by exe-  
cuting the ST7 HALT instruction (see Figure 29).  
Mode capability or a reset (see Table 6 page 37).  
A 4096 CPU clock cycles delay is performed be-  
fore the CPU operation resumes (see Figure 28).  
Two different HALT modes can be distinguished:  
– HALT: main oscillator is turned off,  
After the start up delay, the CPU resumes opera-  
tion by servicing the interrupt or by fetching the re-  
set vector which woke it up.  
– ACTIVE-HALT: only main oscillator is running.  
Table 7. HALT Modes selection  
The decision to enter either in HALT or ACTIVE-  
HALT mode is given by the main oscillator enable  
interrupt flag (OIE bit in CROSS-MCCSR register:  
see Table 7).  
When entering HALT modes, the I bit in the CC  
register is forced to 0 to enable interrupts.  
MCCSR  
OIE  
Power Saving Mode entered when HALT  
instruction is executed  
flag  
0
1
HALT (reset if watchdog enabled)  
ACTIVE-HALT (no reset if watchdog enabled)  
The MCU can exit HALT or ACTIVE-HALT modes  
on reception of an interrupt with Exit from Halt  
Figure 28. HALT /ACTIVE-HALT Modes timing overview  
4096 CPU CYCLE  
DELAY  
HALT OR ACTIVE-HALT  
RUN  
RUN  
FETCH  
VECTOR  
RESET  
OR  
HALT  
INSTRUCTION  
INTERRUPT  
38/125  
ST72334J/N, ST72314J/N, ST72124J  
Specific ACTIVE-HALT mode  
POWER SAVING MODES (Cont’d)  
Standard HALT mode  
In this mode the main oscillator is turned off caus-  
ing all internal processing to be stopped, including  
the operation of the on-chip peripherals. All periph-  
erals are not clocked except the ones which get  
their clock supply from another clock generator  
(such as an external or auxiliary oscillator).  
The compatibility of Watchdog operation with Halt  
mode is configured by the “WDGHALT” option bit  
of the OPTION BYTE. The HALT instruction when  
executed while the Watchdog system is enabled,  
can generate a Watchdog RESET (see dedicated  
section for more details).  
As soon as the interrupt capability of the main os-  
cillator is selected (OIE bit set), the HALT instruc-  
tion will make the device enter a specific ACTIVE-  
HALT power saving mode instead of the standard  
HALT one.  
This mode consists of having only the main oscil-  
lator and its associated counter running to keep a  
wake-up time base. All other peripherals are not  
clocked except the ones which get their clock sup-  
ply from another clock generator (such as external  
or auxiliary oscillator).  
The safeguard against staying locked in this AC-  
TIVE-HALT mode is insured by the oscillator inter-  
rupt.  
When exiting HALT mode by means of a RESET  
or an interrupt, the oscillator is immediately turned  
on and the 4096 CPU cycle delay is used to stabi-  
lize the oscillator.  
Note: As soon as the interrupt capability of one of  
the oscillators is selected (OIE bit set), entering in  
ACTIVE-HALT mode while the Watchdog is active  
does not generate a RESET.  
This means that the device cannot to spend more  
than a defined delay in this power saving mode.  
Figure 29. HALT modes flow-chart  
If WDGHALT  
bit reset in  
HALT INSTRUCTION  
OPTION BYTE  
MAIN  
1
0
N
Y
WATCHDOG  
ENABLE  
OSCILLATOR  
OIE BIT  
HALT  
ACTIVE-HALT  
OSCILLATOR  
PERIPHERALS  
CPU  
OSCILLATOR  
PERIPHERALS  
CPU  
OFF  
OFF  
OFF  
0
ON  
OFF  
OFF  
0
I BIT  
I BIT  
N
4096 clock cycles delay  
RESET  
Y
N
EXTERNAL*  
INTERRUPT  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
ON  
ON  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
OFF  
OFF  
FETCH RESET VECTOR  
OR SERVICE INTERRUPT **  
Y
Notes:  
External interrupt or internal interrupts with Exit from Halt Mode capability  
Before servicing an interrupt, the CC register is pushed on the stack.  
*
**  
39/125  
ST72334J/N, ST72314J/N, ST72124J  
POWER SAVING MODES (Cont’d)  
5.2.3 WAIT Mode  
WAIT mode places the MCU in a low power con-  
sumption mode by stopping the CPU.  
This power saving mode is selected by calling the  
“WFI” ST7 software instruction.  
All peripherals remain active. During WAIT mode,  
the I bit of the CC register is forced to 0 to enable  
all interrupts. All other registers and memory re-  
main unchanged. The MCU remains in WAIT  
mode until an interrupt or Reset occurs, whereup-  
on the Program Counter branches to the starting  
address of the interrupt or Reset service routine.  
The MCU will remain in WAIT mode until a Reset  
or an Interrupt occurs, causing it to wake up.  
Refer to Figure 30.  
Figure 30. WAIT mode flow-chart  
OSCILLATOR  
PERIPHERALS  
CPU  
I BIT  
ON  
ON  
OFF  
0
WFI INSTRUCTION  
N
RESET  
if exit caused by a RESET, a 4096 CPU  
clock cycle delay is inserted.  
Y
N
INTERRUPT  
Y
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
ON  
ON  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
OFF*  
OFF  
FETCH RESET VECTOR  
OR SERVICE INTERRUPT**  
Note:  
The peripheral clock is stopped only when exit caused by RESET and not by an interrupt.  
Before servicing an interrupt, the CC register is pushed on the stack.  
*
**  
40/125  
ST72334J/N, ST72314J/N, ST72124J  
POWER SAVING MODES (Cont’d)  
5.2.4 SLOW Mode  
This mode has two targets:  
disables Slow mode and two CPx bits which select  
the internal slow frequency (f  
).  
CPU  
– Toreduce power consumption bydecreasing the  
internal clock in the device,  
In this mode, the oscillator frequency can be divid-  
ed by 4, 8, 16 or 32 instead of 2 in normal operat-  
ing mode. The CPU and peripherals are clocked at  
this lower frequency.  
– To adapt the internal clock frequency (f  
the available supply voltage.  
) to  
CPU  
SLOW mode is controlled by three bits in the  
MISCR1 register: the SMS bit which enables or  
Note: SLOW-WAIT mode is activated when enter-  
ring the WAIT mode while the device is already in  
SLOW mode.  
Figure 31. SLOW Mode: timing diagram for internal CPU clock transitions  
NEW FREQUENCY  
ACTIVE WHEN  
OSC/4 & OSC/8 = 0  
NORMAL MODE ACTIVE  
(OSC/4, OSC/8 STOPPED)  
f
f
/4  
/8  
OSC  
OSC  
f
CPU  
00  
01  
CP1:0  
SMS  
MISCR1  
REGISTER  
1
0
NEW FREQUENCY  
REQUEST  
NORMAL MODE  
REQUEST  
41/125  
ST72334J/N, ST72314J/N, ST72124J  
6 ON-CHIP PERIPHERALS  
6.1 I/O PORTS  
6.1.1 Introduction  
Each external interrupt vector is linked to a dedi-  
cated group of I/O port pins (see Interrupt section).  
If more than one input pins are selected simultane-  
ously as interrupt source, these are logically AND-  
ed. For this reason if one of the interrupt pins is  
tied low, it masks the other ones.  
The I/O ports offer different functional modes:  
– transfer of data through digital inputs and outputs  
and for specific pins:  
– external interrupt generation  
– alternate signal input/output for the on-chip pe-  
ripherals (SPI, SCI, TIMERs...).  
In case of a floating input with interrupt configura-  
tion, special cares mentioned in the I/O port imple-  
mentation section have to be taken.  
An I/O port contains up to 8 pins. Each pin can be  
programmed independently as digital input (with or  
without interrupt generation) or digital output.  
Output Mode  
6.1.2 Functional Description  
Each port is associated to 2 main registers:  
– Data Register (DR)  
The output configuration is selected by setting the  
corresponding DDR register bit.  
In this case, writing the DR register applies this  
digital value to the I/O pin through the latch. Then  
reading the DR register returns the previously  
stored value.  
– Data Direction Register (DDR)  
and one optional register:  
Two different output modes can be selected by  
software through the OR register: Output push-pull  
and open-drain.  
– Option Register (OR)  
Each I/O pin may be programmed using the corre-  
sponding register bits in DDR and OR registers: bit  
X corresponding to pin X of the port. The same cor-  
respondence is used for the DR register.  
DR register value and output pin status:  
DR  
0
Push-pull  
Open-drain  
Vss  
The following description takes into account the  
OR register, for specific port which do not provide  
this register refer to the I/O Port Implementation  
section. The generic I/O block diagram is shown  
on Figure 32  
V
SS  
DD  
1
V
Floating  
Note: In this mode, interrupt function is disabled.  
Alternate function  
Input Modes  
When an on-chip peripheral is configured to use a  
pin, the alternate function is automatically select-  
ed. This alternate function takes priority over the  
standard I/O programming.  
The input configuration is selected by clearing the  
corresponding DDR register bit.  
In this case, reading the DR register returns the  
digital value applied to the external I/O pin.  
When the signal is coming from an on-chip periph-  
eral, the I/O pin is automatically configured in out-  
put mode (push-pull or open drain according to the  
peripheral).  
Different input modes can be selected by software  
through the OR register.  
Note1: Writing the DR register modifies the latch  
value but does not affect the pin status.  
Note2: When switching from input to output mode,  
the DR register has to be written first to drive the  
correct level on the pin as soon as the ports is con-  
figured as an output.  
When the signal is going to an on-chip peripheral,  
the I/O pin has to be configured in input mode. In  
this case, the pin’s state is also digitally readable  
by addressing the DR register.  
Note: Input pull-up configuration can cause unex-  
pected value at the input of the alternate peripheral  
input. When an on chip peripheral use a pin as in-  
put and output, this pin has to be configured in in-  
put floating mode.  
External interrupt function  
When an I/O is configured in Input with Interrupt,  
an event on this I/O can generate an external In-  
terrupt request to the CPU.  
Each pin can independently generate an Interrupt  
request. The interrupt sensitivity is given inde-  
pendently according to the description mentioned  
in the Miscellaneous register.  
WARNING: The alternate function must not be ac-  
tivated as long as the pin is configured as input  
with interrupt, in order to avoid generating spurious  
interrupts.  
42/125  
ST72334J/N, ST72314J/N, ST72124J  
I/O PORTS (Cont’d)  
Figure 32. I/O Block Diagram  
ALTERNATE  
OUTPUT  
1
0
P-BUFFER  
(see table below)  
V
DD  
ALTERNATE  
ENABLE  
PULL-UP  
(see table below)  
DR  
V
DD  
DDR  
PULL-UP  
CONDITION  
PAD  
OR  
If implemented  
OR SEL  
N-BUFFER  
DIODES  
(see table below)  
DDR SEL  
DR SEL  
ANALOG  
INPUT  
CMOS  
SCHMITT  
TRIGGER  
1
0
ALTERNATE  
INPUT  
EXTERNAL  
INTERRUPT  
SOURCE (EIx)  
FROM  
OTHER  
BITS  
POLARITY  
SELECTION  
Table 8. Port Mode Options  
Configuration Mode  
Diodes  
Pull-Up  
P-Buffer  
to V  
to V  
SS  
DD  
Floating with/without Interrupt  
Pull-up with/without Interrupt  
Off  
On  
Input  
Off  
On  
Push-pull  
On  
Off  
NI  
On  
Off  
NI  
Output  
Open Drain (logic level)  
True Open Drain  
NI (see note)  
Legend:NI - not implemented  
Off - implemented not activated  
On - implemented and activated  
Note: the diode to V is not implemented in the  
DD  
true open drain pads. A local protection between  
the pad and V is implemented to protect the de-  
SS  
vice against positive stress.  
43/125  
ST72334J/N, ST72314J/N, ST72124J  
I/O PORTS (Cont’d)  
6.1.3 I/O Port Implementation  
Switching these I/O ports from one state to anoth-  
er should be done in a sequence that prevents un-  
wanted side effects. Recommended safe transi-  
tions are illustrated in Figure 33 Other transitions  
are potentially risky and should be avoided, since  
they are likely to present unwanted side-effects  
such as spurious interrupt generation.  
The I/O port register configurations are summa-  
rised as following.  
Standard Ports  
PA5:4, PC7:0, PD7:0, PE7:4, PE1:0, PF7:6, PF4  
MODE  
DDR  
OR  
Figure 33. Interrupt I/O Port State Transition  
floating input  
pull-up input  
0
0
1
1
0
1
0
1
01  
00  
10  
11  
open drain output  
push-pull output  
INPUT  
pull-up/floating  
interrupt  
INPUT  
floating  
(reset state)  
OUTPUT  
open-drain  
OUTPUT  
push-pull  
Interrupt Ports  
PA2:0, PB6:4, PB2:0, PF1:0 (with pull-up)  
= DDR, OR  
XX  
MODE  
DDR  
OR  
floating input  
0
0
1
1
0
1
0
1
True Open Drain Ports  
PA7:6  
pull-up interrupt input  
open drain output  
push-pull output  
MODE  
DDR  
floating input  
0
1
PA3, PB7, PB3, PF2 (without pull-up)  
open drain (high sink ports)  
MODE  
DDR  
OR  
floating input  
0
0
1
1
0
1
0
1
floating interrupt input  
open drain output  
push-pull output  
Table 9. Port Configuration  
Input  
Output  
Port  
Pin name  
OR = 0  
OR = 1  
OR = 0  
true open-drain  
open drain push-pull  
OR = 1  
PA7:6  
floating  
PA5:4  
floating  
floating  
floating  
floating  
floating  
floating  
floating  
floating  
floating  
floating  
floating  
pull-up  
Port A  
Port B  
PA3  
floating interrupt  
pull-up interrupt  
floating interrupt  
pull-up interrupt  
pull-up  
open drain  
open drain  
open drain  
open drain  
open drain  
open drain  
open drain  
open drain  
open drain  
open drain  
push-pull  
push-pull  
push-pull  
push-pull  
push-pull  
push-pull  
push-pull  
push-pull  
push-pull  
push-pull  
PA2:0  
PB7, PB3  
PB6:4, PB2:0  
PC7:0  
Port C  
Port D  
Port E  
PD7:0  
pull-up  
PE7:4, PE1:0  
PF7:6, PF4  
PF2  
pull-up  
pull-up  
Port F  
floating interrupt  
pull-up interrupt  
PF1:0  
44/125  
ST72334J/N, ST72314J/N, ST72124J  
I/O PORTS (Cont’d)  
6.1.4 Register Description  
DATA REGISTER (DR)  
OPTION REGISTER (OR)  
Port x Data Register  
PxDR with x = A, B, C, D, E or F.  
Port x Option Register  
PxOR with x = A, B, C, D, E or F.  
Read/Write  
Read/Write  
Reset Value: 0000 0000 (00h)  
Reset Value: 0000 0000 (00h)  
7
0
7
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
O7  
O6  
O5  
O4  
O3  
O2  
O1  
O0  
Bit 7:0 = D[7:0] Data register 8 bits.  
Bit 7:0 = O[7:0] Option register 8 bits.  
The DR register has a specific behaviour accord-  
ing to the selected input/output configuration. Writ-  
ing the DR register is always taken into account  
even if the pin is configured as an input; this allows  
to always have the expected level on the pin when  
toggling to output mode. Reading the DR register  
returns either the DR register latch content (pin  
configured as output) or the digital value applied to  
the I/O pin (pin configured as input).  
For specific I/O pins, this register is not implement-  
ed. In this case the DDR register is enough to se-  
lect the I/O pin configuration.  
The OR register allows to distinguish: in input  
mode if the pull-up with interrupt capability or the  
basic pull-up configuration is selected, in output  
mode if the push-pull or open drain configuration is  
selected.  
Each bit is set and cleared by software.  
Input mode:  
0: floating input  
1: pull-up input with or without interrupt  
DATA DIRECTION REGISTER (DDR)  
Port x Data Direction Register  
PxDDR with x = A, B, C, D, E or F.  
Output mode:  
0: output open drain (with P-Buffer unactivated)  
1: output push-pull  
Read/Write  
Reset Value: 0000 0000 (00h)  
7
0
DD7  
DD6  
DD5  
DD4  
DD3  
DD2  
DD1  
DD0  
Bit 7:0 = DD[7:0] Data direction register 8 bits.  
The DDR register gives the input/output direction  
configuration of the pins. Each bits is set and  
cleared by software.  
0: Input mode  
1: Output mode  
45/125  
ST72334J/N, ST72314J/N, ST72124J  
I/O PORTS (Cont’d)  
Table 10. I/O Port Register Map and Reset Values  
Address  
(Hex.)  
Register  
Label  
7
6
5
4
3
2
1
0
Reset Value  
of all IO port registers  
0
0
0
0
0
0
0
0
0000h  
0001h  
0002h  
0004h  
0005h  
0006h  
0008h  
0009h  
000Ah  
000Ch  
000Dh  
000Eh  
0010h  
0011h  
0012h  
0014h  
0015h  
0016h  
PADR  
PADDR  
MSB  
MSB  
MSB  
MSB  
MSB  
MSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
1)  
PAOR  
PCDR  
PCDDR  
PCOR  
PBDR  
PBDDR  
1)  
PBOR  
PEDR  
PEDDR  
1)  
PEOR  
PDDR  
PDDDR  
1)  
PDOR  
PFDR  
PFDDR  
PFOR  
Notes:  
1) The bits corresponding to unavailable pins are forced to 1 by hardware, this affects the reset status value.  
46/125  
ST72334J/N, ST72314J/N, ST72124J  
6.2.2 I/O Port Alternate Functions  
6.2 MISCELLANEOUS REGISTERS  
The miscellaneous registers allow control over  
several different features such as the external in-  
terrupts or the I/O alternate functions.  
The MISCR registers manage four I/O port miscel-  
laneous alternate functions:  
Main clock signal (f  
) output on PF0  
6.2.1 I/O Port Interrupt Sensitivity Description  
CPU  
A beep signal output on PF1 (with 3 selectable  
The external interrupt sensitivity is controlled by  
the ISxx bits of the MISCR1 miscellaneous regis-  
ter. This control allows to have two fully independ-  
ent external interrupt source sensitivities.  
audio frequencies)  
SPI pin configuration:  
– SS pin internal control to use the PC7 I/O port  
function while the SPI is active.  
These functions are described in detail in the Sec-  
tion 6.2.3 Miscellaneous Registers Description.  
Each external interrupt source can be generated  
on four different events on the pin:  
Falling edge  
Rising edge  
Falling and rising edge  
Falling edge and low level  
To guarantee correct functionality, the sensitivity  
bits in the MISCR1 register must be modified only  
when the I bit of the CC register is set to 1 (inter-  
rupt masked). See I/O port register and Miscella-  
neous register descriptions for more details on the  
programming.  
47/125  
ST72334J/N, ST72314J/N, ST72124J  
MISCELLANEOUS REGISTERS (Cont’d)  
6.2.3 Miscellaneous Registers Description  
MISCELLANEOUS REGISTER 1 (MISCR1)  
Read/Write  
Bit 4:3 = IS2[1:0] EI0 and EI1 sensitivity  
The interrupt sensitivity, defined using the IS2[1:0]  
bits, is applied to the following external interrupts:-  
EI0 (port A3..0) and EI1 (port F2..0). These 2 bits  
can be written only when the I bit of the CC register  
is set to 1 (interrupt disabled).  
Reset Value: 0000 0000 (00h)  
7
0
IS11 IS10 MCO IS21 IS20 CP1 CP0 SMS  
Bit 2:1 = CP[1:0] CPU clock prescaler  
These bits select the CPU clock prescaler which is  
applied in the different slow modes. Their action is  
conditioned by the setting of the SMS bit. These  
two bits are set and cleared by software  
Bit 7:6 = IS1[1:0] EI2 and EI3 sensitivity  
The interrupt sensitivity, defined using the IS1[1:0]  
bits, is applied to the following external interrupts:  
EI2 (port B3..0) and EI3 (port B7..4). These 2 bits  
can be written only when the I bit of the CC register  
is set to 1 (interrupt disabled).  
CP1 CP0  
f
in SLOW mode  
CPU  
0
1
0
1
0
0
1
1
f
f
f
f
/ 4  
OSC  
OSC  
OSC  
OSC  
/ 8  
/ 16  
/ 32  
IS11 IS10  
External Interrupt Sensitivity  
Falling edge & low level  
Rising edge only  
0
0
1
1
0
1
0
1
Falling edge only  
Bit 0 = SMS Slow mode select  
This bit is set and cleared by software.  
Rising and falling edge  
0: Normal mode. f  
= fOSC / 2  
is given by CP1, CP0  
CPU  
1: Slow mode. f  
CPU  
See low power consumption mode and MCC  
chapters for more details.  
Bit 5 = MCO Main clock out selection  
This bit enables the MCO alternate function on the  
I/O port. It is set and cleared by software.  
0: MCO alternate function disabled  
(I/O pin free for general-purpose I/O)  
1: MCO alternate function enabled  
(f  
/2 on I/O port)  
OSC  
Note: To reduce power consumption, the MCO  
function is not active in ACTIVE-HALT mode.  
48/125  
ST72334J/N, ST72314J/N, ST72124J  
MISCELLANEOUS REGISTERS (Cont’d)  
MISCELLANEOUS REGISTER 2 (MISCR2)  
Read/Write  
Reset Value: 0000 0000 (00h)  
7
0
-
-
BC1 BC0  
-
-
SSM SSI  
Bit 7:6 = Reserved Must always be cleared  
Bit 5:4 = BC[1:0] Beep control  
These 2 bits select the PF1 pin beep capability.  
BC1 BC0  
Beep mode with f  
Off  
=16MHz  
OSC  
0
0
1
1
0
1
0
1
~2-KHz  
Output  
Beep signal  
~1-KHz  
~50% duty cycle  
~500-Hz  
The beep output signal is available in ACTIVE-  
HALT mode but has to be disabled to reduce the  
consumption.  
Bit 3:2 = Reserved Must always be cleared  
Bit 1 = SSM SS mode selection  
It is set and cleared by software.  
0: Normal mode - SS uses information coming  
from the SS pin of the SPI.  
1: I/O mode, the SPI uses the information stored  
into bit SSI.  
Bit 0 = SSI SS internal mode  
This bit replaces pin SS of the SPI when bit SSM is  
set to 1. (see SPI description). It is set and cleared  
by software.  
Table 11. Miscellaneous Register Map and Reset Values  
Address  
(Hex.)  
Register  
Label  
7
6
5
4
3
2
1
0
MISCR1  
Reset Value  
IS11  
0
IS10  
0
MCO  
0
IS21  
0
IS20  
0
CP1  
0
CP0  
0
SMS  
0
0020h  
0040h  
MISCR2  
Reset Value  
BC1  
0
BC0  
0
SSM  
0
SSI  
0
0
0
0
0
49/125  
ST72334J/N, ST72314J/N, ST72124J  
6.3 WATCHDOG TIMER (WDG)  
6.3.1 Introduction  
Hardware Watchdog selectable by option byte  
Watchdog Reset indicated by status flag (in  
The Watchdog timer is used to detect the occur-  
rence of a software fault, usually generated by ex-  
ternal interference or by unforeseen logical condi-  
tions, which causes the application program to  
abandon its normal sequence. The Watchdog cir-  
cuit generates an MCU reset on expiry of a pro-  
grammed time period, unless the program refresh-  
es the counter’s contents before the T6 bit be-  
comes cleared.  
versions with Safe Reset option only)  
6.3.3 Functional Description  
The counter value stored in the CR register (bits  
T[6:0]), is decremented every 12,288 machine cy-  
cles, and the length of the timeout period can be  
programmed by the user in 64 increments.  
6.3.2 Main Features  
Programmable timer (64 increments of 12288  
If the watchdog is activated (the WDGA bit is set)  
and when the 7-bit timer (bits T[6:0]) rolls over  
from 40h to 3Fh (T6 becomes cleared), it initiates  
a reset cycle pulling low the reset pin for typically  
500ns.  
CPU cycles)  
Programmable reset  
Reset (if watchdog activated) after a HALT  
instruction or when the T6 bit reaches zero  
Figure 34. Watchdog Block Diagram  
RESET  
WATCHDOG CONTROL REGISTER (CR)  
T5 T1 T0  
WDGA T6  
T4  
T2  
T3  
7-BIT DOWNCOUNTER  
CLOCK DIVIDER  
f
CPU  
÷12288  
50/125  
ST72334J/N, ST72314J/N, ST72124J  
WATCHDOG TIMER (Cont’d)  
The application program must write in the CR reg-  
ister at regular intervals during normal operation to  
prevent an MCU reset. The value to be stored in  
the CR register must be between FFh and C0h  
(see Table 12 .Watchdog Timing (fCPU = 8 MHz)):  
6.3.7 Register Description  
CONTROL REGISTER (CR)  
Read/Write  
Reset Value: 0111 1111 (7Fh)  
– The WDGA bit is set (watchdog enabled)  
7
0
– The T6 bit is set to prevent generating an imme-  
diate reset  
WDGA T6  
T5  
T4  
T3  
T2  
