ST72F321BJ9TAR [STMICROELECTRONICS]

MICROCONTROLLER;
ST72F321BJ9TAR
型号: ST72F321BJ9TAR
厂家: ST    ST
描述:

MICROCONTROLLER

文件: 总244页 (文件大小:2094K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ST72321Bxxx-Auto  
8-bit MCU for automotive with 32 to 60 Kbyte Flash/ROM,  
ADC, 5 timers, SPI, SCI, I2C interface  
Features  
Memories  
32 to 60 Kbyte dual voltage High Density Flash  
(HDFlash) ROM with readout protection  
LQFP64  
14 x 14  
LQFP64  
10 x 10  
LQFP44  
10 x 10  
capability. In-application programming and in-  
circuit programming for HDFlash devices  
Up to 48 I/O ports  
1 to 2 Kbyte RAM  
48/32/24 multifunctional bidirectional I/O lines  
34/22/17 alternate function lines  
16/12/10 high sink outputs  
HDFlash endurance: 100 cycles, data retention  
20 years  
Clock, reset and supply management  
Enhanced low voltage supervisor (LVD) for  
main supply and auxiliary voltage detector  
(AVD) with interrupt capability  
Clock sources: crystal/ceramic resonator  
oscillators, internal RC oscillator and bypass  
for external clock  
5 timers  
Main clock controller with Real-time base,  
Beep and Clock-out capabilities  
Configurable watchdog timer  
Two 16-bit timers with 2 input captures, 2  
output compares, external clock input on 1  
timer, PWM and pulse generator modes  
8-bit PWM auto-reload timer with 2 input  
captures, 4 PWM outputs, output compare and  
time base interrupt, external clock with event  
detector  
PLL for 2x frequency multiplication  
4 power saving modes: Halt, Active Halt, Wait  
and Slow  
Interrupt management  
Nested interrupt controller  
14 interrupt vectors plus trap and reset  
Top Level Interrupt (TLI) pin on 64-pin devices  
15/9 external interrupt lines (on 4 vectors)  
3 communications interfaces  
SPI synchronous serial interface  
SCI asynchronous serial interface  
2
I C multimaster interface  
1 analog peripheral (low current coupling)  
10-bit ADC with up to 16 input ports  
Development tools  
Full HW/SW development pkg, ICT capability  
Table 1.  
Device summary  
Device  
Prog. memory  
RAM (stack)  
Oper. voltage Temp. range  
Package  
14x14  
ST72321BR9-Auto  
ST72321BAR9-Auto  
ST72321BJ9-Auto  
ST72321BR7-Auto  
ST72321BAR7-Auto  
ST72321BJ7-Auto  
ST72321BR6-Auto  
ST72321BAR6-Auto  
ST72321BJ6-Auto  
LQFP64  
LQFP44  
LQFP64  
LQFP44  
LQFP64  
LQFP44  
Flash/ROM  
60 Kbytes  
2048 (256)  
bytes  
10x10  
10x10  
14x14  
10x10  
10x10  
14x14  
10x10  
10x10  
Flash/ROM  
48 Kbytes  
1536 (256)  
bytes  
Up to  
3.8 to 5.5V  
-40 to 125°C  
Flash/ROM  
32 Kbytes  
1024 (256)  
bytes  
September 2010  
Doc ID 12898 Rev 2  
1/244  
www.st.com  
1
 
Contents  
ST72321Bxxx-Auto  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Package pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2.1  
2.2  
Package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3
4
Register and memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Flash program memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.1  
4.2  
4.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.3.1  
Readout protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4.4  
4.5  
4.6  
4.7  
4.8  
ICC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
ICP (in-circuit programming) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
IAP (in-application programming) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Related documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Flash control/status register (FCSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5
Central processing unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
5.1  
5.2  
5.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Index registers (X and Y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Program counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Condition code (CC) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Stack pointer (SP) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6
Supply, reset and clock management . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
6.1  
6.2  
6.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Phase locked loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
2/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Contents  
6.4  
6.5  
Multi-oscillator (MO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Reset sequence manager (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
6.5.1  
6.5.2  
6.5.3  
6.5.4  
6.5.5  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Asynchronous external RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
External power-on RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Internal low voltage detector (LVD) RESET . . . . . . . . . . . . . . . . . . . . . . 42  
Internal watchdog RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
6.6  
System integrity management (SI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
6.6.1  
6.6.2  
6.6.3  
6.6.4  
6.6.5  
Low voltage detector (LVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Auxiliary voltage detector (AVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
System Integrity (SI) Control/Status register (SICSR) . . . . . . . . . . . . . . 48  
7
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
7.1  
7.2  
7.3  
7.4  
7.5  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Masking and processing flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Interrupts and low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Concurrent and nested management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Interrupt register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
7.5.1  
7.5.2  
CPU CC register interrupt bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Interrupt software priority registers (ISPRx) . . . . . . . . . . . . . . . . . . . . . . 55  
7.6  
External interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
7.6.1  
7.6.2  
I/O port interrupt sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
External interrupt control register (EICR) . . . . . . . . . . . . . . . . . . . . . . . . 60  
8
Power saving modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
8.1  
8.2  
8.3  
8.4  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Slow mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Active Halt and Halt modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
8.4.1  
8.4.2  
Active Halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
9
I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
9.1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Doc ID 12898 Rev 2  
3/244  
Contents  
ST72321Bxxx-Auto  
9.2  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
9.2.1  
9.2.2  
9.2.3  
Input modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Output modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
9.3  
9.4  
9.5  
I/O port implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
10  
Watchdog timer (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
10.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
10.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
10.4 How to program the watchdog timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
10.5 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
10.6 Hardware watchdog option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
10.7 Using Halt mode with the WDG (WDGHALT option) . . . . . . . . . . . . . . . . 81  
10.8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
10.9 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
10.9.1 Control register (WDGCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
11  
Main clock controller with real-time clock and beeper (MCC/RTC) . . 83  
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
11.2 Programmable CPU clock prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
11.3 Clock-out capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
11.4 Real-time clock timer (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
11.5 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
11.6 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
11.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
11.8 Main clock controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
11.8.1 MCC control/status register (MCCSR) . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
11.8.2 MCC beep control register (MCCBCR) . . . . . . . . . . . . . . . . . . . . . . . . . 86  
12  
PWM auto-reload timer (ART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
12.2 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
4/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Contents  
12.2.1 Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
12.2.2 Counter clock and prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
12.2.3 Counter and prescaler initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
12.2.4 Output compare control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
12.2.5 Independent PWM signal generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
12.2.6 Output compare and time base interrupt . . . . . . . . . . . . . . . . . . . . . . . . 91  
12.2.7 External clock and event detector mode . . . . . . . . . . . . . . . . . . . . . . . . 91  
12.2.8 Input capture function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
12.2.9 External interrupt capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
12.3 ART registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
12.3.1 Control/status register (ARTCSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
12.3.2 Counter access register (ARTCAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
12.3.3 Auto-reload register (ARTARR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
12.3.4 PWM control register (PWMCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
12.3.5 Duty cycle registers (PWMDCRx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
12.3.6 Input capture control / status register (ARTICCSR) . . . . . . . . . . . . . . . . 97  
12.3.7 Input capture registers (ARTICRx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
13  
16-bit timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
13.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
13.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
13.3.1 Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
13.3.2 External clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
13.3.3 Input capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
13.3.4 Output compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
13.3.5 Forced compare output capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
13.3.6 One Pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
13.3.7 Pulse width modulation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
13.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
13.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
13.6 Summary of timer modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
13.7 16-bit timer registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
13.7.1 Control register 1 (CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
13.7.2 Control register 2 (CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
13.7.3 Control/status register (CSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Doc ID 12898 Rev 2  
5/244  
Contents  
ST72321Bxxx-Auto  
13.7.4 Input capture 1 high register (IC1HR) . . . . . . . . . . . . . . . . . . . . . . . . . 117  
13.7.5 Input capture 1 low register (IC1LR) . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
13.7.6 Output compare 1 high register (OC1HR) . . . . . . . . . . . . . . . . . . . . . . 118  
13.7.7 Output compare 1 low register (OC1LR) . . . . . . . . . . . . . . . . . . . . . . . 118  
13.7.8 Output compare 2 high register (OC2HR) . . . . . . . . . . . . . . . . . . . . . . 118  
13.7.9 Output compare 2 low register (OC2LR) . . . . . . . . . . . . . . . . . . . . . . . 119  
13.7.10 Counter high register (CHR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
13.7.11 Counter low register (CLR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
13.7.12 Alternate counter high register (ACHR) . . . . . . . . . . . . . . . . . . . . . . . . 119  
13.7.13 Alternate counter low register (ACLR) . . . . . . . . . . . . . . . . . . . . . . . . . 120  
13.7.14 Input capture 2 high register (IC2HR) . . . . . . . . . . . . . . . . . . . . . . . . . 120  
13.7.15 Input capture 2 low register (IC2LR) . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
14  
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
14.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
14.3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
14.3.1 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
14.3.2 Slave select management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
14.3.3 Master mode operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
14.3.4 Master mode transmit sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
14.3.5 Slave mode operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
14.3.6 Slave mode transmit sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
14.4 Clock phase and clock polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
14.5 Error flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
14.5.1 Master mode fault (MODF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
14.5.2 Overrun condition (OVR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
14.5.3 Write collision error (WCOL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
14.5.4 Single master systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
14.6 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
14.6.1 Using the SPI to wake up the MCU from Halt mode . . . . . . . . . . . . . . 131  
14.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
14.8 SPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
14.8.1 Control register (SPICR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
14.8.2 Control/status register (SPICSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
14.8.3 Data I/O register (SPIDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
6/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Contents  
15  
Serial communications interface (SCI) . . . . . . . . . . . . . . . . . . . . . . . . 136  
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
15.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
15.3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
15.4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
15.4.1 Serial data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
15.4.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
15.4.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
15.5 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
15.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
15.7 SCI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
15.7.1 Status register (SCISR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
15.7.2 Control register 1 (SCICR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
15.7.3 Control register 2 (SCICR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
15.7.4 Data register (SCIDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
15.7.5 Baud rate register (SCIBRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
15.7.6 Extended receive prescaler division register (SCIERPR) . . . . . . . . . . 153  
15.7.7 Extended transmit prescaler division register (SCIETPR) . . . . . . . . . . 154  
16  
I2C bus interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
16.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
16.2.1 I2C master features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
16.2.2 I2C slave features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
16.3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
16.3.1 Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
16.3.2 Communication flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
16.3.3 SDA/SCL line control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
16.4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
16.4.1 Slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
16.4.2 Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
16.5 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
16.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
16.7 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
16.7.1 I2C control register (CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Doc ID 12898 Rev 2  
7/244  
Contents  
ST72321Bxxx-Auto  
16.7.2 I2C status register 1 (SR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
16.7.3 I2C status register 2 (SR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
16.7.4 I2C clock control register (CCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
16.7.5 I2C data register (DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
16.7.6 I2C own address register (OAR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
16.7.7 I2C own address register (OAR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
17  
10-bit A/D converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
17.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
17.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
17.3.1 A/D converter configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
17.3.2 Starting the conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
17.3.3 Changing the conversion channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
17.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
17.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
17.6 ADC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
17.6.1 Control/status register (ADCCSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
17.6.2 Data register (ADCDRH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
17.6.3 Data register (ADCDRL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
17.6.4 ADC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
18  
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
18.1 CPU addressing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
18.1.1 Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
18.1.2 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
18.1.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
18.1.4 Indexed (no offset, short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
18.1.5 Indirect (short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
18.1.6 Indirect Indexed (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
18.1.7 Relative (Direct, Indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
18.2 Instruction groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
18.2.1 Using a prebyte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
19  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
19.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
8/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Contents  
19.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
19.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
19.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
19.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
19.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
19.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
19.2.1 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
19.2.2 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
19.2.3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
19.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
19.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
19.3.2 Operating conditions with low voltage detector (LVD) . . . . . . . . . . . . . 190  
19.3.3 Auxiliary voltage detector (AVD) thresholds . . . . . . . . . . . . . . . . . . . . . 190  
19.3.4 External voltage detector (EVD) thresholds . . . . . . . . . . . . . . . . . . . . . 191  
19.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
19.4.1 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
19.4.2 Supply and clock managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
19.4.3 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
19.5 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
19.5.1 General timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
19.5.2 External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
19.5.3 Crystal and ceramic resonator oscillators . . . . . . . . . . . . . . . . . . . . . . 196  
19.5.4 RC oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
19.5.5 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
19.6 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
19.6.1 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
19.6.2 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
19.7 EMC (electromagnetic compatibility) characteristics . . . . . . . . . . . . . . . 201  
19.7.1 Functional EMS (electromagnetic susceptibility) . . . . . . . . . . . . . . . . . 201  
19.7.2 EMI (electromagnetic interference) . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
19.7.3 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 203  
19.8 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
19.8.1 General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
19.8.2 Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
19.9 Control pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
19.9.1 Asynchronous RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Doc ID 12898 Rev 2  
9/244  
Contents  
ST72321Bxxx-Auto  
19.9.2 ICCSEL/V pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
PP  
19.10 Timer peripheral characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
19.11 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . 212  
19.11.1 SPI (serial peripheral interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
2
19.11.2 I C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
19.12 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
19.12.1 Analog power supply and reference pins . . . . . . . . . . . . . . . . . . . . . . . 218  
19.12.2 General PCB design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
19.12.3 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
20  
21  
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
20.1 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
20.2 Ecopack information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
20.3 Packaging for automatic handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Device configuration and ordering information . . . . . . . . . . . . . . . . . 225  
21.1 Flash devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
21.1.1 Flash configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
21.1.2 Flash ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
21.2 ROM device ordering information and transfer of customer code . . . . . 229  
21.3 Development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
21.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
21.3.2 Evaluation tools and starter kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
21.3.3 Development and debugging tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
21.3.4 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
21.3.5 Socket and emulator adapter information . . . . . . . . . . . . . . . . . . . . . . 234  
22  
Known limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
22.1 All Flash and ROM devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
22.1.1 Unexpected reset fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
22.1.2 External interrupt missed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
22.1.3 Clearing active interrupts outside interrupt routine . . . . . . . . . . . . . . . 239  
22.1.4 SCI wrong break duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
22.1.5 16-bit timer PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
22.1.6 TIMD set simultaneously with OC interrupt . . . . . . . . . . . . . . . . . . . . . 241  
2
22.1.7 I C multimaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
10/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Contents  
22.1.8 Pull-up always active on PE2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
22.2 Limitations specific to 44-pin 32 Kbyte ROM devices . . . . . . . . . . . . . . . 241  
22.2.1 Halt/Active Halt mode power consumption with external clock  
enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
22.2.2 Active Halt power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
22.2.3 I²C exit from Halt/Active Halt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
23  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
Doc ID 12898 Rev 2  
11/244  
List of tables  
ST72321Bxxx-Auto  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Device pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Sectors available in Flash devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Flash control/status register address and reset value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Arithmetic management bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Interrupt management bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Interrupt software priority selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
ST7 clock sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Effect of low power modes on SI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
AVD interrupt control/wake-up capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
SICSR description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Reset source flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Interrupt software priority levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
CPU CC register interrupt bits description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Interrupt software priority levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Interrupt priority bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Interrupt dedicated instruction set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
EICR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Interrupt sensitivity - ei2 (port B3..0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Interrupt sensitivity - ei3 (port B7..4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Interrupt sensitivity - ei0 (port A3..0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Interrupt sensitivity - ei1 (port F2..0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Nested interrupts register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
MCC/RTC low power mode selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
I/O output mode selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
I/O port mode options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
I/O port configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
I/O port configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Effect of low power modes on I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
I/O port interrupt control/wake-up capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
I/O port register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Effect of low power modes on WDG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
WDGCR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Watchdog timer register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Effect of low power modes on MCC/RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
MCC/RTC interrupt control/wake-up capability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
MCCSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Time base selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
MCCBCR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Beep frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Main clock controller register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
ARTCSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Prescaler selection for ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
ARTCAR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
ARTAAR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
PWM frequency versus resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
12/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
List of tables  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
Table 84.  
Table 85.  
Table 86.  
Table 87.  
Table 88.  
Table 89.  
Table 90.  
Table 91.  
Table 92.  
Table 93.  
Table 94.  
Table 95.  
Table 96.  
Table 97.  
Table 98.  
Table 99.  
PWMCR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
PWM output signal polarity selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
PWMDCRx register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
ARTICCSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
ARTICRx register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
PWM auto-reload timer register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Effect of low power modes on 16-bit timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
16-bit timer interrupt control/wake-up capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Timer modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
CR1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
CR2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Timer clock selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
CSR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
16-bit timer register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Effect of low power modes on SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
SPI interrupt control/wake-up capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
SPICR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
SPI master mode SCK frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
SPICSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
SPI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Frame formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Effect of low power modes on SCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
SCI interrupt control/wake-up capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
SCISR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
SCICR1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
SCICR2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
SCIBRR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
SCIERPR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
SCIETPR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Baud rate selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
SCI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Effect of low power modes on I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
I2C interrupt control/wake-up capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
CR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
SR1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
SR2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
CCR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
DR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
OAR1 register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
OAR2 register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
I2C register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Effect of low power modes on ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
ADCCSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
ADCDRH register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
ADCDRL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
ADC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Addressing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
CPU addressing mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Inherent instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Immediate instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Instructions supporting direct, indexed, indirect, and indirect indexed addressing modes 181  
Table 100. Available relative direct/indirect instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Doc ID 12898 Rev 2  
13/244  
List of tables  
ST72321Bxxx-Auto  
Table 101. Instruction groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Table 102. Instruction set overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Table 103. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Table 104. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Table 105. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Table 106. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Table 107. Operating conditions with low voltage detector (LVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Table 108. Auxiliary voltage detector (AVD) thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Table 109. External voltage detector (EVD) thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Table 110. Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Table 111. Oscillators, PLL and LVD current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
Table 112. On-chip peripherals current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Table 113. General timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Table 114. External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Table 115. Crystal and ceramic resonator oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Table 116. OSCRANGE selection for typical resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Table 117. RC oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Table 118. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Table 119. RAM supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Table 120. Dual voltage HDFlash memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Table 121. EMS test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Table 122. EMI emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Table 123. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Table 124. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Table 125. I/O port pin general characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
Table 126. Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Table 127. Asynchronous RESET pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Table 128. ICCSEL/V pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
PP  
Table 129. 8-bit PWM-ART auto-reload timer characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Table 130. 16-bit timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Table 131. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
2
Table 132. I C control interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
Table 133. SCL frequency table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
Table 134. 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
Table 135. ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Table 136. 64-pin (14x14) low profile quad flat package mechanical data. . . . . . . . . . . . . . . . . . . . . 221  
Table 137. 64-pin (10x10) low profile quad flat package mechanical data. . . . . . . . . . . . . . . . . . . . . 222  
Table 138. 44-pin (10x10) low profile quad flat package mechanical data. . . . . . . . . . . . . . . . . . . . . 223  
Table 139. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Table 140. Flash option bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Table 141. Option byte 0 bit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Table 142. Option byte 1 bit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Table 143. Package selection (OPT7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Table 144. STMicroelectronics development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
Table 145. STMicroelectronics development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
Table 146. Suggested list of socket types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
Table 147. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
14/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Device block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
64-pin LQFP 14x14 and 10x10 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
44-pin LQFP package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Memory map and sector address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Typical ICC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Stack manipulation example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Clock, reset and supply block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 10. PLL block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 11. Reset block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 12. RESET sequence phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 13. RESET sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 14. Low voltage detector versus reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 15. Using the AVD to monitor V (AVDS bit = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
DD  
Figure 16. Using the voltage detector to monitor the EVD pin (AVDS bit = 1). . . . . . . . . . . . . . . . . . . 47  
Figure 17. Interrupt processing flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 18. Priority decision process flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 19. Concurrent interrupt management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 20. Nested interrupt management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 21. External interrupt control bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 22. Power saving mode transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 23. Slow mode clock transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 24. Wait mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 25. Active Halt timing overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 26. Active Halt mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 27. Halt timing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 28. Halt mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 29. I/O port general block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 30. Interrupt I/O port state transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 31. Watchdog block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 32. Approximate timeout duration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 33. Exact timeout duration (t  
and t  
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
min  
max  
Figure 34. Main clock controller (MCC/RTC) block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 35. PWM auto-reload timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 36. Output compare control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Figure 37. PWM auto-reload timer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Figure 38. PWM signal from 0% to 100% duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Figure 39. External event detector example (3 counts) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Figure 40. Input capture timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 41. Timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 42. 16-bit read sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Figure 43. Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 44. Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 45. Counter timing diagram, internal clock divided by 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 46. Input capture block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 47. Input capture timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 48. Output compare block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Doc ID 12898 Rev 2  
15/244  
List of figures  
ST72321Bxxx-Auto  
Figure 49. Output compare timing diagram, fTIMER = fCPU/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Figure 50. Output compare timing diagram, fTIMER = fCPU/4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Figure 51. One pulse mode cycle flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 52. One pulse mode timing example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 53. Pulse width modulation mode timing example with 2 output compare functions . . . . . . . 111  
Figure 54. Pulse width modulation cycle flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Figure 55. Serial peripheral interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Figure 56. Single master/single slave application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Figure 57. Generic SS timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Figure 58. Hardware/Software slave select management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Figure 59. Data clock timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Figure 60. Clearing the WCOL bit (Write Collision Flag) software sequence . . . . . . . . . . . . . . . . . . 130  
Figure 61. Single master / multiple slave configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Figure 62. SCI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Figure 63. Word length programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Figure 64. SCI baud rate and extended prescaler block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Figure 65. Bit sampling in reception mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Figure 66. I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Figure 67. I2C interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Figure 68. Transfer sequencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Figure 69. Interrupt control logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Figure 70. ADC block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Figure 71. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Figure 72. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Figure 73.  
f
max versus V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
CPU  
DD  
Figure 74. Typical application with an external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Figure 75. Typical application with a crystal or ceramic resonator. . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Figure 76. Application with a crystal or ceramic resonator for ROM (LQFP64 or any 48/60K ROM) 197  
Figure 77. Typical f  
versus T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
OSC(RCINT)  
A
Figure 78. Integrated PLL jitter versus signal frequency(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Figure 79. Unused I/O pins configured as input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Figure 80. Typical I vs V with V = V  
PU  
DD  
IN  
SS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
Figure 81. Typical V at V = 5V (standard) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
OL  
DD  
Figure 82. Typical V at V = 5V (high-sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
OL  
DD  
Figure 83. Typical V at V = 5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
OH  
DD  
Figure 84. Typical V versus V (standard). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
OL  
DD  
Figure 85. Typical V versus V (high-sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
OL  
DD  
Figure 86. Typical V - V versus V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
DD  
OH  
DD  
Figure 87. RESET pin protection when LVD is enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Figure 88. RESET pin protection when LVD is disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Figure 89. Two typical applications with ICCSEL/V pin(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
PP  
Figure 90. SPI slave timing diagram with CPHA = 0(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Figure 91. SPI slave timing diagram with CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Figure 92. SPI master timing diagram(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
2
Figure 93. Typical application with I C BUS and timing diagram(1) . . . . . . . . . . . . . . . . . . . . . . . . . 216  
Figure 94.  
R
maximum versus f  
with C  
= 0pF(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
AIN  
ADC  
AIN  
Figure 95. Recommended C  
and R  
values(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
AIN  
AIN  
Figure 96. Typical A/D converter application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
Figure 97. Power supply filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Figure 98. ADC error classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Figure 99. 64-pin (14x14) low profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Figure 100. 64-pin (10x10) low profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
16/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
List of figures  
Figure 101. 44-pin (10x10) low profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
Figure 102. Pin 1 orientation in tape and reel conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Figure 103. ST72F321Bxxx-Auto Flash commercial product structure . . . . . . . . . . . . . . . . . . . . . . . . 228  
Figure 104. ST72P321Bxxx-Auto FastROM commercial product structure. . . . . . . . . . . . . . . . . . . . . 230  
Figure 105. ST72321Bxxx-Auto ROM commercial product structure . . . . . . . . . . . . . . . . . . . . . . . . . 231  
Figure 106. ST72321B-Auto microcontroller FASTROM/ROM option list. . . . . . . . . . . . . . . . . . . . . . 232  
Doc ID 12898 Rev 2  
17/244  
Description  
ST72321Bxxx-Auto  
1
Description  
The ST72321Bxxx-Auto Flash and ROM devices are members of the ST7 microcontroller  
family designed for mid-range automotive applications running from 3.8 to 5.5 V.  
All devices are based on a common industry-standard 8-bit core, featuring an enhanced  
instruction set and are available with Flash or ROM program memory. The ST7 family  
architecture offers both power and flexibility to software developers, enabling the design of  
highly efficient and compact application code.  
The on-chip peripherals include an A/D converter, a PWM autoreload timer, two general  
2
purpose timers, I C, SPI, and SCI interfaces.  
For power economy, the microcontroller can switch dynamically into Wait, Slow, Active Halt  
or Halt mode when the application is in idle or standby state.  
Typical applications include all types of car body applications such as window lift, DC motor  
control, rain sensors, car body controllers, low end junction boxes and auxiliary functions in  
car radios.  
Related documentation  
Migrating applications from ST72511/311/314 to ST72521/321/324 (AN1131)  
18/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Figure 1.  
Description  
Device block diagram  
8-BIT CORE  
ALU  
PROGRAM  
MEMORY  
(32 - 60 Kbytes)  
RESET  
CONTROL  
V
PP  
RAM  
TLI  
(1024 - 2048 bytes)  
V
SS  
DD  
LVD  
AVD  
OSC  
V
EVD  
WATCHDOG  
I2C  
OSC1  
OSC2  
PA7:0  
(8-bits)  
MCC/RTC/BEEP  
PORT A  
PORT F  
TIMER A  
BEEP  
PORT B  
PWM ART  
PORT C  
TIMER B  
SPI  
PF7:0  
PB7:0  
(8-bits)  
(8-bits)  
PORT E  
PC7:0  
(8-bits)  
PE7:0  
(8-bits)  
SCI  
PORT D  
PD7:0  
(8-bits)  
10-BIT ADC  
V
AREF  
V
SSA  
Doc ID 12898 Rev 2  
19/244  
Package pinout and pin description  
ST72321Bxxx-Auto  
2
Package pinout and pin description  
2.1  
Package pinout  
Figure 2.  
64-pin LQFP 14x14 and 10x10 package pinout  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
VSS_1  
VDD_1  
PA3 (HS)  
PA2  
PA1  
PA0  
PC7 / SS / AIN15  
PC6 / SCK / ICCCLK  
PC5 / MOSI / AIN14  
PC4 / MISO / ICCDATA  
PC3 (HS) / ICAP1_B  
PC2 (HS) / ICAP2_B  
PC1 / OCMP1_B / AIN13  
PC0 / OCMP2_B / AIN12  
VSS_0  
48  
(HS) PE4  
(HS) PE5  
(HS) PE6  
1
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
2
3
(HS) PE7  
4
ei0  
PWM3 / PB0  
PWM2 / PB1  
PWM1 / PB2  
PWM0 / PB3  
5
6
ei2  
ei3  
7
8
ARTCLK / (HS) PB4  
ARTIC1 / PB5  
ARTIC2 / PB6  
PB7  
9
10  
11  
12  
13  
14  
15  
16  
AIN0 / PD0  
AIN1 / PD1  
AIN2 / PD2  
AIN3 / PD3  
ei1  
VDD_0  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
(HS) 20mA high sink capability  
eix associated external interrupt vector  
20/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Figure 3. 44-pin LQFP package pinout  
Package pinout and pin description  
44 43 42 41 40 39 38 37 36 35 34  
RDI / PE1  
PWM3 / PB0  
PWM2 / PB1  
PWM1 / PB2  
PWM0 / PB3  
ARTCLK / (HS) PB4  
AIN0 / PD0  
1
2
3
4
5
6
7
8
9
VSS_1  
VDD_1  
PA3 (HS)  
PC7 / SS / AIN15  
33  
32  
31  
30  
ei0  
ei2  
ei3  
29 PC6 / SCK / ICCCLK  
28 PC5 / MOSI / AIN14  
27 PC4 / MISO / ICCDATA  
26 PC3 (HS) / ICAP1_B  
25 PC2 (HS) / ICAP2_B  
24 PC1 / OCMP1_B / AIN13  
AIN1 / PD1  
AIN2 / PD2  
ei1  
AIN3 / PD3 10  
AIN4 / PD4 11  
23  
PC0 / OCMP2_B / AIN12  
12 13 14 15 16 17 18 19 20 21 22  
(HS) 20mA high sink capability  
eix associated external interrupt vector  
1. Pin 22 is not connected on 48 Kbyte and 64 Kbyte ROM devices  
For external pin connection guidelines, refer to Section 19: Electrical characteristics.  
Doc ID 12898 Rev 2  
21/244  
Package pinout and pin description  
ST72321Bxxx-Auto  
2.2  
Pin description  
In the device pin description table, the RESET configuration of each pin is shown in bold.  
This configuration is valid as long as the device is in reset state.  
Refer to Section 9: I/O ports for more details on the software configuration of the I/O ports.  
Table 2.  
Pin No.  
Device pin description  
Level  
Port  
Main  
function  
(after  
Input  
Output  
Pin name  
Alternate function  
reset)  
-
1
2
3
4
PE4(HS)  
I/O CT HS  
I/O CT HS  
I/O CT HS  
I/O CT HS  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Port E4  
Port E5  
Port E6  
Port E7  
(1)(2)  
-
PE5(HS)  
PE6(HS)  
PE7(HS)  
(1)(2)  
-
(1)(2)  
-
(1)(2)  
5
6
7
8
2
3
4
5
PB0/PWM3  
PB1/PWM2  
PB2/PWM1  
PB3/PWM0  
I/O CT  
I/O CT  
I/O CT  
I/O CT  
X
X
X
X
ei2  
ei2  
ei2  
X
X
X
X
X
X
X
X
Port B0 PWM Output 3  
Port B1 PWM Output 2  
Port B2 PWM Output 1  
Port B3 PWM Output 0  
ei2  
PWM-ART External  
9
6
PB4(HS)/ARTCLK I/O CT HS  
X
X
X
X
ei3  
ei3  
ei3  
X
X
X
X
X
X
X
X
Port B4  
Clock  
-
PWM-ART Input  
Port B5  
10  
11  
12  
PB5 / ARTIC1  
PB6 / ARTIC2  
PB7  
I/O CT  
I/O CT  
I/O CT  
(1)(2)  
Capture 1  
-
PWM-ART Input  
Port B6  
(1)(2)  
Capture 2  
-
ei3  
Port B7  
(1)(2)  
13  
14  
15  
16  
17  
18  
7
8
9
PD0/AIN0  
PD1/AIN1  
PD2/AIN2  
I/O CT  
I/O CT  
I/O CT  
I/O CT  
I/O CT  
I/O CT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Port D0 ADC Analog Input 0  
Port D1 ADC Analog Input 1  
Port D2 ADC Analog Input 2  
Port D3 ADC Analog Input 3  
Port D4 ADC Analog Input 4  
Port D5 ADC Analog Input 5  
10 PD3/AIN3  
11 PD4/AIN4  
12 PD5/AIN5  
-
19  
PD6/AIN6  
I/O CT  
X
X
X
X
X
X
X
X
X
X
Port D6 ADC Analog Input 6  
(1)(2)  
-
20  
21  
PD7/AIN7  
I/O CT  
I
Port D7 ADC Analog Input 7  
(2)(1)  
(3)  
13 VAREF  
Analog Reference Voltage for ADC  
22/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Package pinout and pin description  
Table 2.  
Pin No.  
Device pin description (continued)  
Level  
Port  
Main  
function  
(after  
reset)  
Input  
Output  
Pin name  
Alternate function  
(3)  
(3)  
22  
23  
24  
14 VSSA  
S
S
S
Analog Ground Voltage  
Digital Main Supply Voltage  
Digital Ground Voltage  
-
-
VDD_3  
(3)  
VSS_3  
ADC  
Analog  
Input 8  
Main clock  
out (fOSC/2)  
25  
15 PF0/MCO/AIN8  
I/O CT  
X
ei1  
ei1  
X
X
X
Port F0  
26  
27  
16 PF1 (HS)/BEEP  
17 PF2 (HS)  
I/O CT HS  
I/O CT HS  
X
X
X
X
X
X
Port F1 Beep signal output  
Port F2  
ei1  
Timer A  
Port F3 Output  
ADC  
Analog  
-
PF3/OCMP2_A/  
AIN9  
28  
29  
30  
I/O CT  
I/O CT  
I/O CT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
(1)(2)  
Compare 2 Input 9  
Timer A  
Port F4 Output  
ADC  
Analog  
PF4/OCMP1_A/  
AIN10  
18  
Compare 1 Input 10  
Timer A  
Port F5 Input  
Capture 2  
ADC  
Analog  
Input 11  
-
PF5/ICAP2_A/  
AIN11  
(1)(2)  
31  
32  
33  
19 PF6(HS)/ICAP1_A I/O CT HS  
PF7(HS)/  
X
X
X
X
X
X
X
X
Port F6 Timer A Input Capture 1  
Timer A External Clock  
20  
I/O CT HS  
Port F7  
Source  
EXTCLK_A  
(3)  
21 VDD_0  
S
S
Digital Main Supply Voltage  
Digital Ground Voltage  
(3)  
34 22(4) VSS_0  
Timer B  
Port C0 Output  
ADC  
Analog  
PC0/OCMP2_B/  
AIN12  
35  
36  
23  
24  
I/O CT  
I/O CT  
X
X
X
X
X
X
X
X
X
X
Compare 2 Input 12  
Timer B  
Port C1 Output  
ADC  
Analog  
PC1/OCMP1_B/  
AIN13  
Compare 1 Input 13  
PC2(HS)/  
ICAP2_B  
37  
38  
25  
26  
I/O CT HS  
I/O CT HS  
X
X
X
X
X
X
X
X
Port C2 Timer B Input Capture 2  
PC3(HS)/  
ICAP1_B  
Port C3 Timer B Input Capture 1  
SPI Master  
ICC Data  
PC4/MISO/  
ICCDATA  
39  
40  
27  
I/O CT  
X
X
X
X
X
X
X
X
Port C4 In / Slave  
Input  
Out Data  
SPI Master ADC  
Port C5 Out / Slave Analog  
28 PC5/MOSI/AIN14 I/O CT  
X
In Data  
Input 14  
Doc ID 12898 Rev 2  
23/244  
Package pinout and pin description  
ST72321Bxxx-Auto  
Alternate function  
Table 2.  
Pin No.  
Device pin description (continued)  
Level  
Port  
Main  
function  
(after  
Input  
Output  
Pin name  
reset)  
SPI Serial  
Clock  
ICC Clock  
Output  
Caution: Negative  
current injection not  
allowed on this pin  
(Flash devices only)  
41  
42  
29 PC6/SCK/ICCCLK I/O CT  
X
X
X
X
X
X
X
X
Port C6  
SPI Slave  
Port C7 Select  
ADC  
Analog  
30 PC7/SS/AIN15  
-
I/O CT  
X
(active low) Input 15  
43  
44  
45  
PA0  
PA1  
PA2  
I/O CT  
I/O CT  
I/O CT  
X
X
ei0  
ei0  
ei0  
X
X
X
X
Port A0  
Port A1  
(1)(2)  
-
(2)(1)  
-
X
X
X
X
X
X
Port A2  
Port A3  
(1)(2)  
46  
47  
48  
49  
50  
51  
52  
31 PA3(HS)  
I/O CT HS  
S
ei0  
(3)  
32 VDD_1  
Digital Main Supply Voltage  
Digital Ground Voltage  
Port A4  
(3)  
33 VSS_1  
S
34 PA4(HS)  
I/O CT HS  
I/O CT HS  
I/O CT HS  
I/O CT HS  
X
X
X
X
X
X
X
X
T
T
X
X
35 PA5(HS)  
Port A5  
36 PA6(HS)/SDAI  
37 PA7(HS)/SCLI  
Port A6  
Port A7  
I2C Data  
I2C Clock  
Must be tied low. In Flash  
programming mode, this pin acts  
as the programming voltage input  
VPP. see for more details. High  
voltage must not be applied to  
ROM devices.  
53  
38 VPP/ ICCSEL  
39 RESET  
I
54  
55  
56  
57  
58  
I/O CT  
Top priority non-maskable interrupt  
External voltage detector  
-
-
EVD  
TLI  
I
I
A
CT  
X
Top level interrupt input pin  
Digital Ground Voltage  
(3)  
40 VSS_2  
S
41 OSC2(5)  
I/O  
Resonator oscillator inverter output  
External clock input or Resonator  
oscillator inverter input  
59  
42 OSC1(5)  
I
(3)  
60  
61  
43 VDD_2  
S
Digital Main Supply Voltage  
44 PE0/TDO  
I/O CT  
X
X
X
X
Port E0 SCI Transmit Data Out  
24/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Package pinout and pin description  
Table 2.  
Pin No.  
Device pin description (continued)  
Level  
Port  
Main  
function  
(after  
reset)  
Input  
Output  
Pin name  
Alternate function  
62  
63  
1
PE1/RDI  
I/O CT  
X
X
X
X
X
Port E1 SCI Receive Data In  
(1)  
-
PE2  
PE3  
I/O CT  
I/O CT  
X
X(6) X(6) Port E2  
-
64  
X
X
X
Port E3  
(2)(1)  
1. On the chip, each I/O port may have up to 8 pads. Pads that are not bonded to external pins are in input pull-up  
configuration after reset. The configuration of these pads must be kept at reset state to avoid added current consumption.  
2. On the chip, each I/O port may have up to eight pads. Pads that are not bonded to external pins are in input pull-up  
configuration after reset. The configuration of these pads must be kept at reset state to avoid added current consumption.  
3. It is mandatory to connect all available VDD and VAREF pins to the supply voltage and all VSS and VSSA pins to ground.  
4. Not connected in 48 Kbyte and 64 Kbyte ROM devices  
5. OSC1 and OSC2 pins connect a crystal/ceramic resonator or an external source to the on-chip oscillator; see Section 6.4:  
Multi-oscillator (MO) and Section 19.5: Clock and timing characteristics for more details.  
6. Pull-up always activated on PE2; see limitation Section 22.1.8: Pull-up always active on PE2.  
Legend / Abbreviations for Table 2:  
Type:  
I = input  
O = output  
S = supply  
Input level:  
A = dedicated analog input  
In/Output level:  
C = CMOS 0.3V /0.7V  
DD DD  
C = CMOS 0.3V /0.7V with input trigger  
T
DD  
DD  
Output level:  
HS = 20mA high sink (on N-buffer only)  
Port and control configuration:  
Input:  
float = floating  
wpu = weak pull-up  
(a)  
int = interrupt  
ana = analog  
(b)  
Output:  
OD = open-drain  
PP = push-pull  
a. In the interrupt input column, “eiX” defines the associated external interrupt vector. If the weak pull-up column  
(wpu) is merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input, otherwise  
the configuration is floating interrupt input.  
b. In the open-drain output column, “T” defines a true open-drain I/O (P-Buffer and protection diode to VDD are not  
implemented). See Section 9: I/O ports and Section 19.8: I/O port pin characteristics for more details.  
Doc ID 12898 Rev 2  
25/244  
Register and memory map  
ST72321Bxxx-Auto  
3
Register and memory map  
As shown in Figure 4, the MCU is capable of addressing 64 Kbytes of memories and I/O  
registers.  
The available memory locations consist of 128 bytes of register locations, up to 2 Kbytes of  
RAM and up to 60 Kbytes of user program memory. The RAM space includes up to 256  
bytes for the stack from 0100h to 01FFh.  
The highest address bytes contain the user reset and interrupt vectors.  
IMPORTANT: Memory locations marked as “Reserved” must never be accessed. Accessing  
a reserved area can have unpredictable effects on the device.  
Related documentation  
Executing Code in ST7 RAM (AN 985)  
Figure 4.  
Memory map  
0000h  
0080h  
HW Registers  
Short Addressing  
RAM (zero page)  
(see Table 3)  
007Fh  
0080h  
00FFh  
0100h  
RAM  
256 bytes Stack  
(2048, 1536 or 1024 bytes)  
01FFh  
1000h  
4000h  
8000h  
0200h  
087Fh  
0880h  
60 Kbytes  
48 Kbytes  
32 Kbytes  
16-bit Addressing  
RAM  
Reserved  
or 047Fh  
or 067Fh  
or 087Fh  
0FFFh  
1000h  
Program Memory  
(60, 48 or 32 Kbytes)  
FFDFh  
FFE0h  
Interrupt and Reset Vectors  
(see Table 19)  
FFFFh  
FFFFh  
Table 3.  
Address  
Hardware register map  
Block  
Register label  
Register name  
Reset status Remarks  
0000h  
0001h  
0002h  
PADR  
PADDR  
PAOR  
Port A Data Register  
Port A Data Direction Register  
Port A Option Register  
00h(1)  
00h  
00h  
R/W  
R/W  
R/W  
Port A(2)  
0003h  
0004h  
0005h  
PBDR  
PBDDR  
PBOR  
Port B Data Register  
Port B Data Direction Register  
Port B Option Register  
00h(1)  
00h  
00h  
R/W  
R/W  
R/W  
Port B(2)  
Port C  
0006h  
0007h  
0008h  
PCDR  
PCDDR  
PCOR  
Port C Data Register  
Port C Data Direction Register  
Port C Option Register  
00h(1)  
00h  
00h  
R/W  
R/W  
R/W  
0009h  
000Ah  
000Bh  
PDDR  
PDDDR  
PDOR  
Port D Data Register  
Port D Data Direction Register  
Port D Option Register  
00h(1)  
00h  
00h  
R/W  
R/W  
R/W  
Port D(2)  
26/244  
Doc ID 12898 Rev 2  
 
 
ST72321Bxxx-Auto  
Register and memory map  
Reset status Remarks  
Table 3.  
Address  
Hardware register map (continued)  
Block  
Register label  
Register name  
000Ch  
000Dh  
000Eh  
PEDR  
PEDDR  
PEOR  
Port E Data Register  
Port E Data Direction Register  
Port E Option Register  
00h(1)  
00h  
00h  
R/W  
Port E(2)  
R/W(2)  
R/W(2)  
000Fh  
0010h  
0011h  
PFDR  
PFDDR  
PFOR  
Port F Data Register  
Port F Data Direction Register  
Port F Option Register  
00h(1)  
00h  
00h  
R/W  
R/W  
R/W  
Port F(2)  
0012h  
to  
Reserved area (6 bytes)  
0017h  
0018h  
0019h  
001Ah  
001Bh  
001Ch  
001Dh  
001Eh  
I2CCR  
I2C Control Register  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
R/W  
I2CSR1  
I2CSR2  
I2CCCR  
I2COAR1  
I2COAR2  
I2CDR  
I2C Status Register 1  
I2C Status Register 2  
I2C Clock Control Register  
I2C Own Address Register 1  
I2C Own Address Register2  
I2C Data Register  
Read only  
Read only  
R/W  
R/W  
R/W  
I2C  
R/W  
001Fh  
0020h  
Reserved area (2 bytes)  
0021h  
0022h  
0023h  
SPIDR  
SPICR  
SPICSR  
SPI Data I/O Register  
SPI Control Register  
SPI Control/Status Register  
xxh  
0xh  
00h  
R/W  
R/W  
R/W  
SPI  
0024h  
0025h  
0026h  
0027h  
ISPR0  
ISPR1  
ISPR2  
ISPR3  
Interrupt Software Priority Register 0  
Interrupt Software Priority Register 1  
Interrupt Software Priority Register 2  
Interrupt Software Priority Register 3  
FFh  
FFh  
FFh  
FFh  
R/W  
R/W  
R/W  
R/W  
ITC  
0028h  
0029h  
EICR  
External Interrupt Control Register  
Flash Control/Status Register  
00h  
00h  
7Fh  
R/W  
R/W  
R/W  
FLASH  
FCSR  
002Ah WATCHDOG WDGCR  
Watchdog Control Register  
002Bh  
SICSR  
System Integrity Control/Status Register  
000x 000xb R/W  
002Ch  
002Dh  
MCCSR  
MCCBCR  
Main Clock Control/Status Register  
Main Clock Controller/Beep Control Register  
00h  
00h  
R/W  
R/W  
MCC  
002Eh  
to  
Reserved area (3 bytes)  
0030h  
Doc ID 12898 Rev 2  
27/244  
Register and memory map  
ST72321Bxxx-Auto  
Table 3.  
Address  
Hardware register map (continued)  
Block  
Register label  
Register name  
Reset status Remarks  
0031h  
0032h  
0033h  
0034h  
0035h  
0036h  
0037h  
0038h  
0039h  
003Ah  
003Bh  
003Ch  
003Dh  
003Eh  
003Fh  
TACR2  
TACR1  
TACSR  
TAIC1HR  
TAIC1LR  
TAOC1HR  
TAOC1LR  
TACHR  
Timer A Control Register 2  
Timer A Control Register 1  
Timer A Control/Status Register  
Timer A Input Capture 1 High Register  
Timer A Input Capture 1 Low Register  
Timer A Output Compare 1 High Register  
Timer A Output Compare 1 Low Register  
Timer A Counter High Register  
00h  
00h  
R/W  
R/W  
xxxx x0xxb R/W  
xxh  
xxh  
80h  
00h  
FFh  
FCh  
FFh  
FCh  
xxh  
xxh  
80h  
00h  
Read only  
Read only  
R/W  
R/W  
TIMER A  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
R/W  
TACLR  
Timer A Counter Low Register  
TAACHR  
TAACLR  
TAIC2HR  
TAIC2LR  
TAOC2HR  
TAOC2LR  
Timer A Alternate Counter High Register  
Timer A Alternate Counter Low Register  
Timer A Input Capture 2 High Register  
Timer A Input Capture 2 Low Register  
Timer A Output Compare 2 High Register  
Timer A Output Compare 2 Low Register  
R/W  
0040h  
Reserved area (1 byte)  
0041h  
0042h  
0043h  
0044h  
0045h  
0046h  
0047h  
0048h  
0049h  
004Ah  
004Bh  
004Ch  
004Dh  
004Eh  
004Fh  
TBCR2  
TBCR1  
TBCSR  
TBIC1HR  
TBIC1LR  
TBOC1HR  
TBOC1LR  
TBCHR  
Timer B Control Register 2  
Timer B Control Register 1  
Timer B Control/Status Register  
Timer B Input Capture 1 High Register  
Timer B Input Capture 1 Low Register  
Timer B Output Compare 1 High Register  
Timer B Output Compare 1 Low Register  
Timer B Counter High Register  
00h  
00h  
R/W  
R/W  
xxxx x0xxb R/W  
xxh  
xxh  
80h  
00h  
FFh  
FCh  
FFh  
FCh  
xxh  
xxh  
80h  
00h  
Read only  
Read only  
R/W  
R/W  
TIMER B  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
R/W  
TBCLR  
Timer B Counter Low Register  
TBACHR  
TBACLR  
TBIC2HR  
TBIC2LR  
TBOC2HR  
TBOC2LR  
Timer B Alternate Counter High Register  
Timer B Alternate Counter Low Register  
Timer B Input Capture 2 High Register  
Timer B Input Capture 2 Low Register  
Timer B Output Compare 2 High Register  
Timer B Output Compare 2 Low Register  
R/W  
0050h  
0051h  
0052h  
0053h  
0054h  
0055h  
0056h  
0057h  
SCISR  
SCIDR  
SCIBRR  
SCICR1  
SCICR2  
SCIERPR  
SCI Status Register  
SCI Data Register  
SCI Baud Rate Register  
SCI Control Register 1  
SCI Control Register 2  
SCI Extended Receive Prescaler Register  
Reserved area  
SCI Extended Transmit Prescaler Register  
C0h  
xxh  
00h  
Read only  
R/W  
R/W  
x000 0000b R/W  
SCI  
00h  
00h  
---  
R/W  
R/W  
SCIETPR  
00h  
R/W  
0058h  
to  
Reserved Area (24 bytes)  
006Fh  
0070h  
0071h  
0072h  
ADCCSR  
ADCDRH  
ADCDRL  
Control/Status Register  
Data High Register  
Data Low Register  
00h  
00h  
00h  
R/W  
Read only  
Read only  
ADC  
28/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Register and memory map  
Reset status Remarks  
Table 3.  
Address  
Hardware register map (continued)  
Block  
Register label  
Register name  
0073h  
0074h  
0075h  
0076h  
0077h  
0078h  
0079h  
007Ah  
007Bh  
007Ch  
007Dh  
PWMDCR3  
PWMDCR2  
PWMDCR1  
PWMDCR0  
PWMCR  
PWM AR Timer Duty Cycle Register 3  
PWM AR Timer Duty Cycle Register 2  
PWM AR Timer Duty Cycle Register 1  
PWM AR Timer Duty Cycle Register 0  
PWM AR Timer Control Register  
Auto-Reload Timer Control/Status Register  
Auto-Reload Timer Counter Access Register  
Auto-Reload Timer Auto-Reload Register  
AR Timer Input Capture Control/Status Reg.  
AR Timer Input Capture Register 1  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PWM ART ARTCSR  
ARTCAR  
ARTARR  
ARTICCSR  
ARTICR1  
R/W  
Read only  
Read only  
ARTICR2  
AR Timer Input Capture Register 1  
007Eh  
007Fh  
Reserved area (2 bytes)  
1. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the  
I/O pins are returned instead of the DR register contents.  
2. The bits associated with unavailable pins must always keep their reset value.  
Note:  
Legend: x = undefined, R/W = read/write  
Doc ID 12898 Rev 2  
29/244  
Flash program memory  
ST72321Bxxx-Auto  
4
Flash program memory  
4.1  
Introduction  
The ST7 dual voltage High Density Flash (HDFlash) is a non-volatile memory that can be  
electrically erased as a single block or by individual sectors and programmed on a byte-by-  
byte basis using an external V supply.  
PP  
The HDFlash devices can be programmed and erased off-board (plugged in a programming  
tool) or on-board using ICP (in-circuit programming) or IAP (in-application programming).  
The array matrix organization allows each sector to be erased and reprogrammed without  
affecting other sectors.  
4.2  
Main features  
3 Flash programming modes:  
Insertion in a programming tool. In this mode, all sectors including option bytes  
can be programmed or erased.  
ICP (in-circuit programming). In this mode, all sectors including option bytes can  
be programmed or erased without removing the device from the application board.  
IAP (in-application programming). In this mode, all sectors except Sector 0 can be  
programmed or erased without removing the device from the application board  
and while the application is running.  
ICT (in-circuit testing) for downloading and executing user application test patterns in  
RAM  
Readout protection  
Register Access Security System (RASS) to prevent accidental programming or  
erasing  
4.3  
Structure  
The Flash memory is organized in sectors and can be used for both code and data storage.  
Depending on the overall Flash memory size in the microcontroller device, there are up to  
three user sectors (see Table 4). Each of these sectors can be erased independently to  
avoid unnecessary erasing of the whole Flash memory when only a partial erasing is  
required.  
Table 4.  
Sectors available in Flash devices  
Flash size (bytes)  
Available sectors  
4K  
8K  
Sector 0  
Sectors 0, 1  
Sectors 0, 1, 2  
> 8K  
The first two sectors have a fixed size of 4 Kbytes (see Figure 5). They are mapped in the  
upper part of the ST7 addressing space so the reset and interrupt vectors are located in  
Sector 0 (F000h-FFFFh).  
30/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Figure 5.  
Flash program memory  
Memory map and sector address  
4K  
8K  
10K  
16K  
24K  
32K  
48K  
60K  
FLASH  
MEMORY SIZE  
1000h  
3FFFh  
7FFFh  
9FFFh  
BFFFh  
D7FFh  
DFFFh  
EFFFh  
FFFFh  
SECTOR 2  
52 Kbytes  
2 Kbytes  
8 Kbytes 16 Kbytes 24 Kbytes 40 Kbytes  
4 Kbytes  
4 Kbytes  
SECTOR 1  
SECTOR 0  
4.3.1  
Readout protection  
Readout protection, when selected, provides a protection against program memory content  
extraction and against write access to Flash memory. Even if no protection can be  
considered as totally unbreakable, the feature provides a very high level of protection for a  
general purpose microcontroller.  
In Flash devices, this protection is removed by reprogramming the option. In this case, the  
entire program memory is first automatically erased and the device can be reprogrammed.  
Note:  
4.4  
ICC interface  
ICC needs a minimum of 4 and up to 6 pins to be connected to the programming tool (see  
Figure 6). These pins are:  
RESET:  
device reset  
V
:
device power supply ground  
ICC output serial clock pin  
ICC input/output serial data pin  
programming voltage  
SS  
ICCCLK:  
ICCDATA:  
ICCSEL/V  
:
PP  
OSC1 (or OSCIN):main clock input for external source (optional)  
application board power supply (optional, see Figure 6, Note 3)  
V
:
DD  
Doc ID 12898 Rev 2  
31/244  
 