T1  
T0  
– The T[5:0] bits contain the number of increments  
which represents the time delay before the  
watchdog produces a reset.  
Bit 7 = WDGA Activation bit.  
This bit is set by software and only cleared by  
hardware after a reset. When WDGA = 1, the  
watchdog can generate a reset.  
0: Watchdog disabled  
1: Watchdog enabled  
Table 12.Watchdog Timing (f  
= 8 MHz)  
CPU  
CR Register  
initial value  
WDG timeout period  
(ms)  
Max  
Min  
FFh  
C0h  
98.304  
1.536  
Note: This bit is not used if the hardware watch-  
dog option is enabled by option byte.  
Bit 6:0 = T[6:0] 7-bit timer (MSB to LSB).  
These bits contain the decremented value. A reset  
is produced when it rolls over from 40h to 3Fh (T6  
becomes cleared).  
Notes: Following a reset, the watchdog is disa-  
bled. Once activated it cannot be disabled, except  
by a reset.  
The T6 bit can be used to generate a software re-  
set (the WDGA bit is set and the T6 bit is cleared).  
STATUS REGISTER (SR)  
Read/Write  
If the watchdog is activated, the HALT instruction  
will generate a Reset.  
Reset Value*: 0000 0000 (00h)  
6.3.4 Hardware Watchdog Option  
7
-
0
If Hardware Watchdog Is selected by option byte,  
the watchdog is always active and the WDGA bit in  
the CR is not used.  
-
-
-
-
-
-
WDOGF  
Refer to the device-specific Option Byte descrip-  
tion.  
Bit 0 = WDOGF Watchdog flag.  
This bit is set by a watchdog reset and cleared by  
software or a power on/off reset. This bit is useful  
for distinguishing power/on off or external reset  
and watchdog reset.  
6.3.5 Low Power Modes  
Mode  
Description  
0: No Watchdog reset occurred  
1: Watchdog reset occurred  
WAIT  
No effect on Watchdog.  
Immediate reset generation as soon as  
the HALT instruction is executed if the  
Watchdog is activated (WDGA bit is  
set).  
* Only by software and power on/off reset  
HALT  
Note: This register is not used in versions without  
LVD Reset.  
6.3.6 Interrupts  
None.  
51/125  
ST72334J/N, ST72314J/N, ST72124J  
WATCHDOG TIMER (Cond’t)  
Table 13. Watchdog Timer Register Map and Reset Values  
Address  
(Hex.)  
Register  
Label  
7
6
5
4
3
2
1
0
WDGCR  
WDGA  
0
T6  
1
T5  
1
T4  
1
T3  
1
T2  
1
T1  
1
T0  
1
002Ah  
Reset Value  
52/125  
ST72334J/N, ST72314J/N, ST72124J  
6.4 16-BIT TIMER  
6.4.1 Introduction  
6.4.3 Functional Description  
6.4.3.1 Counter  
The timer consists of a 16-bit free-running counter  
driven by a programmable prescaler.  
The principal block of the Programmable Timer is  
a 16-bit free running increasing counter and its as-  
sociated 16-bit registers:  
It may be used for a variety of purposes, including  
pulse length measurement of up to two input sig-  
nals (input capture) or generation of up to two out-  
put waveforms (output compare and PWM).  
Counter Registers  
– Counter High Register (CHR) is the most sig-  
nificant byte (MSB).  
Pulse lengths and waveform periods can be mod-  
ulated from a few microseconds to several milli-  
seconds using the timer prescaler and the CPU  
clock prescaler.  
– Counter Low Register (CLR) is the least sig-  
nificant byte (LSB).  
Alternate Counter Registers  
– Alternate Counter High Register (ACHR) is the  
most significant byte (MSB).  
6.4.2 Main Features  
Programmable prescaler:fCPU dividedby2, 4or 8.  
Overflow status flag and maskable interrupt  
– Alternate Counter Low Register (ACLR) is the  
least significant byte (LSB).  
External clock input (must be at least 4 times  
slower thanthe CPUclock speed)with the choice  
of active edge  
These two read-only 16-bit registers contain the  
same value but with the difference that reading the  
ACLR register does not clear the TOF bit (overflow  
flag), (see note at the end of paragraph titled 16-bit  
read sequence).  
Output compare functions with  
– 2 dedicated 16-bit registers  
– 2 dedicated programmable signals  
– 2 dedicated status flags  
Writing in the CLR register or ACLR register resets  
the free running counter to the FFFCh value.  
– 1 dedicated maskable interrupt  
Input capture functions with  
The timer clock depends on the clock control bits  
of the CR2 register, as illustrated in Table 14 Clock  
Control Bits. The value in the counter register re-  
peats every 131.072, 262.144 or 524.288 internal  
processorclock cycles depending on the CC1 and  
CC0 bits.  
– 2 dedicated 16-bit registers  
– 2 dedicated active edge selection signals  
– 2 dedicated status flags  
– 1 dedicated maskable interrupt  
Pulse width modulation mode (PWM)  
One pulse mode  
5 alternate functionson I/O ports (ICAP1,ICAP2,  
OCMP1, OCMP2, EXTCLK)*  
The Block Diagram is shown in Figure 35.  
*Note: Some external pins are not available on all  
devices. Refer to the device pin out description.  
When reading an input signal which is not availa-  
ble on an external pin, the value will always be ‘1’.  
53/125  
ST72334J/N, ST72314J/N, ST72124J  
16-BIT TIMER (Cont’d)  
Figure 35. Timer Block Diagram  
ST7 INTERNAL BUS  
f
CPU  
MCU-PERIPHERAL INTERFACE  
8 low  
8-bit  
8 high  
8
8
8
8
8
8
8
8
buffer  
EXEDG  
h
w
h
w
h
w
h
low  
16  
INPUT  
CAPTURE  
REGISTER  
INPUT  
CAPTURE  
REGISTER  
OUTPUT  
COMPARE  
REGISTER  
OUTPUT  
COMPARE  
REGISTER  
16 BIT  
FREE RUNNING  
1/2  
1/4  
1/8  
COUNTER  
1
1
2
2
COUNTER  
ALTERNATE  
REGISTER  
16  
16  
16  
CC1 CC0  
TIMER INTERNAL BUS  
16  
16  
OVERFLOW  
DETECT  
EXTCLK  
EDGE DETECT  
CIRCUIT1  
OUTPUT COMPARE  
CIRCUIT  
ICAP1  
ICAP2  
CIRCUIT  
6
EDGE DETECT  
CIRCUIT2  
OCMP1  
OCMP2  
LATCH1  
LATCH2  
ICF1 OCF1 TOF ICF2 OCF2  
0
0
0
SR  
ICIE OCIE TOIE FOLV2 FOLV1OLVL2 IEDG1 OLVL1  
OC1E  
OPM PWM CC1 CC0 IEDG2 EXEDG  
OC2E  
CR1  
CR2  
TIMER INTERRUPT  
54/125  
ST72334J/N, ST72314J/N, ST72124J  
16-BIT TIMER (Cont’d)  
16-bit read sequence: (from either the Counter  
Register or the Alternate Counter Register).  
Clearing the overflow interrupt request is done in  
two steps:  
1. Reading the SR register while the TOF bit is set.  
2. An access (read or write) to the CLR register.  
Beginning of the sequence  
Notes: The TOF bit is not cleared by accesses to  
ACLR register. This feature allows simultaneous  
use of the overflow function and reads of the free  
running counter at random times (for example, to  
measure elapsed time) without the risk of clearing  
the TOF bit erroneously.  
Read MSB  
At t0  
LSB is buffered  
Other  
instructions  
Returns the buffered  
LSB value at t0  
The timer is not affected by WAIT mode.  
Read LSB  
At t0 +t  
In HALT mode, the counter stops counting until the  
mode is exited. Counting then resumes from the  
previous count (MCU awakened by an interrupt) or  
from the reset count (MCU awakened by a Reset).  
Sequence completed  
The user must read the MSB first, then the LSB  
value is buffered automatically.  
This buffered value remains unchanged until the  
16-bit read sequence is completed, even if the  
user reads the MSB several times.  
6.4.3.2 External Clock  
The external clock (where available) is selected if  
CC0=1 and CC1=1 in CR2 register.  
After a complete reading sequence, if only the  
CLR register or ACLR register are read, they re-  
turn the LSB of the count value at the time of the  
read.  
The status of the EXEDG bit determines the type  
of level transition on the external clock pin EXT-  
CLK that will trigger the free running counter.  
The counter is synchronised with the falling edge  
of the internal CPU clock.  
Whatever the timer mode used (input capture, out-  
put compare, one pulse mode or PWM mode) an  
overflow occurs when the counter rolls over from  
FFFFh to 0000h then:  
At least four falling edges of the CPU clock must  
occur between two consecutive active edges of  
the external clock; thus the external clock frequen-  
cy must be less than a quarter of the CPU clock  
frequency.  
– The TOF bit of the SR register is set.  
– A timer interrupt is generated if:  
– TOIE bit of the CR1 register is set and  
– I bit of the CC register is cleared.  
If one of these conditions is false, the interrupt re-  
mains pending to be issued as soon as they are  
both true.  
55/125  
ST72334J/N, ST72314J/N, ST72124J  
16-BIT TIMER (Cont’d)  
Figure 36. Counter Timing Diagram, internal clock divided by 2  
CPU CLOCK  
INTERNAL RESET  
TIMER CLOCK  
FFFD FFFE FFFF 0000 0001 0002 0003  
COUNTER REGISTER  
OVERFLOW FLAG TOF  
Figure 37. Counter Timing Diagram, internal clock divided by 4  
CPU CLOCK  
INTERNAL RESET  
TIMER CLOCK  
FFFC  
FFFD  
0000  
0001  
COUNTER REGISTER  
OVERFLOW FLAG TOF  
Figure 38. Counter Timing Diagram, internal clock divided by 8  
CPU CLOCK  
INTERNAL RESET  
TIMER CLOCK  
0000  
FFFC  
FFFD  
COUNTER REGISTER  
OVERFLOW FLAG TOF  
56/125  
ST72334J/N, ST72314J/N, ST72124J  
16-BIT TIMER (Cont’d)  
6.4.3.3 Input Capture  
When an input capture occurs:  
– ICFi bit is set.  
In this section, the index, i, may be 1 or 2.  
The two input capture 16-bit registers (IC1R and  
IC2R) are used to latch the value of the free run-  
ning counter after a transition detected by the  
ICAPi pin (see figure 5).  
– The ICiR register contains the value of the free  
running counter on the active transition on the  
ICAPi pin (see Figure 40).  
– A timer interrupt is generated if the ICIE bit is set  
and the I bit is cleared in the CC register. Other-  
wise, the interrupt remains pending until both  
conditions become true.  
MS Byte  
ICiHR  
LS Byte  
ICiLR  
ICiR  
Clearing the Input Capture interrupt request is  
done in two steps:  
ICi register is a read-only register.  
The active transition is software programmable  
through the IEDGi bit of the Control Register (CRi).  
1. Reading the SR register while the ICFi bit is set.  
2. An access (read or write) to the ICiLR register.  
Timing resolution is one count of the free running  
counter: (f  
/(CC1.CC0)).  
CPU  
Notes:  
Procedure:  
2. After reading the ICiHR register, transfer of  
input capture data is inhibited until the ICiLR  
register is also read.  
To use the input capture function select the follow-  
ing in the CR2 register:  
3. The ICiR register always contains the free run-  
ning counter value which corresponds to the  
most recent input capture.  
– Select the timer clock (CC1-CC0) (see Table 14  
Clock Control Bits).  
– Select the edge of the active transition on the  
ICAP2 pin with the IEDG2 bit (the ICAP2 pin  
must be configured as floating input).  
4. The 2 input capture functions can be used  
together even if the timer also uses the output  
compare mode.  
And select the following in the CR1 register:  
5. In One pulse Mode and PWM mode only the  
input capture 2 can be used.  
– Set the ICIE bit to generate an interrupt after an  
input capture coming from both the ICAP1 pin or  
the ICAP2 pin  
6. The alternate inputs (ICAP1 & ICAP2) are  
always directly connected to the timer. So any  
transitions on these pins activate the input cap-  
ture process.  
– Select the edge of the active transition on the  
ICAP1 pin with the IEDG1 bit (the ICAP1pin must  
be configured as floating input).  
7. Moreover if one of the ICAPi pin is configured  
as an input and the second one as an output,  
an interrupt can be generated if the user toggle  
the output pin and if the ICIE bit is set.  
8. The TOF bit can be used with interrupt in order  
to measure event that go beyond the timer  
range (FFFFh).  
57/125  
ST72334J/N, ST72314J/N, ST72124J  
16-BIT TIMER (Cont’d)  
Figure 39. Input Capture Block Diagram  
ICAP1  
pin  
(Control Register 1) CR1  
IEDG1  
EDGE DETECT  
CIRCUIT2  
EDGE DETECT  
CIRCUIT1  
ICIE  
ICAP2  
pin  
(Status Register) SR  
ICF1  
ICF2  
0
0
0
IC2R Register  
IC1R Register  
(Control Register 2) CR2  
16-BIT  
16-BIT FREE RUNNING  
COUNTER  
IEDG2  
CC0  
CC1  
Figure 40. Input Capture Timing Diagram  
TIMER CLOCK  
FF01  
FF02  
FF03  
COUNTER REGISTER  
ICAPi PIN  
ICAPi FLAG  
FF03  
ICAPi REGISTER  
Note: Active edge is rising edge.  
58/125  
ST72334J/N, ST72314J/N, ST72124J  
16-BIT TIMER (Cont’d)  
6.4.3.4 Output Compare  
t f  
In this section, the index, i, may be 1 or 2.  
* CPU  
OCiR =  
This function can be used to control an output  
waveform or indicating when a period of time has  
elapsed.  
PRESC  
Where:  
t  
= Desired output compare period (in sec-  
onds)  
When a match is found between the Output Com-  
pare register and the free running counter, the out-  
put compare function:  
f
= Internal clock frequency  
CPU  
= Timer prescaler factor (2, 4 or 8 de-  
pending on CC1-CC0 bits, see Table 14  
Clock Control Bits)  
PRESC  
– Assigns pins with a programmable value if the  
OCIE bit is set  
– Sets a flag in the status register  
– Generates an interrupt if enabled  
Clearing the output compare interrupt request is  
done by:  
Two 16-bit registers Output Compare Register 1  
(OC1R) and Output Compare Register 2 (OC2R)  
contain the value to be compared to the free run-  
ning counter each timer clock cycle.  
1. Reading the SR register while the OCFi bit is  
set.  
2. An access (read or write) to the OCiLR register.  
The following procedure is recommended to pre-  
vent the OCFi bit from being set between the time  
it is read and the write to the OCiR register:  
MS Byte  
OCiHR  
LS Byte  
OCiLR  
OCiR  
– Write to the OCiHR register (further compares  
are inhibited).  
These registers are readable and writable and are  
not affected by the timer hardware. A reset event  
changes the OCiR value to 8000h.  
– Read the SR register (first step of the clearance  
of the OCFi bit, which may be already set).  
Timing resolution is one count of the free running  
counter: (f  
).  
– Write to the OCiLR register (enables the output  
compare function and clears the OCFi bit).  
CPU/(CC1.CC0)  
Procedure:  
Notes:  
To use the output compare function, select the fol-  
lowing in the CR2 register:  
1. After a processor write cycle to the OCiHR reg-  
ister, the output compare function is inhibited  
until the OCiLR register is also written.  
– Set the OCiE bit if an output is needed then the  
OCMPi pin is dedicated to the output compare i  
function.  
2. If the OCiE bit is not set, the OCMPi pin is a  
general I/O port and the OLVLi bit will not  
appear when a match is found but an interrupt  
could be generated if the OCIE bit is set.  
– Select the timer clock (CC1-CC0) (see Table 14  
Clock Control Bits).  
And select the following in the CR1 register:  
3. When the clock is divided by 2, OCFi and  
OCMPi are set while the counter value equals  
the OCiR register value (see Figure 42). This  
behaviour is the same in OPM or PWM mode.  
When the clock is divided by 4, 8 or in external  
clock mode, OCFi and OCMPi are set while the  
counter value equals the OCiR register value  
plus 1 (see Figure 43).  
– Select the OLVLi bit to applied to the OCMPi pins  
after the match occurs.  
– Set the OCIE bit to generate an interrupt if it is  
needed.  
When a match is found:  
– OCFi bit is set.  
– The OCMPi pin takes OLVLi bit value (OCMPi  
pin latch is forced low during reset and stays low  
until valid compares change it to a high level).  
4. The output compare functions can be used both  
for generating external events on the OCMPi  
pins even if the input capture mode is also  
used.  
– A timer interrupt is generated if the OCIE bit is  
set in the CR2 register and the I bit is cleared in  
the CC register (CC).  
5. The value in the 16-bit OCiR register and the  
OLVi bit should be changed after each suc-  
cessful comparison in order to control an output  
waveform or establish a new elapsed timeout.  
The OCiR register value required for a specific tim-  
ing application can be calculated using the follow-  
ing formula:  
59/125  
ST72334J/N, ST72314J/N, ST72124J  
16-BIT TIMER (Cont’d)  
Figure 41. Output Compare Block Diagram  
16 BIT FREE RUNNING  
OC1E  
CC1 CC0  
OC2E  
COUNTER  
(Control Register 2) CR2  
16-bit  
(Control Register 1) CR1  
OUTPUT COMPARE  
CIRCUIT  
Latch  
1
OCIE  
OLVL2  
OLVL1  
OCMP1  
Pin  
16-bit  
16-bit  
Latch  
2
OCMP2  
Pin  
OC1R Register  
OCF1  
OCF2  
0
0
0
OC2R Register  
(Status Register) SR  
Figure 42. Output Compare Timing Diagram, Internal Clock Divided by 2  
INTERNAL CPU CLOCK  
TIMER CLOCK  
2ECF 2ED0 2ED1 2ED2  
2ED3  
2ED4  
2ED3  
COUNTER  
OUTPUT COMPARE REGISTER  
OUTPUT COMPARE FLAG (OCFi)  
OCMPi PIN (OLVLi=1)  
Figure 43. Output Compare Timing Diagram, Internal Clock Divided by 4  
INTERNAL CPU CLOCK  
TIMER CLOCK  
2ECF 2ED0 2ED1 2ED2  
2ED3  
2ED4  
2ED3  
COUNTER  
OUTPUT COMPARE REGISTER  
COMPARE REGISTER LATCH  
OCFi AND OCMPi PIN (OLVLi=1)  
60/125  
ST72334J/N, ST72314J/N, ST72124J  
16-BIT TIMER (Cont’d)  
6.4.3.5 Forced Compare  
In this section i may represent 1 or 2.  
The following bits of the CR1 register are used:  
One pulse mode cycle  
When  
OCMP1 = OLVL2  
event occurs  
FOLV2 FOLV1 OLVL2  
OLVL1  
on ICAP1  
Counter is reset  
to FFFCh  
When the FOLVi bit is set by software, the OLVLi  
bit is copied to the OCMPi pin. The OLVi bit has to  
be toggled in order to toggle the OCMPi pin when  
it is enabled (OCiE bit=1). The OCFi bit is then not  
set by hardware, and thus no interrupt request is  
generated.  
ICF1 bit is set  
When  
Counter  
OCMP1 = OLVL1  
= OC1R  
FOLVLi bits have no effect in both one pulse mode  
and PWM mode.  
Then, on a valid event on the ICAP1 pin, the coun-  
ter is initialized to FFFCh and OLVL2 bit is loaded  
on the OCMP1 pin, the ICF1 bit is set and the val-  
ue FFFDh is loaded in the IC1R register.  
6.4.3.6 One Pulse Mode  
One Pulse mode enables the generation of a  
pulse when an external event occurs. This mode is  
selected via the OPM bit in the CR2 register.  
When the value of the counter is equal to the value  
of the contents of the OC1R register, the OLVL1  
bit is output on the OCMP1 pin, (See Figure 44).  
The one pulse mode uses the Input Capture1  
function and the Output Compare1 function.  
Procedure:  
Notes:  
To use one pulse mode:  
1. The OCF1 bit cannot be set by hardware in one  
pulse mode but the OCF2 bit can generate an  
Output Compare interrupt.  
1. Load the OC1R register with the value corre-  
sponding to the length of the pulse (see the for-  
mula in Section 6.4.3.7).  
2. The ICF1 bit is set when an active edge occurs  
and can generate an interrupt if the ICIE bit is  
set.  
2. Select the following in the CR1 register:  
– Using the OLVL1 bit, select the level to be ap-  
plied to the OCMP1 pin after the pulse.  
3. When the Pulse Width Modulation (PWM) and  
One Pulse Mode (OPM) bits are both set, the  
PWM mode is the only active one.  
– Using the OLVL2 bit, select the level to be ap-  
plied to the OCMP1 pin during the pulse.  
4. If OLVL1=OLVL2 a continuous signal will be  
seen on the OCMP1 pin.  
– Select the edge of the active transition on the  
ICAP1 pin with the IEDG1 bit (the ICAP1 pin  
must be configured as floating input).  
5. The ICAP1 pin can not be used to perform input  
capture. The ICAP2 pin can be used to perform  
input capture (ICF2 can be set and IC2R can be  
loaded) but the user must take care that the  
counter is reset each time a valid edge occurs  
on the ICAP1 pin and ICF1 can also generates  
interrupt if ICIE is set.  
3. Select the following in the CR2 register:  
– Set the OC1E bit, the OCMP1 pin is then ded-  
icated to the Output Compare 1 function.  
– Set the OPM bit.  
– Select the timer clock CC1-CC0 (see Table 14  
Clock Control Bits).  
6. When the one pulse mode is used OC1R is  
dedicated to this mode. Nevertheless OC2R  
and OCF2 can be used to indicate a period of  
time has been elapsed but cannot generate an  
output waveform because the level OLVL2 is  
dedicated to the one pulse mode.  
61/125  
ST72334J/N, ST72314J/N, ST72124J  
Figure 44. One Pulse Mode Timing Example  
....  
FFFC FFFD FFFE  
2ED0 2ED1 2ED2  
2ED3  
FFFC FFFD  
COUNTER  
ICAP1  
OLVL2  
OLVL1  
OLVL2  
OCMP1  
compare1  
Note: IEDG1=1, OC1R=2ED0h, OLVL1=0, OLVL2=1  
Figure 45. Pulse Width Modulation Mode Timing Example  
34E2 FFFC FFFD FFFE  
2ED0 2ED1 2ED2  
34E2 FFFC  
COUNTER  
OCMP1  
OLVL2  
OLVL1  
OLVL2  
compare2  
compare1  
compare2  
Note: OC1R=2ED0h, OC2R=34E2, OLVL1=0, OLVL2= 1  
62/125  
ST72334J/N, ST72314J/N, ST72124J  
16-BIT TIMER (Cont’d)  
6.4.3.7 Pulse Width Modulation Mode  
The Output Compare 2 event causes the counter  
to be initialized to FFFCh (See Figure 45).  
Pulse Width Modulation (PWM) mode enables the  
generation of a signal with a frequency and pulse  
length determined by the value of the OC1R and  
OC2R registers.  
Pulse Width Modulation cycle  
When  
The pulse width modulation mode uses the com-  
plete Output Compare 1 function plus the OC2R  
register, and so these functionality can not be  
used when the PWM mode is activated.  
Counter  
= OC1R  
OCMP1 = OLVL1  
Procedure  
OCMP1 = OLVL2  
To use pulse width modulation mode:  
When  
Counter  
= OC2R  
Counter is reset  
to FFFCh  
1. Load the OC2R register with the value corre-  
sponding to the period of the signal.  
2. Load the OC1R register with the value corre-  
sponding to the length of the pulse if (OLVL1=0  
and OLVL2=1).  
ICF1 bit is set  
Notes:  
3. Select the following in the CR1 register:  
1. After a write instruction to the OCiHR register,  
the output compare function is inhibited until the  
OCiLR register is also written.  
– Using the OLVL1 bit, select the level to be ap-  
plied to the OCMP1 pin after a successful  
comparison with OC1R register.  
Therefore the Input Capture 1 function is inhib-  
ited but the Input Capture 2 is available.  
– Using the OLVL2 bit, select the level to be ap-  
plied to the OCMP1 pin after a successful  
comparison with OC2R register.  
2. The OCF1 and OCF2 bits cannot be set by  
hardware in PWM mode therefore the Output  
Compare interrupt is inhibited.  
4. Select the following in the CR2 register:  
– Set OC1E bit: the OCMP1 pin is then dedicat-  
ed to the output compare 1 function.  
3. The ICF1 bit is set by hardware when the coun-  
ter reaches the OC2R value and can produce a  
timer interrupt if the ICIE bit is set and the I bit is  
cleared.  
– Set the PWM bit.  
– Select the timer clock (CC1-CC0) (see Table  
14 Clock Control Bits).  
4. In PWM mode the ICAP1 pin can not be used  
to perform input capture because it is discon-  
nected to the timer. The ICAP2 pin can be used  
to perform input capture (ICF2 can be set and  
IC2R can be loaded) but the user must take  
care that the counter is reset each period and  
ICF1 can also generates interrupt if ICIE is set.  
If OLVL1=1 and OLVL2=0 the length of the posi-  
tive pulse is the difference between the OC2R and  