Flash program memory  
Figure 6. Typical ICC interface  
ST72321Bxxx-Auto  
PROGRAMMING TOOL  
ICC CONNECTOR  
ICC Cable  
APPLICATION BOARD  
ICC CONNECTOR  
(See Note 3)  
OPTIONAL  
HE10 CONNECTOR TYPE  
9
7
5
6
3
1
2
(See Note 4)  
10  
8
4
APPLICATION  
RESET SOURCE  
See Note 2  
10k  
APPLICATION  
POWER SUPPLY  
CL2  
CL1  
See Note 1  
APPLICATION  
I/O  
ST7  
1. If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal isolation is necessary. As soon as the  
programming tool is plugged to the board, even if an ICC session is not in progress, the ICCCLK and ICCDATA pins are  
not available for the application. If they are used as inputs by the application, isolation such as a serial resistor has to  
implemented in case another device forces the signal. Refer to the programming tool documentation for recommended  
resistor values.  
2. During the ICC session, the programming tool must control the RESET pin. This can lead to conflicts between the  
programming tool and the application reset circuit if it drives more than 5mA at high level (push-pull output or pull-up  
resistor < 1K). A schottky diode can be used to isolate the application RESET circuit in this case. When using a classical  
RC network with R > 1K or a reset management IC with open-drain output and pull-up resistor > 1K, no additional  
components are needed. In all cases the user must ensure that no external reset is generated by the application during the  
ICC session.  
3. The use of Pin 7 of the ICC connector depends on the programming tool architecture. This pin must be connected when  
using most ST programming tools (it is used to monitor the application power supply). Please refer to the programming tool  
manual.  
4. Pin 9 has to be connected to the OSC1 or OSCIN pin of the ST7 when the clock is not available in the application or if the  
selected clock option is not programmed in the option byte. ST7 devices with multi-oscillator capability need to have OSC2  
grounded in this case.  
4.5  
ICP (in-circuit programming)  
To perform ICP the microcontroller must be switched to ICC (in-circuit communication) mode  
by an external controller or programming tool.  
Depending on the ICP code downloaded in RAM, Flash memory programming can be fully  
customized (number of bytes to program, program locations, or selection serial  
communication interface for downloading).  
When using an STMicroelectronics or third-party programming tool that supports ICP and  
the specific microcontroller device, the user needs only to implement the ICP hardware  
interface on the application board (see Figure 6). For more details on the pin locations, refer  
to the device pinout description.  
32/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Flash program memory  
4.6  
IAP (in-application programming)  
This mode uses a BootLoader program previously stored in Sector 0 by the user (in ICP  
mode or by plugging the device in a programming tool).  
This mode is fully controlled by user software. This allows it to be adapted to the user  
application, (such as user-defined strategy for entering programming mode, choice of  
communications protocol used to fetch the data to be stored). For example, it is possible to  
download code from the interface and program it in the Flash. IAP mode can be used to  
program any of the Flash sectors except Sector 0, which is write/erase protected to allow  
recovery in case errors occur during the programming operation.  
4.7  
4.8  
Related documentation  
For details on Flash programming and ICC protocol, refer to the ST7 Flash Programming  
Reference Manual and to the ST7 ICC Protocol Reference Manual.  
Flash control/status register (FCSR)  
FSCR  
7
Reset value: 0000 0000 (00h)  
6
0
5
0
4
0
3
0
2
0
1
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
This register is reserved for use by programming tool software. It controls the Flash  
programming and erasing operations.  
Table 5.  
Flash control/status register address and reset value  
Address (Hex.) Register label  
7
6
5
4
3
2
1
0
FCSR  
0029h  
Reset value  
0
0
0
0
0
0
0
0
Doc ID 12898 Rev 2  
33/244  
Central processing unit (CPU)  
ST72321Bxxx-Auto  
5
Central processing unit (CPU)  
5.1  
Introduction  
This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-  
bit data manipulation.  
5.2  
Main features  
Enable executing 63 basic instructions  
Fast 8-bit by 8-bit multiply  
17 main addressing modes (with indirect addressing mode)  
Two 8-bit index registers  
16-bit stack pointer  
Low power Halt and Wait modes  
Priority maskable hardware interrupts  
Non-maskable software/hardware interrupts  
5.3  
CPU registers  
The six CPU registers shown in Figure 7 are not present in the memory mapping and are  
accessed by specific instructions.  
Figure 7.  
CPU registers  
7
0
Accumulator  
Reset value = XXh  
7
0
0
X index register  
Y index register  
Reset value = XXh  
7
Reset value = XXh  
15  
PCH  
8 7  
PCL  
0
0
Program counter  
Condition code register  
Stack pointer  
Reset value = reset vector @ FFFEh-FFFFh  
7
1 1 I1 H I0 N Z C  
Reset value =1 1 1 X 1 X X X  
15  
8
7
0
Reset value = stack higher address  
X = undefined value  
34/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Central processing unit (CPU)  
5.3.1  
5.3.2  
Accumulator (A)  
The accumulator is an 8-bit general purpose register used to hold operands and the results  
of the arithmetic and logic calculations as well as data manipulations.  
Index registers (X and Y)  
These 8-bit registers are used to create effective addresses or as temporary storage areas  
for data manipulation (the Cross-Assembler generates a precede instruction (PRE) to  
indicate that the following instruction refers to the Y register.)  
The Y register is not affected by the interrupt automatic procedures.  
5.3.3  
5.3.4  
Program counter (PC)  
The program counter is a 16-bit register containing the address of the next instruction to be  
executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is  
the LSB) and PCH (Program Counter High which is the MSB).  
Condition code (CC) register  
The 8-bit condition code register contains the interrupt masks and four flags representative  
of the result of the instruction just executed. This register can also be handled by the PUSH  
and POP instructions.  
These bits can be individually tested and/or controlled by specific instructions.  
CC  
Reset value: 111x1xxx  
7
1
6
1
5
4
3
2
1
Z
0
I1  
H
I0  
N
C
RW  
RW  
RW  
RW  
RW  
RW  
Table 6.  
Arithmetic management bits  
Bit Name  
Function  
Half carry  
This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU  
during an ADD or ADC instructions. It is reset by hardware during the same  
instructions.  
0: No half carry has occurred.  
1: A half carry has occurred.  
H
N
4
2
This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD  
arithmetic subroutines.  
Negative  
This bit is set and cleared by hardware. It is representative of the result sign of the  
last arithmetic, logical or data manipulation. It is a copy of the result 7th bit.  
0: The result of the last operation is positive or null.  
1: The result of the last operation is negative (that is, the most significant bit is a logic  
1).  
This bit is accessed by the JRMI and JRPL instructions.  
Doc ID 12898 Rev 2  
35/244  
Central processing unit (CPU)  
ST72321Bxxx-Auto  
Table 6.  
Arithmetic management bits (continued)  
Bit Name  
Function  
Zero  
This bit is set and cleared by hardware. This bit indicates that the result of the last  
arithmetic, logical or data manipulation is zero.  
0: The result of the last operation is different from zero.  
1: The result of the last operation is zero.  
1
0
Z
This bit is accessed by the JREQ and JRNE test instructions.  
Carry/borrow  
This bit is set and cleared by hardware and software. It indicates an overflow or an  
underflow has occurred during the last arithmetic operation.  
0: No overflow or underflow has occurred.  
C
1: An overflow or underflow has occurred.  
This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC  
instructions. It is also affected by the “bit test and branch”, shift and rotate  
instructions.  
Table 7.  
Interrupt management bits  
Bit Name  
Function  
Interrupt Software Priority 1  
The combination of the I1 and I0 bits gives the current interrupt software priority.  
5
I1  
I0  
Interrupt Software Priority 0  
The combination of the I1 and I0 bits gives the current interrupt software priority.  
3
Table 8.  
Interrupt software priority selection  
Interrupt software priority  
Level  
I1  
I0  
Level 0 (main)  
Level 1  
1
0
0
1
0
1
0
1
Low  
Level 2  
High  
Level 3 (= interrupt disable)  
These two bits are set/cleared by hardware when entering in interrupt. The loaded value is  
given by the corresponding bits in the interrupt software priority registers (ISPRx). They can  
be also set/cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP  
instructions.  
See Chapter 7: Interrupts on page 50 for more details.  
5.3.5  
Stack pointer (SP) register  
7
SP  
15  
Reset value: 01 FFh  
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
1
7
6
5
4
3
2
1
0
0
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0  
RW RW RW RW RW RW RW RW  
36/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Central processing unit (CPU)  
The stack pointer is a 16-bit register which is always pointing to the next free location in the  
stack. It is then decremented after data has been pushed onto the stack and incremented  
before data is popped from the stack (see Figure 8).  
Since the stack is 256 bytes deep, the 8 most significant bits are forced by hardware.  
Following an MCU Reset, or after a reset stack pointer instruction (RSP), the stack pointer  
contains its reset value (the SP7 to SP0 bits are set) which is the stack higher address.  
The least significant byte of the stack pointer (called S) can be directly accessed by an LD  
instruction.  
Note:  
When the lower limit is exceeded, the stack pointer wraps around to the stack upper limit,  
without indicating the stack overflow. The previously stored information is then overwritten  
and therefore lost. The stack also wraps in case of an underflow.  
The stack is used to save the return address during a subroutine call and the CPU context  
during an interrupt. The user may also directly manipulate the stack by means of the PUSH  
and POP instructions. In the case of an interrupt, the PCL is stored at the first location  
pointed to by the SP. The other registers are then stored in the next locations as shown in  
Figure 8.  
When an interrupt is received, the SP is decremented and the context is pushed on the  
stack.  
On return from interrupt, the SP is incremented and the context is popped from the  
stack.  
A subroutine call occupies two locations and an interrupt five locations in the stack area.  
Figure 8. Stack manipulation example  
CALL  
Subroutine  
RET  
or RSP  
PUSH Y  
POP Y  
IRET  
Interrupt  
Event  
@ 0100h  
SP  
SP  
SP  
Y
CC  
A
CC  
A
CC  
A
X
X
X
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
SP  
SP  
PCH  
PCL  
PCH  
PCL  
SP  
@ 01FFh  
Stack Higher Address = 01FFh  
0100h  
Stack Lower Address =  
Doc ID 12898 Rev 2  
37/244  
 
Supply, reset and clock management  
ST72321Bxxx-Auto  
6
Supply, reset and clock management  
6.1  
Introduction  
The device includes a range of utility features for securing the application in critical  
situations (for example in case of a power brown-out), and reducing the number of external  
components. An overview is shown in Figure 9.  
For more details, refer to the dedicated parametric section.  
6.2  
Main features  
Optional PLL for multiplying the frequency by 2 (not to be used with internal RC  
oscillator)  
Reset Sequence Manager (RSM)  
Multi-oscillator Clock Management (MO)  
5 crystal/ceramic resonator oscillators  
1 internal RC oscillator  
System Integrity Management (SI)  
Main supply low voltage detection (LVD)  
Auxiliary voltage detector (AVD) with interrupt capability for monitoring the main  
supply or the EVD pin  
Figure 9.  
Clock, reset and supply block diagram  
MAIN CLOCK  
CONTROLLER  
WITH REAL-TIME  
MULTI-  
fOSC  
OSCILLATOR  
fCPU  
OSC2  
OSC1  
fOSC2  
PLL  
(option)  
CLOCK (MCC/RTC)  
(MO)  
SYSTEM INTEGRITY MANAGEMENT  
AVD Interrupt Request  
RESET SEQUENCE  
MANAGER  
WATCHDOG  
TIMER (WDG)  
RESET  
SICSR  
AVD  
S
AVD AVD  
WDG  
RF  
LVD  
RF  
(RSM)  
0
0
0
IE  
F
LOW VOLTAGE  
DETECTOR  
(LVD)  
VSS  
VDD  
0
1
AUXILIARY VOLTAGE  
DETECTOR  
EVD  
(AVD)  
38/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Supply, reset and clock management  
6.3  
Phase locked loop  
If the clock frequency input to the PLL is in the range 2 to 4 MHz, the PLL can be used to  
multiply the frequency by two to obtain an f  
of 4 to 8 MHz. The PLL is enabled by option  
OSC2  
byte. If the PLL is disabled, then f  
= f  
/2.  
OSC2  
OSC  
Caution:  
The PLL is not recommended for applications where timing accuracy is required (see  
Section 19.5.5: PLL characteristics on page 199).  
Figure 10. PLL block diagram  
PLL x 2  
/ 2  
0
fOSC  
fOSC2  
1
PLL OPTION BIT  
6.4  
Multi-oscillator (MO)  
The main clock of the ST7 can be generated by three different source types coming from the  
multi-oscillator block:  
an external source  
4 crystal or ceramic resonator oscillators  
an internal high frequency RC oscillator  
Each oscillator is optimized for a given frequency range in terms of consumption and is  
selectable through the option byte. The associated hardware configurations are shown in  
Table 9. Refer to Section 19: Electrical characteristics for more details.  
Caution:  
The OSC1 and/or OSC2 pins must not be left unconnected. For the purposes of Failure  
Mode and Effect Analysis, it should be noted that if the OSC1 and/or OSC2 pins are left  
unconnected, the ST7 main oscillator may start and, in this configuration, could generate an  
f
clock frequency in excess of the allowed maximum (> 16 MHz), putting the ST7 in an  
OSC  
unsafe/undefined state. The product behavior must therefore be considered undefined when  
the OSC pins are left unconnected.  
External clock source  
In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle  
has to drive the OSC1 pin while the OSC2 pin is tied to ground.  
Doc ID 12898 Rev 2  
39/244  
Supply, reset and clock management  
Crystal/ceramic oscillators  
ST72321Bxxx-Auto  
This family of oscillators has the advantage of producing a very accurate rate on the main  
clock of the ST7. The selection within a list of four oscillators with different frequency ranges  
has to be done by option byte in order to reduce consumption (refer to Section 21.1.1: Flash  
configuration on page 225 for more details on the frequency ranges). In this mode of the  
multi-oscillator, the resonator and the load capacitors have to be placed as close as possible  
to the oscillator pins in order to minimize output distortion and start-up stabilization time.  
The loading capacitance values must be adjusted according to the selected oscillator.  
These oscillators are not stopped during the RESET phase to avoid losing time in the  
oscillator start-up phase.  
Internal RC oscillator  
This oscillator allows a low cost solution for the main clock of the ST7 using only an internal  
resistor and capacitor. Internal RC oscillator mode has the drawback of a lower frequency  
accuracy and should not be used in applications that require accurate timing.  
In this mode, the two oscillator pins have to be tied to ground.  
Table 9.  
ST7 clock sources  
Hardware configuration  
ST7  
OSC1  
OSC2  
EXTERNAL  
SOURCE  
ST7  
OSC1  
OSC2  
C
C
L2  
L1  
LOAD  
CAPACITORS  
ST7  
OSC1  
OSC2  
40/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Supply, reset and clock management  
6.5  
Reset sequence manager (RSM)  
6.5.1  
Introduction  
The reset sequence manager includes three RESET sources as shown in Figure 11:  
External RESET source pulse  
Internal LVD RESET (low voltage detection)  
Internal WATCHDOG RESET  
These sources act on the RESET pin and it is always kept low during the delay phase.  
The RESET service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory  
map.  
The basic RESET sequence consists of three phases as shown in Figure 12:  
Active phase depending on the RESET source  
256 or 4096 CPU clock cycle delay (selected by option byte)  
RESET vector fetch  
Caution:  
When the ST7 is unprogrammed or fully erased, the Flash is blank and the RESET vector is  
not programmed. For this reason, it is recommended to keep the RESET pin in low state  
until programming mode is entered, in order to avoid unwanted behavior.  
The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilize and ensures that  
recovery has taken place from the Reset state. The shorter or longer clock cycle delay  
should be selected by option byte to correspond to the stabilization time of the external  
oscillator used in the application (see Section 21.1.1: Flash configuration on page 225).  
The RESET vector fetch phase duration is 2 clock cycles.  
Figure 11. Reset block diagram  
V
DD  
R
ON  
INTERNAL  
RESET  
Filter  
RESET  
PULSE  
GENERATOR  
WATCHDOG RESET  
LVD RESET  
Doc ID 12898 Rev 2  
41/244  
 
 
Supply, reset and clock management  
Figure 12. RESET sequence phases  
ST72321Bxxx-Auto  
RESET  
INTERNAL RESET  
256 or 4096 CLOCK CYCLES  
FETCH  
VECTOR  
ACTIVE PHASE  
6.5.2  
Asynchronous external RESET pin  
The RESET pin is both an input and an open-drain output with integrated R weak pull-up  
ON  
resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It  
can be pulled low by external circuitry to reset the device. See Section 19.9: Control pin  
characteristics on page 208for more details.  
A RESET signal originating from an external source must have a duration of at least  
t
in order to be recognized (see Figure 13). This detection is asynchronous and  
h(RSTL)in  
therefore the MCU can enter reset state even in Halt mode.  
The RESET pin is an asynchronous signal which plays a major role in EMS performance. In  
a noisy environment, it is recommended to follow the guidelines mentioned in Section 19:  
Electrical characteristics.  
If the external RESET pulse is shorter than t  
(see short ext. Reset in Figure 13),  
w(RSTL)out  
the signal on the RESET pin may be stretched. Otherwise the delay will not be applied (see  
long ext. Reset in Figure 13). Starting from the external RESET pulse recognition, the  
device RESET pin acts as an output that is pulled low during at least t  
.
w(RSTL)out  
6.5.3  
6.5.4  
External power-on RESET  
If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must  
ensure by means of an external reset circuit that the reset signal is held low until V is over  
the minimum level specified for the selected f  
DD  
frequency (see Section 19.3: Operating  
OSC  
conditions on page 189).  
A proper reset signal for a slow rising V supply can generally be provided by an external  
RC network connected to the RESET pin.  
DD  
Internal low voltage detector (LVD) RESET  
Two different RESET sequences caused by the internal LVD circuitry can be distinguished:  
Power-on RESET  
Voltage drop RESET  
The device RESET pin acts as an output that is pulled low when V < V (rising edge) or  
DD  
IT+  
V
< V (falling edge) as shown in Figure 13.  
DD  
IT-  
The LVD filters spikes on V larger than t  
to avoid parasitic resets.  
g(VDD)  
DD  
42/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Supply, reset and clock management  
6.5.5  
Internal watchdog RESET  
The RESET sequence generated by an internal Watchdog counter overflow is shown in  
Figure 13.  
Starting from the Watchdog counter underflow, the device RESET pin acts as an output that  
is pulled low during at least t  
.
w(RSTL)out  
Figure 13. RESET sequences  
VDD  
VIT+(LVD)  
VIT-(LVD)  
LVD  
RESET  
SHORT EXT.  
RESET  
LONG EXT.  
RESET  
WATCHDOG  
RESET  
RUN  
RUN  
RUN  
RUN  
RUN  
Active  
Phase  
Active  
Phase  
Active  
Phase  
Active Phase  
t
t
w(RSTL)out  
w(RSTL)out  
t
h(RSTL)in  
t
w(RSTL)out  
t
h(RSTL)in  
DELAY  
EXTERNAL  
RESET  
SOURCE  
RESET PIN  
WATCHDOG  
RESET  
WATCHDOG UNDERFLOW  
INTERNAL RESET (256 or 4096 T  
VECTOR FETCH  
)
CPU  
Doc ID 12898 Rev 2  
43/244  
 
Supply, reset and clock management  
ST72321Bxxx-Auto  
6.6  
System integrity management (SI)  
The System Integrity Management block contains the Low Voltage Detector (LVD) and  
Auxiliary Voltage Detector (AVD) functions. It is managed by the SICSR register.  
6.6.1  
Low voltage detector (LVD)  
The low voltage detector function (LVD) generates a static reset when the V supply  
DD  
voltage is below a V reference value. This means that it secures the power-up as well as  
IT-  
the power-down keeping the ST7 in reset.  
The V reference value for a voltage drop is lower than the V reference value for power-  
IT-  
IT+  
on in order to avoid a parasitic reset when the MCU starts running and sinks current on the  
supply (hysteresis).  
The LVD reset circuitry generates a reset when V is below:  
DD  
V
V
when V is rising  
DD  
IT+  
IT-  
when V is falling  
DD  
The LVD function is illustrated in Figure 14.  
The voltage threshold can be configured by option byte to be low, medium or high.  
Provided the minimum V value (guaranteed for the oscillator frequency) is above V , the  
DD  
IT-  
MCU can only be in two modes:  
under full software control  
in static safe reset  
In these conditions, secure operation is always ensured for the application without the need  
for external reset hardware.  
During a low voltage detector reset, the RESET pin is held low, thus permitting the MCU to  
reset other devices.  
Note:  
The LVD allows the device to be used without any external RESET circuitry.  
If the medium or low thresholds are selected, the detection may occur outside the specified  
operating voltage range. Below 3.8V, device operation is not guaranteed.  
The LVD is an optional function which can be selected by option byte.  
It is recommended to make sure that the V supply voltage rises monotonously when the  
DD  
device is exiting from Reset, to ensure the application functions properly.  
44/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Supply, reset and clock management  
Figure 14. Low voltage detector versus reset  
V
DD  
V
hys  
V
IT+  
V
IT-  
RESET  
6.6.2  
Auxiliary voltage detector (AVD)  
The auxiliary voltage detector function (AVD) is based on an analog comparison between a  
and V reference value and the V main supply or the external EVD pin  
V
IT-(AVD)  
IT+(AVD)  
DD  
voltage level (V  
). The V reference value for falling voltage is lower than the V  
EVD  
IT- IT+  
reference value for rising voltage in order to avoid parasitic detection (hysteresis).  
The output of the AVD comparator can be read directly by the application software through a  
real-time status bit (AVDF) in the SICSR register. This bit is read only.  
Caution:  
The AVD function is active only if the LVD is enabled through the option byte.  
Monitoring the VDD main supply  
This mode is selected by clearing the AVDS bit in the SICSR register.  
The AVD voltage threshold value is relative to the selected LVD threshold configured by  
option byte (see Section 21.1.1: Flash configuration on page 225).  
If the AVD interrupt is enabled, an interrupt is generated when the voltage crosses the  
V
or V  
threshold (AVDF bit toggles).  
IT+(AVD)  
IT-(AVD)  
In the case of a drop in voltage, the AVD interrupt acts as an early warning, allowing  
software to shut down safely before the LVD resets the microcontroller. See Figure 15.  
The interrupt on the rising edge is used to inform the application that the V warning state  
DD  
is over.  
If the voltage rise time t is less than 256 or 4096 CPU cycles (depending on the reset delay  
rv  
selected by option byte), no AVD interrupt will be generated when V  
is reached.  
IT+(AVD)  
If t is greater than 256 or 4096 cycles  
rv  
two AVD interrupts will be received if the AVD interrupt is enabled before the V  
IT+(AVD)  
threshold is reached: the first when the AVDIE bit is set, and the second when the  
threshold is reached.  
only one AVD interrupt will occur if the AVD interrupt is enabled after the V  
IT+(AVD)  
threshold is reached.  
Doc ID 12898 Rev 2  
45/244  
Supply, reset and clock management  
ST72321Bxxx-Auto  
Figure 15. Using the AVD to monitor V (AVDS bit = 0)  
DD  
VDD  
Early Warning Interrupt  
(Power has dropped, MCU not  
not yet in reset)  
Vhyst  
VIT+(AVD)  
VIT-(AVD)  
VIT+(LVD)  
VIT-(LVD)  
trv  
VOLTAGE RISE TIME  
1
1
AVDF bit  
0
RESET VALUE  
0
AVD INTERRUPT  
REQUEST  
IF AVDIE bit = 1  
INTERRUPT PROCESS  
INTERRUPT PROCESS  
LVD RESET  
Monitoring a voltage on the EVD pin  
This mode is selected by setting the AVDS bit in the SICSR register.  
The AVD circuitry can generate an interrupt when the AVDIE bit of the SICSR register is set.  
This interrupt is generated on the rising and falling edges of the comparator output. This  
means it is generated when either one of these two events occur:  
V
V
rises up to V  
IT+(EVD)  
EVD  
EVD  
falls down to V  
IT-(EVD)  
The EVD function is illustrated in Figure 16.  
For more details, refer to Section 19: Electrical characteristics.  
46/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Supply, reset and clock management  
Figure 16. Using the voltage detector to monitor the EVD pin (AVDS bit = 1)  
VEVD  
Vhyst  
VIT+(EVD)  
VIT-(EVD)  
AVDF  
0
1
0
AVD INTERRUPT  
REQUEST  
IF AVDIE = 1  
INTERRUPT PROCESS  
INTERRUPT PROCESS  
6.6.3  
6.6.4  
Low power modes  
Table 10. Effect of low power modes on SI  
Mode  
Effect  
Wait  
Halt  
No effect on SI. AVD interrupts cause the device to exit from Wait mode.  
The SICSR register is frozen.  
Interrupts  
The AVD interrupt event generates an interrupt if the corresponding Enable Control Bit  
(AVDIE) is set and the interrupt mask in the CC register is reset (RIM instruction).  
Table 11. AVD interrupt control/wake-up capability  
Interrupt event  
Event flag  
Enable control bit  
Exit from Wait  
Exit from Halt  
AVD event  
AVDF  
AVDIE  
Yes  
No  
Doc ID 12898 Rev 2  
47/244  
Supply, reset and clock management  
ST72321Bxxx-Auto  
6.6.5  
System Integrity (SI) Control/Status register (SICSR)  
SICSR  
7
Reset value: 000x 000x (00h)  
6
5
4
3
2
1
0
AVDS  
RW  
AVDIE  
AVDF  
LVDRF  
WDGRF  
Reserved  
-
RW  
RW  
RW  
RW  
Table 12. SICSR description  
Bit  
Name  
Function  
Voltage Detection selection  
This bit is set and cleared by software. Voltage Detection is available only if the  
LVD is enabled by option byte.  
7
AVDS  
0: Voltage detection on VDD supply  
1: Voltage detection on EVD pin  
Voltage Detector interrupt enable  
This bit is set and cleared by software. It enables an interrupt to be generated  
when the AVDF flag changes (toggles). The pending interrupt information is  
automatically cleared when software enters the AVD interrupt routine.  
0: AVD interrupt disabled  
6
5
AVDIE  
AVDF  
1: AVD interrupt enabled  
Voltage Detector flag  
This read-only bit is set and cleared by hardware. If the AVDIE bit is set, an  
interrupt request is generated when the AVDF bit changes value. Refer to  
Figure 15 and to Monitoring the VDD main supply on page 45 for additional  
details.  
0: VDD or VEVD over VIT+(AVD) threshold  
1: VDD or VEVD under VIT-(AVD) threshold  
LVD reset flag  
This bit indicates that the last Reset was generated by the LVD block. It is set by  
hardware (LVD reset) and cleared by software (writing zero). See Table 13: Reset  
source flags for more details. When the LVD is disabled by OPTION BYTE, the  
LVDRF bit value is undefined.  
4
LVDRF  
-
3:1  
Reserved, must be kept cleared.  
Watchdog reset flag  
This bit indicates that the last Reset was generated by the Watchdog peripheral. It  
is set by hardware (watchdog reset) and cleared by software (writing zero) or an  
LVD Reset (to ensure a stable cleared state of the WDGRF flag when CPU starts).  
Combined with the LVDRF flag information, the flag description is given in  
Table 13.  
0
WDGRF  
Table 13. Reset source flags  
Reset sources  
LVDRF  
WDGRF  
External RESET pin  
Watchdog  
0
0
1
0
1
LVD  
X
48/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Supply, reset and clock management  
Application notes  
The LVDRF flag is not cleared when another RESET type occurs (external or watchdog); the  
LVDRF flag remains set to keep trace of the original failure.  
In this case, software can detect a watchdog reset but cannot detect an external reset.  
Caution:  
When the LVD is not activated with the associated option byte, the WDGRF flag cannot be  
used in the application.  
Doc ID 12898 Rev 2  
49/244  
Interrupts  
ST72321Bxxx-Auto  
7
Interrupts  
7.1  
Introduction  
The ST7 enhanced interrupt management provides the following features:  
Hardware interrupts  
Software interrupt (TRAP)  
Nested or concurrent interrupt management with flexible interrupt priority and level  
management:  
Up to 4 software programmable nesting levels  
Up to 16 interrupt vectors fixed by hardware  
2 non-maskable events: RESET, TRAP  
1 maskable Top Level event: TLI  
This interrupt management is based on:  
Bit 5 and bit 3 of the CPU CC register (I1:0)  
Interrupt software priority registers (ISPRx)  
Fixed interrupt vector addresses located at the high addresses of the memory map  
(FFE0h to FFFFh) sorted by hardware priority order  
This enhanced interrupt controller guarantees full upward compatibility with the standard  
(not nested) ST7 interrupt controller.  
7.2  
Masking and processing flow  
The interrupt masking is managed by the I1 and I0 bits of the CC register and the ISPRx  
registers which give the interrupt software priority level of each interrupt vector (see Table  
14). The processing flow is shown in Figure 17.  
When an interrupt request has to be serviced:  
Normal processing is suspended at the end of the current instruction execution.  
The PC, X, A and CC registers are saved onto the stack.  
I1 and I0 bits of CC register are set according to the corresponding values in the ISPRx  
registers of the serviced interrupt vector.  
The PC is then loaded with the interrupt vector of the interrupt to service and the first  
instruction of the interrupt service routine is fetched (refer to Table 19: Interrupt  
mapping for vector addresses).  
The interrupt service routine should end with the IRET instruction which causes the  
contents of the saved registers to be recovered from the stack.  
Note:  
As a consequence of the IRET instruction, the I1 and I0 bits will be restored from the stack  
and the program in the previous level will resume.  
50/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Interrupts  
I0  
Table 14. Interrupt software priority levels  
Interrupt software priority  
Level 0 (main)  
Level  
I1  
1
0
0
1
0
1
0
1
Low  
Level 1  
Level 2  
High  
Level 3 (= interrupt disable)  
Figure 17. Interrupt processing flowchart  
PENDING  
INTERRUPT  
Y
Y
RESET  
TRAP  
N
Interrupt has the same or a  
lower software priority  
than current one  
N
I1:0  
FETCH NEXT  
INSTRUCTION  
THE INTERRUPT  
STAYS PENDING  
Y
“IRET”  
N
RESTORE PC, X, A, CC  
FROM STACK  
EXECUTE  
INSTRUCTION  
STACK PC, X, A, CC  
LOAD I1:0 FROM INTERRUPT SW REG.  
LOAD PC FROM INTERRUPT VECTOR  
Servicing pending interrupts  
As several interrupts can be pending at the same time, the interrupt to be taken into account  
is determined by the following two-step process:  
the highest software priority interrupt is serviced,  
if several interrupts have the same software priority then the interrupt with the highest  
hardware priority is serviced first.  
Figure 18 describes this decision process.  
Figure 18. Priority decision process flowchart  
PENDING  
INTERRUPTS  
Different  
Same  
SOFTWARE  
PRIORITY  
HIGHEST SOFTWARE  
PRIORITY SERVICED  
HIGHEST HARDWARE  
PRIORITY SERVICED  
Doc ID 12898 Rev 2  
51/244  
 
 
Interrupts  
ST72321Bxxx-Auto  
When an interrupt request is not serviced immediately, it is latched and then processed  
when its software priority combined with the hardware priority becomes the highest one.  
Note:  
1
2
The hardware priority is exclusive while the software one is not. This allows the previous  
process to succeed with only one interrupt.  
TLI, RESET and TRAP can be considered as having the highest software priority in the  
decision process.  
Different interrupt vector sources  
Two interrupt source types are managed by the ST7 interrupt controller: the non-maskable  
type (RESET, TRAP) and the maskable type (external or from internal peripherals).  
Non-maskable sources  
These sources are processed regardless of the state of the I1 and I0 bits of the CC register  
(see Figure 17). After stacking the PC, X, A and CC registers (except for RESET), the  
corresponding vector is loaded in the PC register and the I1 and I0 bits of the CC are set to  
disable interrupts (level 3). These sources allow the processor to exit Halt mode.  
TRAP (non-maskable software interrupt)  
This software interrupt is serviced when the TRAP instruction is executed. It will be  
serviced according to the flowchart in Figure 17.  
Caution:  
TRAP can be interrupted by a TLI.  
RESET  
The RESET source has the highest priority in the ST7. This means that the first current  
routine has the highest software priority (level 3) and the highest hardware priority.  
See Section 6.5: Reset sequence manager (RSM) on page 41 for more details.  
Maskable sources  
Maskable interrupt vector sources can be serviced if the corresponding interrupt is enabled  
and if its own interrupt software priority (in ISPRx registers) is higher than the one currently  
being serviced (I1 and I0 in CC register). If any of these two conditions is false, the interrupt  
is latched and thus remains pending.  
TLI (top level hardware interrupt)  
Caution:  
This hardware interrupt occurs when a specific edge is detected on the dedicated TLI pin. It  
will be serviced according to the flowchart in Figure 17 as a trap.  
A TRAP instruction must not be used in a TLI service routine.  
External Interrupts  
External interrupts allow the processor to exit from HALT low power mode. External  
interrupt sensitivity is software selectable through the External Interrupt Control register  
(EICR).  
External interrupt triggered on edge will be latched and the interrupt request  
automatically cleared upon entering the interrupt service routine.  
If several input pins of a group connected to the same interrupt line are selected  
simultaneously, these will be logically ORed.  
Peripheral Interrupts  
Usually the peripheral interrupts cause the MCU to exit from Halt mode except those  
mentioned in Table 19: Interrupt mapping. A peripheral interrupt occurs when a specific  
52/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Interrupts  
flag is set in the peripheral status registers and if the corresponding enable bit is set in  
the peripheral control register.  
The general sequence for clearing an interrupt is based on an access to the status  
register followed by a read or write to an associated register.  
Note:  
The clearing sequence resets the internal latch. A pending interrupt (that is, waiting to be  
serviced) will therefore be lost if the clear sequence is executed.  
7.3  
Interrupts and low power modes  
All interrupts allow the processor to exit the Wait low power mode. On the contrary, only  
external and other specified interrupts allow the processor to exit from the Halt modes (see  
column “Exit from Halt/Active Halt” in Table 19: Interrupt mapping). When several pending  
interrupts are present while exiting Halt mode, the first one serviced can only be an interrupt  
with “exit from Halt mode” capability and it is selected through the same decision process  
shown in Figure 18.  
Note:  
If an interrupt that is not able to exit from Halt mode is pending with the highest priority when  
exiting Halt mode, this interrupt is serviced after the first one serviced.  
7.4  
Concurrent and nested management  
The following Figure 19 and Figure 20 show two different interrupt management modes. The  
first is called concurrent mode and does not allow an interrupt to be interrupted, unlike the  
nested mode in Figure 20. The interrupt hardware priority is given in this order from the  
lowest to the highest: MAIN, IT4, IT3, IT2, IT1, IT0, TLI. The software priority is given for  
each interrupt.  
Warning: A stack overflow may occur without notifying the software of  
the failure.  
Figure 19. Concurrent interrupt management  
SOFTWARE  
PRIORITY  
LEVEL  
I1  
I0  
TRAP  
3
1
1
1
1
1
1
1
1
1
1
1
1
IT0  
3
IT1  
IT1  
3
IT2  
3
IT3  
3
RIM  
IT4  
3
MAIN  
MAIN  
10  
3/0  
11 / 10  
Doc ID 12898 Rev 2  
53/244  
 
Interrupts  
ST72321Bxxx-Auto  
Figure 20. Nested interrupt management  
SOFTWARE  
PRIORITY  
LEVEL  
I1  
I0  
TRAP  
3
1
1
0
0
1
1
1
1
0
1
1
1
IT0  
3
IT1  
IT1  
IT2  
2
IT2  
1
IT3  
3
RIM  
IT4  
IT4  
3
MAIN  
MAIN  
10  
3/0  
11 / 10  
7.5  
Interrupt register description  
CPU CC register interrupt bits  
CPU CC  
7.5.1  
Reset value: 111x 1010 (xAh)  
7
1
6
1
5
4
3
2
1
Z
0
I1  
H
I0  
N
C
RW  
RW  
RW  
RW  
RW  
RW  
Table 15. CPU CC register interrupt bits description  
Bit  
Name  
Function  
Interrupt Software Priority 1  
Interrupt Software Priority 0  
5
3
I1  
I0  
These two bits indicate the current interrupt software priority (see Table 16) and are  
set/cleared by hardware when entering in interrupt. The loaded value is given by the  
corresponding bits in the interrupt software priority registers (ISPRx).  
They can be also set/cleared by software with the RIM, SIM, HALT, WFI, IRET and  
PUSH/POP instructions (see Table 18: Interrupt dedicated instruction set).  
54/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Interrupts  
I0  
Table 16. Interrupt software priority levels  
Interrupt software priority  
Level 0 (main)  
Level  
I1  
1
0
0
1
0
1
0
1
Low  
Level 1  
Level 2  
Level 3 (= interrupt disable(1)  
)
High  
1. TLI, TRAP and RESET events can interrupt a level 3 program.  
7.5.2  
Interrupt software priority registers (ISPRx)  
These four registers are read/write, with the exception of bits 7:4 of ISPR3, which are read  
only.  
ISPRx  
Reset value: 1111 1111 (FFh)  
7
6
5
4
3
2
1
0
ISPR0  
I1_3  
I0_3  
I1_2  
I0_2  
I1_1  
I0_1  
I1_0  
I0_0  
ISPR1  
ISPR2  
ISPR3  
I1_7  
I1_11  
1
I0_7  
I0_11  
1
I1_6  
I1_10  
1
I0_6  
I0_10  
1
I1_5  
I1_9  
I0_5  
I0_9  
I1_4  
I1_8  
I0_4  
I0_8  
I1_13  
I0_13  
I1_12  
I0_12  
These four registers contain the interrupt software priority of each interrupt vector.  
Each interrupt vector (except RESET and TRAP) has corresponding bits in these  
registers where its own software priority is stored. This correspondence is shown in the  
following Table 17.  
Table 17. Interrupt priority bits  
Vector address  
ISPRx bits  
FFFBh-FFFAh  
FFF9h-FFF8h  
...  
I1_0 and I0_0 bits(1)  
I1_1 and I0_1 bits  
...  
FFE1h-FFE0h  
I1_13 and I0_13 bits  
1. Bits in the ISPRx registers which correspond to the TLI can be read and written but they are not significant  
in the interrupt process management.  
Each I1_x and I0_x bit value in the ISPRx registers has the same meaning as the I1  
and I0 bits in the CC register.  
Level 0 cannot be written (I1_x = 1, I0_x = 0). In this case, the previously stored value  
is kept (Example: previous = CFh, write = 64h, result = 44h).  
Doc ID 12898 Rev 2  
55/244  
 
Interrupts  
Caution:  
ST72321Bxxx-Auto  
The TLI, RESET, and TRAP vectors have no software priorities. When one is serviced, the  
I1 and I0 bits of the CC register are both set.  
If the I1_x and I0_x bits are modified while the interrupt x is executed the following behavior  
has to be considered: If the interrupt x is still pending (new interrupt or flag not cleared) and  
the new software priority is higher than the previous one, the interrupt x is re-entered.  
Otherwise, the software priority stays unchanged up to the next interrupt request (after the  
IRET of the interrupt x).  
Table 18. Interrupt dedicated instruction set  
Instruction  
New description  
Function/Example  
I1  
H
I0  
N
Z
C
HALT  
IRET  
JRM  
Entering Halt mode  
Interrupt routine return  
Jump if I1:0 = 11 (level 3)  
Jump if I1:0 <> 11  
1
0
Pop CC, A, X, PC  
I1:0 = 11 ?  
I1  
H
I0  
N
Z
C
JRNM  
I1:0 <> 11 ?  
Mem => CC  
POP CC Pop CC from the Stack  
I1  
1
1
1
1
H
I0  
0
N
Z
C
RIM  
SIM  
Enable interrupt (level 0 set) Load 10 in I1:0 of CC  
Disable interrupt (level 3 set) Load 11 in I1:0 of CC  
1
TRAP  
WFI  
Software trap  
Software NMI  
1
Wait for interrupt  
0
Note:  
During the execution of an interrupt routine, the HALT, POPCC, RIM, SIM and WFI  
instructions change the current software priority up to the next IRET instruction or one of the  
previously mentioned instructions.  
56/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Interrupts  
Table 19. Interrupt mapping  
Exit  
from  
Halt /  
Active  
Halt  
Source  
No.  
Register Priority  
Address  
vector  
Description  
block  
label  
order  
RESET  
TRAP  
TLI  
Reset  
yes  
no  
FFFEh-FFFFh  
FFFCh-FFFDh  
FFFAh-FFFBh  
FFF8h-FFF9h  
FFF6h-FFF7h  
N/A  
Software interrupt  
0
1
2
External top level interrupt  
EICR  
yes  
yes  
yes  
MCC/RTC Main clock controller time base interrupt  
MCCSR  
Higher  
priority  
ei0  
External interrupt port A3..0  
3
ei1  
External interrupt port F2..0  
yes  
FFF4h-FFF5h  
N/A  
4
5
6
7
8
9
ei2  
ei3  
External interrupt port B3..0  
External interrupt port B7..4  
Not used  
yes  
yes  
FFF2h-FFF3h  
FFF0h-FFF1h  
FFEEh-FFEFh  
FFECh-FFEDh  
FFEAh-FFEBh  
FFE8h-FFE9h  
SPI  
SPI peripheral interrupts  
SPICSR  
TASR  
yes(1)  
no  
TIMER A TIMER A peripheral interrupts  
TIMER B TIMER B peripheral interrupts  
TBSR  
no  
Lower  
priority  
10  
11  
12  
SCI  
AVD  
I2C  
SCI peripheral interrupts  
SCISR  
SICSR  
no  
no  
FFE6h-FFE7h  
FFE4h-FFE5h  
FFE2h-FFE3h  
FFE0h-FFE1h  
Auxiliary voltage detector interrupt  
I2C peripheral interrupts  
(see  
peripheral)  
no  
13 PWM ART PWM ART interrupt  
ARTCSR  
yes(2)  
1. Exit from HALT possible when SPI is in slave mode.  
2. Exit from HALT possible when PWM ART is in external clock mode.  
Doc ID 12898 Rev 2  
57/244  
 
Interrupts  
ST72321Bxxx-Auto  
7.6  
External interrupts  
7.6.1  
I/O port interrupt sensitivity  
The external interrupt sensitivity is controlled by the IPA, IPB and ISxx bits of the EICR  
register (Figure 21). This control allows to have up to four fully independent external  
interrupt source sensitivities.  
Each external interrupt source can be generated on four (or five) different events on the pin:  
Falling edge  
Rising edge  
Falling and rising edge  
Falling edge and low level  
Rising edge and high level (only for ei0 and ei2)  
To guarantee correct functionality, the sensitivity bits in the EICR register can be modified  
only when the I1 and I0 bits of the CC register are both set to 1 (level 3). This means that  
interrupts must be disabled before changing sensitivity.  
The pending interrupts are cleared by writing a different value in the ISx[1:0], IPA or IPB bits  
of the EICR.  
58/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Interrupts  
Figure 21. External interrupt control bits  
EICR  
IS20 IS21  
PORT A [3:0] INTERRUPTS  
PAOR.3  
PADDR.3  
SENSITIVITY  
CONTROL  
PA3  
PA2  
PA1  
PA0  
PA3  
ei0 INTERRUPT SOURCE  
IPA BIT  
EICR  
PORT F [2:0] INTERRUPTS  
IS20  
IS21  
PFOR.2  
PFDDR.2  
SENSITIVITY  
CONTROL  
PF2  
PF1  
PF0  
ei1 INTERRUPT SOURCE  
PF2  
EICR  
PORT B [3:0] INTERRUPTS  
IS10  
IS11  
PBOR.3  
PBDDR.3  
SENSITIVITY  
CONTROL  
PB3  
PB2  
PB1  
PB0  
PB3  
ei2 INTERRUPT SOURCE  
IPB BIT  
EICR  
PORT B [7:4] INTERRUPTS  
IS10  
IS11  
PBOR.7  
PBDDR.7  
SENSITIVITY  
CONTROL  
PB7  
PB6  
PB5  
PB4  
ei3 INTERRUPT SOURCE  
PB7  
Doc ID 12898 Rev 2  
59/244  
Interrupts  
ST72321Bxxx-Auto  
7.6.2  
External interrupt control register (EICR)  
EICR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
IS1[1:0]  
RW  
IPB  
IS2[1:0]  
RW  
IPA  
TLIS  
TLIE  
RW  
RW  
RW  
RW  
Table 20. EICR register description  
Bit Name  
Function  
ei2 and ei3 sensitivity  
The interrupt sensitivity, defined using the IS1[1:0] bits, is applied to the following  
external interrupts:  
- ei2 (port B3..0) (see Table 21)  
7:6 IS1[1:0]  
- ei3 (port B7..4) (see Table 22)  
These 2 bits can be written only when I1 and I0 of the CC register are both set to 1  
(level 3).  
Interrupt polarity for port B  
This bit is used to invert the sensitivity of the port B [3:0] external interrupts. It can  
be set and cleared by software only when I1 and I0 of the CC register are both set  
to 1 (level 3).  
5
IPB  
0: No sensitivity inversion  
1: Sensitivity inversion  
ei0 and ei1 sensitivity  
The interrupt sensitivity, defined using the IS2[1:0] bits, is applied to the following  
external interrupts:  
4:3 IS2[1:0]  
- ei0 (port A3..0) (see Table 23)  
- ei1 (port F2..0) (see Table 24)  
These 2 bits can be written only when I1 and I0 of the CC register are both set to 1  
(level 3).  
Interrupt polarity for port A  
This bit is used to invert the sensitivity of the port A [3:0] external interrupts. It can  
be set and cleared by software only when I1 and I0 of the CC register are both set  
to 1 (level 3).  
0: No sensitivity inversion  
1: Sensitivity inversion  
2
1
0
IPA  
TLI sensitivity  
This bit allows to toggle the TLI edge sensitivity. It can be set and cleared by  
software only when TLIE bit is cleared.  
0: Falling edge  
TLIS  
TLIE  
1: Rising edge  
TLI enable  
This bit allows to enable or disable the TLI capability on the dedicated pin. It is set  
and cleared by software.  
0: TLI disabled  
1: TLI enabled  
Note: A parasitic interrupt can be generated when clearing the TLIE bit.  
60/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Interrupts  
Table 21. Interrupt sensitivity - ei2 (port B3..0)  
External interrupt sensitivity  
IS11  
IS10  
IPB bit = 0  
IPB bit = 1  
0
0
1
1
0
1
0
1
Falling edge and low level  
Rising edge only  
Rising edge and high level  
Falling edge only  
Falling edge only  
Rising edge only  
Rising and falling edge  
Table 22. Interrupt sensitivity - ei3 (port B7..4)  
IS11  
IS10  
External interrupt sensitivity  
0
0
1
1
0
1
0
1
Falling edge and low level  
Rising edge only  
Falling edge only  
Rising and falling edge  
Table 23. Interrupt sensitivity - ei0 (port A3..0)  
External interrupt sensitivity  
IS21  
IS20  
IPA bit = 0  
IPA bit = 1  
0
0
1
1
0
1
0
1
Falling edge and low level  
Rising edge only  
Rising edge and high level  
Falling edge only  
Falling edge only  
Rising edge only  
Rising and falling edge  
Table 24. Interrupt sensitivity - ei1 (port F2..0)  
IS21  
IS20  
External interrupt sensitivity  
0
0
1
1
0
1
0
1
Falling edge and low level  
Rising edge only  
Falling edge only  
Rising and falling edge  
Doc ID 12898 Rev 2  
61/244  
Interrupts  
ST72321Bxxx-Auto  
Table 25. Nested interrupts register map and reset values  
Address (Hex.) Register label  
7
6
5
4
3
2
1
0
ei1  
SPI  
AVD  
ei0  
MCC  
ei3  
TLI  
ei2  
0024h  
0025h  
0026h  
ISPR0  
Reset value  
I1_3  
1
I0_3  
1
I1_2  
1
I0_2  
1
I1_1  
1
I0_1  
1
1
1
ISPR1  
Reset value  
I1_7  
1
I0_7  
1
I1_6  
1
I0_6  
1
I1_5  
1
I0_5  
1
I1_4  
1
I0_4  
1
SCI  
TIMER B  
TIMER A  
ISPR2  
Reset value  
I1_11  
1
I0_11  
1
I1_10  
1
I0_10  
1
I1_9  
1
I0_9  
1
I1_8  
1
I0_8  
1
PWMART  
I2C  
0027h  
0028h  
ISPR3  
Reset value  
I1_13  
1
I0_13  
1
I1_12  
1
I0_12  
1
1
1
1
1
EICR  
Reset value  
IS11  
0
IS10  
0
IPB  
0
IS21  
0
IS20  
0
IPA  
0
TLIS  
0
TLIE  
0
62/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Power saving modes  
8
Power saving modes  
8.1  
Introduction  
To give a large measure of flexibility to the application in terms of power consumption, four  
main power saving modes are implemented in the ST7 (see Figure 22): Slow, Wait (Slow  
Wait), Active Halt and Halt.  
After a RESET the normal operating mode is selected by default (Run mode). This mode  
drives the device (CPU and embedded peripherals) by means of a master clock which is  
based on the main oscillator frequency divided or multiplied by 2 (f  
).  
OSC2  
From Run mode, the different power saving modes may be selected by setting the relevant  
register bits or by calling the specific ST7 software instruction whose action depends on the  
oscillator status.  
Figure 22. Power saving mode transitions  
High  
RUN  
SLOW  
WAIT  
SLOW WAIT  
ACTIVE HALT  
HALT  
Low  
POWER CONSUMPTION  
8.2  
Slow mode  
This mode has two targets:  
To reduce power consumption by decreasing the internal clock in the device,  
To adapt the internal clock frequency (f ) to the available supply voltage.  
CPU  
Slow mode is controlled by three bits in the MCCSR register: the SMS bit which enables or  
disables Slow mode and two CPx bits which select the internal slow frequency (f ).  
CPU  
In this mode, the master clock frequency (f  
) can be divided by 2, 4, 8 or 16. The CPU  
OSC2  
and peripherals are clocked at this lower frequency (f  
).  
CPU  
Note:  
Slow Wait mode is activated when entering the Wait mode while the device is already in  
Slow mode.  
Doc ID 12898 Rev 2  
63/244  
 
 
Power saving modes  
Figure 23. Slow mode clock transitions  
fOSC2/2  
ST72321Bxxx-Auto  
fOSC2/4  
fOSC2  
fCPU  
fOSC2  
00  
01  
CP1:0  
SMS  
NORMAL RUN MODE  
REQUEST  
NEW SLOW  
FREQUENCY  
REQUEST  
8.3  
Wait mode  
Wait mode places the MCU in a low power consumption mode by stopping the CPU.  
This power saving mode is selected by calling the ‘WFI’ instruction.  
All peripherals remain active. During Wait mode, the I[1:0] bits of the CC register are forced  
to ‘10’, to enable all interrupts. All other registers and memory remain unchanged. The MCU  
remains in Wait mode until an interrupt or RESET occurs, whereupon the Program Counter  
branches to the starting address of the interrupt or Reset service routine.  
The MCU will remain in Wait mode until a Reset or an Interrupt occurs, causing it to wake  
up.  
Refer to the following Figure 24.  
64/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Figure 24. Wait mode flowchart  
Power saving modes  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
ON  
OFF  
10  
WFI INSTRUCTION  
I[1:0] BITS  
N
RESET  
Y
N
INTERRUPT  
Y
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
OFF  
ON  
10  
I[1:0] BITS  
256 OR 4096 CPU CLOCK  
CYCLE DELAY  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
ON  
ON  
XX(1)  
I[1:0] BITS  
FETCH RESET VECTOR  
OR SERVICE INTERRUPT  
1. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are  
set to the current software priority level of the interrupt routine and recovered when the CC register is  
popped.  
Doc ID 12898 Rev 2  
65/244  
Power saving modes  
ST72321Bxxx-Auto  
8.4  
Active Halt and Halt modes  
Active Halt and Halt modes are the two lowest power consumption modes of the MCU. They  
are both entered by executing the ‘HALT’ instruction. The decision to enter either in Active  
Halt or Halt mode is given by the MCC/RTC interrupt enable flag (OIE bit in MCCSR  
register) as shown in Table 26.  
Table 26. MCC/RTC low power mode selection  
MCCSR OIE bit  
Power saving mode entered when HALT instruction is executed  
0
1
Halt  
Active Halt  
8.4.1  
Active Halt mode  
Active Halt mode is the lowest power consumption mode of the MCU with a real-time clock  
available. It is entered by executing the ‘HALT’ instruction when the OIE bit of the Main Clock  
Controller Status register (MCCSR) is set (see Section 12.3: ART registers on page 94 for  
more details on the MCCSR register).  
The MCU can exit Active Halt mode on reception of an external interrupt, MCC/RTC  
interrupt or a RESET. When exiting Active Halt mode by means of an interrupt, no 256 or  
4096 CPU cycle delay occurs. The CPU resumes operation by servicing the interrupt or by  
fetching the reset vector which woke it up (see Figure 26).  
When entering Active Halt mode, the I[1:0] bits in the CC register are forced to ‘10b’ to  
enable interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.  
In Active Halt mode, only the main oscillator and its associated counter (MCC/RTC) are  
running to keep a wake-up time base. All other peripherals are not clocked except those  
which get their clock supply from another clock generator (such as external or auxiliary  
oscillator).  
The safeguard against staying locked in Active Halt mode is provided by the oscillator  
interrupt.  
Note:  
As soon as the interrupt capability of one of the oscillators is selected (MCCSR.OIE bit set),  
entering Active Halt mode while the Watchdog is active does not generate a RESET.  
This means that the device cannot spend more than a defined delay in this power saving  
mode.  
Caution:  
When exiting Active Halt mode following an MCC/RTC interrupt, OIE bit of MCCSR register  
must not be cleared before t  
after the interrupt occurs (t  
= 256 or 4096 t  
DELAY  
DELAY CPU  
delay depending on option byte). Otherwise, the ST7 enters Halt mode for the remaining  
period.  
t
DELAY  
66/244  
Doc ID 12898 Rev 2  
 
 
ST72321Bxxx-Auto  
Figure 25. Active Halt timing overview  
Power saving modes  
ACTIVE  
HALT  
256 OR 4096 CPU  
CYCLE DELAY(1)  
RUN  
RUN  
RESET  
OR  
INTERRUPT  
HALT  
INSTRUCTION  
FETCH  
VECTOR  
[MCCSR.OIE = 1]  
1. This delay occurs only if the MCU exits Active Halt mode by means of a RESET.  
Figure 26. Active Halt mode flowchart  
OSCILLATOR  
PERIPHERALS(1)  
CPU  
ON  
OFF  
OFF  
10  
HALT INSTRUCTION  
(MCCSR.OIE = 1)  
I[1:0] BITS  
N
RESET  
N
Y
INTERRUPT  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
OFF  
ON  
Y
I[1:0] BITS  
XX(2)  
256 OR 4096 CPU CLOCK  
CYCLE DELAY  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
ON  
ON  
XX(2)  
I[1:0] BITS  
FETCH RESET VECTOR  
OR SERVICE INTERRUPT  
1. Peripheral clocked with an external clock source can still be active.  
2. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are  
set to the current software priority level of the interrupt routine and restored when the CC register is  
popped.  
Doc ID 12898 Rev 2  
67/244  
Power saving modes  
ST72321Bxxx-Auto  
8.4.2  
Halt mode  
The Halt mode is the lowest power consumption mode of the MCU. It is entered by  
executing the ‘HALT’ instruction when the OIE bit of the Main Clock Controller Status  
register (MCCSR) is cleared (see Section 11: Main clock controller with real-time clock and  
beeper (MCC/RTC) on page 83 for more details on the MCCSR register).  
The MCU can exit Halt mode on reception of either a specific interrupt (see Section Table  
19.: Interrupt mapping on page 57) or a RESET. When exiting Halt mode by means of a  
RESET or an interrupt, the oscillator is immediately turned on and the 256 or 4096 CPU  
cycle delay is used to stabilize the oscillator. After the start up delay, the CPU resumes  
operation by servicing the interrupt or by fetching the reset vector which woke it up (see  
Figure 28).  
When entering Halt mode, the I[1:0] bits in the CC register are forced to ‘10b’ to enable  
interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.  
In Halt mode, the main oscillator is turned off causing all internal processing to be stopped,  
including the operation of the on-chip peripherals. All peripherals are not clocked except the  
ones which get their clock supply from another clock generator (such as an external or  
auxiliary oscillator).  
The compatibility of Watchdog operation with Halt mode is configured by the ‘WDGHALT’  
option bit of the option byte. The HALT instruction when executed while the Watchdog  
system is enabled, can generate a Watchdog RESET (see Section 21.1.1: Flash  
configuration on page 225 for more details).  
Figure 27. Halt timing overview  
256 OR 4096 CPU  
CYCLE DELAY  
RUN  
HALT  
RUN  
RESET  
OR  
INTERRUPT  
HALT  
INSTRUCTION  
[MCCSR.OIE = 0]  
FETCH  
VECTOR  
68/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Figure 28. Halt mode flowchart  
Power saving modes  
HALT INSTRUCTION  
(MCCSR.OIE = 0)  
ENABLE  
0
WATCHDOG  
DISABLE  
WDGHALT (1)  
1
WATCHDOG  
RESET  
OSCILLATOR  
OFF  
OFF  
OFF  
10  
PERIPHERALS (2)  
CPU  
I[1:0] BITS  
N
RESET  
Y
N
INTERRUPT (3)  
Y
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
OFF  
ON  
I[1:0] BITS  
XX (4)  
256 OR 4096 CPU CLOCK  
CYCLE DELAY  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
ON  
ON  
XX (4)  
I[1:0] BITS  
FETCH RESET VECTOR  
OR SERVICE INTERRUPT  
1. WDGHALT is an option bit. See Section 21.1.1: Flash configuration on page 225 for more details.  
2. Peripheral clocked with an external clock source can still be active.  
3. Only some specific interrupts can exit the MCU from Halt mode (such as external interrupt). Refer to  
Table 19: Interrupt mapping for more details.  
4. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are  
set to the current software priority level of the interrupt routine and recovered when the CC register is  
popped.  
Doc ID 12898 Rev 2  
69/244  
Power saving modes  
ST72321Bxxx-Auto  
Halt mode recommendations  
Make sure that an external event is available to wake up the microcontroller from Halt  
mode.  
When using an external interrupt to wake up the microcontroller, re-initialize the  
corresponding I/O as “Input Pull-up with Interrupt” before executing the HALT  
instruction. The main reason for this is that the I/O may be wrongly configured due to  
external interference or by an unforeseen logical condition.  
For the same reason, reinitialize the level sensitiveness of each external interrupt as a  
precautionary measure.  
The opcode for the HALT instruction is 0x8E. To avoid an unexpected HALT instruction  
due to a program counter failure, it is advised to clear all occurrences of the data value  
0x8E from memory. For example, avoid defining a constant in ROM with the value  
0x8E.  
As the HALT instruction clears the interrupt mask in the CC register to allow interrupts,  
the user may choose to clear all pending interrupt bits before executing the HALT  
instruction. This avoids entering other peripheral interrupt routines after executing the  
external interrupt routine corresponding to the wake-up event (reset or external  
interrupt).  
Related documentation  
ST7 Keypad Decoding Techniques, Implementing Wake-Up on Keystroke (AN 980)  
How to Minimize the ST7 Power Consumption (AN1014)  
Using an active RC to wake up the ST7LITE0 from power saving mode (AN1605)  
70/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
I/O ports  
9
I/O ports  
9.1  
Introduction  
The I/O ports offer different functional modes:  
transfer of data through digital inputs and outputs  
and for specific pins:  
external interrupt generation  
alternate signal input/output for the on-chip peripherals.  
An I/O port contains up to eight pins. Each pin can be programmed independently as digital  
input (with or without interrupt generation) or digital output.  
9.2  
Functional description  
Each port has two main registers:  
Data Register (DR)  
Data Direction Register (DDR)  
and one optional register:  
Option Register (OR)  
Each I/O pin may be programmed using the corresponding register bits in the DDR and OR  
registers (bit X corresponding to pin X of the port). The same correspondence is used for  
the DR register.  
The following description takes into account the OR register (for specific ports which do not  
provide this register refer to Section 9.3: I/O port implementation on page 75). The generic  
I/O block diagram is shown in Figure 29.  
9.2.1  
Input modes  
The input configuration is selected by clearing the corresponding DDR register bit.  
In this case, reading the DR register returns the digital value applied to the external I/O pin.  
Different input modes can be selected by software through the OR register.  
Writing the DR register modifies the latch value but does not affect the pin status.  
Note:  
1
2
When switching from input to output mode, the DR register has to be written first to drive the  
correct level on the pin as soon as the port is configured as an output.  
3
Do not use read/modify/write instructions (BSET or BRES) to modify the DR register as this  
might corrupt the DR content for I/Os configured as input.  
External interrupt function  
When an I/O is configured as Input with Interrupt, an event on this I/O can generate an  
external interrupt request to the CPU.  
Each pin can independently generate an interrupt request. The interrupt sensitivity is  
independently programmable using the sensitivity bits in the EICR register.  
Doc ID 12898 Rev 2  
71/244  
 
I/O ports  
ST72321Bxxx-Auto  
Each external interrupt vector is linked to a dedicated group of I/O port pins (see pinout  
description and interrupt section). If several input pins are selected simultaneously as  
interrupt sources, these are first detected according to the sensitivity bits in the EICR  
register and then logically ORed.  
The external interrupts are hardware interrupts, which means that the request latch (not  
accessible directly by the application) is automatically cleared when the corresponding  
interrupt vector is fetched. To clear an unwanted pending interrupt by software, the  
sensitivity bits in the EICR register must be modified.  
9.2.2  
Output modes  
The output configuration is selected by setting the corresponding DDR register bit. In this  
case, writing the DR register applies this digital value to the I/O pin through the latch. Then  
reading the DR register returns the previously stored value.  
Two different output modes can be selected by software through the OR register: Output  
push-pull and open-drain. The DR register value and output pin status are shown in the  
following Table 27.  
Table 27. I/O output mode selection  
DR  
Push-pull  
Open-drain  
0
1
VSS  
VDD  
VSS  
Floating  
9.2.3  
Alternate functions  
When an on-chip peripheral is configured to use a pin, the alternate function is automatically  
selected. This alternate function takes priority over the standard I/O programming.  
When the signal is coming from an on-chip peripheral, the I/O pin is automatically  
configured in output mode (push-pull or open-drain according to the peripheral).  
When the signal is going to an on-chip peripheral, the I/O pin must be configured in input  
mode. In this case, the pin state is also digitally readable by addressing the DR register.  
Note:  
Input pull-up configuration can cause unexpected value at the input of the alternate  
peripheral input. When an on-chip peripheral use a pin as input and output, this pin has to  
be configured in input floating mode.  
72/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Figure 29. I/O port general block diagram  
I/O ports  
ALTERNATE  
OUTPUT  
1
0
REGISTER  
ACCESS  
P-BUFFER  
(see table below)  
VDD  
ALTERNATE  
ENABLE  
PULL-UP  
(see table below)  
VDD  
DR  
DDR  
OR  
PULL-UP  
CONDITION  
PAD  
If implemented  
OR SEL  
DDR SEL  
DR SEL  
N-BUFFER  
DIODES  
(see table below)  
ANALOG  
INPUT  
CMOS  
SCHMITT  
TRIGGER  
1
0
ALTERNATE  
INPUT  
EXTERNAL  
INTERRUPT  
SOURCE (eix)  
Table 28. I/O port mode options  
Configuration mode  
Diodes  
to VSS  
Pull-up  
P-buffer  
to VDD  
Floating with/without Interrupt  
Input  
Off  
On  
Off  
Pull-up with/without Interrupt  
On  
Push-pull  
On  
Off  
NI  
On  
Off  
NI  
Output  
Open-drain (logic level)  
True open-drain  
NI(1)  
1. The diode to VDD is not implemented in the true open-drain pads. A local protection between the pad and  
SS is implemented to protect the device against positive stress.  
V
Legend:  
Off - Implemented not activated  
On - Implemented and activated  
NI - Not implemented  
Doc ID 12898 Rev 2  
73/244  
I/O ports  
ST72321Bxxx-Auto  
Table 29. I/O port configurations  
Hardware configuration  
DR REGISTER ACCESS  
NOT IMPLEMENTED IN  
TRUE OPEN DRAIN  
I/O PORTS  
V
DD  
PULL-UP  
CONDITION  
R
PU  
DR  
REGISTER  
W
R
DATA BUS  
PAD  
ALTERNATE INPUT  
EXTERNAL INTERRUPT  
SOURCE (ei )  
x
INTERRUPT  
CONDITION  
ANALOG INPUT  
NOT IMPLEMENTED IN  
TRUE OPEN DRAIN  
I/O PORTS  
DR REGISTER ACCESS  
V
DD  
R
PU  
R/W  
DR  
REGISTER  
DATA BUS  
PAD  
ALTERNATE  
ENABLE  
ALTERNATE  
OUTPUT  
NOT IMPLEMENTED IN  
TRUE OPEN DRAIN  
I/O PORTS  
DR REGISTER ACCESS  
V
DD  
R
PU  
R/W  
DR  
REGISTER  
DATA BUS  
PAD  
ALTERNATE  
ENABLE  
ALTERNATE  
OUTPUT  
1. When the I/O port is in input configuration and the associated alternate function is enabled as an output, reading the DR  
register will read the alternate function output status.  
2. When the I/O port is in output configuration and the associated alternate function is enabled as an input, the alternate  
function reads the pin status given by the DR register content.  
74/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
I/O ports  
Caution:  
The alternate function must not be activated as long as the pin is configured as input with  
interrupt, in order to avoid generating spurious interrupts.  
Analog alternate function  
When the pin is used as an ADC input, the I/O must be configured as floating input. The  
analog multiplexer (controlled by the ADC registers) switches the analog voltage present on  
the selected pin to the common analog rail which is connected to the ADC input.  
It is recommended not to change the voltage level or loading on any port pin while  
conversion is in progress. Furthermore it is recommended not to have clocking pins located  
close to a selected analog pin.  
Warning: The analog input voltage level must be within the limits  
stated in the absolute maximum ratings.  
9.3  
I/O port implementation  
The hardware implementation on each I/O port depends on the settings in the DDR and OR  
registers and specific feature of the I/O port such as ADC Input or true open-drain.  
Switching these I/O ports from one state to another should be done in a sequence that  
prevents unwanted side effects. Recommended safe transitions are illustrated in Figure 30.  
Other transitions are potentially risky and should be avoided, since they are likely to present  
unwanted side-effects such as spurious interrupt generation.  
Figure 30. Interrupt I/O port state transitions  
01  
00  
10  
11  
INPUT  
floating/pull-up  
interrupt  
INPUT  
floating  
(reset state)  
OUTPUT  
open-drain  
OUTPUT  
push-pull  
XX = DDR, OR  
The I/O port register configurations are summarized in the following table.  
Table 30. I/O port configuration  
Input (DDR = 0)  
OR = 0 OR = 1  
Output (DDR = 1)  
Port  
Pin name  
OR = 0  
OR = 1  
PA7:6  
floating  
true open-drain  
PA5:4  
PA3  
floating  
floating  
floating  
pull-up  
open-drain  
open-drain  
open-drain  
push-pull  
push-pull  
push-pull  
Port A  
floating interrupt  
pull-up interrupt  
PA2:0  
Doc ID 12898 Rev 2  
75/244  
 
I/O ports  
ST72321Bxxx-Auto  
Output (DDR = 1)  
Table 30. I/O port configuration (continued)  
Input (DDR = 0)  
Port  
Pin name  
OR = 0  
OR = 1  
OR = 0  
OR = 1  
PB7, PB3  
floating  
floating  
floating  
floating  
floating  
floating interrupt  
pull-up interrupt  
pull-up  
open-drain  
open-drain  
open-drain  
open-drain  
open-drain  
open-drain(1)  
open-drain  
open-drain  
open-drain  
push-pull  
push-pull  
push-pull  
push-pull  
push-pull  
push-pull(1)  
push-pull  
push-pull  
push-pull  
Port B  
PB6:5, PB4, PB2:0  
Port C PC7:0  
Port D PD7:0  
pull-up  
PE7:3, PE1:0  
pull-up  
Port E  
PE2  
pull-up  
PF7:3  
floating  
floating  
floating  
pull-up  
Port F PF2  
PF1:0  
floating interrupt  
pull-up interrupt  
1. Pull-up is always enabled leading to unwanted power consumption if output is tied to low level  
9.4  
9.5  
Low power modes  
Table 31. Effect of low power modes on I/O ports  
Mode  
Effect  
Wait  
Halt  
No effect on I/O ports. External interrupts cause the device to exit from Wait mode.  
No effect on I/O ports. External interrupts cause the device to exit from Halt mode.  
Interrupts  
The external interrupt event generates an interrupt if the corresponding configuration is  
selected with DDR and OR registers and the interrupt mask in the CC register is not active  
(RIM instruction).  
Table 32. I/O port interrupt control/wake-up capability  
Enable  
control bit  
Exit from  
Wait  
Exit from  
Halt  
Interrupt event  
Event flag  
External interrupt on selected  
external event  
-
DDRx, ORx  
Yes  
Yes  
Table 33. I/O port register map and reset values  
Address (Hex.)  
Register label  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset value of all I/O port registers  
0000h  
0001h  
0002h  
PADR  
PADDR  
PAOR  
MSB  
LSB  
76/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Table 33. I/O port register map and reset values (continued)  
I/O ports  
Address (Hex.)  
Register label  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset value of all I/O port registers  
0003h  
0004h  
0005h  
0006h  
0007h  
0008h  
0009h  
000Ah  
000Bh  
000Ch  
000Dh  
000Eh  
000Fh  
0010h  
0011h  
PBDR  
PBDDR  
PBOR  
PCDR  
PCDDR  
PCOR  
PDDR  
PDDDR  
PDOR  
PEDR  
PEDDR  
PEOR  
PFDR  
MSB  
MSB  
MSB  
MSB  
MSB  
LSB  
LSB  
LSB  
LSB  
LSB  
PFDDR  
PFOR  
Related documentation  
SPI Communication between ST7 and EEPROM (AN 970)  
S/W implementation of I2C bus master (AN1045)  
Software LCD driver (AN1048)  
Doc ID 12898 Rev 2  
77/244  
Watchdog timer (WDG)  
ST72321Bxxx-Auto  
10  
Watchdog timer (WDG)  
10.1  
Introduction  
The Watchdog timer is used to detect the occurrence of a software fault, usually generated  
by external interference or by unforeseen logical conditions, which causes the application  
program to abandon its normal sequence. The Watchdog circuit generates an MCU reset on  
expiry of a programmed time period, unless the program refreshes the counter’s contents  
before the T6 bit becomes cleared.  
10.2  
10.3  
Main features  
Programmable free-running downcounter  
Programmable reset  
Reset (if watchdog activated) when the T6 bit reaches zero  
Optional reset on HALT instruction (configurable by option byte)  
Hardware Watchdog selectable by option byte  
Functional description  
The counter value stored in the Watchdog Control register (WDGCR bits T[6:0]), is  
decremented every 16384 f  
cycles (approx.), and the length of the timeout period can  
OSC2  
be programmed by the user in 64 increments.  
If the watchdog is activated (the WDGA bit is set) and when the 7-bit timer (bits T[6:0]) rolls  
over from 40h to 3Fh (T6 becomes cleared), it initiates a reset cycle pulling the RESET pin  
low for typically 30µs.  
The application program must write in the WDGCR register at regular intervals during  
normal operation to prevent an MCU reset. This downcounter is free-running: It counts down  
even if the watchdog is disabled. The value to be stored in the WDGCR register must be  
between FFh and C0h:  
The WDGA bit is set (watchdog enabled)  
The T6 bit is set to prevent generating an immediate reset  
The T[5:0] bits contain the number of increments which represents the time delay  
before the watchdog produces a reset (see Figure 32: Approximate timeout  
duration). The timing varies between a minimum and a maximum value due to the  
unknown status of the prescaler when writing to the WDGCR register (see  
Figure 33).  
Following a reset, the watchdog is disabled. Once activated it cannot be disabled, except by  
a reset.  
The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is  
cleared).  
If the watchdog is activated, the HALT instruction will generate a Reset.  
78/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Figure 31. Watchdog block diagram  
Watchdog timer (WDG)  
RESET  
f
OSC2  
MCC/RTC  
WATCHDOG CONTROL REGISTER (WDGCR)  
T6 T5 T4 T3 T2 T1  
DIV 64  
WDGA  
T0  
6-BIT DOWNCOUNTER (CNT)  
12-BIT MCC  
RTC COUNTER  
WDG PRESCALER  
DIV 4  
TB[1:0] bits  
(MCCSR  
Register)  
MSB  
LSB  
11  
6 5  
0
10.4  
How to program the watchdog timeout  
Figure 32 shows the linear relationship between the 6-bit value to be loaded in the  
Watchdog Counter (CNT) and the resulting timeout duration in milliseconds. This can be  
used for a quick calculation without taking the timing variations into account. If more  
precision is needed, use the formulae in Figure 33.  
Caution:  
When writing to the WDGCR register, always write 1 in the T6 bit to avoid generating an  
immediate reset.  
Figure 32. Approximate timeout duration  
3F  
38  
30  
28  
20  
18  
10  
08  
00  
1.5  
18  
34  
50  
65  
82  
98  
114  
128  
Watchdog timeout (ms) @ 8 MHz fOSC2  
Doc ID 12898 Rev 2  
79/244  
 
Watchdog timer (WDG)  
Figure 33. Exact timeout duration (t  
ST72321Bxxx-Auto  
and t  
)
max  
min  
WHERE:  
min0 = (LSB + 128) x 64 x tOSC2  
t
tmax0 = 16384 x tOSC2  
tOSC2 = 125ns if fOSC2= 8 MHz  
CNT = Value of T[5:0] bits in the WDGCR register (6 bits)  
MSB and LSB are values from the table below depending on the timebase selected by the TB[1:0] bits  
in the MCCSR register  
TB1 bit  
TB0 bit  
Selected MCCSR  
timebase  
MSB  
LSB  
(MCCSR reg.) (MCCSR reg.)  
0
0
1
1
0
1
0
1
2ms  
4ms  
4
8
59  
53  
35  
54  
10ms  
25ms  
20  
49  
To calculate the minimum Watchdog Timeout (tmin):  
MSB  
4
IF  
-------------  
THEN  
ELSE  
CNT <  
t
= tmin0 + 16384 CNT t  
min  
osc2  
4CNT  
----------------  
4CNT  
----------------  
t
= t  
+
16384 CNT  
+ 192 + LSB  64   
t  
osc2  
min  
min0  
MSB  
MSB  
To calculate the maximum Watchdog Timeout (tmax):  
MSB  
4
IF  
-------------  
THEN  
ELSE  
CNT   
t
= tmax0 + 16384 CNT t  
osc2  
max  
4CNT  
----------------  
4CNT  
----------------  
t
= t  
+
16384 CNT –  
+ 192 + LSB  64   
t  
osc2  
max  
max0  
MSB  
MSB  
Note: In the above formulae, division results must be rounded down to the next integer value.  
Example:  
With 2ms timeout selected in MCCSR register  
Min. Watchdog  
Timeout (ms)  
Max. Watchdog  
Timeout (ms)  
Value of T[5:0] bits in  
WDGCR register (Hex.)  
t
t
min  
max  
00  
3F  
1.496  
128  
2.048  
128.552  
80/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Watchdog timer (WDG)  
10.5  
Low power modes  
Table 34. Effect of low power modes on WDG  
Mode  
Effect  
Slow No effect on Watchdog  
Wait  
No effect on Watchdog  
WDGHALT  
OIE bit in  
bit in  
MCCSR  
register  
Option  
Byte  
No Watchdog reset is generated. The MCU enters Halt mode.  
The Watchdog counter is decremented once and then stops  
counting and is no longer able to generate a watchdog reset  
until the MCU receives an external interrupt or a reset.  
0
0
If an external interrupt is received, the Watchdog restarts  
counting after 256 or 4096 CPU clocks. If a reset is generated,  
the Watchdog is disabled (reset state) unless Hardware  
Watchdog is selected by option byte. For application  
recommendations see Section 10.7 below.  
Halt  
0
1
1
x
A reset is generated.  
No reset is generated. The MCU enters Active Halt mode. The  
Watchdog counter is not decremented. It stop counting. When  
the MCU receives an oscillator interrupt or external interrupt,  
the Watchdog restarts counting immediately. When the MCU  
receives a reset the Watchdog restarts counting after 256 or  
4096 CPU clocks.  
10.6  
10.7  
10.8  
Hardware watchdog option  
If Hardware Watchdog is selected by option byte, the watchdog is always active and the  
WDGA bit in the WDGCR is not used. Refer to the option byte description in Section 21.1.1:  
Flash configuration on page 225.  
Using Halt mode with the WDG (WDGHALT option)  
The following recommendation applies if Halt mode is used when the watchdog is enabled:  
Before executing the HALT instruction, refresh the WDG counter to avoid an unexpected  
WDG reset immediately after waking up the microcontroller.  
Interrupts  
None.  
Doc ID 12898 Rev 2  
81/244  
 
Watchdog timer (WDG)  
ST72321Bxxx-Auto  
10.9  
Register description  
10.9.1  
Control register (WDGCR)  
WDGCR  
Reset value: 0111 1111 (7Fh)  
7
6
5
4
3
2
1
0
WDGA  
T[6:0]  
RW  
RW  
Table 35. WDGCR register description  
Bit Name  
Function  
Activation bit  
This bit is set by software and only cleared by hardware after a reset. When  
WDGA = 1, the watchdog can generate a reset.  
0: Watchdog disabled  
7
WDGA  
1: Watchdog enabled  
Note: This bit is not used if the hardware watchdog option is enabled by option byte.  
7-bit counter (MSB to LSB)  
These bits contain the value of the watchdog counter. It is decremented every 16384  
6:0 T[6:0]  
fOSC2 cycles (approx.). A reset is produced when it rolls over from 40h to 3Fh (T6  
becomes cleared).  
Table 36. Watchdog timer register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
WDGCR  
Reset Value  
WDGA  
0
T6  
1
T5  
1
T4  
1
T3  
1
T2  
1
T1  
1
T0  
1
002Ah  
82/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Main clock controller with real-time clock and beeper (MCC/RTC)  
11  
Main clock controller with real-time clock and beeper  
(MCC/RTC)  
11.1  
Introduction  
The Main Clock Controller consists of three different functions:  
a programmable CPU clock prescaler  
a clock-out signal to supply external devices  
a real-time clock timer with interrupt capability  
Each function can be used independently and simultaneously.  
11.2  
11.3  
Programmable CPU clock prescaler  
The programmable CPU clock prescaler supplies the clock for the ST7 CPU and its internal  
peripherals. It manages Slow power saving mode (see Section 8.2: Slow mode on page 63  
for more details).  
The prescaler selects the f  
main clock frequency and is controlled by three bits in the  
CPU  
MCCSR register: CP[1:0] and SMS.  
Clock-out capability  
The clock-out capability is an alternate function of an I/O port pin that outputs a f  
drive external devices. It is controlled by the MCO bit in the MCCSR register.  
clock to  
CPU  
Caution:  
When selected, the clock out pin suspends the clock during Active Halt mode.  
11.4  
Real-time clock timer (RTC)  
The counter of the real-time clock timer allows an interrupt to be generated based on an  
accurate real-time clock. Four different time bases depending directly on f are available.  
OSC2  
The whole functionality is controlled by four bits of the MCCSR register: TB[1:0], OIE and  
OIF.  
When the RTC interrupt is enabled (OIE bit set), the ST7 enters Active Halt mode when the  
HALT instruction is executed. See Section 8.4: Active Halt and Halt modes on page 66 for  
more details.  
11.5  
Beeper  
The beep function is controlled by the MCCBCR register. It can output three selectable  
frequencies on the BEEP pin (I/O port alternate function).  
Doc ID 12898 Rev 2  
83/244  
 