OC1R registers.  
If OLVL1=OLVL2 a continuous signal will be seen  
on the OCMP1 pin.  
The OCiR register value required for a specific tim-  
ing application can be calculated using the follow-  
ing formula:  
5. When the Pulse Width Modulation (PWM) and  
One Pulse Mode (OPM) bits are both set, the  
PWM mode is the only active one.  
t * f  
CPU  
PRESC  
- 5  
OCiR Value =  
Where:  
t
= Desired output compare period (in sec-  
onds)  
f
= Internal clock frequency  
CPU  
= Timer prescaler factor (2, 4 or 8 de-  
pending on CC1-CC0 bits, see Table 14  
Clock Control Bits)  
PRESC  
63/125  
ST72334J/N, ST72314J/N, ST72124J  
16-BIT TIMER (Cont’d)  
6.4.4 Low Power Modes  
Mode  
Description  
No effect on 16-bit Timer.  
WAIT  
Timer interrupts cause the device to exit from WAIT mode.  
16-bit Timer registers are frozen.  
In HALT mode, the counter stops counting until Halt mode is exited. Counting resumes from the previous  
count when the MCU is woken up by an interrupt with “exit from HALT mode” capability or from the counter  
reset value when the MCU is woken up by a RESET.  
HALT  
If an input capture event occurs on the ICAPi pin, the input capture detection circuitry is armed. Consequent-  
ly, when the MCU is woken up by an interrupt with “exit from HALT mode” capability, the ICFi bit is set, and  
the counter value present when exiting from HALT mode is captured into the ICiR register.  
6.4.5 Interrupts  
Enable  
Control from  
Bit  
Exit  
Exit  
from  
Halt  
Event  
Flag  
Interrupt Event  
Wait  
Yes  
Yes  
Yes  
Yes  
Yes  
Input Capture 1 event/Counter reset in PWM mode  
Input Capture 2 event  
ICF1  
ICF2  
No  
No  
No  
No  
No  
ICIE  
Output Compare 1 event (not available in PWM mode)  
Output Compare 2 event (not available in PWM mode)  
Timer Overflow event  
OCF1  
OCF2  
TOF  
OCIE  
TOIE  
Note: The 16-bit Timer interrupt events are connected to the same interrupt vector (see Interrupts chap-  
ter). These events generate an interrupt if the corresponding Enable Control Bit is set and the I-bit in the  
CC register is reset (RIM instruction).  
64/125  
ST72334J/N, ST72314J/N, ST72124J  
16-BIT TIMER (Cont’d)  
6.4.6 Register Description  
Bit 4 = FOLV2 Forced Output Compare 2.  
This bit is set and cleared by software.  
0: No effect on the OCMP2 pin.  
1:Forces the OLVL2 bit to be copied to the  
OCMP2 pin, if the OC2E bit is set and even if  
there is no successful comparison.  
Each Timer is associated with three control and  
status registers, and with six pairs of data registers  
(16-bit values) relating to the two input captures,  
the two output compares, the counter and the al-  
ternate counter.  
Bit 3 = FOLV1 Forced Output Compare 1.  
This bit is set and cleared by software.  
0: No effect on the OCMP1 pin.  
CONTROL REGISTER 1 (CR1)  
Read/Write  
1: Forces OLVL1 to becopied to the OCMP1 pin, if  
the OC1E bit is set and even if there is no suc-  
cessful comparison.  
Reset Value: 0000 0000 (00h)  
7
0
ICIE OCIE TOIE FOLV2 FOLV1 OLVL2 IEDG1 OLVL1  
Bit 2 = OLVL2 Output Level 2.  
This bit is copied to the OCMP2 pin whenever a  
successful comparison occurs with the OC2R reg-  
ister and OCxE is set in the CR2 register. This val-  
ue is copied to the OCMP1 pin in One Pulse Mode  
and Pulse Width Modulation mode.  
Bit 7 = ICIE Input Capture Interrupt Enable.  
0: Interrupt is inhibited.  
1: A timer interrupt is generated whenever the  
ICF1 or ICF2 bit of the SR register is set.  
Bit 6 = OCIE Output Compare Interrupt Enable.  
0: Interrupt is inhibited.  
1: A timer interrupt is generated whenever the  
OCF1 or OCF2 bit of the SR register is set.  
Bit 1 = IEDG1 Input Edge 1.  
This bit determines which type of level transition  
on the ICAP1 pin will trigger the capture.  
0: A falling edge triggers the capture.  
1: A rising edge triggers the capture.  
Bit 5 = TOIE Timer Overflow Interrupt Enable.  
0: Interrupt is inhibited.  
1: A timer interrupt is enabled whenever the TOF  
bit of the SR register is set.  
Bit 0 = OLVL1 Output Level 1.  
The OLVL1 bit is copied to the OCMP1 pin when-  
ever a successful comparison occurs with the  
OC1R register and the OC1E bit is set in the CR2  
register.  
65/125  
ST72334J/N, ST72314J/N, ST72124J  
16-BIT TIMER (Cont’d)  
CONTROL REGISTER 2 (CR2)  
Read/Write  
Bit 4 = PWM Pulse Width Modulation.  
0: PWM mode is not active.  
1: PWM mode is active, the OCMP1 pin outputs a  
programmable cyclic signal; the length of the  
pulse depends on the value of OC1R register;  
the period depends on the value of OC2R regis-  
ter.  
Reset Value: 0000 0000 (00h)  
7
0
OC1E OC2E OPM PWM CC1 CC0 IEDG2 EXEDG  
Bit 3, 2 = CC1-CC0 Clock Control.  
Bit 7 = OC1E Output Compare 1 Pin Enable.  
This bit is used only to output the signal from the  
timer on the OCMP1 pin (OLV1 in Output Com-  
pare mode, both OLV1 and OLV2 in PWM and  
one-pulse mode). Whatever the value of the OC1E  
bit, the Output Compare 1 function of the timer re-  
mains active.  
0: OCMP1 pin alternate function disabled (I/O pin  
free for general-purpose I/O).  
1: OCMP1 pin alternate function enabled.  
The value of the timer clock depends on these bits:  
Table 14. Clock Control Bits  
Timer Clock  
fCPU / 4  
CC1  
CC0  
0
0
1
0
1
0
fCPU / 2  
fCPU / 8  
External Clock (where  
available)  
1
1
Bit 6 = OC2E Output Compare 2 Enable.  
This bit is used only to output the signal from the  
timer on the OCMP2 pin (OLV2 in Output Com-  
pare mode). Whatever the value of the OC2E bit,  
the Output Compare 2 function of the timer re-  
mains active.  
Bit 1 = IEDG2 Input Edge 2.  
This bit determines which type of level transition  
on the ICAP2 pin will trigger the capture.  
0: A falling edge triggers the capture.  
1: A rising edge triggers the capture.  
0: OCMP2 pin alternate function disabled (I/O pin  
free for general-purpose I/O).  
Bit 0 = EXEDG External Clock Edge.  
1: OCMP2 pin alternate function enabled.  
This bit determines which type of level transition  
on the external clock pin EXTCLK will trigger the  
free running counter.  
0: A falling edge triggers the free running counter.  
1: A rising edge triggers the free running counter.  
Bit 5 = OPM One Pulse Mode.  
0: One Pulse Mode is not active.  
1: One Pulse Mode is active, the ICAP1 pin can be  
used to trigger one pulse on the OCMP1 pin; the  
active transition is given by the IEDG1 bit. The  
length of the generated pulse depends on the  
contents of the OC1R register.  
66/125  
ST72334J/N, ST72314J/N, ST72124J  
16-BIT TIMER (Cont’d)  
STATUS REGISTER (SR)  
Read Only  
Bit 2-0 = Reserved, forced by hardware to 0.  
INPUT CAPTURE 1 HIGH REGISTER (IC1HR)  
Reset Value: 0000 0000 (00h)  
The three least significant bits are not used.  
7
Read Only  
Reset Value: Undefined  
This is an 8-bit read only register that contains the  
high part of the counter value (transferred by the  
input capture 1 event).  
0
0
ICF1 OCF1 TOF ICF2 OCF2  
0
0
7
0
Bit 7 = ICF1 Input Capture Flag 1.  
0: No input capture (reset value).  
MSB  
LSB  
1: An input capture has occurred or the counter  
has reached the OC2R value in PWM mode. To  
clear this bit, first read the SR register, then read  
or write the low byte of the IC1R (IC1LR) regis-  
ter.  
INPUT CAPTURE 1 LOW REGISTER (IC1LR)  
Read Only  
Reset Value: Undefined  
Bit 6 = OCF1 Output Compare Flag 1.  
0: No match (reset value).  
1: The content of the free running counter has  
matched the content of the OC1R register. To  
clear this bit, first read the SR register, then read  
or write the low byte of the OC1R (OC1LR) reg-  
ister.  
This is an 8-bit read only register that contains the  
low part of the counter value (transferred by the in-  
put capture 1 event).  
7
0
MSB  
LSB  
Bit 5 = TOF Timer Overflow.  
OUTPUT COMPARE  
(OC1HR)  
1
HIGH REGISTER  
0: No timer overflow (reset value).  
1: The free running counter rolled over from FFFFh  
to 0000h. To clear this bit, first read the SR reg-  
ister, then read or write the low byte of the CR  
(CLR) register.  
Read/Write  
Reset Value: 1000 0000 (80h)  
This is an 8-bit register that contains the high part  
of the value to be compared to the CHR register.  
Note: Reading or writing the ACLR register does  
not clear TOF.  
7
0
Bit 4 = ICF2 Input Capture Flag 2.  
MSB  
LSB  
0: No input capture (reset value).  
1: An input capture has occurred.To clear this bit,  
first read the SR register, then read or write the  
low byte of the IC2R (IC2LR) register.  
OUTPUT COMPARE  
(OC1LR)  
1
LOW REGISTER  
Bit 3 = OCF2 Output Compare Flag 2.  
0: No match (reset value).  
1: The content of the free running counter has  
matched the content of the OC2R register. To  
clear this bit, first read the SR register, then read  
or write the low byte of the OC2R (OC2LR) reg-  
ister.  
Read/Write  
Reset Value: 0000 0000 (00h)  
This is an 8-bit register that contains the low part of  
the value to be compared to the CLR register.  
7
0
MSB  
LSB  
67/125  
ST72334J/N, ST72314J/N, ST72124J  
16-BIT TIMER (Cont’d)  
OUTPUT COMPARE  
(OC2HR)  
2
HIGH REGISTER  
ALTERNATE COUNTER HIGH REGISTER  
(ACHR)  
Read/Write  
Reset Value: 1000 0000 (80h)  
Read Only  
Reset Value: 1111 1111 (FFh)  
This is an 8-bit register that contains the high part  
of the value to be compared to the CHR register.  
This is an 8-bit register that contains the high part  
of the counter value.  
7
0
7
0
MSB  
LSB  
MSB  
LSB  
OUTPUT COMPARE  
(OC2LR)  
2
LOW REGISTER  
ALTERNATE COUNTER LOW REGISTER  
(ACLR)  
Read/Write  
Reset Value: 0000 0000 (00h)  
Read Only  
Reset Value: 1111 1100 (FCh)  
This is an 8-bit register that contains the low part of  
the value to be compared to the CLR register.  
This is an 8-bit register that contains the low part of  
the counter value. A write to this register resets the  
counter. An access to this register after an access  
to SR register does not clear the TOF bit in SR  
register.  
7
0
MSB  
LSB  
7
0
COUNTER HIGH REGISTER (CHR)  
MSB  
LSB  
Read Only  
Reset Value: 1111 1111 (FFh)  
INPUT CAPTURE 2 HIGH REGISTER (IC2HR)  
This is an 8-bit register that contains the high part  
of the counter value.  
Read Only  
Reset Value: Undefined  
7
0
This is an 8-bit read only register that contains the  
high part of the counter value (transferred by the  
Input Capture 2 event).  
MSB  
LSB  
7
0
MSB  
LSB  
COUNTER LOW REGISTER (CLR)  
Read Only  
Reset Value: 1111 1100 (FCh)  
This is an 8-bit register that contains the low part of  
the counter value. A write to this register resets the  
counter. An access to this register after accessing  
the SR register clears the TOF bit.  
INPUT CAPTURE 2 LOW REGISTER (IC2LR)  
Read Only  
Reset Value: Undefined  
This is an 8-bit read only register that contains the  
low part of the counter value (transferred by the In-  
put Capture 2 event).  
7
0
MSB  
LSB  
7
0
MSB  
LSB  
68/125  
ST72334J/N, ST72314J/N, ST72124J  
16-BIT TIMER (Cont’d)  
Table 15. 16-Bit Timer Register Map and Reset Values  
Address  
(Hex.)  
Register  
Label  
7
6
5
4
3
2
1
0
Timer A: 32 CR1  
ICIE  
0
OCIE  
0
TOIE  
0
FOLV2  
0
FOLV1  
0
OLVL2  
0
IEDG1  
0
OLVL1  
0
Timer B: 42 Reset Value  
Timer A: 31 CR2  
OC1E  
0
OC2E  
0
OPM  
0
PWM  
0
CC1  
0
CC0  
0
IEDG2  
0
EXEDG  
0
Timer B: 41 Reset Value  
Timer A: 33 SR  
ICF1  
0
OCF1  
0
TOF  
0
ICF2  
0
OCF2  
0
-
-
-
Timer B: 43 Reset Value  
0
0
0
Timer A: 34 ICHR1  
MSB  
-
LSB  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Timer B: 44 Reset Value  
Timer A: 35 ICLR1  
MSB  
-
LSB  
-
Timer B: 45 Reset Value  
Timer A: 36 OCHR1  
MSB  
-
LSB  
-
Timer B: 46 Reset Value  
Timer A: 37 OCLR1  
MSB  
-
LSB  
-
Timer B: 47 Reset Value  
Timer A: 3E OCHR2  
MSB  
-
LSB  
-
Timer B: 4E Reset Value  
Timer A: 3F OCLR2  
MSB  
-
LSB  
-
Timer B: 4F Reset Value  
Timer A: 38 CHR  
MSB  
1
LSB  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
Timer B: 48 Reset Value  
Timer A: 39 CLR  
MSB  
1
LSB  
0
Timer B: 49 Reset Value  
Timer A: 3A ACHR  
MSB  
1
LSB  
1
Timer B: 4A Reset Value  
Timer A: 3B ACLR  
MSB  
1
LSB  
0
1
-
1
-
1
-
1
-
1
-
0
-
Timer B: 4B Reset Value  
Timer A: 3C ICHR2  
MSB  
-
LSB  
-
Timer B: 4C Reset Value  
Timer A: 3D ICLR2  
MSB  
-
LSB  
-
-
-
-
-
-
-
Timer B: 4D Reset Value  
69/125  
ST72334J/N, ST72314J/N, ST72124J  
6.5 SERIAL PERIPHERAL INTERFACE (SPI)  
6.5.1 Introduction  
6.5.3 General description  
The Serial Peripheral Interface (SPI) allows full-  
duplex, synchronous, serial communication with  
external devices. An SPI system may consist of a  
master and one or more slaves or a system in  
which devices may be either masters or slaves.  
The SPI is connected to external devices through  
4 alternate pins:  
– MISO: Master In Slave Out pin  
– MOSI: Master Out Slave In pin  
– SCK: Serial Clock pin  
The SPI is normally used for communication be-  
tween the microcontroller and external peripherals  
or another microcontroller.  
– SS: Slave select pin  
Refer to the Pin Description chapter for the device-  
specific pin-out.  
A basic example of interconnections between a  
single master and a single slave is illustrated on  
Figure 46.  
6.5.2 Main Features  
The MOSI pins are connected together as are  
MISO pins. In this way data is transferred serially  
between master and slave (most significant bit  
first).  
Full duplex, three-wire synchronous transfers  
Master or slave operation  
Four master mode frequencies  
Maximum slave mode frequency = fCPU/2.  
Four programmable master bit rates  
Programmable clock polarity and phase  
End of transfer interrupt flag  
When the master device transmits data to a slave  
device via MOSI pin, the slave device responds by  
sending data to the master device via the MISO  
pin. This implies full duplex transmission with both  
data out and data in synchronized with the same  
clock signal (which is provided by the master de-  
vice via the SCK pin).  
Write collision flag protection  
Master mode fault protection capability.  
Thus, the byte transmitted is replaced by the byte  
received and eliminates the need for separate  
transmit-empty and receiver-full bits. A status flag  
is used to indicate that the I/O operation is com-  
plete.  
Four possible data/clock timing relationships may  
be chosen (see Figure 49) but master and slave  
must be programmed with the same timing mode.  
Figure 46. Serial Peripheral Interface Master/Slave  
MASTER  
SLAVE  
MSBit  
LSBit  
MSBit  
LSBit  
MISO  
MOSI  
MISO  
MOSI  
8-BIT SHIFT REGISTER  
8-BIT SHIFT REGISTER  
SPI  
CLOCK  
GENERATOR  
SCK  
SS  
SCK  
SS  
+5V  
70/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
Figure 47. Serial Peripheral Interface Block Diagram  
Internal Bus  
Read  
DR  
IT  
Read Buffer  
request  
MOSI  
SR  
MISO  
8-Bit Shift Register  
Write  
MODF  
WCOL  
SPIF  
-
-
-
-
-
SPI  
STATE  
CONTROL  
SCK  
SS  
CR  
SPIE SPE SPR2 MSTR CPOL CPHA SPR1 SPR0  
MASTER  
CONTROL  
SERIAL  
CLOCK  
GENERATOR  
71/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
6.5.4 Functional Description  
In this configuration the MOSI pin is a data output  
and to the MISO pin is a data input.  
Figure 46 shows the serial peripheral interface  
(SPI) block diagram.  
This interface contains 3 dedicated registers:  
– A Control Register (CR)  
Transmit sequence  
The transmit sequence begins when a byte is writ-  
ten the DR register.  
– A Status Register (SR)  
The data byte is parallel loaded into the 8-bit shift  
register (from the internal bus) during a write cycle  
and then shifted out serially to the MOSI pin most  
significant bit first.  
– A Data Register (DR)  
Refer to the CR, SR and DR registers in Section  
6.5.7for the bit definitions.  
6.5.4.1 Master Configuration  
When data transfer is complete:  
– The SPIF bit is set by hardware  
In a master configuration, the serial clock is gener-  
ated on the SCK pin.  
– An interrupt is generated if the SPIE bit is set  
and the I bit in the CCR register is cleared.  
Procedure  
– Select the SPR0 & SPR1 bits to define the se-  
rial clock baud rate (see CR register).  
During the last clock cycle the SPIF bit is set, a  
copy of the data byte received in the shift register  
is moved to a buffer. When the DR register is read,  
the SPI peripheral returns this buffered value.  
– Select the CPOL and CPHA bits to define one  
of the four relationships between the data  
transfer and the serial clock (see Figure 49).  
Clearing the SPIF bit is performed by the following  
software sequence:  
– The SS pin must be connected to a high level  
signal during the complete byte transmit se-  
quence.  
1. An access to the SR register while the SPIF bit  
is set  
– The MSTR and SPE bits must be set (they re-  
main set only if the SS pin is connected to a  
high level signal).  
2. A write or a read of the DR register.  
Note: While the SPIF bit is set, all writes to the DR  
register are inhibited until the SR register is read.  
72/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
6.5.4.2 Slave Configuration  
When data transfer is complete:  
– The SPIF bit is set by hardware  
In slave configuration, the serial clock is received  
on the SCK pin from the master device.  
– An interrupt is generated if SPIE bit is set and  
I bit in CCR register is cleared.  
The value of the SPR0 & SPR1 bits is not used for  
the data transfer.  
During the last clock cycle the SPIF bit is set, a  
copy of the data byte received in the shift register  
is moved to a buffer. When the DR register is read,  
the SPI peripheral returns this buffered value.  
Procedure  
– For correct data transfer, the slave device  
must be in the same timing mode as the mas-  
ter device (CPOL and CPHA bits). See Figure  
49.  
Clearing the SPIF bit is performed by the following  
software sequence:  
1. An access to the SR register while the SPIF bit  
is set.  
– The SS pin must be connected to a low level  
signal during the complete byte transmit se-  
quence.  
2. A write or a read of the DR register.  
– Clear the MSTR bit and set the SPE bit to as-  
sign the pins to alternate function.  
Notes: While the SPIF bit is set, all writes to the  
DR register are inhibited until the SR register is  
read.  
In this configuration the MOSI pin is a data input  
and the MISO pin is a data output.  
The SPIF bit can be cleared during a second  
transmission; however, it must be cleared before  
the second SPIF bit in order to prevent an overrun  
condition (see Section 6.5.4.6).  
Transmit Sequence  
The data byte is parallel loaded into the 8-bit shift  
register (from the internal bus) during a write cycle  
and then shifted out serially to the MISO pin most  
significant bit first.  
Depending on the CPHA bit, the SS pin has to be  
set to write to the DR register between each data  
byte transfer to avoid a write collision (see Section  
6.5.4.4).  
The transmit sequence begins when the slave de-  
vice receives the clock signal and the most signifi-  
cant bit of the data on its MOSI pin.  
73/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
6.5.4.3 Data Transfer Format  
The master device applies data to its MOSI pin-  
clock edge before the capture clock edge.  
During an SPI transfer, data is simultaneously  
transmitted (shifted out serially) and received  
(shifted in serially). The serial clock is used to syn-  
chronize the data transfer during a sequence of  
eight clock pulses.  
CPHA bit is set  
The second edge on the SCK pin (falling edge if  
the CPOL bit is reset, rising edge if the CPOL bit is  
set) is the MSBit capture strobe. Data is latched on  
the occurrence of the first clock transition.  
The SS pin allows individual selection of a slave  
device; the other slave devices that are not select-  
ed do not interfere with the SPI transfer.  
No write collision should occur even if the SS pin  
stays low during a transfer of several bytes (see  
Figure 48).  
Clock Phase and Clock Polarity  
Four possible timing relationships may be chosen  
by software, using the CPOL and CPHA bits.  
CPHA bit is reset  
The CPOL (clock polarity) bit controls the steady  
state value of the clock when no data is being  
transferred. This bit affects both master and slave  
modes.  
The first edge on the SCK pin (falling edge if CPOL  
bit is set, rising edge if CPOL bit is reset) is the  
MSBit capture strobe. Data is latched on the oc-  
currence of the second clock transition.  
The combination between the CPOL and CPHA  
(clock phase) bits selects the data capture clock  
edge.  
This pin must be toggled high and low between  
each byte transmitted (see Figure 48).  
To protect the transmission from a write collision a  
low value on the SS pin of a slave device freezes  
the data in its DR register and does not allow it to  
be altered. Therefore the SS pin must be high to  
write a new data byte in the DR without producing  
a write collision.  
Figure 49, shows an SPI transfer with the four  
combinations of the CPHA and CPOL bits. The di-  
agram may be interpreted as a master or slave  
timing diagram where the SCK pin, the MISO pin,  
the MOSI pin are directly connected between the  
master and the slave device.  
The SS pin is the slave device select input and can  
be driven by the master device.  
Figure 48. CPHA / SS Timing Diagram  
Byte 3  
Byte 2  
MOSI/MISO  
Master SS  
Byte 1  
Slave SS  
(CPHA=0)  
Slave SS  
(CPHA=1)  
VR02131A  
74/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
Figure 49. Data Clock Timing Diagram  
CPHA =1  
CPOL = 1  
CPOL = 0  
Bit 4  
Bit 4  
Bit3  
Bit3  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
LSBit  
LSBit  
MSBit  
MSBit  
Bit 6  
Bit 6  
Bit 5  
Bit 5  
MISO  
(from master)  
MOSI  
(from slave)  
SS  
(to slave)  
CAPTURE STROBE  
CPHA =0  
CPOL = 1  
CPOL = 0  
Bit 4  
Bit 4  
Bit3  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
LSBit  
LSBit  
MSBit  
Bit 6  
Bit 6  
Bit 5  
Bit 5  
MISO  
(from master)  
MSBit  
Bit3  
MOSI  
(from slave)  
SS  
(to slave)  
CAPTURE STROBE  
Note: This figure should not be used as a replacement for parametric information.  
Refer to the Electrical Characteristics chapter.  
VR02131B  
75/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
6.5.4.4 Write Collision Error  
When the CPHA bit is reset:  
A write collision occurs when the software tries to  
write to the DR register while a data transfer is tak-  
ing place with an external device. When this hap-  
pens, the transfer continues uninterrupted; and  
the software write will be unsuccessful.  
Data is latched on the occurrence of the first clock  
transition. The slave device does not have any  