Main clock controller with real-time clock and beeper (MCC/RTC)  
ST72321Bxxx-Auto  
Figure 34.  
Main clock controller (MCC/RTC) block diagram  
BC1 BC0  
MCCBCR  
BEEP  
MCO  
BEEP SIGNAL  
SELECTION  
12-BIT MCC RTC  
COUNTER  
TO  
DIV 64  
WATCHDOG  
TIMER  
MCO CP1 CP0 SMS TB1 TB0 OIE  
OIF  
MCCSR  
MCC/RTC INTERRUPT  
f
OSC2  
DIV 2, 4, 8, 16  
1
0
CPU CLOCK  
TO CPU AND  
PERIPHERALS  
f
CPU  
11.6  
Low power modes  
Table 37. Effect of low power modes on MCC/RTC  
Mode  
Effect  
No effect on MCC/RTC peripheral.  
MCC/RTC interrupt causes the device to exit from Wait mode.  
Wait  
No effect on MCC/RTC counter (OIE bit is set), the registers are frozen.  
MCC/RTC interrupt causes the device to exit from Active Halt mode.  
Active Halt  
Halt  
MCC/RTC counter and registers are frozen.  
MCC/RTC operation resumes when the MCU is woken up by an interrupt with  
“exit from HALT” capability.  
11.7  
Interrupts  
The MCC/RTC interrupt event generates an interrupt if the OIE bit of the MCCSR register is  
set and the interrupt mask in the CC register is not active (RIM instruction).  
Table 38. MCC/RTC interrupt control/wake-up capability  
Enable  
control bit  
Exit from  
Wait  
Exit from  
Halt  
Interrupt event  
Event flag  
Time base overflow event  
OIF  
OIE  
Yes  
No(1)  
1. The MCC/RTC interrupt wakes up the MCU from Active Halt mode, not from Halt mode.  
84/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Main clock controller with real-time clock and beeper (MCC/RTC)  
11.8  
Main clock controller registers  
11.8.1  
MCC control/status register (MCCSR)  
MCCSR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
MCO  
CP[1:0]  
RW  
SMS  
OIE  
OIF  
TB[1:0]  
RW  
RW  
RW  
RW  
RW  
Table 39. MCCSR register description  
Bit Name  
Function  
Main clock out selection  
This bit enables the MCO alternate function on the PF0 I/O port. It is set and  
cleared by software.  
7
MCO  
0: MCO alternate function disabled (I/O pin free for general-purpose I/O)  
1: MCO alternate function enabled (fCPU on I/O port)  
Note: To reduce power consumption, the MCO function is not active in Active Halt  
mode.  
CPU clock prescaler  
These bits select the CPU clock prescaler which is applied in the different slow  
modes. Their action is conditioned by the setting of the SMS bit. These two bits are  
set and cleared by software.  
6:5 CP[1:0]  
00: fCPU in Slow mode = fOSC2/2  
01: fCPU in Slow mode = fOSC2/4  
10: fCPU in Slow mode = fOSC2/8  
11: fCPU in Slow mode = fOSC2/16  
Slow mode select  
This bit is set and cleared by software.  
0: Normal mode. fCPU = fOSC2  
1: Slow mode. fCPU is given by CP1, CP0  
4
SMS  
See  
and Chapter 11: Main clock controller with  
Section 8.2: Slow mode on page 63  
real-time clock and beeper (MCC/RTC) for more details.  
Time base control  
These bits select the programmable divider time base. They are set and cleared by  
Table 40)  
software (see  
.
3:2  
TB[1:0]  
A modification of the time base is taken into account at the end of the current period  
(previously set) to avoid an unwanted time shift. This allows to use this time base  
as a real-time clock.  
Oscillator interrupt enable  
This bit set and cleared by software.  
0: Oscillator interrupt disabled  
1: Oscillator interrupt enabled  
1
OIE  
This interrupt can be used to exit from Active Halt mode.  
When this bit is set, calling the ST7 software HALT instruction enters the Active Halt  
power saving mode  
.
Doc ID 12898 Rev 2  
85/244  
Main clock controller with real-time clock and beeper (MCC/RTC)  
Table 39. MCCSR register description (continued)  
ST72321Bxxx-Auto  
Bit Name  
Function  
Oscillator interrupt flag  
This bit is set by hardware and cleared by software reading the MCCSR register. It  
indicates when set that the main oscillator has reached the selected elapsed time  
(TB1:0).  
0
OIF  
0: Timeout not reached  
1: Timeout reached  
Caution: The BRES and BSET instructions must not be used on the MCCSR  
register to avoid unintentionally clearing the OIF bit.  
Table 40. Time base selection  
Time base  
Counter prescaler  
TB1  
TB0  
fOSC2 = 4 MHz  
4ms  
fOSC2 = 8 MHz  
16000  
32000  
80000  
200000  
2ms  
4ms  
0
0
1
1
0
1
0
1
8ms  
20ms  
50ms  
10ms  
25ms  
11.8.2  
MCC beep control register (MCCBCR)  
MCCBCR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
Reserved  
-
BC[1:0]  
RW  
Table 41. MCCBCR register description  
Bit Name  
Function  
7:2  
-
Reserved, must be kept cleared.  
Beep control  
1:0 BC[1:0]  
These 2 bits select the PF1 pin beep capability (see Table 42).  
Table 42. Beep frequency selection  
BC1  
BC0  
Beep mode with fOSC2 = 8 MHz  
0
0
1
1
0
1
0
1
Off  
~2 kHz  
Output  
Beep signal  
~50% duty cycle  
~1 kHz  
~500 Hz  
The beep output signal is available in Active Halt mode but has to be disabled to reduce  
consumption.  
86/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Main clock controller with real-time clock and beeper (MCC/RTC)  
Table 43. Main clock controller register map and reset values  
Address (Hex.) Register label  
7
6
5
4
3
0
2
0
1
0
0
SICSR  
002Bh  
AVDS  
0
AVDIE  
0
AVDF  
0
LVDRF  
x
WDGRF  
x
Reset value  
MCCSR  
002Ch  
MCO  
0
CP1  
0
CP0  
0
SMS  
0
TB1  
0
TB0  
0
OIE  
0
OIF  
0
Reset value  
MCCBCR  
002Dh  
BC1  
0
BC0  
0
Reset value  
0
0
0
0
0
0
Doc ID 12898 Rev 2  
87/244  
PWM auto-reload timer (ART)  
ST72321Bxxx-Auto  
12  
PWM auto-reload timer (ART)  
12.1  
Introduction  
The Pulse Width Modulated Auto-Reload Timer on-chip peripheral consists of an 8-bit auto-  
reload counter with compare/capture capabilities and of a 7-bit prescaler clock source.  
These resources allow five possible operating modes:  
Generation of up to 4 independent PWM signals  
Output compare and Time base interrupt  
Up to 2 input capture functions  
External event detector  
Up to 2 external interrupt sources  
The three first modes can be used together with a single counter frequency.  
The timer can be used to wake up the MCU from Wait and Halt modes.  
Figure 35. PWM auto-reload timer block diagram  
OCRx  
DCRx  
OEx  
OPx  
PWMCR  
REGISTER  
REGISTER  
LOAD  
PORT  
ALTERNATE  
FUNCTION  
POLARITY  
CONTROL  
PWMx  
COMPARE  
8-BIT COUNTER  
(CAR REGISTER)  
ARR  
REGISTER  
LOAD  
INPUT CAPTURE  
CONTROL  
ICRx  
LOAD  
ARTICx  
REGISTER  
ICSx  
ICIEx  
ICFx  
ICCSR  
ICx INTERRUPT  
f
EXT  
ARTCLK  
f
COUNTER  
f
CPU  
MUX  
f
INPUT  
PROGRAMMABLE  
PRESCALER  
ARTCSR  
EXCL CC2 CC1 CC0 TCE FCRL OIE  
OVF  
OVF INTERRUPT  
88/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
PWM auto-reload timer (ART)  
12.2  
Functional description  
12.2.1  
Counter  
The free running 8-bit counter is fed by the output of the prescaler, and is incremented on  
every rising edge of the clock signal.  
It is possible to read or write the contents of the counter on the fly by reading or writing the  
Counter Access register (ARTCAR).  
When a counter overflow occurs, the counter is automatically reloaded with the contents of  
the ARTARR register (the prescaler is not affected).  
12.2.2  
Counter clock and prescaler  
The counter clock frequency is given by:  
CC[2:0]  
f
= f  
/ 2  
INPUT  
COUNTER  
The timer counter’s input clock (f  
) feeds the 7-bit programmable prescaler, which  
INPUT  
selects one of the 8 available taps of the prescaler, as defined by CC[2:0] bits in the  
Control/Status Register (ARTCSR). Thus the division factor of the prescaler can be set to 2  
(where n = 0, 1,..7).  
n
This f  
frequency source is selected through the EXCL bit of the ARTCSR register and  
INPUT  
can be either the f  
or an external input frequency f  
.
CPU  
EXT  
The clock input to the counter is enabled by the TCE (Timer Counter Enable) bit in the  
ARTCSR register. When TCE is reset, the counter is stopped and the prescaler and counter  
contents are frozen. When TCE is set, the counter runs at the rate of the selected clock  
source.  
12.2.3  
Counter and prescaler initialization  
After RESET, the counter and the prescaler are cleared and f  
The counter can be initialized by:  
= f  
.
INPUT  
CPU  
writing to the ARTARR register and then setting the FCRL (Force Counter Re-Load)  
and the TCE (Timer Counter Enable) bits in the ARTCSR register  
writing to the ARTCAR counter access register  
In both cases the 7-bit prescaler is also cleared, whereupon counting will start from a known  
value.  
Direct access to the prescaler is not possible.  
12.2.4  
Output compare control  
The timer compare function is based on four different comparisons with the counter (one for  
each PWMx output). Each comparison is made between the counter value and an output  
compare register (OCRx) value. This OCRx register can not be accessed directly, it is  
loaded from the duty cycle register (PWMDCRx) at each overflow of the counter.  
This double buffering method avoids glitch generation when changing the duty cycle on the  
fly.  
Doc ID 12898 Rev 2  
89/244  
PWM auto-reload timer (ART)  
Figure 36. Output compare control  
ST72321Bxxx-Auto  
f
COUNTER  
ARTARR = FDh  
FFh  
COUNTER  
OCRx  
FDh  
FEh  
FDh  
FEh  
FFh  
FDh  
FEh  
FFh  
FEh  
FDh  
PWMDCRx  
FEh  
FDh  
PWMx  
12.2.5  
Independent PWM signal generation  
This mode allows up to four Pulse Width Modulated signals to be generated on the PWMx  
output pins with minimum core processing overhead. This function is stopped during Halt  
mode.  
Each PWMx output signal can be selected independently using the corresponding OEx bit  
in the PWM Control register (PWMCR). When this bit is set, the corresponding I/O pin is  
configured as output push-pull alternate function.  
The PWM signals all have the same frequency which is controlled by the counter period and  
the ARTARR register value.  
f
= f  
/ (256 - ARTARR)  
PWM  
COUNTER  
When a counter overflow occurs, the PWMx pin level is changed depending on the  
corresponding OPx (output polarity) bit in the PWMCR register. When the counter reaches  
the value contained in one of the output compare register (OCRx) the corresponding PWMx  
pin level is restored.  
It should be noted that the reload values will also affect the value and the resolution of the  
duty cycle of the PWM output signal. To obtain a signal on a PWMx pin, the contents of the  
OCRx register must be greater than the contents of the ARTARR register.  
The maximum available resolution for the PWMx duty cycle is:  
Resolution = 1 / (256 - ARTARR)  
Note:  
To get the maximum resolution (1/256), the ARTARR register must be 0. With this maximum  
resolution, 0% and 100% can be obtained by changing the polarity.  
90/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
PWM auto-reload timer (ART)  
Figure 37. PWM auto-reload timer function  
255  
DUTY CYCLE  
REGISTER  
(PWMDCRx)  
AUTO-RELOAD  
REGISTER  
(ARTARR)  
000  
t
WITH OEx=1  
AND OPx=0  
WITH OEx=1  
AND OPx=1  
Figure 38. PWM signal from 0% to 100% duty cycle  
f
COUNTER  
ARTARR = FDh  
FFh  
COUNTER  
FDh  
FEh  
FDh  
FEh  
FFh  
FDh  
FEh  
OCRx=FCh  
OCRx=FDh  
OCRx=FEh  
OCRx=FFh  
t
12.2.6  
Output compare and time base interrupt  
On overflow, the OVF flag of the ARTCSR register is set and an overflow interrupt request is  
generated if the overflow interrupt enable bit, OIE, in the ARTCSR register, is set. The OVF  
flag must be reset by the user software. This interrupt can be used as a time base in the  
application.  
12.2.7  
External clock and event detector mode  
Using the f  
external prescaler input clock, the auto-reload timer can be used as an  
EXT  
external clock event detector. In this mode, the ARTARR register is used to select the  
number of events to be counted before setting the OVF flag.  
n
EVENT  
n
= 256 - ARTARR  
EVENT  
Caution:  
The external clock function is not available in Halt mode. If Halt mode is used in the  
application, prior to executing the HALT instruction, the counter must be disabled by clearing  
the TCE bit in the ARTCSR register to avoid spurious counter increments.  
Doc ID 12898 Rev 2  
91/244  
PWM auto-reload timer (ART)  
Figure 39. External event detector example (3 counts)  
ST72321Bxxx-Auto  
f
= f  
COUNTER  
EXT  
ARTARR = FDh  
FFh  
COUNTER  
OVF  
FDh  
FEh  
FDh  
FEh  
FFh  
FDh  
ARTCSR READ  
ARTCSR READ  
INTERRUPT  
IF OIE = 1  
INTERRUPT  
IF OIE = 1  
t
12.2.8  
Input capture function  
This mode allows the measurement of external signal pulse widths through ARTICRx  
registers.  
Each input capture can generate an interrupt independently on a selected input signal  
transition. This event is flagged by a set of the corresponding CFx bits of the Input Capture  
Control/Status register (ARTICCSR).  
These input capture interrupts are enabled through the CIEx bits of the ARTICCSR register.  
The active transition (falling or rising edge) is software programmable through the CSx bits  
of the ARTICCSR register.  
The read only input capture registers (ARTICRx) are used to latch the auto-reload counter  
value when a transition is detected on the ARTICx pin (CFx bit set in ARTICCSR register).  
After fetching the interrupt vector, the CFx flags can be read to identify the interrupt source.  
Note:  
Note:  
After a capture detection, data transfer in the ARTICRx register is inhibited until it is read  
(clearing the CFx bit).  
The timer interrupt remains pending while the CFx flag is set when the interrupt is enabled  
(CIEx bit set). This means that the ARTICRx register has to be read at each capture event to  
clear the CFx flag.  
The timing resolution is given by auto-reload counter cycle time (1/f  
).  
COUNTER  
During Halt mode, if both the input capture and the external clock are enabled, the ARTICRx  
register value is not guaranteed if the input capture pin and the external clock change  
simultaneously.  
92/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
PWM auto-reload timer (ART)  
12.2.9  
External interrupt capability  
This mode allows the input capture capabilities to be used as external interrupt sources. The  
interrupts are generated on the edge of the ARTICx signal.  
The edge sensitivity of the external interrupts is programmable (CSx bit of ARTICCSR  
register) and they are independently enabled through CIEx bits of the ARTICCSR register.  
After fetching the interrupt vector, the CFx flags can be read to identify the interrupt source.  
During Halt mode, the external interrupts can be used to wake up the micro (if the CIEx bit is  
set).  
Figure 40. Input capture timing diagram  
f
COUNTER  
COUNTER  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
INTERRUPT  
04h  
ARTICx PIN  
CFx FLAG  
xxh  
ICRx REGISTER  
t
Doc ID 12898 Rev 2  
93/244  
PWM auto-reload timer (ART)  
ST72321Bxxx-Auto  
12.3  
ART registers  
12.3.1  
Control/status register (ARTCSR)  
ARTCSR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
EXCL  
CC[2:0]  
TCE  
FCRL  
OIE  
OVF  
RW  
RW  
RW  
RW  
RW  
RW  
Table 44. ARTCSR register description  
Bit Name  
Function  
External Clock  
This bit is set and cleared by software. It selects the input clock for the 7-bit  
prescaler.  
7
EXCL  
0: CPU clock  
1: External clock  
Counter Clock Control  
6:4 CC[2:0]  
These bits are set and cleared by software. They determine the prescaler division  
ratio from fINPUT (see Table 45).  
Timer Counter Enable  
This bit is set and cleared by software. It puts the timer in the lowest power  
consumption mode.  
0: Counter stopped (prescaler and counter frozen)  
1: Counter running  
3
2
1
0
TCE  
FCRL  
OIE  
Force Counter Re-Load  
This bit is write-only and any attempt to read it will yield a logical zero. When set, it  
causes the contents of ARTARR register to be loaded into the counter, and the  
content of the prescaler register to be cleared in order to initialize the timer before  
starting to count.  
Overflow Interrupt Enable  
This bit is set and cleared by software. It allows to enable/disable the interrupt which  
is generated when the OVF bit is set.  
0: Overflow Interrupt disable  
1: Overflow Interrupt enable  
Overflow Flag  
This bit is set by hardware and cleared by software reading the ARTCSR register. It  
indicates the transition of the counter from FFh to the ARTARR value.  
0: New transition not yet reached  
OVF  
1: Transition reached  
Table 45. Prescaler selection for ART  
fCOUNTER  
With fINPUT = 8 MHz  
CC2  
CC1  
CC0  
fINPUT  
8 MHz  
4 MHz  
2 MHz  
0
0
0
0
0
1
0
1
0
f
INPUT / 2  
fINPUT / 4  
94/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Table 45. Prescaler selection for ART (continued)  
PWM auto-reload timer (ART)  
fCOUNTER  
With fINPUT = 8 MHz  
CC2  
CC1  
CC0  
fINPUT / 8  
1 MHz  
500 kHz  
250 kHz  
125 kHz  
62.5 kHz  
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
f
INPUT / 16  
fINPUT / 32  
fINPUT / 64  
INPUT / 128  
f
12.3.2  
Counter access register (ARTCAR)  
ARTCAR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
CA[7:0]  
RW  
Table 46. ARTCAR register description  
Bit Name  
Function  
Counter Access Data  
These bits can be set and cleared either by hardware or by software. The  
ARTCAR register is used to read or write the auto-reload counter “on the fly”  
(while it is counting).  
7:0 CA[7:0]  
12.3.3  
Auto-reload register (ARTARR)  
ARTARR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
AR[7:0]  
RW  
Table 47. ARTAAR register description  
Bit Name  
Function  
Counter Auto-Reload Data  
These bits are set and cleared by software. They are used to hold the auto-reload  
value which is automatically loaded in the counter when an overflow occurs. At the  
same time, the PWM output levels are changed according to the corresponding  
OPx bit in the PWMCR register.  
7:0 AR[7:0]  
This register has two PWM management functions:  
Adjusting the PWM frequency  
Setting the PWM duty cycle resolution  
Doc ID 12898 Rev 2  
95/244  
PWM auto-reload timer (ART)  
ST72321Bxxx-Auto  
Table 48. PWM frequency versus resolution  
fPWM  
ARTARR value  
Resolution  
Min  
Max  
0
8-bit  
~0.244 kHz  
~0.244 kHz  
~0.488 kHz  
~0.977 kHz  
~1.953 kHz  
31.25 kHz  
62.5 kHz  
125 kHz  
250 kHz  
500 kHz  
[ 0..127 ]  
> 7-bit  
> 6-bit  
> 5-bit  
> 4-bit  
[ 128..191 ]  
[ 192..223 ]  
[ 224..239 ]  
12.3.4  
PWM control register (PWMCR)  
PWMCR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
OE[3:0]  
RW  
OP[3:0]  
RW  
Table 49. PWMCR register description  
Bit Name  
Function  
PWM Output Enable  
These bits are set and cleared by software. They enable or disable the PWM  
output channels independently acting on the corresponding I/O pin.  
0: PWM output disabled  
7:4 OE[3:0]  
3:0 OP[3:0]  
1: PWM output enabled  
PWM Output Polarity  
These bits are set and cleared by software. They independently select the polarity  
of the four PWM output signals (see Table 50).  
Table 50. PWM output signal polarity selection  
PWMx output level  
OPx(1)  
Counter <= OCRx  
Counter > OCRx  
1
0
0
1
0
1
1. When an OPx bit is modified, the PWMx output signal polarity is immediately reversed.  
96/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
PWM auto-reload timer (ART)  
12.3.5  
Duty cycle registers (PWMDCRx)  
PWMDCRx  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
DC[7:0]  
RW  
Table 51. PWMDCRx register description  
Bit Name  
Function  
Duty Cycle Data  
7:0 DC[7:0]  
These bits are set and cleared by software.  
A PWMDCRx register is associated with the OCRx register of each PWM channel to  
determine the second edge location of the PWM signal (the first edge location is common to  
all channels and given by the ARTARR register). These PWMDCR registers allow the duty  
cycle to be set independently for each PWM channel.  
12.3.6  
Input capture control / status register (ARTICCSR)  
ARTICCSR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
Reserved  
CS[2:1]  
RW  
CIE[2:1]  
RW  
CF[2:1]  
RW  
-
Table 52. ARTICCSR register description  
Bit  
Name  
Function  
7:6  
-
Reserved, always read as 0.  
Capture Sensitivity  
These bits are set and cleared by software. They determine the trigger event  
polarity on the corresponding input capture channel.  
0: Falling edge triggers capture on channel x  
5:4 CS[2:1]  
3:2 CIE[2:1]  
1: Rising edge triggers capture on channel x  
Capture Interrupt Enable  
These bits are set and cleared by software. They enable or disable the Input  
capture channel interrupts independently.  
0: Input capture channel x interrupt disabled  
1: Input capture channel x interrupt enabled  
Capture Flag  
These bits are set by hardware and cleared by software reading the  
corresponding ARTICRx register. Each CFx bit indicates that an input capture x  
has occurred.  
1:0 CF[2:1]  
0: No input capture on channel x  
1: An input capture has occurred on channel x.  
Doc ID 12898 Rev 2  
97/244  
PWM auto-reload timer (ART)  
ST72321Bxxx-Auto  
12.3.7  
Input capture registers (ARTICRx)  
ARTICRx  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
IC[7:0]  
RO  
Table 53. ARTICRx register description  
Bit Name  
Function  
Input Capture Data  
These read only bits are set and cleared by hardware. An ARTICRx register  
contains the 8-bit auto-reload counter value transferred by the input capture  
channel x event.  
7:0 IC[7:0]  
Table 54. PWM auto-reload timer register map and reset values  
Address (Hex.) Register label  
7
6
5
4
3
2
1
0
PWMDCR3  
0073h  
DC7  
0
DC6 DC5 DC4  
DC3  
0
DC2  
0
DC1  
0
DC0  
0
Reset value  
0
0
0
PWMDCR2  
0074h  
DC7  
0
DC6 DC5 DC4  
DC3  
0
DC2  
0
DC1  
0
DC0  
0
Reset value  
0
0
0
PWMDCR1  
0075h  
DC7  
0
DC6 DC5 DC4  
DC3  
0
DC2  
0
DC1  
0
DC0  
0
Reset value  
0
0
0
PWMDCR0  
0076h  
DC7  
0
DC6 DC5 DC4  
DC3  
0
DC2  
0
DC1  
0
DC0  
0
Reset value  
0
0
0
PWMCR  
0077h  
OE3  
0
OE2 OE1 OE0  
OP3  
0
OP2  
0
OP1  
0
OP0  
0
Reset value  
0
0
0
ARTCSR  
0078h  
EXCL  
0
CC2 CC1 CC0  
TCE  
0
FCRL  
0
RIE  
0
OVF  
0
Reset value  
0
0
0
ARTCAR  
0079h  
CA7  
0
CA6  
0
CA5  
0
CA4  
0
CA3  
0
CA2  
0
CA1  
0
CA0  
0
Reset value  
ARTARR  
007Ah  
AR7  
0
AR6  
0
AR5  
0
AR4  
0
AR3  
0
AR2  
0
AR1  
0
AR0  
0
Reset value  
ARTICCSR  
007Bh  
CS2  
0
CS1  
0
CIE2  
0
CIE1  
0
CF2  
0
CF1  
0
Reset value  
0
0
ARTICR1  
007Ch  
IC7  
0
IC6  
0
IC5  
0
IC4  
0
IC3  
0
IC2  
0
IC1  
0
IC0  
0
Reset value  
ARTICR2  
007Dh  
IC7  
0
IC6  
0
IC5  
0
IC4  
0
IC3  
0
IC2  
0
IC1  
0
IC0  
0
Reset value  
98/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
16-bit timer  
13  
16-bit timer  
13.1  
Introduction  
The timer consists of a 16-bit free-running counter driven by a programmable prescaler.  
It may be used for a variety of purposes, including pulse length measurement of up to two  
input signals (input capture) or generation of up to two output waveforms (output compare  
and PWM).  
Pulse lengths and waveform periods can be modulated from a few microseconds to several  
milliseconds using the timer prescaler and the CPU clock prescaler.  
Some ST7 devices have two on-chip 16-bit timers. They are completely independent, and  
do not share any resources. They are synchronized after an MCU reset as long as the timer  
clock frequencies are not modified.  
This description covers one or two 16-bit timers. In ST7 devices with two timers, register  
names are prefixed with TA (Timer A) or TB (Timer B).  
13.2  
Main features  
Programmable prescaler: f  
divided by 2, 4 or 8  
CPU  
Overflow status flag and maskable interrupt  
External clock input (must be at least four times slower than the CPU clock speed) with  
the choice of active edge  
1 or 2 Output Compare functions each with:  
2 dedicated 16-bit registers  
2 dedicated programmable signals  
2 dedicated status flags  
1 dedicated maskable interrupt  
1 or 2 Input Capture functions each with:  
2 dedicated 16-bit registers  
2 dedicated active edge selection signals  
2 dedicated status flags  
1 dedicated maskable interrupt  
Pulse Width Modulation mode (PWM)  
One Pulse mode  
Reduced Power mode  
(a)  
5 alternate functions on I/O ports (ICAP1, ICAP2, OCMP1, OCMP2, EXTCLK)  
The block diagram is shown in Figure 41.  
Note:  
When reading an input signal on a non-bonded pin, the value will always be ‘1’.  
a. Some timer pins may not be available (not bonded) in some ST7 devices. Refer to the device pinout  
description.  
Doc ID 12898 Rev 2  
99/244  
16-bit timer  
ST72321Bxxx-Auto  
13.3  
Functional description  
13.3.1  
Counter  
The main block of the Programmable Timer is a 16-bit free running upcounter and its  
associated 16-bit registers. The 16-bit registers are made up of two 8-bit registers called  
high and low.  
Counter Register (CR)  
Counter High Register (CHR) is the most significant byte (MS Byte)  
Counter Low Register (CLR) is the least significant byte (LS Byte)  
Alternate Counter Register (ACR)  
Alternate Counter High Register (ACHR) is the most significant byte (MS Byte)  
Alternate Counter Low Register (ACLR) is the least significant byte (LS Byte)  
These two read-only 16-bit registers contain the same value but with the difference that  
reading the ACLR register does not clear the TOF bit (Timer overflow flag), located in the  
Status register (SR) (see note at the end of paragraph entitled 16-bit read sequence).  
Writing in the CLR register or ACLR register resets the free running counter to the FFFCh  
value.  
Both counters have a reset value of FFFCh (this is the only value which is reloaded in the  
16-bit timer). The reset value of both counters is also FFFCh in One Pulse mode and PWM  
mode.  
The timer clock depends on the clock control bits of the CR2 register, as illustrated in  
Table 60: Timer clock selection. The value in the counter register repeats every 131072,  
262144 or 524288 CPU clock cycles depending on the CC[1:0] bits.  
The timer frequency can be f  
/2, f  
/4, f  
/8 or an external frequency.  
CPU  
CPU  
CPU  
100/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
16-bit timer  
Figure 41. Timer block diagram  
ST7 INTERNAL BUS  
fCPU  
MCU-PERIPHERAL INTERFACE  
8 low  
8 high  
8-bit  
buffer  
8
8
8
8
8
8
8
8
EXEDG  
16  
INPUT  
CAPTURE  
REGISTER  
INPUT  
CAPTURE  
REGISTER  
OUTPUT  
COMPARE  
REGISTER REGISTER  
OUTPUT  
COMPARE  
1/2  
1/4  
1/8  
COUNTER  
REGISTER  
1
1
2
2
ALTERNATE  
COUNTER  
REGISTER  
EXTCLK  
pin  
16  
16  
16  
CC[1:0]  
TIMER INTERNAL BUS  
16  
16  
OVERFLOW  
DETECT  
CIRCUIT  
EDGE DETECT  
CIRCUIT1  
OUTPUT COMPARE  
CIRCUIT  
ICAP1  
pin  
6
EDGE DETECT  
CIRCUIT2  
ICAP2  
pin  
LATCH1  
LATCH2  
OCMP1  
pin  
ICF1 OCF1 TOF ICF2 OCF2 TIMD  
0
0
(Control/Status Register)  
OCMP2  
pin  
CSR  
ICIE OCIE TOIE FOLV2 FOLV1OLVL2 IEDG1 OLVL1  
OC1E OC2E OPM PWM CC1 CC0 IEDG2 EXEDG  
(Control Register 1) CR1  
(Control Register 2) CR2  
(1)  
TIMER INTERRUPT  
1. If IC, OC and TO interrupt request have separate vectors, then the last OR is not present (see device interrupt vector table).  
Doc ID 12898 Rev 2  
101/244  
16-bit timer  
ST72321Bxxx-Auto  
16-bit read sequence  
The 16-bit read sequence (from either the Counter Register or the Alternate Counter  
Register) is illustrated in Figure 42.  
Figure 42. 16-bit read sequence  
Beginning of the sequence  
Read  
MS Byte  
LS Byte  
is buffered  
At t0  
Other  
instructions  
Returns the buffered  
LS Byte value at t0  
Read  
LS Byte  
At t0 +Dt  
Sequence completed  
The user must read the MS Byte first; the LS Byte value is then buffered automatically.  
This buffered value remains unchanged until the 16-bit read sequence is completed, even if  
the user reads the MS Byte several times.  
After a complete reading sequence, if only the CLR register or ACLR register are read, they  
return the LS Byte of the count value at the time of the read.  
Whatever timer mode is used (input capture, output compare, one pulse mode or PWM  
mode) an overflow occurs when the counter rolls over from FFFFh to 0000h, after which  
the TOF bit of the SR register is set  
a timer interrupt is generated if  
the TOIE bit of the CR1 register is set and  
the I bit of the CC register is cleared  
If one of these conditions is false, the interrupt remains pending to be issued as soon as  
they are both true.  
Clearing the overflow interrupt request is done in two steps:  
1. Reading the SR register while the TOF bit is set  
2. An access (read or write) to the CLR register  
Note:  
The TOF bit is not cleared by accesses to ACLR register. The advantage of accessing the  
ACLR register rather than the CLR register is that it allows simultaneous use of the overflow  
function and reading the free running counter at random times (for example, to measure  
elapsed time) without the risk of clearing the TOF bit erroneously.  
The timer is not affected by Wait mode.  
In Halt mode, the counter stops counting until the mode is exited. Counting then resumes  
from the previous count (MCU awakened by an interrupt) or from the reset count (MCU  
awakened by a Reset).  
102/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
16-bit timer  
13.3.2  
External clock  
The external clock (where available) is selected if CC0 = 1 and CC1 = 1 in the CR2 register.  
The status of the EXEDG bit in the CR2 register determines the type of level transition on  
the external clock pin EXTCLK that will trigger the free running counter.  
The counter is synchronized with the falling edge of the internal CPU clock.  
A minimum of four falling edges of the CPU clock must occur between two consecutive  
active edges of the external clock; thus, the external clock frequency must be less than a  
quarter of the CPU clock frequency.  
Figure 43. Counter timing diagram, internal clock divided by 2  
CPU CLOCK  
INTERNAL RESET  
TIMER CLOCK  
FFFD FFFE FFFF 0000 0001 0002 0003  
COUNTER REGISTER  
TIMER OVERFLOW FLAG (TOF)  
Figure 44. Counter timing diagram, internal clock divided by 4  
CPU CLOCK  
INTERNAL RESET  
TIMER CLOCK  
FFFC  
FFFD  
0000  
0001  
COUNTER REGISTER  
TIMER OVERFLOW FLAG (TOF)  
Figure 45. Counter timing diagram, internal clock divided by 8  
CPU CLOCK  
INTERNAL RESET  
TIMER CLOCK  
0000  
FFFC  
FFFD  
COUNTER REGISTER  
TIMER OVERFLOW FLAG (TOF)  
Note:  
The MCU is in reset state when the internal reset signal is high; when it is low the MCU is  
running.  
Doc ID 12898 Rev 2  
103/244  
16-bit timer  
ST72321Bxxx-Auto  
13.3.3  
Input capture  
In this section, the index, i, may be 1 or 2 because there are two input capture functions in  
the 16-bit timer.  
The two 16-bit input capture registers (IC1R and IC2R) are used to latch the value of the  
free running counter after a transition is detected on the ICAPi pin (see Figure 46).  
MS Byte  
LS Byte  
ICiR  
ICiHR  
ICiLR  
ICiR register is a read-only register.  
The active transition is software programmable through the IEDGi bit of Control Registers  
(CRi).  
Timing resolution is one count of the free running counter: (f  
Procedure:  
/CC[1:0]).  
CPU  
To use the input capture function select the following in the CR2 register:  
Select the timer clock (CC[1:0]) (see Table 60: Timer clock selection).  
Select the edge of the active transition on the ICAP2 pin with the IEDG2 bit (the ICAP2  
pin must be configured as floating input or input with pull-up without interrupt if this  
configuration is available).  
And select the following in the CR1 register:  
Set the ICIE bit to generate an interrupt after an input capture coming from either the  
ICAP1 pin or the ICAP2 pin  
Select the edge of the active transition on the ICAP1 pin with the IEDG1 bit (the  
ICAP1pin must be configured as floating input or input with pull-up without interrupt if  
this configuration is available).  
When an input capture occurs:  
ICFi bit is set.  
The ICiR register contains the value of the free running counter on the active transition  
on the ICAPi pin (see Figure 47).  
A timer interrupt is generated if the ICIE bit is set and the I bit is cleared in the CC  
register. Otherwise, the interrupt remains pending until both conditions become true.  
Clearing the input capture interrupt request (that is, clearing the ICFi bit) is done in two  
steps:  
1. Reading the SR register while the ICFi bit is set  
2. An access (read or write) to the ICiLR register  
Note:  
1
2
3
4
After reading the ICiHR register, transfer of input capture data is inhibited and ICFi will never  
be set until the ICiLR register is also read.  
The ICiR register contains the free running counter value which corresponds to the most  
recent input capture.  
The two input capture functions can be used together even if the timer also uses the two  
output compare functions.  
In One pulse Mode and PWM mode only Input Capture 2 can be used.  
104/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
16-bit timer  
5
6
7
8
The alternate inputs (ICAP1 and ICAP2) are always directly connected to the timer. So any  
transitions on these pins activates the input capture function.  
Moreover if one of the ICAPi pins is configured as an input and the second one as an output,  
an interrupt can be generated if the user toggles the output pin and if the ICIE bit is set.  
This can be avoided if the input capture function i is disabled by reading the ICiHR (see note  
1).  
The TOF bit can be used with interrupt generation in order to measure events that go  
beyond the timer range (FFFFh).  
Figure 46. Input capture block diagram  
ICAP1  
pin  
(Control Register 1) CR1  
EDGE DETECT  
CIRCUIT1  
EDGE DETECT  
CIRCUIT2  
ICIE  
IEDG1  
ICAP2  
pin  
(Status Register) SR  
IC2R Register  
IC1R Register  
ICF1  
ICF2  
0
0
0
(Control Register 2) CR2  
16-BIT  
16-BIT FREE RUNNING  
COUNTER  
CC1  
CC0 IEDG2  
Figure 47. Input capture timing diagram  
TIMER CLOCK  
FF01  
FF02  
FF03  
COUNTER REGISTER  
ICAPi PIN  
ICAPi FLAG  
FF03  
ICAPi REGISTER  
Note: The rising edge is the active edge.  
Doc ID 12898 Rev 2  
105/244  
16-bit timer  
ST72321Bxxx-Auto  
13.3.4  
Output compare  
In this section, the index, i, may be 1 or 2 because there are two output compare functions in  
the 16-bit timer.  
This function can be used to control an output waveform or indicate when a period of time  
has elapsed.  
When a match is found between the Output Compare register and the free running counter,  
the output compare function:  
Assigns pins with a programmable value if the OCiE bit is set  
Sets a flag in the status register  
Generates an interrupt if enabled  
Two 16-bit registers Output Compare Register 1 (OC1R) and Output Compare Register 2  
(OC2R) contain the value to be compared to the counter register each timer clock cycle.  
MS byte  
LS byte  
OCiR  
OCiHR  
OCiLR  
These registers are readable and writable and are not affected by the timer hardware. A  
reset event changes the OCiR value to 8000h.  
Timing resolution is one count of the free running counter: (f  
).  
CPU/CC[1:0]  
Procedure  
To use the output compare function, select the following in the CR2 register:  
Set the OCiE bit if an output is needed then the OCMPi pin is dedicated to the output  
compare i signal.  
Select the timer clock (CC[1:0]) (see Table 60: Timer clock selection).  
And select the following in the CR1 register:  
Select the OLVLi bit to applied to the OCMPi pins after the match occurs.  
Set the OCIE bit to generate an interrupt if it is needed.  
When a match is found between OCRi register and CR register:  
OCFi bit is set.  
The OCMPi pin takes OLVLi bit value (OCMPi pin latch is forced low during reset).  
A timer interrupt is generated if the OCIE bit is set in the CR1 register and the I bit is  
cleared in the CC register (CC).  
The OCiR register value required for a specific timing application can be calculated using  
the following formula:  
t f  
* CPU  
PRESC  
OCiR =  
Where:  
t  
= Output compare period (in seconds)  
= CPU clock frequency (in hertz)  
f
CPU  
PRESC = Timer prescaler factor (2, 4 or 8 depending on CC[1:0] bits; see Table 60:  
Timer clock selection)  
106/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
16-bit timer  
If the timer clock is an external clock, the formula is:  
OCiR = t f  
* EXT  
Where:  
t  
= Output compare period (in seconds)  
f
= External timer clock frequency (in hertz)  
CPU  
Clearing the output compare interrupt request (that is, clearing the OCFi bit) is done by:  
1. Reading the SR register while the OCFi bit is set  
2. An access (read or write) to the OCiLR register  
The following procedure is recommended to prevent the OCFi bit from being set between  
the time it is read and the write to the OCiR register:  
Write to the OCiHR register (further compares are inhibited).  
Read the SR register (first step of the clearance of the OCFi bit, which may be already  
set).  
Write to the OCiLR register (enables the output compare function and clears the OCFi  
bit).  
Note:  
1
2
3
After a processor write cycle to the OCiHR register, the output compare function is inhibited  
until the OCiLR register is also written.  
If the OCiE bit is not set, the OCMPi pin is a general I/O port and the OLVLi bit will not  
appear when a match is found but an interrupt could be generated if the OCIE bit is set.  
In both internal and external clock modes, OCFi and OCMPi are set while the counter value  
equals the OCiR register value (see Figure 49 on page 108 for an example with f  
/2 and  
CPU  
Figure 50 on page 108 for an example with f  
PWM mode.  
/4). This behavior is the same in OPM or  
CPU  
4
5
The output compare functions can be used both for generating external events on the  
OCMPi pins even if the input capture mode is also used.  
The value in the 16-bit OCiR register and the OLVi bit should be changed after each  
successful comparison in order to control an output waveform or establish a new elapsed  
timeout.  
13.3.5  
Forced compare output capability  
When the FOLVi bit is set by software, the OLVLi bit is copied to the OCMPi pin. The OLVi bit  
has to be toggled in order to toggle the OCMPi pin when it is enabled (OCiE bit = 1). The  
OCFi bit is then not set by hardware, and thus no interrupt request is generated.  
The FOLVLi bits have no effect in both one pulse mode and PWM mode.  
Doc ID 12898 Rev 2  
107/244  
16-bit timer  
ST72321Bxxx-Auto  
Figure 48. Output compare block diagram  
16-BIT FREE RUNNING  
COUNTER  
OC1E OC2E  
CC1 CC0  
(Control Register 2) CR2  
16-bit  
(Control Register 1) CR1  
FOLV2 FOLV1 OLVL2 OLVL1  
OUTPUT COMPARE  
CIRCUIT  
Latch  
1
OCIE  
OCMP1  
pin  
16-bit  
OC1R Register  
16-bit  
Latch  
2
OCMP2  
pin  
OCF1  
OCF2  
0
0
0
OC2R Register  
(Status Register) SR  
Figure 49. Output compare timing diagram, f  
= f  
/2  
CPU  
TIMER  
INTERNAL CPU CLOCK  
TIMER CLOCK  
COUNTER REGISTER  
2ECF 2ED0 2ED1 2ED2  
2ED3  
2ED4  
2ED3  
OUTPUT COMPARE REGISTER i (OCRi)  
OUTPUT COMPARE FLAG i (OCFi)  
OCMPi PIN (OLVLi = 1)  
Figure 50. Output compare timing diagram, f  
= f  
/4  
CPU  
TIMER  
INTERNAL CPU CLOCK  
TIMER CLOCK  
2ECF 2ED0 2ED1 2ED2  
2ED3  
2ED4  
2ED3  
COUNTER REGISTER  
OUTPUT COMPARE REGISTER i (OCRi)  
OUTPUT COMPARE FLAG i (OCFi)  
OCMPi PIN (OLVLi = 1)  
108/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
16-bit timer  
13.3.6  
One Pulse mode  
One Pulse mode enables the generation of a pulse when an external event occurs. This  
mode is selected via the OPM bit in the CR2 register.  
The one pulse mode uses the Input Capture1 function and the Output Compare1 function.  
Procedure  
To use one pulse mode:  
1. Load the OC1R register with the value corresponding to the length of the pulse (using  
the appropriate formula below according to the timer clock source used).  
2. Select the following in the CR1 register:  
Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after the  
pulse.  
Using the OLVL2 bit, select the level to be applied to the OCMP1 pin during the  
pulse.  
Select the edge of the active transition on the ICAP1 pin with the IEDG1 bit (the  
ICAP1 pin must be configured as floating input).  
3. Select the following in the CR2 register:  
Set the OC1E bit, the OCMP1 pin is then dedicated to the Output Compare 1  
function.  
Set the OPM bit.  
Select the timer clock CC[1:0] (see Table 60: Timer clock selection).  
Then, on a valid event on the ICAP1 pin, the counter is initialized to FFFCh and OLVL2 bit is  
loaded on the OCMP1 pin, the ICF1 bit is set and the value FFFDh is loaded in the IC1R  
register.  
Figure 51. One pulse mode cycle flowchart  
ICR1 = Counter  
OCMP1 = OLVL2  
When event occurs  
on ICAP1  
Counter is reset  
to FFFCh  
ICF1 bit is set  
When counter = OC1R  
OCMP1 = OLVL1  
Because the ICF1 bit is set when an active edge occurs, an interrupt can be generated if the  
ICIE bit is set.  
Clearing the input capture interrupt request (that is, clearing the ICFi bit) is done in two  
steps:  
1. Reading the SR register while the ICFi bit is set  
2. An access (read or write) to the ICiLR register  
Doc ID 12898 Rev 2  
109/244  
 
16-bit timer  
ST72321Bxxx-Auto  
The OC1R register value required for a specific timing application can be calculated using  
the following formula:  
t f  
* CPU - 5  
PRESC  
OCiR value =  
Where:  
t
= Pulse period (in seconds)  
= CPU clock frequency (in hertz)  
f
CPU  
PRESC = Timer prescaler factor (2, 4 or 8 depending on the CC[1:0] bits; see Table 60:  
Timer clock selection)  
If the timer clock is an external clock the formula is:  
OCiR = t f  
- 5  
* EXT  
Where:  
t
= Pulse period (in seconds)  
= External clock frequency (in hertz)  
f
EXT  
When the value of the counter is equal to the value of the contents of the OC1R register, the  
OLVL1 bit is output on the OCMP1 pin (see Figure 52).  
Note:  
1
2
The OCF1 bit cannot be set by hardware in one pulse mode but the OCF2 bit can generate  
an Output Compare interrupt.  
When the Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set, the  
PWM mode is the only active one.  
3
4
If OLVL1 = OLVL2 a continuous signal will be seen on the OCMP1 pin.  
The ICAP1 pin cannot be used to perform input capture. The ICAP2 pin can be used to  
perform input capture (ICF2 can be set and IC2R can be loaded) but the user must take  
care that the counter is reset each time a valid edge occurs on the ICAP1 pin and ICF1 can  
also generates interrupt if ICIE is set.  
5
When one pulse mode is used OC1R is dedicated to this mode. Nevertheless OC2R and  
OCF2 can be used to indicate a period of time has been elapsed but cannot generate an  
output waveform because the level OLVL2 is dedicated to the one pulse mode.  
Figure 52. One pulse mode timing example  
2ED3  
01F8  
IC1R  
FFFC FFFD FFFE  
2ED0 2ED1 2ED2  
2ED3  
FFFC FFFD  
01F8  
COUNTER  
ICAP1  
OLVL2  
OLVL1  
OLVL2  
OCMP1  
compare1  
Note: IEDG1 = 1, OC1R = 2ED0h, OLVL1 = 0, OLVL2 = 1  
110/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
16-bit timer  
Figure 53. Pulse width modulation mode timing example with 2 output compare  
functions  
2ED0 2ED1 2ED2  
34E2 FFFC  
FFFC FFFD FFFE  
34E2  
COUNTER  
OCMP1  
OLVL2  
OLVL1  
OLVL2  
compare2  
compare1  
compare2  
Note: OC1R = 2ED0h, OC2R = 34E2, OLVL1 = 0, OLVL2 = 1  
Note:  
On timers with only one Output Compare register, a fixed frequency PWM signal can be  
generated using the output compare and the counter overflow to define the pulse length.  
13.3.7  
Pulse width modulation mode  
Pulse Width Modulation (PWM) mode enables the generation of a signal with a frequency  
and pulse length determined by the value of the OC1R and OC2R registers.  
Pulse Width Modulation mode uses the complete Output Compare 1 function plus the  
OC2R register, and so this functionality cannot be used when PWM mode is activated.  
In PWM mode, double buffering is implemented on the output compare registers. Any new  
values written in the OC1R and OC2R registers are taken into account only at the end of the  
PWM period (OC2) to avoid spikes on the PWM output pin (OCMP1).  
Procedure  
To use pulse width modulation mode:  
1. Load the OC2R register with the value corresponding to the period of the signal using  
the appropriate formula below according to the timer clock source used.  
2. Load the OC1R register with the value corresponding to the period of the pulse if  
OLVL1 = 0 and OLVL2 = 1 using the appropriate formula below according to the timer  
clock source used.  
3. Select the following in the CR1 register:  
Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after a  
successful comparison with the OC1R register.  
Using the OLVL2 bit, select the level to be applied to the OCMP1 pin after a  
successful comparison with the OC2R register.  
4. Select the following in the CR2 register:  
Set OC1E bit: the OCMP1 pin is then dedicated to the output compare 1 function.  
Set the PWM bit.  
Select the timer clock (CC[1:0]) (see Table 60: Timer clock selection).  
Doc ID 12898 Rev 2  
111/244  
 
 
16-bit timer  
ST72321Bxxx-Auto  
Figure 54. Pulse width modulation cycle flowchart  
When  
Counter  
= OC1R  
OCMP1 = OLVL1  
OCMP1 = OLVL2  
When  
Counter  
= OC2R  
Counter is reset  
to FFFCh  
ICF1 bit is set  
If OLVL1 = 1 and OLVL2 = 0 the length of the positive pulse is the difference between the  
OC2R and OC1R registers.  
If OLVL1 = OLVL2 a continuous signal will be seen on the OCMP1 pin.  
The OCiR register value required for a specific timing application can be calculated using  
the following formula:  
t f  
* CPU - 5  
PRESC  
OCiR value =  
Where:  
t
= Signal or pulse period (in seconds)  
= CPU clock frequency (in hertz)  
f
CPU  
PRESC = Timer prescaler factor (2, 4 or 8 depending on CC[1:0] bits; see Table 60:  
Timer clock selection)  
If the timer clock is an external clock the formula is:  
OCiR = t f  
-5  
* EXT  
Where:  
t
= Signal or pulse period (in seconds)  
= External timer clock frequency (in hertz)  
f
EXT  
The Output Compare 2 event causes the counter to be initialized to FFFCh (see Figure 53).  
Note:  
1
2
3
4
After a write instruction to the OCiHR register, the output compare function is inhibited until  
the OCiLR register is also written.  
The OCF1 and OCF2 bits cannot be set by hardware in PWM mode therefore the Output  
Compare interrupt is inhibited.  
The ICF1 bit is set by hardware when the counter reaches the OC2R value and can produce  
a timer interrupt if the ICIE bit is set and the I bit is cleared.  
In PWM mode the ICAP1 pin cannot be used to perform input capture because it is  
disconnected to the timer. The ICAP2 pin can be used to perform input capture (ICF2 can be  
set and IC2R can be loaded) but the user must take care that the counter is reset each  
period and ICF1 can also generates interrupt if ICIE is set.  
5
When the Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set, the  
PWM mode is the only active one.  
112/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
16-bit timer  
13.4  
Low power modes  
Table 55. Effect of low power modes on 16-bit timer  
Mode  
Effect  
No effect on 16-bit timer.  
Timer interrupts cause the device to exit from Wait mode.  
Wait  
16-bit timer registers are frozen.  
In Halt mode, the counter stops counting until Halt mode is exited. Counting resumes from  
the previous count when the MCU is woken up by an interrupt with “exit from Halt mode”  
capability or from the counter reset value when the MCU is woken up by a RESET.  
If an input capture event occurs on the ICAPi pin, the input capture detection circuitry is  
armed. Consequently, when the MCU is woken up by an interrupt with “exit from Halt  
mode” capability, the ICFi bit is set, and the counter value present when exiting from Halt  
mode is captured into the ICiR register.  
Halt  
13.5  
Interrupts  
Table 56. 16-bit timer interrupt control/wake-up capability  
Enable  
control  
bit  
Exit  
from  
Wait  
Exit  
from  
Halt  
Event  
flag  
Interrupt event  
Input Capture 1 event/Counter reset in PWM mode  
Input Capture 2 event  
ICF1  
ICF2  
OCF1  
OCF2  
TOF  
ICIE  
Output Compare 1 event (not available in PWM mode)  
Output Compare 2 event (not available in PWM mode)  
Timer Overflow event  
Yes  
No  
OCIE  
TOIE  
Note:  
The 16-bit timer interrupt events are connected to the same interrupt vector (see Chapter 7:  
Interrupts on page 50). These events generate an interrupt if the corresponding Enable  
Control Bit is set and the interrupt mask in the CC register is reset (RIM instruction).  
13.6  
Summary of timer modes  
Table 57. Timer modes  
Timer resources  
Modes  
Input  
Input  
Output  
Output  
Capture 1  
Capture 2  
Compare 1  
Compare 2  
Input Capture  
(1 and/or 2)  
Yes  
Yes  
Yes  
Yes  
Output Compare  
(1 and/or 2)  
Doc ID 12898 Rev 2  
113/244  
16-bit timer  
ST72321Bxxx-Auto  
Table 57. Timer modes  
Timer resources  
Modes  
Input  
Input  
Output  
Output  
Capture 1  
Capture 2  
Compare 1  
Compare 2  
Not  
One Pulse mode  
No  
Partially(2)  
No  
recommended(1)  
No  
Not  
PWM mode  
recommended(3)  
1. See Note 4 in Section 13.3.6 One Pulse mode  
2. See Note 5 in Section 13.3.6 One Pulse mode  
3. See Note 4 in Section 13.3.7 Pulse width modulation mode  
13.7  
16-bit timer registers  
Each timer is associated with 3 control and status registers, and with 6 pairs of data  
registers (16-bit values) relating to the 2 input captures, the 2 output compares, the counter  
and the alternate counter.  
13.7.1  
Control register 1 (CR1)  
CR1  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
ICIE  
RW  
OCIE  
TOIE  
FOLV2  
FOLV1  
OLVL2  
IEDG1  
OLVL1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Table 58. CR1 register description  
Bit Name  
Function  
Input Capture Interrupt Enable  
0: Interrupt is inhibited  
7
ICIE  
1: A timer interrupt is generated whenever the ICF1 or ICF2 bit of the SR register is  
set.  
Output Compare Interrupt Enable  
0: Interrupt is inhibited  
1: A timer interrupt is generated whenever the OCF1 or OCF2 bit of the SR register  
is set.  
6
5
OCIE  
TOIE  
Timer Overflow Interrupt Enable  
0: Interrupt is inhibited  
1: A timer interrupt is enabled whenever the TOF bit of the SR register is set.  
Forced Output Compare 2  
This bit is set and cleared by software.  
0: No effect on the OCMP2 pin  
4
FOLV2  
1: Forces the OLVL2 bit to be copied to the OCMP2 pin, if the OC2E bit is set and  
even if there is no successful comparison  
114/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
16-bit timer  
Table 58. CR1 register description (continued)  
Bit Name Function  
Forced Output Compare 1  
This bit is set and cleared by software.  
0: No effect on the OCMP1 pin  
1: Forces OLVL1 to be copied to the OCMP1 pin, if the OC1E bit is set and even if  
there is no successful comparison  
3
2
FOLV1  
OLVL2  
Output Level 2  
This bit is copied to the OCMP2 pin whenever a successful comparison occurs with  
the OC2R register and OCxE is set in the CR2 register. This value is copied to the  
OCMP1 pin in One Pulse Mode and Pulse Width Modulation mode.  
Input Edge 1  
This bit determines which type of level transition on the ICAP1 pin will trigger the  
capture.  
0: A falling edge triggers the capture.  
1: A rising edge triggers the capture.  
1
0
IEDG1  
OLVL1  
Output Level 1  
The OLVL1 bit is copied to the OCMP1 pin whenever a successful comparison  
occurs with the OC1R register and the OC1E bit is set in the CR2 register.  
13.7.2  
Control register 2 (CR2)  
CR2  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
OC1E  
OC2E  
OPM  
PWM  
CC[1:0]  
RW  
IEDG2  
EXEDG  
RW  
RW  
RW  
RW  
RW  
RW  
Table 59. CR2 register description  
Bit Name  
Function  
Output Compare 1 Pin Enable  
This bit is used only to output the signal from the timer on the OCMP1 pin (OLV1 in  
Output Compare mode, both OLV1 and OLV2 in PWM and one-pulse mode).  
Whatever the value of the OC1E bit, the Output Compare 1 function of the timer  
remains active.  
0: OCMP1 pin alternate function disabled (I/O pin free for general-purpose I/O)  
1: OCMP1 pin alternate function enabled  
7
6
OC1E  
OC2E  
Output Compare 2 Pin Enable  
This bit is used only to output the signal from the timer on the OCMP2 pin (OLV2 in  
Output Compare mode). Whatever the value of the OC2E bit, the Output Compare  
2 function of the timer remains active.  
0: OCMP2 pin alternate function disabled (I/O pin free for general-purpose I/O)  
1: OCMP2 pin alternate function enabled  
Doc ID 12898 Rev 2  
115/244  
16-bit timer  
ST72321Bxxx-Auto  
Table 59. CR2 register description (continued)  
Bit Name Function  
One Pulse Mode  
0: One Pulse Mode is not active.  
5
4
OPM  
PWM  
1: One Pulse Mode is active, the ICAP1 pin can be used to trigger one pulse on the  
OCMP1 pin; the active transition is given by the IEDG1 bit. The length of the  
generated pulse depends on the contents of the OC1R register.  
Pulse Width Modulation  
0: PWM mode is not active.  
1: PWM mode is active, the OCMP1 pin outputs a programmable cyclic signal; the  
length of the pulse depends on the value of OC1R register; the period depends on  
the value of OC2R register.  
Clock Control  
3:2 CC[1:0]  
The timer clock mode depends on these bits (see Table 60).  
Input Edge 2  
This bit determines which type of level transition on the ICAP2 pin will trigger the  
capture.  
0: A falling edge triggers the capture.  
1: A rising edge triggers the capture.  
1
0
IEDG2  
External Clock Edge  
This bit determines which type of level transition on the external clock pin EXTCLK  
will trigger the counter register.  
EXEDG  
0: A falling edge triggers the counter register.  
1: A rising edge triggers the counter register.  
Table 60. Timer clock selection  
Timer clock  
CC1  
CC0  
f
f
f
CPU / 4  
CPU / 2  
CPU / 8  
0
0
1
1
0
1
0
1
External clock (where available)(1)  
1. If the external clock pin is not available, programming the external clock configuration stops the counter.  
13.7.3  
Control/status register (CSR)  
CSR  
Reset value: xxxx x0xx (xxh)  
7
6
5
4
3
2
1
0
ICF1  
RO  
OCF1  
TOF  
ICF2  
OCF2  
TIMD  
Reserved  
-
RO  
RO  
RO  
RO  
RW  
116/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
16-bit timer  
Table 61. CSR register description  
Bit  
Name  
Function  
Input Capture Flag 1  
0: No input capture (reset value)  
7
ICF1  
1: An input capture has occurred on the ICAP1 pin or the counter has reached the  
OC2R value in PWM mode. To clear this bit, first read the SR register, then read  
or write the low byte of the IC1R (IC1LR) register.  
Output Compare Flag 1  
0: No match (reset value)  
6
OCF1  
1: The content of the free running counter has matched the content of the OC1R  
register. To clear this bit, first read the SR register, then read or write the low byte  
of the OC1R (OC1LR) register.  
Timer Overflow Flag  
0: No timer overflow (reset value)  
5
4
3
TOF  
ICF2  
OCF2  
1: The free running counter rolled over from FFFFh to 0000h. To clear this bit, first  
read the SR register, then read or write the low byte of the CR (CLR) register.  
Note: Reading or writing the ACLR register does not clear TOF.  
Input Capture Flag 2  
0: No input capture (reset value).  
1: An input capture has occurred on the ICAP2 pin. To clear this bit, first read the  
SR register, then read or write the low byte of the IC2R (IC2LR) register.  
Output Compare Flag 2  
0: No match (reset value)  
1: The content of the free running counter has matched the content of the OC2R  
register. To clear this bit, first read the SR register, then read or write the low byte  
of the OC2R (OC2LR) register.  
Timer disable  
This bit is set and cleared by software. When set, it freezes the timer prescaler  
and counter and disabled the output functions (OCMP1 and OCMP2 pins) to  
reduce power consumption. Access to the timer registers is still available, allowing  
the timer configuration to be changed, or the counter reset, while it is disabled.  
0: Timer enabled  
2
TIMD  
1: Timer prescaler, counter and outputs disabled  
1:0  
-
Reserved, must be kept cleared  
13.7.4  
Input capture 1 high register (IC1HR)  
This is an 8-bit read only register that contains the high part of the counter value (transferred  
by the input capture 1 event).  
IC1HR  
7
Reset value: Undefined  
6
5
4
3
2
1
0
MSB  
RO  
LSB  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Doc ID 12898 Rev 2  
117/244  
16-bit timer  
ST72321Bxxx-Auto  
13.7.5  
Input capture 1 low register (IC1LR)  
This is an 8-bit read only register that contains the low part of the counter value (transferred  
by the input capture 1 event).  
IC1LR  
7
Reset value: Undefined  
6
5
4
3
2
1
0
MSB  
RO  
LSB  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
13.7.6  
13.7.7  
13.7.8  
Output compare 1 high register (OC1HR)  
This is an 8-bit register that contains the high part of the value to be compared to the CHR  
register.  
OC1HR  
7
Reset value: 1000 0000 (80h)  
6
5
4
3
2
1
0
MSB  
RW  
LSB  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Output compare 1 low register (OC1LR)  
This is an 8-bit register that contains the low part of the value to be compared to the CLR  
register.  
OC1LR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
MSB  
RW  
LSB  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Output compare 2 high register (OC2HR)  
This is an 8-bit register that contains the high part of the value to be compared to the CHR  
register.  
OC2HR  
7
Reset value: 1000 0000 (80h)  
6
5
4
3
2
1
0
MSB  
RW  
LSB  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
118/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
16-bit timer  
13.7.9  
Output compare 2 low register (OC2LR)  
This is an 8-bit register that contains the low part of the value to be compared to the CLR  
register.  
OC2LR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
MSB  
RW  
LSB  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
13.7.10 Counter high register (CHR)  
This is an 8-bit register that contains the high part of the counter value.  
CHR Reset value: 1111 1111 (FFh)  
7
6
5
4
3
2
1
0
MSB  
RO  
LSB  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
13.7.11 Counter low register (CLR)  
This is an 8-bit register that contains the low part of the counter value. A write to this register  
resets the counter. An access to this register after accessing the CSR register clears the  
TOF bit.  
CLR  
Reset value: 1111 1100 (FCh)  
7
6
5
4
3
2
1
0
MSB  
RO  
LSB  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
13.7.12 Alternate counter high register (ACHR)  
This is an 8-bit register that contains the high part of the counter value.  
ACHR  
7
Reset value: 1111 1111 (FFh)  
6
5
4
3
2
1
0
MSB  
RO  
LSB  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Doc ID 12898 Rev 2  
119/244  
16-bit timer  
ST72321Bxxx-Auto  
13.7.13 Alternate counter low register (ACLR)  
This is an 8-bit register that contains the low part of the counter value. A write to this register  
resets the counter. An access to this register after an access to CSR register does not clear  
the TOF bit in the CSR register.  
ACLR  
7
Reset value: 1111 1100 (FCh)  
6
5
4
3
2
1
0
MSB  
RO  
LSB  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
13.7.14 Input capture 2 high register (IC2HR)  
This is an 8-bit read only register that contains the high part of the counter value (transferred  
by the Input Capture 2 event).  
IC2HR  
7
Reset value: Undefined  
6
5
4
3
2
1
0
MSB  
RO  
LSB  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
13.7.15 Input capture 2 low register (IC2LR)  
This is an 8-bit read only register that contains the low part of the counter value (transferred  
by the Input Capture 2 event).  
IC2LR  
7
Reset value: Undefined  
6
5
4
3
2
1
0
MSB  
RO  
LSB  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
120/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
16-bit timer  
Table 62. 16-bit timer register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
Timer A: 32 CR1  
Timer B: 42 Reset value  
ICIE  
0
OCIE  
0
TOIE FOLV2 FOLV1 OLVL2 IEDG1 OLVL1  
0
0
0
0
0
0
Timer A: 31 CR2  
Timer B: 41 Reset value  
OC1E OC2E  
OPM  
0
PWM  
0
CC1  
0
CC0 IEDG2 EXEDG  
0
0
0
0
0
Timer A: 33 CSR  
Timer B: 43 Reset value  
ICF1  
x
OCF1  
x
TOF  
x
ICF2  
x
OCF2  
x
TIMD  
0
-
x
-
x
Timer A: 34 IC1HR  
Timer B: 44 Reset value  
MSB  
x
LSB  
x
x
x
0
0
0
0
1
1
1
1
x
x
x
x
0
0
0
0
1
1
1
1
x
x
x
x
0
0
0
0
1
1
1
1
x
x
x
x
0
0
0
0
1
1
1
1
x
x
x
x
0
0
0
0
1
1
1
1
x
x
x
x
0
0
0
0
1
0
1
0
x
x
Timer A: 35 IC1LR  
Timer B: 45 Reset value  
MSB  
x
LSB  
x
Timer A: 36 OC1HR  
Timer B: 46 Reset value  
MSB  
1
LSB  
0
Timer A: 37 OC1LR  
Timer B: 47 Reset value  
MSB  
0
LSB  
0
Timer A: 3E OC2HR  
Timer B: 4E Reset value  
MSB  
1
LSB  
0
Timer A: 3F OC2LR  
Timer B: 4F Reset value  
MSB  
0
LSB  
0
Timer A: 38 CHR  
Timer B: 48 Reset value  
MSB  
1
LSB  
1
Timer A: 39 CLR  
Timer B: 49 Reset value  
MSB  
1
LSB  
0
Timer A: 3A ACHR  
Timer B: 4A Reset value  
MSB  
1
LSB  
1
Timer A: 3B ACLR  
Timer B: 4B Reset value  
MSB  
1
LSB  
0
Timer A: 3C IC2HR  
Timer B: 4C Reset value  
MSB  
x
LSB  
x
Timer A: 3D IC2LR  
Timer B: 4D Reset value  
MSB  
x
LSB  
x
Related documentation  
SCI software communications using 16-bit timer (AN 973)  
Real-time Clock with ST7 Timer Output Compare (AN 974)  
Driving a buzzer through the ST7 Timer PWM function (AN 976)  
Using ST7 PWM signal to generate analog input (sinusoid) (AN1041)  
UART emulation software (AN1046)  
PWM duty cycle switch implementing true 0 or 100 per cent duty cycle (AN1078)  
Starting a PWM signal directly at high level using the ST7 16-bit timer (AN1504)  
Doc ID 12898 Rev 2  
121/244  
Serial peripheral interface (SPI)  
ST72321Bxxx-Auto  
14  
Serial peripheral interface (SPI)  
14.1  
Introduction  
The Serial Peripheral Interface (SPI) allows full-duplex, synchronous, serial communication  
with external devices. An SPI system may consist of a master and one or more slaves  
however the SPI interface cannot be a master in a multimaster system.  
14.2  
Main features  
Full duplex synchronous transfers (on 3 lines)  
Simplex synchronous transfers (on 2 lines)  
Master or slave operation  
6 master mode frequencies (f  
/4 max.)  
CPU  
f
/2 max. slave mode frequency (see note)  
CPU  
SS Management by software or hardware  
Programmable clock polarity and phase  
End of transfer interrupt flag  
Write collision, Master Mode Fault and Overrun flags  
Note:  
In slave mode, continuous transmission is not possible at maximum frequency due to the  
software overhead for clearing status flags and to initiate the next transmission sequence.  
14.3  
General description  
Figure 55 shows the serial peripheral interface (SPI) block diagram. There are three  
registers:  
SPI Control Register (SPICR)  
SPI Control/Status Register (SPICSR)  
SPI Data Register (SPIDR)  
The SPI is connected to external devices through four pins:  
MISO (Master In / Slave Out data)  
MOSI (Master Out / Slave In data)  
SCK (Serial Clock out by SPI masters and input by SPI slaves)  
SS (Slave select): This input signal acts as a ‘chip select’ to let the SPI master  
communicate with slaves individually and to avoid contention on the data lines. Slave  
SS inputs can be driven by standard I/O ports on the master MCU.  
122/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Serial peripheral interface (SPI)  
Figure 55. Serial peripheral interface block diagram  
Data/Address Bus  
Read  
SPIDR  
Interrupt  
request  
Read Buffer  
MOSI  
7
0
SPICSR  
MISO  
8-bit Shift Register  
SPIF WCOL OVR MODF  
0
SOD SSM  
SSI  
Write  
SOD  
bit  
1
0
SS  
SPI  
STATE  
SCK  
CONTROL  
7
SPICR  
0
SPIE SPE SPR2 MSTR CPOL CPHA SPR1 SPR0  
MASTER  
CONTROL  
SERIAL CLOCK  
GENERATOR  
SS  
14.3.1  
Functional description  
A basic example of interconnections between a single master and a single slave is  
illustrated in Figure 56.  
The MOSI pins are connected together and the MISO pins are connected together. In this  
way data is transferred serially between master and slave (most significant bit first).  
The communication is always initiated by the master. When the master device transmits  
data to a slave device via MOSI pin, the slave device responds by sending data to the  
master device via the MISO pin. This implies full duplex communication with both data out  
and data in synchronized with the same clock signal (which is provided by the master device  
via the SCK pin).  
To use a single data line, the MISO and MOSI pins must be connected at each node (in this  
case only simplex communication is possible).  
Four possible data/clock timing relationships may be chosen (see Figure 59) but master and  
slave must be programmed with the same timing mode.  
Doc ID 12898 Rev 2  
123/244  
 