way of knowing when that transition will occur;  
therefore, the slave device collision occurs when  
software attempts to write the DR register after its  
SS pin has been pulled low.  
Write collisions can occur both in master and slave  
mode.  
For this reason, the SS pin must be high, between  
each data byte transfer, to allow the CPU to write  
in the DR register without generating a write colli-  
sion.  
Note: a ”read collision” will never occur since the  
received data byte is placed in a buffer in which  
access is always synchronous with the MCU oper-  
ation.  
In Slave mode  
In Master mode  
When the CPHA bit is set:  
Collision in the master device is defined as a write  
of the DR register while the internal serial clock  
(SCK) is in the process of transfer.  
The slave device will receive a clock (SCK) edge  
prior to the latch of the first data transfer. This first  
clock edge will freeze the data in the slave device  
DR register and output the MSBit on to the exter-  
nal MISO pin of the slave device.  
The SS pin signal must be always high on the  
master device.  
The SS pin low state enables the slave device but  
the output of the MSBit onto the MISO pin does  
not take place until the first data transfer clock  
edge.  
WCOL bit  
The WCOL bit in the SR register is set if a write  
collision occurs.  
No SPI interrupt is generated when the WCOL bit  
is set (the WCOL bit is a status flag only).  
Clearing the WCOL bit is done through a software  
sequence (see Figure 50).  
Figure 50. Clearing the WCOL bit (Write Collision Flag) Software Sequence  
Clearing sequence after SPIF = 1 (end of a data byte transfer)  
Read SR  
Read SR  
1st Step  
2nd Step  
OR  
THEN  
THEN  
SPIF =0  
WCOL=0  
SPIF =0  
WCOL=0 if no transfer has started  
WCOL=1 if a transfer has started  
before the 2nd step  
Read DR  
Write DR  
Clearing sequence before SPIF = 1 (during a data byte transfer)  
Read SR  
1st Step  
THEN  
Note: Writing in DR register in-  
2nd Step  
Read DR  
stead of reading in it do not reset  
WCOL bit  
WCOL=0  
76/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
6.5.4.5 Master Mode Fault  
may be restored to their original state during or af-  
ter this clearing sequence.  
Master mode fault occurs when the master device  
has its SS pin pulled low, then the MODF bit is set.  
Hardware does not allow the user to set the SPE  
and MSTR bits while the MODF bit is set except in  
the MODF bit clearing sequence.  
Master mode fault affects the SPI peripheral in the  
following ways:  
In a slave device the MODF bit can not be set, but  
in a multi master configuration the device can be in  
slave mode with this MODF bit set.  
– The MODF bit is set and an SPI interrupt is  
generated if the SPIE bit is set.  
– The SPE bit is reset. This blocks all output  
from the device and disables the SPI periph-  
eral.  
The MODF bit indicates that there might have  
been a multi-master conflict for system control and  
allows a proper exit from system operation to a re-  
set or default system state using an interrupt rou-  
tine.  
– The MSTR bit is reset, thus forcing the device  
into slave mode.  
Clearing the MODF bit is done through a software  
sequence:  
6.5.4.6 Overrun Condition  
An overrun condition occurs, when the master de-  
vice has sent several data bytes and the slave de-  
vice has not cleared the SPIF bit issuing from the  
previous data byte transmitted.  
1. A read or write access to the SR register while  
the MODF bit is set.  
2. A write to the CR register.  
In this case, the receiver buffer contains the byte  
sent after the SPIF bit was last cleared. A read to  
the DR register returns this byte. All other bytes  
are lost.  
Notes: To avoid any multiple slave conflicts in the  
case of a system comprising several MCUs, the  
SS pin must be pulled high during the clearing se-  
quence of the MODF bit. The SPE and MSTR bits  
This condition is not detected by the SPI peripher-  
al.  
77/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
6.5.4.7 Single Master and Multimaster Configurations  
There are two types of SPI systems:  
– Single Master System  
For more security, the slave device may respond  
to the master with the received data byte. Then the  
master will receive the previous byte back from the  
slave device if all MISO and MOSI pins are con-  
nected and the slave has not written its DR regis-  
ter.  
– Multimaster System  
Single Master System  
Other transmission security methods can use  
ports for handshake lines or data bytes with com-  
mand fields.  
A typical single master system may be configured,  
using an MCU as the master and four MCUs as  
slaves (see Figure 51).  
Multi-master System  
The master device selects the individual slave de-  
vices by using four pins of a parallel port to control  
the four SS pins of the slave devices.  
A multi-master system may also be configured by  
the user. Transfer of master control could be im-  
plemented using a handshake method through the  
I/O ports or by an exchange of code messages  
through the serial peripheral interface system.  
The SS pins are pulled high during reset since the  
master device ports will be forced to be inputs at  
that time, thus disabling the slave devices.  
The multi-master system is principally handled by  
the MSTR bit in the CR register and the MODF bit  
in the SR register.  
Note: To prevent a bus conflict on the MISO line  
the master allows only one slave device during a  
transmission.  
Figure 51. Single Master Configuration  
SS  
SS  
SS  
SS  
SCK  
SCK  
Slave  
SCK  
Slave  
SCK  
Slave  
MCU  
Slave  
MCU  
MCU  
MCU  
MOSI MISO  
MOSI MISO  
MOSI MISO  
MOSI MISO  
MOSI MISO  
SCK  
Master  
MCU  
5V  
SS  
78/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
6.5.5 Low Power Modes  
Mode  
Description  
No effect on SPI.  
WAIT  
SPI interrupt events cause the device to exit from WAIT mode.  
SPI registers are frozen.  
HALT  
In HALT mode, the SPI is inactive. SPI operation resumes when the MCU is woken up by an interrupt with  
“exit from HALT mode” capability.  
6.5.6 Interrupts  
Enable  
Control from  
Bit  
Exit  
Exit  
from  
Halt  
Event  
Flag  
Interrupt Event  
Wait  
Yes  
Yes  
SPI End of Transfer Event  
Master Mode Fault Event  
SPIF  
No  
No  
SPIE  
MODF  
Note: The SPI interrupt events are connected to  
the same interrupt vector (see Interrupts chapter).  
They generate an interrupt if the corresponding  
Enable Control Bit is set and the I-bit in the CC reg-  
ister is reset (RIM instruction).  
79/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
6.5.7 Register Description  
CONTROL REGISTER (CR)  
Read/Write  
Bit 3 = CPOL Clock polarity.  
This bit is set and cleared by software. This bit de-  
termines the steady state of the serial Clock. The  
CPOL bit affects both the master and slave  
modes.  
0: The steady state is a low value at the SCK pin.  
1: The steady state is a high value at the SCK pin.  
Reset Value: 0000xxxx (0xh)  
7
0
SPIE SPE SPR2 MSTR CPOL CPHA SPR1 SPR0  
Bit 7 = SPIE Serial peripheral interrupt enable.  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SPI interrupt is generated whenever SPIF=1  
or MODF=1 in the SR register  
Bit 2 = CPHA Clock phase.  
This bit is set and cleared by software.  
0: The first clock transition is the first data capture  
edge.  
1: The second clock transition is the first capture  
edge.  
Bit 6 = SPE Serial peripheral output enable.  
This bit is set and cleared by software. It is also  
cleared by hardware when, in master mode, SS=0  
(see Section 6.5.4.5 Master Mode Fault).  
0: I/O port connected to pins  
Bit 1:0 = SPR[1:0] Serial peripheral rate.  
These bits are set and cleared by software.Used  
with the SPR2 bit, they select one of six baud rates  
to be used as the serial clock when the device is a  
master.  
1: SPI alternate functions connected to pins  
The SPE bit is cleared by reset, so the SPI periph-  
eral is not initially connected to the external pins.  
These 2 bits have no effect in slave mode.  
Table 16. Serial Peripheral Baud Rate  
Bit 5 = SPR2 Divider Enable.  
Serial Clock  
SPR2 SPR1 SPR0  
this bit is set and cleared by software and it is  
cleared by reset. It is used with the SPR[1:0] bits to  
set the baud rate. Refer to Table 16.  
0: Divider by 2 enabled  
f
f
/2  
/8  
1
0
0
1
0
0
0
0
0
1
1
1
0
0
1
0
0
1
CPU  
CPU  
f
f
f
/16  
/32  
/64  
CPU  
CPU  
CPU  
1: Divider by 2 disabled  
Bit 4 = MSTR Master.  
f
/128  
CPU  
This bit is set and cleared by software. It is also  
cleared by hardware when, in master mode, SS=0  
(see Section 6.5.4.5 Master Mode Fault).  
0: Slave mode is selected  
1: Master mode is selected, the function of the  
SCK pin changes from an input to an output and  
the functions of the MISO and MOSI pins are re-  
versed.  
80/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
STATUS REGISTER (SR)  
Read Only  
DATA I/O REGISTER (DR)  
Read/Write  
Reset Value: 0000 0000 (00h)  
Reset Value: Undefined  
7
0
-
7
0
SPIF  
WCOL  
-
MODF  
-
-
-
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Bit 7 = SPIF Serial Peripheral data transfer flag.  
This bit is set by hardware when a transfer has  
been completed. An interrupt is generated if  
SPIE=1 in the CR register. It is cleared by a soft-  
ware sequence (an access to the SR register fol-  
lowed by a read or write to the DR register).  
0: Data transfer is in progress or has been ap-  
proved by a clearing sequence.  
The DR register is used to transmit and receive  
data on the serial bus. In the master device only a  
write to this register will initiate transmission/re-  
ception of another byte.  
Notes: During the last clock cycle the SPIF bit is  
set, a copy of the received data byte in the shift  
register is moved to a buffer. When the user reads  
the serial peripheral data I/O register, the buffer is  
actually being read.  
1: Data transfer between the device and an exter-  
nal device has been completed.  
Warning:  
Note: While the SPIF bit is set, all writes to the DR  
register are inhibited.  
A write to the DR register places data directly into  
the shift register for transmission.  
A write to the the DR register returns the value lo-  
cated in the buffer and not the contents of the shift  
register (See Figure 47 ).  
Bit 6 = WCOL Write Collision status.  
This bit is set by hardware when a write to the DR  
register is done during a transmit sequence. It is  
cleared by a software sequence (see Figure 50).  
0: No write collision occurred  
1: A write collision has been detected  
Bit 5 = Unused.  
Bit 4 = MODF Mode Fault flag.  
This bit is set by hardware when the SS pin is  
pulled low in master mode (see Section 6.5.4.5  
Master Mode Fault). An SPI interrupt can be gen-  
erated if SPIE=1 in the CR register. This bit is  
cleared by a software sequence (An access to the  
SR register while MODF=1 followed by a write to  
the CR register).  
0: No master mode fault detected  
1: A fault in master mode has been detected  
Bits 3-0 = Unused.  
81/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL PERIPHERAL INTERFACE (Cont’d)  
Table 17. SPI Register Map and Reset Values  
Address  
(Hex.)  
Register  
Label  
7
6
5
4
3
2
1
0
SPIDR  
Reset Value  
MSB  
x
LSB  
x
0021h  
0022h  
0023h  
x
x
x
x
x
x
SPICR  
Reset Value  
SPIE  
0
SPE  
0
SPR2  
0
MSTR  
0
CPOL  
x
CPHA  
x
SPR1  
x
SPR0  
x
SPISR  
Reset Value  
SPIF  
0
WCOL  
0
MODF  
0
0
0
0
0
0
82/125  
ST72334J/N, ST72314J/N, ST72124J  
6.6.3 General Description  
6.6 SERIAL COMMUNICATIONS INTERFACE (SCI)  
6.6.1 Introduction  
The Serial Communications Interface (SCI) offers  
a flexible means of full-duplex data exchange with  
external equipment requiring an industry standard  
NRZ asynchronous serial data format. The SCI of-  
fers a very wide range of baud rates using two  
baud rate generator systems.  
The interface is externally connected to another  
device by two pins (see Figure 53):  
– TDO: Transmit Data Output. When the transmit-  
ter is disabled, the output pin returns to its I/O  
port configuration. When the transmitter is ena-  
bled and nothing is to be transmitted, the TDO  
pin is at high level.  
6.6.2 Main Features  
Full duplex, asynchronous communications  
NRZ standard format (Mark/Space)  
Dual baud rate generator systems  
Independently programmable transmit and  
receive baud rates up to 250K baud.  
Programmable data word length (8 or 9 bits)  
– RDI: Receive Data Input is the serial data input.  
Oversampling techniques are used for data re-  
covery by discriminating between valid incoming  
data and noise.  
Through this pins, serial data is transmitted and re-  
ceived as frames comprising:  
– An Idle Line prior to transmission or reception  
– A start bit  
Receive buffer full, Transmit buffer empty and  
End of Transmission flags  
– A data word (8 or 9 bits) least significant bit first  
– A Stop bit indicating that the frame is complete.  
This interface usestwo typesofbaud rategenerator:  
Two receiver wake-up modes:  
– Address bit (MSB)  
– Idle line  
Muting functionfor multiprocessor configurations  
Separate enable bits for Transmitter and  
– A conventional type for commonly-used baud  
rates,  
Receiver  
– An extended type with a prescaler offering a very  
wide range of baud rates even with non-standard  
oscillator frequencies.  
Three error detection flags:  
– Overrun error  
– Noise error  
– Frame error  
Five interrupt sources with flags:  
– Transmit data register empty  
– Transmission complete  
– Receive data register full  
– Idle line received  
– Overrun error detected  
83/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL COMMUNICATIONS INTERFACE (Cont’d)  
Figure 52. SCI Block Diagram  
Write  
Read  
(DATA REGISTER) DR  
Received Data Register (RDR)  
Received Shift Register  
Transmit Data Register (TDR)  
TDO  
Transmit Shift Register  
RDI  
CR1  
R8  
-
-
T8  
M
WAKE  
-
-
WAKE  
UP  
TRANSMIT  
RECEIVER  
CLOCK  
RECEIVER  
CONTROL  
CONTROL  
UNIT  
SR  
CR2  
TIE TCIE RIE ILIE TE RE RWU SBK  
TDRE TC RDRF  
IDLE OR NF FE  
-
SCI  
INTERRUPT  
CONTROL  
TRANSMITTER  
CLOCK  
TRANSMITTER RATE  
CONTROL  
f
CPU  
/2  
/PR  
/16  
BRR  
SCP1SCP0SCT2 SCT1 SCT0SCR2SCR1SCR0  
RECEIVER RATE  
CONTROL  
CONVENTIONAL BAUD RATE GENERATOR  
84/125  
ST72334J/N, ST72314J/N, ST72124J  
6.6.4.1 Serial Data Format  
SERIAL COMMUNICATIONS INTERFACE (Cont’d)  
6.6.4 Functional Description  
The block diagram of the Serial Control Interface,  
is shown in Figure 52. It contains 6 dedicated reg-  
isters:  
Word length may be selected as being either 8 or 9  
bits by programming the M bit in the CR1 register  
(see Figure 52).  
– Two control registers (CR1 & CR2)  
– A status register (SR)  
The TDO pin is in low state during the start bit.  
The TDO pin is in high state during the stop bit.  
– A baud rate register (BRR)  
An Idle character is interpreted as an entire frame  
of “1”s followed by the start bit of the next frame  
which contains data.  
– An extended prescaler receiver register (ERPR)  
– Anextendedprescalertransmitter register(ETPR)  
A Break character is interpreted on receiving “0”s  
for some multiple of the frame period. At the end of  
the last break frame the transmitter inserts an ex-  
tra “1” bit to acknowledge the start bit.  
Refer to the register descriptions in Section  
6.6.7for the definitions of each bit.  
Transmission and reception are driven by their  
own baud rate generator.  
Figure 53. Word length programming  
9-bit Word length (M bit is set)  
Possible  
Next Data Frame  
Parity  
Data Frame  
Start  
Bit  
Next  
Start  
Bit  
Stop  
Bit  
Bit2  
Bit0  
Bit1  
Bit3  
Bit4 Bit5  
Bit6  
Bit7 Bit8  
Bit  
Start  
Bit  
Idle Frame  
Start  
Bit  
Extra  
’1’  
Break Frame  
8-bit Word length (M bit is reset)  
Possible  
Parity  
Next Data Frame  
Data Frame  
Start  
Bit  
Next  
Start  
Bit  
Stop  
Bit  
Bit2  
Bit5  
Bit6  
Bit0  
Bit1  
Bit3  
Bit4  
Bit7  
Bit  
Start  
Bit  
Idle Frame  
Start  
Bit  
Extra  
’1’  
Break Frame  
85/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL COMMUNICATIONS INTERFACE (Cont’d)  
6.6.4.2 Transmitter  
When a frame transmission is complete (after the  
stop bit or after the break frame) the TC bit is set  
and an interrupt is generated if the TCIE is set and  
the I bit is cleared in the CCR register.  
The transmitter can send data words of either 8 or  
9 bits depending on the M bit status. When the M  
bit is set, word length is 9 bits and the 9th bit (the  
MSB) has to be stored in the T8 bit in the CR1 reg-  
ister.  
Clearing the TC bit is performed by the following  
software sequence:  
1. An access to the SR register  
2. A write to the DR register  
Character Transmission  
During an SCI transmission, data shifts out least  
significant bit first on the TDO pin. In this mode,  
the DR register consists of a buffer (TDR) between  
the internal bus and the transmit shift register (see  
Figure 52).  
Note: The TDRE and TC bits are cleared by the  
same software sequence.  
Break Characters  
Setting the SBK bit loads the shift register with a  
break character. The break frame length depends  
on the M bit (see Figure 53).  
Procedure  
– Select the M bit to define the word length.  
As long as the SBK bit is set, the SCI send break  
frames to the TDO pin. After clearing this bit by  
software the SCI insert a logic 1 bit at the end of  
the last break frame to guarantee the recognition  
of the start bit of the next frame.  
– Select the desired baud rate using the BRR and  
the ETPR registers.  
– Set the TE bit to assign the TDO pin to the alter-  
nate function and to send a idle frame as first  
transmission.  
Idle Characters  
– Access the SR register and write the data to  
send in the DR register (this sequence clears the  
TDRE bit).Repeat this sequence for each data to  
be transmitted.  
Setting the TE bit drives the SCI to send an idle  
frame before the first data frame.  
Clearing and then setting the TE bit during a trans-  
mission sends an idle frame after the current word.  
Clearing the TDRE bit is always performed by the  
following software sequence:  
1. An access to the SR register  
Note: Resetting and setting the TE bit causes the  
data in the TDR register to be lost. Therefore the  
best time to toggle the TE bit is when the TDRE bit  
is set i.e. before writing the next byte in the DR.  
2. A write to the DR register  
The TDRE bit is set by hardware and it indicates:  
– The TDR register is empty.  
– The data transfer is beginning.  
– The next data can be written in the DR register  
without overwriting the previous data.  
This flag generates an interrupt if the TIE bit is set  
and the I bit is cleared in the CCR register.  
When a transmission is taking place, a write in-  
struction to the DR register stores the data in the  
TDR register and which is copied in the shift regis-  
ter at the end of the current transmission.  
When no transmission is taking place, a write in-  
struction to the DR register places the data directly  
in the shift register, the data transmission starts,  
and the TDRE bit is immediately set.  
86/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL COMMUNICATIONS INTERFACE (Cont’d)  
6.6.4.3 Receiver  
Overrun Error  
The SCI can receive data words of either 8 or 9  
bits. When the M bit is set, word length is 9 bits  
and the MSB is stored in the R8 bit in the CR1 reg-  
ister.  
An overrun error occurs when a character is re-  
ceived when RDRF has not been reset. Data can  
not be transferred from the shift register to the  
TDR register as long as the RDRF bit is not  
cleared.  
Character reception  
When a overrun error occurs:  
– The OR bit is set.  
During a SCI reception, data shifts in least signifi-  
cant bit first through the RDI pin. In this mode, DR  
register consists in a buffer (RDR) between the in-  
ternal bus and the received shift register (see Fig-  
ure 52).  
– The RDR content will not be lost.  
– The shift register will be overwritten.  
– An interrupt is generated if the RIE bit is set and  
the I bit is cleared in the CCR register.  
Procedure  
– Select the M bit to define the word length.  
The OR bit is reset by an access to the SR register  
followed by a DR register read operation.  
– Select the desired baud rate using the BRR and  
the ERPR registers.  
Noise Error  
– Set the RE bit, this enables the receiver which  
begins searching for a start bit.  
Oversampling techniques are used for data recov-  
ery by discriminating between valid incoming data  
and noise.  
When a character is received:  
– The RDRF bit is set. It indicates that the content  
of the shift register is transferred to the RDR.  
When noise is detected in a frame:  
– The NF is set at the rising edge of the RDRF bit.  
– An interrupt is generated if the RIE bit is set and  
the I bit is cleared in the CCR register.  
– Data is transferred from the Shift register to the  
DR register.  
– The error flags can be set if a frame error, noise  
or an overrun error has been detected during re-  
ception.  
– No interrupt is generated. However this bit rises  
at the same time as the RDRF bit which itself  
generates an interrupt.  
Clearing theRDRF bit isperformed by the following  
software sequence done by:  
The NF bit is reset by a SR register read operation  
followed by a DR register read operation.  
1. An access to the SR register  
2. A read to the DR register.  
Framing Error  
A framing error is detected when:  
The RDRF bit must be cleared before the endof the  
reception of the next character to avoid an overrun  
error.  
– The stop bit is not recognized on reception at the  
expected time, following either a de-synchroni-  
zation or excessive noise.  
Break Character  
– A break is received.  
When a break character is received, the SPI han-  
dles it as a framing error.  
When the framing error is detected:  
– the FE bit is set by hardware  
Idle Character  
– Data is transferred from the Shift register to the  
DR register.  
When a idle frame is detected, there is the same  
procedure as a data received character plus an in-  
terrupt if the ILIE bit is set and the I bit is cleared in  
the CCR register.  
– No interrupt is generated. However this bit rises  
at the same time as the RDRF bit which itself  
generates an interrupt.  
The FE bit is reset by a SR register read operation  
followed by a DR register read operation.  
87/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL COMMUNICATIONS INTERFACE (Cont’d)  
Figure 54. SCI Baud Rate and Extended Prescaler Block Diagram  
EXTENDED PRESCALER TRANSMITTER RATE CONTROL  
ETPR  
EXTENDED TRANSMITTER PRESCALER REGISTER  
ERPR  
EXTENDED RECEIVER PRESCALER REGISTER  
EXTENDED PRESCALER RECEIVER RATE CONTROL  
EXTENDED PRESCALER  
f
TRANSMITTER  
CLOCK  
CPU  
TRANSMITTER RATE  
CONTROL  
/2  
/PR  
/16  
BRR  
SCP1SCP0SCT2 SCT1 SCT0SCR2SCR1SCR0  
RECEIVER  
CLOCK  
RECEIVER RATE  
CONTROL  
CONVENTIONAL BAUD RATE GENERATOR  
88/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL COMMUNICATIONS INTERFACE (Cont’d)  
6.6.4.4 Conventional Baud Rate Generation  
than zero. The baud rates are calculated as fol-  
lows:  
The baud rate for the receiver and transmitter (Rx  
and Tx) are set independently and calculated as  
follows:  
f
f
CPU  
CPU  
Rx =  
Tx =  
f
f
16 ERPR  
16 ETPR  
CPU  
CPU  
*
*
Rx =  
(32 PR) RR  
Tx =  
(32 PR) TR  
*
*
*
*
with:  
with:  
ETPR = 1,..,255 (see ETPR register)  
PR = 1, 3, 4 or 13 (see SCP0 & SCP1 bits)  
TR = 1, 2, 4, 8, 16, 32, 64,128  
ERPR = 1,.. 255 (see ERPR register)  
6.6.4.6 Receiver Muting and Wake-up Feature  
(see SCT0, SCT1 & SCT2 bits)  
RR = 1, 2, 4, 8, 16, 32, 64,128  
In multiprocessor configurations it is often desira-  
ble that only the intended message recipient  
should actively receive the full message contents,  
thus reducing redundant SCI service overhead for  
all non addressed receivers.  
(see SCR0,SCR1 & SCR2 bits)  
All this bits are in the BRR register.  
Example: If f  
PR=13 and TR=RR=1, the transmit and receive  
baud rates are 19200 baud.  
is 8 MHz (normal mode) and if  
The non addressed devices may be placed in  
sleep mode by means of the muting function.  
CPU  
Setting the RWU bit by software puts the SCI in  
sleep mode:  
Note: the baud rate registers MUST NOT be  
changed while the transmitter or the receiver is en-  
abled.  
All the reception status bits can not be set.  
All the receive interrupt are inhibited.  
6.6.4.5 Extended Baud Rate Generation  
A muted receiver may be awakened by one of the  
following two ways:  
The extended prescaler option gives a very fine  
tuning onthe baud rate, using a 255 value prescal-  
er, whereas the conventional Baud Rate Genera-  
tor retains industry standard software compatibili-  
ty.  
– by Idle Line detection if the WAKE bit is reset,  
– by Address Mark detection if the WAKE bit is set.  
Receiver wakes-up by Idle Line detection when  
the Receive line has recognised an Idle Frame.  
Then the RWU bit is reset by hardware but the  
IDLE bit is not set.  
The extended baud rate generator block diagram  
is described in the Figure 54.  
The output clock rate sent to the transmitter or to  
the receiver will be the output from the 16 divider  
divided by a factor ranging from 1 to 255 set in the  
ERPR or the ETPR register.  
Receiver wakes-up by Address Mark detection  
when it received a “1” as the most significant bit of  
a word, thus indicating that the message is an ad-  
dress. The reception of this particular word wakes  
up the receiver, resets the RWU bit and sets the  
RDRF bit, which allows the receiver to receive this  
word normally and to use it as an address word.  
Note: the extended prescaler is activated by set-  
ting the ETPR or ERPR register to a value other  
89/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL COMMUNICATIONS INTERFACE (Cont’d)  
6.6.5 Low Power Modes  
Mode  
Description  
No effect on SCI.  
WAIT  
SCI interrupts cause the device to exit from Wait mode.  
SCI registers are frozen.  
HALT  
In Halt mode, the SCI stops transmitting/receiving until Halt mode is exited.  
6.6.6 Interrupts  
Enable  
Control from  
Bit  
Exit  
Exit  
from  
Halt  
Event  
Flag  
Interrupt Event  
Wait  
Yes  
Yes  
Yes  
Yes  
Yes  
Transmit Data Register Empty  
Transmission Complete  
TDRE  
TC  
TIE  
No  
No  
No  
No  
No  
TCIE  
Received Data Ready to be Read  
Overrrun Error Detected  
Idle Line Detected  
RDRF  
OR  
RIE  
IDLE  
ILIE  
The SCI interrupt events are connected to the  
same interrupt vector (see Interrupts chapter).  
These events generate an interrupt if the corre-  
sponding Enable Control Bit is set and the I-bit in  
the CC register is reset (RIM instruction).  
90/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL COMMUNICATIONS INTERFACE (Cont’d)  
6.6.7 Register Description  
STATUS REGISTER (SR)  
Note: The IDLE bit will not be set again until the  
RDRF bit has been set itself (i.e. a new idle line oc-  
curs). This bit is not set by an idle line when the re-  
ceiver wakes up from wake-up mode.  
Read Only  
Reset Value: 1100 0000 (C0h)  
Bit 3 = OR Overrun error.  
7
0
-
This bit is set by hardware when the word currently  
being received in the shift register is ready to be  
transferred into the RDR register while RDRF=1.  
An interrupt is generated if RIE=1 in the CR2 reg-  
ister. It is cleared by hardware when RE=0 by a  
software sequence (an access to the SR register  
followed by a read to the DR register).  
0: No Overrun error  
TDRE  
TC  
RDRF IDLE  
OR  
NF  
FE  
Bit 7 = TDRE Transmit data register empty.  
This bit is set by hardware when the content of the  
TDR register has been transferred into the shift  
register. An interrupt is generated if the TIE =1 in  
the CR2 register. It is cleared by a software se-  
quence (an access to the SR register followed by a  
write to the DR register).  
1: Overrun error is detected  
Note: When this bit is set RDR register content will  
not be lost but the shift register will be overwritten.  
0: Data is not transferred to the shift register  
1: Data is transferred to the shift register  
Bit 2 = NF Noise flag.  
Note: data will not be transferred to the shift regis-  
ter as long as the TDRE bit is not reset.  
This bit is set by hardware when noise is detected  
on a received frame. It is cleared by hardware  
when RE=0 by a software sequence (an access to  
the SR register followed by a read to the DR regis-  
ter).  
Bit 6 = TC Transmission complete.  
This bit is set by hardware when transmission of a  
frame containing Data, a Preamble or a Break is  
complete. An interrupt is generated if TCIE=1 in  
the CR2 register. It is cleared by a software se-  
quence (an access to the SR register followed by a  
write to the DR register).  
0: No noise is detected  
1: Noise is detected  
Note: This bit does not generate interrupt as it ap-  
pears at the same time as the RDRF bit which it-  
self generates an interrupt.  
0: Transmission is not complete  
1: Transmission is complete  
Bit 1 = FE Framing error.  
This bit is set by hardware when a de-synchroniza-  
tion, excessive noise or a break character is de-  
tected. It is cleared by hardware when RE=0 by a  
software sequence (an access to the SR register  
followed by a read to the DR register).  
Bit 5 = RDRF Received data ready flag.  
This bit is set by hardware when the content of the  
RDR register has been transferred into the DR  
register. An interrupt is generated if RIE=1 in the  
CR2 register. It is cleared by hardware when  
RE=0 or by a software sequence (an access to the  
SR register followed by a read to the DR register).  
0: Data is not received  
0: No Framing error is detected  
1: Framing error or break character is detected  
Note: This bit does not generate interrupt as it ap-  
pears at the same time as the RDRF bit which it-  
self generates an interrupt. If the word currently  
being transferred causes both frame error and  
overrun error, it will be transferred and only the OR  
bit will be set.  
1: Received data is ready to be read  
Bit 4 = IDLE Idle line detect.  
This bit is set by hardware when a Idle Line is de-  
tected. An interrupt is generated if the ILIE=1 in  
the CR2 register. It is cleared by hardware when  
RE=0 by a software sequence (an access to the  
SR register followed by a read to the DR register).  
0: No Idle Line is detected  
Bit 0 = Unused.  
1: Idle Line is detected  
91/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL COMMUNICATIONS INTERFACE (Cont’d)  
CONTROL REGISTER 1 (CR1)  
Read/Write  
1: AnSCI interrupt is generated whenever TC=1 in  
the SR register  
Reset Value: Undefined  
Bit 5 = RIE Receiver interrupt enable.  
This bit is set and cleared by software.  
0: interrupt is inhibited  
1: An SCI interrupt is generated whenever OR=1  
or RDRF=1 in the SR register  
7
0
-
R8  
T8  
-
M
WAKE  
-
-
Bit 7 = R8 Receive data bit 8.  
This bit is used to store the 9th bit of the received  
word when M=1.  
Bit 4 = ILIE Idle line interrupt enable.  
This bit is set and cleared by software.  
0: interrupt is inhibited  
1: An SCI interrupt is generated whenever IDLE=1  
in the SR register.  
Bit 6 = T8 Transmit data bit 8.  
This bit is used to store the 9th bit of the transmit-  
ted word when M=1.  
Bit 3 = TE Transmitter enable.  
This bit enables the transmitter and assigns the  
TDO pin to the alternate function. It is set and  
cleared by software.  
0: Transmitter is disabled, the TDO pin is back to  
the I/O port configuration.  
Bit 4 = M Word length.  
This bit determines the word length. It is set or  
cleared by software.  
0: 1 Start bit, 8 Data bits, 1 Stop bit  
1: 1 Start bit, 9 Data bits, 1 Stop bit  
1: Transmitter is enabled  
Note: during transmission, a “0” pulse on the TE  
bit (“0” followed by “1”) sends a preamble after the  
current word.  
Bit 3 = WAKE Wake-Up method.  
This bit determines the SCI Wake-Up method, it is  
set or cleared by software.  
0: Idle Line  
Bit 2 = RE Receiver enable.  
This bit enables the receiver. It is set and cleared  
by software.  
1: Address Mark  
0: Receiver is disabled, it resets the RDRF, IDLE,  
OR, NF and FE bits of the SR register.  
1: Receiver is enabled and begins searching for a  
start bit.  
CONTROL REGISTER 2 (CR2)  
Read/Write  
Reset Value: 0000 0000 (00h)  
7
0
Bit 1 = RWU Receiver wake-up.  
This bit determines if the SCI is in mute mode or  
not. It is set and cleared by software and can be  
cleared by hardware when a wake-up sequence is  
recognized.  
0: Receiver in active mode  
1: Receiver in mute mode  
TIE  
TCIE  
RIE  
ILIE  
TE  
RE  
RWU  
SBK  
Bit 7 = TIE Transmitter interrupt enable.  
This bit is set and cleared by software.  
0: interrupt is inhibited  
1: An SCI interrupt is generated whenever  
TDRE=1 in the SR register.  
Bit 0 = SBK Send break.  
This bit set is used to send break characters. It is  
set and cleared by software.  
0: No break character is transmitted  
1: Break characters are transmitted  
Bit 6 = TCIE Transmission complete interrupt ena-  
ble  
This bit is set and cleared by software.  
0: interrupt is inhibited  
Note: If the SBK bit is set to “1” and then to “0”, the  
transmitter will send a BREAK word at the end of  
the current word.  
92/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL COMMUNICATIONS INTERFACE (Cont’d)  
DATA REGISTER (DR)  
Bit 5:3 = SCT[2:0] SCI Transmitter rate divisor  
Read/Write  
These 3 bits, in conjunction with the SCP1 & SCP0  
bits define the total division applied to the bus  
clock to yield the transmit rate clock in convention-  
al Baud Rate Generator mode.  
Reset Value: Undefined  
Contains the Received or Transmitted data char-  
acter, depending on whether it is read from or writ-  
ten to.  
TR dividing factor  
SCT2  
SCT1  
SCT0  
1
2
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
7
0
4
DR7  
DR6  
DR5  
DR4  
DR3  
DR2  
DR1  
DR0  
8
The Data register performs a double function (read  
and write) since it is composed of two registers,  
one for transmission (TDR) and one for reception  
(RDR).  
The TDR register provides the parallel interface  
between the internal bus and the output shift reg-  
ister (see Figure 52).  
The RDR register provides the parallel interface  
between the input shift register and the internal  
bus (see Figure 52).  
16  
32  
64  
128  
Note: this TR factor is used only when the ETPR  
fine tuning factor is equal to 00h; otherwise, TR is  
replaced by the ETPR dividing factor.  
Bit 2:0 = SCR[2:0] SCI Receiver rate divisor.  
BAUD RATE REGISTER (BRR)  
Read/Write  
These 3 bits, in conjunction with the SCP1 & SCP0  
bits define the total division applied to the bus  
clock to yield the receive rate clock in conventional  
Baud Rate Generator mode.  
Reset Value: 00xx xxxx (XXh)  
7
0
RR dividing factor  
SCR2  
SCR1  
SCR0  
SCP1 SCP0 SCT2 SCT1 SCT0 SCR2 SCR1 SCR0  
1
2
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Bit 7:6= SCP[1:0] First SCI Prescaler  
These 2 prescaling bits allow several standard  
clock division ranges:  
4
8
16  
32  
64  
128  
PR Prescaling factor  
SCP1  
SCP0  
1
3
0
0
1
1
0
1
0
1
4
13  
Note: this RR factor is used only when the ERPR  
fine tuning factor is equal to 00h; otherwise, RR is  
replaced by the ERPR dividing factor.  
93/125  
ST72334J/N, ST72314J/N, ST72124J  
SERIAL COMMUNICATIONS INTERFACE (Cont’d)  
EXTENDED RECEIVE PRESCALER DIVISION  
REGISTER (ERPR)  
EXTENDED TRANSMIT PRESCALER DIVISION  
REGISTER (ETPR)  
Read/Write  
Read/Write  
Reset Value: 0000 0000 (00h)  
Reset Value:0000 0000 (00h)  
Allows setting of the Extended Prescaler rate divi-  
sion factor for the receive circuit.  
Allows setting of the External Prescaler rate divi-  
sion factor for the transmit circuit.  
7
0
7
0
ERPR ERPR ERPR ERPR ERPR ERPR ERPR ERPR  
ETPR ETPR ETPR ETPR ETPR ETPR ETPR ETPR  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Bit 7:1 = ERPR[7:0] 8-bit Extended Receive Pres-  
caler Register.  
Bit 7:1 = ETPR[7:0] 8-bit Extended Transmit Pres-  
caler Register.  
The extended Baud Rate Generator is activated  
when a value different from 00h is stored in this  
register. Therefore the clock frequency issued  
from the 16 divider (see Figure 54) is divided by  
the binary factor set in the ERPR register (in the  
range 1 to 255).  
The extended Baud Rate Generator is activated  
when a value different from 00h is stored in this  
register. Therefore the clock frequency issued  
from the 16 divider (see Figure 54) is divided by  
the binary factor set in the ETPR register (in the  
range 1 to 255).  
The extended baud rate generator is not used af-  
ter a reset.  
The extended baud rate generator is not used af-  
ter a reset.  
Table 18. SCI Register Map and Reset Values  
Address  
(Hex.)  
Register  
Label  
7
6
5
4
3
2
1
0
SCISR  
Reset Value  
TDRE  
1
TC  
1
RDRF  
0
IDLE  
0
OR  
0
NF  
0
FE  
0
0050h  
0051h  
0052h  
0053h  
0054h  
0055h  
0057h  
0
SCIDR  
Reset Value  
MSB  
x
LSB  
x
x
x
x
x
x
x
SCIBRR  
Reset Value  
SOG  
0
VPOL  
x
2FHDET  
x
HVSEL VCORDIS CLPINV  
BLKINV  
x
0
x
x
x
SCICR1  
Reset Value  
R8  
x
T8  
x
M
x
WAKE  
x
0
0
0
0
SCICR2  
Reset Value  
TIE  
0
TCIE  
0
RIE  
0
ILIE  
0
TE  
0
RE  
0
RWU  
0
SBK  
0
SCIPBRR  
Reset Value  
MSB  
0
LSB  
0
0
0
0
0
0
0
0
0
0
0
0
0
SCIPBRT  
Reset Value  
MSB  
0
LSB  
0
94/125  
ST72334J/N, ST72314J/N, ST72124J  
6.7 8-BIT A/D CONVERTER (ADC)  
6.7.1 Introduction  
6.7.3 Functional Description  
6.7.3.1 Analog Power Supply  
The on-chip Analog to Digital Converter (ADC) pe-  
ripheral is a 8-bit, successive approximation con-  
verter with internal sample and hold circuitry. This  
peripheral has up to 16 multiplexed analog input  
channels (refer to device pin out description) that  
allow the peripheral to convert the analog voltage  
levels from up to 16 different sources.  
V
and V  
are the high and low level refer-  
SSA  
DDA  
ence voltage pins. In some devices (refer to device  
pin out description) they are internally connected  
to the V and V pins.  
DD  
SS  
Conversion accuracy may therefore be impacted  
by voltage drops and noise in the event of heavily  
loaded or badly decoupled power supply lines.  
The result of the conversion is stored in a 8-bit  
Data Register. The A/D converter is controlled  
through a Control/Status Register.  
Figure 55. Recommended Ext. Connections  
6.7.2 Main Features  
V
8-bit conversion  
DD  
V
V
DDA  
SSA  
0.1pF  
Up to 16 channels with multiplexed input  
Linear successive approximation  
Data register (DR) which contains the results  
Conversion complete status flag  
On/off bit (to reduce consumption)  
The block diagram is shown in Figure 56.  
ST7  
R
AIN  
V
Px.x/AINx  
AIN  
Figure 56. ADC Block Diagram  
f
f
CPU  
ADC  
DIV 2  
COCO  
0
ADON  
4
0
CH3 CH2 CH1 CH0  
ADCCSR  
AIN0  
AIN1  
HOLD CONTROL  
R
ADC  
ANALOG TO DIGITAL  
CONVERTER  
ANALOG  
MUX  
C
SAMPLE  
AINx  
ADCDR  
D7  
D6  
D5  
D4 D3  
D2  
D1  
D0  
95/125  
ST72334J/N, ST72314J/N, ST72124J  
8-BIT A/D CONVERTER (ADC) (Cont’d)  
6.7.3.2 Digital A/D Conversion Result  
The analog input ports must be configured as in-  
put, no pull-up, no interrupt. Refer to the «I/O  
ports» chapter. Using these pins as analog inputs  
does not affect the ability of the port to be read as  
a logic input.  
The conversion is monotonic, meaning that the re-  
sult never decreases if the analog input does not  
and never increases if the analog input does not.  
If the input voltage (V ) is greater than or equal  
AIN  
In the CSR register:  
to V  
(high-level voltage reference) then the  
DDA  
conversion result in the DR register is FFh (full  
scale) without overflow indication.  
– Select the CH[3:0] bits to assign the analog  
channel to convert.  
ADC Conversion  
If input voltage (V ) is lower than or equal to  
AIN  
V
(low-level voltage reference) then the con-  
SSA  
In the CSR register:  
version result in the DR register is 00h.  
– Set the ADON bit to enable the A/D converter  
and to start the first conversion. From this time  
on, the ADC performs a continuous conver-  
sion of the selected channel.  
The A/D converter is linear and the digital result of  
the conversion is stored in the ADCDR register.  
The accuracy of the conversion is described in the  
Electrical Characteristics Section.  
When a conversion is complete  
– The COCO bit is set by hardware.  
– No interrupt is generated.  
– The result is in the DR register and remains  
valid until the next conversion has ended.  
A write to the CSR register (with ADON set) aborts  
the current conversion, resets the COCO bit and  
starts a new conversion.  
R
is the maximum recommended impedance  
AIN  
for an analog input signal. If the impedance is too  
high, this will result in a loss of accuracy due to  
leakage and sampling not being completed in the  
alloted time.  
6.7.3.3 A/D Conversion Phases  
The A/D conversion is based on two conversion  
phases as shown in Figure 57:  
Figure 57. ADC Conversion Timings  
Sample capacitor loading  
[duration: t  
]
LOAD  
ADON  
During this phase, the V  
input voltage to be  
AIN  
ADCCSR WRITE  
measured is loaded into the C  
capacitor.  
sample  
SAMPLE  
OPERATION  
t
CONV  
A/D conversion  
[duration: t  
]
HOLD  
CONV  
CONTROL  
During this phase, the A/D conversion is  
computed (8 successive approximations cycles)  
and the  
C
sample capacitor is  
SAMPLE  
COCO BIT SET  
disconnected from the analog input pin to get  
the optimum A/D conversion accuracy.  
t
LOAD  
6.7.4 Low Power Modes  
While the ADC is on, these two phases are contin-  
uously repeated.  
Note: The A/D converter may be disabled by re-  
setting the ADON bit. This feature allows reduced  
power consumption when no conversion is need-  
ed and between single shot conversions..  
At the end of each conversion, the sample capaci-  
tor is kept loaded with the previous measurement  
load. The advantage of this behaviour is that it  
minimizes the current consumption on the analog  
pin in case of single input channel measurement.  
Mode  
Description  
WAIT  
No effect on A/D Converter  
A/D Converter disabled.  
6.7.3.4 Software Procedure  
Refer to the control/status register (CSR) and data  
register (DR) in Section 6.7.6 for the bit definitions  
and to Figure 57 for the timings.  
After wakeup from Halt mode, the A/D  
Converter requires a stabilisation time  
before accurate conversions can be  
performed.  
HALT  
ADC Configuration  
The total duration of the A/D conversion is 12 ADC  
clock periods (1/f  
=2/f ).  
CPU  
6.7.5 Interrupts  
ADC  
None  
96/125  
ST72334J/N, ST72314J/N, ST72124J  
8-BIT A/D CONVERTER (ADC) (Cont’d)  
6.7.6 Register Description  
CONTROL/STATUS REGISTER (CSR)  
Read/Write  
DATA REGISTER (DR)  
Read Only  
Reset Value: 0000 0000 (00h)  
Reset Value: 0000 0000 (00h)  
7
0
7
0
COCO  
0
ADON  
0
CH3  
CH2  
CH1  
CH0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Bit 7 = COCO Conversion Complete  
This bit is set by hardware. It is cleared by soft-  
ware reading the result in the DR register or writing  
to the CSR register.  
0: Conversion is not complete  
1: Conversion can be read from the DR register  
Bit 7:0 = D[7:0] Analog Converted Value  
This register contains the converted analog value  
in the range 00h to FFh.  
Note: Reading this register reset the COCO flag.  
Bit 6 = Reserved. must always be cleared.  
Bit 5 = ADON A/D Converter On  
This bit is set and cleared by software.  
0: A/D converter is switched off  
1: A/D converter is switched on  
Bit 4 = Reserved. must always be cleared.  
Bit 3:0 = CH[3:0] Channel Selection  
These bits are set and cleared by software. They  
select the analog input to convert.  
Channel Pin*  
CH3 CH2 CH1 CH0  
AIN0  
AIN1  
AIN2  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
AIN9  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
*Note: The number of pins AND the channel selection var-  
ies according to the device. Refer to the device pinout.  
97/125  
ST72334J/N, ST72314J/N, ST72124J  
8-BIT A/D CONVERTER (ADC) (Cont’d)  
Table 19. ADC Register Map and Reset Values  
Address  
(Hex.)  
Register  
Label  
7
6
5
4
3
2
1
0
ADCDR  
Reset Value  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
0070h  
0071h  
ADCCSR  
Reset Value  
COCO  
0
ADON  
0
CH3  
0
CH2  
0
CH1  
0
CH0  
0
0
0
98/125  
ST72334J/N, ST72314J/N, ST72124J  
7 INSTRUCTION SET  
7.1 ST7 ADDRESSING MODES  
so, most of the addressing modes may be subdi-  
vided in two sub-modes called long and short:  
The ST7 Core features 17 different addressing  
modes which can be classified in 7 main groups:  
– Long addressing mode is more powerful be-  
cause itcan use the full 64 Kbyte address space,  
however it uses more bytes and more CPU cy-  
cles.  
Addressing Mode  
Inherent  
Example  
nop  
– Short addressing mode is less powerful because  
it can generally only access page zero (0000h -  
00FFh range), but the instruction size is more  
compact, and faster. All memory to memory in-  
structions use short addressing modes only  
(CLR, CPL, NEG, BSET, BRES, BTJT, BTJF,  
INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP)  