Serial peripheral interface (SPI)  
ST72321Bxxx-Auto  
Figure 56. Single master/single slave application  
MASTER  
SLAVE  
MSBit  
LSBit  
MSBit  
LSBit  
MISO  
MOSI  
MISO  
MOSI  
8-BIT SHIFT REGISTER  
8-BIT SHIFT REGISTER  
SPI  
CLOCK  
GENERATOR  
SCK  
SS  
SCK  
SS  
+5V  
Not used if SS is managed  
by software  
14.3.2  
Slave select management  
As an alternative to using the SS pin to control the Slave Select signal, the application can  
choose to manage the Slave Select signal by software. This is configured by the SSM bit in  
the SPICSR register (see Figure 58)  
In software management, the external SS pin is free for other application uses and the  
internal SS signal level is driven by writing to the SSI bit in the SPICSR register.  
In Master mode  
SS internal must be held high continuously  
In Slave mode  
There are two cases depending on the data/clock timing relationship (see Figure 57):  
If CPHA = 1 (data latched on 2nd clock edge):  
SS internal must be held low during the entire transmission. This implies that in single  
slave applications the SS pin either can be tied to V , or made free for standard I/O by  
SS  
managing the SS function by software (SSM = 1 and SSI = 0 in the in the SPICSR  
register)  
If CPHA = 0 (data latched on 1st clock edge):  
SS internal must be held low during byte transmission and pulled high between each  
byte to allow the slave to write to the shift register. If SS is not pulled high, a Write  
Collision error will occur when the slave writes to the shift register (see Write collision  
error (WCOL) on page 129).  
124/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Figure 57. Generic SS timing diagram  
Serial peripheral interface (SPI)  
MOSI/MISO  
Master SS  
Byte 1  
Byte 2  
Byte 3  
Slave SS  
(if CPHA=0)  
Slave SS  
(if CPHA=1)  
Figure 58. Hardware/Software slave select management  
SSM bit  
SSI bit  
1
0
SS internal  
SS external pin  
14.3.3  
Master mode operation  
In master mode, the serial clock is output on the SCK pin. The clock frequency, polarity and  
phase are configured by software (refer to the description of the SPICSR register).  
Note:  
The idle state of SCK must correspond to the polarity selected in the SPICSR register (by  
pulling up SCK if CPOL = 1 or pulling down SCK if CPOL = 0).  
How to operate the SPI in master mode  
To operate the SPI in master mode, perform the following steps in order:  
1. Write to the SPICR register:  
a) Select the clock frequency by configuring the SPR[2:0] bits.  
b) Select the clock polarity and clock phase by configuring the CPOL and CPHA bits.  
Figure 59 shows the four possible configurations.  
Note:  
Note:  
The slave must have the same CPOL and CPHA settings as the master.  
2. Write to the SPICSR register:  
Either set the SSM bit and set the SSI bit or clear the SSM bit and tie the SS pin high  
for the complete byte transmit sequence.  
3. Write to the SPICR register:  
Set the MSTR and SPE bits  
MSTR and SPE bits remain set only if SS is high).  
IMPORTANT: If the SPICSR register is not written first, the SPICR register setting (MSTR  
bit) may not be taken into account.  
The transmit sequence begins when software writes a byte in the SPIDR register.  
Doc ID 12898 Rev 2  
125/244  
 
Serial peripheral interface (SPI)  
ST72321Bxxx-Auto  
14.3.4  
Master mode transmit sequence  
When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift  
register and then shifted out serially to the MOSI pin most significant bit first.  
When data transfer is complete:  
The SPIF bit is set by hardware  
An interrupt request is generated if the SPIE bit is set and the interrupt mask in the  
CCR register is cleared.  
Clearing the SPIF bit is performed by the following software sequence:  
1. An access to the SPICSR register while the SPIF bit is set  
2. A read to the SPIDR register.  
Note:  
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR  
register is read.  
14.3.5  
Slave mode operation  
In slave mode, the serial clock is received on the SCK pin from the master device.  
To operate the SPI in slave mode:  
1. Write to the SPICSR register to perform the following actions:  
a) Select the clock polarity and clock phase by configuring the CPOL and CPHA bits  
(see Figure 59).  
Note:  
The slave must have the same CPOL and CPHA settings as the master.  
b) Manage the SS pin as described in Slave select management on page 124 and  
Figure 57. If CPHA = 1, SS must be held low continuously. If CPHA = 0, SS must  
be held low during byte transmission and pulled up between each byte to let the  
slave write in the shift register.  
2. Write to the SPICR register to clear the MSTR bit and set the SPE bit to enable the SPI  
I/O functions.  
14.3.6  
Slave mode transmit sequence  
When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift  
register and then shifted out serially to the MISO pin most significant bit first.  
The transmit sequence begins when the slave device receives the clock signal and the most  
significant bit of the data on its MOSI pin.  
When data transfer is complete:  
The SPIF bit is set by hardware.  
An interrupt request is generated if SPIE bit is set and interrupt mask in the CCR  
register is cleared.  
Clearing the SPIF bit is performed by the following software sequence:  
1. An access to the SPICSR register while the SPIF bit is set  
2. A write or a read to the SPIDR register  
Note:  
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR  
register is read.  
126/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Serial peripheral interface (SPI)  
The SPIF bit can be cleared during a second transmission; however, it must be cleared  
before the second SPIF bit in order to prevent an Overrun condition (see Overrun condition  
(OVR) on page 129).  
14.4  
Clock phase and clock polarity  
Four possible timing relationships may be chosen by software, using the CPOL and CPHA  
bits (see Figure 59).  
Note:  
The idle state of SCK must correspond to the polarity selected in the SPICSR register (by  
pulling up SCK if CPOL = 1 or pulling down SCK if CPOL = 0).  
The combination of the CPOL clock polarity and CPHA (clock phase) bits selects the data  
capture clock edge  
Figure 59 shows an SPI transfer with the four combinations of the CPHA and CPOL bits.  
The diagram may be interpreted as a master or slave timing diagram where the SCK pin, the  
MISO pin, the MOSI pin are directly connected between the master and the slave device.  
Note:  
If CPOL is changed at the communication byte boundaries, the SPI must be disabled by  
resetting the SPE bit.  
Doc ID 12898 Rev 2  
127/244  
Serial peripheral interface (SPI)  
ST72321Bxxx-Auto  
Figure 59. Data clock timing diagram  
CPHA = 1  
SCK  
(CPOL = 1)  
SCK  
(CPOL = 0)  
MISO  
(from master)  
MSBit  
MSBit  
Bit 6  
Bit 6  
Bit 5  
Bit 5  
Bit 4  
Bit 4  
Bit3  
Bit3  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
LSBit  
LSBit  
MOSI  
(from slave)  
SS  
(to slave)  
CAPTURE STROBE  
CPHA = 0  
SCK  
(CPOL = 1)  
SCK  
(CPOL = 0)  
MISO  
(from master)  
MSBit  
Bit 6  
Bit 6  
Bit 5  
Bit 5  
Bit 4  
Bit 4  
Bit3  
Bit3  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
LSBit  
LSBit  
MOSI  
(from slave)  
MSBit  
SS  
(to slave)  
CAPTURE STROBE  
Note: This figure should not be used as a replacement for parametric information.  
Refer to Section 19: Electrical characteristics.  
128/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Serial peripheral interface (SPI)  
14.5  
Error flags  
14.5.1  
Master mode fault (MODF)  
Master mode fault occurs when the master device has its SS pin pulled low.  
When a Master mode fault occurs:  
The MODF bit is set and an SPI interrupt request is generated if the SPIE bit is set.  
The SPE bit is reset. This blocks all output from the device and disables the SPI  
peripheral.  
The MSTR bit is reset, thus forcing the device into slave mode.  
Clearing the MODF bit is done through a software sequence:  
1. A read access to the SPICSR register while the MODF bit is set.  
2. A write to the SPICR register.  
Note:  
To avoid any conflicts in an application with multiple slaves, the SS pin must be pulled high  
during the MODF bit clearing sequence. The SPE and MSTR bits may be restored to their  
original state during or after this clearing sequence.  
Hardware does not allow the user to set the SPE and MSTR bits while the MODF bit is set  
except in the MODF bit clearing sequence.  
14.5.2  
Overrun condition (OVR)  
An overrun condition occurs, when the master device has sent a data byte and the slave  
device has not cleared the SPIF bit issued from the previously transmitted byte.  
When an Overrun occurs:  
The OVR bit is set and an interrupt request is generated if the SPIE bit is set.  
In this case, the receiver buffer contains the byte sent after the SPIF bit was last cleared. A  
read to the SPIDR register returns this byte. All other bytes are lost.  
The OVR bit is cleared by reading the SPICSR register.  
14.5.3  
Write collision error (WCOL)  
A write collision occurs when the software tries to write to the SPIDR register while a data  
transfer is taking place with an external device. When this happens, the transfer continues  
uninterrupted; and the software write will be unsuccessful.  
Write collisions can occur both in master and slave mode. See also Slave select  
management on page 124.  
Note:  
A “read collision” will never occur since the received data byte is placed in a buffer in which  
access is always synchronous with the MCU operation.  
The WCOL bit in the SPICSR register is set if a write collision occurs.  
No SPI interrupt is generated when the WCOL bit is set (the WCOL bit is a status flag only).  
Clearing the WCOL bit is done through a software sequence (see Figure 60).  
Doc ID 12898 Rev 2  
129/244  
 
 
Serial peripheral interface (SPI)  
ST72321Bxxx-Auto  
Figure 60. Clearing the WCOL bit (Write Collision Flag) software sequence  
Clearing sequence after SPIF = 1 (end of a data byte transfer)  
Read SPICSR  
1st Step  
RESULT  
SPIF = 0  
WCOL = 0  
2nd Step  
Read SPIDR  
Clearing sequence before SPIF = 1 (during a data byte transfer)  
Read SPICSR  
1st Step  
RESULT  
Note: Writing to the SPIDR register  
instead of reading it does not reset the  
WCOL bit.  
2nd Step  
Read SPIDR  
WCOL = 0  
14.5.4  
Single master systems  
A typical single master system may be configured, using an MCU as the master and four  
MCUs as slaves (see Figure 61).  
The master device selects the individual slave devices by using four pins of a parallel port to  
control the four SS pins of the slave devices.  
The SS pins are pulled high during reset since the master device ports will be forced to be  
inputs at that time, thus disabling the slave devices.  
Note:  
To prevent a bus conflict on the MISO line the master allows only one active slave device  
during a transmission.  
For more security, the slave device may respond to the master with the received data byte.  
Then the master will receive the previous byte back from the slave device if all MISO and  
MOSI pins are connected and the slave has not written to its SPIDR register.  
Other transmission security methods can use ports for handshake lines or data bytes with  
command fields.  
Figure 61. Single master / multiple slave configuration  
SS  
SS  
SS  
SS  
SCK  
SCK  
Slave  
SCK  
Slave  
MCU  
SCK  
Slave  
MCU  
Slave  
MCU  
MCU  
MOSI  
MISO  
MOSI  
MISO  
MOSI  
MISO  
MOSI  
MISO  
MOSI  
SCK  
MISO  
Master  
MCU  
5V  
SS  
130/244  
Doc ID 12898 Rev 2  
 
 
ST72321Bxxx-Auto  
Serial peripheral interface (SPI)  
14.6  
Low power modes  
Table 63. Effect of low power modes on SPI  
Mode  
Effect  
No effect on SPI.  
Wait  
SPI interrupt events cause the device to exit from Wait mode.  
SPI registers are frozen.  
In Halt mode, the SPI is inactive. SPI operation resumes when the MCU is woken up by  
an interrupt with “exit from Halt mode” capability. The data received is subsequently  
read from the SPIDR register when the software is running (interrupt vector fetching). If  
several data are received before the wake-up event, then an overrun error is generated.  
This error can be detected after the fetch of the interrupt routine that woke up the  
device.  
Halt  
14.6.1  
Using the SPI to wake up the MCU from Halt mode  
In slave configuration, the SPI is able to wake up the ST7 device from Halt mode through a  
SPIF interrupt. The data received is subsequently read from the SPIDR register when the  
software is running (interrupt vector fetch). If multiple data transfers have been performed  
before software clears the SPIF bit, then the OVR bit is set by hardware.  
Note:  
When waking up from Halt mode, if the SPI remains in Slave mode, it is recommended to  
perform an extra communications cycle to bring the SPI from Halt mode state to normal  
state. If the SPI exits from Slave mode, it returns to normal state immediately.  
Caution:  
The SPI can wake up the ST7 from Halt mode only if the Slave Select signal (external SS  
pin or the SSI bit in the SPICSR register) is low when the ST7 enters Halt mode. So if Slave  
selection is configured as external (see Slave select management on page 124), make sure  
the master drives a low level on the SS pin when the slave enters Halt mode.  
14.7  
Interrupts  
Table 64. SPI interrupt control/wake-up capability  
Enable  
control bit  
Exit from  
Wait  
Exit from  
Halt  
Interrupt event  
Event flag  
SPI End of Transfer event  
Master Mode Fault event  
Overrun error  
SPIF  
MODF  
OVR  
Yes  
No  
SPIE  
Yes  
Note:  
The SPI interrupt events are connected to the same interrupt vector (see Interrupts chapter).  
They generate an interrupt if the corresponding Enable Control Bit is set and the interrupt  
mask in the CC register is reset (RIM instruction).  
Doc ID 12898 Rev 2  
131/244  
Serial peripheral interface (SPI)  
ST72321Bxxx-Auto  
14.8  
SPI registers  
Control register (SPICR)  
SPICR  
14.8.1  
Reset value: 0000 xxxx (0xh)  
7
6
5
4
3
2
1
0
SPIE  
SPE  
SPR2  
MSTR  
CPOL  
CPHA  
SPR[1:0]  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Table 65. SPICR register description  
Bit  
Name  
Function  
Serial Peripheral Interrupt Enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
7
SPIE  
1: An SPI interrupt is generated whenever SPIF = 1, MODF = 1 or OVR = 1 in the  
SPICSR register.  
Serial Peripheral Output Enable  
This bit is set and cleared by software. It is also cleared by hardware when, in  
master mode, SS = 0 (see Master mode fault (MODF) on page 129). The SPE bit  
is cleared by reset, so the SPI peripheral is not initially connected to the external  
pins.  
6
SPE  
0: I/O pins free for general purpose I/O  
1: SPI I/O pin alternate functions enabled  
Divider Enable  
This bit is set and cleared by software and is cleared by reset. It is used with the  
SPR[1:0] bits to set the baud rate. Refer to Table 66.  
0: Divider by 2 enabled  
1: Divider by 2 disabled  
Note: This bit has no effect in slave mode.  
5
4
SPR2  
MSTR  
Master Mode  
This bit is set and cleared by software. It is also cleared by hardware when, in  
master mode, SS = 0 (see Master mode fault (MODF) on page 129).  
0: Slave mode  
1: Master mode. The function of the SCK pin changes from an input to an output  
and the functions of the MISO and MOSI pins are reversed.  
Clock Polarity  
This bit is set and cleared by software. This bit determines the idle state of the  
serial Clock. The CPOL bit affects both the master and slave modes.  
0: SCK pin has a low level idle state  
1: SCK pin has a high level idle state  
Note: If CPOL is changed at the communication byte boundaries, the SPI must be  
disabled by resetting the SPE bit.  
3
2
CPOL  
CPHA  
Clock Phase  
This bit is set and cleared by software.  
0: The first clock transition is the first data capture edge.  
1: The second clock transition is the first capture edge.  
Note: The slave must have the same CPOL and CPHA settings as the master.  
132/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Serial peripheral interface (SPI)  
Table 65. SPICR register description (continued)  
Bit Name Function  
Serial Clock Frequency  
These bits are set and cleared by software. Used with the SPR2 bit, they select  
the baud rate of the SPI serial clock SCK output by the SPI in master mode.  
Note: These 2 bits have no effect in slave mode.  
1:0 SPR[1:0]  
Table 66. SPI master mode SCK frequency  
Serial clock SPR2  
CPU/4  
SPR1  
SPR0  
f
1
0
0
1
0
0
0
0
0
1
1
1
0
0
1
0
0
1
fCPU/8  
f
CPU/16  
fCPU/32  
fCPU/64  
CPU/128  
f
14.8.2  
Control/status register (SPICSR)  
SPICSR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
SPIF  
WCOL  
OVR  
MODF  
Reserved  
-
SOD  
SSM  
SSI  
RO  
RO  
RO  
RO  
RW  
RW  
RW  
Table 67. SPICSR register description  
Bit Name  
Function  
Serial Peripheral Data Transfer Flag  
This bit is set by hardware when a transfer has been completed. An interrupt is  
generated if SPIE = 1 in the SPICR register. It is cleared by a software sequence (an  
access to the SPICSR register followed by a write or a read to the SPIDR register).  
0: Data transfer is in progress or the flag has been cleared  
7
SPIF  
1: Data transfer between the device and an external device has been completed.  
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the  
SPICSR register is read.  
Write Collision status  
This bit is set by hardware when a write to the SPIDR register is done during a  
transmit sequence. It is cleared by a software sequence (see Figure 60).  
0: No write collision occurred.  
6
5
WCOL  
OVR  
1: A write collision has been detected.  
SPI Overrun error  
This bit is set by hardware when the byte currently being received in the shift register  
is ready to be transferred into the SPIDR register while SPIF = 1 (see Overrun  
condition (OVR) on page 129). An interrupt is generated if SPIE = 1 in SPICR  
register. The OVR bit is cleared by software reading the SPICSR register.  
0: No overrun error  
1: Overrun error detected  
Doc ID 12898 Rev 2  
133/244  
Serial peripheral interface (SPI)  
ST72321Bxxx-Auto  
Table 67. SPICSR register description (continued)  
Bit Name Function  
Mode Fault flag  
This bit is set by hardware when the SS pin is pulled low in master mode (see  
Master mode fault (MODF) on page 129). An SPI interrupt can be generated if  
SPIE = 1 in the SPICSR register. This bit is cleared by a software sequence (An  
access to the SPICR register while MODF = 1 followed by a write to the SPICR  
register).  
4
MODF  
0: No master mode fault detected  
1: A fault in master mode has been detected  
3
2
-
Reserved, must be kept cleared  
SPI Output Disable  
This bit is set and cleared by software. When set, it disables the alternate function of  
the SPI output (MOSI in master mode / MISO in slave mode).  
0: SPI output enabled (if SPE = 1)  
SOD  
1: SPI output disabled  
SS Management  
This bit is set and cleared by software. When set, it disables the alternate function of  
the SPI SS pin and uses the SSI bit value instead. See Slave select management on  
page 124.  
0: Hardware management (SS managed by external pin)  
1: Software management (internal SS signal controlled by SSI bit. External SS pin  
free for general-purpose I/O)  
1
0
SSM  
SSI  
SS Internal Mode  
This bit is set and cleared by software. It acts as a ‘chip select’ by controlling the  
level of the SS slave select signal when the SSM bit is set.  
0: Slave selected  
1: Slave deselected  
14.8.3  
Data I/O register (SPIDR)  
SPIDR  
Reset value: Undefined  
7
6
5
4
3
2
1
0
D[7:0]  
RW  
The SPIDR register is used to transmit and receive data on the serial bus. In a master  
device, a write to this register will initiate transmission/reception of another byte.  
Note:  
During the last clock cycle the SPIF bit is set, a copy of the received data byte in the shift  
register is moved to a buffer. When the user reads the serial peripheral data I/O register, the  
buffer is actually being read.  
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR  
register is read.  
134/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Serial peripheral interface (SPI)  
Warning: A write to the SPIDR register places data directly into the  
shift register for transmission.  
A read to the SPIDR register returns the value located in the buffer and not the content of  
the shift register (see Figure 55).  
Table 68. SPI register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
SPIDR  
Reset value  
MSB  
x
LSB  
x
0021h  
0022h  
0023h  
x
x
x
x
x
x
SPICR  
Reset value  
SPIE  
0
SPE  
0
SPR2 MSTR CPOL CPHA SPR1 SPR0  
0
0
x
x
x
x
SPICSR  
Reset value  
SPIF WCOL OVR  
0
MODF  
0
SOD  
0
SSM  
0
SSI  
0
0
0
0
Doc ID 12898 Rev 2  
135/244  
Serial communications interface (SCI)  
ST72321Bxxx-Auto  
15  
Serial communications interface (SCI)  
15.1  
Introduction  
The Serial Communications Interface (SCI) offers a flexible means of full-duplex data  
exchange with external equipment requiring an industry standard NRZ asynchronous serial  
data format. The SCI offers a very wide range of baud rates using two baud rate generator  
systems.  
15.2  
Main features  
Full duplex, asynchronous communications  
NRZ standard format (Mark/Space)  
Dual baud rate generator systems  
Independently programmable transmit and receive baud rates up to 500K baud  
Programmable data word length (8 or 9 bits)  
Receive buffer full, Transmit buffer empty and End of Transmission flags  
2 receiver wake-up modes:  
Address bit (MSB)  
Idle line  
Muting function for multiprocessor configurations  
Separate enable bits for Transmitter and Receiver  
4 error detection flags:  
Overrun error  
Noise error  
Frame error  
Parity error  
5 interrupt sources with flags:  
Transmit data register empty  
Transmission complete  
Receive data register full  
Idle line received  
Overrun error detected  
Parity control:  
Transmits parity bit  
Checks parity of received data byte  
Reduced power consumption mode  
136/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Serial communications interface (SCI)  
15.3  
General description  
The interface is externally connected to another device by two pins (see Figure 63):  
TDO: Transmit Data Output. When the transmitter and the receiver are disabled, the  
output pin returns to its I/O port configuration. When the transmitter and/or the receiver  
are enabled and nothing is to be transmitted, the TDO pin is at high level.  
RDI: Receive Data Input is the serial data input. Oversampling techniques are used for  
data recovery by discriminating between valid incoming data and noise.  
Through these pins, serial data is transmitted and received as frames comprising:  
An Idle Line prior to transmission or reception  
A start bit  
A data word (8 or 9 bits) least significant bit first  
A Stop bit indicating that the frame is complete  
This interface uses two types of baud rate generator:  
A conventional type for commonly-used baud rates  
An extended type with a prescaler offering a very wide range of baud rates even with  
non-standard oscillator frequencies  
Doc ID 12898 Rev 2  
137/244  
Serial communications interface (SCI)  
Figure 62. SCI block diagram  
ST72321Bxxx-Auto  
Write  
Read  
(DATA REGISTER) DR  
Received Data Register (RDR)  
Received Shift Register  
Transmit Data Register (TDR)  
TDO  
RDI  
Transmit Shift Register  
CR1  
R8  
T8 SCID  
M
WAKE PCE PS  
PIE  
WAKE  
UP  
UNIT  
TRANSMIT  
CONTROL  
RECEIVER  
CLOCK  
RECEIVER  
CONTROL  
CR2  
SR  
TIE TCIE RIE ILIE TE RE RWU SBK  
TDRE TC RDRF IDLE OR  
NF FE  
PE  
SCI  
INTERRUPT  
CONTROL  
TRANSMITTER  
CLOCK  
TRANSMITTER RATE  
CONTROL  
fCPU  
/PR  
/16  
BRR  
SCP1  
SCT2  
SCT1SCT0SCR2 SCR1SCR0  
SCP0  
RECEIVER RATE  
CONTROL  
CONVENTIONAL BAUD RATE GENERATOR  
138/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Serial communications interface (SCI)  
15.4  
Functional description  
The block diagram of the Serial Control Interface, is shown in Figure 62. It contains six  
dedicated registers:  
2 control registers (SCICR1 and SCICR2)  
a status register (SCISR)  
a baud rate register (SCIBRR)  
an extended prescaler receiver register (SCIERPR)  
an extended prescaler transmitter register (SCIETPR)  
Refer to the register descriptions in Section 15.7 for the definitions of each bit.  
15.4.1  
Serial data format  
Word length may be selected as being either 8 or 9 bits by programming the M bit in the  
SCICR1 register (see Figure 62).  
The TDO pin is in low state during the start bit.  
The TDO pin is in high state during the stop bit.  
An Idle character is interpreted as an entire frame of ‘1’s followed by the start bit of the next  
frame which contains data.  
A Break character is interpreted on receiving ‘0’s for some multiple of the frame period. At  
the end of the last break frame the transmitter inserts an extra ‘1’ bit to acknowledge the  
start bit.  
Transmission and reception are driven by their own baud rate generator.  
Figure 63. Word length programming  
9-bit Word length (M bit is set)  
Possible  
Parity  
Next Data Frame  
Data Frame  
Bit  
Next  
Start  
Bit  
Start  
Bit  
Stop  
Bit  
Bit2  
Bit6  
Bit5  
Bit8  
Bit0  
Bit1  
Bit3  
Bit4  
Bit7  
Start  
Bit  
Idle Frame  
Start  
Bit  
Extra  
‘1’  
Break Frame  
8-bit Word length (M bit is reset)  
Possible  
Parity  
Next Data Frame  
Data Frame  
Bit  
Next  
Start  
Start  
Bit  
Stop  
Bit  
Bit2  
Bit6  
Bit1  
Bit3  
Bit4  
Bit5  
Bit7  
Bit0  
Bit  
Start  
Bit  
Idle Frame  
Start  
Bit  
Extra  
‘1’  
Break Frame  
Doc ID 12898 Rev 2  
139/244  
 
Serial communications interface (SCI)  
ST72321Bxxx-Auto  
15.4.2  
Transmitter  
The transmitter can send data words of either 8 or 9 bits depending on the M bit status.  
When the M bit is set, word length is 9 bits and the 9th bit (the MSB) has to be stored in the  
T8 bit in the SCICR1 register.  
Character transmission  
During an SCI transmission, data shifts out least significant bit first on the TDO pin. In this  
mode, the SCIDR register consists of a buffer (TDR) between the internal bus and the  
transmit shift register (see Figure 62).  
Procedure  
1. Select the M bit to define the word length.  
2. Select the desired baud rate using the SCIBRR and the SCIETPR registers.  
3. Set the TE bit to assign the TDO pin to the alternate function and to send an idle frame  
as first transmission.  
4. Access the SCISR register and write the data to send in the SCIDR register (this  
sequence clears the TDRE bit). Repeat this sequence for each data to be transmitted.  
Clearing the TDRE bit is always performed by the following software sequence:  
1. An access to the SCISR register  
2. A write to the SCIDR register  
The TDRE bit is set by hardware and it indicates:  
The TDR register is empty.  
The data transfer is beginning.  
The next data can be written in the SCIDR register without overwriting the previous  
data.  
This flag generates an interrupt if the TIE bit is set and the I bit is cleared in the CCR  
register.  
When a transmission is taking place, a write instruction to the SCIDR register stores the  
data in the TDR register and which is copied in the shift register at the end of the current  
transmission.  
When no transmission is taking place, a write instruction to the SCIDR register places the  
data directly in the shift register, the data transmission starts, and the TDRE bit is  
immediately set.  
When a frame transmission is complete (after the stop bit) the TC bit is set and an interrupt  
is generated if the TCIE is set and the I bit is cleared in the CCR register.  
Clearing the TC bit is performed by the following software sequence:  
1. An access to the SCISR register  
2. A write to the SCIDR register  
Note:  
The TDRE and TC bits are cleared by the same software sequence.  
Break characters  
Setting the SBK bit loads the shift register with a break character. The break frame length  
depends on the M bit (see Figure 63).  
As long as the SBK bit is set, the SCI send break frames to the TDO pin. After clearing this  
140/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Serial communications interface (SCI)  
bit by software the SCI insert a logic 1 bit at the end of the last break frame to guarantee the  
recognition of the start bit of the next frame.  
Idle characters  
Setting the TE bit drives the SCI to send an idle frame before the first data frame.  
Clearing and then setting the TE bit during a transmission sends an idle frame after the  
current word.  
Note:  
Resetting and setting the TE bit causes the data in the TDR register to be lost. Therefore the  
best time to toggle the TE bit is when the TDRE bit is set, that is, before writing the next byte  
in the SCIDR.  
15.4.3  
Receiver  
The SCI can receive data words of either 8 or 9 bits. When the M bit is set, word length is 9  
bits and the MSB is stored in the R8 bit in the SCICR1 register.  
Character reception  
During a SCI reception, data shifts in least significant bit first through the RDI pin. In this  
mode, the SCIDR register consists or a buffer (RDR) between the internal bus and the  
received shift register (see Figure 62).  
Procedure  
1. Select the M bit to define the word length.  
2. Select the desired baud rate using the SCIBRR and the SCIERPR registers.  
3. Set the RE bit, this enables the receiver which begins searching for a start bit.  
When a character is received:  
The RDRF bit is set. It indicates that the content of the shift register is transferred to the  
RDR.  
An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register.  
The error flags can be set if a frame error, noise or an overrun error has been detected  
during reception.  
Clearing the RDRF bit is performed by the following software sequence done by:  
1. An access to the SCISR register  
2. A read to the SCIDR register.  
The RDRF bit must be cleared before the end of the reception of the next character to avoid  
an overrun error.  
Break character  
When a break character is received, the SCI handles it as a framing error.  
Idle character  
When an idle frame is detected, there is the same procedure as a data received character  
plus an interrupt if the ILIE bit is set and the I bit is cleared in the CCR register.  
Overrun error  
An overrun error occurs when a character is received when RDRF has not been reset. Data  
cannot be transferred from the shift register to the RDR register as long as the RDRF bit is  
not cleared.  
Doc ID 12898 Rev 2  
141/244  
 
Serial communications interface (SCI)  
ST72321Bxxx-Auto  
When an overrun error occurs:  
The OR bit is set.  
The RDR content is not lost.  
The shift register is overwritten.  
An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register.  
The OR bit is reset by an access to the SCISR register followed by a SCIDR register read  
operation.  
Noise error  
Oversampling techniques are used for data recovery by discriminating between valid  
incoming data and noise. Normal data bits are considered valid if three consecutive samples  
(8th, 9th, 10th) have the same bit value, otherwise the NF flag is set. In the case of start bit  
detection, the NF flag is set on the basis of an algorithm combining both valid edge  
detection and three samples (8th, 9th, 10th). Therefore, to prevent the NF flag getting set  
during start bit reception, there should be a valid edge detection as well as three valid  
samples.  
When noise is detected in a frame:  
The NF flag is set at the rising edge of the RDRF bit.  
Data is transferred from the Shift register to the SCIDR register.  
No interrupt is generated. However this bit rises at the same time as the RDRF bit  
which itself generates an interrupt.  
The NF flag is reset by a SCISR register read operation followed by a SCIDR register read  
operation.  
During reception, if a false start bit is detected (for example, 8th, 9th, 10th samples are 011,  
101, 110), the frame is discarded and the receiving sequence is not started for this frame.  
There is no RDRF bit set for this frame and the NF flag is set internally (not accessible to the  
user). This NF flag is accessible along with the RDRF bit when a next valid frame is  
received.  
Note:  
If the application Start Bit is not long enough to match the above requirements, then the NF  
Flag may get set due to the short Start Bit. In this case, the NF flag may be ignored by the  
application software when the first valid byte is received.  
See also Noise error causes on page 146.  
142/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Serial communications interface (SCI)  
Figure 64. SCI baud rate and extended prescaler block diagram  
TRANSMITTER  
CLOCK  
EXTENDED PRESCALER TRANSMITTER RATE CONTROL  
SCIETPR  
EXTENDED TRANSMITTER PRESCALER REGISTER  
SCIERPR  
EXTENDED RECEIVER PRESCALER REGISTER  
RECEIVER  
CLOCK  
EXTENDED PRESCALER RECEIVER RATE CONTROL  
EXTENDED PRESCALER  
f
CPU  
TRANSMITTER RATE  
CONTROL  
/PR  
/16  
SCIBRR  
SCP1 SCP0 SCT2 SCT1 SCT0 SCR2 SCR1 SCR0  
RECEIVER RATE  
CONTROL  
CONVENTIONAL BAUD RATE GENERATOR  
Framing error  
A framing error is detected when:  
The stop bit is not recognized on reception at the expected time, following either a de-  
synchronization or excessive noise.  
A break is received.  
When the framing error is detected:  
The FE bit is set by hardware.  
Data is transferred from the Shift register to the SCIDR register.  
No interrupt is generated. However this bit rises at the same time as the RDRF bit  
which itself generates an interrupt.  
The FE bit is reset by a SCISR register read operation followed by a SCIDR register read  
operation.  
Doc ID 12898 Rev 2  
143/244  
 
Serial communications interface (SCI)  
ST72321Bxxx-Auto  
Conventional baud rate generation  
The baud rate for the receiver and transmitter (Rx and Tx) are set independently and  
calculated as follows:  
f
f
CPU  
CPU  
Rx =  
Tx =  
(16 PR) RR  
(16 PR) TR  
*
*
*
*
with:  
PR = 1, 3, 4 or 13 (see SCP[1:0] bits)  
TR = 1, 2, 4, 8, 16, 32, 64,128 (see SCT[2:0] bits)  
RR = 1, 2, 4, 8, 16, 32, 64,128 (see SCR[2:0] bits)  
All these bits are in the SCIBRR register.  
Example: If f is 8 MHz (normal mode) and if PR = 13 and TR = RR = 1, the transmit and  
CPU  
receive baud rates are 38400 baud.  
Note:  
The baud rate registers MUST NOT be changed while the transmitter or the receiver is  
enabled.  
Extended baud rate generation  
The extended prescaler option provides a very fine tuning of the baud rate, using a 255  
value prescaler, whereas the conventional baud rate generator retains industry standard  
software compatibility.  
The extended baud rate generator block diagram is described in the Figure 64.  
The output clock rate sent to the transmitter or to the receiver is the output from the 16  
divider divided by a factor ranging from 1 to 255 set in the SCIERPR or the SCIETPR  
register.  
Note:  
The extended prescaler is activated by setting the SCIETPR or SCIERPR register to a value  
other than zero. The baud rates are calculated as follows:  
f
f
CPU  
CPU  
Rx =  
Tx =  
16 ERPR (PR RR)  
16 ETPR (PR TR)  
*
*
*
*
*
*
with:  
ETPR = 1,..,255 (see SCIETPR register)  
ERPR = 1,..,255 (see SCIERPR register)  
Receiver muting and wake-up feature  
In multiprocessor configurations it is often desirable that only the intended message  
recipient should actively receive the full message contents, thus reducing redundant SCI  
service overhead for all non-addressed receivers.  
The non-addressed devices may be placed in sleep mode by means of the muting function.  
Setting the RWU bit by software puts the SCI in sleep mode:  
All the reception status bits cannot be set.  
All the receive interrupts are inhibited.  
A muted receiver may be awakened by one of the following two ways:  
by Idle Line detection if the WAKE bit is reset  
by Address Mark detection if the WAKE bit is set  
144/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Serial communications interface (SCI)  
A receiver wakes up by Idle Line detection when the Receive line has recognized an Idle  
Frame. Then the RWU bit is reset by hardware but the IDLE bit is not set.  
Receiver wakes up by Address Mark detection when it received a ‘1’ as the most significant  
bit of a word, thus indicating that the message is an address. The reception of this particular  
word wakes up the receiver, resets the RWU bit and sets the RDRF bit, which allows the  
receiver to receive this word normally and to use it as an address word.  
Caution:  
In Mute mode, do not write to the SCICR2 register. If the SCI is in Mute mode during the  
read operation (RWU = 1) and a address mark wake-up event occurs (RWU is reset) before  
the write operation, the RWU bit is set again by this write operation. Consequently the  
address byte is lost and the SCI is not woken up from Mute mode.  
Parity control  
Parity control (generation of parity bit in transmission and parity checking in reception) can  
be enabled by setting the PCE bit in the SCICR1 register. Depending on the frame length  
defined by the M bit, the possible SCI frame formats are as listed in Table 69.  
Table 69. Frame formats  
M bit  
PCE bit  
SCI frame  
0
0
1
1
0
1
0
1
| SB | 8 bit data | STB |  
| SB | 7-bit data | PB | STB |  
| SB | 9-bit data | STB |  
| SB | 8-bit data PB | STB |  
Legend: SB = Start Bit, STB = Stop Bit, PB = Parity Bit  
Note:  
In case of wake-up by an address mark, the MSB bit of the data is taken into account and  
not the parity bit  
Even parity: the parity bit is calculated to obtain an even number of ‘1’s inside the frame  
made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.  
Example: data = 00110101; 4 bits set => parity bit is 0 if even parity is selected (PS bit = 0).  
Odd parity: the parity bit is calculated to obtain an odd number of ‘1’s inside the frame  
made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.  
Example: data = 00110101; 4 bits set => parity bit is 1 if odd parity is selected (PS bit = 1).  
Transmission mode: If the PCE bit is set then the MSB bit of the data written in the data  
register is not transmitted but is changed by the parity bit.  
Reception mode: If the PCE bit is set then the interface checks if the received data byte  
has an even number of ‘1’s if even parity is selected (PS = 0) or an odd number of ‘1’s if odd  
parity is selected (PS = 1). If the parity check fails, the PE flag is set in the SCISR register  
and an interrupt is generated if PIE is set in the SCICR1 register.  
SCI clock tolerance  
During reception, each bit is sampled 16 times. The majority of the 8th, 9th and 10th  
samples is considered as the bit value. For a valid bit detection, all the three samples should  
have the same value otherwise the noise flag (NF) is set. For example: If the 8th, 9th and  
10th samples are 0, 1 and 1 respectively, then the bit value is ‘1’, but the Noise Flag bit is set  
because the three samples values are not the same.  
Doc ID 12898 Rev 2  
145/244  
 
Serial communications interface (SCI)  
ST72321Bxxx-Auto  
Consequently, the bit length must be long enough so that the 8th, 9th and 10th samples  
have the desired bit value. This means the clock frequency should not vary more than 6/16  
(37.5%) within one bit. The sampling clock is resynchronized at each start bit, so that when  
receiving 10 bits (one start bit, 1 data byte, 1 stop bit), the clock deviation must not exceed  
3.75%.  
Note:  
The internal sampling clock of the microcontroller samples the pin value on every falling  
edge. Therefore, the internal sampling clock and the time the application expects the  
sampling to take place may be out of sync. For example: If the baud rate is 15.625 Kbaud  
(bit length is 64µs), then the 8th, 9th and 10th samples are at 28µs, 32µs and 36µs  
respectively (the first sample starting ideally at 0µs). But if the falling edge of the internal  
clock occurs just before the pin value changes, the samples would then be out of sync by  
~4us. This means the entire bit length must be at least 40µs (36µs for the 10th sample + 4µs  
for synchronization with the internal sampling clock).  
Clock deviation causes  
The causes which contribute to the total deviation are:  
D
: Deviation due to transmitter error (Local oscillator error of the transmitter or  
TRA  
the transmitter is transmitting at a different baud rate).  
D
D
: Error due to the baud rate quantization of the receiver.  
QUANT  
: Deviation of the local oscillator of the receiver: This deviation can occur  
REC  
during the reception of one complete SCI message assuming that the deviation  
has been compensated at the beginning of the message.  
D
: Deviation due to the transmission line (generally due to the transceivers)  
TCL  
All the deviations of the system should be added and compared to the SCI clock tolerance:  
+ D + D + D < 3.75%  
D
TRA  
QUANT  
REC  
TCL  
Noise error causes  
See also description of noise error in Receiver on page 141.  
Start bit  
The noise flag (NF) is set during start bit reception if one of the following conditions occurs:  
1. A valid falling edge is not detected. A falling edge is considered to be valid if the 3  
consecutive samples before the falling edge occurs are detected as ‘1’ and, after the  
falling edge occurs, during the sampling of the 16 samples, if one of the samples  
numbered 3, 5 or 7 is detected as a ‘1’.  
2. During sampling of the 16 samples, if one of the samples numbered 8, 9 or 10 is  
detected as a ‘1’.  
Therefore, a valid Start Bit must satisfy both the above conditions to prevent the Noise Flag  
getting set.  
Data bits  
The noise flag (NF) is set during normal data bit reception if the following condition occurs:  
During the sampling of 16 samples, if all three samples numbered 8, 9 and10 are not  
the same. The majority of the 8th, 9th and 10th samples is considered as the bit value.  
Therefore, a valid Data Bit must have samples 8, 9 and 10 at the same value to prevent the  
Noise Flag from getting set.  
146/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Serial communications interface (SCI)  
Figure 65. Bit sampling in reception mode  
RDI LINE  
Sample  
sampled values  
clock  
1
2
3
4
5
6
7
8
9
10 11 12  
13 14 15 16  
6/16  
7/16  
7/16  
One bit time  
15.5  
Low power modes  
Table 70. Effect of low power modes on SCI  
Mode  
Effect  
No effect on SCI.  
SCI interrupts cause the device to exit from Wait mode.  
Wait  
SCI registers are frozen.  
In Halt mode, the SCI stops transmitting/receiving until Halt mode is exited.  
Halt  
15.6  
Interrupts  
The SCI interrupt events are connected to the same interrupt vector.  
These events generate an interrupt if the corresponding Enable Control Bit is set and the  
interrupt mask in the CC register is reset (RIM instruction).  
Table 71. SCI interrupt control/wake-up capability  
Enable control  
bit  
Exit from  
Wait  
Exit from  
Halt  
Interrupt event  
Event flag  
Transmit Data Register Empty  
Transmission Complete  
TDRE  
TC  
TIE  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
TCIE  
Received Data Ready to be Read  
Overrun Error Detected  
RDRF  
OR  
RIE  
Doc ID 12898 Rev 2  
147/244  
Serial communications interface (SCI)  
Table 71. SCI interrupt control/wake-up capability  
ST72321Bxxx-Auto  
Enable control  
bit  
Exit from  
Exit from  
Halt  
Interrupt event  
Event flag  
Wait  
Idle Line Detected  
IDLE  
PE  
ILIE  
PIE  
Yes  
Yes  
No  
No  
Parity Error  
15.7  
SCI registers  
Status register (SCISR)  
SCISR  
15.7.1  
Reset value: 1100 0000 (C0h)  
7
6
5
4
3
2
1
0
TDRE  
RO  
TC  
RO  
RDRF  
RO  
IDLE  
RO  
OR  
RO  
NF  
RO  
FE  
RO  
PE  
RO  
Table 72. SCISR register description  
Bit Name  
Function  
Transmit data register empty  
This bit is set by hardware when the content of the TDR register has been  
transferred into the shift register. An interrupt is generated if the TIE bit = 1 in the  
SCICR2 register. It is cleared by a software sequence (an access to the SCISR  
register followed by a write to the SCIDR register).  
7
TDRE  
0: Data is not transferred to the shift register  
1: Data is transferred to the shift register  
Note: Data is not transferred to the shift register unless the TDRE bit is cleared.  
Transmission complete  
This bit is set by hardware when transmission of a frame containing Data is  
complete. An interrupt is generated if TCIE = 1 in the SCICR2 register. It is cleared  
by a software sequence (an access to the SCISR register followed by a write to the  
SCIDR register).  
0: Transmission is not complete  
1: Transmission is complete  
6
5
TC  
Note: TC is not set after the transmission of a Preamble or a Break.  
Received data ready flag  
This bit is set by hardware when the content of the RDR register has been  
transferred to the SCIDR register. An interrupt is generated if RIE = 1 in the SCICR2  
register. It is cleared by a software sequence (an access to the SCISR register  
followed by a read to the SCIDR register).  
RDRF  
0: Data is not received  
1: Received data is ready to be read  
148/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Serial communications interface (SCI)  
Table 72. SCISR register description (continued)  
Bit Name Function  
Idle line detect  
This bit is set by hardware when an Idle Line is detected. An interrupt is generated if  
the ILIE = 1 in the SCICR2 register. It is cleared by a software sequence (an access  
to the SCISR register followed by a read to the SCIDR register).  
0: No Idle Line is detected  
1: Idle Line is detected  
Note: The IDLE bit is not set again until the RDRF bit has been set itself (that is, a  
new idle line occurs).  
4
3
2
IDLE  
Overrun error  
This bit is set by hardware when the word currently being received in the shift  
register is ready to be transferred into the RDR register while RDRF = 1. An interrupt  
is generated if RIE = 1 in the SCICR2 register. It is cleared by a software sequence  
(an access to the SCISR register followed by a read to the SCIDR register).  
0: No Overrun error  
1: Overrun error is detected  
Note: When this bit is set RDR register content is not lost but the shift register is  
overwritten.  
OR  
Noise flag  
This bit is set by hardware when noise is detected on a received frame. It is cleared  
by a software sequence (an access to the SCISR register followed by a read to the  
SCIDR register).  
NF  
0: No noise is detected  
1: Noise is detected  
Note: This bit does not generate interrupt as it appears at the same time as the  
RDRF bit which itself generates an interrupt.  
Framing error  
This bit is set by hardware when a de-synchronization, excessive noise or a break  
character is detected. It is cleared by a software sequence (an access to the SCISR  
register followed by a read to the SCIDR register).  
0: No Framing error is detected  
1: Framing error or break character is detected  
1
FE  
Note: This bit does not generate interrupt as it appears at the same time as the  
RDRF bit which itself generates an interrupt. If the word currently being transferred  
causes both frame error and overrun error, it will be transferred and only the OR bit  
will be set.  
Parity error  
This bit is set by hardware when a parity error occurs in receiver mode. It is cleared  
by a software sequence (a read to the status register followed by an access to the  
SCIDR data register). An interrupt is generated if PIE = 1 in the SCICR1 register.  
0: No parity error  
0
PE  
1: Parity error  
Doc ID 12898 Rev 2  
149/244  
Serial communications interface (SCI)  
ST72321Bxxx-Auto  
15.7.2  
Control register 1 (SCICR1)  
SCICR1  
Reset value: X000 0000 (x0h)  
7
6
5
4
3
2
1
0
R8  
T8  
SCID  
M
WAKE  
PCE  
PS  
PIE  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Table 73. SCICR1 register description  
Bit Name  
Function  
Receive data bit 8  
7
6
R8  
T8  
This bit is used to store the 9th bit of the received word when M = 1.  
Transmit data bit 8  
This bit is used to store the 9th bit of the transmitted word when M = 1.  
Disabled for low power consumption  
When this bit is set the SCI prescalers and outputs are stopped and the end of the  
current byte transfer in order to reduce power consumption.This bit is set and  
cleared by software.  
5
SCID  
0: SCI enabled  
1: SCI prescaler and outputs disabled  
Word length  
This bit determines the word length. It is set or cleared by software.  
0: 1 Start bit, 8 Data bits, 1 Stop bit  
1: 1 Start bit, 9 Data bits, 1 Stop bit  
Note: The M bit must not be modified during a data transfer (both transmission and  
reception).  
4
3
M
Wake-up method  
This bit determines the SCI wake-up method. It is set or cleared by software.  
0: Idle line  
WAKE  
1: Address mark  
Parity control enable  
This bit selects the hardware parity control (generation and detection). When the  
parity control is enabled, the computed parity is inserted at the MSB position (9th  
bit if M = 1; 8th bit if M = 0) and parity is checked on the received data. This bit is  
set and cleared by software. Once it is set, PCE is active after the current byte (in  
reception and in transmission).  
2
1
PCE  
0: Parity control disabled  
1: Parity control enabled  
Parity selection  
This bit selects the odd or even parity when the parity generation/detection is  
enabled (PCE bit set). It is set and cleared by software. The parity is selected after  
the current byte.  
0: Even parity  
1: Odd parity  
PS  
150/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Serial communications interface (SCI)  
Table 73. SCICR1 register description (continued)  
Bit Name Function  
Parity interrupt enable  
This bit enables the interrupt capability of the hardware parity control when a parity  
error is detected (PE bit set). It is set and cleared by software.  
0: Parity error interrupt disabled  
0
PIE  
1: Parity error interrupt enabled  
15.7.3  
Control register 2 (SCICR2)  
SCICR2  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
TIE  
TCIE  
RIE  
ILIE  
TE  
RE  
RWU  
SBK  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Table 74. SCICR2 register description  
Bit Name  
Function  
Transmitter interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SCI interrupt is generated whenever TDRE = 1 in the SCISR register.  
7
6
TIE  
Transmission complete interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
TCIE  
1: An SCI interrupt is generated whenever TC = 1 in the SCISR register.  
Receiver interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SCI interrupt is generated whenever OR = 1 or RDRF = 1 in the SCISR  
register.  
5
4
RIE  
ILIE  
Idle line interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SCI interrupt is generated whenever IDLE = 1 in the SCISR register.  
Transmitter enable  
This bit enables the transmitter. It is set and cleared by software.  
0: Transmitter is disabled  
1: Transmitter is enabled  
Notes:  
3
TE  
During transmission, a ‘0’ pulse on the TE bit (‘0’ followed by ‘1’) sends a preamble  
(idle line) after the current word.  
When TE is set there is a 1 bit-time delay before the transmission starts.  
Caution: The TDO pin is free for general purpose I/O only when the TE and RE bits  
are both cleared (or if TE is never set).  
Doc ID 12898 Rev 2  
151/244  
Serial communications interface (SCI)  
ST72321Bxxx-Auto  
Table 74. SCICR2 register description (continued)  
Bit Name Function  
Receiver enable  
This bit enables the receiver. It is set and cleared by software.  
0: Receiver is disabled  
2
RE  
1: Receiver is enabled and begins searching for a start bit  
Receiver wake-up  
This bit determines if the SCI is in mute mode or not. It is set and cleared by software  
and can be cleared by hardware when a wake-up sequence is recognized.  
0: Receiver in Active mode  
1
RWU  
1: Receiver in Mute mode  
Note: Before selecting Mute mode (setting the RWU bit), the SCI must receive some  
data first, otherwise it cannot function in Mute mode with wake-up by idle line  
detection.  
Send break  
This bit set is used to send break characters. It is set and cleared by software.  
0: No break character is transmitted  
1: Break characters are transmitted  
0
SBK  
Note: If the SBK bit is set to ‘1’ and then to ‘0’, the transmitter sends a BREAK word  
at the end of the current word.  
15.7.4  
Data register (SCIDR)  
This register contains the Received or Transmitted data character, depending on whether it  
is read from or written to.  
SCIDR  
7
Reset value: Undefined  
6
5
4
3
2
1
0
DR[7:0]  
RW  
The Data register performs a double function (read and write) since it is composed of two  
registers, one for transmission (TDR) and one for reception (RDR).  
The TDR register provides the parallel interface between the internal bus and the output  
shift register (see Figure 62).  
The RDR register provides the parallel interface between the input shift register and the  
internal bus (see Figure 62).  
15.7.5  
Baud rate register (SCIBRR)  
SCIBRR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
SCP[1:0]  
RW  
SCT[2:0]  
RW  
SCR[2:0]  
RW  
152/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Serial communications interface (SCI)  
Function  
Table 75. SCIBRR register description  
Bit Name  
First SCI Prescaler  
These 2 prescaling bits allow several standard clock division ranges.  
00: PR prescaling factor = 1  
01: PR prescaling factor = 3  
7:6 SCP[1:0]  
10: PR prescaling factor = 4  
11: PR prescaling factor = 13  
SCI Transmitter rate divisor  
These 3 bits, in conjunction with the SCP1 and SCP0 bits define the total division  
applied to the bus clock to yield the transmit rate clock in conventional Baud Rate  
Generator mode.  
000: TR dividing factor = 1  
001: TR dividing factor = 2  
010: TR dividing factor = 4  
5:3 SCT[2:0]  
011: TR dividing factor = 8  
100: TR dividing factor = 16  
101: TR dividing factor = 32  
110: TR dividing factor = 64  
111: TR dividing factor = 128  
SCI Receiver rate divisor  
These 3 bits, in conjunction with the SCP[1:0] bits define the total division applied  
to the bus clock to yield the receive rate clock in conventional Baud Rate  
Generator mode.  
000: RR dividing factor = 1  
001: RR dividing factor = 2  
010: RR dividing factor = 4  
2:0 SCR[2:0]  
011: RR dividing factor = 8  
100: RR dividing factor = 16  
101: RR dividing factor = 32  
110: RR dividing factor = 64  
111: RR dividing factor = 128  
15.7.6  
Extended receive prescaler division register (SCIERPR)  
This register allows setting of the extended prescaler rate division factor for the receive  
circuit.  
SCIERPR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
ERPR[7:0]  
RW  
Doc ID 12898 Rev 2  
153/244  
Serial communications interface (SCI)  
ST72321Bxxx-Auto  
Table 76. SCIERPR register description  
Bit Name  
Function  
8-bit Extended Receive Prescaler Register  
The extended baud rate generator is activated when a value different from 00h is  
stored in this register. Therefore the clock frequency issued from the 16 divider  
(see Figure 64) is divided by the binary factor set in the SCIERPR register (in  
the range 1 to 255).  
7:0 ERPR[7:0]  
The extended baud rate generator is not used after a reset.  
15.7.7  
Extended transmit prescaler division register (SCIETPR)  
This register allows setting of the external prescaler rate division factor for the transmit  
circuit.  
SCIETPR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
ETPR[7:0]  
RW  
Table 77. SCIETPR register description  
Bit Name  
Function  
8-bit Extended Transmit Prescaler Register  
The extended baud rate generator is activated when a value different from 00h is  
stored in this register. Therefore the clock frequency issued from the 16 divider  
(see Figure 64) is divided by the binary factor set in the SCIETPR register (in the  
range 1 to 255).  
7:0 ETPR[7:0]  
The extended baud rate generator is not used after a reset.  
Table 78. Baud rate selection  
Conditions  
Accuracy  
versus  
Symbol  
Parameter  
Standard Baud rate Unit  
fCPU  
Prescaler  
standard  
Conventional mode  
TR (or RR) = 128, PR = 13  
TR (or RR) = 32, PR = 13  
TR (or RR) = 16, PR = 13  
TR (or RR) = 8, PR = 13  
TR (or RR) = 4, PR = 13  
TR (or RR) = 16, PR = 3  
TR (or RR) = 2, PR = 13  
TR (or RR) = 1, PR = 13  
300  
1200  
2400  
4800  
9600  
10400 ~10416.67  
19200 ~19230.77  
38400 ~38461.54  
~300.48  
~1201.92  
~2403.84  
~4807.69  
~9615.38  
~0.16%  
~0.79%  
fTx  
fRx  
Communication  
frequency  
8 MHz  
Hz  
Extended mode  
ETPR (or ERPR) = 35,  
TR (or RR) = 1, PR = 1  
14400 ~14285.71  
154/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Serial communications interface (SCI)  
Table 79. SCI register map and reset values  
Address (Hex.) Register label  
7
6
5
4
3
2
1
0
SCISR  
0050h  
TDRE  
1
TC  
1
RDRF  
0
IDLE  
0
OR  
0
NF  
0
FE  
0
PE  
0
Reset value  
SCIDR  
0051h  
MSB  
x
LSB  
x
Reset value  
x
x
x
x
x
x
SCIBRR  
0052h  
SCP1  
0
SCP0  
0
SCT2  
0
SCT1  
0
SCT0  
0
SCR2  
0
SCR1  
0
SCR0  
0
Reset value  
SCICR1  
0053h  
R8  
x
T8  
0
SCID  
0
M
0
WAKE  
0
PCE  
0
PS  
0
PIE  
0
Reset value  
SCICR2  
0054h  
TIE  
0
TCIE  
0
RIE  
0
ILIE  
0
TE  
0
RE  
0
RWU  
0
SBK  
0
Reset value  
SCIERPR  
0055h  
MSB  
0
LSB  
0
Reset value  
0
0
0
0
0
0
0
0
0
0
0
0
SCIPETPR  
0057h  
MSB  
0
LSB  
0
Reset value  
Doc ID 12898 Rev 2  
155/244  
I2C bus interface (I2C)  
ST72321Bxxx-Auto  
2
16  
I C bus interface (I2C)  
16.1  
Introduction  
2
2
The I C bus interface serves as an interface between the microcontroller and the serial I C  
2
bus. It provides both multimaster and slave functions, and controls all I C bus-specific  
sequencing, protocol, arbitration and timing. It supports fast I C mode (400 kHz).  
2
16.2  
Main features  
2
Parallel-bus/I C protocol converter  
Multimaster capability  
7-bit/10-bit addressing  
SMBus V1.1 compliant  
Transmitter/Receiver flag  
End-of-byte transmission flag  
Transfer problem detection  
2
16.2.1  
I C master features  
Clock generation  
2
I C bus busy flag  
Arbitration Lost flag  
End of byte transmission flag  
Transmitter/Receiver flag  
Start bit detection flag  
Start and Stop generation  
2
16.2.2  
I C slave features  
Stop bit detection  
2
I C bus busy flag  
Detection of misplaced start or stop condition  
2
Programmable I C address detection  
Transfer problem detection  
End-of-byte transmission flag  
Transmitter/Receiver flag  
156/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
I2C bus interface (I2C)  
16.3  
General description  
In addition to receiving and transmitting data, this interface converts it from serial to parallel  
format and vice versa, using either an interrupt or polled handshake. The interrupts are  
2
enabled or disabled by software. The interface is connected to the I C bus by a data pin  
2
(SDAI) and by a clock pin (SCLI). It can be connected both with a standard I C bus and a  
2
fast I C bus. This selection is made by software.  
16.3.1  
Mode selection  
The interface can operate in the four following modes:  
Slave transmitter/receiver  
Master transmitter/receiver  
By default, it operates in slave mode.  
The interface automatically switches from slave to master after it generates a START  
condition and from master to slave in case of arbitration loss or a STOP generation, allowing  
then Multimaster capability.  
16.3.2  
Communication flow  
In Master mode, it initiates a data transfer and generates the clock signal. A serial data  
transfer always begins with a start condition and ends with a stop condition. Both start and  
stop conditions are generated in master mode by software.  
In Slave mode, the interface is capable of recognizing its own address (7- or 10-bit), and the  
General Call address. The General Call address detection may be enabled or disabled by  
software.  
Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the  
start condition contain the address (one in 7-bit mode, two in 10-bit mode). The address is  
always transmitted in Master mode.  
A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must  
send an acknowledge bit to the transmitter. Refer to Figure 66.  
2
Figure 66. I C bus protocol  
SDA  
ACK  
9
MSB  
1
SCL  
2
8
START  
STOP  
CONDITION  
CONDITION  
VR02119B  
Acknowledge may be enabled and disabled by software.  
2
The I C interface address and/or general call address can be selected by software.  
2
The speed of the I C interface may be selected between standard (up to 100 kHz) and fast  
2
I C (up to 400 kHz).  
Doc ID 12898 Rev 2  
157/244  
 
I2C bus interface (I2C)  
ST72321Bxxx-Auto  
16.3.3  
SDA/SCL line control  
Transmitter mode  
The interface holds the clock line low before transmission to wait for the microcontroller to  
write the byte in the data register.  
Receiver mode  
The interface holds the clock line low after reception to wait for the microcontroller to read  
the byte in the data register.  
The SCL frequency (f  
the I C bus mode.  
) is controlled by a programmable clock divider which depends on  
SCL  
2
2
When the I C cell is enabled, the SDA and SCL ports must be configured as floating inputs.  
In this case, the value of the external pull-up resistor used depends on the application.  
2
When the I C cell is disabled, the SDA and SCL ports revert to being standard I/O port pins.  
2
Figure 67. I C interface block diagram  
DATA REGISTER (DR)  
DATA CONTROL  
SDA or SDAI  
DATA SHIFT REGISTER  
COMPARATOR  
OWN ADDRESS REGISTER 1 (OAR1)  
OWN ADDRESS REGISTER 2 (OAR2)  
CLOCK CONTROL  
SCL or SCLI  
CLOCK CONTROL REGISTER (CCR)  
CONTROL REGISTER (CR)  
STATUS REGISTER 1 (SR1)  
STATUS REGISTER 2 (SR2)  
CONTROL LOGIC  
INTERRUPT  
158/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
I2C bus interface (I2C)  
16.4  
Functional description  
Refer to the CR, SR1 and SR2 registers in Section 16.7 for the bit definitions.  
2
By default the I C interface operates in Slave mode (M/SL bit is cleared) except when it  
initiates a transmit or receive sequence.  
First the interface frequency must be configured using the FRi bits in the OAR2 register.  
16.4.1  
Slave mode  
As soon as a start condition is detected, the address is received from the SDA line and sent  
to the shift register; then it is compared with the address of the interface or the General Call  
address (if selected by software).  
Note:  
In 10-bit addressing mode, the comparison includes the header sequence (11110xx0) and  
the two most significant bits of the address.  
Header matched (10-bit mode only): The interface generates an acknowledge pulse if the  
ACK bit is set.  
Address not matched: The interface ignores it and waits for another Start condition.  
Address matched: The interface generates in sequence:  
an acknowledge pulse if the ACK bit is set  
EVF and ADSL bits are set with an interrupt if the ITE bit is set.  
Then the interface waits for a read of the SR1 register, holding the SCL line low (see  
Figure 68: Transfer sequencing EV1).  
Next, in 7-bit mode read the DR register to determine from the least significant bit (Data  
Direction Bit) if the slave must enter Receiver or Transmitter mode.  
In 10-bit mode, after receiving the address sequence the slave is always in receive mode. It  
will enter transmit mode on receiving a repeated Start condition followed by the header  
sequence with matching address bits and the least significant bit set (11110xx1).  
Slave receiver  
Following the address reception and after the SR1 register has been read, the slave  
receives bytes from the SDA line into the DR register via the internal shift register. After  
each byte the interface generates in sequence:  
an acknowledge pulse if the ACK bit is set  
EVF and BTF bits are set with an interrupt if the ITE bit is set.  
Then the interface waits for a read of the SR1 register followed by a read of the DR register,  
holding the SCL line low (see Figure 68: Transfer sequencing EV2).  
Slave transmitter  
Following the address reception and after SR1 register has been read, the slave sends  
bytes from the DR register to the SDA line via the internal shift register.  
The slave waits for a read of the SR1 register followed by a write in the DR register, holding  
the SCL line low (see Figure 68: Transfer sequencing EV3).  
When the acknowledge pulse is received:  
The EVF and BTF bits are set by hardware with an interrupt if the ITE bit is set.  
Doc ID 12898 Rev 2  
159/244  
I2C bus interface (I2C)  
ST72321Bxxx-Auto  
Closing slave communication  
After the last data byte is transferred, a Stop Condition is generated by the master. The  
interface detects this condition and sets:  
EVF and STOPF bits with an interrupt if the ITE bit is set.  
Then the interface waits for a read of the SR2 register (see Figure 68: Transfer sequencing  
EV4).  
Error cases  
BERR: Detection of a Stop or a Start condition during a byte transfer. In this case, the  
EVF and the BERR bits are set with an interrupt if the ITE bit is set.  
If it is a Stop then the interface discards the data, released the lines and waits for  
another Start condition.  
If it is a Start then the interface discards the data and waits for the next slave address  
on the bus.  
AF: Detection of a non-acknowledge bit. In this case, the EVF and AF bits are set with  
an interrupt if the ITE bit is set.  
The AF bit is cleared by reading the I2CSR2 register. However, if read before the  
completion of the transmission, the AF flag will be set again, thus possibly generating a  
new interrupt. Software must ensure either that the SCL line is back at 0 before reading  
the SR2 register, or be able to correctly handle a second interrupt during the 9th pulse  
of a transmitted byte.  
Note:  
In case of errors, the SCL line is not held low; however, the SDA line can remain low if the  
last bits transmitted are all 0. While AF = 1, the SCL line may be held low due to SB or BTF  
flags that are set at the same time. It is then necessary to release both lines by software.  
How to release the SDA / SCL lines  
Set and subsequently clear the STOP bit while BTF is set. The SDA/SCL lines are released  
after the transfer of the current byte.  
SMBus compatibility  
2
The ST7 I C is compatible with the SMBus V1.1 protocol. It supports all SMBus addressing  
modes, SMBus bus protocols and CRC-8 packet error checking. Refer to SMBus Slave  
2
Driver For ST7 I C Peripheral (AN1713).  
16.4.2  
Master mode  
To switch from default Slave mode to Master mode a Start condition generation is needed.  
Start condition  
Setting the START bit while the BUSY bit is cleared causes the interface to switch to Master  
mode (M/SL bit set) and generates a Start condition.  
Once the Start condition is sent:  
The EVF and SB bits are set by hardware with an interrupt if the ITE bit is set.  
Then the master waits for a read of the SR1 register followed by a write in the DR register  
with the Slave address, holding the SCL line low (see Figure 68: Transfer sequencing  
EV5).  
160/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
I2C bus interface (I2C)  
Slave address transmission  
Then the slave address is sent to the SDA line via the internal shift register.  
In 7-bit addressing mode, one address byte is sent.  
In 10-bit addressing mode, sending the first byte including the header sequence  
causes the following event:  
The EVF bit is set by hardware with interrupt generation if the ITE bit is set.  
Then the master waits for a read of the SR1 register followed by a write in the DR register,  
holding the SCL line low (see Figure 68: Transfer sequencing EV9).  
Then the second address byte is sent by the interface.  
After completion of this transfer (and acknowledge from the slave if the ACK bit is set):  
The EVF bit is set by hardware with interrupt generation if the ITE bit is set.  
Then the master waits for a read of the SR1 register followed by a write in the CR register  
(for example set PE bit), holding the SCL line low (see Figure 68: Transfer sequencing  
EV6).  
Next, the master must enter Receiver or Transmitter mode.  
Note:  
In 10-bit addressing mode, to switch the master to Receiver mode, software must generate  
a repeated Start condition and resend the header sequence with the least significant bit set  
(11110xx1).  
Master receiver  
Following the address transmission and after SR1 and CR registers have been accessed,  
the master receives bytes from the SDA line into the DR register via the internal shift  
register. After each byte the interface generates in sequence:  
Acknowledge pulse if the ACK bit is set  
EVF and BTF bits are set by hardware with an interrupt if the ITE bit is set.  
Then the interface waits for a read of the SR1 register followed by a read of the DR register,  
holding the SCL line low (see Figure 68: Transfer sequencing EV7).  
To close the communication: Before reading the last byte from the DR register, set the STOP  
bit to generate the Stop condition. The interface goes automatically back to slave mode  
(M/SL bit cleared).  
Note:  
In order to generate the non-acknowledge pulse after the last received data byte, the ACK  
bit must be cleared just before reading the second last data byte.  
Master transmitter  
Following the address transmission and after SR1 register has been read, the master sends  
bytes from the DR register to the SDA line via the internal shift register.  
The master waits for a read of the SR1 register followed by a write in the DR register,  
holding the SCL line low (see Figure 68: Transfer sequencing EV8).  
When the acknowledge bit is received, the interface sets:  
EVF and BTF bits with an interrupt if the ITE bit is set.  
To close the communication: After writing the last byte to the DR register, set the STOP bit to  
generate the Stop condition. The interface goes automatically back to slave mode (M/SL bit  
cleared).  
Doc ID 12898 Rev 2  
161/244  
I2C bus interface (I2C)  
Error cases  
ST72321Bxxx-Auto  
BERR: Detection of a Stop or a Start condition during a byte transfer. In this case, the  
EVF and BERR bits are set by hardware with an interrupt if ITE is set.  
Note that BERR will not be set if an error is detected during the first or second pulse of  
each 9-bit transaction:  
Single Master Mode  
If a Start or Stop is issued during the first or second pulse of a 9-bit transaction,  
the BERR flag will not be set and transfer will continue however the BUSY flag will  
be reset. To work around this, slave devices should issue a NACK when they  
receive a misplaced Start or Stop. The reception of a NACK or BUSY by the  
master in the middle of communication makes it possible to re-initiate  
transmission.  
Multimaster Mode  
Normally the BERR bit would be set whenever unauthorized transmission takes  
place while transfer is already in progress. However, an issue will arise if an  
2
external master generates an unauthorized Start or Stop while the I C master is  
on the first or second pulse of a 9-bit transaction. It is possible to work around this  
2
by polling the BUSY bit during I C master mode transmission. The resetting of the  
BUSY bit can then be handled in a similar manner as the BERR flag being set.  
AF: Detection of a non-acknowledge bit. In this case, the EVF and AF bits are set by  
hardware with an interrupt if the ITE bit is set. To resume, set the Start or Stop bit.  
The AF bit is cleared by reading the I2CSR2 register. However, if read before the  
completion of the transmission, the AF flag will be set again, thus possibly generating a  
new interrupt. Software must ensure either that the SCL line is back at 0 before reading  
the SR2 register, or be able to correctly handle a second interrupt during the 9th pulse  
of a transmitted byte.  
ARLO: Detection of an arbitration lost condition.  
In this case the ARLO bit is set by hardware (with an interrupt if the ITE bit is set and  
the interface goes automatically back to slave mode (the M/SL bit is cleared).  
Note:  
In all these cases, the SCL line is not held low; however, the SDA line can remain low due to  
possible ‘0’ bits transmitted last. It is then necessary to release both lines by software.  
162/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
I2C bus interface (I2C)  
Figure 68. Transfer sequencing  
7-bit Slave receiver:  
S Address  
A
Data1  
A
Data1  
Data1  
Data2  
A
Data2  
Data2  
DataN  
A
P
.....  
EV1  
7-bit Slave transmitter:  
S Address  
EV2  
A
EV2  
A
EV2  
EV4  
A
DataN NA  
DataN NA  
P
.....  
.....  
EV1 EV3  
7-bit Master receiver:  
Address  
EV3  
EV3  
EV3-1  
EV4  
S
A
A
A
P
EV5  
7-bit Master transmitter:  
Address  
EV6  
EV7  
A
EV7  
A
EV7  
S
A
Data1  
Data2  
DataN  
.....  
A
P
EV5  
10-bit Slave receiver:  
Header Address  
EV6 EV8  
EV8  
A
EV8  
EV8  
S
A
A
Data1  
DataN  
EV3  
A
P
.....  
EV1  
EV2  
EV2  
EV4  
10-bit Slave transmitter:  
Sr Header  
Address  
A
Data1  
Data1  
A
DataN  
A
P
....  
.
EV1 EV3  
EV6 EV8  
EV3-1  
A
EV4  
P
10-bit Master transmitter:  
S
Header  
A
A
A
DataN  
DataN  
.....  
EV5  
EV9  
EV8  
EV8  
10-bit Master receiver:  
Sr  
Header  
A
Data1  
A
A
P
.....  
EV5  
EV6  
EV7  
EV7  
Legend:  
S = Start, Sr = Repeated Start, P = Stop, A = Acknowledge, NA = Non-acknowledge, EVx = Event (with interrupt if ITE = 1)  
EV1: EVF = 1, ADSL = 1, cleared by reading SR1 register.  
EV2: EVF = 1, BTF = 1, cleared by reading SR1 register followed by reading DR register.  
EV3: EVF = 1, BTF = 1, cleared by reading SR1 register followed by writing DR register.  
EV3-1: EVF = 1, AF = 1, BTF = 1; AF is cleared by reading SR1 register. BTF is cleared by releasing the lines (STOP = 1, STOP = 0) or  
by writing DR register (DR = FFh). Note: If lines are released by STOP = 1, STOP = 0, the subsequent EV4 is not seen.  
EV4: EVF = 1, STOPF = 1, cleared by reading SR2 register.  
EV5: EVF = 1, SB = 1, cleared by reading SR1 register followed by writing DR register.  
EV6: EVF = 1, cleared by reading SR1 register followed by writing CR register (for example PE = 1).  
EV7: EVF = 1, BTF = 1, cleared by reading SR1 register followed by reading DR register.  
EV8: EVF = 1, BTF = 1, cleared by reading SR1 register followed by writing DR register.  
EV9: EVF = 1, ADD10 = 1, cleared by reading SR1 register followed by writing DR register.  
Doc ID 12898 Rev 2  
163/244  
 
I2C bus interface (I2C)  
ST72321Bxxx-Auto  
16.5  
Low power modes  
2
Table 80. Effect of low power modes on I C  
Mode  
Effect  
No effect on I2C interface.  
Wait  
I2C interrupts cause the device to exit from Wait mode.  
I2C registers are frozen.  
In Halt mode, the I2C interface is inactive and does not acknowledge data on the bus. The  
I2C interface resumes operation when the MCU is woken up by an interrupt with “exit from  
Halt mode” capability.  
Halt  
16.6  
Interrupts  
Figure 69. Interrupt control logic diagram  
ADD10  
ITE  
BTF  
ADSL  
SB  
INTERRUPT  
EVF  
AF  
STOPF  
ARLO  
BERR  
*
* EVF can also be set by EV6 or an error from the SR2 register.  
2
Table 81. I C interrupt control/wake-up capability  
Enable  
control bit  
Exit from Exit from  
Interrupt event  
Event flag  
Wait  
Halt  
10-bit Address Sent Event (Master mode)  
End of Byte Transfer Event  
ADD10  
BTF  
Address Matched Event (Slave mode)  
Start Bit Generation Event (Master mode)  
Acknowledge Failure Event  
ADSEL  
SB  
ITE  
Yes  
No  
AF  
Stop Detection Event (Slave mode)  
Arbitration Lost Event (Multimaster configuration)  
Bus Error Event  
STOPF  
ARLO  
BERR  
2
Note:  
The I C interrupt events are connected to the same interrupt vector (see Interrupts chapter).  
They generate an interrupt if the corresponding Enable Control bit is set and the I-bit in the  
CC register is reset (RIM instruction).  
164/244  
Doc ID 12898 Rev 2  
 
 
ST72321Bxxx-Auto  
I2C bus interface (I2C)  
16.7  
Register description  
2
16.7.1  
I C control register (CR)  
CR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
Reserved  
-
PE  
ENGC  
START  
ACK  
STOP  
ITE  
RW  
RW  
RW  
RW  
RW  
RW  
Table 82. CR register description  
Bit Name  
Function  
7:6  
-
Reserved. Forced to 0 by hardware.  
Peripheral enable  
This bit is set and cleared by software.  
0: Peripheral disabled  
1: Master/Slave capability  
Notes:  
- When PE = 0, all the bits of the CR register and the SR register except the Stop  
bit are reset. All outputs are released while PE = 0  
5
PE  
- When PE = 1, the corresponding I/O pins are selected by hardware as alternate  
functions.  
To enable the I2C interface, write the CR register TWICE with PE = 1 as the first  
write only activates the interface (only PE is set).  
Enable General Call  
This bit is set and cleared by software. It is also cleared by hardware when the  
interface is disabled (PE = 0). The 00h General Call address is acknowledged (01h  
ignored).  
4
ENGC  
0: General Call disabled  
1: General Call enabled  
Note: In accordance with the I2C standard, when GCAL addressing is enabled, an  
I2C slave can only receive data. It will not transmit data to the master.  
Generation of a Start condition  
This bit is set and cleared by software. It is also cleared by hardware when the  
interface is disabled (PE = 0) or when the Start condition is sent (with interrupt  
generation if ITE = 1).  
In Master mode  
0: No start generation  
1: Repeated start generation  
In Slave mode  
0: No start generation  
1: Start generation when the bus is free  
3
2
START  
Acknowledge enable  
This bit is set and cleared by software. It is also cleared by hardware when the  
interface is disabled (PE = 0).  
ACK  
0: No acknowledge returned  
1: Acknowledge returned after an address byte or a data byte is received  
Doc ID 12898 Rev 2  
165/244  
I2C bus interface (I2C)  
ST72321Bxxx-Auto  
Table 82. CR register description (continued)  
Bit Name Function  
Generation of a Stop condition  
This bit is set and cleared by software. It is also cleared by hardware in master  
mode.  
Note: This bit is not cleared when the interface is disabled (PE = 0).  
In Master mode  
0: No stop generation  
1
STOP  
1: Stop generation after the current byte transfer or after the current Start condition  
is sent. The STOP bit is cleared by hardware when the Stop condition is sent.  
In Slave mode  
0: No stop generation  
1: Release the SCL and SDA lines after the current byte transfer (BTF = 1). In this  
mode the STOP bit has to be cleared by software.  
Interrupt enable  
This bit is set and cleared by software and cleared by hardware when the interface  
is disabled (PE = 0).  
0: Interrupts disabled  
1: Interrupts enabled  
0
ITE  
Refer to Figure 69 and Table 81 for the relationship between the events and the  
interrupt.  
SCL is held low when the ADD10, SB, BTF or ADSL flags or an EV6 event (see  
Figure 68) is detected.  
2
16.7.2  
I C status register 1 (SR1)  
SR1  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
EVF  
ADD10  
TRA  
BUSY  
BTF  
ADSL  
M/SL  
SB  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Table 83. SR1 register description  
Bit Name  
Function  
Event flag  
This bit is set by hardware as soon as an event occurs. It is cleared by software  
reading SR2 register in case of error event or as described in Figure 68. It is also  
cleared by hardware when the interface is disabled (PE = 0).  
0: No event  
1: One of the following events has occurred:  
- BTF = 1 (Byte received or transmitted)  
7
EVF  
- ADSL = 1 (Address matched in Slave mode while ACK = 1)  
- SB = 1 (Start condition generated in Master mode)  
- AF = 1 (No acknowledge received after byte transmission)  
- STOPF = 1 (Stop condition detected in Slave mode)  
- ARLO = 1 (Arbitration lost in Master mode)  
- BERR = 1 (Bus error, misplaced Start or Stop condition detected)  
- ADD10 = 1 (Master has sent header byte)  
- Address byte successfully transmitted in Master mode  
166/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
I2C bus interface (I2C)  
Table 83. SR1 register description (continued)  
Bit Name Function  
10-bit addressing in Master mode  
This bit is set by hardware when the master has sent the first byte in 10-bit address  
mode. It is cleared by software reading SR2 register followed by a write in the DR  
register of the second address byte. It is also cleared by hardware when the  
peripheral is disabled (PE = 0).  
0: No ADD10 event occurred.  
1: Master has sent first address byte (header)  
6
5
ADD10  
Transmitter/Receiver  
When BTF is set, TRA = 1 if a data byte has been transmitted. It is cleared  
automatically when BTF is cleared. It is also cleared by hardware after detection of  
Stop condition (STOPF = 1), loss of bus arbitration (ARLO = 1) or when the  
interface is disabled (PE = 0).  
TRA  
0: Data byte received (if BTF = 1)  
1: Data byte transmitted  
Bus busy  
This bit is set by hardware on detection of a Start condition and cleared by hardware  
on detection of a Stop condition. It indicates a communication in progress on the  
bus. The BUSY flag of the I2CSR1 register is cleared if a Bus Error occurs.  
0: No communication on the bus  
4
BUSY  
1: Communication ongoing on the bus  
Note: The BUSY flag is NOT updated when the interface is disabled (PE = 0). This  
can have consequences when operating in Multimaster mode; that is, a second  
active I2C master commencing a transfer with an unset BUSY bit can cause a  
conflict resulting in lost data. A software workaround consists of checking that the  
I2C is not busy before enabling the I2C Multimaster cell.  
Byte transfer finished  
This bit is set by hardware as soon as a byte is correctly received or transmitted with  
interrupt generation if ITE = 1. It is cleared by software reading SR1 register  
followed by a read or write of DR register. It is also cleared by hardware when the  
interface is disabled (PE = 0).  
Following a byte transmission, this bit is set after reception of the acknowledge clock  
pulse. In case an address byte is sent, this bit is set only after the EV6 event (see  
Figure 68). BTF is cleared by reading SR1 register followed by writing the next byte  
in DR register.  
3
BTF  
Following a byte reception, this bit is set after transmission of the acknowledge clock  
pulse if ACK = 1. BTF is cleared by reading SR1 register followed by reading the  
byte from DR register.  
The SCL line is held low while BTF = 1.  
0: Byte transfer not done  
1: Byte transfer succeeded  
Address matched (Slave mode)  
This bit is set by hardware as soon as the received slave address matched with the  
OAR register content or a general call is recognized. An interrupt is generated if  
ITE = 1. It is cleared by software reading SR1 register or by hardware when the  
interface is disabled (PE = 0).  
2
ADSL  
The SCL line is held low while ADSL = 1.  
0: Address mismatched or not received  
1: Received address matched  
Doc ID 12898 Rev 2  
167/244  
I2C bus interface (I2C)  
ST72321Bxxx-Auto  
Table 83. SR1 register description (continued)  
Bit Name Function  
Master/Slave  
This bit is set by hardware as soon as the interface is in Master mode (writing  
START = 1). It is cleared by hardware after detecting a Stop condition on the bus or  
a loss of arbitration (ARLO = 1). It is also cleared when the interface is disabled  
(PE = 0).  
0: Slave mode  
1: Master mode  
1
0
M/SL  
Start bit (Master mode)  
This bit is set by hardware as soon as the Start condition is generated (following a  
write START = 1). An interrupt is generated if ITE = 1. It is cleared by software  
reading SR1 register followed by writing the address byte in DR register. It is also  
cleared by hardware when the interface is disabled (PE = 0).  
0: No Start condition  
SB  
1: Start condition generated  
2
16.7.3  
I C status register 2 (SR2)  
SR2  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
Reserved  
AF  
STOPF  
ARLO  
BERR  
GCAL  
-
RO  
RO  
RO  
RO  
RO  
Table 84. SR2 register description  
Bit Name  
Function  
7:5  
-
Reserved. Forced to 0 by hardware.  
Acknowledge failure  
This bit is set by hardware when no acknowledge is returned. An interrupt is  
generated if ITE = 1. It is cleared by software reading SR2 register or by hardware  
when the interface is disabled (PE = 0).  
The SCL line is not held low while AF = 1 but by other flags (SB or BTF) that are set  
at the same time.  
4
AF  
0: No acknowledge failure  
1: Acknowledge failure  
Note: When an AF event occurs, the SCL line is not held low; however, the SDA line  
can remain low if the last bits transmitted are all 0. It is then necessary to release  
both lines by software.  
Stop detection (Slave mode)  
This bit is set by hardware when a Stop condition is detected on the bus after an  
acknowledge (if ACK = 1). An interrupt is generated if ITE = 1. It is cleared by  
software reading SR2 register or by hardware when the interface is disabled  
(PE = 0).  
3
STOPF  
The SCL line is not held low while STOPF = 1.  
0: No Stop condition detected  
1: Stop condition detected  
168/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
I2C bus interface (I2C)  
Table 84. SR2 register description (continued)  
Bit Name Function  
Arbitration lost  
This bit is set by hardware when the interface loses the arbitration of the bus to  
another master. An interrupt is generated if ITE = 1. It is cleared by software reading  
SR2 register or by hardware when the interface is disabled (PE = 0).  
After an ARLO event the interface switches back automatically to Slave mode  
(M/SL = 0).  
The SCL line is not held low while ARLO = 1.  
2
ARLO  
0: No arbitration lost detected  
1: Arbitration lost detected  
Note: In a Multimaster environment, when the interface is configured in Master  
Receive mode it does not perform arbitration during the reception of the  
Acknowledge bit. Mishandling of the ARLO bit from the I2CSR2 register may occur  
when a second master simultaneously requests the same data from the same slave  
and the I2C master does not acknowledge the data. The ARLO bit is then left at 0  
instead of being set.  
Bus error  
This bit is set by hardware when the interface detects a misplaced Start or Stop  
condition. An interrupt is generated if ITE = 1. It is cleared by software reading SR2  
register or by hardware when the interface is disabled (PE = 0).  
The SCL line is not held low while BERR = 1.  
1
BERR  
0: No misplaced Start or Stop condition  
1: Misplaced Start or Stop condition  
Note: If a Bus Error occurs, a Stop or a repeated Start condition should be  
generated by the Master to re-synchronize communication, get the transmission  
acknowledged and the bus released for further communication.  
General Call (Slave mode)  
This bit is set by hardware when a general call address is detected on the bus while  
ENGC = 1. It is cleared by hardware detecting a Stop condition (STOPF = 1) or  
when the interface is disabled (PE = 0).  
0
GCAL  
0: No general call address detected on bus  
1: General call address detected on bus  
2
16.7.4  
I C clock control register (CCR)  
CCR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
FM/SM  
CC[6:0]  
RW  
RW  
Table 85. CCR register description  
Bit Name  
Function  
Fast/Standard I2C mode  
This bit is set and cleared by software. It is not cleared when the interface is  
7
FM/SM  
disabled (PE = 0).  
0: Standard I2C mode  
1: Fast I2C mode  
Doc ID 12898 Rev 2  
169/244  
I2C bus interface (I2C)  
Table 85. CCR register description (continued)  
ST72321Bxxx-Auto  
Bit Name  
Function  
7-bit clock divider  
These bits select the speed of the bus (fSCL) depending on the I2C mode. They are  
not cleared when the interface is disabled (PE = 0).  
6:0 CC[6:0]  
Refer to Section 19: Electrical characteristics for the table of values.  
Note: The programmed fSCL assumes no load on SCL and SDA lines.  
2
16.7.5  
I C data register (DR)  
DR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
D[7:0]  
RW  
Table 86. DR register description  
Bit Name  
Function  
8-bit Data Register  
These bits contain the byte to be received or transmitted on the bus.  
Transmitter mode: Byte transmission start automatically when the software writes  
in the DR register.  
Receiver mode: The first data byte is received automatically in the DR register  
using the least significant bit of the address.  
7:0 D[7:0]  
Then, the following data bytes are received one by one after reading the DR  
register.  
2
16.7.6  
I C own address register (OAR1)  
OAR1  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
ADD7  
ADD6  
ADD5  
ADD4  
ADD3  
ADD2  
ADD1  
ADD0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
170/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
I2C bus interface (I2C)  
Table 87. OAR1 register description  
Bit Name  
Function  
7-bit addressing mode  
10-bit addressing mode  
Interface address  
These bits define the I2C bus address  
of the interface. They are not cleared  
when the interface is disabled  
(PE = 0).  
7:1 ADD[7:1]  
Not applicable  
Address direction bit  
This bit is ‘don’t care’, the interface  
acknowledges either 0 or 1. It is not  
cleared when the interface is disabled  
(PE = 0).  
0
ADD0  
Address 01h is always ignored.  
Interface address  
These are the least significant bits of  
the I2C bus address of the interface.  
They are not cleared when the  
interface is disabled (PE = 0).  
7:0 ADD[7:0]  
Not applicable  
2
16.7.7  
I C own address register (OAR2)  
OAR2  
Reset value: 0100 0000 (40h)  
7
6
5
4
3
2
1
0
FR[1:0]  
RW  
Reserved  
ADD[9:8]  
RW  
Reserved  
-
-
Table 88. OAR2 register description  
Bit  
Name  
Function  
Frequency bits  
These bits are set by software only when the interface is disabled (PE = 0). To  
configure the interface to I2C specified delays, select the value corresponding to  
7:6  
5:3  
FR[1:0]  
-
the CPU frequency fCPU  
.
00: CPU < 6 MHz  
f
01: fCPU = 6 to 8 MHz  
Reserved  
Interface address  
These are the most significant bits of the I2C bus address of the interface (10-bit  
mode only). They are not cleared when the interface is disabled (PE = 0).  
2:1 ADD[9:8]  
0
-
Reserved  
Doc ID 12898 Rev 2  
171/244  
I2C bus interface (I2C)  
ST72321Bxxx-Auto  
2
Table 89. I C register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
I2CCR  
Reset value  
PE  
0
ENGC START  
ACK  
0
STOP  
0
ITE  
0
0018h  
0019h  
001Ah  
001Bh  
001Ch  
001Dh  
001Eh  
0
0
0
0
I2CSR1  
Reset value  
EVF  
0
ADD10  
0
TRA  
0
BUSY  
0
BTF  
0
ADSL  
0
M/SL  
0
SB  
0
I2CSR2  
Reset value  
AF  
0
STOPF ARLO BERR GCAL  
0
0
0
0
0
0
0
I2CCCR  
Reset value  
FM/SM  
0
CC6  
0
CC5  
0
CC4  
0
CC3  
0
CC2  
0
CC1  
0
CC0  
0
I2COAR1  
Reset value  
ADD7 ADD6 ADD5 ADD4 ADD3 ADD2 ADD1 ADD0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
I2COAR2  
Reset value  
FR1  
0
FR0  
1
ADD9 ADD8  
0
0
0
I2CDR  
Reset value  
MSB  
0
LSB  
0
0
0
0
172/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
10-bit A/D converter (ADC)  
17  
10-bit A/D converter (ADC)  
17.1  
Introduction  
The on-chip Analog to Digital Converter (ADC) peripheral is a 10-bit, successive  
approximation converter with internal sample and hold circuitry. This peripheral has up to 16  
multiplexed analog input channels (refer to device pin out description) that allow the  
peripheral to convert the analog voltage levels from up to 16 different sources.  
The result of the conversion is stored in a 10-bit data register. The A/D converter is  
controlled through a control/status register.  
17.2  
Main features  
10-bit conversion  
Up to 16 channels with multiplexed input  
Linear successive approximation  
Data register (DR) which contains the results  
Conversion complete status flag  
On/off bit (to reduce consumption)  
The block diagram is shown in Figure 70.  
Figure 70. ADC block diagram  
f
CPU  
DIV 4  
DIV 2  
0
1
f
ADC  
CH3  
EOC SPEED ADON  
0
CH2  
CH1  
CH0  
ADCCSR  
4
AIN0  
AIN1  
ANALOG TO DIGITAL  
CONVERTER  
ANALOG  
MUX  
AINx  
ADCDRH  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
ADCDRL  
0
0
0
0
0
0
D1  
D0  
Doc ID 12898 Rev 2  
173/244  
 