Immediate  
Direct  
ld A,#$55  
ld A,$55  
ld A,($55,X)  
ld A,([$55],X)  
jrne loop  
Indexed  
Indirect  
Relative  
Bit operation  
bset byte,#5  
The ST7 Assembler optimizes the use of long and  
short addressing modes.  
The ST7 Instruction set is designed to minimize  
the number of bytes required per instruction: To do  
Table 20. ST7 Addressing Mode Overview  
Pointer Pointer  
Destination/  
Source  
Length  
(Bytes)  
Mode  
Syntax  
Address  
(Hex.)  
Size  
(Hex.)  
Inherent  
Immediate  
Short  
nop  
+ 0  
+ 1  
+ 1  
+ 2  
ld A,#$55  
ld A,$10  
Direct  
Direct  
00..FF  
Long  
ld A,$1000  
0000..FFFF  
+ 0 (with X register)  
+ 1 (with Y register)  
No Offset  
Direct  
Indexed  
ld A,(X)  
00..FF  
Short  
Long  
Short  
Long  
Short  
Long  
Relative  
Relative  
Bit  
Direct  
Indexed  
Indexed  
ld A,($10,X)  
ld A,($1000,X)  
ld A,[$10]  
00..1FE  
+ 1  
+ 2  
+ 2  
+ 2  
+ 2  
+ 2  
+ 1  
+ 2  
+ 1  
+ 2  
+ 2  
+ 3  
Direct  
0000..FFFF  
00..FF  
Indirect  
Indirect  
Indirect  
Indirect  
Direct  
00..FF  
00..FF  
00..FF  
00..FF  
byte  
word  
byte  
word  
ld A,[$10.w]  
ld A,([$10],X)  
0000..FFFF  
00..1FE  
Indexed  
Indexed  
ld A,([$10.w],X) 0000..FFFF  
1)  
1)  
jrne loop  
PC-128/PC+127  
Indirect  
Direct  
jrne [$10]  
PC-128/PC+127  
00..FF  
00..FF  
00..FF  
00..FF  
byte  
byte  
byte  
bset $10,#7  
bset [$10],#7  
Bit  
Indirect  
Direct  
00..FF  
Bit  
Relative  
Relative  
btjt $10,#7,skip 00..FF  
btjt [$10],#7,skip 00..FF  
Bit  
Indirect  
Note 1. At the time the instruction is executed, the Program Counter (PC) points to the instruction follow-  
ing JRxx.  
99/125  
ST72334J/N, ST72314J/N, ST72124J  
ST7 ADDRESSING MODES (Cont’d)  
7.1.1 Inherent  
7.1.3 Direct  
All Inherent instructions consist of a single byte.  
The opcode fully specifies all the required informa-  
tion for the CPU to process the operation.  
In Direct instructions, the operands are referenced  
by their memory address.  
The direct addressing mode consists of two sub-  
modes:  
Inherent Instruction  
Function  
No operation  
Direct (short)  
NOP  
The address is a byte, thus requires only one byte  
after the opcode, but only allows 00 - FF address-  
ing space.  
TRAP  
S/W Interrupt  
Wait For Interrupt (Low Power  
Mode)  
WFI  
Direct (long)  
Halt Oscillator (Lowest Power  
Mode)  
HALT  
The address is a word, thus allowing 64 Kbyte ad-  
dressing space, but requires 2 bytes after the op-  
code.  
RET  
Sub-routine Return  
Interrupt Sub-routine Return  
Set Interrupt Mask  
Reset Interrupt Mask  
Set Carry Flag  
IRET  
SIM  
7.1.4 Indexed (No Offset, Short, Long)  
RIM  
In this mode, the operand is referenced by its  
memory address, which is defined by the unsigned  
addition of an index register (X or Y) with an offset.  
SCF  
RCF  
Reset Carry Flag  
Reset Stack Pointer  
Load  
The indirect addressing mode consists of three  
sub-modes:  
RSP  
LD  
Indexed (No Offset)  
CLR  
Clear  
There is no offset, (no extra byte after the opcode),  
and allows 00 - FF addressing space.  
PUSH/POP  
INC/DEC  
TNZ  
Push/Pop to/from the stack  
Increment/Decrement  
Test Negative or Zero  
1 or 2 Complement  
Byte Multiplication  
Indexed (Short)  
The offset is a byte, thus requires only one byte af-  
ter the opcode and allows 00 - 1FE addressing  
space.  
CPL, NEG  
MUL  
Indexed (long)  
SLL, SRL, SRA, RLC,  
RRC  
Shift and Rotate Operations  
Swap Nibbles  
The offset is a word, thus allowing 64 Kbyte ad-  
dressing space and requires 2 bytes after the op-  
code.  
SWAP  
7.1.2 Immediate  
Immediate instructions have two bytes, the first  
byte contains the opcode, the second byte con-  
tains the the operand value.  
7.1.5 Indirect (Short, Long)  
The required data byte to do the operation is found  
by its memory address, located in memory (point-  
er).  
Immediate Instruction  
Function  
The pointer address follows the opcode. The indi-  
rect addressing mode consists of two sub-modes:  
LD  
Load  
CP  
Compare  
Indirect (short)  
BCP  
Bit Compare  
The pointer address is a byte, the pointer size is a  
byte, thus allowing 00 - FF addressing space, and  
requires 1 byte after the opcode.  
AND, OR, XOR  
ADC, ADD, SUB, SBC  
Logical Operations  
Arithmetic Operations  
Indirect (long)  
The pointer address is a byte, the pointer size is a  
word, thus allowing 64 Kbyte addressing space,  
and requires 1 byte after the opcode.  
100/125  
ST72334J/N, ST72314J/N, ST72124J  
7.1.7 Relative mode (Direct, Indirect)  
ST7 ADDRESSING MODES (Cont’d)  
7.1.6 Indirect Indexed (Short, Long)  
This is a combination of indirect and short indexed  
addressing modes. The operand is referenced by  
its memory address, which is defined by the un-  
signed addition of an index register value (X or Y)  
with a pointer value located in memory. The point-  
er address follows the opcode.  
This addressing mode is used to modify the PC  
register value, by adding an 8-bit signed offset to  
it.  
Available Relative Direct/  
Function  
Indirect Instructions  
JRxx  
Conditional Jump  
Call Relative  
The indirect indexed addressing mode consists of  
two sub-modes:  
CALLR  
Indirect Indexed (Short)  
The pointer address is a byte, the pointer size is a  
byte, thus allowing 00 - 1FE addressing space,  
and requires 1 byte after the opcode.  
The relative addressing mode consists of two sub-  
modes:  
Relative (Direct)  
The offset is following the opcode.  
Relative (Indirect)  
Indirect Indexed (Long)  
The pointer address is a byte, the pointer size is a  
word, thus allowing 64 Kbyte addressing space,  
and requires 1 byte after the opcode.  
The offset is defined in memory, which address  
follows the opcode.  
Table 21. Instructions Supporting Direct,  
Indexed, Indirect and Indirect Indexed  
Addressing Modes  
Long and Short  
Function  
Instructions  
LD  
Load  
CP  
Compare  
AND, OR, XOR  
Logical Operations  
Arithmetic Addition/subtrac-  
tion operations  
ADC, ADD, SUB, SBC  
BCP  
Bit Compare  
Short Instructions Only  
CLR  
Function  
Clear  
INC, DEC  
Increment/Decrement  
Test Negative or Zero  
1 or 2 Complement  
Bit Operations  
TNZ  
CPL, NEG  
BSET, BRES  
Bit Test and Jump Opera-  
tions  
BTJT, BTJF  
SLL, SRL, SRA, RLC,  
RRC  
Shift and Rotate Operations  
SWAP  
Swap Nibbles  
CALL, JP  
Call or Jump subroutine  
101/125  
ST72334J/N, ST72314J/N, ST72124J  
7.2 INSTRUCTION GROUPS  
The ST7 family devices use an Instruction Set  
consisting of 63 instructions. The instructions may  
be subdivided into 13 main groups as illustrated in  
the following table:  
Load and Transfer  
LD  
CLR  
POP  
DEC  
TNZ  
OR  
Stack operation  
PUSH  
INC  
RSP  
BCP  
Increment/Decrement  
Compare and Tests  
Logical operations  
CP  
AND  
BSET  
BTJT  
ADC  
SLL  
XOR  
CPL  
NEG  
Bit Operation  
BRES  
BTJF  
ADD  
SRL  
JRT  
Conditional Bit Test and Branch  
Arithmetic operations  
Shift and Rotates  
SUB  
SRA  
JRF  
SBC  
RLC  
JP  
MUL  
RRC  
CALL  
SWAP  
CALLR  
SLA  
Unconditional Jump or Call  
Conditional Branch  
JRA  
JRxx  
TRAP  
SIM  
NOP  
RET  
Interruption management  
Code Condition Flag modification  
WFI  
RIM  
HALT  
SCF  
IRET  
RCF  
Using a pre-byte  
The instructions are described with one to four  
bytes.  
These prebytes enable instruction in Y as well as  
indirect addressing modes to be implemented.  
They precede the opcode of the instruction in X or  
the instruction using direct addressing mode. The  
prebytes are:  
In order to extend the number of available op-  
codes for an 8-bit CPU (256 opcodes), three differ-  
ent prebyte opcodes are defined. These prebytes  
modify the meaning of the instruction they pre-  
cede.  
PDY 90  
Replace an X based instruction  
using immediate, direct, indexed, or inherent ad-  
dressing mode by a Y one.  
The whole instruction becomes:  
PIX 92  
Replace an instruction using di-  
PC-2  
PC-1  
PC  
End of previous instruction  
Prebyte  
rect, direct bit, or direct relative addressing mode  
to an instruction using the corresponding indirect  
addressing mode.  
It also changes an instruction using X indexed ad-  
dressing mode to an instruction using indirect X in-  
dexed addressing mode.  
opcode  
PC+1  
Additional word (0 to 2) according  
to the number of bytes required to compute the ef-  
fective address  
PIY 91  
Replace an instruction using X in-  
direct indexed addressing mode by a Y one.  
102/125  
ST72334J/N, ST72314J/N, ST72124J  
INSTRUCTION GROUPS (Cont’d)  
Mnemo  
ADC  
ADD  
AND  
BCP  
Description  
Add with Carry  
Function/Example  
A = A + M + C  
A = A + M  
Dst  
Src  
H
H
H
I
N
N
N
N
N
Z
Z
Z
Z
Z
C
C
C
A
M
M
M
M
Addition  
A
Logical And  
A = A . M  
A
Bit compare A, Memory  
Bit Reset  
tst (A . M)  
A
BRES  
BSET  
BTJF  
BTJT  
CALL  
CALLR  
CLR  
bres Byte, #3  
bset Byte, #3  
btjf Byte, #3, Jmp1  
btjt Byte, #3, Jmp1  
M
M
M
M
Bit Set  
Jump if bit is false (0)  
Jump if bit is true (1)  
Call subroutine  
Call subroutine relative  
Clear  
C
C
reg, M  
reg  
0
N
N
N
1
Z
Z
Z
CP  
Arithmetic Compare  
One Complement  
Decrement  
tst(Reg - M)  
A = FFH-A  
dec Y  
M
C
1
CPL  
reg, M  
reg, M  
DEC  
HALT  
IRET  
INC  
Halt  
0
I
Interrupt routine return  
Increment  
Pop CC, A, X, PC  
inc X  
H
N
N
Z
Z
C
reg, M  
JP  
Absolute Jump  
Jump relative always  
Jump relative  
jp [TBL.w]  
JRA  
JRT  
JRF  
Never jump  
jrf *  
JRIH  
JRIL  
Jump if ext. interrupt = 1  
Jump if ext. interrupt = 0  
Jump if H = 1  
JRH  
H = 1 ?  
JRNH  
JRM  
Jump if H = 0  
H = 0 ?  
Jump if I = 1  
I = 1 ?  
JRNM  
JRMI  
JRPL  
JREQ  
JRNE  
JRC  
Jump if I = 0  
I = 0 ?  
Jump if N = 1 (minus)  
Jump if N = 0 (plus)  
Jump if Z = 1 (equal)  
Jump if Z = 0 (not equal)  
Jump if C = 1  
N = 1 ?  
N = 0 ?  
Z = 1 ?  
Z = 0 ?  
C = 1 ?  
JRNC  
JRULT  
Jump if C = 0  
C = 0 ?  
Jump if C = 1  
Unsigned <  
Jmp if unsigned >=  
Unsigned >  
JRUGE Jump if C = 0  
JRUGT Jump if (C + Z = 0)  
103/125  
ST72334J/N, ST72314J/N, ST72124J  
INSTRUCTION GROUPS (Cont’d)  
Mnemo  
JRULE  
LD  
Description  
Jump if (C + Z = 1)  
Load  
Function/Example  
Unsigned <=  
dst <= src  
Dst  
Src  
H
I
N
N
N
N
N
Z
Z
Z
Z
Z
C
reg, M  
A, X, Y  
reg, M  
M, reg  
MUL  
NEG  
NOP  
OR  
Multiply  
X,A = X * A  
X, Y, A  
0
0
Negate (2’s compl)  
No Operation  
OR operation  
Pop from the Stack  
neg $10  
C
A = A + M  
pop reg  
pop CC  
push Y  
C = 0  
A
M
POP  
reg  
CC  
M
M
M
H
I
C
0
PUSH  
RCF  
RET  
RIM  
Push onto the Stack  
Reset carry flag  
Subroutine Return  
Enable Interrupts  
Rotate left true C  
Rotate right true C  
Reset Stack Pointer  
Subtract with Carry  
Set carry flag  
reg, CC  
I = 0  
0
RLC  
RRC  
RSP  
SBC  
SCF  
SIM  
C <= Dst <= C  
C => Dst => C  
S = Max allowed  
A = A - M - C  
C = 1  
reg, M  
reg, M  
N
N
Z
Z
C
C
A
M
N
Z
C
1
Disable Interrupts  
Shift left Arithmetic  
Shift left Logic  
I = 1  
1
SLA  
C <= Dst <= 0  
C <= Dst <= 0  
0 => Dst => C  
Dst7 => Dst => C  
A = A - M  
reg, M  
reg, M  
reg, M  
reg, M  
A
N
N
0
Z
Z
Z
Z
Z
Z
Z
C
C
C
C
C
SLL  
SRL  
SRA  
SUB  
SWAP  
TNZ  
TRAP  
WFI  
Shift right Logic  
Shift right Arithmetic  
Subtraction  
N
N
N
N
M
SWAP nibbles  
Dst[7..4] <=> Dst[3..0] reg, M  
tnz lbl1  
Test for Neg & Zero  
S/W trap  
S/W interrupt  
1
0
Wait for Interrupt  
Exclusive OR  
XOR  
A = A XOR M  
A
M
N
Z
104/125  
ST72334J/N, ST72314J/N, ST72124J  
8 ELECTRICAL CHARACTERISTICS  
8.1 ABSOLUTE MAXIMUM RATINGS  
This product contains devices for protecting the in-  
puts against damage due to high static voltages,  
however it is advisable to take normal precautions  
to avoid applying any voltage higher than the  
specified maximum rated voltages.  
Power Considerations. The average chip-junc-  
tion temperature, T , in Celsius can be obtained  
J
from:  
T =  
A
TA + PD x RthJA  
Ambient Temperature.  
J
Where: T =  
RthJA =Package thermal resistance  
(junction-to ambient).  
For proper operation it is recommended that V  
I
and V be higher than V and lower than V .  
O
SS  
DD  
P
P
P
=
INT  
PORT  
P
DD  
+ P  
DD  
.
Reliability is enhanced if unused inputs are con-  
D
INT  
PORT  
= I x V (chip internal power).  
nected to an appropriate logic voltage level (V  
or V ).  
DD  
=Port power dissipation  
determined by the user)  
SS  
Symbol  
Ratings  
Value  
Unit  
V
- V  
- V  
Supply voltage  
Analog reference voltage  
> VSS  
6.5  
V
DD  
SS  
V
6.5  
50  
V
DDA  
SSA  
DD_j  
V
DDA  
|V  
|V  
- V  
|
|
DD_i  
Max. variations (power line)  
Max. variations (ground line)  
mV  
- V  
DD_i  
DDA  
|V  
|V  
- V  
|
|
SS_i  
SS_j  
50  
mV  
- V  
SS_i  
SSA  
V
Input voltage  
VSS - 0.3 to VDD + 0.3  
V
V
V
IN  
V
Output voltage  
ESD susceptibility  
VSS - 0.3 to VDD + 0.3  
OUT  
ESD  
2000  
150  
I
Total current into V  
(source)  
DD_i  
VDD_i  
mA  
I
Total current out of V  
(sink)  
SS_i  
150  
VSS_i  
Note:  
Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating con-  
ditions for extended periods may affect device reliability.  
General Warning:  
Directly connecting the RESET and I/O pins to V or V could damage the device if an unintentional internal reset is  
DD  
SS  
generated or the program counter is corrupted (by an expected change to the I/O configuration). To guarantee safe op-  
eration, this connection has to be done through a pull-up or pull-down resistor (10Ktypical).  
Thermal Characteristics  
Symbol  
Ratings  
Value  
Unit  
Package thermal resistance  
TQFP64  
SDIP56  
TQFP44  
SDIP42  
60  
TBD  
TBD  
TBD  
R
°C/W  
thJA  
TJmax  
TSTG  
PD  
Max. junction temperature  
Storage temperature range  
Power dissipation  
150  
-65 to +150  
500  
°C  
°C  
mW  
105/125  
ST72334J/N, ST72314J/N, ST72124J  
8.2 RECOMMENDED OPERATING CONDITIONS  
GENERAL  
Symbol  
Parameter  
Supply voltage  
Conditions  
Min  
Typ  
Max  
Unit  
V
see Figure 58  
3.5V  
3.0  
1
5.5  
16  
8
V
DD  
V
V
V
V
DD  
DD  
DD  
DD  
Resonator oscillator frequency  
External clock source  
3.0V  
1
f
MHz  
OSC  
2)  
3.5V  
0
16  
8
2)  
3.0V  
0
1 Suffix Version  
6 Suffix Version  
7 Suffix Version  
3 Suffix Version  
0
70  
85  
105  
125  
-40  
-40  
-40  
T
Ambient temperature range  
°C  
A
3)  
Figure 58. f  
Maximum Operating Frequency Versus VDD Supply Voltage  
OSC  
FUNCTIONALITY NOT GUARANTEED IN THIS AREA  
FUNCTIONA LITY GUARANTEED IN THIS AREA  
FUNCTIONALITY NOT GUARANTEED IN THIS AREA  
FOR TEMPERATURE HIGHER THAN 85°C  
f
OSC  
[MHz]  
16  
8
4
1
0
SUPPLY VOLTAGE [V]  
2.5  
3
3.5  
4
4.5  
5
5.5  
FUNCTIONALITY NOT GUARANTEED IN THIS AREA WITH RESONATOR  
Notes:  
1) Unless otherwise specified, typical data are based on T =25°C and V -V =5V. They are given only as design guide-  
A
DD SS  
lines and are not tested.  
2) A/D operation and resonator oscillator start-up are not guaranteed below 1MHz.  
3) Operating conditions T =-40 to +85°C. The shaded area is outside the recommended operating range; device func-  
A
tionality is not guaranteed under these conditions.  
106/125  
ST72334J/N, ST72314J/N, ST72124J  
8.3 DC ELECTRICAL CHARACTERISTICS  
o
Recommended operating conditions with T =-40 to +85 C, V -V =5V unless otherwise specified.  
A
DD SS  
1)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
f
f
f
= 4 MHz, f  
= 8 MHz, f  
= 16 MHz, f  
= 2 MHz  
= 4 MHz  
OSC  
OSC  
OSC  
CPU  
CPU  
2)  
Supply current in RUN mode  
TBD  
= 8 MHz  
CPU  
f
f
f
= 4 MHz, f  
= 8 MHz, f  
= 16 MHz, f  
= 125 kHz  
= 250 kHz  
OSC  
OSC  
OSC  
CPU  
CPU  
2)  
Supply current in SLOW mode  
TBD  
TBD  
= 500 kHz  
CPU  
mA  
I
f
f
f
= 4 MHz, f  
= 2 MHz  
= 4 MHz  
DD  
OSC  
OSC  
OSC  
CPU  
= 8MHz, f  
CPU  
3)  
Supply current in WAIT mode  
= 16MHz, f  
= 8 MHz  
CPU  
f
f
f
= 4 MHz, f  
= 8 MHz, f  
= 16 MHz, f  
= 2 MHz  
= 250 kHz  
OSC  
OSC  
OSC  
CPU  
CPU  
3)  
Supply current in SLOW WAIT mode  
TBD  
TBD  
= 500 kHz  
CPU  
4)  
Supply current in HALT mode  
I
= 0mA (current on I/Os)  
µA  
LOAD  
5)  
V
Data retention mode  
HALT mode  
2
V
RM  
8.4 GENERAL TIMING CHARACTERISTICS  
Symbol  
Parameter  
Instruction time  
Interrupt reaction time  
Conditions  
Min  
Typ  
Max  
Unit  
t
2
12  
22  
tCPU  
tCPU  
INST  
6)  
t
tIRT = tINST + 10  
10  
IRT  
Notes:  
1) Unless otherwise specified, typical data are based on T =25°C and V -V =5V. They are given only as design guide-  
A
DD SS  
lines and are not tested.  
2) CPU running with memory access, all I/O pins in input mode with a static value at V  
off; clock input (OSC1) driven by external square wave.  
or V , all peripherals switched  
SS  
DD  
3) All I/O pins in input mode with a static value at V or V , all peripherals switched off; clock input (OSC1) driven by  
DD  
SS  
external square wave.  
4) All I/O pins in input mode with a static value at V or V , LVD disabled.  
DD  
SS  
5) Data based on characterization results, not tested in production.  
6) tINST is the number of tCPU to finish the current instruction execution.  
107/125  
ST72334J/N, ST72314J/N, ST72124J  
8.5 I/O PORT CHARACTERISTICS  
Recommended operating conditions  
o
with T =-40 to +85 C and 4.5V<V -V <5.5V unless otherwise specified.  
A
DD SS  
I/O PORT PINS  
1)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
2)  
V
Input low level voltage  
0.3xVDD  
IL  
V
2)  
V
Input high level voltage  
3V<V -V <5.5V  
0.7xVDD  
IH  
DD SS  
3)  
V
Schmitt trigger voltage hysteresis  
400  
mV  
HYS  
I=-5mA  
I=-2mA  
I=-20mA  
I=-8mA  
I=-5mA  
I=-2mA  
1.3  
0.5  
1.3  
0.5  
Output low level voltage  
for Standard I/O port pins  
V
OL  
Output low level voltage  
for high sink I/O port pins  
V
V
V
-2.0  
-0.8  
DD  
V
Output high level voltage  
OH  
DD  
35  
100  
50  
140  
V
V
> V  
< V  
20  
60  
IN  
IN  
IH  
IL  
R
Pull-up equivalent resistor  
Input leakage current  
kΩ  
µA  
PU  
I
V
<V <V  
DD  
1
200  
5
L
SS  
PIN  
2)  
I
Static current consumption  
Floating input mode  
SV  
5)  
Positive : V  
>V  
DD  
EXT  
I
Single pin injected current  
PINJ  
6)  
Negative : V  
<V  
-5  
EXT  
SS  
mA  
7)  
Positive: V  
>V  
tbd  
tbd  
Total injected current  
EXT  
DD  
I
INJ  
(sum of all I/O and control pins)  
Negative: V  
<V  
SS  
EXT  
4)  
4)  
4)  
t
Output high to low level fall time  
Output low to high rise time  
14.8  
14.4  
1
25  
25  
45.6  
OHL  
C =50pF  
ns  
l
4)  
t
45.9  
OLH  
8)  
t
External interrupt pulse time  
t
CPU  
ITEXT  
Notes:  
1) Unless otherwise specified, typical data are based on T =25°C and V -V =5V. They are given only as design guide-  
A
DD SS  
lines and are not tested.  
2) Data based on design simulation and/or technology characteristics, not tested in production.  
3) Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.  
4) Data based on characterization results, not tested in production.  
5) Positive injection (I  
)
INJ+  
The I  
is performed through protection diodes insulated from the substrate of the die.  
INJ+  
The true open-drain pins do not accept positive injection. In this case the maximum voltage rating must be respected.  
6) ADC accuracy reduced by negative injection (I  
)
INJ-  
The I  
is performed through protection diodes NOT INSULATED from the substrate of the die. The drawback is a small  
INJ-  
leakage (a few µA) induced inside the die when a negative injection is performed. This leakage is tolerated by the digital  
structure, but it acts on the analog line depending on the impedance versus a leakage current of a few µA (if the MCU  
has an AD converter). The effect depends on the pin which is submitted to the injection. Of course, external digital signals  
applied to the component must have a maximum impedance close to 50K.  
Location of the negative current injection:  
- Pins with analog input capability are the most sensitive. I  
maximum is 0.8 mA (assuming that the impedance of the  
INJ-  
analog voltage is lower than 25K)  
- Pure digital pins can tolerate 1.6mA. In addition, the best choice is to inject the current as far as possible from the analog  
input pins.  
7) When several inputs are submitted to a current injection, the maximum I is the sum of the positive (or negative) cur-  
INJ  
rents (instantaneous values). These results are based on characterisation with I  
O port pins of the device.  
maximum current injection on four I/  
INJ  
8) To generate anexternal interrupt, a minimum pulse width has to be applied on an I/O port pin configured as an external  
interrupt source.  
108/125  
ST72334J/N, ST72314J/N, ST72124J  
8.6 SUPPLY, RESET AND CLOCK CHARACTERISTICS  
8.6.1 Supply Manager  
Recommended operating conditions  
o
with T =-40 to +85 C and voltage are referred to V unless otherwise specified.  
A
SS  
LOW VOLTAGE DETECTOR (LVD)  
1)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
High Threshold  
Med. Threshold (f  
Low Threshold (f  
4.30  
3.90  
3.35  
4.50  
4.05  
3.45  
Reset release threshold  
V
16MHz)  
8MHz)  
LVDr  
OSC  
(V rise)  
DD  
OSC  
V
High Threshold  
Med. Threshold (f  
Low Threshold (f  
3.85  
16MHz) 3.50  
4.05  
3.65  
3.10  
4.25  
3.80  
3.20  
Reset generation threshold  
V
V
LVDf  
OSC  
(V fall)  
DD  
8MHz)  
3.00  
OSC  
2)  
V
Hysteresis  
V
- V  
LVDf  
250*  
100  
mV  
LVDhyst  
LVD  
LVDr  
3)  
I
LVD Supply Current  
HALT mode  
150  
µA  
DD  
8.6.2 Reset Sequence Manager  
Recommended operating conditions  
o
with T =-40...+85 C and 4.5V<V -V <5.5V unless otherwise specified.  
A
DD SS  
RESET SEQUENCE MANAGER (RSM)  
4)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
V
> V  
< V  
5
40  
10  
80  
20  
160  
IN  
IH  
IL  
R
Reset weak pull-up resistance  
kΩ  
ON  
IN  
Reset delay for external and  
watchdog reset sources  
6
30  
1/f  
SFOSC  
t
t
DELAYmin  
PULSE  
µs  
External RESET pin Pulse time  
20  
µs  
8.6.3 Multi-Oscillator, Clock Security System  
Recommended operating conditions  
o
with T =-40 to +85 C and voltage are referred to V unless otherwise specified.  
A
SS  
EXTERNAL CLOCK SOURCE  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
OSC1 input pin high level voltage  
OSC1 input pin low level voltage  
0.7xV  
V
Square wave signal  
with ~50% Duty Cycle  
DD  
DD  
OSC1h  
OSC1l  
V
V
0.3xV  
V
SS  
DD  
Notes:  
1) LVD typical data are based on T =25°C. They are given only as design guidelines and are not tested.  
A
2) The V  
hysteresis is constant.  
LVDhyst  
3) Data based on characterization results, not tested in production.  
4) Unless otherwise specified, typical data are based on T =25°C and V -V =5V. They are given only as design guide-  
A
DD SS  
lines and are not tested.  
109/125  
ST72334J/N, ST72314J/N, ST72124J  
SUPPLY, RESET AND CLOCK CHARACTERISTICS (Cont’d)  