10-bit A/D converter (ADC)  
ST72321Bxxx-Auto  
17.3  
Functional description  
The conversion is monotonic, meaning that the result never decreases if the analog input  
does not and never increases if the analog input does not.  
If the input voltage (V ) is greater than V  
(high-level voltage reference) then the  
AIN  
AREF  
conversion result is FFh in the ADCDRH register and 03h in the ADCDRL register (without  
overflow indication).  
If the input voltage (V ) is lower than V  
(low-level voltage reference) then the  
SSA  
AIN  
conversion result in the ADCDRH and ADCDRL registers is 00 00h.  
The A/D converter is linear and the digital result of the conversion is stored in the ADCDRH  
and ADCDRL registers. The accuracy of the conversion is described in Section 19:  
Electrical characteristics.  
R
is the maximum recommended impedance for an analog input signal. If the impedance  
AIN  
is too high, this will result in a loss of accuracy due to leakage and sampling not being  
completed in the allotted time.  
17.3.1  
17.3.2  
A/D converter configuration  
The analog input ports must be configured as input, no pull-up, no interrupt. Refer to the  
Chapter 9: I/O ports. Using these pins as analog inputs does not affect the ability of the port  
to be read as a logic input.  
In the ADCCSR register:  
Select the CS[3:0] bits to assign the analog channel to convert.  
Starting the conversion  
In the ADCCSR register:  
Set the ADON bit to enable the A/D converter and to start the conversion. From this  
time on, the ADC performs a continuous conversion of the selected channel.  
When a conversion is complete:  
The EOC bit is set by hardware.  
The result is in the ADCDR registers.  
A read to the ADCDRH or a write to any bit of the ADCCSR register resets the EOC bit.  
To read the 10 bits, perform the following steps:  
1. Poll the EOC bit.  
2. Read the ADCDRL register.  
3. Read the ADCDRH register. This clears EOC automatically.  
Note:  
The data is not latched, so both the low and the high data register must be read before the  
next conversion is complete, so it is recommended to disable interrupts while reading the  
conversion result.  
To read only 8 bits, perform the following steps:  
1. Poll the EOC bit.  
2. Read the ADCDRH register. This clears EOC automatically.  
174/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
10-bit A/D converter (ADC)  
17.3.3  
Changing the conversion channel  
The application can change channels during conversion. When software modifies the  
CH[3:0] bits in the ADCCSR register, the current conversion is stopped, the EOC bit is  
cleared, and the A/D converter starts converting the newly selected channel.  
17.4  
Low power modes  
Note:  
The A/D converter may be disabled by resetting the ADON bit. This feature allows reduced  
power consumption when no conversion is needed and between single shot conversions.  
Table 90. Effect of low power modes on ADC  
Mode  
Effect  
Wait  
No effect on A/D converter  
A/D converter disabled.  
Halt  
After wake-up from Halt mode, the A/D converter requires a stabilization time tSTAB (see  
Section 19: Electrical characteristics) before accurate conversions can be performed.  
17.5  
Interrupts  
None.  
17.6  
ADC registers  
17.6.1  
Control/status register (ADCCSR)  
ADCCSR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
EOC  
SPEED  
ADON  
Reserved  
CH[3:0]  
RW  
RO  
RW  
RW  
-
Table 91. ADCCSR register description  
Bit Name  
Function  
End of Conversion  
This bit is set by hardware. It is cleared by hardware when software reads the  
ADCDRH register or writes to any bit of the ADCCSR register.  
0: Conversion is not complete  
7
6
EOC  
1: Conversion complete  
ADC clock selection  
This bit is set and cleared by software.  
0: fADC = fCPU/4  
SPEED  
1: fADC = fCPU/2  
Doc ID 12898 Rev 2  
175/244  
10-bit A/D converter (ADC)  
ST72321Bxxx-Auto  
Table 91. ADCCSR register description (continued)  
Bit Name Function  
A/D Converter on  
This bit is set and cleared by software.  
0: Disable ADC and stop conversion  
1: Enable ADC and start conversion  
5
4
ADON  
-
Reserved. Must be kept cleared  
Channel Selection  
These bits are set and cleared by software. They select the analog input to convert.  
0000: Channel pin = AIN0  
0001: Channel pin = AIN1  
0010: Channel pin = AIN2  
0011: Channel pin = AIN3  
0100: Channel pin = AIN4  
0101: Channel pin = AIN5  
0110: Channel pin = AIN6  
0111: Channel pin = AIN7  
1000: Channel pin = AIN8  
3:0 CH[3:0]  
1001: Channel pin = AIN9  
1010: Channel pin = AIN10  
1011: Channel pin = AIN11  
1100: Channel pin = AIN12  
1101: Channel pin = AIN13  
1110: Channel pin = AIN14  
1111: Channel pin = AIN15  
Note: The number of channels is device dependent. Refer to the device pinout  
description.  
17.6.2  
Data register (ADCDRH)  
ADCDRH  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
D[9:2]  
RO  
Table 92. ADCDRH register description  
Bit Name  
Function  
7:0 D[9:2] MSB of Converted Analog Value  
176/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
10-bit A/D converter (ADC)  
17.6.3  
Data register (ADCDRL)  
ADCDRL  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
Reserved  
-
D[1:0]  
RO  
Table 93. ADCDRL register description  
Bit Name  
Function  
7:2  
-
Reserved. Forced by hardware to 0.  
1:0 D[1:0] LSB of Converted Analog Value  
17.6.4  
ADC register map and reset values  
Table 94. ADC register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
ADCCSR  
Reset value  
EOC SPEED ADON  
CH3  
0
CH2  
0
CH1  
0
CH0  
0
0070h  
0071h  
0072h  
0
0
0
0
ADCDRH  
Reset value  
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
ADCDRL  
Reset value  
D1  
0
D0  
0
0
0
0
0
0
0
Doc ID 12898 Rev 2  
177/244  
Instruction set  
ST72321Bxxx-Auto  
18  
Instruction set  
18.1  
CPU addressing modes  
The CPU features 17 different addressing modes which can be classified in seven main  
groups as listed in the following table:  
Table 95. Addressing modes  
Group  
Example  
Inherent  
Immediate  
Direct  
NOP  
LD A,#$55  
LD A,$55  
Indexed  
Indirect  
LD A,($55,X)  
LD A,([$55],X)  
JRNE loop  
Relative  
Bit operation  
BSET byte,#5  
The CPU instruction set is designed to minimize the number of bytes required per  
instruction: To do so, most of the addressing modes may be divided in two submodes called  
long and short:  
Long addressing mode is more powerful because it can use the full 64 Kbyte address  
space; however, it uses more bytes and more CPU cycles.  
Short addressing mode is less powerful because it can generally only access page  
zero (0000h - 00FFh range), but the instruction size is more compact, and faster. All  
memory to memory instructions use short addressing modes only (CLR, CPL, NEG,  
BSET, BRES, BTJT, BTJF, INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP).  
The ST7 Assembler optimizes the use of long and short addressing modes.  
Table 96. CPU addressing mode overview  
Pointer  
Destination address  
(Hex.)  
Pointer  
size  
(Hex.)  
Length  
(bytes)  
Mode  
Syntax  
Inherent  
Immediate  
Short  
nop  
+ 0  
+ 1  
+ 1  
+ 2  
+ 0  
+ 1  
+ 2  
+ 2  
+ 2  
+ 2  
ld A,#$55  
ld A,$10  
Direct  
Direct  
00..FF  
Long  
ld A,$1000  
0000..FFFF  
00..FF  
No Offset Direct  
Indexed ld A,(X)  
Short  
Long  
Short  
Long  
Short  
Direct  
Indexed ld A,($10,X)  
Indexed ld A,($1000,X)  
ld A,[$10]  
00..1FE  
Direct  
0000..FFFF  
Indirect  
Indirect  
00..FF  
00..FF  
00..FF  
00..FF  
byte  
word  
byte  
ld A,[$10.w]  
0000..FFFF  
00..1FE  
Indirect Indexed ld A,([$10],X)  
178/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Instruction set  
Table 96. CPU addressing mode overview (continued)  
Pointer  
Destination address  
(Hex.)  
Pointer  
size  
(Hex.)  
Length  
(bytes)  
Mode  
Syntax  
Long  
Relative  
Relative  
Bit  
Indirect Indexed ld A,([$10.w],X) 0000..FFFF  
00..FF  
00..FF  
00..FF  
00..FF  
word  
byte  
byte  
byte  
+ 2  
+ 1  
+ 2  
+ 1  
+ 2  
+ 2  
+ 3  
Direct  
jrne loop  
PC+/-127  
PC+/-127  
00..FF  
Indirect  
Direct  
jrne [$10]  
bset $10,#7  
bset [$10],#7  
Bit  
Indirect  
Direct  
00..FF  
Bit  
Relative btjt $10,#7,skip 00..FF  
Bit  
Indirect Relative btjt [$10],#7,skip 00..FF  
18.1.1  
Inherent  
All Inherent instructions consist of a single byte. The opcode fully specifies all the required  
information for the CPU to process the operation.  
Table 97. Inherent instructions  
Instruction  
Function  
NOP  
No operation  
S/W Interrupt  
TRAP  
WFI  
Wait For Interrupt (Low Power Mode)  
Halt Oscillator (Lowest Power Mode)  
Sub-routine Return  
HALT  
RET  
IRET  
SIM  
Interrupt Sub-routine Return  
Set Interrupt Mask (level 3)  
Reset Interrupt Mask (level 0)  
Set Carry Flag  
RIM  
SCF  
RCF  
Reset Carry Flag  
RSP  
Reset Stack Pointer  
Load  
LD  
CLR  
Clear  
PUSH/POP  
INC/DEC  
TNZ  
Push/Pop to/from the stack  
Increment/Decrement  
Test Negative or Zero  
1 or 2 Complement  
CPL, NEG  
MUL  
Byte Multiplication  
SLL, SRL, SRA, RLC, RRC  
SWAP  
Shift and Rotate Operations  
Swap Nibbles  
Doc ID 12898 Rev 2  
179/244  
Instruction set  
ST72321Bxxx-Auto  
18.1.2  
Immediate  
Immediate instructions have 2 bytes. The first byte contains the opcode and the second byte  
contains the operand value.  
Table 98. Immediate instructions  
Instruction  
Function  
LD  
Load  
CP  
Compare  
BCP  
Bit Compare  
Logical Operations  
Arithmetic Operations  
AND, OR, XOR  
ADC, ADD, SUB, SBC  
18.1.3  
Direct  
In Direct instructions, the operands are referenced by their memory address.  
The direct addressing mode consists of two submodes:  
Direct (short)  
The address is a byte, thus requires only one byte after the opcode, but only allows 00 - FF  
addressing space.  
Direct (long)  
The address is a word, thus allowing 64 Kbyte addressing space, but requires 2 bytes after  
the opcode.  
18.1.4  
Indexed (no offset, short, long)  
In this mode, the operand is referenced by its memory address, which is defined by the  
unsigned addition of an index register (X or Y) with an offset.  
The indexed addressing mode consists of three submodes:  
Indexed (no offset)  
There is no offset, (no extra byte after the opcode), and allows 00 - FF addressing space.  
Indexed (short)  
The offset is a byte, thus requires only one byte after the opcode and allows 00 - 1FE  
addressing space.  
Indexed (long)  
The offset is a word, thus allowing 64 Kbyte addressing space and requires 2 bytes after the  
opcode.  
180/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Instruction set  
18.1.5  
Indirect (short, long)  
The required data byte to do the operation is found by its memory address, located in  
memory (pointer).  
The pointer address follows the opcode. The indirect addressing mode consists of two  
submodes:  
Indirect (short)  
The pointer address is a byte, the pointer size is a byte, thus allowing 00 - FF addressing  
space, and requires 1 byte after the opcode.  
Indirect (long)  
The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing  
space, and requires 1 byte after the opcode.  
18.1.6  
Indirect indexed (short, long)  
This is a combination of indirect and short indexed addressing modes. The operand is  
referenced by its memory address, which is defined by the unsigned addition of an index  
register value (X or Y) with a pointer value located in memory. The pointer address follows  
the opcode.  
The indirect indexed addressing mode consists of two submodes:  
Indirect indexed (short)  
The pointer address is a byte, the pointer size is a byte, thus allowing 00 - 1FE addressing  
space, and requires 1 byte after the opcode.  
Indirect indexed (long)  
The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing  
space, and requires 1 byte after the opcode.  
Table 99. Instructions supporting direct, indexed, indirect, and indirect indexed  
addressing modes  
Type  
Instruction  
Function  
LD  
CP  
Load  
Compare  
AND, OR, XOR  
ADC, ADD, SUB, SBC  
BCP  
Logical operations  
Long and short instructions  
Arithmetic Additions/Subtractions  
operations  
Bit Compare  
Doc ID 12898 Rev 2  
181/244  
Instruction set  
ST72321Bxxx-Auto  
Table 99. Instructions supporting direct, indexed, indirect, and indirect indexed  
addressing modes (continued)  
Type  
Instruction  
Function  
CLR  
Clear  
INC, DEC  
TNZ  
Increment/Decrement  
Test Negative or Zero  
1 or 2 Complement  
CPL, NEG  
BSET, BRES  
BTJT, BTJF  
Short instructions only  
Bit Operations  
Bit Test and Jump Operations  
SLL, SRL, SRA, RLC, RRC Shift and Rotate Operations  
SWAP  
Swap Nibbles  
CALL, JP  
Call or Jump subroutine  
18.1.7  
Relative (direct, indirect)  
This addressing mode is used to modify the PC register value, by adding an 8-bit signed  
offset to it.  
Table 100. Available relative direct/indirect instructions  
Instruction  
Function  
JRxx  
Conditional Jump  
Call Relative  
CALLR  
The relative addressing mode consists of two submodes:  
Relative (direct)  
The offset is following the opcode.  
Relative (indirect)  
The offset is defined in memory, which address follows the opcode.  
18.2  
Instruction groups  
The ST7 family devices use an Instruction Set consisting of 63 instructions. The instructions  
may be subdivided into 13 main groups as illustrated in the following table:  
Table 101. Instruction groups  
Group  
Load and Transfer  
Instructions  
LD  
CLR  
Stack operation  
PUSH POP  
RSP  
BCP  
Increment/Decrement  
Compare and Tests  
INC  
CP  
DEC  
TNZ  
182/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Instruction set  
Table 101. Instruction groups (continued)  
Group  
Logical operations  
Instructions  
AND  
OR  
XOR CPL NEG  
Bit Operation  
BSET BRES  
BTJT BTJF  
Conditional Bit Test and Branch  
Arithmetic operations  
ADC  
SLL  
ADD  
SRL  
JRT  
SUB SBC MUL  
Shift and Rotates  
SRA RLC RRC SWAP SLA  
JRF JP CALL CALLR NOP RET  
Unconditional Jump or Call  
Conditional Branch  
JRA  
JRxx  
TRAP  
SIM  
Interruption management  
Condition Code Flag modification  
WFI  
RIM  
HALT IRET  
SCF RCF  
18.2.1  
Using a prebyte  
The instructions are described with one to four opcodes.  
In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three  
different prebyte opcodes are defined. These prebytes modify the meaning of the instruction  
they precede.  
The whole instruction becomes:  
PC - 2  
PC - 1  
PC  
End of previous instruction  
Prebyte  
Opcode  
PC + 1  
Additional word (0 to 2) according to the number of bytes required to  
compute the effective address  
These prebytes enable instruction in Y as well as indirect addressing modes to be  
implemented. They precede the opcode of the instruction in X or the instruction using direct  
addressing mode. The prebytes are:  
PDY 90  
Replace an X based instruction using immediate, direct, indexed, or  
inherent addressing mode by a Y one.  
PIX 92  
Replace an instruction using direct, direct bit, or direct relative  
addressing mode to an instruction using the corresponding indirect  
addressing mode.  
It also changes an instruction using X indexed addressing mode to an  
instruction using indirect X indexed addressing mode.  
PIY 91  
Replace an instruction using X indirect indexed addressing mode by a Y  
one.  
Doc ID 12898 Rev 2  
183/244  
Instruction set  
ST72321Bxxx-Auto  
Table 102. Instruction set overview  
Mnemo  
Description  
Add with Carry  
Function/Example  
Dst  
Src  
I1  
H
I0  
N
Z
C
ADC  
ADD  
AND  
BCP  
A = A + M + C  
A = A + M  
A
M
M
M
M
H
H
N
N
N
N
Z
Z
Z
Z
C
C
Addition  
A
Logical And  
A = A . M  
A
Bit compare A, Memory  
tst (A . M)  
A
BRES Bit Reset  
bres Byte, #3  
bset Byte, #3  
btjf Byte, #3, Jmp1  
btjt Byte, #3, Jmp1  
M
M
M
M
BSET  
BTJF  
BTJT  
CALL  
Bit Set  
Jump if bit is false (0)  
Jump if bit is true (1)  
Call subroutine  
C
C
CALLR Call subroutine relative  
CLR  
CP  
Clear  
reg, M  
reg  
0
N
N
N
1
Z
Z
Z
Arithmetic Compare  
One Complement  
Decrement  
tst(Reg - M)  
A = FFH-A  
dec Y  
M
C
1
CPL  
DEC  
HALT  
IRET  
INC  
reg, M  
reg, M  
Halt  
1
0
Interrupt routine return  
Increment  
Pop CC, A, X, PC  
inc X  
I1  
H
I0  
N
N
Z
Z
C
reg, M  
JP  
Absolute Jump  
Jump relative always  
Jump relative  
jp [TBL.w]  
JRA  
JRT  
JRF  
JRIH  
JRIL  
JRH  
JRNH  
JRM  
Never jump  
jrf *  
Jump if ext. INT pin = 1  
Jump if ext. INT pin = 0  
Jump if H = 1  
(ext. INT pin high)  
(ext. INT pin low)  
H = 1 ?  
Jump if H = 0  
H = 0 ?  
Jump if I1:0 = 11  
I1:0 = 11 ?  
I1:0 <> 11 ?  
N = 1 ?  
JRNM Jump if I1:0 <> 11  
JRMI  
JRPL  
JREQ  
JRNE  
JRC  
Jump if N = 1 (minus)  
Jump if N = 0 (plus)  
Jump if Z = 1 (equal)  
Jump if Z = 0 (not equal)  
Jump if C = 1  
N = 0 ?  
Z = 1 ?  
Z = 0 ?  
C = 1 ?  
JRNC  
Jump if C = 0  
C = 0 ?  
JRULT Jump if C = 1  
JRUGE Jump if C = 0  
Unsigned <  
Jmp if unsigned >=  
184/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Instruction set  
Table 102. Instruction set overview (continued)  
Mnemo  
Description  
Function/Example  
Dst  
Src  
I1  
H
I0  
N
Z
C
JRUGT Jump if (C + Z = 0)  
JRULE Jump if (C + Z = 1)  
Unsigned >  
Unsigned <=  
dst <= src  
X,A = X * A  
neg $10  
LD  
Load  
reg, M  
M, reg  
N
N
N
N
Z
Z
Z
Z
MUL  
NEG  
NOP  
OR  
Multiply  
A, X, Y X, Y, A  
reg, M  
0
0
Negate (2's compl)  
No Operation  
OR operation  
C
A = A + M  
pop reg  
pop CC  
push Y  
C = 0  
A
M
reg  
CC  
M
M
POP  
Pop from the Stack  
M
I1  
1
H
I0  
0
C
0
PUSH Push onto the Stack  
reg, CC  
RCF  
RET  
RIM  
RLC  
RRC  
RSP  
SBC  
SCF  
SIM  
Reset carry flag  
Subroutine Return  
Enable Interrupts  
Rotate left true C  
Rotate right true C  
Reset Stack Pointer  
Subtract with Carry  
Set carry flag  
I1:0 = 10 (level 0)  
C <= A <= C  
C => A => C  
S = Max allowed  
A = A - M - C  
C = 1  
reg, M  
reg, M  
N
N
Z
Z
C
C
A
M
N
Z
C
1
Disable Interrupts  
Shift left Arithmetic  
Shift left Logic  
I1:0 = 11 (level 3)  
C <= A <= 0  
C <= A <= 0  
0 => A => C  
A7 => A => C  
A = A - M  
1
1
SLA  
SLL  
reg, M  
reg, M  
reg, M  
reg, M  
A
N
N
0
Z
Z
Z
Z
Z
Z
Z
C
C
C
C
C
SRL  
SRA  
SUB  
Shift right Logic  
Shift right Arithmetic  
Subtraction  
N
N
N
N
M
M
SWAP SWAP nibbles  
A7-A4 <=> A3-A0  
tnz lbl1  
reg, M  
TNZ  
Test for Neg & Zero  
TRAP  
WFI  
S/W trap  
S/W interrupt  
1
1
1
0
Wait for Interrupt  
Exclusive OR  
XOR  
A = A XOR M  
A
N
Z
Doc ID 12898 Rev 2  
185/244  
Electrical characteristics  
ST72321Bxxx-Auto  
19  
Electrical characteristics  
19.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
19.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25°C and T = T (given by the  
A
A
Amax  
selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3).  
19.1.2  
19.1.3  
19.1.4  
Typical values  
Unless otherwise specified, typical data is based on T = 25°C, V = 5V. The typical values  
are given only as design guidelines and are not tested.  
A
DD  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 71.  
Figure 71. Pin loading conditions  
ST7 PIN  
C
L
19.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 72.  
Figure 72. Pin input voltage  
ST7 PIN  
V
IN  
186/244  
Doc ID 12898 Rev 2  
 
 
ST72321Bxxx-Auto  
Electrical characteristics  
19.2  
Absolute maximum ratings  
Stresses above those listed as “absolute maximum ratings” may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
19.2.1  
Voltage characteristics  
Table 103. Voltage characteristics  
Symbol  
Ratings  
Maximum value  
Unit  
VDD - VSS  
Supply voltage  
6.5  
V
PP - VSS  
Programming voltage  
13  
V
Input voltage on true open-drain pin  
VSS - 0.3 to 6.5  
(1)  
VIN  
Input voltage on any other pin  
VSS - 0.3 to VDD + 0.3  
|VDDx| and |VSSx  
|
Variations between different digital power pins  
Variations between digital and analog ground pins  
Electrostatic discharge voltage (Human Body Model)  
Electrostatic discharge voltage (Machine Model)  
50  
50  
mV  
|VSSA - VSSx  
VESD(HBM)  
VESD(MM)  
|
See Section 19.7.3 on page 203.  
1. Directly connecting the RESET and I/O pins to VDD or VSS could damage the device if an unintentional internal reset is  
generated or an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter). To  
guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: 4.7kfor RESET,  
10kfor I/Os). For the same reason, unused I/O pins must not be directly tied to VDD or VSS  
.
Doc ID 12898 Rev 2  
187/244  
Electrical characteristics  
ST72321Bxxx-Auto  
Maximum value Unit  
19.2.2  
Current characteristics  
Table 104. Current characteristics  
Symbol  
Ratings  
IVDD  
IVSS  
Total current into VDD power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by any standard I/O and control pin  
Output current sunk by any high sink I/O pin  
Output current source by any I/Os and control pin  
Injected current on VPP pin  
150  
mA  
20  
40  
- 25  
5
IIO  
Injected current on RESET pin  
5
mA  
(2)(3)  
IINJ(PIN)  
Injected current on OSC1 and OSC2 pins  
Injected current on PC6 pin (Flash devices only)  
Injected current on any other pin(4)(5)  
5
+ 5  
5
(2)  
IINJ(PIN)  
Total injected current (sum of all I/O and control pins)(4)  
25  
1. All power (VDD) and ground (VSS) lines must always be connected to the external supply.  
2. IINJ(PIN) must never be exceeded. This is implicitly ensured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. For true open-drain  
pads, there is no positive injection current, and the corresponding VIN maximum must always be respected.  
3. Negative injection may disturb the analog performance of the device. See Note 1 in Table 135: ADC  
accuracy on page 220.  
4. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on  
characterization with IINJ(PIN) maximum current injection on four I/O port pins of the device.  
5. True open-drain I/O port pins do not accept positive injection.  
19.2.3  
Thermal characteristics  
Table 105. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG Storage temperature range  
-65 to +150  
°C  
Maximum junction temperature (see Section Figure 101.: 44-pin (10x10) low profile quad  
flat package outline on page 223)  
TJ  
188/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Electrical characteristics  
19.3  
Operating conditions  
19.3.1  
General operating conditions  
Table 106. General operating conditions  
Symbol  
Parameter  
Internal clock frequency  
Conditions  
Min  
Max  
Unit  
fCPU  
0
8
MHz  
Standard voltage range (except Flash  
Write/Erase)  
3.8  
4.5  
5.5  
VDD  
V
Operating voltage for Flash Write/Erase  
V
PP = 11.4 to 12.6V  
5.5  
85  
A suffix version  
B suffix version(1)  
C suffix version  
TA  
Ambient temperature range  
-40  
105  
125  
°C  
1. Available only on ROM and FASTROM devices. Refer to Section 21.2: ROM device ordering information  
and transfer of customer code on page 229.  
Figure 73. f  
max versus V  
DD  
CPU  
f
[MHz]  
CPU  
FUNCTIONALITY  
GUARANTEED  
IN THIS AREA  
(UNLESS  
8
6
FUNCTIONALITY  
NOT GUARANTEED  
IN THIS AREA  
OTHERWISE  
SPECIFIED  
4
2
IN THE TABLES  
OF PARAMETRIC  
DATA)  
1
0
3.5  
3.8 4.0  
4.5  
5.5  
SUPPLY VOLTAGE [V]  
Doc ID 12898 Rev 2  
189/244  
Electrical characteristics  
ST72321Bxxx-Auto  
19.3.2  
Operating conditions with low voltage detector (LVD)  
Subject to general operating conditions for V , f  
, and T .  
A
DD CPU  
Table 107. Operating conditions with low voltage detector (LVD)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VD level = High in option byte  
4.0(1)  
4.2  
3.75  
3.15  
4.0  
4.5  
Reset release threshold  
(VDD rise)  
VIT+(LVD)  
VD level = Med. in option byte(2) 3.55(1)  
4.0(1)  
VD level = Low in option byte(2)  
2.95(1)  
3.35(1)  
4.25(1)  
3.75(1)  
3.15(1)  
V
VD level = High in option byte  
3.8  
Reset generation threshold  
(VDD fall)  
VIT-(LVD)  
VD level = Med. in option byte(2) 3.35(1)  
3.55  
3.0  
VD level = Low in option byte(2)  
2.8(1)  
LVD voltage threshold  
hysteresis  
Vhys(LVD)  
VIT+(LVD)-VIT-(LVD)  
200  
mV  
-
VtPOR VDD rise time(2)(3)  
LVD enabled  
6µs/V  
100ms/V  
40  
VDD glitches filtered (not  
tg(VDD)  
ns  
detected) by LVD(4)  
1. Data based on characterization results, tested in production for ROM devices only  
2. Data based on characterization results, not tested in production  
3. When VtPOR is faster than 100µs/V, the Reset signal is released after a delay of maximum 42µs after VDD crosses the  
VIT+(LVD) threshold.  
4. If the medium or low thresholds are selected, the detection may occur outside the specified operating voltage range. Below  
3.8V, device operation is not guaranteed.  
19.3.3  
Auxiliary voltage detector (AVD) thresholds  
Subject to general operating conditions for V , f  
, and T .  
A
DD CPU  
Table 108. Auxiliary voltage detector (AVD) thresholds  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VD level = High in option byte  
4.4(1)  
4.6  
4.15  
3.6  
4.9(1)  
4.4(1)  
3.8(1)  
4.65(1)  
4.2(1)  
3.6(1)  
10 AVDF flag toggle threshold  
(VDD rise)  
VIT+(AVD)  
VD level = Med. in option byte 3.95(1)  
VD level = Low in option byte  
VD level = High in option byte  
3.4(1)  
4.2(1)  
V
4.4  
01 AVDF flag toggle threshold  
(VDD fall)  
VIT-(AVD)  
VD level = Med. in option byte 3.75(1)  
4.0  
VD level = Low in option byte  
VIT+(AVD)-VIT-(AVD)  
3.2(1)  
3.4  
Vhys(AVD) AVD voltage threshold hysteresis  
200  
mV  
Voltage drop between AVD flag set  
and LVD reset activated  
VIT-  
VIT-(AVD)-VIT-(LVD)  
450  
1. Data based on characterization results, tested in production for ROM devices only  
190/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Electrical characteristics  
19.3.4  
External voltage detector (EVD) thresholds  
Subject to general operating conditions for V , f  
, and T .  
A
DD CPU  
Table 109. External voltage detector (EVD) thresholds  
Symbol Parameter  
VIT+(EVD) 10 AVDF flag toggle threshold (VDD rise(1)  
VIT-(EVD)  
01 AVDF flag toggle threshold (VDD fall)(1)  
Conditions  
Min  
Typ  
Max  
Unit  
1.15  
1.1  
1.26  
1.2  
1.35  
1.3  
V
Vhys(EVD) EVD voltage threshold hysteresis  
VIT+(EVD)-VIT-(EVD)  
200  
mV  
1. Data based on characterization results, not tested in production  
Doc ID 12898 Rev 2  
191/244  
Electrical characteristics  
ST72321Bxxx-Auto  
19.4  
Supply current characteristics  
The following current consumption specified for the ST7 functional operating modes over  
temperature range does not take into account the clock source current consumption. To  
obtain the total device consumption, the two current values must be added (except for Halt  
mode, for which the clock is stopped).  
19.4.1  
Current consumption  
Table 110. Current consumption  
Flash devices ROM devices  
Symbol  
Parameter  
Conditions  
Unit  
Typ  
Max(1)  
Typ Max(1)  
fOSC = 2 MHz, fCPU = 1 MHz  
fOSC = 4 MHz, fCPU = 2 MHz  
fOSC = 8 MHz, fCPU = 4 MHz  
fOSC = 16 MHz, fCPU = 8 MHz  
1.3  
2.0  
3.6  
7.1  
3.0  
5.0  
8.0  
0.5  
1.2  
2.2  
4.8  
1.0  
2.0  
4.0  
8.0  
Supply current in Run  
mode(2)  
mA  
15.0  
fOSC = 2 MHz, fCPU = 62.5 kHz  
fOSC = 4 MHz, fCPU = 125 kHz  
fOSC = 8 MHz, fCPU = 250 kHz  
fOSC = 16 MHz, fCPU = 500 kHz  
600  
700  
800  
2700  
3000  
3600  
4000  
100  
200  
300  
500  
600  
700  
800  
950  
Supply current in Slow  
mode(2)  
µA  
1100  
fOSC = 2 MHz, fCPU = 1 MHz  
fOSC = 4 MHz, fCPU = 2 MHz  
fOSC = 8 MHz, fCPU = 4 MHz  
fOSC = 16 MHz, fCPU = 8 MHz  
0.8  
1.2  
2.0  
3.5  
3.0  
4.0  
5.0  
7.0  
0.5  
0.8  
1.5  
3.0  
1.0  
1.3  
2.2  
4.0  
Supply current in Wait  
mode(2)  
mA  
IDD  
fOSC = 2 MHz, fCPU = 62.5 kHz  
Supply current in Slow Wait fOSC = 4 MHz, fCPU = 125 kHz  
580  
650  
770  
1200  
1300  
1800  
2000  
50  
90  
180  
350  
100  
150  
300  
600  
µA  
µA  
µA  
mode(2)  
fOSC = 8 MHz, fCPU = 250 kHz  
fOSC = 16 MHz, fCPU = 500 kHz  
1050  
-40°C < TA < +85°C  
-40°C < TA < +125°C  
fOSC = 2 MHz  
fOSC = 4 MHz  
fOSC = 8 MHz  
fOSC = 16 MHz  
<1  
5
10  
50  
<1  
<1  
10  
50  
Supply current in Halt  
mode(3)  
415  
430  
460  
550  
525  
550  
600  
700  
15  
30  
60  
25  
50  
100  
200  
Supply current in Active Halt  
mode(4)  
120  
1. Data based on characterization results, tested in production at VDD max. and fCPU max.  
2. Measurements are done in the following conditions:  
- Program executed from RAM, CPU running with RAM access  
- All I/O pins in input mode with a static value at VDD or VSS (no load)  
- All peripherals in reset state  
- LVD disabled  
- Clock input (OSC1) driven by external square wave  
- In Slow and Slow Wait mode, fCPU is based on fOSC divided by 32  
- To obtain the total current consumption of the device, add the clock source (Section 19.4.2) and the peripheral power  
consumption (Section 19.4.3).  
3. All I/O pins in push-pull 0 mode (when applicable) with a static value at VDD or VSS (no load), LVD disabled. Data based on  
characterization results, tested in production at VDD max. and fCPU max.  
4. Data based on characterization results, not tested in production. All I/O pins in push-pull 0 mode (when applicable) with a  
static value at VDD or VSS (no load); clock input (OSC1) driven by external square wave, LVD disabled. To obtain the total  
current consumption of the device, add the clock source consumption (Section 19.4.2).  
192/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Electrical characteristics  
19.4.2  
Supply and clock managers  
The previous current consumption specified for the ST7 functional operating modes over  
temperature range does not take into account the clock source current consumption. To  
obtain the total device consumption, the two current values must be added (except for Halt  
mode).  
Table 111. Oscillators, PLL and LVD current consumption  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
IDD(RCINT) Supply current of internal RC oscillator  
625  
Supply current of resonator  
see section 19.5.3 on page  
IDD(RES)  
oscillator(1)(2)  
196  
µA  
IDD(PLL) PLL supply current  
IDD(LVD) LVD supply current  
360  
VDD = 5V  
150  
300  
1. Data based on characterization results done with the external components specified in Section 19.5.3, not  
tested in production  
2. As the oscillator is based on a current source, the consumption does not depend on the voltage.  
Doc ID 12898 Rev 2  
193/244  
Electrical characteristics  
ST72321Bxxx-Auto  
19.4.3  
On-chip peripherals  
Measured on LQFP64 generic board T = 25°C, f  
= 4 MHz.  
A
CPU  
Table 112. On-chip peripherals current consumption  
Symbol Parameter  
Conditions  
Typ  
Unit  
IDD(TIM) 16-bit timer supply current(1)  
IDD(ART) ART PWM supply current(2)  
IDD(SPI) SPI supply current(3)  
VDD 5.0V  
VDD 5.0V  
50  
75  
µA  
µA  
VDD 5.0V  
400  
µA  
IDD(SCI) SCI supply current(4)  
IDD(I2C) I2C supply current(5)  
VDD 5.0V  
VDD 5.0V  
175  
400  
µA  
µA  
IDD(ADC) ADC supply current when converting(6)  
1. Data based on a differential IDD measurement between reset configuration (timer counter running at  
CPU/4) and timer counter stopped (only TIMD bit set). Data valid for one timer.  
f
2. Data based on a differential IDD measurement between reset configuration (timer stopped) and timer  
counter enabled (only TCE bit set).  
3. Data based on a differential IDD measurement between reset configuration (SPI disabled) and a permanent  
SPI master communication at maximum speed (data sent equal to 55h). This measurement includes the  
pad toggling consumption.  
4. Data based on a differential IDD measurement between SCI low power state (SCID = 1) and a permanent  
SCI data transmit sequence.  
5. Data based on a differential IDD measurement between reset configuration (I2C disabled) and a permanent  
I2C master communication at 100 kHz (data sent equal to 55h). This measurement includes the pad  
toggling consumption (27k ohm external pull-up on clock and data lines).  
6. Data based on a differential IDD measurement between reset configuration and continuous A/D  
conversions.  
194/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Electrical characteristics  
19.5  
Clock and timing characteristics  
Subject to general operating conditions for V , f  
, and T .  
A
DD CPU  
19.5.1  
General timings  
Table 113. General timings  
Symbol  
Parameter  
Conditions  
Min  
Typ(1)  
Max  
Unit  
2
3
12  
1500  
22  
tCPU  
ns  
tc(INST) Instruction cycle time  
fCPU = 8 MHz  
fCPU = 8 MHz  
250  
10  
375  
Interrupt reaction time(2)  
tv(IT)  
tCPU  
µs  
tv(IT) = tc(INST) + 10  
1.25  
2.75  
1. Data based on typical application software.  
2. Time measured between interrupt event and interrupt vector fetch. tc(INST) is the number of tCPU cycles  
needed to finish the current instruction execution.  
19.5.2  
External clock source  
Table 114. External clock source  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOSC1H OSC1 input pin high level voltage  
VOSC1L OSC1 input pin low level voltage  
0.7xVDD  
VSS  
VDD  
V
0.3xVDD  
tw(OSC1H)  
tw(OSC1L)  
OSC1 high or low time(1)  
5
See Figure 74  
ns  
tr(OSC1)  
tf(OSC1)  
OSC1 rise or fall time(1)  
15  
1
Ilkg  
OSC1 input leakage current  
VSS < VIN < VDD  
µA  
1. Data based on design simulation and/or technology characteristics, not tested in production.  
Figure 74. Typical application with an external clock source  
90%  
VOSC1H  
10%  
VOSC1L  
tf(OSC1)  
tw(OSC1H)  
tr(OSC1)  
tw(OSC1L)  
OSC2  
Not connected internally  
fOSC  
EXTERNAL  
CLOCK SOURCE  
Ilkg  
OSC1  
ST72XXX  
Doc ID 12898 Rev 2  
195/244  
 
Electrical characteristics  
ST72321Bxxx-Auto  
19.5.3  
Crystal and ceramic resonator oscillators  
The ST7 internal clock can be supplied with four different crystal/ceramic resonator  
oscillators. All the information given in this paragraph is based on characterization results  
with specified typical external components. In the application, the resonator and the load  
capacitors have to be placed as close as possible to the oscillator pins in order to minimize  
output distortion and start-up stabilization time. Refer to the crystal/ceramic resonator  
manufacturer for more details (such as frequency, package or accuracy).  
Table 115. Crystal and ceramic resonator oscillators  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
LP: Low power oscillator  
MP: Medium power oscillator  
MS: Medium speed oscillator  
HS: High speed oscillator  
1
2
4
8
>2  
>4  
>8  
fOSC Oscillator frequency(1)  
-
-
MHz  
16  
RF  
Feedback resistor(2)  
-
20  
40  
k  
Recommended load  
capacitance versus  
equivalent serial resistance  
of the crystal or ceramic  
resonator (RS)(3)  
RS = 200  
RS = 200  
RS = 200  
RS = 100  
LP oscillator 22  
MP oscillator 22  
MS oscillator 18  
HS oscillator 15  
56  
46  
33  
33  
CL1  
CL2  
-
pF  
µA  
LP oscillator  
MP oscillator  
MS oscillator  
HS oscillator  
80 150  
160 250  
310 460  
610 910  
i2  
OSC2 driving current  
VDD = 5V, VIN = VSS  
-
1. The oscillator selection can be optimized in terms of supply current using a high-quality resonator with  
small RS value. Refer to crystal/ceramic resonator manufacturer for more details.  
2. Data based on characterization results, not tested in production. The relatively low value of the RF resistor  
offers a good protection against issues resulting from use in a humid environment, due to the induced  
leakage and the bias condition change. However, it is recommended to take this point into account if the  
microcontroller is used in tough humidity conditions.  
3. For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5pF to 25pF range (typ.)  
designed for high-frequency applications and selected to match the requirements of the crystal or  
resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load  
capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be  
included when sizing CL1 and CL2 (10pF can be used as a rough estimate of the combined pin and board  
capacitance).  
Figure 75. Typical application with a crystal or ceramic resonator  
WHEN RESONATOR WITH  
INTEGRATED CAPACITORS  
f
OSC  
POWER DOWN  
LOGIC  
C
L1  
OSC1  
LINEAR  
AMPLIFIER  
FEEDBACK  
LOOP  
i
V
Ref  
/2  
2
DD  
RESONATOR  
OSC2  
R
F
C
L2  
ST72XXX  
196/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Electrical characteristics  
Figure 76. Application with a crystal or ceramic resonator for ROM (LQFP64 or any 48/60K ROM)  
WHEN RESONATOR WITH  
i
2
INTEGRATED CAPACITORS  
f
OSC  
C
L1  
OSC1  
OSC2  
RESONATOR  
R
F
C
L2  
ST72XXX  
Table 116. OSCRANGE selection for typical resonators  
Typical ceramic resonators(1)  
Supplier fOSC (MHz)  
Recommended OSCRANGE option bit  
configuration  
Reference  
2
CSTCC2M00G56A-R0  
MP mode(2)  
MS mode  
4
CSTCR4M00G55B-R0  
CSTCE8M00G55A-R0  
CSTCE16M0G53A-R0  
Murata  
8
HS mode  
16  
1. Resonator characteristics given by the ceramic resonator manufacturer. For more information on these  
resonators, please consult www.murata.com.  
2. LP mode is not recommended for 2 MHz resonator because the peak to peak amplitude is too small  
(> 0.8V).  
19.5.4  
RC oscillators  
Table 117. RC oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Internal RC oscillator frequency  
(see Figure 77)  
fOSC(RCINT)  
TA = 25°C, VDD = 5V  
2
3.5 5.6  
MHz  
Figure 77. Typical f  
versus T  
A
OSC(RCINT)  
4
3.8  
3.6  
3.4  
3.2  
Vdd = 5V  
Vdd = 5.5V  
3
-45  
0
25  
70  
130  
TA(°C)  
Doc ID 12898 Rev 2  
197/244  
 
Electrical characteristics  
ST72321Bxxx-Auto  
Note:  
To reduce disturbance to the RC oscillator, it is recommended to place decoupling  
capacitors between V and V as shown in Figure 97.  
DD  
SS  
198/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Electrical characteristics  
Min Typ Max Unit  
19.5.5  
PLL characteristics  
Table 118. PLL characteristics  
Symbol  
Parameter  
Conditions  
fOSC  
PLL input frequency range  
Instantaneous PLL jitter(1)  
2
4
2
MHz  
%
fCPU CPU  
/f  
fOSC = 4 MHz  
0.7  
1. Data characterized but not tested  
The user must take the PLL jitter into account in the application (for example, in serial  
communication or sampling of high frequency signals). The PLL jitter is a periodic effect,  
which is integrated over several CPU cycles. Therefore, the longer the period of the  
application signal, the less it is impacted by the PLL jitter.  
Figure 78 shows the PLL jitter integrated on application signals in the range 125 kHz to  
4 MHz. At frequencies of less than 125 kHz, the jitter is negligible.  
(1)  
Figure 78. Integrated PLL jitter versus signal frequency  
+/-Jitter (%)  
1.2  
FLASH typ  
1
ROM max  
ROM typ  
0.8  
0.6  
0.4  
0.2  
0
4 MHz 2 MHz 1 MHz 500 kHz 250 kHz 125 kHz  
Application Frequency  
1. Measurement conditions: fCPU = 8 MHz  
Doc ID 12898 Rev 2  
199/244  
 
Electrical characteristics  
ST72321Bxxx-Auto  
19.6  
Memory characteristics  
19.6.1  
RAM and hardware registers  
Table 119. RAM supply voltage  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VRM  
Data retention mode(1)  
Halt mode (or RESET)  
1.6  
V
1. Minimum VDD supply voltage without losing data stored in RAM (in Halt mode or under RESET) or in  
hardware registers (only in Halt mode). Not tested in production.  
19.6.2  
Flash memory  
Table 120. Dual voltage HDFlash memory  
Symbol  
Parameter  
Conditions  
Read mode  
Min(1) Typ Max(1) Unit  
0
1
8
8
fCPU  
VPP  
Operating frequency  
MHz  
V
Write / Erase mode  
4.5V < VDD < 5.5V  
Run mode (fCPU = 4 MHz)  
Write / Erase  
Programming voltage(2)  
11.4  
12.6  
3
mA  
IDD  
Supply current(3)  
VPP current(3)  
0
1
Power down mode / HALT  
Read (VPP = 12V)  
Write / Erase  
10  
200  
30  
µA  
IPP  
mA  
µs  
Internal VPP stabilization  
time  
tVPP  
10  
25  
tRET  
NRW  
Data retention  
TA = 55°C  
TA = 85°C  
20  
years  
Write erase cycles  
100  
cycles  
TPROG Programming or erasing  
TERASE temperature range  
-40  
85  
°C  
1. Data based on characterization results, not tested in production  
2. VPP must be applied only during the programming or erasing operation and not permanently for reliability  
reasons.  
3. Data based on simulation results, not tested in production  
Warning: Do not connect 12V to V before V is powered on, as this  
PP  
DD  
may damage the device.  
200/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Electrical characteristics  
19.7  
EMC (electromagnetic compatibility) characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
19.7.1  
Functional EMS (electromagnetic susceptibility)  
Based on a simple running application on the product (toggling two LEDs through I/O ports),  
the product is stressed by two electromagnetic events until a failure occurs (indicated by the  
LEDs).  
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device  
until a functional disturbance occurs. This test conforms with the IEC 1000-4-2  
standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
DD  
SS  
through a 100pF capacitor until a functional disturbance occurs. This test conforms with  
the IEC 1000-4-4 standard.  
A device reset allows normal operations to be resumed. The test results given in Table 121  
below are based on the EMS levels and classes defined in application note AN1709.  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the RESET pin or the oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Doc ID 12898 Rev 2  
201/244  
Electrical characteristics  
ST72321Bxxx-Auto  
Level/Class  
.
Table 121. EMS test results  
Symbol  
Parameter  
Conditions  
All Flash and ROM devices,  
VDD = 5V, TA = +25°C, fOSC = 8 MHz,  
conforms to IEC 1000-4-2  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
3B  
3B  
4A  
32 Kbyte Flash device LQFP44(1)  
VDD = 5V, TA = +25°C, fOSC = 8 MHz,  
conforms to IEC 1000-4-4  
,
Fast transient voltage burst limits to be applied  
VFFTB through 100pF on VDD and VDD pins to induce a  
functional disturbance  
48/60 Kbyte Flash and all ROM devices,  
VDD = 5V, TA = +25°C, fOSC = 8 MHz,  
conforms to IEC 1000-4-4  
1. VFFTB test results unavailable for LQFP64 32 Kbyte Flash device at this time  
19.7.2  
EMI (electromagnetic interference)  
Based on a simple application running on the product (toggling two LEDs through the I/O  
ports), the product is monitored in terms of emission. This emission test is in line with the  
norm SAE J 1752/3 which specifies the board and the loading of each pin.  
Table 122. EMI emissions  
(1)  
Conditions  
Max vs [fOSC/fCPU  
]
Monitored  
frequency band  
Symbol Parameter  
Unit  
VDD 5V, TA +25°C,  
conforming to SAE J 1752/3  
8/4 MHz 16/8 MHz  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
SAE EMI Level  
15  
20  
7
20  
27  
12  
3
48/60 Kbyte Flash devices in  
LQFP44 and LQFP64 packages  
and  
dBµV  
SEMI  
SEMI  
SEMI  
SEMI  
Peak level  
Peak level  
Peak level  
Peak level  
32 Kbyte Flash devices in  
LQFP64 package  
2.5  
13  
20  
16  
3
-
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
SAE EMI Level  
14  
25  
21  
3.5  
11  
23  
14  
3
dBµV  
32 Kbyte Flash devices in  
LQFP44 package  
-
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
SAE EMI Level  
-
48/60 Kbyte ROM devices in  
LQFP44 and LQFP64 packages  
and  
-
dBµV  
-
32 Kbyte ROM devices in  
LQFP64 package  
-
-
dBµV  
-
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
SAE EMI Level  
17  
24  
18  
3
21  
30  
23  
3.5  
32 Kbyte ROM devices in  
LQFP44 package  
1. Data based on characterization results, not tested in production.  
202/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Electrical characteristics  
19.7.3  
Absolute maximum ratings (electrical sensitivity)  
Based on two different tests (ESD and LU) using specific measurement methods, the  
product is stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test  
conforms to the AEC-Q100-002/-003/-011 standard. For more details, refer to the  
application note AN1181.  
Table 123. ESD absolute maximum ratings  
Symbol  
Ratings  
Conditions  
Class Max. value(1) Unit  
Electrostatic discharge voltage  
(Human Body Model)  
TA = +25°C  
conforming to AEC-Q100-002  
VESD(HBM)  
H1C  
M2  
2000  
200  
V
Electrostatic discharge voltage  
(Machine Model)  
TA = +25°C  
conforming to AEC-Q100-003  
VESD(MM)  
1. Data based on characterization results, not tested in production.  
Static latch-up (LU)  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin.  
A current injection is applied to each input, output and configurable I/O pin.  
These tests are compliant with the EIA/JESD 78 IC latch-up standard.  
Table 124. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
TA +25°C  
TA +85°C  
TA +125°C  
LU  
Static latch-up class  
II level A  
conforming to JESD 78  
Doc ID 12898 Rev 2  
203/244  
Electrical characteristics  
ST72321Bxxx-Auto  
19.8  
I/O port pin characteristics  
19.8.1  
General characteristics  
Subject to general operating conditions for V  
f
, and T unless otherwise specified.  
DD, OSC A  
Table 125. I/O port pin general characteristics  
Symbol  
Parameter  
Input low level voltage(1)  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
VIH  
0.3xVDD  
Input high level voltage(1)  
CMOS ports  
0.7xVDD  
V
Vhys  
Schmitt trigger voltage hysteresis(2)  
0.7  
Injected current on PC6 pin (Flash devices  
only)  
0
+4  
4
(3)  
IINJ(PIN)  
Injected current on an I/O pin  
VDD = 5V  
mA  
µA  
Total injected current (sum of all I/O and  
control pins)  
(3)  
IINJ(PIN)  
25  
1
Ilkg  
IS  
Input leakage current  
VSS < VIN < VDD  
Static current consumption  
Weak pull-up equivalent resistor(6)  
I/O pin capacitance  
Floating input mode(4)(5)  
400  
120  
5
RPU  
VIN = VSS VDD = 5V  
50  
250  
k  
CIO  
pF  
tf(IO)out  
tr(IO)out  
tw(IT)in  
Output high to low level fall time(1)  
Output low to high level rise time(1)  
External interrupt pulse time(7)  
25  
CL = 50pF  
Between 10% and 90%  
ns  
25  
1
tCPU  
1. Data based on characterization results, not tested in production.  
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.  
3. When the current limitation is not possible, the VIN maximum must be respected, otherwise refer to IINJ(PIN) specification. A  
positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. Refer to Section 19.2.2:  
Current characteristics for more details.  
4. Static peak current value taken at a fixed VIN value, based on design simulation and technology characteristics, not tested  
in production. This value depends on VDD and temperature values.  
5. The Schmitt trigger that is connected to every I/O port is disabled for analog inputs only when ADON bit is ON and the  
particular ADC channel is selected (with port configured in input floating mode). When the ADON bit is OFF, static current  
consumption may result. This can be avoided by keeping the input voltage of this pin close to VDD or VSS  
.
6. The RPU pull-up equivalent resistor is based on a resistive transistor (corresponding IPU current characteristics described in  
Figure 80).  
7. To generate an external interrupt, a minimum pulse width has to be applied on an I/O port pin configured as an external  
interrupt source.  
204/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Electrical characteristics  
Figure 79. Unused I/O pins configured as  
input  
Figure 80. Typical I vs V with V = V  
PU DD IN SS  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
Ta=140°C  
DD  
ST7XXX  
Ta=95°C  
Ta=25°C  
Ta=-45°C  
10k  
UNUSED I/O PORT  
UNUSED I/O PORT  
10k  
ST7XXX  
Note: I/O can be left unconnected if it is configured as output  
(0 or 1) by the software. This has the advantage of  
greater EMC robustness and lower cost.  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Vdd(V)  
19.8.2  
Output driving current  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD CPU  
Table 126. Output driving current  
Symbol  
Parameter  
Conditions  
IO = +5mA  
Min  
Max  
1.2  
Unit  
Output low level voltage for a standard I/O pin  
when 8 pins are sunk at same time  
(see Figure 81)  
I
IIO = +2mA  
0.5  
(1)  
IIO = +20mA,  
VOL  
Output low level voltage for a high sink I/O pin  
when 4 pins are sunk at same time  
(see Figure 82 and Figure 84)  
TA < 85°C  
TA > 85°C  
1.3  
1.5  
VDD = 5V  
V
IIO = +8mA  
IIO = -5mA,  
0.6  
Output high level voltage for an I/O pin  
when 4 pins are sourced at same time  
(see Figure 83 and Figure 86)  
TA < 85°C  
TA > 85°C  
V
DD - 1.4  
(2)  
VOH  
VDD - 1.6  
IIO = -2mA  
VDD - 0.7  
1. The IIO current sunk must always respect the absolute maximum rating specified in Section 19.2.2 and the sum of IIO (I/O  
ports and control pins) must not exceed IVSS  
.
2. The IIO current sourced must always respect the absolute maximum rating specified in Section 19.2.2 and the sum of IIO  
(I/O ports and control pins) must not exceed IVDD. True open-drain I/O pins do not have VOH  
.
Doc ID 12898 Rev 2  
205/244  
Electrical characteristics  
ST72321Bxxx-Auto  
Figure 81. Typical V at V = 5V (standard) Figure 82. Typical V at V = 5V (high-sink)  
OL  
DD  
OL  
DD  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
Ta= 140°C  
Ta= 95°C  
Ta= 25°C  
Ta=-45°C  
Ta=140°C "  
Ta=95°C  
Ta=25°C  
Ta=-45°C  
0
0.01  
0.02  
0.03  
0
0.005  
0.01  
0.015  
Iio(A)  
Iio(A)  
Figure 83. Typical V at V = 5V  
OH  
DD  
5.5  
5
4.5  
4
3.5  
3
Vdd=5V 140°C min  
Vdd=5v 95°C min  
Vdd=5v 25°C min  
Vdd=5v -45°C min  
2.5  
2
-0.01 -0.008 -0.006 -0.004 -0.002  
Ii o (A )  
0
206/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Figure 84. Typical V versus V (standard)  
Electrical characteristics  
OL  
DD  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.45  
0.4  
Ta= -45°C  
Ta= 25°C  
Ta=-45°C  
Ta=25°C  
Ta=95°C  
Ta=140°C  
Ta= 95°C  
0.35  
0.3  
Ta= 140°C  
0.25  
0.2  
0.15  
0.1  
0.05  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Vdd(V)  
Vdd(V)  
Figure 85. Typical V versus V (high-sink)  
OL  
DD  
1.6  
0.6  
Ta= 140°C  
Ta=95°C  
Ta=25°C  
Ta=-45°C  
1.4  
1.2  
1
0.5  
0.4  
0.3  
0.2  
0.8  
0.6  
0.4  
0.2  
0
Ta= 140°C  
Ta=95°C  
Ta=25°C  
Ta=-45°C  
0.1  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V dd(V )  
Vdd(V )  
Figure 86. Typical V - V versus V  
DD  
OH  
DD  
5.5  
6
Ta=-45°C  
Ta=25°C  
Ta=95°C  
Ta=140°C  
5
5
4
3
2
1
0
4.5  
4
3.5  
3
Ta=-45°C  
Ta=25°C  
Ta=95°C  
Ta=140°C  
2.5  
2
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Vdd(V)  
Vdd(V)  
Doc ID 12898 Rev 2  
207/244  
Electrical characteristics  
ST72321Bxxx-Auto  
19.9  
Control pin characteristics  
19.9.1  
Asynchronous RESET pin  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD CPU  
Table 127. Asynchronous RESET pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
VIH  
Input low level voltage(1)  
Input high level voltage(1)  
0.3xVDD  
0.7xVDD  
V
Schmitt trigger voltage  
hysteresis(2)  
Vhys  
2.5  
VOL  
IIO  
Output low level voltage(3)  
Input current on RESET pin  
Weak pull-up equivalent resistor  
VDD = 5V, IIO = +2mA  
0.2  
2
0.5  
mA  
RON  
20  
0
30  
120  
42(4)  
42(4)  
k  
Stretch applied on external pulse  
Internal reset sources  
tw(RSTL)out Generated reset pulse duration  
20  
2.5  
30  
µs  
ns  
th(RSTL)in External reset pulse hold time(5)  
tg(RSTL)in Filtered glitch duration(6)  
200  
1. Data based on characterization results, not tested in production.  
2. Hysteresis voltage between Schmitt trigger switching levels.  
3. The IIO current sunk must always respect the absolute maximum rating specified in Section 19.2.2 and the sum of IIO (I/O  
ports and control pins) must not exceed IVSS  
.
4. Data guaranteed by design, not tested in production.  
5. To guarantee the reset of the device, a minimum pulse has to be applied to the RESET pin. All short pulses applied on the  
RESET pin with a duration below th(RSTL)in can be ignored.  
6. The reset network (the resistor and two capacitors) protects the device against parasitic resets, especially in noisy  
environments.  
208/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Electrical characteristics  
Figure 87. RESET pin protection when LVD is enabled  
V
ST72XXX  
DD  
Optional  
(note 3)  
Required  
R
ON  
Filter  
INTERNAL  
RESET  
EXTERNAL  
RESET  
0.01µF  
1M  
WATCHDOG  
LVD RESET  
PULSE  
GENERATOR  
Note:  
1
The reset network protects the device against parasitic resets.  
The output of the external reset circuit must have an open-drain output to drive the ST7  
reset pad. Otherwise the device can be damaged when the ST7 generates an internal reset  
(LVD or watchdog).  
Whether the reset source is internal or external, the user must ensure that the level on the  
RESET pin can go below the V maximum level specified in Section 19.9.1 on page 208.  
IL  
Otherwise the reset will not be taken into account internally.  
Because the reset circuit is designed to allow the internal RESET to be output in the RESET  
pin, the user must ensure that the current sunk on the RESET pin is less than the absolute  
maximum value specified for I  
in Section 19.2.2 on page 188.  
INJ(RESET)  
2
3
When the LVD is enabled, it is recommended not to connect a pull-up resistor or capacitor. A  
10nF pull-down capacitor is required to filter noise on the reset line.  
In case a capacitive power supply is used, it is recommended to connect a 1Mpull-down  
resistor to the RESET pin to discharge any residual voltage induced by the capacitive effect  
of the power supply (this will add 5µA to the power consumption of the MCU).  
4
Tips when using the LVD:  
A. Check that all recommendations related to reset circuit have been applied (see notes  
above).  
B. Check that the power supply is properly decoupled (100nF + 10µF close to the MCU).  
Refer to AN1709 and AN2017. If this cannot be done, it is recommended to put a 100nF +  
1Mpull-down on the RESET pin.  
C. The capacitors connected on the RESET pin and also the power supply are key to avoid  
any start-up marginality. In most cases, steps A and B above are sufficient for a robust  
solution. Otherwise, replace 10nF pull-down on the RESET pin with a 5µF to 20µF  
capacitor.  
Doc ID 12898 Rev 2  
209/244  
Electrical characteristics  
ST72321Bxxx-Auto  
Figure 88. RESET pin protection when LVD is disabled  
VDD  
ST72XXX  
RON  
INTERNAL  
RESET  
USER  
EXTERNAL  
RESET  
Filter  
CIRCUIT  
0.01µF  
PULSE  
GENERATOR  
WATCHDOG  
Required  
Note:  
The reset network protects the device against parasitic resets.  
The output of the external reset circuit must have an open-drain output to drive the ST7  
reset pad. Otherwise the device can be damaged when the ST7 generates an internal reset  
(LVD or watchdog).  
Whether the reset source is internal or external, the user must ensure that the level on the  
RESET pin can go below the V maximum level specified in Section 19.9.1 on page 208.  
IL  
Otherwise the reset will not be taken into account internally.  
Because the reset circuit is designed to allow the internal RESET to be output in the RESET  
pin, the user must ensure that the current sunk on the RESET pin is less than the absolute  
maximum value specified for I  
in Section 19.2.2 on page 188.  
INJ(RESET)  
19.9.2  
ICCSEL/V pin  
PP  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
DD CPU  
A
Table 128. ICCSEL/V pin characteristics  
PP  
Symbol  
Parameter  
Conditions  
Min  
Max(1)  
Unit  
VIL  
VIH  
Ilkg  
Input low level voltage(1)  
Input high level voltage(1)  
Input leakage current  
VSS  
0.3 x VDD  
V
0.7 x VDD  
VDD  
1
VIN = VSS  
µA  
1. Data based on design simulation and/or technology characteristics, not tested in production  
210/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Figure 89. Two typical applications with ICCSEL/V pin  
Electrical characteristics  
(1)  
PP  
ICCSEL/V  
V
PP  
PP  
PROGRAMMING  
TOOL  
10k  
ST72XXX  
ST72XXX  
1. When ICC mode is not required by the application, the ICCSEL/VPP pin must be tied to VSS  
.
19.10  
Timer peripheral characteristics  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD OSC  
Refer to Section 19.8: I/O port pin characteristics for more details on the input/output  
alternate function characteristics (such as output compare, input capture, external clock, or  
PWM output).  
Table 129. 8-bit PWM-ART auto-reload timer characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1
tCPU  
ns  
tres(PWM) PWM resolution time  
fCPU = 8 MHz  
125  
fEXT  
ART external clock frequency  
PWM repetition rate  
0
fCPU/2 MHz  
fPWM  
ResPWM PWM resolution  
VOS PWM/DAC output step voltage  
8
bit  
VDD = 5V,  
Resolution = 8 bits  
20  
mV  
Table 130. 16-bit timer characteristics  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tw(ICAP)in Input capture pulse time  
tres(PWM) PWM resolution time  
1
2
tCPU  
tCPU  
ns  
fCPU = 8 MHz  
250  
fEXT  
Timer external clock frequency  
PWM repetition rate  
0
fCPU/4 MHz  
fPWM  
ResPWM PWM resolution  
16  
bit  
Doc ID 12898 Rev 2  
211/244  
Electrical characteristics  
ST72321Bxxx-Auto  
19.11  
Communication interface characteristics  
19.11.1 SPI (serial peripheral interface)  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD CPU  
Refer to Section 19.8: I/O port pin characteristics for more details on the input/output  
alternate function characteristics (SS, SCK, MOSI, MISO).  
Table 131. SPI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Master, fCPU = 8 MHz  
Slave, fCPU = 8 MHz  
fCPU/128 = 0.0625  
0
fCPU/4 = 2  
fCPU/2 = 4  
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall time  
see I/O port pin description  
tCPU + 50  
tsu(SS)  
SS setup time(2)  
SS hold time  
Slave  
Slave  
(1)  
(1)  
th(SS)  
120  
(1)  
tw(SCKH)  
tw(SCKL)  
Master  
Slave  
100  
90  
SCK high and low time  
Data input setup time  
Data input hold time  
(1)  
(1)  
tsu(MI)  
tsu(SI)  
Master  
Slave  
100  
100  
(1)  
ns  
(1)  
th(MI)  
th(SI)  
Master  
Slave  
100  
100  
(1)  
(1)  
ta(SO)  
Data output access time  
Data output disable time  
Data output valid time  
Data output hold time  
Data output valid time  
Data output hold time  
Slave  
Slave  
0
120  
240  
120  
(1)  
tdis(SO)  
(1)  
tv(SO)  
th(SO)  
tv(MO)  
th(MO)  
Slave (after enable edge)  
Master (after enable edge)  
(1)  
0
0
(1)  
(1)  
120  
tCPU  
1. Data based on design simulation and/or characterization results, not tested in production.  
2. Depends on fCPU. For example, if fCPU = 8 MHz, then tCPU = 1 / fCPU = 125 ns and tsu(SS) = 175 ns.  
212/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Electrical characteristics  
(1)  
Figure 90. SPI slave timing diagram with CPHA = 0  
SS INPUT  
tsu(SS)  
tc(SCK)  
th(SS)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
tw(SCKH)  
tw(SCKL)  
ta(SO)  
tv(SO)  
th(SO)  
tdis(SO)  
tr(SCK)  
tf(SCK)  
See  
MISO OUTPUT  
See note 2  
MSB OUT  
BIT6 OUT  
LSB OUT  
note 2  
tsu(SI)  
th(SI)  
LSB IN  
MSB IN  
BIT1 IN  
MOSI INPUT  
1. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD  
.
2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its  
alternate function capability released. In this case, the pin status depends on the I/O port configuration.  
(1)  
Figure 91. SPI slave timing diagram with CPHA = 1  
SS INPUT  
tsu(SS)  
tc(SCK)  
th(SS)  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
tw(SCKH)  
tw(SCKL)  
ta(SO)  
tdis(SO)  
tv(SO)  
th(SO)  
tr(SCK)  
tf(SCK)  
See  
note 2  
See  
note 2  
MISO OUTPUT  
MSB OUT  
BIT6 OUT  
HZ  
LSB OUT  
tsu(SI)  
th(SI)  
LSB IN  
MSB IN  
BIT1 IN  
MOSI INPUT  
1. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD  
.
2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its  
alternate function capability released. In this case, the pin status depends of the I/O port configuration.  
Doc ID 12898 Rev 2  
213/244  
Electrical characteristics  
ST72321Bxxx-Auto  
(1)  
Figure 92. SPI master timing diagram  
SS INPUT  
tc(SCK)  
CPHA = 0  
CPOL = 0  
CPHA = 0  
CPOL = 1  
CPHA = 1  
CPOL = 0  
CPHA = 1  
CPOL = 1  
tw(SCKH)  
tw(SCKL)  
tr(SCK)  
tf(SCK)  
th(MI)  
tsu(MI)  
MISO INPUT  
MSB IN  
BIT6 IN  
LSB IN  
tv(MO)  
th(MO)  
MSB OUT  
LSB OUT  
See note 2  
BIT6 OUT  
See note 2  
MOSI OUTPUT  
1. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD  
.
2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its  
alternate function capability released. In this case, the pin status depends of the I/O port configuration.  
214/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
2
Electrical characteristics  
I C - inter IC control interface  
19.11.2  
Subject to general operating conditions for V  
,
, and T unless otherwise specified.  
f
DD  
A
CPU  
Refer to Section 19.8: I/O port pin characteristics for more details on the input/output  
alternate function characteristics (SDAI and SCLI). The ST7 I2C interface meets the  
requirements of the standard I2C communication protocol described in the following table.  
2
Table 132. I C control interface characteristics  
Standard mode I2C  
Fast mode I2C(1)  
Symbol  
Parameter  
Unit  
Min(2)  
Max(2)  
Min(2)  
Max(2)  
tw(SCLL)  
SCL clock low time  
4.7  
4.0  
1.3  
0.6  
µs  
tw(SCLH) SCL clock high time  
tsu(SDA)  
th(SDA)  
tr(SDA)  
SDA setup time  
250  
0(3)  
100  
0(4)  
SDA data hold time  
900(3)  
300  
ns  
SDA and SCL rise time  
SDA and SCL fall time  
1000  
300  
tr(SCL)  
20+0.1Cb  
tf(SDA)  
tf(SCL)  
th(STA)  
tsu(STA)  
tsu(STO)  
START condition hold time  
4.0  
4.7  
4.0  
4.7  
Repeated START condition setup time  
STOP condition setup time  
0.6  
1.3  
µs  
tw(STO:STA) STOP to START condition time (bus free)  
Cb Capacitive load for each bus line  
400  
400  
pF  
1. At 4 MHz fCPU, maximum I2C speed (400 kHz) is not achievable. In this case, maximum I2C speed will be approximately  
260 kHz.  
Data based on standard I2C protocol requirement, not tested in production.  
2.  
The maximum hold time of the START condition has only to be met if the interface does not stretch the low period of SCL  
signal.  
3.  
4.  
The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region  
of the falling edge of SCL.  
Doc ID 12898 Rev 2  
215/244  
Electrical characteristics  
ST72321Bxxx-Auto  
2
(1)  
Typical application with I C BUS and timing diagram  
Figure 93.  
I2C BUS  
SDA  
VDD  
VDD  
4.7k  
4.7k  
100  
100  
SDAI  
SCLI  
ST72XXX  
REPEATED START  
START  
tsu(STA)  
tw(STO:STA)  
START  
tf(SDA)  
tr(SDA)  
STOP  
tsu(SDA)  
th(SDA)  
SCK  
th(STA) tw(SCKH) tw(SCKL)  
tr(SCK)  
tf(SCK)  
tsu(STO)  
Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD  
.
1.  
The following table provides the values to be written in the I2CCCR register to obtain the  
2
required I C SCL line frequency.  
Table 133. SCL frequency table  
I2CCCR value  
f
CPU = 4 MHz  
fCPU = 8 MHz  
fSCL  
(kHz)  
VDD = 4.1V  
VDD = 5V  
VDD = 4.1V  
VDD = 5V  
RP = 3.3kRP = 4.7kRP = 3.3kRP = 4.7kRP = 3.3kRP = 4.7kRP = 3.3kRP = 4.7k  
400  
300  
200  
100  
50  
Not achievable  
83h  
85h  
Not achievable  
83h  
10h  
24h  
5Fh  
8Ah  
24h  
89h  
23h  
8Ah  
24h  
23h  
4Ch  
FFh  
20  
Legend:  
R
= External pull-up resistance  
P
2
f
= I C speed  
SCL  
Note:  
- For speeds around 200 kHz, the achieved speed can have a 5% tolerance.  
- For other speed ranges, the achieved speed can have a 2% tolerance.  
The above variations depend on the accuracy of the external components used.  
216/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Electrical characteristics  
19.12  
10-bit ADC characteristics  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD CPU  
Table 134. 10-bit ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fADC  
ADC clock frequency  
0.4  
3.8  
2
VDD  
VAREF  
250  
1
MHz  
VAREF Analog reference voltage  
0.7*VDD < VAREF < VDD  
V
VAIN  
Conversion voltage range(1)  
VSSA  
-40°C < TA < 85°C range  
Other TA ranges  
nA  
µA  
k  
pF  
Input leakage current for analog  
input(2)  
Ilkg  
RAIN External input impedance(3)  
See  
Figure 94  
and  
CAIN External capacitor on analog input  
Variation frequency of analog input  
signal  
Figure 95  
fAIN  
Hz  
pF  
CADC Internal sample and hold capacitor  
Conversion time (Sample + Hold)  
12  
tADC  
fCPU = 8 MHz, speed = 0,  
fADC = 2 MHz  
7.5  
µs  
No. of sample capacitor loading  
cycles  
4
tADC  
1/fADC  
No. of hold conversion cycles  
11  
1. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than 10k). Data  
based on characterization results, not tested in production.  
2. Injecting negative current on adjacent pins may result in increased leakage currents. Software filtering of the converted  
analog value is recommended.  
3. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than 10k). Data  
based on characterization results, not tested in production.  
Doc ID 12898 Rev 2  
217/244  
Electrical characteristics  
ST72321Bxxx-Auto  
Figure 94. R  
C
maximum versus f  
= 0pF  
with  
Figure 95. Recommended C  
and R  
AIN AIN  
AIN  
AIN  
ADC  
(1)  
(1)  
values  
45  
40  
35  
30  
25  
20  
15  
10  
5
1000  
100  
10  
Cain 10 nF  
Cain 22 nF  
Cain 47 nF  
2 MHz  
1 MHz  
1
0
0.1  
0
10  
30  
70  
0.01  
0.1  
1
10  
CPARASITIC (pF)  
fAIN(KHz)  
1.  
C
PARASITIC represents the capacitance of the PCB  
1. This graph shows that, depending on the input signal  
variation (fAIN), CAIN can be increased for stabilization  
time and decreased to allow the use of a larger serial  
(dependent on soldering and PCB layout quality) plus  
the pad capacitance (3pF). A high CPARASITIC value will  
downgrade conversion accuracy. To remedy this, fADC  
should be reduced.  
resistor (RAIN)  
.
Figure 96. Typical A/D converter application  
V
DD  
ST72XXX  
V
T
0.6V  
R
2kmax  
AIN  
AINx  
10-bit A/D  
conversion  
V
AIN  
C
V
T
0.6V  
AIN  
I
C
ADC  
12pF  
lkg  
19.12.1 Analog power supply and reference pins  
Depending on the MCU pin count, the package may feature separate V  
and V  
SSA  
AREF  
analog power supply pins. These pins supply power to the A/D converter cell and function  
as the high and low reference voltages for the conversion.  
Separation of the digital and analog power pins allow board designers to improve A/D  
performance. Conversion accuracy can be impacted by voltage drops and noise in the event  
of heavily loaded or badly decoupled power supply lines (see Section 19.12.2: General PCB  
design guidelines).  
218/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Electrical characteristics  
19.12.2 General PCB design guidelines  
To obtain best results, some general design and layout rules should be followed when  
designing the application PCB to shield the noise-sensitive, analog physical interface from  
noise-generating CMOS logic signals.  
Use separate digital and analog planes. The analog ground plane should be connected  
to the digital ground plane via a single point on the PCB.  
Filter power to the analog power planes. It is recommended to connect capacitors, with  
good high frequency characteristics, between the power and ground lines, placing  
0.1µF and optionally, if needed 10pF capacitors as close as possible to the ST7 power  
supply pins and a 1 to 10µF capacitor close to the power source (see Figure 97).  
The analog and digital power supplies should be connected in a star network. Do not  
use a resistor, as V  
is used as a reference voltage by the A/D converter and any  
AREF  
resistance would cause a voltage drop and a loss of accuracy.  
Properly place components and route the signal traces on the PCB to shield the analog  
inputs. Analog signals paths should run over the analog ground plane and be as short  
as possible. Isolate analog signals from digital signals that may switch while the analog  
inputs are being sampled by the A/D converter. Do not toggle digital outputs on the  
same I/O port as the A/D input being converted.  
Figure 97. Power supply filtering  
ST72XXX  
1 to 10µF  
ST7  
0.1µF  
V
V
SS  
DIGITAL NOISE  
FILTERING  
+
DD  
V
DD  
POWER  
SUPPLY  
SOURCE  
0.1µF  
V
V
AREF  
EXTERNAL  
NOISE  
FILTERING  
SSA  
Doc ID 12898 Rev 2  
219/244  
 