CRYSTAL AND CERAMIC RESONATOR OSCILLATORS  
1)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Low speed resonator  
Medium-low speed resonator  
Medium-high speed resonator  
1
2
4
8
>2  
>4  
>8  
2)  
f
Oscillator Frequency  
MHz  
OSC  
High speed resonator  
16  
3)  
4)  
4)  
Low speed  
Medium-low speed  
Capacitance Medium-high speed  
High speed  
R
R
R
R
=200  
=200  
=200  
=100  
38  
32  
18  
15  
47  
56  
46  
26  
21  
Smax  
Smax  
Smax  
Smax  
3)  
3)  
3)  
4)  
4)  
4)  
4)  
4)  
4)  
Load  
39  
22  
18  
C
I
pF  
Li  
5)  
Low speed  
150  
200  
400  
700  
700  
700  
750  
5)  
5)  
Supply  
Current  
Medium-low speed  
Medium-high speed  
High speed  
µA  
DD  
5)  
1100  
t
Oscillator start-up time  
Depends on resonator quality. A typical value is 10ms  
START  
EXTERNAL RC OSCILLATOR  
4)  
1)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
4)  
f
External RC Oscillator Frequency  
Oscillator External Resistance  
Oscillator External Capacitance  
Supply Current  
1
14  
47  
MHz  
kΩ  
OSC  
4)  
4)  
R
C
V
=5V  
DD  
10  
33  
EX  
EX  
6)  
0
47  
470  
750  
pF  
5)  
I
525  
µA  
DD  
INTERNAL RC OSCILLATOR  
1)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
V
=5.5V  
=3.0V  
3.50  
3.35  
4.25  
4.10  
500  
5.00  
4.85  
DD  
f
I
Internal RC Oscillator Frequency  
Supply Current  
MHz  
OSC  
DD  
DD  
5)  
750  
µA  
CLOCK SECURITY SYSTEM (CSS)  
1)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
V
=5.5V  
=3.0V  
250  
190  
340  
430  
330  
DD  
f
Safe Oscillator Frequency  
kHz  
SFOSC  
260  
30  
DD  
f
I
Clock Filter Frequency limitation  
Supply Current  
MHz  
CFL  
DD  
5)  
150  
350  
µA  
Notes:  
1) Unless otherwise specified, typical data are based on T =25°C and V -V =5V. They are given only as design guide-  
A
DD SS  
lines and are not tested.  
2) These data are based on typical R  
quality resonator.  
. The oscillator selection can be optimized in terms of supply current with high  
Smax  
3) R  
is the equivalent serial resistance of the crystal or ceramic resonator.  
Smax  
4) Data based on design simulation and/or technology characteristics, not tested in production.  
5) Data based on characterization results, not tested in production.  
6) In this condition, the capacitor to be considered is the global parasitic capacitor. In this case, the RC oscillator frequen-  
cy tuning has to be done by trying out several resistor values.  
110/125  
ST72334J/N, ST72314J/N, ST72124J  
8.7 MEMORY AND PERIPHERAL CHARACTERISTICS  
Recommended operating conditions  
o
with T =-40 to +85 C and 3V<V -V <5.5V unless otherwise specified.  
A
DD SS  
FLASH Program Memory  
1)  
Symbol  
Parameter  
Typical programming time  
Conditions  
Min  
Typ  
Max  
Unit  
t
8 or 16kBytes FLASH  
2.1  
6.4  
sec  
ISPPROG  
t
Data retention  
T =55°C  
20  
years  
cycles  
RET  
A
N
Write erase cycles  
1000  
RW  
Data-EEPROM  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
t
Programming time  
25  
ms  
PROG  
t
Data retention  
10  
Years  
Cycles  
RET  
N
Write erase cycles  
100 000  
RW  
WATCHDOG  
Symbol  
Parameter  
Watchdog time-out  
Conditions  
Min  
Typ  
Max  
Unit  
12,288  
1.54  
786,432  
98.3  
tCPU  
ms  
t
DOG  
fCPU = 8MHz  
Note:  
1) Unless otherwise specified, typical data are based on T =25°C and V -V =5V. They are given only as design guide-  
A
DD SS  
lines and are not tested.  
111/125  
ST72334J/N, ST72314J/N, ST72124J  
MEMORY AND PERIPHERAL CHARACTERISTICS (Cont’d)  
SPI Serial Peripheral Interface  
1)  
Value  
Min  
Ref.  
Symbol  
Parameter  
Condition  
Unit  
Max  
Master  
Slave  
1/128  
dc  
1/4  
1/2  
f
t
SPI frequency  
f
t
SPI  
SPI  
CPU  
CPU  
Master  
Slave  
4
2
1
SPI clock period  
2
3
t
Enable lead time  
Enable lag time  
Slave  
Slave  
120  
120  
ns  
ns  
Lead  
t
Lag  
Master  
Slave  
100  
90  
4
5
t
Clock (SCK) high time  
Clock (SCK) low time  
Data set-up time  
ns  
ns  
ns  
ns  
ns  
ns  
SPI_H  
Master  
Slave  
100  
90  
t
SPI_L  
Master  
Slave  
100  
100  
6
t
SU  
Master  
Slave  
100  
100  
7
t
t
Data hold time (inputs)  
H
A
Access time (time to data active  
from high impedance state)  
8
0
120  
240  
Slave  
Disable time (hold time to high im-  
pedance state)  
9
t
Dis  
Master (before capture edge)  
Slave (after enable edge)  
0.25  
t
t
CPU  
ns  
10  
11  
12  
13  
t
Data valid  
V
120  
Master (before capture edge)  
Slave (after enable edge)  
0.25  
0
CPU  
ns  
t
Data hold time (outputs)  
Rise time  
Hold  
Outputs: SCK,MOSI,MISO  
(20% V to 70% V , C = 200pF) Inputs: SCK,MOSI,MISO,SS  
100  
100  
ns  
µs  
t
Rise  
DD  
DD  
L
Fall time  
Outputs: SCK,MOSI,MISO  
(70% V to 20% V , C = 200pF) Inputs: SCK,MOSI,MISO,SS  
100  
100  
ns  
µs  
t
Fall  
DD  
DD  
L
Figure 59. SPI Master Timing Diagram CPHA=0, CPOL=0 2)  
SS  
(INPUT)  
1
13  
12  
SCK  
(OUTPUT)  
5
4
MISO  
(INPUT)  
D7-IN  
7
D6-IN  
D0-IN  
6
MOSI  
(OUTPUT)  
D7-OUT  
11  
D6-OUT  
D0-OUT  
10  
VR000109  
Notes:  
1) Data based on characterization results, not tested in production.  
2) Measurement points are V , V , V and V in the SPI timing diagram.  
OL OH  
IL  
IH  
112/125  
ST72334J/N, ST72314J/N, ST72124J  
MEMORY AND PERIPHERAL CHARACTERISTICS (Cont’d)  
Figure 60. SPI Master Timing Diagram CPHA=0, CPOL=1 1)  
SS  
(INPUT)  
1
13  
12  
SCK  
(OUTPUT)  
5
4
MISO  
(INPUT)  
D7-IN  
7
D6-IN  
D0-IN  
6
MOSI  
(OUTPUT)  
D7-OUT  
11  
D6-OUT  
D0-OUT  
10  
VR000110  
Figure 61. SPI Master Timing Diagram CPHA=1, CPOL=0 1)  
SS  
(INPUT)  
1
13  
12  
SCK  
(OUTPUT)  
4
5
MISO  
(INPUT)  
D7-OUT  
D6-OUT  
D0-OUT  
6
7
MOSI  
(OUTPUT)  
D7-IN  
11  
D6-IN  
D0-IN  
10  
VR000107  
Figure 62. SPI Master Timing Diagram CPHA=1, CPOL=1 1)  
SS  
(INPUT)  
1
12  
13  
SCK  
(OUTPUT)  
5
4
MISO  
(INPUT)  
D7-IN  
7
D6-IN  
D0-IN  
6
MOSI  
(OUTPUT)  
D7-OUT  
11  
D6-OUT  
D0-OUT  
10  
VR000108  
Note:  
1) Measurement points are V , V , V and V in the SPI timing diagram.  
OL OH  
IL  
IH  
113/125  
ST72334J/N, ST72314J/N, ST72124J  
MEMORY AND PERIPHERAL CHARACTERISTICS (Cont’d)  
Measurement points are V , V , V and V in the SPI Timing Diagram  
OL  
OH  
IL  
IH  
Figure 63. SPI Slave Timing Diagram CPHA=0, CPOL=0 1)  
SS  
(INPUT)  
2
1
12  
3
13  
11  
SCK  
(INPUT)  
4
5
MISO HIGH-Z  
D7-OUT  
D6-OUT  
D6-IN  
D0-OUT  
D0-IN  
(OUTPUT)  
8
10  
9
MOSI  
(INPUT)  
D7-IN  
7
6
VR000113  
Figure 64. SPI Slave Timing Diagram CPHA=0, CPOL=1 1)  
SS  
(INPUT)  
2
1
13  
12  
11  
3
SCK  
(INPUT)  
5
4
MISO  
HIGH-Z  
8
D7-OUT  
D6-OUT  
D6-IN  
D0-OUT  
D0-IN  
(OUTPUT)  
10  
9
MOSI  
(INPUT)  
D7-IN  
7
6
VR000114  
Figure 65. SPI Slave Timing Diagram CPHA=1, CPOL=0 1)  
SS  
(INPUT)  
2
1
13  
12  
3
SCK  
(INPUT)  
4
5
HIGH-Z  
8
MISO  
D7-OUT  
D6-OUT  
D6-IN  
D0-OUT  
(OUTPUT)  
11  
9
10  
MOSI  
(INPUT)  
D7-IN  
D0-IN  
7
6
VR000111  
Figure 66. SPI Slave Timing Diagram CPHA=1, CPOL=1 1)  
SS  
(INPUT)  
2
1
12  
13  
3
SCK  
(INPUT)  
5
4
HIGH-Z  
8
MISO  
D7-OUT  
D6-OUT  
D6-IN  
D0-OUT  
(OUTPUT)  
11  
10  
9
MOSI  
(INPUT)  
D7-IN  
D0-IN  
6
7
VR000112  
Note:  
1) Measurement points are V , V , V and V in the SPI timing diagram.  
OL OH  
IL  
IH  
114/125  
ST72334J/N, ST72314J/N, ST72124J  
MEMORY AND PERIPHERAL CHARACTERISTICS (Cont’d)  
SCI Serial Communication Interface  
1)  
Symbol  
Parameter  
Conditions  
Standard Mode  
Typ  
Unit  
TR (resp.RR)=64, PR=13  
TR (resp.RR)=16, PR=13  
TR (resp.RR)= 8, PR=13  
TR (resp.RR)= 4, PR=13  
TR (resp.RR)= 2, PR=13  
TR (resp.RR)= 8, PR= 3  
TR (resp.RR)= 1, PR=13  
~300.48  
~1201.92  
~2403.84  
~4807.69  
~9615.38  
~10416.67  
~19230,77  
Communication frequency  
(precision vs. standard ~0.16%)  
f
or f  
f =8MHz  
CPU  
Hz  
Tx  
Rx  
Extended Mode  
ETPR (resp.ERPR) = 13  
~38461.54  
See “STANDARD I/O PORT PINS” description for more details.  
Note:  
1) Unless otherwise specified, typical data are based on T =25°C and V -V =5V. They are given only as design guide-  
A
DD SS  
lines and are not tested.  
115/125  
ST72334J/N, ST72314J/N, ST72124J  
MEMORY AND PERIPHERAL CHARACTERISTICS (Cont’d)  
ADC Analog to Digital Converter (8-bit)  
1)  
Symbol  
Parameter  
Conditions  
=V =5V  
DDA  
Min  
Typ  
Max  
Unit  
2)  
f
Analog control frequency  
V
4
MHz  
ADC  
DD  
4)  
|TUE|  
OE  
Total unadjusted error  
1
4)  
Offset error  
-0.5  
-0.5  
0.5  
0.5  
0.5  
0.5  
3)  
T =25°C,V =V =5V,  
DDA  
fCPU=8MHz,fADC=4MHz  
4)  
A
DD  
GE  
Gain Error  
LSB  
4)  
|DLE|  
|ILE|  
Differential linearity error  
4)  
Integral linearity error  
V
Conversion range voltage  
V
V
V
mA  
µs  
µs  
AIN  
ADC  
STAB  
SSA  
DDA  
I
t
A/D conversion supply current  
Stabilization time after ADC enable  
1
1
fCPU=8MHz, fADC=4MHz  
=V =5V  
1
4
t
t
Sample capacitor loading time  
LOAD  
CONV  
V
1/f  
DD  
DDA  
ADC  
2
8
µs  
Hold conversion time  
External input resistor  
1/f  
ADC  
2)  
R
15  
kΩ  
AIN  
R
C
Internal input resistor  
Sample capacitor  
1.5  
6
kΩ  
ADC  
pF  
SAMPLE  
Notes:  
1) Unless otherwise specified, typical data are based on T =25°C and V -V =5V. They are given only as design guide-  
A
DD SS  
lines and are not tested.  
2) Data based on characterization results, not tested in production.  
3) Tested in production at T =25°C, characterized over the whole temperature range.  
A
4) ADC Accuracy vs. Negative Injection Current:  
For I =0.8mA, the typical leakage induced inside the die is 1.6µA and the effect on the ADC accuracy is a loss of 1 LSB  
INJ-  
for each 10Kincrease of the external analog source impedance. This effect on the ADC accuracy has been observed  
under worst-case conditions for injection:  
- negative injection  
- injection to an Input with analog capability, adjacent to the enabled Analog Input  
- at 5V V supply, and worst case temperature.  
DD  
Digital Result ADCDR  
GE  
(1) Example of an actual transfer curve  
255  
(2) The ideal transfer curve  
V
V  
254  
253  
(3) End point correlation line  
DDA  
SSA  
1LSB  
= ----------------------------------------  
ideal  
256  
(2)  
TUE=Total Unadjusted Error: maximum deviation  
between the actual and the ideal transfer curves.  
OE=Offset Error: deviation between the first actual  
transition and the first ideal one.  
(3)  
TUE  
7
6
5
4
3
2
1
(1)  
GE=Gain Error: deviation between the last ideal  
transition and the last actual one.  
ILE  
OE  
DLE=Differential Linearity Error: maximum devia-  
tion between actual steps and the ideal one.  
ILE=Integral Linearity Error: maximum deviation  
between any actual transition and the end point  
correlation line.  
DLE  
1 LSB (ideal)  
V
(LSB  
)
in  
ideal  
0
1
2
3
4
5
6
7
253 254 255 256  
V
V
DDA  
SSA  
116/125  
ST72334J/N, ST72314J/N, ST72124J  
9 GENERAL INFORMATION  
9.1 PACKAGES  
9.1.1 Package Mechanical Data  
Figure 67. 64-Pin Thin Quad Flat Package  
mm  
inches  
Dim  
Min Typ Max Min Typ Max  
A
1.60  
0.063  
0.006  
A1 0.05  
0.15 0.002  
A2 1.35 1.40 1.45 0.053 0.055 0.057  
B
C
0.30 0.37 0.45 0.012 0.015 0.018  
0.09  
0.20 0.004  
0.008  
D
16.00  
14.00  
12.00  
16.00  
14.00  
12.00  
0.80  
0.630  
0.551  
0.472  
0.630  
0.551  
0.472  
0.031  
D1  
D3  
E
E1  
E3  
e
K
0°  
3.5°  
7°  
L
0.45 0.60 0.75 0.018 0.024 0.030  
L1  
1.00  
0.039  
L1  
L
Number of Pins  
ND 16 NE  
N
64  
16  
K
Figure 68. 56-Pin Shrink Plastic Dual In-Line Package, 600-mil Width  
mm  
inches  
Dim.  
A
Min Typ Max Min Typ Max  
6.35  
0.250  
A1 0.38  
0.015  
A2 3.18  
4.95 0.125  
0.195  
b
0.41  
0.89  
0.016  
0.035  
b2  
C
D
E
0.20  
0.38 0.008  
53.21 1.980  
0.015  
2.095  
50.29  
15.01  
0.591  
E1 12.32  
14.73 0.485  
0.580  
e
1.78  
0.070  
0.600  
eA  
eB  
15.24  
17.78  
0.700  
0.200  
L
2.92  
5.08 0.115  
PDIP56S  
Number of Pins  
N
56  
117/125  
ST72334J/N, ST72314J/N, ST72124J  
PACKAGES (Cont’d)  
Figure 69. 44-Pin Thin Quad Flat Package  
mm  
inches  
Dim  
Min Typ Max Min Typ Max  
A
1.60  
0.063  
0.006  
A1 0.05  
0.15 0.002  
A2 1.35 1.40 1.45 0.053 0.055 0.057  
b
c
0.30 0.37 0.45 0.012 0.015 0.018  
0.09  
0.20 0.004  
0.008  
b
D
12.00  
10.00  
8.00  
0.472  
0.394  
0.315  
0.472  
0.394  
0.315  
0.031  
D1  
D3  
E
12.00  
10.00  
8.00  
E1  
E3  
e
c
0.80  
K
0° 3.5°  
7°  
L
0.45 0.60 0.75 0.018 0.024 0.030  
1.00 0.039  
Number of Pins  
44  
L1  
L1  
L
N
K
Figure 70. 42-Pin Shrink Plastic Dual In-Line Package, 600-mil Width  
mm  
Min Typ Max Min Typ Max  
5.08 0.200  
inches  
Dim.  
A
A1 0.51  
A2 3.05 3.81 4.57 0.120 0.150 0.180  
0.020  
b
b2  
C
0.46 0.56  
1.02 1.14  
0.018 0.022  
0.040 0.045  
0.23 0.25 0.38 0.009 0.010 0.015  
36.58 36.83 37.08 1.440 1.450 1.460  
D
E
15.24  
16.00 0.600  
0.630  
E1 12.70 13.72 14.48 0.500 0.540 0.570  
e
1.78  
0.070  
0.600  
eA  
15.24  
eB  
18.54  
0.730  
0.060  
eC 0.00  
1.52 0.000  
PDIP42S  
L
2.54 3.30 3.56 0.100 0.130 0.140  
Number of Pins  
N
42  
118/125  
ST72334J/N, ST72314J/N, ST72124J  
PACKAGES (Cont’d)  
9.1.2 User-supplied TQFP64 Adaptor / Socket  
Direct TQFP64 soldering  
YAMAICHI  
IC149-064-008-S5*  
socket  
To solder the TQFP64 device directly on the appli-  
cation board, or to solder a socket for connecting  
the emulator probe, the application board should  
provide the footprint described in Figure 71. This  
footprint allows both configurations:  
soldering to plug either the emulator probe or an  
adaptor board with an TQFP64 clamshell  
socket.  
* Not compatible with TQFP64 package.  
Figure 71. TQFP64 Device And Emulator Probe Compatible Footprint  
SK  
E
mm  
inches  
Dim  
Min Typ Max Min  
Typ Max  
E1  
E3  
B
E
0.35 0.45 0.50 0.014 0.018 0.020  
20.80 0.819  
E1  
14.00  
0.551  
e
E3 11.90 12.00 12.10 0.468 0.472 0.476  
e
0.75 0.80 0.85 0.029 0.031 0.033  
26 1.023  
Number of Pins  
64 (4x16)  
B
SOCKET  
SK*  
DETAIL  
N
* SK: Plastic socket overall dimensions.  
Table 22. Suggested List of TQFP64 Socket Types  
Package / Probe  
TQFP64  
EMU PROBE  
Adaptor / Socket Reference  
Socket type  
ENPLAS  
OTQ-64-0.8-02  
Open Top  
YAMAICHI  
YAMAICHI  
IC51-0644-1240.KS-14584  
Clamshell  
SMC  
IC149-064-008-S5  
119/125  
ST72334J/N, ST72314J/N, ST72124J  
PACKAGES (Cont’d)  
9.1.3 User-supplied TQFP44 Adaptor / Socket  
Direct TQFP44 soldering  
YAMAICHI IC149-044-*52-S5 socket soldering  
to plug either the emulator probe or an adaptor  
board with an TQFP44 clamshell socket.  
To solder the TQFP44 device directly on the appli-  
cation board, or to solder a socket for connecting  
the emulator probe, the application board should  
provide the footprint described in Figure 72. This  
footprint allows both configurations:  
Figure 72. TQFP44 Device And Emulator Probe Compatible Footprint  
SK  
E
mm  
inches  
Dim  
Min Typ Max Min  
Typ Max  
E1  
E3  
B
E
0.35 0.45 0.50 0.014 0.018 0.020  
13.40 0.527  
E1  
10.00  
0.394  
e
E3 7.95 8.00 8.05 0.313 0.315 0.317  
e
0.75 0.80 0.85 0.029 0.031 0.033  
24.2 0.953  
Number of Pins  
44 (4x11)  
B
SOCKET  
SK*  
DETAIL  
N
* SK: Plastic socket overall dimensions.  
Table 23. Suggested List of TQFP44 Socket Types  
Package / Probe  
TQFP44  
Adaptor / Socket Reference  
OTQ-44-0.8-04  
Socket type  
Open Top  
ENPLAS  
YAMAICHI  
IC51-0444-467-KS-11787  
Clamshell  
TQFP44  
EMU PROBE  
YAMAICHI  
IC149-044-*52-S5  
SMC  
120/125  
ST72334J/N, ST72314J/N, ST72124J  
9.2 DEVICE CONFIGURATION AND ORDERING  
INFORMATION  
USER OPTION BYTE 2  
7
0
Each device is available for production in user pro-  
grammable versions (FLASH) as well as in factory  
coded versions (ROM).  
WDG WDG  
HALT SW  
CFC OSC2 OSC1 OSC0 LVD1 LVD0  
FLASH devices are shipped to customers with a  
default content (FFh), while ROM factory coded  
parts contain the code supplied by the customer.  
This implies that FLASH devices have to be con-  
figured by the customer using the Option Bytes  
while the ROM devices are factory-configured.  
Bit 7 = CFC Clock filter control on/off  
This option bit enables or disables the clock filter  
(CF) features.  
0: Clock filter enabled  
1: Clock filter disabled  
9.2.1 Option Bytes  
The two Option Bytes allow the hardware configu-  
ration of the microcontroller to be selected.  
The Option Bytes have no address in the memory  
map and can be accessed only in programming  
Bit 6:4 = OSC[2:0] Oscillator selection  
These three option bits can be used to select the  
main oscillator as shown in Table 24.  
Table 24. Main Oscillator Configuration  
mode (for example using  
a standard ST7  
Selected Oscillator  
External Clock (Stand-by)  
Internal RC  
OSC2 OSC1 OSC0  
4programming tool). The default contents of the  
FLASH is fixed to FFh. This means that all the op-  
tions have “1” as their default value.  
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
In masked ROM devices, the Option Bytes are  
fixed in hardware by the ROM code.  
External RC  
USER OPTION BYTE 1  
Low Speed Resonator  
Medium-low Speed Resonator  
Medium-high Speed Resonator  
High Speed Resonator  
7
1
0
1
1
1
1
1
56/42 FMP  
Bit 3:2 = LVD[1:0] Low voltage detection selection  
These option bits enable the LVD block with a se-  
lected threshold as shown in Table 25.  
Bit 7:2 = Reserved, must always be 1.  
Table 25. LVD Threshold Configuration  
Bit 1 = 56/42 Package configuration.  
This option bit allows to configure the device ac-  
cording to the package.  
0: 42 and 44 pin.  
1: 56 and 64 pin.  
Configuration  
LVD1 LVD0  
LVD Off  
1
1
0
0
1
0
1
0
Highest Voltage Threshold (V ~5V)  
DD  
Medium Voltage Threshold (f  
16MHz)  
OSC  
OSC  
Bit 0 = FMP Full memory protection.  
Lowest Voltage Threshold (f  
8MHz)  
This option bit enables or disables external access  
to the internal program memory (read-out protec-  
tion). Clearing this bit causes the erasing (to 00h)  
of the whole memory (including the option byte).  
0: Program memory not read-out protected  
1: Program memory read-out protected  
Bit 1 = WDG HALT Watchdog and halt mode  
This option bit determines if a RESET is generated  
when entering HALT mode while the Watchdog is  
active.  
0: No Reset generation when entering Halt mode  
1: Reset generation when entering Halt mode  
Bit 0 = WDG SW Hardware or software watchdog  
This option bit selects the watchdog type.  
0: Hardware (watchdog always enabled)  
1: Software (watchdog to be enabled by software)  
121/125  
ST72334J/N, ST72314J/N, ST72124J  
DEVICE CONFIGURATION AND ORDERING INFORMATION (Cont’d)  
9.2.2 Transfer Of Customer Code  
The selected options are communicated to STMi-  
croelectronics using the correctly completed OP-  
TION LIST appended.  
Customer code is made up of the ROM contents  
and the list of the selected options (if any). The  
ROM contents are to be sent on diskette, or by  
electronic means, with the hexadecimal file in .S19  
format generated by the development tool. All un-  
used bytes must be set to FFh.  
The STMicroelectronics Sales Organization will be  
pleased to provide detailed information on con-  
tractual points.  
Figure 73. ROM Factory Coded Device Types  
TEMP.  
PACKAGE RANGE  
/ XXX  
DEVICE  
Code name (defined by STMicroelectronics)  
1 = standard 0 to +70 °C  
6 = industrial -40 to +85 °C  
7 = automotive -40 to +125 °C  
3 = automotive -40 to +125 °C  
B = Plastic DIP  
T = Plastic TQFP  
ST72334J2, ST72334J4, ST72334N2, ST72334N4,  
ST72314J2, ST72314J4, ST72314N2, ST72314N4,  
ST72124J2  
Figure 74. FLASH User Programmable Device Types  
TEMP.  
PACKAGE RANGE XXX  
DEVICE  
Code name (defined by STMicroelectronics)  
1 = standard 0 to +70 °C  
6 = industrial -40 to +85 °C  
7 = automotive -40 to +125 °C  
3 = automotive -40 to +125 °C  
B = Plastic DIP  
T = Plastic TQFP  
ST72C334J2, ST72C334J4, ST72C334N2, ST72C334N4,  
ST72C314J2, ST72C314J4, ST72C314N2, ST72C314N4,  
ST72C124J2  
122/125  
ST72334J/N, ST72314J/N, ST72124J  
MICROCONTROLLER OPTION LIST  
Customer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Address  
Contact  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Phone No . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
STMicroelectronics references  
Device:  
[ ] ST72334J2  
[ ] ST72334J4  
[ ] ST72334N2  
[ ] ST72334N4  
[ ] ST72314J2  
[ ] ST72314J4  
[ ] ST72314N2  
[ ] ST72314N4  
[ ] ST72124J2  
Package:  
[ ] TQFP64  
[ ] TQFP44  
[ ] SDIP56  
[ ] SDIP42  
Temperature Range:  
[ ] 0°C to + 70°C  
[ ] - 40°C to + 85°C  
[ ] - 40°C to + 125°C  
Clock Source Selection:  
[ ] Resonator:  
[ ] LP: Low power resonator (1 to 2 MHz)  
[ ] MP: Medium power resonator (2 to 4 MHz)  
[ ] MS: Medium speed resonator (4 to 8 MHz)  
[ ] HS: High speed resonator (8 to 16 MHz)  
[ ] RC Network: [ ] Internal  
[ ] External  
[ ] External Clock  
Clock Security System:  
[ ] Disabled  
[ ] Enabled  
Watchdog Selection:  
[ ] Software Activation  
[ ] Hardware Activation  
Halt when Watchdog on:  
[ ] Reset  
[ ] No reset  
Readout Protection:  
LVD Reset  
[ ] Disabled  
[ ] Enabled  
[ ] Disabled  
[ ] Enabled: [ ] Highest threshold (4.30V/4.05V)  
[ ] Medium threshold (3.90V/3.65V)  
[ ] Lowest threshold (3.35V/3.10V)  
Comments : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Supply Operating Range in the application: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Notes  
Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
123/125  
ST72334J/N, ST72314J/N, ST72124J  
10 SUMMARY OF CHANGES  
Description of the changes between the current release of the specification and the previous one.  
Revision  
Main changes  
Date  
New chapter to compare ST72334 versus ST72331 (section 2.1 on page 6)  
Correction of the address of the CRSR register to 2Bh instead of 25h (Table 4 page 33)  
Correction of port A pin name column in Table 9 page 44 (PA2:0 instead of PA3:0)  
Correction of MISCR2 register description (section 6.2.3 on page 48)  
Correction of the FLASH and data EEPROM programming time (section 8.7 on page 111)  
Correction of the TQFP44 socket proposal (Table 23 page 120)  
1.0  
Sept-99  
More information on the FMP option bit (section 9.2.1 on page 121)  
Added .S19 format in transfer of Code (section 9.2.2 on page 122)  
Correction of the microcontroller option list (section 9.2.2 on page 122)  
History page added (section 10 on page 124)  
124/125  
ST72334J/N, ST72314J/N, ST72124J  
Notes:  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of useof such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
1999 STMicroelectronics - All Rights Reserved.  
Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an  
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.  
STMicroelectronics Group of Companies  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain  
Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
125/125  

相关型号:

ST72C314J4B7XXX

8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY, ADC, 16-BIT TIMERS, SPI, SCI INTERFACES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
STMICROELECTR

ST72C314J4T1

8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY, ADC, 16-BIT TIMERS, SPI, SCI INTERFACES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
STMICROELECTR

ST72C314J4T1XXX

8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY, ADC, 16-BIT TIMERS, SPI, SCI INTERFACES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
STMICROELECTR

ST72C314J4T3

8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY, ADC, 16-BIT TIMERS, SPI, SCI INTERFACES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
STMICROELECTR

ST72C314J4T3XXX

8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY, ADC, 16-BIT TIMERS, SPI, SCI INTERFACES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
STMICROELECTR

ST72C314J4T6

8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY, ADC, 16-BIT TIMERS, SPI, SCI INTERFACES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
STMICROELECTR

ST72C314J4T6XXX

8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY, ADC, 16-BIT TIMERS, SPI, SCI INTERFACES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
STMICROELECTR

ST72C314J4T7

8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY, ADC, 16-BIT TIMERS, SPI, SCI INTERFACES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
STMICROELECTR

ST72C314J4T7XXX

8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY, ADC, 16-BIT TIMERS, SPI, SCI INTERFACES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
STMICROELECTR

ST72C314J4TA

8-bit MCU for automotive with single voltage Flash/ROM memory, ADC, 16-bit timers, SPI, SCI interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
STMICROELECTR