Electrical characteristics  
ST72321Bxxx-Auto  
19.12.3 ADC accuracy  
Figure 98. ADC error classification  
Digital Result ADCDR  
Legend:  
E
G
1023  
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(3) End point correlation line  
1022  
1021  
V
V  
AREF  
SSA  
1LSB  
= --------------------------------------------  
IDEAL  
1024  
E
= Total Unadjusted Error: maximum deviation  
T
between the actual and the ideal transfer curves.  
(2)  
E
= Offset Error: deviation between the first  
O
E
T
actual transition and the first ideal one.  
(3)  
7
6
5
4
3
2
1
E
= Gain Error: deviation between the last ideal  
(1)  
G
transition and the last actual one.  
E
= Differential Linearity Error: maximum  
D
E
O
E
L
deviation between actual steps and the ideal  
one.  
E
= Integral Linearity Error: maximum deviation  
L
E
D
between any actual transition and the end point  
correlation line.  
1 LSB  
IDEAL  
V
(LSB  
)
IDEAL  
in  
0
1
2
3
4
5
6
7
1021 1022 1023 1024  
V
V
AREF  
SSA  
Table 135. ADC accuracy  
Max(2)  
Parameter(1)  
Conditions  
Typ  
Unit  
ROM and  
48/60 Kbyte  
Flash  
Symbol  
32 Kbyte  
Flash  
|ET|  
|EO|  
|EG|  
|ED|  
|EL|  
Total unadjusted error  
Offset error  
3
2
4
3
3
6
5
VDD = 5V(1)  
CPU in run mode @ fADC 2 MHz  
Gain error  
0.5  
4.5  
2
LSB  
Differential linearity error  
Integral linearity error  
1
2
3
1. ADC Accuracy versus Negative Injection Current: Injecting negative current may reduce the accuracy of the conversion  
being performed on another analog input. Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN)  
in Section 19.8 does not affect the ADC accuracy.  
2. Data based on characterization results, monitored in production to guarantee 99.73% within max value from -40°C to  
125°C ( 3distribution limits).  
220/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Package characteristics  
20  
Package characteristics  
Figure 99. 64-pin (14x14) low profile quad flat package outline  
A
D
A2  
D1  
A1  
b
e
E1 E  
L
L1  
c
Table 136. 64-pin (14x14) low profile quad flat package mechanical data  
mm  
Typ  
inches(1)  
Dimension  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.450  
0.200  
0.0630  
0.0059  
0.0571  
0.0177  
0.0079  
0.050  
1.350  
0.300  
0.090  
0.0020  
0.0531  
0.0118  
0.0035  
1.400  
0.370  
0.0551  
0.0146  
c
D
16.000  
14.000  
16.000  
14.000  
0.800  
3.5°  
0.6299  
0.5512  
0.6299  
0.5512  
0.0315  
3.5°  
D1  
E
E1  
e
0°  
7°  
0°  
7°  
L
0.450  
0.600  
1.000  
0.750  
0.0177  
0.0236  
0.0394  
0.0295  
L1  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 12898 Rev 2  
221/244  
Package characteristics  
Figure 100. 64-pin (10x10) low profile quad flat package outline  
ST72321Bxxx-Auto  
D
A
D1  
A2  
A1  
b
e
E1  
E
L
c
L1  
Table 137. 64-pin (10x10) low profile quad flat package mechanical data  
mm  
Typ  
inches(1)  
Dimension  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.270  
0.200  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.050  
1.350  
0.170  
0.090  
0.0020  
0.0531  
0.0067  
0.0035  
1.400  
0.220  
0.0551  
0.0087  
c
D
12.000  
10.000  
12.000  
10.000  
0.500  
3.5°  
0.4724  
0.3937  
0.4724  
0.3937  
0.0197  
3.5°  
D1  
E
E1  
e
0°  
7°  
0°  
7°  
L
0.450  
0.600  
1.000  
0.750  
0.0177  
0.0236  
0.0394  
0.0295  
L1  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
222/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Package characteristics  
Figure 101. 44-pin (10x10) low profile quad flat package outline  
A
D
D1  
A2  
A1  
b
e
E1  
E
c
L1  
L
Table 138. 44-pin (10x10) low profile quad flat package mechanical data  
mm  
Typ  
inches(1)  
Dimension  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.450  
0.200  
0.0630  
0.0059  
0.0571  
0.0177  
0.0079  
0.050  
1.350  
0.300  
0.090  
0.0020  
0.0531  
0.0118  
0.0035  
1.400  
0.370  
0.0551  
0.0146  
C
D
12.000  
10.000  
12.000  
10.000  
0.800  
3.5°  
0.4724  
0.3937  
0.4724  
0.3937  
0.0315  
3.5°  
D1  
E
E1  
e
0°  
7°  
0°  
7°  
L
0.450  
0.600  
1.000  
0.750  
0.0177  
0.0236  
0.0394  
0.0295  
L1  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 12898 Rev 2  
223/244  
Package characteristics  
ST72321Bxxx-Auto  
20.1  
Thermal characteristics  
Table 139. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
Package thermal resistance (junction to ambient)  
LQFP64 14x14  
LQFP64 10x10  
LQFP44 10x10  
47  
50  
52  
RthJA  
°C/W  
PD  
Power dissipation(1)  
500  
150  
mW  
°C  
TJmax  
Maximum junction temperature(2)  
1. The maximum power dissipation is obtained from the formula PD = (TJ -TA) / RthJA. The power dissipation  
of an application can be defined by the user with the formula: PD = PINT + PPORT where PINT is the chip  
internal power (IDD x VDD) and PPORT is the port power dissipation depending on the ports used in the  
application.  
2. The maximum chip-junction temperature is based on technology characteristics.  
20.2  
20.3  
Ecopack information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Packaging for automatic handling  
The devices can be supplied in trays or with tape and reel conditioning.  
Tape and reel conditioning can be ordered with pin 1 left-oriented or right-oriented when  
facing the tape sprocket holes as shown in Figure 102.  
Figure 102. Pin 1 orientation in tape and reel conditioning  
Left orientation  
Right orientation (EIA 481-C compliant)  
Pin 1  
Pin 1  
See also Section Figure 103.: ST72F321Bxxx-Auto Flash commercial product structure on  
page 228 and Figure 104: ST72P321Bxxx-Auto FastROM commercial product structure on  
page 230.  
224/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Device configuration and ordering information  
21  
Device configuration and ordering information  
Each device is available for production in user programmable versions (Flash) as well as in  
factory coded versions (ROM/FASTROM).  
ST72321B-Auto devices are ROM versions. ST72P321B-Auto devices are Factory  
Advanced Service Technique ROM (FASTROM) versions: They are factory programmed  
HDFlash devices. Flash devices are shipped to customers with a default content, whereas  
ROM/FASTROM factory coded parts contain the code supplied by the customer. This  
implies that Flash devices have to be configured by the customer using the option bytes  
while the ROM/FASTROM devices are factory-configured.  
Detailed device configuration and ordering information is presented in the following  
Section 21.1 and Section 21.2.  
21.1  
Flash devices  
21.1.1  
Flash configuration  
Table 140. Flash option bytes  
Static option byte 0  
Static option byte 1  
7
6
5
Res  
1
4
3
2
1
0
1
7
6
1
5
4
3
2
1
0
1
WDG  
VD  
OSCTYPE  
OSCRANGE  
Reserved  
HALT  
1
SW  
1
1
0
0
0
1
1
0
0
2
0
1
1
0
1
Default  
value:  
(1)  
1
1
1. Depends on device type as defined in Table 143  
The option bytes allow the hardware configuration of the microcontroller to be selected.  
They have no address in the memory map and can be accessed only in programming mode  
(for example, using a standard ST7 programming tool). The default content of the Flash is  
fixed to FFh. To program the Flash devices directly using ICP, Flash devices are shipped to  
customers with the internal RC clock source enabled. In masked ROM devices, the option  
bytes are fixed in hardware by the ROM code (see option list).  
Table 141. Option byte 0 bit description  
Bit  
Name  
Function  
Watchdog and halt mode  
This option bit determines if a RESET is generated when entering  
Halt mode while the watchdog is active.  
OPT7  
WDG HALT  
0: no reset generation when entering Halt mode  
1: reset generation when entering Halt mode  
Hardware or software watchdog  
This option bit selects the watchdog type.  
0: hardware (watchdog always enabled)  
1: software (watchdog to be enabled by software)  
OPT6  
WDG SW  
Doc ID 12898 Rev 2  
225/244  
 
 
Device configuration and ordering information  
ST72321Bxxx-Auto  
Table 141. Option byte 0 bit description (continued)  
Bit Name Function  
OPT5 Reserved, must be kept at default value.  
Voltage detection  
-
These option bits enable the voltage detection block (LVD and AVD)  
with a selected threshold for the LVD and AVD (EVD + AVD).  
00: selected LVD = Highest threshold (VDD~4V)  
01: selected LVD = Medium threshold (VDD~3.5V)  
10: selected LVD = Lowest threshold (VDD~3V)  
11: LVD and AVD off  
OPT4:3  
VD[1:0]  
Caution: If the medium or low thresholds are selected, the detection  
may occur outside the specified operating voltage range. Below 3.8V,  
device operation is not guaranteed. For details on the AVD and LVD  
threshold levels refer to Section 19.3.2.  
OPT2:1  
OPT0  
-
Reserved, must be kept at default value  
Flash memory readout protection  
Readout protection, when selected, provides a protection against  
program memory content extraction and against write access to Flash  
memory.  
Erasing the option bytes when the FMP_R option is selected causes  
the whole user memory to be erased first, after which the device can  
be reprogrammed. Refer to Section 4.3.1 and the ST7 Flash  
Programming Reference Manual for more details.  
0: Readout protection enabled  
FMP_R  
1: Readout protection disabled  
Table 142. Option byte 1 bit description  
Bit  
Name  
Function  
Package selection bit 1  
OPT7  
PKG1  
This option bit selects the package (see Table 143).  
RESET clock cycle selection  
This option bit selects the number of CPU cycles applied during the  
RESET phase and when exiting Halt mode. For resonator oscillators,  
it is advised to select 4096 due to the long crystal stabilization time.  
0: reset phase with 4096 CPU cycles  
OPT6  
RSTC  
1: reset phase with 256 CPU cycles  
Oscillator type  
These option bits select the ST7 main clock source type.  
00: Clock source = resonator oscillator  
01: reserved  
OPT5:4 OSCTYPE[1:0]  
10: clock source = internal RC oscillator  
11: clock source = external source  
226/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Device configuration and ordering information  
Function  
Table 142. Option byte 1 bit description (continued)  
Bit  
Name  
Oscillator range  
When the resonator oscillator type is selected, these option bits select  
the resonator oscillator current source corresponding to the frequency  
range of the resonator used. When the external clock source is  
selected, these bits are set to medium power (2 ~ 4 MHz).  
000: Typ. frequency range = 1 ~ 2 MHz  
OPT3:1 OSCRANGE[2:0]  
001: Typ. frequency range = 2 ~ 4 MHz  
010: Typ. frequency range = 4 ~ 8 MHz  
011: Typ. frequency range = 8 ~ 16 MHz  
PLL activation  
This option bit activates the PLL which allows multiplication by two of  
the main input clock frequency. The PLL is guaranteed only with an  
input frequency between 2 and 4 MHz. For this reason the PLL must  
not be used with the internal RC oscillator.  
OPT0  
PLLOFF  
0: PLL x2 enabled  
1: PLL x2 disabled  
Caution: The PLL can be enabled only if the OSCRANGE (OPT3:1) bits  
are configured to 2 ~ 4 MHz. Otherwise, the device functionality is not  
guaranteed.  
Table 143. Package selection (OPT7)  
Version  
Selected package  
Flash size  
PKG1  
R/AR  
LQFP64  
LQFP44  
32/48/60 Kbytes  
48/60 Kbytes  
32 Kbytes  
1
0
1
J
Note:  
On the chip, each I/O port has up to eight pads. Pads that are not bonded to external pins  
are in input pull-up configuration after reset. The configuration of these pads must be kept at  
reset state to avoid added current consumption.  
Doc ID 12898 Rev 2  
227/244  
Device configuration and ordering information  
ST72321Bxxx-Auto  
21.1.2  
Flash ordering information  
The following Figure 103 serves as a guide for ordering.  
Figure 103. ST72F321Bxxx-Auto Flash commercial product structure  
Example:  
ST72  
F
321B  
R
9
T
A
X
S
Product class  
ST72 microcontroller  
Family type  
F = Flash  
Sub-family type  
321B = 321B sub-family  
Pin count  
AR = 64 pins 10 x 10 mm  
R = 64 pins 14 x 14 mm  
J = 44 pins 10 x 10 mm  
Program memory size  
6 = 32 Kbytes  
7 = 48 Kbytes  
9 = 60 Kbytes  
Package type  
T = LQFP  
Temperature range  
A = -40 °C to 85 °C  
C = -40 °C to 125 °C  
Tape and Reel conditioning options (left blank if Tray)  
TR or R = Pin 1 left-oriented  
TX or X = Pin 1 right-oriented (EIA 481-C compliant)  
ECOPACK/Fab code  
Blank or E = Lead-free ECOPACK® Phoenix Fab  
S = Lead-free ECOPACK® Catania Fab  
1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further  
information on any aspect of this device, please go to www.st.com or contact the ST Sales Office nearest  
to you.  
228/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Device configuration and ordering information  
21.2  
ROM device ordering information and transfer of customer  
code  
Customer code is made up of the ROM/FASTROM contents and the list of the selected  
options (if any). The ROM/FASTROM contents are to be sent on diskette, or by electronic  
means, with the S19 hexadecimal file generated by the development tool. All unused bytes  
must be set to FFh.  
Complete the appended ST72321B-Auto microcontroller FASTROM/ROM option list to  
communicate the selected options to STMicroelectronics and check for regular updates of  
the option list on the ST website or ask your ST representative.  
Refer to application note AN1635 for information on the counter listing returned by ST after  
code has been transferred.  
The following Figure 104 and Figure 105 serve as guides for ordering. The  
STMicroelectronics Sales Organization will be pleased to provide detailed information on  
contractual points.  
Caution:  
The Readout Protection binary value is inverted between ROM and Flash products. The  
option byte checksum will differ between ROM and Flash.  
Doc ID 12898 Rev 2  
229/244  
Device configuration and ordering information  
ST72321Bxxx-Auto  
Figure 104. ST72P321Bxxx-Auto FastROM commercial product structure  
Example:  
ST72  
P
321B  
T
A
/xxx  
X
S
Product class  
ST72 microcontroller  
Family type  
P = FastROM  
Sub-family type  
321B = 321B sub-family  
Package type  
T = LQFP  
Temperature range  
A = -40 °C to 85 °C  
C = -40 °C to 125 °C  
Code name  
Defined by  
STMicroelectronics.  
Denotes ROM code, pinout  
and program memory size.  
Tape and Reel conditioning options (left blank if Tray)  
TR or R = Pin 1 left-oriented  
TX or X = Pin 1 right-oriented (EIA 481-C compliant)  
ECOPACK/Fab code  
Blank or E = Lead-free ECOPACK® Phoenix Fab  
S = Lead-free ECOPACK® Catania Fab  
230/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Device configuration and ordering information  
Figure 105. ST72321Bxxx-Auto ROM commercial product structure  
Example:  
ST72 321B  
T
A
/xxx  
X
S
Product class  
ST72 microcontroller  
321B = 321Bsub-family  
Package type  
T = LQFP  
Temperature range  
A = -40 °C to 85 °C  
C = -40 °C to 125 °C  
Code name  
Defined by  
STMicroelectronics.  
Denotes ROM code, pinout  
and program memory size.  
Tape and Reel conditioning options (left blank if Tray)  
TR or R = Pin 1 left-oriented  
TX or X = Pin 1 right-oriented (EIA 481-C compliant)  
ECOPACK/Fab code  
Blank or E = Lead-free ECOPACK® Phoenix Fab  
S = Lead-free ECOPACK® Catania Fab  
Doc ID 12898 Rev 2  
231/244  
Device configuration and ordering information  
ST72321Bxxx-Auto  
Figure 106. ST72321B-Auto microcontroller FASTROM/ROM option list  
ST72321B-Auto microcontroller FASTROM/ROM option list  
(Last update: October 2007)  
Customer:  
Address:  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Contact:  
Phone No: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Reference: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
The FASTROM/ROM code name is assigned by STMicroelectronics.  
FASTROM/ROM code must be sent in .S19 format. .Hex extension cannot be processed.  
Device Type/Memory Size/Package (check only one option):  
------------------------------------------------------------------------------------------------------------------------------------------------------  
FASTROM DEVICE:  
60K  
48K  
32K  
------------------------------------------------------------------------------------------------------------------------------------------------------  
LQFP44 10x10:  
LQFP64 10x10:  
LQFP64 14x14:  
[ ] ST72P321B(J9)T  
[ ] ST72P321B(AR9)T  
[ ] ST72P321B(R9)T  
[ ] ST72P321B(J7)T  
[ ] ST72P321B(AR7)T  
[ ] ST72P321B(R7)T  
[ ] ST72P321B(J6)T  
[ ] ST72P321B(AR6)T  
[ ] ST72P321B(R6)T  
-------------------------------------------------------------------------------------------------------------------------------------------------------  
-------------------------------------------------------------------------------------------------------------------------------------------------------  
ROM DEVICE:  
60K  
48K  
32K  
-------------------------------------------------------------------------------------------------------------------------------------------------------  
LQFP44 10x10:  
LQFP64 10x10:  
LQFP64 14x14:  
[ ] ST72321B(J9)T  
[ ] ST72321B(AR9)T  
[ ] ST72321B(R9)T  
[ ] ST72321B(J7)T  
[ ] ST72321B(AR7)T  
[ ] ST72321B(R7)T  
[ ] ST72321B(J6)T  
[ ] ST72321B(AR6)T  
[ ] ST72321B(R6)T  
-------------------------------------------------------------------------------------------------------------------------------------------------------  
Conditioning for LQFP package (check only one option):  
[ ] Tape & Reel  
[ ] Tray  
Temperature range :  
[ ] A (-40°C to +85°C)  
[ ] B (-40°C to +105°C)  
[ ] C (-40°C to +125°C)  
Special Marking:  
[ ] No  
[ ] Yes "_ _ _ _ _ _ _ _ _ _ " (10 characters max)  
Authorized characters are letters, digits, '.', '-', '/' and spaces only.  
Clock Source Selection:  
[ ] Resonator:  
[ ] LP: Low power resonator (1 to 2 MHz)  
[ ] MP: Medium power resonator (2 to 4 MHz)  
[ ] MS: Medium speed resonator (4 to 8 MHz)  
[ ] HS: High speed resonator (8 to 16 MHz)  
[ ] Internal RC  
[ ] External Clock (sets MP Medium Power resonator in Option Byte)  
(1)(2)  
PLL  
[ ] Disabled  
[ ] Enabled  
LVD Reset  
[ ] Disabled  
[ ] Med.threshold  
[ ] High threshold  
[ ] Low threshold  
Reset Delay  
[ ] 256 Cycles  
[ ] 4096 Cycles  
Watchdog Selection  
Halt when Watchdog on  
Readout Protection  
[ ] Software Activation [ ] Hardware Activation  
[ ] Reset  
[ ] No reset  
[ ] Enabled  
[ ] Disabled  
Date  
. . . . . . . . Signature . . . . . . . . . . . . . . . .  
Note 1 : PLL must be disabled if internal RC Network is selected.  
Note 2 : The PLL can be enabled only if the resonator is configured to “Medium Power: 2~4 MHz”.  
CAUTION: The Readout Protection binary value is inverted between ROM and Flash products. The option byte checksum will  
differ between ROM and Flash.  
Please download the latest version of this option list from www.st.com.  
232/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Device configuration and ordering information  
21.3  
Development tools  
21.3.1  
Introduction  
Development tools for the ST7 microcontrollers include a complete range of hardware  
systems and software tools from STMicroelectronics and third-party tool suppliers. The  
range of tools includes solutions to help you evaluate microcontroller peripherals, develop  
and debug your application, and program your microcontrollers.  
21.3.2  
21.3.3  
Evaluation tools and starter kits  
ST offers complete, affordable starter kits and full-featured evaluation boards that allow you  
to evaluate microcontroller features and quickly start developing ST7 applications. Starter  
kits are complete, affordable hardware/software tool packages that include features and  
samples to help you quickly start developing your application. ST evaluation boards are  
open-design, embedded systems, which are developed and documented to serve as  
references for your application design. They include sample application software to help you  
demonstrate, learn about and implement your ST7’s features.  
Development and debugging tools  
Application development for ST7 is supported by fully optimizing C Compilers and the ST7  
Assembler-Linker toolchain, which are all seamlessly integrated in the ST7 integrated  
development environments in order to facilitate the debugging and fine-tuning of your  
application. The Cosmic C Compiler is available in a free version that outputs up to  
16 Kbytes of code.  
The range of hardware tools includes cost effective ST7-DVP3 series emulators. These  
tools are supported by the ST7 Toolset from STMicroelectronics, which includes the STVD7  
integrated development environment (IDE) with high-level language debugger, editor,  
project manager and integrated programming interface.  
21.3.4  
Programming tools  
During the development cycle, the ST7-DVP3 and ST7-EMU3 series emulators and the  
RLink provide in-circuit programming capability for programming the Flash microcontroller  
on your application board.  
ST also provides a low-cost dedicated in-circuit programmer, the ST7-STICK, as well as  
ST7 socket boards which provide all the sockets required for programming any of the  
devices in a specific ST7 subfamily on a platform that can be used with any tool with in-  
circuit programming capability for ST7.  
For production programming of ST7 devices, ST’s third-party tool partners also provide a  
complete range of gang and automated programming solutions, which are ready to integrate  
into your production environment.  
For additional ordering codes for spare parts, accessories and tools available for the ST7  
(including from third party manufacturers), refer to the online product selector at  
www.st.com/mcu.  
Doc ID 12898 Rev 2  
233/244  
Device configuration and ordering information  
Table 144. STMicroelectronics development tools  
ST72321Bxxx-Auto  
Programming  
Emulation  
Supported  
products  
ST7 DVP3 series  
Emulator Connection kit  
ST7 EMU3 series  
ICC socket  
board  
Active probe  
and T.E.B.  
Emulator  
Table 145. STMicroelectronics development tools  
Emulation  
Programming  
Supported  
products  
ST7 DVP3 series  
ST7 EMU3 series  
ICC socket  
board  
Active probe  
and T.E.B.  
Emulator  
Connection kit  
Emulator  
ST72321BAR,  
ST72F321BAR  
ST7MDT20-  
T6A/DVP  
ST7MDT20M-  
EMU3  
ST7MDT20M-  
TEB  
ST7SB20M/xx(1)  
ST7SB20J/xx(1)  
ST72321BR,  
ST72F321BR  
ST7MDT20-  
DVP3  
ST7MDT20-  
T64/DVP  
ST72321BJ,  
ST72F321BJ  
ST7MDT20-  
T44/DVP  
ST7MDT20J-  
EMU3  
ST7MDT20J-  
TEB  
1. Add suffix /EU, /UK, /US for the power supply of your region.  
Table 146. Suggested list of socket types  
LQFP64 14 x14  
LQFP64 10 x10  
LQFP44 10 x10  
CAB 3303262  
CAB 3303351  
YAMAICHI IC149-064-*75-*5  
YAMAICHI IC149-044-*52-*5  
YAMAICHI ICP-064-6  
YAMAICHI ICP-044-5  
21.3.5  
Socket and emulator adapter information  
For information on the type of socket that is supplied with the emulator, refer to the  
suggested list of sockets in Table 146.  
Note:  
Before designing the board layout, it is recommended to check the overall dimensions of the  
socket as they may be greater than the dimensions of the device.  
For footprint and other mechanical information about these sockets and adapters, refer to  
the manufacturer’s datasheet.  
Related documentation  
ST7 Visual Develop Software Key Debugging Features (AN 978)  
ST7 Visual Develop for ST7 Cosmic C toolset users (AN 1938)  
ST7 Visual Develop for ST7 Assembler Linker toolset users (AN 1940)  
234/244  
Doc ID 12898 Rev 2  
 
ST72321Bxxx-Auto  
Known limitations  
22  
Known limitations  
22.1  
All Flash and ROM devices  
22.1.1  
Unexpected reset fetch  
If an interrupt request occurs while a “POP CC” instruction is executed, the interrupt  
controller does not recognize the source of the interrupt and, by default, passes the RESET  
vector address to the CPU.  
Workaround  
To solve this issue, a “POP CC” instruction must always be preceded by a “SIM” instruction.  
22.1.2  
External interrupt missed  
To avoid any risk of generating a parasitic interrupt, the edge detector is automatically  
disabled for one clock cycle during an access to either DDR and OR. Any input signal edge  
during this period will not be detected and will not generate an interrupt.  
This case can typically occur if the application refreshes the port configuration registers at  
intervals during runtime.  
Workaround  
The workaround is based on software checking the level on the interrupt pin before and after  
writing to the PxOR or PxDDR registers. If there is a level change (depending on the  
sensitivity programmed for this pin) the interrupt routine is invoked using the call instruction  
with three extra PUSH instructions before executing the interrupt routine (this is to make the  
call compatible with the IRET instruction at the end of the interrupt service routine).  
But detection of the level change does not make sure that edge occurs during the critical 1  
cycle duration and the interrupt has been missed. This may lead to occurrence of same  
interrupt twice (one hardware and another with software call).  
To avoid this, a semaphore is set to ‘1’ before checking the level change. The semaphore is  
changed to level '0' inside the interrupt routine. When a level change is detected, the  
semaphore status is checked. If it is ‘1’, it means that the last interrupt has been missed. In  
this case, the interrupt routine is invoked with the call instruction.  
There is another possible case, that is, if PxOR or PxDDR are written to with global  
interrupts disabled (interrupt mask bit set). In this case, the semaphore is changed to ‘1’  
when the level change is detected. Detecting a missed interrupt is done after the global  
interrupts are enabled (interrupt mask bit reset) and by checking the status of the  
semaphore. If it is ‘1’, it means that the last interrupt was missed and the interrupt routine is  
invoked with the call instruction.  
To implement the workaround, the following software sequence is to be followed for writing  
into the PxOR/PxDDR registers. The example is for Port PF1 with falling edge interrupt  
sensitivity. The software sequence is given for both cases (global interrupts disabled / global  
interrupts enabled):  
Case 1: Writing to PxOR or PxDDR with global interrupts enabled:  
LD A,#01  
Doc ID 12898 Rev 2  
235/244  
Known limitations  
ST72321Bxxx-Auto  
LD sema,A  
; set the semaphore to '1'  
LD A,PFDR  
AND A,#02  
LD X,A  
; store the level before writing to PxOR/PxDDR  
LD A,#$90  
LD PFDDR,A  
; Write to PFDDR  
LD A,#$ff  
LD PFOR,A  
; Write to PFOR  
LD A,PFDR  
AND A,#02  
LD Y,A  
; store the level after writing to PxOR/PxDDR  
LD A,X  
; check for falling edge  
cp A,#02  
jrne OUT  
TNZ Y  
jrne OUT  
LD A,sema  
; check the semaphore status if edge is detected  
CP A,#01  
jrne OUT  
call call_routine  
; call the interrupt routine  
OUT:LD A,#00  
LD sema,A  
.call_routine  
; entry to call_routine  
PUSH A  
PUSH X  
PUSH CC  
236/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Known limitations  
.ext1_rt  
; entry to interrupt routine  
LD A,#00  
LD sema,A  
IRET  
Case 2: Writing to PxOR or PxDDR with global interrupts disabled:  
SIM  
; set the interrupt mask  
LD A,PFDR  
AND A,#$02  
LD X,A  
; store the level before writing to PxOR/PxDDR  
LD A,#$90  
LD PFDDR,A  
; Write into PFDDR  
LD A,#$ff  
LD PFOR,A  
; Write to PFOR  
LD A,PFDR  
AND A,#$02  
LD Y,A  
; store the level after writing to PxOR/PxDDR  
LD A,X  
; check for falling edge  
cp A,#$02  
jrne OUT  
TNZ Y  
jrne OUT  
LD A,#$01  
LD sema,A  
; set the semaphore to '1' if edge is detected  
RIM  
; reset the interrupt mask  
LD A,sema  
; check the semaphore status  
CP A,#$01  
Doc ID 12898 Rev 2  
237/244  
Known limitations  
ST72321Bxxx-Auto  
jrne OUT  
call call_routine  
; call the interrupt routine  
RIM  
OUT:  
RIM  
JP while_loop  
.call_routine  
; entry to call_routine  
PUSH A  
PUSH X  
PUSH CC  
.ext1_rt  
; entry to interrupt routine  
LD A,#$00  
LD sema,A  
IRET  
238/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Known limitations  
22.1.3  
Clearing active interrupts outside interrupt routine  
When an active interrupt request occurs at the same time as the related flag is being  
cleared, an unwanted reset may occur.  
Note:  
Clearing the related interrupt mask will not generate an unwanted reset.  
Concurrent interrupt context  
The symptom does not occur when the interrupts are handled normally, that is, when:  
The interrupt flag is cleared within its own interrupt routine  
The interrupt flag is cleared within any interrupt routine  
The interrupt flag is cleared in any part of the code while this interrupt is disabled  
If these conditions are not met, the symptom can be avoided by implementing the following  
sequence:  
Perform SIM and RIM operation before and after resetting an active interrupt request.  
Example:  
SIM  
Reset interrupt flag  
RIM  
Nested interrupt context  
The symptom does not occur when the interrupts are handled normally, that is, when:  
The interrupt flag is cleared within its own interrupt routine  
The interrupt flag is cleared within any interrupt routine with higher or identical priority  
level  
The interrupt flag is cleared in any part of the code while this interrupt is disabled  
If these conditions are not met, the symptom can be avoided by implementing the following  
sequence:  
PUSH CC  
SIM  
Reset interrupt flag  
POP CC  
Doc ID 12898 Rev 2  
239/244  
Known limitations  
ST72321Bxxx-Auto  
22.1.4  
SCI wrong break duration  
Description  
A single break character is sent by setting and resetting the SBK bit in the SCICR2 register.  
In some cases, the break character may have a longer duration than expected:  
20 bits instead of 10 bits if M = 0  
22 bits instead of 11 bits if M = 1  
In the same way, as long as the SBK bit is set, break characters are sent to the TDO pin.  
This may lead to generating one break more than expected.  
Occurrence  
The occurrence of the problem is random and proportional to the baud rate. With a transmit  
frequency of 19200 baud (f  
occurrence is around 1%.  
= 8 MHz and SCIBRR = 0xC9), the wrong break duration  
CPU  
Workaround  
If this wrong duration is not compliant with the communication protocol in the application,  
software can request that an Idle line be generated before the break character. In this case,  
the break duration is always correct assuming the application is not doing anything between  
the idle and the break. This can be ensured by temporarily disabling interrupts.  
The exact sequence is:  
Disable interrupts  
Reset and Set TE (IDLE request)  
Set and Reset SBK (Break Request)  
Re-enable interrupts  
22.1.5  
16-bit timer PWM mode  
In PWM mode, the first PWM pulse is missed after writing the value FFFCh in the OC1R  
register (OC1HR, OC1LR). It leads to either full or no PWM during a period, depending on  
the OLVL1 and OLVL2 settings.  
240/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Known limitations  
22.1.6  
TIMD set simultaneously with OC interrupt  
If the 16-bit timer is disabled at the same time the output compare event occurs, the output  
compare flag then gets locked and cannot be cleared before the timer is enabled again.  
Impact on the application  
If the output compare interrupt is enabled, then the output compare flag cannot be cleared in  
the timer interrupt routine. Consequently, the interrupt service routine is called repeatedly.  
Workaround  
Disable the timer interrupt before disabling the timer. Again while enabling, first enable the  
timer, then the timer interrupts.  
Perform the following to disable the timer:  
TACR1 or TBCR1 = 0x00h; // Disable the compare interrupt  
TACSR | or TBCSR | = 0x40; // Disable the timer  
Perform the following to enable the timer again:  
TACSR & or TBCSR & = ~0x40; // Enable the timer  
TACR1 or TBCR1 = 0x40; // Enable the compare interrupt  
2
22.1.7  
22.1.8  
I C multimaster  
In multimaster configurations, if the ST7 I2C receives a START condition from another I2C  
master after the START bit is set in the I2CCR register and before the START condition is  
generated by the ST7 I2C, it may ignore the START condition from the other I2C master. In  
this case, the ST7 master will receive a NACK from the other device. On reception of the  
NACK, ST7 can send a restart and Slave address to re-initiate communication.  
Pull-up always active on PE2  
The I/O port internal pull-up is always active on I/O port E2. As a result, if PE2 is in output  
mode low level, current consumption in Halt/Active Halt mode is increased.  
22.2  
Limitations specific to 44-pin 32 Kbyte ROM devices  
22.2.1  
Halt/Active Halt mode power consumption with external clock  
enabled  
The power consumption in Halt/Active Halt mode with external clock enabled is increased by  
40µA typ.  
22.2.2  
Active Halt power consumption  
The power consumption in Active Halt mode is 190µA typ. and 300µA max. These  
measurements are done with an external clock source. However to obtain the total device  
consumption, the clock source consumption has to be added.  
Doc ID 12898 Rev 2  
241/244  
Known limitations  
ST72321Bxxx-Auto  
22.2.3  
I²C exit from Halt/Active Halt  
2
Contrary to the behavior specified in the datasheet, the I C interrupt is capable of exiting the  
device from Halt/Active Halt mode.  
242/244  
Doc ID 12898 Rev 2  
ST72321Bxxx-Auto  
Revision history  
23  
Revision history  
Table 147. Document revision history  
Date  
Revision  
Changes  
05-Oct-2007  
07-Sep-2010  
1
2
Initial release  
Updated Section 21: Device configuration and ordering information  
Doc ID 12898 Rev 2  
243/244  
ST72321Bxxx-Auto  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2010 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
244/244  
Doc ID 12898 Rev 2  

相关型号:

ST72F321BJ9TARE

8-bit MCU for automotive with 32 to 60 Kbyte Flash/ROM, ADC, 5 timers, SPI, SCI, I2C interface

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ST72F321BJ9TAXE

MICROCONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ST72F321BJ9TCRE

8-bit MCU for automotive with 32 to 60 Kbyte Flash/ROM, ADC, 5 timers, SPI, SCI, I2C interface

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ST72F321BJ9TCTRE

MICROCONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ST72F321BK6T3

IC,MICROCONTROLLER,8-BIT,ST72 CPU,QFP,32PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ST72F321BK6T5

IC,MICROCONTROLLER,8-BIT,ST72 CPU,QFP,32PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ST72F321BK6T6

64/44-pin 8-bit MCU with 32 to 60K Flash/ROM, ADC, five timers, SPI, SCI, I2C interface

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ST72F321BK6T7

IC,MICROCONTROLLER,8-BIT,ST72 CPU,QFP,32PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ST72F321BR6T1

IC,MICROCONTROLLER,8-BIT,ST72 CPU,QFP,64PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ST72F321BR6T3

IC,MICROCONTROLLER,8-BIT,ST72 CPU,QFP,64PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ST72F321BR6T6

64/44-pin 8-bit MCU with 32 to 60K Flash/ROM, ADC, five timers, SPI, SCI, I2C interface

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ST72F321BR6TARE

8-bit MCU for automotive with 32 to 60 Kbyte Flash/ROM, ADC, 5 timers, SPI, SCI, I2C interface

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR