ST72F345S4T6 [STMICROELECTRONICS]

MICROCONTROLLER, PQFP44, 10 X 10 MM, ROHS COMPLIANT, LQFP-44;
ST72F345S4T6
型号: ST72F345S4T6
厂家: ST    ST
描述:

MICROCONTROLLER, PQFP44, 10 X 10 MM, ROHS COMPLIANT, LQFP-44

文件: 总246页 (文件大小:2101K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ST72344xx  
ST72345xx  
8-bit MCU with up to 16K Flash memory, 10-bit ADC  
two 16-bit timers, two I2C, SPI, SCI  
Features  
Memories  
– up to 16 Kbytes Program memory: single  
voltage extended Flash (XFlash) with read-  
out and write protection, in-circuit and in-  
application programming (ICP and IAP).  
10K write/erase cycles guaranteed, data  
retention: 20 years at 55 °C.  
LQFP48  
7 x 7 mm  
LQFP32  
7 × 7 mm  
LQFP44  
10 × 10 mm  
– 16-bit timer B with: 2 input captures, 2  
output compares, PWM and pulse  
generator modes  
– up to 1 Kbyte RAM  
– 256 bytes data EEPROM with readout  
protection. 300K write/erase cycles  
guaranteed, data retention: 20 years at  
55 °C.  
3 communication interfaces  
2
– I C multimaster / slave  
2
– I C slave 3 addresses no stretch with DMA  
access and byte pair coherency on I²C  
Read  
Clock, reset and supply management  
– Power on / power off safe reset with 3  
programmable threshold levels (LVD)  
– SCI asynchronous serial interface (LIN  
compatible)  
– Auxiliary voltage detector (AVD)  
– SPI synchronous serial interface  
– Clock sources: crystal/ceramic resonator  
oscillators, high-accuracy internal RC  
oscillator or external clock  
– PLL for 4x or 8x frequency multiplication  
– 5 power-saving modes: Slow, Wait, Halt,  
Auto-wakeup from Halt and Active-halt  
1 analog peripheral  
– 10-bit ADC with 12 input channels (8 on 32-  
pin devices)  
Instruction set  
– 8-bit data manipulation  
– 63 basic instructions with illegal opcode  
detection  
– Clock output capability (f  
)
CPU  
Interrupt management  
– 17 main addressing modes  
– 8 x 8 unsigned multiply instruction  
– Nested interrupt controller  
– 10 interrupt vectors plus TRAP and RESET  
– 9 external interrupt lines on 4 vectors  
Development tools  
– Full hardware/software development  
package  
Up to 34 I/O ports  
– up to 34 multifunctional bidirectional I/O  
lines  
– On-chip debug module  
– up to 12 high sink outputs (10 on 32-pin  
devices)  
Table 1.  
Device summary  
Part numbers  
References  
4 timers  
ST72344K2, ST72344K4,  
ST72344S2, ST72344S4  
– Configurable window watchdog timer  
– Real-time base  
– 16-bit timer A with: 1 input capture, 1 output  
compares, external clock input, PWM and  
pulse generator modes  
ST72344xx  
ST72345xx  
ST72345C4  
September 2008  
Rev 3  
1/246  
www.st.com  
1
Contents  
ST72344xx, ST72345xx  
Contents  
1
2
3
4
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Register and memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Flash program memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.1  
4.2  
4.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Programming modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.3.1  
4.3.2  
In-circuit programming (ICP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
In-application programming (IAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.4  
4.5  
ICC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Memory protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
4.5.1  
4.5.2  
Readout protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Flash write/erase protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.6  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.6.1  
Flash control/status register (FCSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
5
Data EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
5.1  
5.2  
5.3  
5.4  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Memory access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Power saving modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5.4.1  
5.4.2  
5.4.3  
Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Active-halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5.5  
5.6  
5.7  
Access error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Data EEPROM readout protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
5.7.1  
EEPROM control/status register (EECSR) . . . . . . . . . . . . . . . . . . . . . . 35  
6
Central processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
2/246  
ST72344xx, ST72345xx  
Contents  
6.1  
6.2  
6.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6.3.1  
6.3.2  
Condition code register (CC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Stack pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7
Supply, reset and clock management . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
7.1  
7.2  
7.3  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Phase locked loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Multioscillator (MO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
7.3.1  
7.3.2  
7.3.3  
External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Crystal/ceramic oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Internal RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
7.4  
7.5  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
7.4.1  
7.4.2  
RC control register (RCCRH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
RC control register (RCCRL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Reset sequence manager (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.5.5  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Asynchronous external RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
External power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Internal low-voltage detector (LVD) reset . . . . . . . . . . . . . . . . . . . . . . . . 48  
Internal watchdog reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
7.6  
System integrity management (SI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
7.6.1  
7.6.2  
7.6.3  
7.6.4  
7.6.5  
Low-voltage detector (LVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Auxiliary-voltage detector (AVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
8
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
8.1  
8.2  
8.3  
8.4  
8.5  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Masking and processing flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Interrupts and low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Concurrent & nested management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Interrupt register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
8.5.1  
CPU CC register interrupt bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
3/246  
Contents  
ST72344xx, ST72345xx  
8.5.2  
Interrupt software priority registers (ISPRX) . . . . . . . . . . . . . . . . . . . . . 58  
8.6  
8.7  
External interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
8.6.1  
I/O port interrupt sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
External interrupt control register (EICR) . . . . . . . . . . . . . . . . . . . . . . . . . 61  
9
Power-saving modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Slow mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Active-halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Auto-wakeup from Halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
9.7.1  
9.7.2  
AWUFH control/status register (AWUCSR) . . . . . . . . . . . . . . . . . . . . . . 72  
AWUFH prescaler register (AWUPR) . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
10  
I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
10.2 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
10.2.1 Input modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
10.2.2 Output modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
10.2.3 Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
10.3 I/O port implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
10.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
10.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
10.5.1 I/O port implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
11  
On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
11.1 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
11.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
11.1.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
11.1.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
11.1.4 Using Halt mode with the WDG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
11.1.5 How to program the watchdog timeout . . . . . . . . . . . . . . . . . . . . . . . . . 84  
11.1.6 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
11.1.7 Hardware watchdog option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
4/246  
ST72344xx, ST72345xx  
Contents  
11.1.8 Using Halt mode with the WDG (WDGHALT option) . . . . . . . . . . . . . . . 87  
11.1.9 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
11.1.10 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
11.2 Main clock controller with real-time clock and beeper (MCC/RTC) . . . . . 88  
11.2.1 Programmable CPU clock prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
11.2.2 Clock-out capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
11.2.3 Real-time clock timer (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
11.2.4 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
11.2.5 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
11.2.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
11.2.7 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
11.3 16-bit timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
11.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
11.3.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
11.3.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
11.3.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
11.3.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
11.3.6 Summary of timer modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
11.3.7 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
11.4 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
11.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
11.4.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
11.4.3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
11.4.4 Clock phase and clock polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
11.4.5 Error flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
11.4.6 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
11.4.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
11.4.8 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
11.5 SCI serial communication interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
11.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
11.5.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
11.5.3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
11.5.4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
11.5.5 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
11.5.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
11.5.7 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
5/246  
Contents  
ST72344xx, ST72345xx  
11.6 I2C bus interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
11.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
11.6.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
11.6.3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
11.6.4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
11.6.5 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
11.6.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
11.6.7 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
11.7 I2C triple slave interface with DMA (I2C3S) . . . . . . . . . . . . . . . . . . . . . . 166  
11.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
11.7.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
11.7.3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
11.7.4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
11.7.5 Address handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
11.7.6 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
11.7.7 Interrupt generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
11.7.8 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
11.8 10-bit A/D converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
11.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
11.8.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
11.8.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
11.8.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
11.8.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
11.8.6 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
12  
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
12.1 ST7 addressing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
12.1.1 Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
12.1.2 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
12.1.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
12.1.4 Indexed (No Offset, Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
12.1.5 Indirect (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
12.1.6 Indirect Indexed (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
12.1.7 Relative Mode (direct, indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
12.2 Instruction groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
12.2.1 Illegal opcode reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
6/246  
ST72344xx, ST72345xx  
Contents  
13  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
13.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
13.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
13.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
13.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
13.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
13.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
13.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
13.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
13.4 Internal RC oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
13.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
13.6 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
13.6.1 Crystal and ceramic resonator oscillators . . . . . . . . . . . . . . . . . . . . . . 209  
13.7 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
13.8 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
13.8.1 Functional EMS (electromagnetic susceptibility) . . . . . . . . . . . . . . . . . 212  
13.8.2 EMI (electromagnetic interference) . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
13.8.3 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 213  
13.9 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
13.10 Control pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
13.10.1 Asynchronous RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
13.11 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . 223  
13.11.1 I2C and I²C3SNS interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
13.12 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
14  
15  
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Device configuration and ordering information . . . . . . . . . . . . . . . . . 231  
15.1 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
15.1.1 Option byte 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
15.1.2 Option byte 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
15.1.3 Option byte 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
15.1.4 Option byte 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
15.2 Device ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
15.3 Development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
7/246  
Contents  
ST72344xx, ST72345xx  
15.3.1 Starter kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
15.3.2 Development and debugging tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
15.3.3 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
15.3.4 Order codes for ST72F34x development tools . . . . . . . . . . . . . . . . . . 237  
16  
Known limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
16.1 External interrupt missed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
16.1.1 Workaround . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
16.1.2 Unexpected reset fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
16.2 Clearing active interrupts outside interrupt routine . . . . . . . . . . . . . . . . . 240  
16.3 16-bit timer PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
16.4 TIMD set simultaneously with OC interrupt . . . . . . . . . . . . . . . . . . . . . . 241  
16.4.1 Impact on the application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
16.4.2 Workaround . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
16.5 SCI wrong break duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
16.5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
16.5.2 Occurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
16.5.3 Workaround . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
16.6 In-application programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
16.7 Programming of EEPROM data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
16.7.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
16.7.2 Impact on application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
16.7.3 Workaround . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
16.8 Flash write/erase protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
17  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244  
8/246  
ST72344xx, ST72345xx  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Device pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Data EEPROM register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Interrupt software priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
PLL configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
ST7 clock sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Low-power mode description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Interrupt event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
LVDRF and WDGRF description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Interrupt software priority levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Interrupt software priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Interrupt vector addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Dedicated interrupt instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
External interrupt sensitivity (ei2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
External interrupt sensitivity (ei3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
External interrupt sensitivity (ei0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
External interrupt sensitivity (ei1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Nested interrupts register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Power saving mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
AWUPR dividing factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
AWU register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Output modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
I/O Port mode options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
I/O port configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Description of interrupt events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
I/O port register configurations (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
I/O port register configurations (interrupt ports with pull-up). . . . . . . . . . . . . . . . . . . . . . . . 79  
I/O port register configurations (interrupt ports without pull-up) . . . . . . . . . . . . . . . . . . . . . 79  
I/O port register configurations (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Port configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
I/O port register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Watchdog timer register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Mode description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Interrupt event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
CPU clock prescaler selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Time base control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Beep control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Main clock controller register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
ICiR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
OCiR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Low-power mode description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Interrupt events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
9/246  
List of tables  
ST72344xx, ST72345xx  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
Table 84.  
Table 85.  
Table 86.  
Table 87.  
Table 88.  
Table 89.  
Table 90.  
Table 91.  
Table 92.  
Table 93.  
Table 94.  
Table 95.  
Table 96.  
Table 97.  
Table 98.  
Table 99.  
Timer modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Clock control bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
16-bit timer register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Interrupt events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
SPI master mode SCK frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
SPI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Frame formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Mode description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Interrupt events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
SCP[1:0] configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
SCT[2:0] configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
SCR[2:0] configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Baud rate selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
SCI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Mode description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Interrupt events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
FR[1:0] configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
I2C register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Mode description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Interrupt events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
PL configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
I2C3S register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Mode description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Channel selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
ADC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Addressing mode groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
ST7 addressing mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Inherent instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Immediate instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Instructions supporting direct, indexed, indirect and indirect indexed addressing modes 193  
Short instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
Relative direct/indirect instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
Main instruction groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Illegal opcode detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
LVD thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
AVD thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Internal RC oscillator and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Internal RC oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Supply current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
General timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Auto-wakeup from Halt oscillator (AWU) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Crystal/ceramic resonator oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Recommended load capacitance vs. equivalent serial resistance of ceramic  
resonator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
10/246  
ST72344xx, ST72345xx  
List of tables  
Table 100. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Table 101. Flash program memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Table 102. EEPROM data memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Table 103. EMS test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
Table 104. EMI emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Table 105. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Table 106. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Table 107. General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
Table 108. Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
Table 109. Asynchronous RESET pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Table 110. I2C and I²C3SNS interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
2
Table 111. SCL frequency table (multimaster I C interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
Table 112. ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Table 113. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Table 114. 32-pin low profile quad flat package (7 x 7 mm) mechanical data . . . . . . . . . . . . . . . . . . 226  
Table 115. 40-lead very thin fine pitch quad flat no-lead package mechanical data . . . . . . . . . . . . . 227  
Table 116. 44-pin low profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
Table 117. 48-pin low profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Table 118. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
Table 119. LVD threshold configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
Table 120. Size of sector 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
Table 121. Selection of the resonator oscillator range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
Table 122. List of valid option combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
Table 123. Package selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
Table 124. Option byte default values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
Table 126. Silicon revision identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
Table 127. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244  
11/246  
List of figures  
ST72344xx, ST72345xx  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
General block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
LQFP32 package pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
LQFP44 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
LQFP48 package pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Typical ICC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
EEPROM block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Data EEPROM programming flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Data EEPROM write operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 10. Data EEPROM programming cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 11. CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 12. Stack manipulation example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 13. Clock, reset and supply block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 14. PLL output frequency timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 15. reset sequence phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 16. Reset block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 17. Reset sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 18. Low voltage detector vs. reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 19. Using the AVD to monitor VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 20. Interrupt processing flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 21. Priority decision process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 22. Concurrent interrupt management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 23. Nested interrupt management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 24. External interrupt control bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 25. Power saving mode transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 26. Slow mode clock transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 27. Wait mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 28. Halt timing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 29. Halt mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 30. Active-halt timing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 31. Active-halt mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 32. AWUFH mode block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 33. AWUF Halt timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 34. AWUFH mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 35. I/O port general block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 36. Interrupt I/O port state transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 37. Watchdog block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 38. Approximate timeout duration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 39. Exact timeout duration (tmin and tmax) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 40. Window watchdog timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 41. Main clock controller (MCC/RTC) block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Figure 42. Timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Figure 43. 16-bit read sequence (from either the counter register or the alternate  
counter register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 44. Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 45. Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 46. Counter timing diagram, internal clock divided by 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 47. Input capture block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
12/246  
ST72344xx, ST72345xx  
List of figures  
Figure 48. Input capture timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 49. Output compare block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 50. Output compare timing diagram, f  
Figure 51. Output compare timing diagram, f  
= f  
= f  
/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
/4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
TIMER  
CPU  
TIMER  
CPU  
Figure 52. One-pulse mode cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 53. One-pulse mode timing example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 54. Pulse width modulation mode timing example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 55. Pulse width modulation cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 56. Serial peripheral interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Figure 57. Single master/ single slave application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Figure 58. Generic SS timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Figure 59. Hardware/software slave select management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Figure 60. Data clock timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Figure 61. Clearing the WCOL bit (write collision flag) software sequence . . . . . . . . . . . . . . . . . . . . 123  
Figure 62. Single master / multiple slave configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Figure 63. SCI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Figure 64. Word length programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Figure 65. SCI baud rate and extended prescaler block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Figure 66. Bit sampling in reception mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Figure 67. I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Figure 68. I2C interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Figure 69. Transfer sequencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Figure 70. Event flags and interrupt generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Figure 71. I2C3S interface block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Figure 72. I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Figure 73. 16-bit word write operation flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Figure 74. 16-bit word read operation flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Figure 75. Transfer sequencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Figure 76. Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Figure 77. Page write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Figure 78. Current address read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Figure 79. Random read (dummy write + restart + current address read). . . . . . . . . . . . . . . . . . . . . 174  
Figure 80. Random read (dummy write + stop + start + current address read). . . . . . . . . . . . . . . . . 175  
Figure 81. Sequential read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Figure 82. Combined format for read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Figure 83. Event flags and interrupt generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Figure 84. ADC block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Figure 85. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Figure 86. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Figure 87.  
Figure 88. Typical RC frequency vs. RCCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Figure 89. Typical I in Run vs. f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
f
maximum operating frequency versus V supply voltage . . . . . . . . . . . . . . . . . . . 201  
CPU DD  
DD  
CPU  
Figure 90. Typical I in Run at f  
= 8 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
DD  
CPU  
Figure 91. Typical I in Slow vs. f  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
CPU  
DD  
Figure 92. Typical I in Wait vs. f  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
DD  
CPU  
Figure 93. Typical I in Wait at f  
= 8 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
DD  
CPU  
Figure 94. Typical I in Slow-wait vs. f  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
DD  
CPU  
Figure 95. Typical I vs. temp. at V = 5 V and f = 8 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
DD  
DD  
CPU  
Figure 96. Typical application with an external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Figure 97. Typical application with a crystal or ceramic resonator . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Figure 98. Two typical applications with unused I/O pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
Figure 99. Typical V at V = 2.4 V (std I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
OL  
DD  
13/246  
List of figures  
ST72344xx, ST72345xx  
Figure 100. Typical V at V = 3 V (std I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
OL  
DD  
Figure 101. Typical V at V = 5 V (std I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
OL  
DD  
Figure 102. Typical V at V = 2.4 V (high-sink I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
OL  
DD  
Figure 103. Typical V at V = 3 V (high-sink I/Os). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
OL  
DD  
Figure 104. Typical V at V = 5 V (high-sink I/Os). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
OL  
DD  
Figure 105. Typical V vs. V (std I/Os, 2 mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
OL  
DD  
Figure 106. Typical V vs. V (std I/Os, 6 mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
OL  
DD  
Figure 107. Typical V vs. V (HS I/Os, I = 8 mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
OL  
DD  
IO  
Figure 108. Typical V vs. V (HS I/Os, I = 2 mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
OL  
DD  
IO  
Figure 109. Typical V vs. V (HS I/Os, I = 12 mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
OL  
DD  
IO  
Figure 110. Typical V – v at V = 2.4 V (std I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
DD  
OH  
DD  
Figure 111. Typical V – V at V = 3 V (std I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
DD  
OH  
DD  
Figure 112. Typical V – V at V = 4 V (std). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
DD  
OH  
DD  
Figure 113. Typical V – V at V = 5 V (std) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
DD  
OH  
DD  
Figure 114. Typical V – V vs. VDD (high sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
DD  
OH  
Figure 115. RESET pin protection when LVD is enabled(1)(2)(3)(4). . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Figure 116. RESET pin protection when LVD is disabled(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Figure 117. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Figure 118. Typical A/D converter application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Figure 119. 32-pin low profile quad flat package (7 x 7 mm) outline . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Figure 120. 40-lead very thin fine pitch quad flat no-lead package outline . . . . . . . . . . . . . . . . . . . . . 227  
Figure 121. 44-pin low profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
Figure 122. 48-pin low profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Figure 123. ST7234x ordering information scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
14/246  
ST72344xx, ST72345xx  
Introduction  
1
Introduction  
The ST7234x devices are members of the ST7 microcontroller family. Table 2 gives the  
available part numbers and details on the devices. All devices are based on a common  
industry-standard 8-bit core, featuring an enhanced instruction set.  
They feature single-voltage Flash memory with byte-by-byte in-circuit programming (ICP)  
and in-application programming (IAP) capabilities.  
Under software control, all devices can be placed in Wait, Slow, Auto-wakeup from Halt,  
Active-halt or Halt mode, reducing power consumption when the application is in idle or  
stand-by state.  
The enhanced instruction set and addressing modes of the ST7 offer both power and  
flexibility to software developers, enabling the design of highly efficient and compact  
application code. In addition to standard 8-bit data management, all ST7 microcontrollers  
feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes.  
The devices feature an on-chip debug module (DM) to support in-circuit debugging (ICD).  
For a description of the DM registers, refer to the ST7 ICC Protocol Reference Manual.  
Figure 1.  
General block diagram  
8-BIT CORE  
ALU  
PROGRAM  
MEMORY  
(16K - 32K Bytes)  
RESET  
CONTROL  
RAM  
(512- 1024 Bytes)  
VSS  
VDD  
LVD  
AVD  
WATCHDOG  
I2CMMS  
OSC1  
OSC2  
CLOCK CONTROL  
PA  
(5-bits)  
INTERNAL RC  
PORT A  
MCC/RTC/BEEP  
PORT B  
PB  
(5-bits)  
PORT F  
TIMER A  
BEEP  
PWM ART  
PF  
(6-bits)  
PORT C  
TIMER B  
SPI  
PC  
(8-bits)  
I2C3SNS  
PD  
(6-bits)  
PORT D  
PORT E  
SCI  
10-BIT ADC  
PE  
(2-bits)  
VAREF  
VSSA  
15/246  
Introduction  
ST72344xx, ST72345xx  
ST72345C4  
Table 2.  
Device summary  
ST72344K2, ST72344K4, ST72344S2,  
Features  
ST72344S4  
Program memory - bytes  
RAM (stack) - bytes  
EEPROM data - bytes  
Common peripherals  
Other peripherals  
CPU frequency  
8K  
512 (256)  
256  
16K  
1K (256)  
256  
16K  
1K (256)  
256  
Window Watchdog, 2 16-bit timers, SCI, SPI, I2CMMS  
10-bit ADC I2C3SNS, 10-bit ADC  
8 MHz @ 3.3 V to 5.5 V, 4 MHz @ 2.7 V to 5.5 V  
-40 °C to +85 °C  
Temperature range  
Package  
LQFP32 7x7, LQFP44 10x10  
LQFP48 7x7  
16/246  
ST72344xx, ST72345xx  
Pin description  
2
Pin description  
Figure 2.  
LQFP32 package pinout  
32 31 30 29 28 27 26 25  
ei3 ei2 ei0  
VDDA  
VSSA  
AIN8 / PF0  
1
2
3
24  
23  
22  
OSC1  
OSC2  
V
SS_2  
ei1  
4
21  
(HS) PF1  
OCMP1_A / AIN10 / PF4  
ICAP1_A / (HS) PF6  
EXTCLK_A / (HS) PF7  
AIN12 / OCMP2_B / PC0  
RESET  
ICCSEL  
PA7 (HS) / SCL  
PA6 (HS) / SDA  
PA4 (HS)  
5
6
7
8
20  
19  
18  
17  
ei0  
10 11 12 13 14 15 16  
9
(HS) 20mA high sink capability  
eix associated external interrupt vector  
17/246  
Pin description  
Figure 3.  
ST72344xx, ST72345xx  
LQFP44 package pinout  
44 43 42 41 40 39 38 37 36 35 34  
ei0  
RDI / PE1  
PB0  
1
33 VSS_1  
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
VDD_1  
3
ei0  
PB1  
PA3 (HS)  
ei2  
ei3  
4
PB2  
PC7 / SS / AIN15  
5
PB3  
PC6 / SCK / ICCCLK  
PC5 / MOSI / AIN14  
PC4 / MISO / ICCDATA  
PC3 (HS) / ICAP1_B  
PC2 (HS) / ICAP2_B  
PC1 / OCMP1_B / AIN13  
PC0 / OCMP2_B / AIN12  
6
(HS) PB4  
AIN0 / PD0  
AIN1 / PD1  
AIN2 / PD2  
AIN3 / PD3  
AIN4 / PD4  
7
8
9
10  
11  
ei1  
12 13 14 15 16 17 18 19 20 21 22  
18/246  
ST72344xx, ST72345xx  
Figure 4.  
Pin description  
LQFP48 package pinout  
48 47 46 45 44 43 42 41 40 39 38 37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1
VSS_1  
PE0/TD0  
RDI / PE1  
PB0  
2
ei0  
ei2  
ei3  
VDD_1  
ei0  
3
PA3 (HS)  
PC7 / SS / AIN15  
4
PB1  
5
PB2  
PC6 / SCK / ICCCLK  
PC5 / MOSI / AIN14  
PC4 / MISO / ICCDATA  
PC3 (HS) / ICAP1_B  
PC2 (HS) / ICAP2_B  
PC1 / OCMP1_B / AIN13  
NC  
6
PB3  
7
(HS) PB4  
AIN0 / PD0  
AIN1 / PD1  
AIN2 / PD2  
AIN3 / PD3  
AIN4 / PD4  
8
9
10  
11  
12  
ei1  
NC  
24  
13 14 15 16 17 18 19 20 21 22 23  
Note:  
For external pin connection guidelines, refer to Section 13: Electrical characteristics on  
page 198  
19/246  
Pin description  
Legend / Abbreviations for Table 3:  
ST72344xx, ST72345xx  
Type:  
I = input, O = output, S = supply  
A = Dedicated analog input  
Input level:  
In/Output level: C = CMOS 0.3V /0.7V with input trigger  
T
DD  
DD  
Output level:  
HS = 20 mA high sink (on N-buffer only)  
Port and control configuration:  
1)  
Input:  
float = floating, wpu = weak pull-up, int = interrupt , ana = analog  
2)  
Output:  
OD = open drain , PP = push-pull  
The reset configuration of each pin is shown in bold. This configuration is valid as long as  
the device is in reset state.  
On the chip, each I/O port may have up to 8 pads. Pads that are not bonded to external pins  
are set in input pull-up configuration after reset through the option byte Package selection.  
The configuration of these pads must be kept at reset state to avoid added current  
consumption.  
Table 3.  
Pin n°  
Device pin description  
Level  
Port  
Input (1)  
Main  
function  
(after  
Output  
Pin name  
Alternate function  
reset)  
(2)  
(2)  
1
2
13 14 VDDA  
14 15 VSSA  
S
S
Analog supply voltage  
Analog ground voltage  
Main clock ADC  
out analog  
(fOSC/2) input 8  
3
15 16 PF0/MCO/AIN8  
I/O CT  
X
ei1  
ei1  
X
X
X
X
Port F0  
4
-
16 17 PF1 (HS)/BEEP  
17 18 PF2 (HS) (3)  
I/O CT HS  
I/O CT HS  
X
X
X
X
X
X
Port F1  
Port F2  
Beep signal output  
ei1  
Timer A  
output  
ADC  
analog  
5
18 19 PF4/OCMP1_A/AIN10  
I/O CT  
X
X
X
X
Port F4  
compare 1 input 10  
Timer A Input  
Capture 1  
6
7
19 20 PF6 (HS)/ICAP1_A  
20 21 PF7 (HS)/EXTCLK_A  
I/O CT HS  
I/O CT HS  
X
X
X
X
X
X
X
X
Port F6  
Port F7  
Timer A external  
clock source  
(2)  
-
-
21 22 VDD_0  
S
S
Digital main supply voltage  
Digital ground voltage  
(2)  
22 23 VSS_0  
Timer B  
Port C0 output  
ADC  
analog  
8
9
23 24 PC0/OCMP2_B/AIN12  
24 27 PC1/OCMP1_B/AIN13  
I/O CT  
I/O CT  
X
X
X
X
X
X
X
X
X
X
compare 2 input 12  
Timer B  
ADC  
Port C1 output  
analog  
compare 1 input 13  
20/246  
ST72344xx, ST72345xx  
Pin description  
Alternate function  
Table 3.  
Pin n°  
Device pin description (continued)  
Level  
Port  
Input (1)  
Main  
function  
(after  
Output  
Pin name  
reset)  
Timer B input capture  
2
10 25 28 PC2 (HS)/ICAP2_B  
11 26 29 PC3 (HS)/ICAP1_B  
I/O CT HS  
I/O CT HS  
X
X
X
X
X
X
X
X
Port C2  
Port C3  
Timer B input capture  
1
SPIMaster  
ICC data  
12 27 30 PC4/MISO/ICCDATA  
13 28 31 PC5/MOSI/AIN14  
14 29 32 PC6/SCK/ICCCLK  
I/O CT  
I/O CT  
I/O CT  
X
X
X
X
X
X
X
X
X
X
X
X
Port C4 In / Slave  
Out data  
input  
SPIMaster ADC  
Port C5 Out / Slave analog  
X
X
In data  
input 14  
ICC  
clock  
output  
SPI serial  
clock  
Port C6  
SPI slave  
select  
(active  
low)  
ADC  
analog  
input 15  
15 30 33 PC7/SS/AIN15  
I/O CT  
X
X
X
X
X
X
X
Port C7  
Port A3  
16 31 34 PA3 (HS)  
I/O CT HS  
ei0  
(2)  
-
-
32 35 VDD_1  
33 36 VSS_1  
S
S
Digital main supply voltage  
Digital ground voltage  
(2)  
T
-
-
-
-
37 PD7 (3)/ SCL3SNS  
38 PD6 (3)/ SDA3SNS  
I/O CT HS  
X
Port D7 I2C3SNS serial clock  
(4)  
I/O CT HS  
I/O CT HS  
I/O CT HS  
I/O CT HS  
I/O CT HS  
I
X
X
X
X
X
T
X
X
T
T
Port D6 I2C3SNS serial data  
Port A4  
17 34 39 PA4 (HS)  
35 40 PA5 (HS) (3)  
X
X
X
X
-
Port A5  
18 36 41 PA6 (HS)/SDA  
19 37 42 PA7 (HS)/SCL  
20 38 43 ICCSEL (5)  
Port A6 I2C serial data  
Port A7 I2C serial clock  
ICC mode selection  
Top priority non maskable  
interrupt.  
21 39 44 RESET  
I/O CT  
(2)  
22 40 45 VSS_2  
S
Digital ground voltage  
Resonator oscillator inverter  
output  
23 41 46 OSC2  
24 42 47 OSC1  
O
External clock input or resonator  
oscillator inverter input  
I
(2)  
25 43 48 VDD_2  
S
Digital main supply voltage  
26 44  
1
PE0/TDO  
I/O CT  
X
X
X
X
Port E0 SCI transmit data out  
21/246  
Pin description  
ST72344xx, ST72345xx  
Table 3.  
Pin n°  
Device pin description (continued)  
Level  
Port  
Input (1)  
Main  
function  
(after  
Output  
Pin name  
Alternate function  
reset)  
27  
28  
-
1
2
3
4
5
6
7
8
9
2
3
4
5
6
7
8
9
PE1/RDI  
I/O CT  
X
X
X
X
X
X
X
X
X
X
X
X
ei0  
ei2  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Port E1 SCI receive data in  
Port B0  
PB0  
I/O CT  
I/O CT  
I/O CT  
I/O CT  
I/O CT HS  
I/O CT  
I/O CT  
I/O CT  
I/O CT  
I/O CT  
I/O CT  
PB1 (3)  
PB2 (3)  
PB3  
ei2  
ei2  
Port B1  
-
Port B2  
29  
30  
31  
32  
-
ei2  
ei3  
Port B3  
PB4 (HS)  
PD0/AIN0  
PD1/AIN1  
Port B4  
X
X
X
X
X
X
X
X
X
X
X
X
Port D0 ADC analog input 0  
Port D1 ADC analog input 1  
Port D2 ADC analog input 2  
Port D3 ADC analog input 3  
Port D4 ADC analog input 4  
Port D5 ADC analog input 5  
10 PD2/AIN2  
-
10 11 PD3/AIN3  
11 12 PD4/AIN4  
12 13 PD5/AIN5  
-
-
1. In the interrupt input column, “eiX” defines the associated external interrupt vector. If the weak pull-up column (wpu) is  
merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input, else the configuration is floating  
interrupt input.  
2. It is mandatory to connect all available VDD and VDDA pins to the supply voltage and all VSS and VSSA pins to ground.  
3. Pulled-up by hardware when not present on the package.  
4. In the open drain output column, “T” defines a true open drain I/O (P-Buffer and protection diode to VDD are not  
implemented).  
5. Internal weak pull-down.  
22/246  
ST72344xx, ST72345xx  
Register and memory map  
3
Register and memory map  
As shown in Figure 5, the MCU is capable of addressing 64 Kbytes of memories and I/O  
registers.  
The available memory locations consist of 128 bytes of register locations, up to 1 Kbytes of  
RAM, 256 bytes of Data EEPROM and up to 16 Kbytes of user program memory. The RAM  
space includes up to 256 bytes for the stack from 0100h to 01FFh.  
The highest address bytes contain the user reset and interrupt vectors.  
Figure 5.  
Memory map  
0000h  
0080h  
HW registers  
Short addressing  
RAM (zero page)  
See Table 4  
007Fh  
0080h  
00FFh  
0100h  
RAM  
(512 or 1K Bytes)  
047Fh  
0480h  
256 Bytes stack  
01FFh  
0200h  
Reserved  
16-bit addressing  
RAM  
0BFFh  
0C00h  
Data EEPROM  
(256 Bytes)  
047Fh  
C000h  
0CFFh  
0D00h  
C000h  
E000h  
Reserved  
SECTOR 2  
SECTOR 1  
SECTOR 0  
BFFFh  
C000h  
16 Kbytes  
8 Kbytes  
Program memory  
(8 or 16 KBytes)  
E000h  
FFFFh  
FFDFh  
FFE0h  
F000h (4k)  
or FB00h (2k)  
or FC00h (1k)  
or FE00h (0.5k)  
Interrupt & Reset Vectors  
See Table 17  
FFFFh  
FFFFh  
23/246  
Register and memory map  
ST72344xx, ST72345xx  
Table 4.  
Address  
Hardware register map  
Register  
label  
Reset  
Block  
Register name  
Remarks(2)  
status(1)  
0000h  
0001h  
0002h  
PADR  
Port A Data Register  
Port A Data Direction Register  
Port A Option Register  
00h (4)  
00h  
00h  
R/W  
R/W  
R/W  
Port A(3) PADDR  
PAOR  
0003h  
0004h  
0005h  
PBDR  
Port B(3) PBDDR  
PBOR  
Port B Data Register  
Port B Data Direction Register  
Port B Option Register  
00h (4)  
00h  
00h  
R/W  
R/W  
R/W  
0006h  
0007h  
0008h  
PCDR  
Port C(3) PCDDR  
PCOR  
Port C Data Register  
Port C Data Direction Register  
Port C Option Register  
00h (4)  
00h  
00h  
R/W  
R/W  
R/W  
0009h  
000Ah  
000Bh  
PDADR  
Port D(3) PDDDR  
PDOR  
Port D Data Register  
Port D Data Direction Register  
Port D Option Register  
00h(4)  
00h  
00h  
R/W  
R/W  
R/W  
000Ch  
000Dh  
000Eh  
PEDR  
Port E(3) PEDDR  
PEOR  
Port E Data Register  
Port E Data Direction Register  
Port E Option Register  
00h (4)  
00h  
00h  
R/W  
R/W  
R/W  
000Fh  
0010h  
0011h  
PFDR  
Port F(3) PFDDR  
PFOR  
Port F Data Register  
Port F Data Direction Register  
Port F Option Register  
00h (4)  
00h  
00h  
R/W  
R/W  
R/W  
0012h to  
0016h  
Reserved area (5 bytes)  
0017h  
0018h  
RCCRH  
RC  
RC oscillator Control Register High  
RC oscillator Control Register Low  
FFh  
03h  
R/W  
R/W  
RCCRL  
0019h  
Reserved area (1 byte)  
001Ah to  
001Fh  
DM(5)  
Reserved area (6 bytes)  
00020h  
EEPROM EECSR  
SPIDR  
Data EEPROM Control/Status Register  
00h  
R/W  
0021h  
0022h  
0023h  
SPI Data I/O Register  
SPI Control Register  
SPI Control Status Register  
xxh  
0xh  
00h  
R/W  
R/W  
R/W  
SPI  
SPICR  
SPICSR  
0024h  
0025h  
0026h  
0027h  
ISPR0  
ISPR1  
ISPR2  
ISPR3  
Interrupt Software Priority Register 0  
Interrupt Software Priority Register 1  
Interrupt Software Priority Register 2  
Interrupt Software Priority Register 3  
FFh  
FFh  
FFh  
FFh  
R/W  
R/W  
R/W  
R/W  
ITC  
0028h  
00029h  
002Ah  
002Bh  
EICR  
External Interrupt Control Register  
Flash Control/Status Register  
00h  
00h  
7Fh  
R/W  
R/W  
R/W  
Flash  
FCSR  
WWDG WDGCR  
Watchdog Control Register  
SI  
SICSR  
System Integrity Control/Status Register  
000x 000xb R/W  
002Ch  
002Dh  
MCCSR  
MCCBCR  
Main Clock Control/Status Register  
MCC Beep Control Register  
00h  
00h  
R/W  
R/W  
MCC  
002Eh  
002Fh  
AWUCSR  
AWUPR  
AWU Control/Status Register  
AWU Prescaler Register  
00h  
FFh  
R/W  
R/W  
AWU  
0030h  
WWDG WDGWR  
Window Watchdog Control Register  
7Fh  
R/W  
24/246  
ST72344xx, ST72345xx  
Register and memory map  
Table 4.  
Address  
Hardware register map (continued)  
Register  
label  
Reset  
Block  
Register name  
Remarks(2)  
status(1)  
0031h  
0032h  
0033h  
0034h  
0035h  
0036h  
0037h  
0038h  
0039h  
003Ah  
003Bh  
003Ch  
003Dh  
003Eh  
003Fh  
TACR2  
TACR1  
TACSR  
TAIC1HR  
TAIC1LR  
TAOC1HR  
TAOC1LR  
Timer A Control Register 2  
Timer A Control Register 1  
Timer A Control/Status Register  
Timer A Input Capture 1 High Register  
Timer A Input Capture 1 Low Register  
Timer A Output Compare 1 High Register  
Timer A Output Compare 1 Low Register  
Timer A Counter High Register  
00h  
00h  
xxh  
xxh  
xxh  
80h  
00h  
FFh  
FCh  
FFh  
FCh  
xxh  
xxh  
80h  
00h  
R/W  
R/W  
R/W  
Read Only  
Read Only  
R/W  
R/W  
TIMER A TACHR  
TACLR  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
R/W  
Timer A Counter Low Register  
TAACHR  
TAACLR  
TAIC2HR  
TAIC2LR  
TAOC2HR  
TAOC2LR  
Timer A Alternate Counter High Register  
Timer A Alternate Counter Low Register  
Timer A Input Capture 2 High Register  
Timer A Input Capture 2 Low Register  
Timer A Output Compare 2 High Register  
Timer A Output Compare 2 Low Register  
R/W  
0040h  
Reserved area (1 Byte)  
0041h  
0042h  
0043h  
0044h  
0045h  
0046h  
0047h  
0048h  
0049h  
004Ah  
004Bh  
004Ch  
004Dh  
004Eh  
004Fh  
TBCR2  
TBCR1  
TBCSR  
TBIC1HR  
TBIC1LR  
Timer B Control Register 2  
Timer B Control Register 1  
Timer B Control/Status Register  
Timer B Input Capture 1 High Register  
Timer B Input Capture 1 Low Register  
Timer B Output Compare 1 High Register  
Timer B Output Compare 1 Low Register  
Timer B Counter High Register  
00h  
00h  
xxh  
xxh  
xxh  
80h  
00h  
FFh  
FCh  
FFh  
FCh  
xxh  
xxh  
80h  
00h  
R/W  
R/W  
R/W  
Read Only  
Read Only  
R/W  
TBOC1HR  
TBOC1LR  
TIMER B TBCHR  
TBCLR  
R/W  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
R/W  
Timer B Counter Low Register  
TBACHR  
TBACLR  
TBIC2HR  
TBIC2LR  
TBOC2HR  
TBOC2LR  
Timer B Alternate Counter High Register  
Timer B Alternate Counter Low Register  
Timer B Input Capture 2 High Register  
Timer B Input Capture 2 Low Register  
Timer B Output Compare 2 High Register  
Timer B Output Compare 2 Low Register  
R/W  
0050h  
0051h  
0052h  
0053h  
0054h  
0055h  
0056h  
0057h  
SCISR  
SCIDR  
SCIBRR  
SCICR1  
SCICR2  
SCI Status Register  
SCI Data Register  
SCI Baud Rate Register  
SCI Control Register 1  
SCI Control Register 2  
Reserved area  
SCI Extended Receive Prescaler Register  
SCI Extended Transmit Prescaler Register  
C0h  
xxh  
00h  
Read Only  
R/W  
R/W  
x000 0000b R/W  
SCI  
00h  
--  
00h  
00h  
R/W  
SCIERPR  
SCIETPR  
R/W  
R/W  
0058h  
0059h  
005Ah  
005Bh  
005Ch  
005Dh  
005Eh  
I2CCR  
I2CSR1  
I2CSR2  
I2CCCR  
I2COAR1  
I2COAR2  
I2CDR  
I2C Control Register  
00h  
00h  
00h  
00h  
00h  
40h  
00h  
R/W  
I2C Status Register 1  
I2C Status Register 2  
I2C Clock Control Register  
I2C Own Address Register 1  
I2C Own Address Register2  
I2C Data Register  
Read Only  
Read Only  
R/W  
R/W  
R/W  
I2C  
R/W  
005Fh  
Reserved area (1 byte)  
25/246  
Register and memory map  
ST72344xx, ST72345xx  
Table 4.  
Address  
Hardware register map (continued)  
Register  
label  
Reset  
Block  
Register name  
Remarks(2)  
status(1)  
0060h  
0061h  
0062h  
0063h  
0064h  
0065h  
0066h  
0067h  
0068h  
0069h  
I2C3SCR1  
I2C3SCR2  
I2C3SSR  
I2C3SNS Control Register 1  
I2C3SNS Control Register 2  
I2C3SNS Status Register  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
R/W  
R/W  
Read Only  
Read Only  
R/W  
R/W  
R/W  
R/W  
R/W  
I2C3SBCR  
I2C3SNS Byte Count Register  
I2C3SSAR1 I2C3SNS Slave Address 1 Register  
I2C3SCAR1 I2C3SNS Current Address 1 Register  
I2C3SSAR2 I2C3SNS Slave Address 2 Register  
I2C3SCAR2 I2C3SNS Current Address 2 Register  
I2C3SSAR3 I2C3SNS Slave Address 3 Register  
I2C3SCAR3 I2C3SNS Current Address 3 Register  
I2C3SNS  
R/W  
0070h  
0071h  
0072h  
ADCCSR  
ADCDRH  
ADCDRL  
A/D Control Status Register  
A/D Data Register High  
A/D Data Low Register  
00h  
xxh  
R/W  
Read Only  
ADC  
0000 00xxb Read Only  
0073h to  
007Fh  
Reserved area (13 bytes)  
1. x = undefined.  
2. R/W = read/write.  
3. The bits associated with unavailable pins must always keep their reset value.  
4. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the  
I/O pins are returned instead of the DR register contents.  
5. For a description of the Debug Module registers, see ST7 ICC protocol reference manual.  
26/246  
ST72344xx, ST72345xx  
Flash program memory  
4
Flash program memory  
4.1  
Introduction  
The ST7 single voltage extended Flash (XFlash) is a non-volatile memory that can be  
electrically erased and programmed either on a byte-by-byte basis or up to 32 bytes in  
parallel.  
The XFlash devices can be programmed off-board (plugged in a programming tool) or on-  
board using In-Circuit Programming or In-Application Programming.  
The array matrix organization allows each sector to be erased and reprogrammed without  
affecting other sectors.  
4.2  
4.3  
Main features  
ICP (in-circuit programming)  
IAP (in-application programming)  
ICT (in-circuit testing) for downloading and executing user application test patterns in  
RAM  
Sector 0 size configurable by option byte  
Read-out and write protection  
Programming modes  
The ST7 can be programmed in three different ways:  
Insertion in a programming tool. In this mode, Flash sectors 0 and 1, option byte row  
and data EEPROM (if present) can be programmed or erased.  
In-circuit programming. In this mode, Flash sectors 0 and 1, option byte row and data  
EEPROM (if present) can be programmed or erased without removing the device from  
the application board.  
In-application programming. In this mode, sector 1 and data EEPROM (if present) can  
be programmed or erased without removing the device from the application board and  
while the application is running.  
27/246  
Flash program memory  
ST72344xx, ST72345xx  
4.3.1  
In-circuit programming (ICP)  
ICP uses a protocol called ICC (in-circuit communication) which allows an ST7 plugged on a  
printed circuit board (PCB) to communicate with an external programming device connected  
via cable. ICP is performed in three steps:  
Switch the ST7 to ICC mode (in-circuit communications). This is done by driving a specific  
signal sequence on the ICCCLK/DATA pins while the RESET pin is pulled low. When the  
ST7 enters ICC mode, it fetches a specific reset vector which points to the ST7 System  
Memory containing the ICC protocol routine. This routine enables the ST7 to receive bytes  
from the ICC interface.  
Download ICP Driver code in RAM from the ICCDATA pin  
Execute ICP Driver code in RAM to program the Flash memory  
Depending on the ICP Driver code downloaded in RAM, Flash memory programming can  
be fully customized (number of bytes to program, program locations, or selection of the  
serial communication interface for downloading).  
4.3.2  
In-application programming (IAP)  
This mode uses an IAP Driver program previously programmed in Sector 0 by the user (in  
ICP mode).  
This mode is fully controlled by user software. This allows it to be adapted to the user  
application, (user-defined strategy for entering programming mode, choice of  
communications protocol used to fetch the data to be stored etc.)  
IAP mode can be used to program any memory areas except Sector 0, which is write/erase  
protected to allow recovery in case errors occur during the programming operation.  
4.4  
ICC interface  
ICP needs a minimum of 4 and up to 7 pins to be connected to the programming tool. These  
pins are:  
RESET: device reset  
: device power supply ground  
V
SS  
ICCCLK: ICC output serial clock pin  
ICCDATA: ICC input serial data pin  
ICCSEL: ICC selection  
OSC1: main clock input for external source (not required on devices without  
OSC1/OSC2 pins)  
V
: application board power supply (optional, see Note 3)  
DD  
Note:  
1
2
If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal  
isolation is necessary. As soon as the Programming Tool is plugged to the board, even if an  
ICC session is not in progress, the ICCCLK and ICCDATA pins are not available for the  
application. If they are used as inputs by the application, isolation such as a serial resistor  
has to be implemented in case another device forces the signal. Refer to the Programming  
Tool documentation for recommended resistor values.  
During the ICP session, the programming tool must control the RESET pin. This can lead to  
conflicts between the programming tool and the application reset circuit if it drives more than  
5 mA at high level (push pull output or pull-up resistor<1K). A schottky diode can be used to  
28/246  
ST72344xx, ST72345xx  
Flash program memory  
isolate the application reset circuit in this case. When using a classical RC network with  
R>1K or a reset management IC with open drain output and pull-up resistor>1K, no  
additional components are needed. In all cases the user must ensure that no external reset  
is generated by the application during the ICC session.  
3
4
5
The use of Pin 7 of the ICC connector depends on the Programming Tool architecture. This  
pin must be connected when using most ST Programming Tools (it is used to monitor the  
application power supply). Please refer to the Programming Tool manual.  
Pin 9 has to be connected to the OSC1 pin of the ST7 when the clock is not available in the  
application or if the selected clock option is not programmed in the option byte. ST7 devices  
with multi-oscillator capability need to have OSC2 grounded in this case.  
In “enabled option byte” mode (38-pulse ICC mode), the internal RC oscillator is forced as a  
clock source, regardless of the selection in the option byte.  
Caution:  
During normal operation the ICCCLK pin must be internally or externally pulled- up (external  
pull-up of 10 kΩ mandatory in noisy environment) to avoid entering ICC mode unexpectedly  
during a reset. In the application, even if the pin is configured as output, any reset will put it  
back in input pull-up.  
Figure 6.  
Typical ICC interface  
PROGRAMMING TOOL  
ICC CONNECTOR  
ICC Cable  
ICC CONNECTOR  
HE10 CONNECTOR TYPE  
(See Note 3)  
OPTIONAL  
APPLICATION BOARD  
(See Note 4)  
9
7
5
6
3
1
2
10  
8
4
APPLICATION  
RESET SOURCE  
See Note 2  
10kΩ  
APPLICATION  
POWER SUPPLY  
CL2  
CL1  
APPLICATION  
I/O  
See Note 1  
ST7  
4.5  
Memory protection  
There are two different types of memory protection: Read Out Protection and Write/Erase  
Protection which can be applied individually.  
4.5.1  
Readout protection  
Readout protection, when selected provides a protection against program memory content  
extraction and against write access to Flash memory. Even if no protection can be  
considered as totally unbreakable, the feature provides a very high level of protection for a  
2
general purpose microcontroller. Both program and data E memory are protected.  
29/246  
Flash program memory  
ST72344xx, ST72345xx  
In Flash devices, this protection is removed by reprogramming the option. In this case, both  
2
program and data E memory are automatically erased, and the device can be  
reprogrammed.  
Read-out protection selection depends on the device type:  
In Flash devices it is enabled and removed through the FMP_R bit in the option byte.  
In ROM devices it is enabled by mask option specified in the Option List.  
4.5.2  
Flash write/erase protection  
Write/erase protection, when set, makes it impossible to both overwrite and erase program  
2
memory. It does not apply to E data. Its purpose is to provide advanced security to  
applications and prevent any change being made to the memory content.  
Warning: Once set, Write/erase protection can never be removed. A  
write-protected Flash device is no longer reprogrammable.  
Write/erase protection is enabled through the FMP_W bit in the option byte.  
4.6  
Register description  
4.6.1  
Flash control/status register (FCSR)  
Reset value: 0000 0000 (00h)  
1st RASS Key: 0101 0110 (56h)  
2nd RASS Key: 1010 1110 (AEh)  
7
0
0
0
0
0
0
OPT  
LAT  
PGM  
Read/Write  
Note:  
This register is reserved for programming using ICP, IAP or other programming methods. It  
controls the XFlash programming and erasing operations. For details on XFlash  
programming, refer to the ST7 Flash Programming Reference Manual.  
When an EPB or another programming tool is used (in socket or ICP mode), the RASS keys  
are sent automatically.  
30/246  
ST72344xx, ST72345xx  
Data EEPROM  
5
Data EEPROM  
5.1  
Introduction  
The electrically erasable programmable read only memory can be used as a non-volatile  
backup for storing data. Using the EEPROM requires a basic access protocol described in  
this chapter.  
5.2  
Main features  
Up to 32 bytes programmed in the same cycle  
EEPROM mono-voltage (charge pump)  
Chained erase and programming cycles  
Internal control of the global programming cycle duration  
Wait mode management  
Readout protection  
Figure 7.  
EEPROM block diagram  
HIGH VOLTAGE  
PUMP  
EECSR  
0
0
0
0
0
0
E2LAT E2PGM  
EEPROM  
ROW  
ADDRESS  
DECODER  
4
MEMORY MATRIX  
(1 ROW = 32 x 8 BITS)  
DECODER  
128  
128  
DATA  
MULTIPLEXER  
32 x 8 BITS  
4
4
DATA LATCHES  
ADDRESS BUS  
DATA BUS  
5.3  
Memory access  
The Data EEPROM memory read/write access modes are controlled by the E2LAT bit of the  
EEPROM Control/Status register (EECSR). The flowchart in Figure 8 describes these  
different memory access modes.  
31/246  
Data EEPROM  
ST72344xx, ST72345xx  
Read operation (E2LAT = 0)  
The EEPROM can be read as a normal ROM location when the E2LAT bit of the EECSR  
register is cleared.  
On this device, Data EEPROM can also be used to execute machine code. Take care not to  
write to the Data EEPROM while executing from it. This would result in an unexpected code  
being executed.  
Write operation (E2LAT = 1)  
To access the write mode, the E2LAT bit has to be set by software (the E2PGM bit remains  
cleared). When a write access to the EEPROM area occurs, the value is latched inside the  
32 data latches according to its address.  
When E2PGM bit is set by the software, all the previous bytes written in the data latches (up  
to 32) are programmed in the EEPROM cells. The effective high address (row) is  
determined by the last EEPROM write sequence. To avoid wrong programming, the user  
must take care that all the bytes written between two programming sequences have the  
same high address: only the five Least Significant Bits of the address can change.  
The programming cycle is fully completed when the E2PGM bit is cleared.  
Note:  
Care should be taken during the programming cycle. Writing to the same memory location  
will over-program the memory (logical AND between the two write access data result)  
because the data latches are only cleared at the end of the programming cycle and by the  
falling edge of the E2LAT bit.  
It is not possible to read the latched data.  
This note is illustrated by the Figure 10.  
Figure 8.  
Data EEPROM programming flowchart  
READ MODE  
E2LAT = 0  
WRITE MODE  
E2LAT = 1  
E2PGM = 0  
E2PGM = 0  
WRITE UP TO 32 BYTES  
IN EEPROM AREA  
(with the same 11 MSB of the address)  
READ BYTES  
IN EEPROM AREA  
START PROGRAMMING CYCLE  
E2LAT=1  
E2PGM=1 (set by software)  
0
1
E2PGM  
CLEARED BY HARDWARE  
32/246  
ST72344xx, ST72345xx  
Figure 9.  
Data EEPROM  
Data EEPROM write operation  
Row / Byte 0  
1
2
3
... 30 31  
Physical address  
Row  
0
1
00h...1Fh  
20h...3Fh  
definition  
...  
N
Nx20h...Nx20h+1Fh  
Read operation impossible  
Read operation possible  
Programming cycle  
PHASE 2  
Waiting E2PGM and E2LAT to fall  
Byte 1 Byte 2  
PHASE 1  
Byte 32  
Writing data latches  
E2LAT bit  
Set by USER application  
Cleared by hardware  
E2PGM bit  
Note:  
If a programming cycle is interrupted (by reset action), the integrity of the data in memory  
will not be guaranteed.  
5.4  
Power saving modes  
5.4.1  
Wait mode  
The data EEPROM can enter Wait mode on execution of the WFI instruction of the  
microcontroller or when the microcontroller enters Active Halt mode.The data EEPROM will  
immediately enter this mode if there is no programming in progress, otherwise the data  
EEPROM will finish the cycle and then enter Wait mode.  
5.4.2  
5.4.3  
Active-halt mode  
Refer to Wait mode.  
Halt mode  
The data EEPROM immediately enters Halt mode if the microcontroller executes the Halt  
instruction. Therefore the EEPROM will stop the function in progress, and data may be  
corrupted.  
5.5  
Access error handling  
If a read access occurs while E2LAT = 1, then the data bus will not be driven.  
If a write access occurs while E2LAT = 0, then the data on the bus will not be latched.  
If a programming cycle is interrupted (by reset action), the integrity of the data in memory  
will not be guaranteed.  
33/246  
Data EEPROM  
ST72344xx, ST72345xx  
5.6  
Data EEPROM readout protection  
The readout protection is enabled through an option bit (see option byte section).  
When this option is selected, the programs and data stored in the EEPROM memory are  
protected against read-out (including a rewrite protection). In Flash devices, when this  
protection is removed by reprogramming the option byte, the entire Program memory and  
EEPROM is first automatically erased.  
Note:  
Both program memory and data EEPROM are protected using the same option bit.  
Figure 10. Data EEPROM programming cycle  
READ OPERATION NOT POSSIBLE  
READ OPERATION POSSIBLE  
INTERNAL  
PROGRAMMING  
VOLTAGE  
ERASE CYCLE  
WRITE CYCLE  
WRITE OF  
DATA  
LATCHES  
t
PROG  
E2LAT  
E2PGM  
I bit in CC register  
1)  
All interrupts must be masked  
Note 1: refer to Programming of EEPROM data on page 243  
34/246  
ST72344xx, ST72345xx  
Data EEPROM  
5.7  
Register description  
5.7.1  
EEPROM control/status register (EECSR)  
Reset value: 0000 0000 (00h)  
7
0
0
0
0
0
0
0
E2LAT  
E2PGM  
Read/Write  
Bits 7:2 = Reserved, forced by hardware to 0.  
Bit 1 = E2LAT Latch Access Transfer  
This bit is set by software. It is cleared by hardware at the end of the programming  
cycle. It can only be cleared by software if the E2PGM bit is cleared.  
0: Read mode  
1: Write mode  
Bit 0 = E2PGM Programming control and status  
This bit is set by software to begin the programming cycle. At the end of the  
programming cycle, this bit is cleared by hardware.  
0: Programming finished or not yet started  
1: Programming cycle is in progress  
Note:  
If the E2PGM bit is cleared during the programming cycle, the memory data is not  
guaranteed  
Table 5.  
Data EEPROM register map and reset values  
Address Register  
7
6
5
4
3
2
1
0
(Hex.)  
label  
EECSR  
Reset value  
E2LAT E2PGM  
0020h  
0
0
0
0
0
0
0
0
35/246  
Central processing unit  
ST72344xx, ST72345xx  
6
Central processing unit  
6.1  
Introduction  
This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-  
bit data manipulation.  
6.2  
Main features  
Enable executing 63 basic instructions  
Fast 8-bit by 8-bit multiply  
17 main addressing modes (with indirect addressing mode)  
Two 8-bit index registers  
16-bit stack pointer  
Low power Halt and Wait modes  
Priority maskable hardware interrupts  
Non-maskable software/hardware interrupts  
6.3  
CPU registers  
The six CPU registers shown in Figure 11 are not present in the memory mapping and are  
accessed by specific instructions.  
Accumulator (A)  
The Accumulator is an 8-bit general purpose register used to hold operands and the results  
of the arithmetic and logic calculations and to manipulate data.  
Index Registers (X and Y)  
These 8-bit registers are used to create effective addresses or as temporary storage areas  
for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to  
indicate that the following instruction refers to the Y register.)  
The Y register is not affected by the interrupt automatic procedures.  
Program Counter (PC)  
The program counter is a 16-bit register containing the address of the next instruction to be  
executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is  
the LSB) and PCH (Program Counter High which is the MSB).  
36/246  
ST72344xx, ST72345xx  
Figure 11. CPU registers  
Central processing unit  
7
0
0
0
ACCUMULATOR  
RESET VALUE = XXh  
7
X INDEX REGISTER  
Y INDEX REGISTER  
RESET VALUE = XXh  
7
RESET VALUE = XXh  
PCL  
PCH  
7
8
15  
0
PROGRAM COUNTER  
RESET VALUE = RESET VECTOR @ FFFEh-FFFFh  
7
1
0
1
1
I1 H I0 N  
Z
X
C
X
CONDITION CODE REGISTER  
STACK POINTER  
RESET VALUE =  
8
1
1 X 1 X  
15  
7
0
RESET VALUE = STACK HIGHER ADDRESS  
X = Undefined Value  
6.3.1  
Condition code register (CC)  
Reset value: 111x1xxx  
7
0
1
1
I1  
H
I0  
N
Z
C
Read/Write  
The 8-bit Condition Code register contains the interrupt masks and four flags representative  
of the result of the instruction just executed. This register can also be handled by the PUSH  
and POP instructions.  
These bits can be individually tested and/or controlled by specific instructions.  
Arithmetic management bits  
Bit 4 = H Half carry.  
This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during  
an ADD or ADC instructions. It is reset by hardware during the same instructions.  
0: No half carry has occurred.  
1: A half carry has occurred.  
This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD  
arithmetic subroutines.  
37/246  
Central processing unit  
Bit 2 = N Negative.  
ST72344xx, ST72345xx  
This bit is set and cleared by hardware. It is representative of the result sign of the last  
th  
arithmetic, logical or data manipulation. It’s a copy of the result 7 bit.  
0: The result of the last operation is positive or null.  
1: The result of the last operation is negative  
(that is, the most significant bit is a logic 1).  
This bit is accessed by the JRMI and JRPL instructions.  
Bit 1 = Z Zero.  
This bit is set and cleared by hardware. This bit indicates that the result of the last  
arithmetic, logical or data manipulation is zero.  
0: The result of the last operation is different from zero.  
1: The result of the last operation is zero.  
This bit is accessed by the JREQ and JRNE test instructions.  
Bit 0 = C Carry/borrow.  
This bit is set and cleared by hardware and software. It indicates an overflow or an  
underflow has occurred during the last arithmetic operation.  
0: No overflow or underflow has occurred.  
1: An overflow or underflow has occurred.  
This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC  
instructions. It is also affected by the “bit test and branch”, shift and rotate instructions.  
Interrupt management bits  
Bits 5,3 = I1, I0 Interrupt  
The combination of the I1 and I0 bits gives the current interrupt software priority.  
Table 6.  
Priority  
Interrupt software priority  
I1  
I0  
Level 0 (main)  
Level 1  
1
0
0
1
0
1
0
1
Level 2  
Level 3 (= interrupt disable)  
These two bits are set/cleared by hardware when entering in interrupt. The loaded value is  
given by the corresponding bits in the interrupt software priority registers (IxSPR). They can  
be also set/cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP  
instructions.  
See the interrupt management chapter for more details.  
38/246  
ST72344xx, ST72345xx  
Central processing unit  
6.3.2  
Stack pointer (SP)  
Reset value: 01 FFh  
15  
8
0
0
0
0
0
0
0
1
Read/Write  
7
0
SP7  
SP6  
SP5  
SP4  
SP3  
SP2  
SP1  
SP0  
Read/Write  
The Stack pointer is a 16-bit register which is always pointing to the next free location in the  
stack. It is then decremented after data has been pushed onto the stack and incremented  
before data is popped from the stack (see Figure 12).  
Since the stack is 256 bytes deep, the 8 most significant bits are forced by hardware.  
Following an MCU Reset, or after a Reset Stack Pointer instruction (RSP), the Stack pointer  
contains its reset value (the SP7 to SP0 bits are set) which is the stack higher address.  
The least significant byte of the Stack pointer (called S) can be directly accessed by a LD  
instruction.  
Note:  
When the lower limit is exceeded, the Stack pointer wraps around to the stack upper limit,  
without indicating the stack overflow. The previously stored information is then overwritten  
and therefore lost. The stack also wraps in case of an underflow.  
The stack is used to save the return address during a subroutine call and the CPU context  
during an interrupt. The user may also directly manipulate the stack by means of the PUSH  
and POP instructions. In the case of an interrupt, the PCL is stored at the first location  
pointed to by the SP. Then the other registers are stored in the next locations as shown in  
Figure 12.  
When an interrupt is received, the SP is decremented and the context is pushed on the  
stack.  
On return from interrupt, the SP is incremented and the context is popped from the  
stack.  
A subroutine call occupies two locations and an interrupt five locations in the stack area.  
39/246  
Central processing unit  
Figure 12. Stack manipulation example  
ST72344xx, ST72345xx  
CALL  
Subroutine  
RET  
or RSP  
PUSH Y  
POP Y  
IRET  
Interrupt  
Event  
@ 0100h  
SP  
SP  
SP  
Y
CC  
A
CC  
A
CC  
A
X
X
X
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
SP  
SP  
PCH  
PCL  
PCH  
PCL  
SP  
@ 01FFh  
Stack Higher Address = 01FFh  
0100h  
Stack Lower Address =  
40/246  
ST72344xx, ST72345xx  
Supply, reset and clock management  
7
Supply, reset and clock management  
The device includes a range of utility features for securing the application in critical  
situations (for example in case of a power brown-out), and reducing the number of external  
components.  
7.1  
Main features  
Clock management  
1 MHz high-accuracy internal RC oscillator (enabled by option byte)  
1 to 16 MHz External crystal/ceramic resonator (enabled by option byte)  
External Clock Input (enabled by option byte)  
PLL for multiplying the frequency by 8 or 4 (enabled by option byte)  
Reset sequence manager (RSM)  
System integrity management (SI)  
Main supply low voltage detection (LVD) with reset generation (enabled by option  
byte)  
Auxiliary voltage detector (AVD) with interrupt capability for monitoring the main  
supply (enabled by option byte)  
Figure 13. Clock, reset and supply block diagram  
RCCRH/RCCRL Register  
MAIN CLOCK  
CONTROLLER  
f
CPU  
CR9 CR8 CR7 CR6 CR5 CR4 CR3 CR2 CR1 CR0  
WITH REAL-TIME  
CLOCK(MCC/RTC)  
Tunable  
External Clock (0.5-8 MHz)  
RC Oscillator  
RC Clock (1 MHz)  
1 MHz  
f
OSC2  
8 MHz  
PLL 1 MHz --> 8 MHz  
/2  
DIVIDER  
/2  
4 MHz  
PLL 1 MHz --> 4 MHz  
DIVIDER*  
PLL Clock 8/4 MHz  
OSC Option bit  
PLLx4x8  
Option bit  
DIV2EN  
OSC, PLLOFF  
OSCRANGE[2:0]  
Option bits  
Option bit*  
OSC  
1-16 MHz  
OSC1  
OSC2  
Crystal OSC (0.5-8 MHz)  
/2  
DIVIDER  
*not available if PLLx4 is enabled  
41/246  
Supply, reset and clock management  
ST72344xx, ST72345xx  
7.2  
Phase locked loop  
The PLL can be used to multiply a 1 MHz frequency from the RC oscillator or the external  
clock by 4 or 8 to obtain f of 4 or 8 MHz. The PLL is enabled and the multiplication factor  
OSC  
of 4 or 8 is selected by 3 option bits. Refer to Table 7 for the PLL configuration depending on  
the required frequency and the application voltage. Refer to Section 15.1 for the option byte  
description.  
Table 7.  
PLL configurations  
Target ratio  
VDD  
PLL ratio  
DIV2  
x4(1)  
x4  
2.7 V - 3.65 V  
x4  
x8  
x8  
OFF  
ON  
3.3 V - 5.5 V  
x8  
OFF  
1. For a target ratio of x4 between 3.3 V - 3.65 V, this is the recommended configuration.  
Figure 14. PLL output frequency timing diagram  
LOCKED bit set  
4/8 x  
input  
freq.  
tSTAB  
tLOCK  
tSTARTUP  
t
When the PLL is started, after reset or wakeup from Halt mode or AWUFH mode, it outputs  
the clock after a delay of t  
.
STARTUP  
When the PLL output signal reaches the operating frequency, the LOCKED bit in the  
SICSCR register is set. Full PLL accuracy (ACC ) is reached after a stabilization time of  
PLL  
t
(see Figure 14).  
STAB  
Refer to Section 7.6.5 on page 51 for a description of the LOCKED bit in the SICSR register.  
Caution:  
Caution:  
The PLL is not recommended for applications where timing accuracy is required.  
When the RC oscillator and the PLL are enabled, it is recommended to calibrate this clock  
through the RCCRH and RCCRL registers.  
42/246  
ST72344xx, ST72345xx  
Supply, reset and clock management  
7.3  
Multioscillator (MO)  
The main clock of the ST7 can be generated by three different source types coming from the  
multioscillator block:  
an external source  
4 crystal or ceramic resonator oscillators  
an internal high-accuracy RC oscillator  
Each oscillator is optimized for a given frequency range in terms of consumption and is  
selectable through the option byte. The associated hardware configurations are shown in  
Table 8. Refer to the electrical characteristics section for more details.  
Caution:  
The OSC1 and/or OSC2 pins must not be left unconnected. For the purposes of Failure  
Mode and Effect Analysis, it should be noted that if the OSC1 and/or OSC2 pins are left  
unconnected, the ST7 main oscillator may start and, in this configuration, could generate an  
f
clock frequency in excess of the allowed maximum (>16 MHz.), putting the ST7 in an  
OSC  
unsafe/undefined state. The product behavior must therefore be considered undefined when  
the OSC pins are left unconnected.  
7.3.1  
7.3.2  
External clock source  
In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle  
has to drive the OSC1 pin while the OSC2 pin is tied to ground.  
Crystal/ceramic oscillators  
This family of oscillators has the advantage of producing a very accurate rate on the main  
clock of the ST7. The selection within a list of 4 oscillators with different frequency ranges  
has to be done by option byte in order to reduce consumption (refer to Section 15.1 on page  
231 for more details on the frequency ranges). In this mode of the multi-oscillator, the  
resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. The loading  
capacitance values must be adjusted according to the selected oscillator.  
These oscillators are not stopped during the reset phase to avoid losing time in the oscillator  
startup phase.  
43/246  
Supply, reset and clock management  
ST72344xx, ST72345xx  
Table 8.  
ST7 clock sources  
Hardware configuration  
ST7  
OSC1  
OSC2  
EXTERNAL  
SOURCE  
ST7  
OSC1  
OSC2  
C
C
L2  
L1  
LOAD  
CAPACITORS  
ST7  
OSC1  
OSC2  
44/246  
ST72344xx, ST72345xx  
Supply, reset and clock management  
7.3.3  
Internal RC oscillator  
The device contains a high-precision internal RC oscillator. It must be calibrated to obtain  
the frequency required in the application. This is done by software writing a calibration value  
in the RCCRH and RCCRL Registers.  
Whenever the microcontroller is reset, the RCCR returns to its default value (FF 03h), i.e.  
each time the device is reset, the calibration value must be loaded in the RCCRH and  
RCCRL registers. Predefined calibration values are stored in XFlash for 3 and 5V V  
supply voltages at 25 °C, as shown in the following table:  
DD  
Table 9.  
Calibration values  
Conditions  
DD = 5 V  
RCCR  
Address  
V
RCCR0  
TA = 25 °C  
BEE0, BEE1  
fRC = 1 MHz  
VDD = 3 V  
RCCR1  
TA = 25 °C  
BEE4, BEE5  
fRC = 1 MHz  
Note:  
To improve clock stability, it is recommended to place a decoupling capacitor between the  
and V pins.  
V
DD  
SS  
These two 10-bit values are systematically programmed by ST.  
RCCR0 and RCCR1 calibration values will be erased if the read-out protection bit is reset  
after it has been set. See Memory protection on page 29.  
Caution:  
If the voltage or temperature conditions change in the application, the frequency may need  
to be recalibrated.  
Refer to application note AN1324 for information on how to calibrate the RC frequency using  
an external reference signal.  
7.4  
Register description  
7.4.1  
RC control register (RCCRH)  
Reset value: 1111 1111 (FFh)  
7
0
CR9  
CR8  
CR7  
CR6  
Read/Write  
Bits 7:0 = CR[9:2] RC oscillator frequency adjustment bits  
CR5  
CR4  
CR3  
CR2  
45/246  
Supply, reset and clock management  
ST72344xx, ST72345xx  
7.4.2  
RC control register (RCCRL)  
Reset value: 0000 0011 (03h)  
7
0
0
0
0
0
0
0
CR1  
CR0  
Read/Write  
Bits 7:2 = Reserved, must be kept cleared.  
Bits 1:0 = CR[1:0] RC Oscillator Frequency Adjustment Bits  
This 10-bit value must be written immediately after reset to adjust the RC oscillator  
frequency in order to obtain the specified accuracy. The application can store the  
correct value for each voltage range in EEPROM and write it to this register at startup.  
0000h = maximum available frequency  
03FFh = lowest available frequency  
Note:  
To tune the oscillator, write a series of different values in the register until the correct  
frequency is reached. The fastest method is to use a dichotomy starting with 200h.  
7.5  
Reset sequence manager (RSM)  
7.5.1  
Introduction  
The reset sequence manager includes three reset sources as shown in Figure 16:  
External RESET source pulse  
Internal LVD reset (low voltage detection)  
Internal watchdog reset  
Note:  
A reset can also be triggered following the detection of an illegal opcode or prebyte code.  
Refer to Section 12.2.1: Illegal opcode reset on page 195 for further details.  
These sources act on the RESET pin and it is always kept low during the delay phase.  
The reset service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory  
map.  
The basic reset sequence consists of 3 phases as shown in Figure 15:  
Active phase depending on the reset source  
256 or 4096 CPU clock cycle delay (selected by option byte)  
reset vector fetch  
Caution:  
When the ST7 is unprogrammed or fully erased, the Flash is blank and the reset vector is  
not programmed. For this reason, it is recommended to keep the RESET pin in low state  
until programming mode is entered, in order to avoid unwanted behavior.  
The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilise and ensures that  
recovery has taken place from the Reset state. The shorter or longer clock cycle delay  
should be selected by option byte to correspond to the stabilization time of the external  
oscillator used in the application (see Section 15.1 on page 231).  
The reset vector fetch phase duration is 2 clock cycles.  
46/246  
ST72344xx, ST72345xx  
Figure 15. reset sequence phases  
Supply, reset and clock management  
RESET  
Internal Reset  
256 or 4096 clock cycles  
Fetch  
vector  
Active phase  
7.5.2  
Asynchronous external RESET pin  
The RESET pin is both an input and an open-drain output with integrated R weak pull-up  
ON  
resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It  
can be pulled low by external circuitry to reset the device. See Section 13 on page 198 for  
more details.  
A reset signal originating from an external source must have a duration of at least t  
h(RSTL)in  
in order to be recognized (see Figure 17). This detection is asynchronous and therefore the  
MCU can enter reset state even in Halt mode.  
Figure 16. Reset block diagram  
VDD  
RON  
INTERNAL  
RESET  
Filter  
RESET  
WATCHDOG RESET  
ILLEGAL OPCODE RESET  
LVD RESET  
PULSE  
GENERATOR  
(1)  
1. See “Illegal opcode reset” on page 198.for more details on illegal opcode reset conditions.  
The RESET pin is an asynchronous signal which plays a major role in EMS performance. In  
a noisy environment, it is recommended to follow the guidelines mentioned in the electrical  
characteristics section.  
If the external RESET pulse is shorter than t  
(see short ext. Reset in Figure 17),  
w(RSTL)out  
the signal on the RESET pin may be stretched. Otherwise the delay will not be applied (see  
long ext. Reset in Figure 17). Starting from the external RESET pulse recognition, the  
device RESET pin acts as an output that is pulled low during at least t  
.
w(RSTL)out  
7.5.3  
External power-on reset  
If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must  
ensure by means of an external reset circuit that the reset signal is held low until V is over  
DD  
the minimum level specified for the selected f  
frequency (see Operating conditions on  
OSC  
page 201).  
A proper reset signal for a slow rising V supply can generally be provided by an external  
DD  
RC network connected to the RESET pin.  
47/246  
Supply, reset and clock management  
ST72344xx, ST72345xx  
7.5.4  
Internal low-voltage detector (LVD) reset  
Two different reset sequences caused by the internal LVD circuitry can be distinguished:  
Power-on reset  
Voltage-drop reset  
The device RESET pin acts as an output that is pulled low when V <V (rising edge) or  
DD  
IT+  
V
<V (falling edge) as shown in Figure 17.  
DD  
IT-  
The LVD filters spikes on V larger than t  
to avoid parasitic resets.  
g(VDD)  
DD  
Note:  
It is recommended to make sure that the V supply voltage rises monotonously when the  
DD  
device is exiting from Reset, to ensure the application functions properly.  
7.5.5  
Internal watchdog reset  
The reset sequence generated by a internal Watchdog counter overflow is shown in  
Figure 17.  
Starting from the Watchdog counter underflow, the device RESET pin acts as an output that  
is pulled low during at least t  
.
w(RSTL)out  
Figure 17. Reset sequences  
V
DD  
VIT+(LVD)  
VIT-(LVD)  
LVD  
RESET  
SHORT EXT.  
RESET  
LONG EXT.  
RESET  
WATCHDOG  
RESET  
Run  
Run  
Run  
Run  
Run  
ACTIVE  
PHASE  
ACTIVE  
PHASE  
ACTIVE  
PHASE  
ACTIVE PHASE  
t
t
t
w(RSTL)out  
w(RSTL)out  
t
w(RSTL)out  
t
h(RSTL)in  
h(RSTL)in  
DELAY  
EXTERNAL  
RESET  
SOURCE  
RESET PIN  
WATCHDOG  
RESET  
WATCHDOG UNDERFLOW  
INTERNAL RESET (256 or 4096 TCPU  
)
VECTOR FETCH  
7.6  
System integrity management (SI)  
The system integrity management block contains the low-voltage detector (LVD) and  
auxiliary-voltage detector (AVD) functions. It is managed by the SICSR register.  
Note:  
A reset can also be triggered following the detection of an illegal opcode or prebyte code.  
Refer to Illegal opcode reset on page 195 for further details.  
48/246  
ST72344xx, ST72345xx  
Supply, reset and clock management  
7.6.1  
Low-voltage detector (LVD)  
The low-voltage detector function (LVD) generates a static reset when the V supply  
DD  
voltage is below a V reference value. This means that it secures the power-up as well as  
IT-  
the power-down keeping the ST7 in reset.  
The V reference value for a voltage drop is lower than the V reference value for power-  
IT-  
IT+  
on in order to avoid a parasitic reset when the MCU starts running and sinks current on the  
supply (hysteresis).  
The LVD Reset circuitry generates a reset when V is below:  
DD  
V
V
when V is rising  
DD  
IT+  
IT-  
when V is falling  
DD  
The LVD function is illustrated in Figure 18.  
The LVD is an optional function which can be selected by option byte.  
LVD threshold configuration: the voltage threshold can be configured by option byte to be  
Note:  
low, medium or high. The configuration should be chosen depending on the f  
and V  
OSC  
DD  
parameters in the application. When correctly configured, the LVD ensures safe power-on  
and power-off conditions for the microcontroller without using any external components.  
To determine which LVD thresholds to use:  
Define the minimum operating voltage for the application V  
APP(min)  
Refer to the Electrical Characteristics section to get the minimum operating voltage for  
the MCU at the application frequency V  
.
DD(min)  
Select the LVD threshold that ensures that the internal reset is released at V  
APP(min)  
and activated at V  
DD(MCUmin)  
During a low-voltage detector reset, the RESET pin is held low, thus permitting the MCU to  
reset other devices.  
Figure 18. Low voltage detector vs. reset  
VDD  
Vhys  
VIT+(LVD)  
VIT-((LVD)  
RESET  
7.6.2  
Auxiliary-voltage detector (AVD)  
The AVD is used to provide the application with an early warning of a drop in voltage. If  
enabled, an interrupt can be generated allowing software to shut down safely before the LVD  
resets the microcontroller. See Figure 19.  
Note:  
The AVD function is active only if the LVD is enabled through the option byte (see 15.1:  
Option bytes on page 231). The activation level of the AVD is fixed at around 0.5 mV above  
the selected LVD threshold.  
49/246  
Supply, reset and clock management  
In the case of a drop in voltage below V  
ST72344xx, ST72345xx  
, the AVDF flag is set and an interrupt request  
IT-(AVD)  
is issued.  
If V rises above the V  
threshold voltage the AVDF bit is cleared automatically by  
IT+(AVD)  
DD  
hardware. No interrupt is generated, and therefore software should poll the AVDF bit to  
detect when the voltage has risen, and resume normal processing.  
Figure 19. Using the AVD to monitor V  
VDD  
DD  
Early warning interrupt  
(Power has dropped, MCU not  
not yet in reset)  
Vhys  
VIT+(AVD)  
VIT-(AVD)  
VIT-(LVD)  
1
0
AVDF bit  
0
RESET VALUE  
1
AVD INTERRUPT  
REQUEST  
IF AVDIE bit = 1  
INTERRUPT PROCESS  
LVD RESET  
7.6.3  
7.6.4  
Low-power modes  
Table 10. Low-power mode description  
Mode  
Description  
Wait  
Halt  
No effect on SI. AVD interrupts cause the device to exit from Wait mode.  
The SICSR register is frozen.  
Interrupts  
The AVD interrupt event generates an interrupt if the corresponding AVDIE Bit is set and the  
interrupt mask in the CC register is reset (RIM instruction).  
Table 11. Interrupt event  
Enable  
Control bit  
Exit from  
Wait  
Exit from  
Halt  
Interrupt event  
Event flag  
AVD event  
AVDF  
AVDIE  
Yes  
No  
50/246  
ST72344xx, ST72345xx  
Supply, reset and clock management  
7.6.5  
Register description  
System integrity (SI) control/status register (SICSR)  
Reset value: 000x 000x (xxh)  
7
0
0
PDVDIE  
AVDF  
LVDRF  
LOCKED  
0
0
WDGRF  
Read/Write  
Bit 7 = Reserved, must be kept cleared.  
Bit 6 = AVDIE Voltage detector interrupt enable  
This bit is set and cleared by software. It enables an interrupt to be generated when the  
AVDF flag goes from 0 to 1. The pending interrupt information is automatically cleared  
when software enters the AVD interrupt routine.  
0: PDVD interrupt disabled  
1: PDVD interrupt enabled  
Bit 5 = AVDF Voltage Detector flag  
This read-only bit is set and cleared by hardware. If the AVDIE bit is set, an interrupt  
request is generated when the AVDF bit goes from 0 to 1. Refer to Figure 19 and to  
Section 7.6.2 for additional details.  
0: V over V  
threshold  
threshold  
IT-(AVD)  
DD  
IT+(AVD)  
1: V under V  
DD  
Bit 4 = LVDRF LVD reset flag  
This bit indicates that the last Reset was generated by the LVD block. It is set by  
hardware (LVD reset) and cleared by software (writing zero). See WDGRF flag  
description for more details. When the LVD is disabled by OPTION BYTE, the LVDRF  
bit value is undefined.  
Bit 3 = LOCKED PLL Locked Flag  
This bit is set and cleared by hardware. It is set automatically when the PLL reaches its  
operating frequency.  
0: PLL not locked  
1: PLL locked  
Bits 2:1 = Reserved, must be kept cleared.  
Bit 0 = WDGRF Watchdog reset flag  
This bit indicates that the last Reset was generated by the Watchdog peripheral. It is  
set by hardware (watchdog reset) and cleared by software (writing zero) or an LVD  
Reset (to ensure a stable cleared state of the WDGRF flag when CPU starts).  
Combined with the LVDRF flag information, the flag description is given by the following  
table.  
Table 12. LVDRF and WDGRF description  
Reset sources  
LVDRF  
WDGRF  
External RESET pin  
Watchdog  
0
0
1
0
1
LVD  
X
51/246  
Supply, reset and clock management  
Application notes  
ST72344xx, ST72345xx  
The LVDRF flag is not cleared when another reset type occurs (external or watchdog), the  
LVDRF flag remains set to keep trace of the original failure.  
In this case, a watchdog reset can be detected by software while an external reset can not.  
Caution:  
When the LVD is not activated with the associated option byte, the WDGRF flag can not be  
used in the application.  
52/246  
ST72344xx, ST72345xx  
Interrupts  
8
Interrupts  
8.1  
Introduction  
The ST7 enhanced interrupt management provides the following features:  
Hardware interrupts  
Software interrupt (TRAP)  
Nested or concurrent interrupt management with flexible interrupt priority and level  
management:  
Up to 4 software programmable nesting levels  
Up to 16 interrupt vectors fixed by hardware  
2 non maskable events: reset, TRAP  
This interrupt management is based on:  
Bit 5 and bit 3 of the CPU CC register (I1:0),  
Interrupt software priority registers (ISPRx),  
Fixed interrupt vector addresses located at the high addresses of the memory map  
(FFE0h to FFFFh) sorted by hardware priority order.  
This enhanced interrupt controller guarantees full upward compatibility with the standard  
(not nested) ST7 interrupt controller.  
8.2  
Masking and processing flow  
The interrupt masking is managed by the I1 and I0 bits of the CC register and the ISPRx  
registers which give the interrupt software priority level of each interrupt vector (see  
Table 6). The processing flow is shown in Figure 20.  
When an interrupt request has to be serviced:  
Normal processing is suspended at the end of the current instruction execution.  
The PC, X, A and CC registers are saved onto the stack.  
I1 and I0 bits of CC register are set according to the corresponding values in the ISPRx  
registers of the serviced interrupt vector.  
The PC is then loaded with the interrupt vector of the interrupt to service and the first  
instruction of the interrupt service routine is fetched (refer to “Interrupt Mapping” table  
for vector addresses).  
The interrupt service routine should end with the IRET instruction which causes the  
contents of the saved registers to be recovered from the stack.  
Note:  
As a consequence of the IRET instruction, the I1 and I0 bits will be restored from the stack  
and the program in the previous level will resume.  
53/246  
Interrupts  
ST72344xx, ST72345xx  
Table 13. Interrupt software priority levels  
Interrupt software priority  
Level  
I1  
I0  
1
0
0
1
0
1
0
1
Level 0 (main)  
Level 1  
Low  
Level 2  
High  
Level 3 (= interrupt disable)  
Figure 20. Interrupt processing flowchart  
PENDING  
INTERRUPT  
Y
Y
RESET  
TRAP  
N
Interrupt has the same or a  
lower software priority  
than current one  
N
I1:0  
FETCH NEXT  
INSTRUCTION  
THE INTERRUPT  
STAYS PENDING  
Y
“IRET”  
N
RESTORE PC, X, A, CC  
FROM STACK  
EXECUTE  
INSTRUCTION  
STACK PC, X, A, CC  
LOAD I1:0 FROM INTERRUPT SW REG.  
LOAD PC FROM INTERRUPT VECTOR  
Servicing pending interrupts  
As several interrupts can be pending at the same time, the interrupt to be taken into account  
is determined by the following two-step process:  
the highest software priority interrupt is serviced,  
if several interrupts have the same software priority then the interrupt with the highest  
hardware priority is serviced first.  
Figure 21 describes this decision process.  
Figure 21. Priority decision process  
PENDING  
INTERRUPTS  
Different  
Same  
SOFTWARE  
PRIORITY  
HIGHEST SOFTWARE  
PRIORITY SERVICED  
HIGHEST HARDWARE  
PRIORITY SERVICED  
54/246  
ST72344xx, ST72345xx  
Interrupts  
When an interrupt request is not serviced immediately, it is latched and then processed  
when its software priority combined with the hardware priority becomes the highest one.  
Note:  
1
2
The hardware priority is exclusive while the software one is not. This allows the previous  
process to succeed with only one interrupt.  
TLI, reset and TRAP can be considered as having the highest software priority in the  
decision process.  
Different interrupt vector sources  
Two interrupt source types are managed by the ST7 interrupt controller: the non-maskable  
type (reset, TRAP) and the maskable type (external or from internal peripherals).  
Non-maskable sources  
These sources are processed regardless of the state of the I1 and I0 bits of the CC register  
(see Figure 20). After stacking the PC, X, A and CC registers (except for reset), the  
corresponding vector is loaded in the PC register and the I1 and I0 bits of the CC are set to  
disable interrupts (level 3). These sources allow the processor to exit Halt mode.  
TRAP (non-maskable software interrupt)  
This software interrupt is serviced when the TRAP instruction is executed. It will be serviced  
according to the flowchart in Figure 20.  
reset  
The reset source has the highest priority in the ST7. This means that the first current routine  
has the highest software priority (level 3) and the highest hardware priority.  
See the reset chapter for more details.  
Maskable sources  
Maskable interrupt vector sources can be serviced if the corresponding interrupt is enabled  
and if its own interrupt software priority (in ISPRx registers) is higher than the one currently  
being serviced (I1 and I0 in CC register). If any of these two conditions is false, the interrupt  
is latched and thus remains pending.  
External interrupts  
External interrupts allow the processor to exit from Halt low-power mode. External  
interrupt sensitivity is software selectable through the External Interrupt Control register  
(EICR).  
External interrupt triggered on edge will be latched and the interrupt request  
automatically cleared upon entering the interrupt service routine.  
If several input pins of a group connected to the same interrupt line are selected  
simultaneously, these will be logically ORed.  
Peripheral interrupts  
Usually the peripheral interrupts cause the MCU to exit from Halt mode except those  
mentioned in the “Interrupt Mapping” table. A peripheral interrupt occurs when a  
specific flag is set in the peripheral status registers and if the corresponding enable bit  
is set in the peripheral control register.  
The general sequence for clearing an interrupt is based on an access to the status  
register followed by a read or write to an associated register.  
Note:  
The clearing sequence resets the internal latch. A pending interrupt (i.e. waiting for being  
serviced) will therefore be lost if the clear sequence is executed.  
55/246  
Interrupts  
ST72344xx, ST72345xx  
8.3  
Interrupts and low-power modes  
All interrupts allow the processor to exit the Wait low-power mode. On the contrary, only  
external and other specified interrupts allow the processor to exit from the Halt modes (see  
column “Exit from Halt” in “Interrupt Mapping” table). When several pending interrupts are  
present while exiting Halt mode, the first one serviced can only be an interrupt with exit from  
Halt mode capability and it is selected through the same decision process shown in  
Figure 21.  
Note:  
If an interrupt, that is not able to Exit from Halt mode, is pending with the highest priority  
when exiting Halt mode, this interrupt is serviced after the first one serviced.  
8.4  
Concurrent & nested management  
The following Figure 22 and Figure 23 show two different interrupt management modes. The  
first is called concurrent mode and does not allow an interrupt to be interrupted, unlike the  
nested mode in Figure 23. The interrupt hardware priority is given in this order from the  
lowest to the highest: MAIN, IT4, IT3, IT2, IT1, IT0, TLI. The software priority is given for  
each interrupt.  
Warning: A stack overflow may occur without notifying the software of  
the failure.  
Figure 22. Concurrent interrupt management  
SOFTWARE  
PRIORITY  
LEVEL  
I1  
I0  
TRAP  
3
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
IT0  
3
IT1  
IT1  
3
IT2  
3
IT3  
3
RIM  
IT4  
3
MAIN  
MAIN  
3/0  
11 / 10  
10  
56/246  
ST72344xx, ST72345xx  
Figure 23. Nested interrupt management  
Interrupts  
SOFTWARE  
PRIORITY  
LEVEL  
I1  
I0  
TRAP  
3
1 1  
IT0  
3
1 1  
0 0  
0 1  
1 1  
1 1  
IT1  
IT1  
2
IT2  
IT2  
1
IT3  
3
RIM  
IT4  
IT4  
3
MAIN  
MAIN  
3/0  
11 / 10  
10  
8.5  
Interrupt register description  
8.5.1  
CPU CC register interrupt bits  
Reset value: 111x 1010 (xAh)  
7
0
1
1
I1  
H
I0  
Read/Write  
Bits 5, 3 = I1, I0 Software interrupt priority  
N
Z
C
These two bits indicate the current interrupt software priority.  
Table 14. Interrupt software priority  
Priority  
Level  
I1  
I0  
Level 0 (main)  
Level 1  
1
0
0
1
0
1
0
1
Low  
Level 2  
High  
Level 3 (= interrupt disable(1)  
)
1. TRAP and reset events can interrupt a level 3 program.  
These two bits are set/cleared by hardware when entering in interrupt. The loaded value is  
given by the corresponding bits in the interrupt software priority registers (ISPRx).  
They can be also set/cleared by software with the RIM, SIM, HALT, WFI, IRET and  
PUSH/POP instructions (see “Interrupt Dedicated Instruction Set” table).  
57/246  
Interrupts  
ST72344xx, ST72345xx  
8.5.2  
Interrupt software priority registers (ISPRX)  
Reset value: 1111 1111 (FFh)  
7
0
ISPR0  
ISPR1  
ISPR2  
ISPR3  
I1_3  
I1_7  
I1_11  
1
I0_3  
I0_7  
I0_11  
1
I1_2  
I1_6  
I1_10  
1
I0_2  
I0_6  
I0_10  
1
I1_1  
I1_5  
I0_1  
I0_5  
I1_0  
I1_4  
I0_0  
I0_4  
I1_9  
I0_9  
I1_8  
I0_8  
I1_13  
I0_13  
I1_12  
I0_12  
Read/Write (bits 7:4 of ISPR3 are read only)  
These four registers contain the interrupt software priority of each interrupt vector.  
Each interrupt vector (except reset and TRAP) has corresponding bits in these  
registers where its own software priority is stored. This correspondence is shown in the  
following table.  
Table 15. Interrupt vector addresses  
Vector address  
ISPRx bits  
FFFBh-FFFAh  
FFF9h-FFF8h  
...  
I1_0 and I0_0 bits*  
I1_1 and I0_1 bits  
...  
FFE1h-FFE0h  
I1_13 and I0_13 bits  
Each I1_x and I0_x bit value in the ISPRx registers has the same meaning as the I1  
and I0 bits in the CC register.  
Level 0 can not be written (I1_x=1, I0_x=0). In this case, the previously stored value is  
kept. (example: previous = CFh, write = 64h, result = 44h)  
The reset, and TRAP vectors have no software priorities. When one is serviced, the I1 and  
I0 bits of the CC register are both set.  
Caution:  
If the I1_x and I0_x bits are modified while the interrupt x is executed the following behavior  
has to be considered: If the interrupt x is still pending (new interrupt or flag not cleared) and  
the new software priority is higher than the previous one, the interrupt x is re-entered.  
Otherwise, the software priority stays unchanged up to the next interrupt request (after the  
IRET of the interrupt x).  
Table 16. Dedicated interrupt instruction set  
Instruction  
HALT  
New description  
Function/example  
I1  
H
I0  
N
Z
C
Entering Halt mode  
Interrupt routine return  
Jump if I1:0=11 (level 3)  
Jump if I1:0<>11  
1
0
IRET  
Pop CC, A, X, PC  
I1:0=11 ?  
I1  
H
I0  
N
Z
C
JRM  
JRNM  
POP CC  
RIM  
I1:0<>11 ?  
Pop CC from the stack  
Mem => CC  
I1  
H
I0  
N
Z
C
Enable interrupt (level 0 set) Load 10 in I1:0 of CC  
1
0
58/246  
ST72344xx, ST72345xx  
Interrupts  
Table 16. Dedicated interrupt instruction set (continued)  
Instruction New description Function/example  
SIM Disable interrupt (level 3 set) Load 11 in I1:0 of CC  
I1  
H
I0  
N
Z
C
1
1
TRAP  
WFI  
Software trap  
Software NMI  
1
1
1
0
Wait for interrupt  
Note:  
During the execution of an interrupt routine, the HALT, POPCC, RIM, SIM and WFI  
instructions change the current software priority up to the next IRET instruction or one of the  
previously mentioned instructions.  
Table 17. Interrupt mapping  
Source  
block  
Register Priority Exit from  
Address  
vector  
No.  
Description  
label  
order  
Halt(1)  
Reset  
Reset  
yes  
no  
FFFEh-FFFFh  
FFFCh-FFFDh  
FFFAh-FFFBh  
FFF8h-FFF9h  
FFF6h-FFF7h  
FFF4h-FFF5h  
FFF2h-FFF3h  
FFF0h-FFF1h  
FFEEh-FFEFh  
N/A  
TRAP/ICD Software or ICD interrupt  
AWU Auto wakeup interrupt  
MCC/RTC RTC time base interrupt  
0
1
2
3
4
5
6
AWUCSR  
MCCSR  
N/A  
yes  
yes  
yes  
yes  
yes  
yes  
no  
Highest  
priority  
ei0  
ei1  
ei2  
ei3  
External interrupt Port PA3, PE1  
External interrupt Port PF2:0  
External interrupt Port PB3:0  
External interrupt Port PB4  
N/A  
N/A  
N/A  
I2C3SNS I2C3SNS address 3 interrupt  
I2C3SSR  
I2C3SNS address 1 & 2  
7
I2C3SNS  
interrupt  
no  
FFECh-FFEDh  
8
9
SPI  
SPI peripheral interrupts  
SPISR  
TASR  
yes(2)  
no  
FFEAh-FFEBh  
FFE8h-FFE9h  
FFE6h-FFE7h  
FFE4h-FFE5h  
TIMER A TIMER A peripheral interrupts  
Lowest  
priority  
10 TIMER B TIMER B peripheral interrupts  
TBSR  
SCISR  
no  
11  
12  
13  
SCI  
AVD  
I2C  
SCI peripheral interrupt  
no  
Auxiliary-voltage-detector  
interrupt  
SICSR  
no  
no  
FFE2h-FFE3h  
FFE0h-FFE1h  
I2C peripheral interrupt  
I2CSRx  
1. Valid for Halt and Active-halt modes except for the MCC/RTC interrupt source which exits from Active-halt  
mode only and AWU interrupt which exits from AWUFH mode only.  
2. Exit from Halt possible when SPI is in slave mode.  
59/246  
Interrupts  
ST72344xx, ST72345xx  
8.6  
External interrupts  
8.6.1  
I/O port interrupt sensitivity  
The external interrupt sensitivity is controlled by the IPA, IPB and ISxx bits of the EICR  
register (Figure 24). This control allows to have up to 4 fully independent external interrupt  
source sensitivities.  
Each external interrupt source can be generated on four (or five) different events on the pin:  
Falling edge  
Rising edge  
Falling and rising edge  
Falling edge and low level  
Rising edge and high level (only for ei0 and ei2)  
To guarantee correct functionality, the sensitivity bits in the EICR register can be modified  
only when the I1 and I0 bits of the CC register are both set to 1 (level 3). This means that  
interrupts must be disabled before changing sensitivity.  
The pending interrupts are cleared by writing a different value in the ISx[1:0], IPA or IPB bits  
of the EICR.  
Figure 24. External interrupt control bits  
PORT A3, E1 INTERRUPTS  
EICR  
IS20 IS21  
PAOR.3  
PADDR.3  
PA3  
PE1  
ei0 INTERRUPT SOURCE  
SENSITIVITY  
CONTROL  
PA3  
IPA BIT  
EICR  
PORT F [2:0] INTERRUPTS  
IS20  
IS21  
PFOR.2  
PF2  
PF1  
PFDDR.2  
ei1 INTERRUPT SOURCE  
SENSITIVITY  
CONTROL  
PF2  
PF0  
EICR  
PORT B [3:0] INTERRUPTS  
IS10  
IS11  
PB3  
PBOR.3  
PBDDR.3  
ei2 INTERRUPT SOURCE  
PB2  
PB1  
PB0  
SENSITIVITY  
CONTROL  
PB3  
IPB BIT  
EICR  
PORT B4 INTERRUPT  
IS10  
IS11  
PBOR.4  
PBDDR.4  
ei3 INTERRUPT SOURCE  
SENSITIVITY  
CONTROL  
PB4  
PB4  
60/246  
ST72344xx, ST72345xx  
Interrupts  
8.7  
External interrupt control register (EICR)  
Reset value: 0000 0000 (00h)  
7
0
0
IS11  
IS10  
IPB  
IS21  
IS20  
IPA  
0
Read/Write  
Bits 7:6 = IS1[1:0] ei2 and ei3 sensitivity  
The interrupt sensitivity, defined using the IS1[1:0] bits, is applied to the following  
external interrupts:  
ei2 (port B3..0)  
Table 18. External interrupt sensitivity (ei2)  
Sensitivity  
IS11  
IS10  
IPB bit =0  
IPB bit =1  
0
0
1
1
0
1
0
1
Falling edge & low level  
Rising edge only  
Rising edge & high level  
Falling edge only  
Falling edge only  
Rising edge only  
Rising and falling edge  
ei3 (port B4)  
Table 19. External interrupt sensitivity (ei3)  
IS11  
IS10  
Sensitivity  
0
0
1
1
0
1
0
1
Falling edge & low level  
Rising edge only  
Falling edge only  
Rising and falling edge  
These 2 bits can be written only when I1 and I0 of the CC register are both set to 1 (level 3).  
Bit 5 = IPB Interrupt polarity for port B  
This bit is used to invert the sensitivity of the port B [3:0] external interrupts. It can be  
set and cleared by software only when I1 and I0 of the CC register are both set to 1  
(level 3).  
0: No sensitivity inversion  
1: Sensitivity inversion  
61/246  
Interrupts  
ST72344xx, ST72345xx  
Bits 4:3 = IS2[1:0] ei0 and ei1 sensitivity  
The interrupt sensitivity, defined using the IS2[1:0] bits, is applied to the following  
external interrupts:  
ei0 (port A3, port E1)  
Table 20. External interrupt sensitivity (ei0)  
Sensitivity  
IS21  
IS20  
IPA bit =0  
IPA bit =1  
0
0
1
1
0
1
0
1
Falling edge & low level  
Rising edge only  
Rising edge & high level  
Falling edge only  
Falling edge only  
Rising edge only  
Rising and falling edge  
ei1 (port F2..0)  
Table 21. External interrupt sensitivity (ei1)  
IS21  
IS20  
Sensitivity  
0
0
1
1
0
1
0
1
Falling edge & low level  
Rising edge only  
Falling edge only  
Rising and falling edge  
These 2 bits can be written only when I1 and I0 of the CC register are both set to 1 (level 3).  
Bit 2 = IPA Interrupt polarity for ports A3 and E1  
This bit is used to invert the sensitivity of the port A3 and E1 external interrupts. It can  
be set and cleared by software only when I1 and I0 of the CC register are both set to 1  
(level 3).  
0: No sensitivity inversion  
1: Sensitivity inversion  
Bits 1:0 = Reserved, must always be kept cleared.  
62/246  
ST72344xx, ST72345xx  
Interrupts  
Table 22. Nested interrupts register map and reset values  
Address Register  
7
6
5
4
3
2
1
0
(Hex.)  
label  
ei1  
ei0  
MCC + SI  
AWU  
0024h  
ISPR0  
Reset value  
I1_3  
1
I0_3  
1
I1_2  
1
I0_2  
1
I1_1  
1
I0_1  
1
I1_0  
1
I0_0  
1
I2C3SNS  
I2C3SNS  
ei3  
ei2  
SPI  
AVD  
0025h  
0026h  
ISPR1  
Reset value  
I1_7  
1
I0_7  
1
I1_6  
1
I0_6  
1
I1_5  
1
I0_5  
1
I1_4  
1
I0_4  
1
SCI  
TIMER B  
TIMER A  
ISPR2  
Reset value  
I1_11  
1
I0_11  
1
I1_10  
1
I0_10  
1
I1_9  
1
I0_9  
1
I1_8  
1
I0_8  
1
I2C  
0027h  
0028h  
ISPR3  
Reset value  
I1_13  
1
I0_13  
1
I1_12  
1
I0_12  
1
1
1
1
1
EICR  
Reset value  
IS11  
0
IS10  
0
IPB  
0
IS21  
0
IS20  
0
IPA  
0
0
0
63/246  
Power-saving modes  
ST72344xx, ST72345xx  
9
Power-saving modes  
9.1  
Introduction  
To give a large measure of flexibility to the application in terms of power consumption, five  
main power saving modes are implemented in the ST7 (see Figure 25):  
Slow  
Wait (and Slow-Wait)  
Active-halt  
Auto-wakeup from Halt (AWUFH)  
Halt  
After a reset the normal operating mode is selected by default (Run mode). This mode  
drives the device (CPU and embedded peripherals) by means of a master clock which is  
based on the main oscillator frequency divided or multiplied by 2 (f  
).  
OSC2  
From Run mode, the different power saving modes may be selected by setting the relevant  
register bits or by calling the specific ST7 software instruction whose action depends on the  
oscillator status.  
Figure 25. Power saving mode transitions  
High  
Run  
Slow  
Wait  
Slow-wait  
Active-halt  
Auto-wakeup from Halt  
Halt  
Low  
Power consumption  
64/246  
ST72344xx, ST72345xx  
Power-saving modes  
9.2  
Slow mode  
This mode has two targets:  
To reduce power consumption by decreasing the internal clock in the device,  
To adapt the internal clock frequency (f ) to the available supply voltage.  
CPU  
Slow mode is controlled by three bits in the MCCSR register: the SMS bit which enables or  
disables Slow mode and two CPx bits which select the internal slow frequency (f ).  
CPU  
In this mode, the master clock frequency (f  
) can be divided by 2, 4, 8 or 16. The CPU  
OSC2  
and peripherals are clocked at this lower frequency (f  
).  
CPU  
Note:  
Slow-wait mode is activated by entering Wait mode while the device is in Slow mode.  
Figure 26. Slow mode clock transitions  
f
/2  
f
/4  
f
OSC2  
OSC2  
OSC2  
f
CPU  
f
OSC2  
00  
01  
CP1:0  
SMS  
Normal Run mode  
request  
New slow  
frequency  
request  
9.3  
Wait mode  
Wait mode places the MCU in a low-power consumption mode by stopping the CPU.  
This power saving mode is selected by calling the ‘WFI’ instruction.  
All peripherals remain active. During Wait mode, the I[1:0] bits of the CC register are forced  
to ‘10’, to enable all interrupts. All other registers and memory remain unchanged. The MCU  
remains in Wait mode until an interrupt or reset occurs, whereupon the Program Counter  
branches to the starting address of the interrupt or Reset service routine.  
The MCU will remain in Wait mode until a Reset or an Interrupt occurs, causing it to wake  
up.  
Refer to Figure 27.  
65/246  
Power-saving modes  
Figure 27. Wait mode flowchart  
ST72344xx, ST72345xx  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
ON  
OFF  
10  
WFI INSTRUCTION  
I[1:0] BITS  
N
RESET  
Y
N
INTERRUPT  
Y
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
OFF  
ON  
10  
I[1:0] BITS  
256 OR 4096 CPU CLOCK  
CYCLE DELAY  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
ON  
ON  
I[1:0] BITS  
XX (1)  
FETCH RESET VECTOR  
OR SERVICE INTERRUPT  
Note:  
1
Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the  
CC register are set to the current software priority level of the interrupt routine and  
recovered when the CC register is popped.  
9.4  
Halt mode  
The Halt mode is the lowest power consumption mode of the MCU. It is entered by  
executing the ‘HALT’ instruction when the OIE bit of the Main Clock Controller Status  
register (MCCSR) is cleared (see Section 11.2 on page 88 for more details on the MCCSR  
register) and when the AWUEN bit in the AWUCSR register is cleared.  
The MCU can exit Halt mode on reception of either a specific interrupt (see Table 17:  
Interrupt mapping on page 59) or a reset. When exiting Halt mode by means of a reset or an  
interrupt, the oscillator is immediately turned on and the 256 or 4096 CPU cycle delay is  
used to stabilize the oscillator. After the start up delay, the CPU resumes operation by  
servicing the interrupt or by fetching the reset vector which woke it up (see Figure 29).  
When entering Halt mode, the I[1:0] bits in the CC register are forced to ‘10b’to enable  
interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.  
In Halt mode, the main oscillator is turned off causing all internal processing to be stopped,  
including the operation of the on-chip peripherals. All peripherals are not clocked except the  
ones which get their clock supply from another clock generator (such as an external or  
auxiliary oscillator).  
The compatibility of Watchdog operation with Halt mode is configured by the “WDGHALT”  
option bit of the option byte. The HALT instruction when executed while the Watchdog  
66/246  
ST72344xx, ST72345xx  
Power-saving modes  
system is enabled, can generate a Watchdog reset (see Section 11.1 on page 82 for more  
details).  
Figure 28. Halt timing overview  
256 OR 4096 CPU  
Run  
Halt  
Run  
cycle delay  
Reset  
or  
interrupt  
Halt  
instruction  
[MCCSR.OIE=0]  
Fetch  
vector  
Figure 29. Halt mode flowchart  
HALT INSTRUCTION  
(MCCSR.OIE=0)  
(AWUCSR.AWUEN=0)  
WATCHDOG  
DISABLE  
ENABLE  
0
WDGHALT 1)  
1
WATCHDOG  
RESET  
OSCILLATOR  
OFF  
OFF  
OFF  
10  
PERIPHERALS 2)  
CPU  
I[1:0] BITS  
N
RESET  
Y
N
INTERRUPT 3)  
Y
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
OFF  
ON  
I[1:0] BITS  
XX 4)  
256 OR 4096 CPU CLOCK  
CYCLE DELAY  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
ON  
ON  
I[1:0] BITS  
XX 4)  
FETCH RESET VECTOR  
OR SERVICE INTERRUPT  
Note:  
1
2
3
WDGHALT is an option bit. See option byte section for more details.  
Peripheral clocked with an external clock source can still be active.  
Only some specific interrupts can exit the MCU from Halt mode (such as external interrupt).  
Refer to Table 17: Interrupt mapping on page 59 for more details.  
4
Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the  
CC register are set to the current software priority level of the interrupt routine and  
recovered when the CC register is popped.  
67/246  
Power-saving modes  
Halt mode recommendations  
ST72344xx, ST72345xx  
Make sure that an external event is available to wake up the microcontroller from Halt  
mode.  
When using an external interrupt to wake up the microcontroller, reinitialize the  
corresponding I/O as “Input Pull-up with Interrupt” before executing the HALT  
instruction. The main reason for this is that the I/O may be wrongly configured due to  
external interference or by an unforeseen logical condition.  
For the same reason, reinitialize the level sensitiveness of each external interrupt as a  
precautionary measure.  
The opcode for the HALT instruction is 0x8E. To avoid an unexpected HALT instruction  
due to a program counter failure, it is advised to clear all occurrences of the data value  
0x8E from memory. For example, avoid defining a constant in ROM with the value  
0x8E.  
As the HALT instruction clears the interrupt mask in the CC register to allow interrupts,  
the user may choose to clear all pending interrupt bits before executing the HALT  
instruction. This avoids entering other peripheral interrupt routines after executing the  
external interrupt routine corresponding to the wake-up event (reset or external  
interrupt).  
9.5  
Active-halt mode  
Active-halt mode is the lowest power consumption mode of the MCU with a real-time clock  
available. It is entered by executing the ‘HALT’ instruction when MCC/RTC interrupt enable  
flag (OIE bit in MCCSR register) is set and when the AWUEN bit in the AWUCSR register is  
cleared (see Register description on page 72).  
Table 23. Power saving mode  
MCCSR OIE bit  
Power saving mode entered when HALT instruction is executed  
Halt mode  
Active-halt mode  
0
1
The MCU can exit Active-halt mode on reception of the RTC interrupt and some specific  
interrupts (see Table 17: Interrupt mapping on page 59) or a reset. When exiting Active-halt  
mode by means of a reset a 4096 or 256 CPU cycle delay occurs (depending on the option  
byte). After the start up delay, the CPU resumes operation by servicing the interrupt or by  
fetching the reset vector which woke it up (see Figure 31).  
When entering Active-halt mode, the I[1:0] bits in the CC register are cleared to enable  
interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.  
In Active-Halt mode, only the main oscillator and its associated counter (MCC/RTC) are  
running to keep a wake-up time base. All other peripherals are not clocked except those  
which get their clock supply from another clock generator (such as external or auxiliary  
oscillator).  
The safeguard against staying locked in Active-halt mode is provided by the oscillator  
interrupt.  
Note:  
As soon as active halt is enabled, executing a HALT instruction while the Watchdog is active  
does not generate a reset. This means that the device cannot spend more than a defined  
delay in this power saving mode.  
68/246  
ST72344xx, ST72345xx  
Figure 30. Active-halt timing overview  
Power-saving modes  
Active-  
halt  
256 OR 4096 cycle  
delay (after reset)  
Run  
Run  
Reset  
or  
interrupt  
HALT  
instruction  
Fetch  
vector  
(Active-halt enabled)  
Figure 31. Active-halt mode flowchart  
OSCILLATOR  
ON  
HALT INSTRUCTION  
(MCCSR.OIE=1)  
(AWUCSR.AWUEN=0)  
PERIPHERALS 2)  
CPU  
OFF  
OFF  
10  
I[1:0] BITS  
N
RESET  
N
Y
INTERRUPT 3)  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
OFF  
ON  
Y
I[1:0] BITS  
XX 4)  
256 OR 4096 CPU CLOCK  
CYCLE DELAY  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
ON  
ON  
I[1:0] BITS  
XX 4)  
FETCH RESET VECTOR  
OR SERVICE INTERRUPT  
Note:  
1
2
3
This delay occurs only if the MCU exits Active-Halt mode by means of a reset.  
Peripheral clocked with an external clock source can still be active.  
Only the RTC interrupt and some specific interrupts can exit the MCU from Active-halt mode  
(such as external interrupt). Refer to Table 17 on page 59 for more details.  
4
Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits in the  
CC register are set to the current software priority level of the interrupt routine and restored  
when the CC register is popped.  
9.6  
Auto-wakeup from Halt mode  
Auto-wakeup from Halt (AWUFH) mode is similar to Halt mode with the addition of an  
internal RC oscillator for wake-up. Compared to Active-Halt mode, AWUFH has lower power  
consumption because the main clock is not kept running, but there is no accurate real-time  
clock available.  
69/246  
Power-saving modes  
ST72344xx, ST72345xx  
It is entered by executing the HALT instruction when the AWUEN bit in the AWUCSR  
register has been set and the OIE bit in the MCCSR register is cleared (see Section 11.2 on  
page 88 for more details).  
Figure 32. AWUFH mode block diagram  
AWU RC  
oscillator  
to Timer input capture  
f
AWU_RC  
AWUFH  
interrupt  
AWUFH  
/64  
divider  
prescaler  
/1 .. 255  
As soon as Halt mode is entered, and if the AWUEN bit has been set in the AWUCSR  
register, the AWU RC oscillator provides a clock signal (f ). Its frequency is divided by  
AWU_RC  
a fixed divider and a programmable prescaler controlled by the AWUPR register. The output  
of this prescaler provides the delay time. When the delay has elapsed the AWUF flag is set  
by hardware and an interrupt wakes-up the MCU from Halt mode. At the same time the main  
oscillator is immediately turned on and a 256 or 4096 cycle delay is used to stabilize it. After  
this startup delay, the CPU resumes operation by servicing the AWUFH interrupt. The AWU  
flag and its associated interrupt are cleared by software reading the AWUCSR register.  
To compensate for any frequency dispersion of the AWU RC oscillator, it can be calibrated  
by measuring the clock frequency f  
and then calculating the right prescaler value.  
AWU_RC  
Measurement mode is enabled by setting the AWUM bit in the AWUCSR register in Run  
mode. This connects internally f to the ICAP2 input of the 16-bit timer A, allowing the  
AWU_RC  
f
to be measured using the main oscillator clock as a reference timebase.  
AWU_RC  
Similarities with Halt mode  
The following AWUFH mode behavior is the same as normal Halt mode:  
The MCU can exit AWUFH mode by means of any interrupt with exit from Halt  
capability or a reset (see Section 9.4: Halt mode on page 66).  
When entering AWUFH mode, the I[1:0] bits in the CC register are forced to 10b to  
enable interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.  
In AWUFH mode, the main oscillator is turned off causing all internal processing to be  
stopped, including the operation of the on-chip peripherals. None of the peripherals are  
clocked except those which get their clock supply from another clock generator (such  
as an external or auxiliary oscillator like the AWU oscillator).  
The compatibility of Watchdog operation with AWUFH mode is configured by the  
WDGHALT option bit in the option byte. Depending on this setting, the HALT instruction  
when executed while the Watchdog system is enabled, can generate a Watchdog  
reset.  
70/246  
ST72344xx, ST72345xx  
Figure 33. AWUF Halt timing diagram  
Power-saving modes  
t
AWU  
Run mode  
Halt mode  
256 or 4096 t  
Run mode  
Clear  
CPU  
fCPU  
fAWU_RC  
by software  
AWUFH interrupt  
Figure 34. AWUFH mode flowchart  
HALT INSTRUCTION  
(MCCSR.OIE=0)  
(AWUCSR.AWUEN=1)  
ENABLE  
WATCHDOG  
0
DISABLE  
WDGHALT (1)  
1
AWU RC OSC  
MAIN OSC  
ON  
OFF  
OFF  
OFF  
10  
WATCHDOG  
RESET  
PERIPHERALS (2)  
CPU  
I[1:0] BITS  
N
RESET  
Y
N
INTERRUPT (3)  
AWU RC OSC  
MAIN OSC  
OFF  
ON  
Y
PERIPHERALS  
CPU  
I[1:0] BITS  
OFF  
ON  
XX (4)  
256 OR 4096 CPU CLOCK  
CYCLE DELAY  
AWU RC OSC  
MAIN OSC  
PERIPHERALS  
CPU  
OFF  
ON  
ON  
ON  
I[1:0] BITS  
XX (4)  
FETCH RESET VECTOR  
OR SERVICE INTERRUPT  
1. WDGHALT is an option bit. See option byte section for more details.  
2. Peripheral clocked with an external clock source can still be active.  
3. Only an AWUFH interrupt and some specific interrupts can exit the MCU from Halt mode (such as external  
interrupt). Refer to Table 17: Interrupt mapping on page 59 for more details.  
4. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are  
set to the current software priority level of the interrupt routine and recovered when the CC register is  
popped.  
71/246  
Power-saving modes  
ST72344xx, ST72345xx  
9.7  
Register description  
9.7.1  
AWUFH control/status register (AWUCSR)  
Reset value: 0000 0000 (00h)  
7
0
AWU  
F
0
0
0
0
0
AWUM  
AWUEN  
Read/Write (except bit 2 read only)  
Bits 7:3 = Reserved.  
Bit 2= AWUF Auto-wakeup flag  
This bit is set by hardware when the AWU module generates an interrupt and cleared  
by software on reading AWUCSR.  
0: No AWU interrupt occurred  
1: AWU interrupt occurred  
Bit 1= AWUM Auto-wakeup measurement  
This bit enables the AWU RC oscillator and connects internally its output to the ICAP2  
input of 16-bit timer A. This allows the timer to be used to measure the AWU RC  
oscillator dispersion and then compensate this dispersion by providing the right value in  
the AWUPR register.  
0: Measurement disabled  
1: Measurement enabled  
Bit 0 = AWUEN Auto-wakeup from Halt Enabled  
This bit enables the Auto-wakeup from Halt feature: once Halt mode is entered, the  
AWUFH wakes up the microcontroller after a time delay defined by the AWU prescaler  
value. It is set and cleared by software.  
0: AWUFH (Auto-wakeup from Halt) mode disabled  
1: AWUFH (Auto-wakeup from Halt) mode enabled  
72/246  
ST72344xx, ST72345xx  
Power-saving modes  
9.7.2  
AWUFH prescaler register (AWUPR)  
Reset value: 1111 1111 (FFh)  
7
0
AWUPR7 AWUPR6 AWUPR5 AWUPR4 AWUPR3 AWUPR2 AWUPR1 AWUPR0  
Read/Write  
Bits 7:0= AWUPR[7:0] Auto-wakeup Prescaler  
These 8 bits define the AWUPR Dividing factor (as explained below:  
Table 24. AWUPR dividing factor  
AWUPR[7:0]  
Dividing factor  
00h  
01h  
...  
Forbidden (1)  
1
...  
FEh  
FFh  
254  
255  
1. If 00h is written to AWUPR, depending on the product, an interrupt is generated immediately after a HALT  
instruction, or the AWUPR remains unchanged.  
In AWU mode, the period that the MCU stays in Halt mode (t  
in Figure 33) is defined by  
AWU  
1
t
= 64 × AWUPR × ------------------------- + t  
RCSTRT  
AWU  
f
AWURC  
This prescaler register can be programmed to modify the time that the MCU stays in Halt  
mode before waking up automatically.  
Table 25. AWU register map and reset values  
Address Register  
7
6
5
4
3
2
1
0
(Hex.)  
label  
AWUCSR  
Reset value  
AWUF  
0
AWUM  
0
AWUEN  
0
002Eh  
0
0
0
0
0
AWUPR  
Reset value  
AWUPR7 AWUPR6 AWUPR5 AWUPR4 AWUPR3 AWUPR2 AWUPR1 AWUPR0  
002Fh  
1
1
1
1
1
1
1
1
73/246  
I/O ports  
ST72344xx, ST72345xx  
10  
I/O ports  
10.1  
Introduction  
The I/O ports offer different functional modes:  
transfer of data through digital inputs and outputs  
and for specific pins:  
external interrupt generation  
alternate signal input/output for the on-chip peripherals.  
An I/O port contains up to 8 pins. Each pin can be programmed independently as digital  
input (with or without interrupt generation) or digital output.  
10.2  
Functional description  
Each port has two main registers:  
Data Register (DR)  
Data Direction Register (DDR)  
and one optional register:  
Option Register (OR)  
Each I/O pin may be programmed using the corresponding register bits in the DDR and OR  
registers: Bit X corresponding to pin X of the port. The same correspondence is used for the  
DR register.  
The following description takes into account the OR register, (for specific ports which do not  
provide this register refer to the I/O Port Implementation section). The generic I/O block  
diagram is shown in Figure 35.  
10.2.1  
Input modes  
The input configuration is selected by clearing the corresponding DDR register bit.  
In this case, reading the DR register returns the digital value applied to the external I/O pin.  
Different input modes can be selected by software through the OR register.  
Writing the DR register modifies the latch value but does not affect the pin status.  
Note:  
1
2
When switching from input to output mode, the DR register has to be written first to drive the  
correct level on the pin as soon as the port is configured as an output.  
3
Do not use read/modify/write instructions (BSET or BRES) to modify the DR register as this  
might corrupt the DR content for I/Os configured as input.  
External interrupt function  
When an I/O is configured as Input with Interrupt, an event on this I/O can generate an  
external interrupt request to the CPU.  
Each pin can independently generate an interrupt request. The interrupt sensitivity is  
independently programmable using the sensitivity bits in the EICR register.  
74/246  
ST72344xx, ST72345xx  
I/O ports  
Each external interrupt vector is linked to a dedicated group of I/O port pins (see pinout  
description and interrupt section). If several input pins are selected simultaneously as  
interrupt sources, these are first detected according to the sensitivity bits in the EICR  
register and then logically ORed.  
The external interrupts are hardware interrupts, which means that the request latch (not  
accessible directly by the application) is automatically cleared when the corresponding  
interrupt vector is fetched. To clear an unwanted pending interrupt by software, the  
sensitivity bits in the EICR register must be modified.  
10.2.2  
Output modes  
The output configuration is selected by setting the corresponding DDR register bit. In this  
case, writing the DR register applies this digital value to the I/O pin through the latch. Then  
reading the DR register returns the previously stored value.  
Two different output modes can be selected by software through the OR register: Output  
push-pull and open-drain.  
DR register value and output pin status:  
Table 26. Output modes  
DR  
Push-pull  
Open-drain  
0
1
VSS  
VDD  
VSS  
Floating  
10.2.3  
Alternate functions  
When an on-chip peripheral is configured to use a pin, the alternate function is automatically  
selected. This alternate function takes priority over the standard I/O programming.  
When the signal is coming from an on-chip peripheral, the I/O pin is automatically  
configured in output mode (push-pull or open drain according to the peripheral).  
When the signal is going to an on-chip peripheral, the I/O pin must be configured in input  
mode. In this case, the pin state is also digitally readable by addressing the DR register.  
Note:  
Input pull-up configuration can cause unexpected value at the input of the alternate  
peripheral input. When an on-chip peripheral use a pin as input and output, this pin has to  
be configured in input floating mode.  
75/246  
I/O ports  
ST72344xx, ST72345xx  
Figure 35. I/O port general block diagram  
ALTERNATE  
OUTPUT  
1
0
REGISTER  
ACCESS  
P-BUFFER  
(see table below)  
VDD  
ALTERNATE  
ENABLE  
PULL-UP  
(see table below)  
DR  
DDR  
OR  
VDD  
PULL-UP  
CONDITION  
PAD  
If implemented  
OR SEL  
DDR SEL  
DR SEL  
N-BUFFER  
DIODES  
(see table below)  
ANALOG  
INPUT  
CMOS  
SCHMITT  
TRIGGER  
1
0
ALTERNATE  
INPUT  
EXTERNAL  
INTERRUPT  
SOURCE (eix)  
(1)  
Table 27. I/O Port mode options  
Configuration mode  
Diodes  
to VSS  
Pull-up  
P-Buffer  
to VDD  
Floating with/without Interrupt  
Pull-up with/without Interrupt  
Push-pull  
Off  
On  
Input  
Off  
On  
On  
Off  
NI  
On  
Off  
NI  
Output  
Open drain (logic level)  
True open drain  
NI(2)  
1. NI = not implemented, Off = implemented not activated, On = implemented and activated.  
2. The diode to VDD is not implemented in the true open drain pads. A local protection between the pad and  
VSS is implemented to protect the device against positive stress.  
76/246  
ST72344xx, ST72345xx  
I/O ports  
Table 28. I/O port configurations  
Hardware configuration  
DR REGISTER ACCESS  
NOT IMPLEMENTED IN  
TRUE OPEN DRAIN  
I/O PORTS  
VDD  
PULL-UP  
CONDITION  
RPU  
W
R
DR  
REGISTER  
DATA BUS  
PAD  
ALTERNATE INPUT  
EXTERNAL INTERRUPT  
SOURCE (eix)  
INTERRUPT  
CONDITION  
ANALOG INPUT  
NOT IMPLEMENTED IN  
TRUE OPEN DRAIN  
I/O PORTS  
DR REGISTER ACCESS  
VDD  
RPU  
R/W  
DR  
REGISTER  
DATA BUS  
PAD  
ALTERNATE  
ENABLE  
ALTERNATE  
OUTPUT  
NOT IMPLEMENTED IN  
TRUE OPEN DRAIN  
I/O PORTS  
DR REGISTER ACCESS  
VDD  
RPU  
R/W  
DR  
REGISTER  
DATA BUS  
PAD  
ALTERNATE  
ENABLE  
ALTERNATE  
OUTPUT  
1. When the I/O port is in input configuration and the associated alternate function is enabled as an output,  
reading the DR register will read the alternate function output status.  
2. When the I/O port is in output configuration and the associated alternate function is enabled as an input,  
the alternate function reads the pin status given by the DR register content.  
Caution:  
The alternate function must not be activated as long as the pin is configured as input with  
interrupt, in order to avoid generating spurious interrupts.  
Analog alternate function  
When the pin is used as an ADC input, the I/O must be configured as floating input. The  
analog multiplexer (controlled by the ADC registers) switches the analog voltage present on  
the selected pin to the common analog rail which is connected to the ADC input.  
It is recommended not to change the voltage level or loading on any port pin while  
conversion is in progress. Furthermore it is recommended not to have clocking pins located  
close to a selected analog pin.  
77/246  
I/O ports  
ST72344xx, ST72345xx  
Warning: The analog input voltage level must be within the limits  
stated in the absolute maximum ratings.  
10.3  
I/O port implementation  
The hardware implementation on each I/O port depends on the settings in the DDR and OR  
registers and specific feature of the I/O port such as ADC Input or true open drain.  
Switching these I/O ports from one state to another should be done in a sequence that  
prevents unwanted side effects. Recommended safe transitions are illustrated in Figure 36  
on page 78. Other transitions are potentially risky and should be avoided, since they are  
likely to present unwanted side-effects such as spurious interrupt generation.  
Figure 36. Interrupt I/O port state transitions  
01  
00  
10  
11  
INPUT  
floating/pull-up  
interrupt  
INPUT  
floating  
(reset state)  
OUTPUT  
open-drain  
OUTPUT  
push-pull  
= DDR, OR  
XX  
10.4  
10.5  
Low-power modes  
Table 29. Description  
Mode  
Description  
Wait  
Halt  
No effect on I/O ports. External interrupts cause the device to exit from Wait mode.  
No effect on I/O ports. External interrupts cause the device to exit from Halt mode.  
Interrupts  
The external interrupt event generates an interrupt if the corresponding configuration is  
selected with DDR and OR registers and the interrupt mask in the CC register is not active  
(RIM instruction).  
Table 30. Description of interrupt events  
Enable  
Control bit  
Exit from  
Wait  
Exit from  
Halt  
Interrupt event  
Event flag  
External interrupt on selected  
external event  
DDRx  
ORx  
-
Yes  
78/246  
ST72344xx, ST72345xx  
I/O ports  
10.5.1  
I/O port implementation  
The I/O port register configurations are summarized as follows.  
Standard ports: PA[5:4], PC[7:0], PD[5:0], PE0, PF[7:6], PF4  
Table 31. I/O port register configurations (standard ports)  
Mode  
DDR  
OR  
floating input  
0
0
1
1
0
1
0
1
pull-up input  
open drain output  
push-pull output  
Interrupt ports: PB4, PB[2:0], PF[1:0] (with pull-up)  
Table 32. I/O port register configurations (interrupt ports with pull-up)  
Mode  
DDR  
OR  
floating input  
0
0
1
1
0
1
0
1
pull-up interrupt input  
open drain output  
push-pull output  
PA3, PE1, PB3, PF2 (without pull-up)  
Table 33. I/O port register configurations (interrupt ports without pull-up)  
Mode  
DDR  
OR  
floating input  
0
0
1
1
0
1
0
1
floating interrupt input  
open drain output  
push-pull output  
True open-drain ports: PA[7:6], PD[7:6]  
Table 34. I/O port register configurations (true open drain ports)  
Mode  
DDR  
floating input  
0
1
open drain (high sink ports)  
79/246  
I/O ports  
ST72344xx, ST72345xx  
Output  
Table 35. Port configuration  
Input  
Port  
Pin name  
OR = 0  
OR = 1  
OR = 0  
OR = 1  
PA7:6  
PA5:4  
PA3  
floating  
true open-drain  
Port A  
floating  
floating  
floating  
pull-up  
open drain  
open drain  
open drain  
push-pull  
push-pull  
push-pull  
floating interrupt  
floating interrupt  
PB3  
Port B  
PB4,  
PB2:0  
floating  
floating  
pull-up interrupt  
pull-up  
open drain  
open drain  
push-pull  
push-pull  
Port C  
Port D  
PC7:0  
PD7:6  
PD5:0  
PE1  
floating  
true open-drain  
floating  
floating  
floating  
floating  
floating  
floating  
pull-up  
floating interrupt  
pull-up  
open drain  
open drain  
open drain  
open drain  
open drain  
open drain  
push-pull  
push-pull  
push-pull  
push-pull  
push-pull  
push-pull  
Port E  
Port F  
PE0  
PF7:6, 4  
PF2  
pull-up  
floating interrupt  
pull-up interrupt  
PF1:0  
Caution:  
In small packages, an internal pull-up is applied permanently to the non-bonded I/O pins. So  
they have to be kept in input floating configuration to avoid unwanted consumption.  
Table 36. I/O port register map and reset values  
Address Register  
7
6
5
4
3
2
1
0
(Hex.)  
label  
Reset value  
of all I/O port registers  
0
0
0
0
0
0
0
0
0000h  
0001h  
0002h  
0003h  
0004h  
0005h  
0006h  
0007h  
0008h  
0009h  
000Ah  
000Bh  
PADR  
PADDR  
PAOR  
MSB  
MSB  
MSB  
MSB  
LSB  
LSB  
LSB  
LSB  
PBDR  
PBDDR  
PBOR  
PCDR  
PCDDR  
PCOR  
PDDR  
PDDDR  
PDOR  
80/246  
ST72344xx, ST72345xx  
Table 36. I/O port register map and reset values (continued)  
I/O ports  
Address Register  
7
6
5
4
3
2
1
0
(Hex.)  
label  
000Ch  
000Dh  
000Eh  
000Fh  
0010h  
0011h  
PEDR  
PEDDR  
PEOR  
PFDR  
MSB  
LSB  
PFDDR  
PFOR  
MSB  
LSB  
81/246  
On-chip peripherals  
ST72344xx, ST72345xx  
11  
On-chip peripherals  
11.1  
Window watchdog (WWDG)  
11.1.1  
Introduction  
The window watchdog is used to detect the occurrence of a software fault, usually  
generated by external interference or by unforeseen logical conditions, which causes the  
application program to abandon its normal sequence. The Watchdog circuit generates an  
MCU reset on expiry of a programmed time period, unless the program refreshes the  
contents of the downcounter before the T6 bit becomes cleared. An MCU reset is also  
generated if the 7-bit downcounter value (in the control register) is refreshed before the  
downcounter has reached the window register value. This implies that the counter must be  
refreshed in a limited window.  
11.1.2  
Main features  
Programmable free-running downcounter  
Conditional reset  
Reset (if watchdog activated) when the downcounter value becomes less than 40h  
Reset (if watchdog activated) if the downcounter is reloaded outside the window  
(see Figure 40)  
Hardware/Software Watchdog activation (selectable by option byte)  
Optional reset on HALT instruction (configurable by option byte)  
11.1.3  
Functional description  
The counter value stored in the WDGCR register (bits T[6:0]), is decremented every 16384  
f
cycles (approx.), and the length of the timeout period can be programmed by the user  
OSC2  
in 64 increments.  
If the watchdog is activated (the WDGA bit is set) and when the 7-bit downcounter (T[6:0]  
bits) rolls over from 40h to 3Fh (T6 becomes cleared), it initiates a reset cycle pulling low the  
reset pin for typically 30 μs. If the software reloads the counter while the counter is greater  
than the value stored in the window register, then a reset is generated.  
82/246  
ST72344xx, ST72345xx  
Figure 37. Watchdog block diagram  
On-chip peripherals  
WATCHDOG WINDOW REGISTER (WDGWR)  
W5  
W0  
W1  
RESET  
-
W6  
W4  
W2  
W3  
comparator  
= 1 when  
T6:0 > W6:0  
CMP  
Write WDGCR  
WATCHDOG CONTROL REGISTER (WDGCR)  
T5  
T0  
WDGA T6  
T1  
T4  
T2  
T3  
6-BIT DOWNCOUNTER (CNT)  
MCC/RTC  
f
OSC2  
DIV 64  
WDG PRESCALER  
DIV 4  
12-BIT MCC  
RTC COUNTER  
TB[1:0] bits  
(MCCSR  
Register)  
MSB  
LSB  
0
6 5  
11  
The application program must write in the WDGCR register at regular intervals during  
normal operation to prevent an MCU reset. This operation must occur only when the counter  
value is lower than the window register value. The value to be stored in the WDGCR register  
must be between FFh and C0h (see Figure 38):  
Enabling the watchdog:  
When Software Watchdog is selected (by option byte), the watchdog is disabled after a  
reset. It is enabled by setting the WDGA bit in the WDGCR register, then it cannot be  
disabled again except by a reset.  
When Hardware Watchdog is selected (by option byte), the watchdog is always active  
and the WDGA bit is not used.  
Controlling the downcounter:  
This downcounter is free-running: It counts down even if the watchdog is disabled.  
When the watchdog is enabled, the T6 bit must be set to prevent generating an  
immediate reset.  
The T[5:0] bits contain the number of increments which represents the time delay  
before the watchdog produces a reset (see Figure 38: Approximate timeout duration).  
The timing varies between a minimum and a maximum value due to the unknown  
status of the prescaler when writing to the WDGCR register (see Figure 39).  
The window register (WDGWR) contains the high limit of the window: To prevent a  
reset, the downcounter must be reloaded when its value is lower than the window  
register value and greater than 3Fh. Figure 40 describes the window watchdog  
process.  
83/246  
On-chip peripherals  
ST72344xx, ST72345xx  
Note:  
The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is  
cleared).  
Watchdog reset on Halt option  
If the watchdog is activated and the watchdog reset on halt option is selected, then the  
HALT instruction will generate a Reset.  
11.1.4  
11.1.5  
Using Halt mode with the WDG  
If Halt mode with Watchdog is enabled by option byte (no watchdog reset on HALT  
instruction), it is recommended before executing the HALT instruction to refresh the WDG  
counter, to avoid an unexpected WDG reset immediately after waking up the microcontroller.  
How to program the watchdog timeout  
Figure 38 shows the linear relationship between the 6-bit value to be loaded in the watchdog  
counter (CNT) and the resulting timeout duration in milliseconds. This can be used for a  
quick calculation without taking the timing variations into account. If more precision is  
needed, use the formulae in Figure 39.  
Caution:  
When writing to the WDGCR register, always write 1 in the T6 bit to avoid generating an  
immediate reset.  
Figure 38. Approximate timeout duration  
3F  
38  
30  
28  
20  
18  
10  
08  
00  
1.5  
18  
34  
50  
65  
82  
98  
114  
128  
Watchdog timeout (ms) @ 8 MHz fOSC2  
84/246  
ST72344xx, ST72345xx  
Figure 39. Exact timeout duration (t  
On-chip peripherals  
and t  
)
min  
max  
Where:  
t
t
t
= (LSB + 128) x 64 x t  
OSC2  
min0  
= 16384 x t  
max0  
OSC2  
= 125 ns if f  
= 8 MHz  
OSC2  
OSC2  
CNT = Value of T[5:0] bits in the WDGCR register (6 bits)  
MSB and LSB are values from the table below depending on the timebase selected by the TB[1:0]  
bits in the MCCSR register  
TB1 bit  
(MCCSR Reg.)  
TB0 bit  
(MCCSR Reg.)  
Selected MCCSR  
time base  
MSB  
LSB  
0
0
1
1
0
1
0
1
2 ms  
4 ms  
4
59  
53  
35  
54  
8
10 ms  
25 ms  
20  
49  
To calculate the minimum watchdog timeout (t ):  
min  
MSB  
-------------  
If CNT <  
then  
else  
t
= tmin0 + 16384 × CNT × t  
min  
= t  
osc2  
4
4CNT  
4CNT  
----------------  
----------------  
t
+
16384 × CNT –  
+ (192 + LSB) × 64 ×  
× t  
osc2  
min  
min0  
MSB  
MSB  
To calculate the maximum Watchdog Timeout (tmax):  
MSB  
-------------  
If CNT ≤  
then  
t
= tmax0 + 16384 × CNT × t  
osc2  
max  
4
4CNT  
MSB  
4CNT  
----------------  
----------------  
else t  
= t  
+
16384 × CNT –  
+ (192 + LSB) × 64 ×  
× t  
osc2  
max  
max0  
MSB  
Note:  
In the above formulae, division results must be rounded down to the next integer  
value.  
Example:  
With 2 ms timeout selected in MCCSR register  
Value of T[5:0] Bits in  
WDGCR Register (Hex.)  
Min. watchdog timeout (ms)  
Max. watchdog timeout (ms)  
tmax  
tmin  
00  
3F  
1.496  
128  
2.048  
128.552  
85/246  
On-chip peripherals  
Figure 40. Window watchdog timing diagram  
ST72344xx, ST72345xx  
T[5:0] CNT downcounter  
WDGWR  
3Fh  
time  
(step = 16384/f  
)
Refresh not allowed Refresh Window  
OSC2  
T6 bit  
Reset  
11.1.6  
Low-power modes  
Table 37. Descriptions  
Mode  
Description  
Slow  
Wait  
No effect on Watchdog: The downcounter continues to decrement at normal speed.  
No effect on Watchdog: The downcounter continues to decrement.  
OIE bit in  
MCCSR  
register  
WDGHALT  
bit in  
Option Byte  
No Watchdog reset is generated. The MCU enters Halt  
mode. The Watchdog counter is decremented once and  
then stops counting and is no longer able to generate a  
watchdog reset until the MCU receives an external  
interrupt or a reset.  
Halt  
If an interrupt is received (refer to interrupt table mapping  
to see interrupts which can occur in halt mode), the  
Watchdog restarts counting after 256 or 4096 CPU clocks.  
If a reset is generated, the Watchdog is disabled (reset  
state) unless Hardware Watchdog is selected by option  
byte. For application recommendations see Section 11.1.8  
below.  
0
0
0
1
1
x
A reset is generated instead of entering halt mode.  
No reset is generated. The MCU enters Active Halt mode.  
The Watchdog counter is not decremented. It stop  
counting. When the MCU receives an oscillator interrupt or  
external interrupt, the Watchdog restarts counting  
immediately. When the MCU receives a reset the  
Watchdog restarts counting after 256 or 4096 CPU clocks.  
Active-halt  
86/246  
ST72344xx, ST72345xx  
On-chip peripherals  
11.1.7  
11.1.8  
Hardware watchdog option  
If hardware watchdog is selected by option byte, the watchdog is always active and the  
WDGA bit in the WDGCR is not used. Refer to the Option Byte description.  
Using Halt mode with the WDG (WDGHALT option)  
The following recommendation applies if Halt mode is used when the watchdog is enabled.  
Before executing the HALT instruction, refresh the WDG counter, to avoid an  
unexpected WDG reset immediately after waking up the microcontroller.  
11.1.9  
Interrupts  
None.  
11.1.10 Register description  
Control register (WDGCR)  
Reset value: 0111 1111 (7Fh)  
7
0
WDGA  
T6  
T5  
T4  
T3  
T2  
T1  
T0  
Read/Write  
Bit 7 = WDGA Activation bit.  
This bit is set by software and only cleared by hardware after a reset. When WDGA = 1,  
the watchdog can generate a reset.  
0: Watchdog disabled  
1: Watchdog enabled  
Note:  
This bit is not used if the hardware watchdog option is enabled by option byte.  
Bits 6:0 = T[6:0] 7-bit counter (MSB to LSB).  
These bits contain the value of the watchdog counter. It is decremented every 16384  
f
cycles (approx.). A reset is produced when it rolls over from 40h to 3Fh (T6  
OSC2  
becomes cleared).  
Window register (WDGWR)  
Reset value: 0111 1111 (7Fh)  
7
0
-
W6  
W5  
W4  
W3  
W2  
W1  
W0  
Read/Write  
Bit 7 = Reserved  
Bits 6:0 = W[6:0] 7-bit window value  
These bits contain the window value to be compared to the downcounter.  
87/246  
On-chip peripherals  
ST72344xx, ST72345xx  
Table 38. Watchdog timer register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
WDGCR  
WDGA  
0
T6  
1
T5  
1
T4  
1
T3  
1
T2  
1
T1  
1
T0  
1
2A  
30  
Reset value  
WDGWR  
-
W6  
1
W5  
1
W4  
1
W3  
1
W2  
1
W1  
1
W0  
1
Reset value  
0
11.2  
Main clock controller with real-time clock and beeper  
(MCC/RTC)  
The main clock controller consists of three different functions:  
a programmable CPU clock prescaler  
a clock-out signal to supply external devices  
a real-time clock timer with interrupt capability  
Each function can be used independently and simultaneously.  
11.2.1  
11.2.2  
Programmable CPU clock prescaler  
The programmable CPU clock prescaler supplies the clock for the ST7 CPU and its internal  
peripherals. It manages Slow power-saving mode (See Section 9.2: Slow mode for more  
details).  
The prescaler selects the f  
main clock frequency and is controlled by three bits in the  
CPU  
MCCSR register: CP[1:0] and SMS.  
Clock-out capability  
The clock-out capability is an alternate function of an I/O port pin that outputs a f  
to drive external devices. It is controlled by the MCO bit in the MCCSR register.  
clock  
OSC2  
Caution:  
When selected, the clock out pin suspends the clock during Active-halt mode.  
11.2.3  
Real-time clock timer (RTC)  
The counter of the real-time clock timer allows an interrupt to be generated based on an  
accurate real-time clock. Four different time bases depending directly on f are available.  
OSC2  
The whole functionality is controlled by four bits of the MCCSR register: TB[1:0], OIE and  
OIF.  
When the RTC interrupt is enabled (OIE bit set), the ST7 enters Active-halt mode when the  
HALT instruction is executed. See Section 9.5: Active-halt mode on page 68 for more  
details.  
11.2.4  
Beeper  
The beep function is controlled by the MCCBCR register. It can output three selectable  
frequencies on the BEEP pin (I/O port alternate function).  
88/246  
ST72344xx, ST72345xx  
Figure 41.  
On-chip peripherals  
Main clock controller (MCC/RTC) block diagram  
BC1 BC0  
MCCBCR  
BEEP  
MCO  
BEEP SIGNAL  
SELECTION  
12-BIT MCC RTC  
COUNTER  
TO  
DIV 64  
WATCHDOG  
TIMER  
MCO CP1 CP0 SMS TB1 TB0 OIE OIF  
MCCSR  
MCC/RTC INTERRUPT  
fCPU  
fOSC2  
DIV 2, 4, 8, 16  
1
0
CPU CLOCK  
TO CPU AND  
PERIPHERALS  
11.2.5  
Low-power modes  
Table 39. Mode description  
Mode  
Description  
No effect on MCC/RTC peripheral.  
MCC/RTC interrupt cause the device to exit from Wait mode.  
Wait  
No effect on MCC/RTC counter (OIE bit is set), the registers are frozen.  
MCC/RTC interrupt cause the device to exit from Active-halt mode.  
Active-halt  
MCC/RTC counter and registers are frozen.  
Halt  
MCC/RTC operation resumes when the MCU is woken up by an interrupt with “exit  
from Halt” capability.  
11.2.6  
Interrupts  
The MCC/RTC interrupt event generates an interrupt if the OIE bit of the MCCSR register is  
set and the interrupt mask in the CC register is not active (RIM instruction).  
Table 40. Interrupt event  
Enable  
Control bit  
Exit from  
Wait  
Exit from  
Halt  
Interrupt event  
Event flag  
Time base overflow event  
OIF  
OIE  
Yes  
No (1)  
1. The MCC/RTC interrupt wakes up the MCU from Active-halt mode, not from Halt mode.  
89/246  
On-chip peripherals  
ST72344xx, ST72345xx  
11.2.7  
Register description  
MCC control/status register (MCCSR)  
Reset value: 0000 0000 (00h)  
7
0
MCO  
CP1  
CP0  
SMS  
TB1  
TB0  
OIE  
OIF  
Read/Write  
Bit 7 = MCO Main clock out selection  
This bit enables the MCO alternate function on the PF0 I/O port. It is set and cleared by  
software.  
0: MCO alternate function disabled (I/O pin free for general-purpose I/O)  
1: MCO alternate function enabled (f  
on I/O port)  
CPU  
Note:  
To reduce power consumption, the MCO function is not active in Active-halt mode.  
Bits 6:5 = CP[1:0] CPU clock prescaler  
These bits select the CPU clock prescaler which is applied in the different slow modes.  
Their action is conditioned by the setting of the SMS bit. These two bits are set and  
cleared by software.  
Table 41. CPU clock prescaler selection  
fCPU in Slow mode  
OSC2 / 2  
CP1  
CP0  
f
0
0
1
1
0
1
0
1
fOSC2 / 4  
fOSC2 / 8  
OSC2 / 16  
f
Bit 4 = SMS Slow mode select  
This bit is set and cleared by software.  
0: Normal mode. f  
= f  
OSC2  
CPU  
1: Slow mode. f  
is given by CP1, CP0  
CPU  
See Section 9.2: Slow mode and Section 11.1: Window watchdog (WWDG) on  
page 82 for more details.  
Bits 3:2 = TB[1:0] Time base control  
These bits select the programmable divider time base. They are set and cleared by  
software.  
90/246  
ST72344xx, ST72345xx  
On-chip peripherals  
Table 42. Time base control  
Time base  
Counter  
prescaler  
TB1  
TB0  
fOSC2 = 4 MHz  
fOSC2 = 8 MHz  
16000  
32000  
80000  
200000  
4 ms  
8 ms  
2 ms  
4 ms  
0
0
1
1
0
1
0
1
20 ms  
50 ms  
10 ms  
25 ms  
A modification of the time base is taken into account at the end of the current period  
(previously set) to avoid an unwanted time shift. This allows to use this time base as a real-  
time clock.  
Bit 1 = OIE Oscillator interrupt enable  
This bit set and cleared by software.  
0: Oscillator interrupt disabled  
1: Oscillator interrupt enabled  
This interrupt can be used to exit from Active-halt mode.  
When this bit is set, calling the ST7 software HALT instruction enters the Active-halt  
power-saving mode  
.
Bit 0 = OIF Oscillator interrupt flag  
This bit is set by hardware and cleared by software reading the MCCSR register. It  
indicates when set that the main oscillator has reached the selected elapsed time  
(TB1:0).  
0: Timeout not reached  
1: Timeout reached  
Caution:  
The BRES and BSET instructions must not be used on the MCCSR register to avoid  
unintentionally clearing the OIF bit.  
MCC beep control register (MCCBCR)  
Reset value: 0000 0000 (00h)  
7
0
0
0
0
0
0
0
BC1  
BC0  
Read/Write  
Bits 7:2 = Reserved, must be kept cleared.  
Bits 1:0 = BC[1:0] Beep control  
These 2 bits select the PF1 pin beep capability.  
91/246  
On-chip peripherals  
ST72344xx, ST72345xx  
Table 43. Beep control  
BC1  
BC0  
Beep mode with fOSC2 = 8 MHz  
Off  
0
0
1
1
0
1
0
1
~2-kHz  
~1-kHz  
Output  
Beep signal  
~50% duty cycle  
~500-Hz  
The beep output signal is available in Active-halt mode but has to be disabled to reduce the  
consumption.  
Table 44. Main clock controller register map and reset values  
Address Register  
7
6
5
4
3
2
1
0
(Hex.)  
label  
SICSR  
Reset value  
AVDIE AVDF LVDRF LOCKED  
WDGRF  
x
002Bh  
0
0
0
x
0
0
0
MCCSR  
Reset value  
MCO  
0
CP1  
0
CP0  
0
SMS  
0
TB1  
0
TB0  
0
OIE  
0
OIF  
0
002Ch  
002Dh  
MCCBCR  
Reset value  
BC1  
0
BC0  
0
0
0
0
0
0
0
92/246  
ST72344xx, ST72345xx  
On-chip peripherals  
11.3  
16-bit timer  
11.3.1  
Introduction  
The timer consists of a 16-bit free-running counter driven by a programmable prescaler.  
It may be used for a variety of purposes, including pulse length measurement of up to two  
input signals (input capture) or generation of up to two output waveforms (output compare  
and PWM).  
Pulse lengths and waveform periods can be modulated from a few microseconds to several  
milliseconds using the timer prescaler and the CPU clock prescaler.  
Some devices of the ST7 family have two on-chip 16-bit timers. They are completely  
independent, and do not share any resources. They are synchronized after a Device reset  
as long as the timer clock frequencies are not modified.  
This description covers one or two 16-bit timers. In the devices with two timers, register  
names are prefixed with TA (Timer A) or TB (Timer B).  
11.3.2  
Main features  
Programmable prescaler: f  
divided by 2, 4 or 8.  
CPU  
Overflow status flag and maskable interrupt  
External clock input (must be at least 4 times slower than the CPU clock speed) with  
the choice of active edge  
Output compare functions with  
2 dedicated 16-bit registers  
2 dedicated programmable signals  
2 dedicated status flags  
1 dedicated maskable interrupt  
Input capture functions with  
2 dedicated 16-bit registers  
2 dedicated active edge selection signals  
2 dedicated status flags  
1 dedicated maskable interrupt  
Pulse width modulation mode (PWM)  
One-pulse mode  
Reduced-power mode  
5 alternate functions on I/O ports (ICAP1, ICAP2, OCMP1, OCMP2, EXTCLK). See  
note below.  
The block diagram is shown in Figure 42.  
Note:  
Some timer pins may not available (not bonded) in some devices. Refer to the device pin out  
description.  
When reading an input signal on a non-bonded pin, the value will always be ‘1’.  
93/246  
On-chip peripherals  
ST72344xx, ST72345xx  
11.3.3  
Functional description  
Counter  
The main block of the programmable timer is a 16-bit free running upcounter and its  
associated 16-bit registers. The 16-bit registers are made up of two 8-bit registers called  
high & low.  
Counter Register (CR):  
Counter High Register (CHR) is the most significant byte (MS Byte).  
Counter Low Register (CLR) is the least significant byte (LS Byte).  
Alternate Counter Register (ACR)  
Alternate Counter High Register (ACHR) is the most significant byte (MS Byte).  
Alternate Counter Low Register (ACLR) is the least significant byte (LS Byte).  
These two read-only 16-bit registers contain the same value but with the difference that  
reading the ACLR register does not clear the TOF bit (Timer overflow flag), located in the  
Status register, (SR), (see note at the end of paragraph titled 16-bit read sequence).  
Writing in the CLR register or ACLR register resets the free running counter to the FFFCh  
value.  
Both counters have a reset value of FFFCh (this is the only value which is reloaded in the  
16-bit timer). The reset value of both counters is also FFFCh in One-pulse mode and PWM  
mode.  
The timer clock depends on the clock control bits of the CR2 register, as illustrated in  
Table 50: Clock control bits on page 110. The value in the counter register repeats every  
131 072, 262 144 or 524 288 CPU clock cycles depending on the CC[1:0] bits.  
The timer frequency can be f  
/2, f  
/4, f  
/8 or an external frequency.  
CPU  
CPU  
CPU  
94/246  
ST72344xx, ST72345xx  
Figure 42. Timer block diagram  
On-chip peripherals  
INTERNAL BUS  
fCPU  
16-BIT TIMER PERIPHERAL INTERFACE  
8 low  
8-bit  
8 high  
8
8
8
8
8
8
8
8
buffer  
EXEDG  
16  
INPUT  
CAPTURE  
REGISTER  
INPUT  
CAPTURE  
REGISTER  
OUTPUT  
COMPARE  
REGISTER  
OUTPUT  
COMPARE  
REGISTER  
1/2  
1/4  
1/8  
COUNTER  
REGISTER  
1
1
2
2
ALTERNATE  
COUNTER  
REGISTER  
EXTCLK  
pin  
16  
16  
16  
CC[1:0]  
TIMER INTERNAL BUS  
16 16  
OVERFLOW  
DETECT  
EDGE DETECT  
CIRCUIT1  
OUTPUT COMPARE  
CIRCUIT  
ICAP1  
pin  
CIRCUIT  
6
EDGE DETECT  
CIRCUIT2  
ICAP2  
pin  
OCMP1  
pin  
LATCH1  
LATCH2  
0
ICF1 OCF1 TOF ICF2 OCF2  
0
TIMD  
(Control/Status Register)  
OCMP2  
pin  
CSR  
EXEDG  
ICIE OCIE TOIE FOLV2 FOLV1OLVL2 IEDG1 OLVL1  
OC1E  
OPM PWM CC1 CC0 IEDG2  
OC2E  
(Control Register 1) CR1  
(Control Register 2) CR2  
(See note 1)  
TIMER INTERRUPT  
1. If IC, OC and TO interrupt requests have separate vectors then the last OR is not present (See Device  
Interrupt Vector Table).  
95/246  
On-chip peripherals  
ST72344xx, ST72345xx  
Figure 43. 16-bit read sequence (from either the counter register or the alternate  
counter register)  
Beginning of the sequence  
Read  
MS Byte  
LS Byte  
is buffered  
At t0  
Other  
instructions  
Returns the buffered  
LS Byte value at t0  
Read  
LS Byte  
At t0 +Δt  
Sequence completed  
The user must read the MS Byte first, then the LS Byte value is buffered automatically.  
This buffered value remains unchanged until the 16-bit read sequence is completed, even if  
the user reads the MS Byte several times.  
After a complete reading sequence, if only the CLR register or ACLR register are read, they  
return the LS Byte of the count value at the time of the read.  
Whatever the timer mode used (input capture, output compare, one-pulse mode or PWM  
mode) an overflow occurs when the counter rolls over from FFFFh to 0000h then:  
The TOF bit of the SR register is set.  
A timer interrupt is generated if:  
TOIE bit of the CR1 register is set and  
I bit of the CC register is cleared.  
If one of these conditions is false, the interrupt remains pending to be issued as soon as  
they are both true.  
Clearing the overflow interrupt request is done in two steps:  
1. Reading the SR register while the TOF bit is set.  
2. An access (read or write) to the CLR register.  
Note:  
The TOF bit is not cleared by accesses to ACLR register. The advantage of accessing the  
ACLR register rather than the CLR register is that it allows simultaneous use of the overflow  
function and reading the free running counter at random times (for example, to measure  
elapsed time) without the risk of clearing the TOF bit erroneously.  
The timer is not affected by Wait mode.  
In Halt mode, the counter stops counting until the mode is exited. Counting then resumes  
from the previous count (Device awakened by an interrupt) or from the reset count (Device  
awakened by a Reset).  
External clock  
The external clock (where available) is selected if CC0=1 and CC1=1 in CR2 register.  
The status of the EXEDG bit in the CR2 register determines the type of level transition on  
the external clock pin EXTCLK that will trigger the free running counter.  
The counter is synchronised with the falling edge of the internal CPU clock.  
96/246  
ST72344xx, ST72345xx  
On-chip peripherals  
A minimum of four falling edges of the CPU clock must occur between two consecutive  
active edges of the external clock; thus the external clock frequency must be less than a  
quarter of the CPU clock frequency.  
Figure 44. Counter timing diagram, internal clock divided by 2  
CPU CLOCK  
INTERNAL RESET  
TIMER CLOCK  
FFFD FFFE FFFF 0000 0001 0002 0003  
COUNTER REGISTER  
TIMER OVERFLOW FLAG (TOF)  
Figure 45. Counter timing diagram, internal clock divided by 4  
CPU CLOCK  
INTERNAL RESET  
TIMER CLOCK  
FFFC  
FFFD  
0000  
0001  
COUNTER REGISTER  
TIMER OVERFLOW FLAG (TOF)  
Figure 46. Counter timing diagram, internal clock divided by 8  
CPU CLOCK  
INTERNAL RESET  
TIMER CLOCK  
0000  
FFFC  
FFFD  
COUNTER REGISTER  
TIMER OVERFLOW FLAG (TOF)  
Note:  
The device is in reset state when the internal reset signal is high, when it is low the Device is  
running.  
97/246  
On-chip peripherals  
ST72344xx, ST72345xx  
Input capture  
In this section, the index, i, may be 1 or 2 because there are 2 input capture functions in the  
16-bit timer.  
The two input-capture 16-bit registers (IC1R and IC2R) are used to latch the value of the  
free-running counter after a transition detected by the ICAPi pin.  
Table 45. ICiR register  
MS Byte  
LS Byte  
ICiR  
ICiHR  
ICiLR  
ICiR register is a read-only register.  
The active transition is software-programmable through the IEDGi bit of Control Registers  
(CRi).  
The timing resolution is one count of the free-running counter: (fCPU/CC[1:0]).  
Procedure:  
To use the input capture function, select the following in the CR2 register:  
Select the timer clock (CC[1:0]) (see Table 50: Clock control bits on page 110).  
Select the edge of the active transition on the ICAP2 pin with the IEDG2 bit (the ICAP2  
pin must be configured as floating input).  
And select the following in the CR1 register:  
Set the ICIE bit to generate an interrupt after an input capture coming from either the  
ICAP1 pin or the ICAP2 pin  
Select the edge of the active transition on the ICAP1 pin with the IEDG1 bit (the  
ICAP1pin must be configured as floating input).  
When an input capture occurs:  
ICFi bit is set.  
The ICiR register contains the value of the free running counter on the active transition  
on the ICAPi pin (see Figure 48).  
A timer interrupt is generated if the ICIE bit is set and the I bit is cleared in the CC  
register. Otherwise, the interrupt remains pending until both conditions become true.  
Clearing the Input Capture interrupt request (i.e. clearing the ICFi bit) is done in two steps:  
1. Reading the SR register while the ICFi bit is set.  
2. An access (read or write) to the ICiLR register.  
Note:  
1
2
3
After reading the ICiHR register, transfer of input capture data is inhibited and ICFi will never  
be set until the ICiLR register is also read.  
The ICiR register contains the free running counter value which corresponds to the most  
recent input capture.  
The 2 input capture functions can be used together even if the timer also uses the 2 output  
compare functions.  
4
5
In One-pulse Mode and PWM mode only the input capture 2 can be used.  
The alternate inputs (ICAP1 & ICAP2) are always directly connected to the timer. So any  
transitions on these pins activate the input capture function.  
Moreover if one of the ICAPi pin is configured as an input and the second one as an output,  
98/246  
ST72344xx, ST72345xx  
On-chip peripherals  
an interrupt can be generated if the user toggle the output pin and if the ICIE bit is set.  
This can be avoided if the input capture function i is disabled by reading the ICiHR (see note  
1).  
6
The TOF bit can be used with interrupt in order to measure event that go beyond the timer  
range (FFFFh).  
Figure 47. Input capture block diagram  
ICAP1  
pin  
(Control Register 1) CR1  
EDGE DETECT  
CIRCUIT2  
EDGE DETECT  
CIRCUIT1  
ICIE  
IEDG1  
ICAP2  
pin  
(Status Register) SR  
ICF1  
ICF2  
0
0
0
IC2R Register  
IC1R Register  
(Control Register 2) CR2  
16-BIT  
16-BIT FREE RUNNING  
COUNTER  
IEDG2  
CC0  
CC1  
Figure 48. Input capture timing diagram  
TIMER CLOCK  
FF01  
FF02  
FF03  
COUNTER REGISTER  
ICAPi PIN  
ICAPi FLAG  
FF03  
ICAPi REGISTER  
1. The active edge is the rising edge.  
2. The time between an event on the ICAPi pin and the appearance of the corresponding flag is from 2 to 3  
CPU clock cycles. This depends on the moment when the ICAP event happens relative to the timer clock.  
Output compare  
In this section, the index, i, may be 1 or 2 because there are 2 output compare functions in  
the 16-bit timer.  
This function can be used to control an output waveform or indicate when a period of time  
has elapsed.  
99/246  
On-chip peripherals  
ST72344xx, ST72345xx  
When a match is found between the Output Compare register and the free running counter,  
the output compare function:  
Assigns pins with a programmable value if the OCIE bit is set  
Sets a flag in the status register  
Generates an interrupt if enabled  
Two 16-bit registers Output Compare Register 1 (OC1R) and Output Compare Register 2  
(OC2R) contain the value to be compared to the counter register each timer clock cycle.  
Table 46. OCiR register  
MS Byte  
LS Byte  
OCiR  
OCiHR  
OCiLR  
These registers are readable and writable and are not affected by the timer hardware. A  
reset event changes the OCiR value to 8000h.  
The timing resolution is one count of the free running counter: (fCPU/  
).  
CC[1:0]  
Procedure:  
To use the output compare function, select the following in the CR2 register:  
Set the OCiE bit if an output is needed then the OCMPi pin is dedicated to the output  
compare i signal.  
Select the timer clock (CC[1:0]) (see Table 50).  
And select the following in the CR1 register:  
Select the OLVLi bit to applied to the OCMPi pins after the match occurs.  
Set the OCIE bit to generate an interrupt if it is needed.  
When a match is found between OCRi register and CR register:  
OCFi bit is set.  
The OCMPi pin takes OLVLi bit value (OCMPi pin latch is forced low during reset).  
A timer interrupt is generated if the OCIE bit is set in the CR2 register and the I bit is  
cleared in the CC register (CC).  
The OCiR register value required for a specific timing application can be calculated using  
the following formula:  
Δt * fCPU  
PRESC  
Δ OCiR =  
Where:  
Δt = Output compare period (in seconds)  
= CPU clock frequency (in Hertz)  
f
CPU  
PRESC = Timer prescaler factor (2, 4 or 8 depending on CC[1:0] bits, see Table 50:  
Clock control bits)  
If the timer clock is an external clock, the formula is:  
Δ OCiR = Δt * fEXT  
Where:  
Δt = Output compare period (in seconds)  
= External timer clock frequency (in Hertz)  
f
EXT  
100/246  
ST72344xx, ST72345xx  
On-chip peripherals  
Clearing the output compare interrupt request (i.e. clearing the OCFi bit) is done by:  
1. Reading the SR register while the OCFi bit is set.  
2. An access (read or write) to the OCiLR register.  
The following procedure is recommended to prevent the OCFi bit from being set between  
the time it is read and the write to the OCiR register:  
Write to the OCiHR register (further compares are inhibited).  
Read the SR register (first step of the clearance of the OCFi bit, which may be already  
set).  
Write to the OCiLR register (enables the output compare function and clears the OCFi  
bit).  
Note:  
1
2
3
After a processor write cycle to the OCiHR register, the output compare function is inhibited  
until the OCiLR register is also written.  
If the OCiE bit is not set, the OCMPi pin is a general I/O port and the OLVLi bit will not  
appear when a match is found but an interrupt could be generated if the OCIE bit is set.  
In both internal and external clock modes, OCFi and OCMPi are set while the counter value  
equals the OCiR register value (see Figure 50 on page 102 and Figure 51 on page 102).  
This behavior is the same in OPM or PWM mode.  
4
5
The output compare functions can be used both for generating external events on the  
OCMPi pins even if the input capture mode is also used.  
The value in the 16-bit OCiR register and the OLVi bit should be changed after each  
successful comparison in order to control an output waveform or establish a new elapsed  
timeout.  
Forced compare output capability  
When the FOLVi bit is set by software, the OLVLi bit is copied to the OCMPi pin. The OLVi bit  
has to be toggled in order to toggle the OCMPi pin when it is enabled (OCiE bit=1). The  
OCFi bit is then not set by hardware, and thus no interrupt request is generated.  
FOLVLi bits have no effect in both one-pulse mode and PWM mode.  
Figure 49. Output compare block diagram  
16 BIT FREE RUNNING  
OC1E  
CC1 CC0  
OC2E  
OCIE  
COUNTER  
(Control Register 2) CR2  
16-bit  
(Control Register 1) CR1  
OUTPUT COMPARE  
CIRCUIT  
Latch  
1
FOLV2 FOLV1 OLVL2  
OLVL1  
OCMP1  
Pin  
16-bit  
16-bit  
Latch  
2
OCMP2  
Pin  
OC1R Register  
OCF1  
OCF2  
0
0
0
OC2R Register  
(Status Register) SR  
101/246  
On-chip peripherals  
Figure 50. Output compare timing diagram, f  
ST72344xx, ST72345xx  
= f  
/2  
CPU  
TIMER  
INTERNAL CPU CLOCK  
TIMER CLOCK  
COUNTER REGISTER  
2ECF 2ED0 2ED1 2ED2  
2ED3  
2ED4  
2ED3  
OUTPUT COMPARE REGISTER i (OCRi)  
OUTPUT COMPARE FLAG i (OCFi)  
OCMPi PIN (OLVLi=1)  
Figure 51. Output compare timing diagram, f  
= f  
/4  
CPU  
TIMER  
INTERNAL CPU CLOCK  
TIMER CLOCK  
2ECF 2ED0 2ED1 2ED2  
2ED3  
2ED4  
2ED3  
COUNTER REGISTER  
OUTPUT COMPARE REGISTER i (OCRi)  
COMPARE REGISTER i LATCH  
OUTPUT COMPARE FLAG i (OCFi)  
OCMPi PIN (OLVLi=1)  
102/246  
ST72344xx, ST72345xx  
On-chip peripherals  
One-pulse mode  
One-pulse mode enables the generation of a pulse when an external event occurs. This  
mode is selected via the OPM bit in the CR2 register.  
The one-pulse mode uses the Input Capture1 function and the Output Compare1 function.  
Procedure:  
To use one-pulse mode:  
1. Load the OC1R register with the value corresponding to the length of the pulse (see the  
formula in the opposite column).  
2. Select the following in the CR1 register:  
Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after the  
pulse.  
Using the OLVL2 bit, select the level to be applied to the OCMP1 pin during the  
pulse.  
Select the edge of the active transition on the ICAP1 pin with the IEDG1 bit (the  
ICAP1 pin must be configured as floating input).  
3. Select the following in the CR2 register:  
Set the OC1E bit, the OCMP1 pin is then dedicated to the Output Compare 1  
function.  
Set the OPM bit.  
Select the timer clock CC[1:0] (see Table 50: Clock control bits on page 110).  
Figure 52. One-pulse mode cycle  
One-pulse mode cycle  
ICR1 = Counter  
OCMP1 = OLVL2  
When  
event occurs  
on ICAP1  
Counter is reset  
to FFFCh  
ICF1 bit is set  
When  
Counter  
= OC1R  
OCMP1 = OLVL1  
When a valid event occurs on the ICAP1 pin, the counter value is loaded in the ICR1  
register. The counter is then initialized to FFFCh, the OLVL2 bit is output on the OCMP1 pin  
and the ICF1 bit is set.  
Because the ICF1 bit is set when an active edge occurs, an interrupt can be generated if the  
ICIE bit is set.  
Clearing the Input Capture interrupt request (i.e. clearing the ICFi bit) is done in two steps:  
1. Reading the SR register while the ICFi bit is set.  
2. An access (read or write) to the ICiLR register.  
103/246  
On-chip peripherals  
ST72344xx, ST72345xx  
The OC1R register value required for a specific timing application can be calculated using  
the following formula:  
t * fCPU  
- 5  
OCiR Value =  
PRESC  
Where:  
t = Pulse period (in seconds)  
f
= CPU clock frequency (in Hertz)  
CPU  
PRESC = Timer prescaler factor (2, 4 or 8 depending on the CC[1:0] bits, see Table 50:  
Clock control bits)  
If the timer clock is an external clock the formula is:  
OCiR = t * fEXT -5  
Where:  
t = Pulse period (in seconds)  
= External timer clock frequency (in Hertz)  
f
EXT  
When the value of the counter is equal to the value of the contents of the OC1R register, the  
OLVL1 bit is output on the OCMP1 pin (See Figure 53).  
Note:  
1
2
The OCF1 bit cannot be set by hardware in One-pulse mode but the OCF2 bit can generate  
an Output Compare interrupt.  
When the Pulse Width Modulation (PWM) and One-pulse mode (OPM) bits are both set, the  
PWM mode is the only active one.  
3
4
If OLVL1=OLVL2 a continuous signal will be seen on the OCMP1 pin.  
The ICAP1 pin can not be used to perform input capture. The ICAP2 pin can be used to  
perform input capture (ICF2 can be set and IC2R can be loaded) but the user must take  
care that the counter is reset each time a valid edge occurs on the ICAP1 pin and ICF1 can  
also generates interrupt if ICIE is set.  
5
When One-pulse mode is used OC1R is dedicated to this mode. Nevertheless OC2R and  
OCF2 can be used to indicate a period of time has been elapsed but cannot generate an  
output waveform because the level OLVL2 is dedicated to the One-pulse mode.  
Figure 53. One-pulse mode timing example  
2ED3  
01F8  
IC1R  
FFFC FFFD FFFE  
2ED0 2ED1 2ED2  
2ED3  
FFFC FFFD  
01F8  
COUNTER  
ICAP1  
OLVL2  
OLVL1  
OLVL2  
OCMP1  
compare1  
1. IEDG1=1, OC1R=2ED0h, OLVL1=0, OLVL2=1.  
104/246  
ST72344xx, ST72345xx  
Figure 54. Pulse width modulation mode timing example  
On-chip peripherals  
2ED0 2ED1 2ED2  
34E2 FFFC  
FFFC FFFD FFFE  
34E2  
COUNTER  
OCMP1  
OLVL2  
OLVL1  
OLVL2  
compare2  
compare1  
compare2  
1. OC1R = 2ED0h, OC2R = 34E2, OLVL1 = 0, OLVL2 = 1  
Pulse-width modulation mode  
Pulse-width modulation (PWM) mode enables the generation of a signal with a frequency  
and pulse length determined by the value of the OC1R and OC2R registers.  
Pulse-width modulation mode uses the complete Output Compare 1 function plus the OC2R  
register, and so this functionality can not be used when PWM mode is activated.  
In PWM mode, double buffering is implemented on the output compare registers. Any new  
values written in the OC1R and OC2R registers are loaded in their respective shadow  
registers (double buffer) only at the end of the PWM period (OC2) to avoid spikes on the  
PWM output pin (OCMP1). The shadow registers contain the reference values for  
comparison in PWM “double buffering” mode.  
Note:  
There is a locking mechanism for transferring the OCiR value to the buffer. After a write to  
the OCiHR register, transfer of the new compare value to the buffer is inhibited until OCiLR  
is also written.  
Unlike in Output Compare mode, the compare function is always enabled in PWM mode.  
Procedure:  
To use pulse-width modulation mode:  
1. Load the OC2R register with the value corresponding to the period of the signal using  
the formula in the opposite column.  
2. Load the OC1R register with the value corresponding to the period of the pulse if  
(OLVL1=0 and OLVL2=1) using the formula in the opposite column.  
3. Select the following in the CR1 register:  
Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after a  
successful comparison with OC1R register.  
Using the OLVL2 bit, select the level to be applied to the OCMP1 pin after a  
successful comparison with OC2R register.  
4. Select the following in the CR2 register:  
Set OC1E bit: the OCMP1 pin is then dedicated to the output compare 1 function.  
Set the PWM bit.  
Select the timer clock (CC[1:0]) (see Table 50: Clock control bits).  
105/246  
On-chip peripherals  
Figure 55. Pulse width modulation cycle  
Pulse-width modulation cycle  
ST72344xx, ST72345xx  
When  
Counter  
= OC1R  
OCMP1 = OLVL1  
OCMP1 = OLVL2  
When  
Counter  
= OC2R  
Counter is reset  
to FFFCh  
ICF1 bit is set  
If OLVL1=1 and OLVL2=0 the length of the positive pulse is the difference between the  
OC2R and OC1R registers.  
If OLVL1=OLVL2 a continuous signal will be seen on the OCMP1 pin.  
The OCiR register value required for a specific timing application can be calculated using  
the following formula:  
t * fCPU  
- 5  
OCiR Value =  
PRESC  
Where:  
t = Signal or pulse period (in seconds)  
= CPU clock frequency (in Hertz)  
f
CPU  
PRESC = Timer prescaler factor (2, 4 or 8 depending on CC[1:0] bits, see Table 50:  
Clock control bits)  
If the timer clock is an external clock the formula is:  
OCiR = t * fEXT -5  
Where:  
t = Signal or pulse period (in seconds)  
= External timer clock frequency (in Hertz)  
f
EXT  
The Output Compare 2 event causes the counter to be initialized to FFFCh (See Figure 54)  
Note:  
1
2
3
The OCF1 and OCF2 bits cannot be set by hardware in PWM mode therefore the Output  
Compare interrupt is inhibited.  
The ICF1 bit is set by hardware when the counter reaches the OC2R value and can produce  
a timer interrupt if the ICIE bit is set and the I bit is cleared.  
In PWM mode the ICAP1 pin can not be used to perform input capture because it is  
disconnected to the timer. The ICAP2 pin can be used to perform input capture (ICF2 can be  
set and IC2R can be loaded) but the user must take care that the counter is reset each  
period and ICF1 can also generate interrupt if ICIE is set.  
4
When the pulse-width modulation (PWM) and One-pulse mode (OPM) bits are both set, the  
PWM mode is the only active one.  
106/246  
ST72344xx, ST72345xx  
On-chip peripherals  
11.3.4  
Low-power modes  
Table 47. Low-power mode description  
Mode  
Description  
No effect on 16-bit timer.  
Wait  
Timer interrupts cause the Device to exit from Wait mode.  
16-bit timer registers are frozen.  
In Halt mode, the counter stops counting until Halt mode is exited. Counting resumes from  
the previous count when the Device is woken up by an interrupt with “exit from Halt mode”  
capability or from the counter reset value when the Device is woken up by a reset.  
Halt  
If an input capture event occurs on the ICAPi pin, the input capture detection circuitry is  
armed. Consequently, when the Device is woken up by an interrupt with “exit from Halt  
mode” capability, the ICFi bit is set, and the counter value present when exiting from Halt  
mode is captured into the ICiR register.  
11.3.5  
Interrupts  
Table 48. Interrupt events  
Interrupt event  
Event  
flag  
Enable Exit from Exitfrom  
control bit  
Wait  
Halt  
Input Capture 1 event/Counter reset in PWM mode  
Input Capture 2 event  
ICF1  
ICF2  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
ICIE  
Output Compare 1 event (not available in PWM mode) OCF1  
Output Compare 2 event (not available in PWM mode) OCF2  
OCIE  
TOIE  
Timer overflow event  
TOF  
Note:  
The 16-bit timer interrupt events are connected to the same interrupt vector (see Interrupts  
chapter). These events generate an interrupt if the corresponding Enable Control Bit is set  
and the interrupt mask in the CC register is reset (RIM instruction).  
107/246  
On-chip peripherals  
ST72344xx, ST72345xx  
11.3.6  
Summary of timer modes  
Table 49. Timer modes  
Available resources  
Modes  
Input Capture 1  
Input Capture 2  
Output Compare 1 Output Compare 2  
Input Capture (1 and/or 2)  
Output Compare (1 and/or 2)  
One-pulse mode  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Not recommended (1)  
Not recommended (3)  
Partially (2)  
PWM mode  
No  
No  
No  
1. See note 4 in One-pulse mode on page 103  
2. See note 5 in One-pulse mode on page 103  
3. See note 4 in : Pulse-width modulation mode on page 105  
11.3.7  
Register description  
Each timer is associated with three control and status registers, and with six pairs of data  
registers (16-bit values) relating to the two input captures, the two output compares, the  
counter and the alternate counter.  
Control register 1 (CR1)  
Read/Write  
Reset value: 0000 0000 (00h)  
7
0
ICIE  
OCIE  
TOIE  
FOLV2  
FOLV1  
OLVL2  
IEDG1  
OLVL1  
Read/Write  
Bit 7 = ICIE Input Capture Interrupt Enable.  
0: Interrupt is inhibited.  
1: A timer interrupt is generated whenever the ICF1 or ICF2 bit of the SR register is set.  
Bit 6 = OCIE Output Compare Interrupt Enable.  
0: Interrupt is inhibited.  
1: A timer interrupt is generated whenever the OCF1 or OCF2 bit of the SR register is  
set.  
Bit 5 = TOIE Timer Overflow Interrupt Enable.  
0: Interrupt is inhibited.  
1: A timer interrupt is enabled whenever the TOF bit of the SR register is set.  
Bit 4 = FOLV2 Forced Output Compare 2.  
This bit is set and cleared by software.  
0: No effect on the OCMP2 pin.  
1:Forces the OLVL2 bit to be copied to the OCMP2 pin, if the OC2E bit is set and even  
if there is no successful comparison.  
108/246  
ST72344xx, ST72345xx  
Bit 3 = FOLV1 Forced Output Compare 1.  
On-chip peripherals  
This bit is set and cleared by software.  
0: No effect on the OCMP1 pin.  
1: Forces OLVL1 to be copied to the OCMP1 pin, if the OC1E bit is set and even if there  
is no successful comparison.  
Bit 2 = OLVL2 Output Level 2.  
This bit is copied to the OCMP2 pin whenever a successful comparison occurs with the  
OC2R register and OCxE is set in the CR2 register. This value is copied to the OCMP1  
pin in One-pulse mode and Pulse-width modulation mode.  
Bit 1 = IEDG1 Input Edge 1.  
This bit determines which type of level transition on the ICAP1 pin will trigger the  
capture.  
0: A falling edge triggers the capture.  
1: A rising edge triggers the capture.  
Bit 0 = OLVL1 Output Level 1.  
The OLVL1 bit is copied to the OCMP1 pin whenever a successful comparison occurs  
with the OC1R register and the OC1E bit is set in the CR2 register.  
Control register 2 (CR2)  
Reset value: 0000 0000 (00h)  
7
0
OC1E  
OC2E  
OPM  
PWM  
Read/Write  
Bit 7 = OC1E Output Compare 1 Pin Enable.  
CC1  
CC0  
IEDG2  
EXEDG  
This bit is used only to output the signal from the timer on the OCMP1 pin (OLV1 in  
Output Compare mode, both OLV1 and OLV2 in PWM and one-pulse mode). Whatever  
the value of the OC1E bit, the Output Compare 1 function of the timer remains active.  
0: OCMP1 pin alternate function disabled (I/O pin free for general-purpose I/O).  
1: OCMP1 pin alternate function enabled.  
Bit 6 = OC2E Output Compare 2 Pin Enable.  
This bit is used only to output the signal from the timer on the OCMP2 pin (OLV2 in  
Output Compare mode). Whatever the value of the OC2E bit, the Output Compare 2  
function of the timer remains active.  
0: OCMP2 pin alternate function disabled (I/O pin free for general-purpose I/O).  
1: OCMP2 pin alternate function enabled.  
Bit 5 = OPM One-pulse Mode.  
0: One-pulse Mode is not active.  
1: One-pulse Mode is active, the ICAP1 pin can be used to trigger one pulse on the  
OCMP1 pin; the active transition is given by the IEDG1 bit. The length of the generated  
pulse depends on the contents of the OC1R register.  
Bit 4 = PWM Pulse-Width Modulation.  
0: PWM mode is not active.  
1: PWM mode is active, the OCMP1 pin outputs a programmable cyclic signal; the  
109/246  
On-chip peripherals  
ST72344xx, ST72345xx  
length of the pulse depends on the value of OC1R register; the period depends on the  
value of OC2R register.  
Bits 3:2 = CC[1:0] Clock Control.  
The timer clock mode depends on these bits:  
Table 50. Clock control bits  
Timer clock  
CC1  
CC0  
f
f
f
CPU / 4  
CPU / 2  
CPU / 8  
0
0
1
1
0
1
0
1
External clock (where available)  
Note:  
If the external clock pin is not available, programming the external clock configuration stops  
the counter.  
Bit 1 = IEDG2 Input Edge 2.  
This bit determines which type of level transition on the ICAP2 pin will trigger the  
capture.  
0: A falling edge triggers the capture.  
1: A rising edge triggers the capture.  
Bit 0 = EXEDG External Clock Edge.  
This bit determines which type of level transition on the external clock pin EXTCLK will  
trigger the counter register.  
0: A falling edge triggers the counter register.  
1: A rising edge triggers the counter register.  
Control/status register (CSR)  
Reset value: 0000 0000 (00h)  
The three least significant bits are not used.  
7
0
0
ICF1  
OCF1  
TOF  
ICF2  
OCF2  
TIMD  
0
Read-only  
Bit 7 = ICF1 Input Capture Flag 1.  
0: No input capture (reset value).  
1: An input capture has occurred on the ICAP1 pin or the counter has reached the  
OC2R value in PWM mode. To clear this bit, first read the SR register, then read or  
write the low byte of the IC1R (IC1LR) register.  
Bit 6 = OCF1 Output Compare Flag 1.  
0: No match (reset value).  
1: The content of the free running counter has matched the content of the OC1R  
register. To clear this bit, first read the SR register, then read or write the low byte of the  
OC1R (OC1LR) register.  
110/246  
ST72344xx, ST72345xx  
On-chip peripherals  
Bit 5 = TOF Timer Overflow Flag.  
0: No timer overflow (reset value).  
1: The free running counter rolled over from FFFFh to 0000h. To clear this bit, first read  
the SR register, then read or write the low byte of the CR (CLR) register.  
Note:  
Reading or writing the ACLR register does not clear TOF.  
Bit 4 = ICF2 Input Capture Flag 2.  
0: No input capture (reset value).  
1: An input capture has occurred on the ICAP2 pin. To clear this bit, first read the SR  
register, then read or write the low byte of the IC2R (IC2LR) register.  
Bit 3 = OCF2 Output Compare Flag 2.  
0: No match (reset value).  
1: The content of the free running counter has matched the content of the OC2R  
register. To clear this bit, first read the SR register, then read or write the low byte of the  
OC2R (OC2LR) register.  
Bit 2 = TIMD Timer disable.  
This bit is set and cleared by software. When set, it freezes the timer prescaler and  
counter and disabled the output functions (OCMP1 and OCMP2 pins) to reduce power  
consumption. Access to the timer registers is still available, allowing the timer  
configuration to be changed while it is disabled.  
0: Timer enabled  
1: Timer prescaler, counter and outputs disabled  
Bits 1:0 = Reserved, must be kept cleared.  
Input capture 1 high register (IC1HR)  
Reset value: Undefined  
This is an 8-bit read-only register that contains the high part of the counter value (transferred  
by the input capture 1 event).  
7
0
MSB  
LSB  
Read Only  
Input capture 1 low register (IC1LR)  
Reset value: Undefined  
This is an 8-bit read only register that contains the low part of the counter value (transferred  
by the input capture 1 event).  
7
0
MSB  
LSB  
Read Only  
111/246  
On-chip peripherals  
ST72344xx, ST72345xx  
Output compare 1 high register (OC1HR)  
Read/Write  
Reset value: 1000 0000 (80h)  
This is an 8-bit register that contains the high part of the value to be compared to the CHR  
register.  
7
0
MSB  
LSB  
Read/Write  
Output compare 1 low register (OC1LR)  
Reset value: 0000 0000 (00h)  
This is an 8-bit register that contains the low part of the value to be compared to the CLR  
register.  
7
0
MSB  
LSB  
Read/Write  
Output compare 2 high register (OC2HR)  
Reset value: 1000 0000 (80h)  
This is an 8-bit register that contains the high part of the value to be compared to the CHR  
register.  
7
0
MSB  
LSB  
Read/Write  
Output compare 2 low register (OC2LR)  
Reset value: 0000 0000 (00h)  
This is an 8-bit register that contains the low part of the value to be compared to the CLR  
register.  
7
0
MSB  
LSB  
Read/Write  
Counter high register (CHR)  
Reset value: 1111 1111 (FFh)  
This is an 8-bit register that contains the high part of the counter value.  
7
0
MSB  
LSB  
Read-only  
112/246  
ST72344xx, ST72345xx  
On-chip peripherals  
Counter low register (CLR)  
Reset value: 1111 1100 (FCh)  
This is an 8-bit register that contains the low part of the counter value. A write to this register  
resets the counter. An access to this register after accessing the CSR register clears the  
TOF bit.  
7
0
MSB  
LSB  
Read-only  
Alternate counter high register (ACHR)  
Reset value: 1111 1111 (FFh)  
This is an 8-bit register that contains the high part of the counter value.  
7
0
MSB  
LSB  
Read-only  
Alternate counter low register (ACLR)  
Reset value: 1111 1100 (FCh)  
This is an 8-bit register that contains the low part of the counter value. A write to this register  
resets the counter. An access to this register after an access to CSR register does not clear  
the TOF bit in the CSR register.  
7
0
MSB  
LSB  
Read-only  
Input capture 2 high register (IC2HR)  
Reset value: Undefined  
This is an 8-bit read only register that contains the high part of the counter value (transferred  
by the Input Capture 2 event).  
7
0
MSB  
LSB  
Read-only  
Input capture 2 low register (IC2LR)  
Reset value: Undefined  
This is an 8-bit read only register that contains the low part of the counter value (transferred  
by the Input Capture 2 event).  
7
0
MSB  
LSB  
Read-only  
113/246  
On-chip peripherals  
ST72344xx, ST72345xx  
Table 51. 16-bit timer register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
Timer A: 32 CR1  
Timer B: 42 Reset value 0  
ICIE  
OCIE  
0
TOIE  
0
FOLV2 FOLV1 OLVL2 IEDG1 OLVL1  
0
0
0
0
0
Timer A: 31 CR2  
OC1E OC2E OPM  
Timer B: 41 Reset value 0  
PWM  
0
CC1  
0
CC0  
0
IEDG2 EXEDG  
0
0
0
0
Timer A: 33 CSR  
Timer B: 43 Reset value x  
ICF1  
OCF1 TOF  
ICF2  
x
OCF2 TIMD  
-
x
-
x
x
x
x
0
0
0
0
1
1
1
1
x
x
x
x
x
0
0
0
0
1
1
1
1
x
x
x
x
x
0
0
0
0
1
1
0
x
x
0
0
0
0
1
1
Timer A: 34 IC1HR  
Timer B: 44 Reset value x  
MSB  
LSB  
x
x
x
0
0
0
0
1
1
x
x
0
0
0
0
1
0
Timer A: 35 IC1LR  
Timer B: 45 Reset value x  
MSB  
LSB  
x
Timer A: 36 OC1HR  
Timer B: 46 Reset value 1  
MSB  
LSB  
0
Timer A: 37 OC1LR  
Timer B: 47 Reset value 0  
MSB  
LSB  
0
Timer A: 3E OC2HR  
Timer B: 4E Reset value 1  
MSB  
LSB  
0
Timer A: 3F OC2LR  
Timer B: 4F Reset value 0  
MSB  
LSB  
0
Timer A: 38 CHR  
Timer B: 48 Reset value 1  
MSB  
LSB  
1
Timer A: 39 CLR  
Timer B: 49 Reset value 1  
MSB  
LSB  
0
Timer A: 3A ACHR  
Timer B: 4A Reset value 1  
MSB  
LSB  
1
1
1
1
1
1
1
Timer A: 3B ACLR  
Timer B: 4B Reset value 1  
MSB  
LSB  
0
1
0
x
x
Timer A: 3C IC2HR  
Timer B: 4C Reset value x  
MSB  
LSB  
x
x
x
x
x
x
x
Timer A: 3D IC2LR  
Timer B: 4D Reset value x  
MSB  
LSB  
x
114/246  
ST72344xx, ST72345xx  
On-chip peripherals  
11.4  
Serial peripheral interface (SPI)  
11.4.1  
Introduction  
The serial peripheral interface (SPI) allows full-duplex, synchronous, serial communication  
with external devices. An SPI system may consist of a master and one or more slaves or a  
system in which devices may be either masters or slaves.  
11.4.2  
Main features  
Full-duplex synchronous transfers (on three lines)  
Simplex synchronous transfers (on two lines)  
Master or slave operation  
6 master mode frequencies (f  
/4 max.)  
CPU  
f
/2 max. slave mode frequency (see note)  
CPU  
SS Management by software or hardware  
Programmable clock polarity and phase  
End-of-transfer interrupt flag  
Write collision, master mode fault and Overrun flags  
Note:  
In slave mode, continuous transmission is not possible at maximum frequency due to the  
software overhead for clearing status flags and to initiate the next transmission sequence.  
11.4.3  
General description  
Figure 56 on page 116 shows the serial peripheral interface (SPI) block diagram. There are  
three registers:  
SPI Control Register (SPICR)  
SPI Control/Status Register (SPICSR)  
SPI Data Register (SPIDR)  
The SPI is connected to external devices through four pins:  
MISO: Master In / Slave Out data  
MOSI: Master Out / Slave In data  
SCK: Serial Clock out by SPI masters and input by SPI slaves  
SS: Slave select:  
This input signal acts as a ‘chip select’ to let the SPI master communicate with slaves  
individually and to avoid contention on the data lines. Slave SS inputs can be driven by  
standard I/O ports on the master Device.  
115/246  
On-chip peripherals  
Figure 56. Serial peripheral interface block diagram  
ST72344xx, ST72345xx  
Data/Address Bus  
Read  
SPIDR  
Interrupt  
request  
Read Buffer  
MOSI  
MISO  
7
0
SPICSR  
8-bit Shift Register  
SPIF WCOL OVR MODF  
0
SOD SSM SSI  
Write  
SOD  
bit  
1
SS  
SPI  
STATE  
0
SCK  
CONTROL  
7
0
SPICR  
MSTR  
SPR0  
SPIE SPE SPR2  
CPOL CPHA SPR1  
MASTER  
CONTROL  
SERIAL CLOCK  
GENERATOR  
SS  
Functional description  
A basic example of interconnections between a single master and a single slave is  
illustrated in Figure 57.  
The MOSI pins are connected together and the MISO pins are connected together. In this  
way data is transferred serially between master and slave (most significant bit first).  
The communication is always initiated by the master. When the master device transmits  
data to a slave device via MOSI pin, the slave device responds by sending data to the  
master device via the MISO pin. This implies full duplex communication with both data out  
and data in synchronized with the same clock signal (which is provided by the master device  
via the SCK pin).  
To use a single data line, the MISO and MOSI pins must be connected at each node (in this  
case only simplex communication is possible).  
Four possible data/clock timing relationships may be chosen (see Figure 60 on page 121)  
but master and slave must be programmed with the same timing mode.  
116/246  
ST72344xx, ST72345xx  
Figure 57. Single master/ single slave application  
On-chip peripherals  
SLAVE  
MASTER  
MSBit  
LSBit  
MSBit  
LSBit  
MISO  
MOSI  
MISO  
MOSI  
8-bit SHIFT REGISTER  
8-bit SHIFT REGISTER  
SPI  
CLOCK  
GENERATOR  
SCK  
SS  
SCK  
SS  
+5V  
Not used if SS is managed  
by software  
Slave select management  
As an alternative to using the SS pin to control the Slave Select signal, the application can  
choose to manage the Slave Select signal by software. This is configured by the SSM bit in  
the SPICSR register (see Figure 59).  
In software management, the external SS pin is free for other application uses and the  
internal SS signal level is driven by writing to the SSI bit in the SPICSR register.  
In Master mode:  
SS internal must be held high continuously  
In Slave Mode:  
There are two cases depending on the data/clock timing relationship (see Figure 58):  
If CPHA = 1 (data latched on second clock edge):  
SS internal must be held low during the entire transmission. This implies that in  
single slave applications the SS pin either can be tied to V , or made free for  
SS  
standard I/O by managing the SS function by software (SSM = 1 and SSI = 0 in  
the in the SPICSR register)  
If CPHA = 0 (data latched on first clock edge):  
SS internal must be held low during byte transmission and pulled high between  
each byte to allow the slave to write to the shift register. If SS is not pulled high, a  
Write Collision error will occur when the slave writes to the shift register (see Write  
collision error (WCOL) on page 122).  
117/246  
On-chip peripherals  
Figure 58. Generic SS timing diagram  
ST72344xx, ST72345xx  
Byte 3  
Byte 1  
Byte 2  
MOSI/MISO  
Master SS  
Slave SS  
(if CPHA = 0)  
Figure 59. Hardware/software slave select management  
SSM bit  
SSI bit  
1
0
SS internal  
SS external pin  
Master mode operation  
In master mode, the serial clock is output on the SCK pin. The clock frequency, polarity and  
phase are configured by software (refer to the description of the SPICSR register).  
Note:  
The idle state of SCK must correspond to the polarity selected in the SPICSR register (by  
pulling up SCK if CPOL = 1 or pulling down SCK if CPOL = 0).  
How to operate the SPI in master mode  
To operate the SPI in master mode, perform the following steps in order:  
1. Write to the SPICR register:  
Select the clock frequency by configuring the SPR[2:0] bits.  
Select the clock polarity and clock phase by configuring the CPOL and CPHA bits.  
Figure 60 shows the four possible configurations.  
Note that the slave must have the same CPOL and CPHA settings as the master.  
2. Write to the SPICSR register:  
Either set the SSM bit and set the SSI bit or clear the SSM bit and tie the SS pin  
high for the complete byte transmit sequence.  
3. Write to the SPICR register:  
Set the MSTR and SPE bits  
Note that the MSTR and SPE bits remain set only if SS is high).  
Note:  
Important: if the SPICSR register is not written first, the SPICR register setting (MSTR bit)  
may be not taken into account.  
The transmit sequence begins when software writes a byte in the SPIDR register.  
118/246  
ST72344xx, ST72345xx  
On-chip peripherals  
Master mode transmit sequence  
When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift  
register and then shifted out serially to the MOSI pin most significant bit first.  
When data transfer is complete:  
The SPIF bit is set by hardware.  
An interrupt request is generated if the SPIE bit is set and the interrupt mask in the  
CCR register is cleared.  
Clearing the SPIF bit is performed by the following software sequence:  
1. An access to the SPICSR register while the SPIF bit is set  
2. A read to the SPIDR register  
Note:  
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR  
register is read.  
Slave mode operation  
In slave mode, the serial clock is received on the SCK pin from the master device.  
To operate the SPI in slave mode:  
1. Write to the SPICSR register to perform the following actions:  
Select the clock polarity and clock phase by configuring the CPOL and CPHA bits  
(see Figure 60).  
Note that the slave must have the same CPOL and CPHA settings as the master.  
Manage the SS pin as described in Slave select management on page 117 and  
Figure 58. If CPHA = 1 SS must be held low continuously. If CPHA = 0 SS must be  
held low during byte transmission and pulled up between each byte to let the slave  
write in the shift register.  
2. Write to the SPICR register to clear the MSTR bit and set the SPE bit to enable the SPI  
I/O functions.  
Slave mode transmit sequence  
When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift  
register and then shifted out serially to the MISO pin most significant bit first.  
The transmit sequence begins when the slave device receives the clock signal and the most  
significant bit of the data on its MOSI pin.  
When data transfer is complete:  
The SPIF bit is set by hardware.  
An interrupt request is generated if SPIE bit is set and interrupt mask in the CCR  
register is cleared.  
Clearing the SPIF bit is performed by the following software sequence:  
1. An access to the SPICSR register while the SPIF bit is set  
2. A write or a read to the SPIDR register  
119/246  
On-chip peripherals  
ST72344xx, ST72345xx  
Note:  
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR  
register is read.  
The SPIF bit can be cleared during a second transmission; however, it must be cleared  
before the second SPIF bit in order to prevent an Overrun condition (see Overrun condition  
(OVR) on page 122).  
11.4.4  
Clock phase and clock polarity  
Four possible timing relationships may be chosen by software, using the CPOL and CPHA  
bits (See Figure 60).  
Note:  
The idle state of SCK must correspond to the polarity selected in the SPICSR register (by  
pulling up SCK if CPOL = 1 or pulling down SCK if CPOL = 0).  
The combination of the CPOL clock polarity and CPHA (clock phase) bits selects the data  
capture clock edge.  
Figure 60 shows an SPI transfer with the four combinations of the CPHA and CPOL bits.  
The diagram may be interpreted as a master or slave timing diagram where the SCK pin, the  
MISO pin and the MOSI pin are directly connected between the master and the slave  
device.  
Note:  
If CPOL is changed at the communication byte boundaries, the SPI must be disabled by  
resetting the SPE bit.  
120/246  
ST72344xx, ST72345xx  
Figure 60. Data clock timing diagram  
On-chip peripherals  
CPHA = 1  
SCK  
(CPOL = 1)  
SCK  
(CPOL = 0)  
Bit 4  
Bit 4  
Bit3  
Bit3  
Bit 2  
Bit 2  
Bit 1  
LSBit  
LSBit  
MSBit  
MSBit  
Bit 6  
Bit 6  
Bit 5  
Bit 5  
MISO  
(from master)  
Bit 1  
MOSI  
(from slave)  
SS  
(to slave)  
CAPTURE STROBE  
CPHA = 0  
SCK  
(CPOL = 1)  
SCK  
(CPOL = 0)  
Bit 4  
Bit 4  
Bit3  
Bit3  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
LSBit  
LSBit  
MISO  
(from master)  
MSBit  
Bit 6  
Bit 6  
Bit 5  
Bit 5  
MOSI  
(from slave)  
MSBit  
SS  
(to slave)  
CAPTURE STROBE  
1. This figure should not be used as a replacement for parametric information. Refer to the Electrical  
Characteristics chapter.  
11.4.5  
Error flags  
Master mode fault (MODF)  
Master mode fault occurs when the master device’s SS pin is pulled low.  
When a Master mode fault occurs:  
The MODF bit is set and an SPI interrupt request is generated if the SPIE bit is set.  
The SPE bit is reset. This blocks all output from the device and disables the SPI  
peripheral.  
The MSTR bit is reset, thus forcing the device into slave mode.  
121/246  
On-chip peripherals  
Clearing the MODF bit is done through a software sequence:  
ST72344xx, ST72345xx  
1. A read access to the SPICSR register while the MODF bit is set.  
2. A write to the SPICR register.  
Notes: To avoid any conflicts in an application with multiple slaves, the SS pin must be  
pulled high during the MODF bit clearing sequence. The SPE and MSTR bits may be  
restored to their original state during or after this clearing sequence.  
Hardware does not allow the user to set the SPE and MSTR bits while the MODF bit is set  
except in the MODF bit clearing sequence.  
In a slave device, the MODF bit can not be set, but in a multimaster configuration the device  
can be in slave mode with the MODF bit set.  
The MODF bit indicates that there might have been a multimaster conflict and allows  
software to handle this using an interrupt routine and either perform a reset or return to an  
application default state.  
Overrun condition (OVR)  
An overrun condition occurs when the master device has sent a data byte and the slave  
device has not cleared the SPIF bit issued from the previously transmitted byte.  
When an Overrun occurs:  
The OVR bit is set and an interrupt request is generated if the SPIE bit is set.  
In this case, the receiver buffer contains the byte sent after the SPIF bit was last cleared. A  
read to the SPIDR register returns this byte. All other bytes are lost.  
The OVR bit is cleared by reading the SPICSR register.  
Write collision error (WCOL)  
A write collision occurs when the software tries to write to the SPIDR register while a data  
transfer is taking place with an external device. When this happens, the transfer continues  
uninterrupted and the software write will be unsuccessful.  
Write collisions can occur both in master and slave mode. See also Slave select  
management on page 117.  
Note:  
A “read collision” will never occur since the received data byte is placed in a buffer in which  
access is always synchronous with the CPU operation.  
The WCOL bit in the SPICSR register is set if a write collision occurs.  
No SPI interrupt is generated when the WCOL bit is set (the WCOL bit is a status flag only).  
Clearing the WCOL bit is done through a software sequence (see Figure 61).  
122/246  
ST72344xx, ST72345xx  
On-chip peripherals  
Figure 61. Clearing the WCOL bit (write collision flag) software sequence  
Clearing sequence after SPIF = 1 (end of a data byte transfer)  
Read SPICSR  
1st Step  
RESULT  
SPIF = 0  
WCOL = 0  
2nd Step  
Read SPIDR  
Clearing sequence before SPIF = 1 (during a data byte transfer)  
Read SPICSR  
1st Step  
RESULT  
2nd Step  
Read SPIDR  
WCOL = 0  
1. Writing to the SPIDR register instead of reading it does not reset the WCOL bit.  
Single master and multimaster configurations  
There are two types of SPI systems: Single master system and Multimaster system.  
Single master system  
A typical single master system may be configured using a device as the master and  
four devices as slaves (see Figure 62).  
The master device selects the individual slave devices by using four pins of a parallel  
port to control the four SS pins of the slave devices.  
The SS pins are pulled high during reset since the master device ports will be forced to  
be inputs at that time, thus disabling the slave devices.  
Note: To prevent a bus conflict on the MISO line, the master allows only one active  
slave device during a transmission.  
For more security, the slave device may respond to the master with the received data  
byte. Then the master will receive the previous byte back from the slave device if all  
MISO and MOSI pins are connected and the slave has not written to its SPIDR register.  
Other transmission security methods can use ports for handshake lines or data bytes  
with command fields.  
Multimaster system  
A multimaster system may also be configured by the user. Transfer of master control  
could be implemented using a handshake method through the I/O ports or by an  
exchange of code messages through the serial peripheral interface system.  
The multimaster system is principally handled by the MSTR bit in the SPICR register  
and the MODF bit in the SPICSR register.  
123/246  
On-chip peripherals  
ST72344xx, ST72345xx  
Figure 62. Single master / multiple slave configuration  
SS  
SS  
SS  
SS  
SCK  
Slave  
Device  
SCK  
Slave  
SCK  
Slave  
Device  
SCK  
Slave  
Device  
Device  
MOSI MISO  
MOSI MISO  
MOSI MISO  
MOSI MISO  
MOSI MISO  
SCK  
Master  
Device  
5V  
SS  
11.4.6  
Low-power modes  
Table 52. Description  
Mode  
Description  
No effect on SPI.  
Wait  
SPI interrupt events cause the device to exit from Wait mode.  
SPI registers are frozen.  
In Halt mode, the SPI is inactive. SPI operation resumes when the device is woken up by  
an interrupt with “exit from Halt mode” capability. The data received is subsequently read  
from the SPIDR register when the software is running (interrupt vector fetching). If several  
data are received before the wake-up event, then an overrun error is generated. This error  
can be detected after the fetch of the interrupt routine that woke up the Device.  
Halt  
Using the SPI to wake up the device from Halt mode  
In slave configuration, the SPI is able to wake up the device from Halt mode through a SPIF  
interrupt. The data received is subsequently read from the SPIDR register when the  
software is running (interrupt vector fetch). If multiple data transfers have been performed  
before software clears the SPIF bit, then the OVR bit is set by hardware.  
Note:  
When waking up from Halt mode, if the SPI remains in Slave mode, it is recommended to  
perform an extra communications cycle to bring the SPI from Halt mode state to normal  
state. If the SPI exits from Slave mode, it returns to normal state immediately.  
Caution:  
The SPI can wake up the device from Halt mode only if the Slave Select signal (external SS  
pin or the SSI bit in the SPICSR register) is low when the device enters Halt mode. So, if  
Slave selection is configured as external (see Slave select management), make sure the  
master drives a low level on the SS pin when the slave enters Halt mode.  
124/246  
ST72344xx, ST72345xx  
On-chip peripherals  
11.4.7  
Interrupts  
Table 53. Interrupt events  
Interrupt event  
Enable control  
bit  
Event flag  
Exit from Wait Exit from Halt  
SPI end of transfer event  
Master mode fault event  
Overrun error  
SPIF  
MODF  
OVR  
Yes  
SPIE  
Yes  
No  
Note:  
The SPI interrupt events are connected to the same interrupt vector (see Interrupts chapter).  
They generate an interrupt if the corresponding Enable Control Bit is set and the interrupt  
mask in the CC register is reset (RIM instruction).  
11.4.8  
Register description  
SPI control register (SPICR)  
Reset value: 0000 xxxx (0xh)  
7
0
SPIE  
SPE  
SPR2  
MSTR  
CPOL  
CPHA  
SPR1  
SPR0  
Read/Write  
Bit 7 = SPIE Serial Peripheral Interrupt Enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SPI interrupt is generated whenever an End of Transfer event, Master Mode Fault  
or Overrun error occurs (SPIF = 1, MODF = 1 or OVR = 1 in the SPICSR register)  
Bit 6 = SPE Serial Peripheral Output Enable  
This bit is set and cleared by software. It is also cleared by hardware when, in master  
mode, SS = 0 (see Master mode fault (MODF) on page 121). The SPE bit is cleared by  
reset, so the SPI peripheral is not initially connected to the external pins.  
0: I/O pins free for general purpose I/O  
1: SPI I/O pin alternate functions enabled  
Bit 5 = SPR2 Divider Enable  
This bit is set and cleared by software and is cleared by reset. It is used with the  
SPR[1:0] bits to set the baud rate. Refer to Table 54: SPI master mode SCK frequency.  
0: Divider by 2 enabled  
1: Divider by 2 disabled  
Note:  
This bit has no effect in slave mode.  
Bit 4 = MSTR Master Mode  
This bit is set and cleared by software. It is also cleared by hardware when, in master  
mode, SS = 0 (see Master mode fault (MODF) on page 121).  
0: Slave mode  
1: Master mode. The function of the SCK pin changes from an input to an output and  
the functions of the MISO and MOSI pins are reversed.  
125/246  
On-chip peripherals  
Bit 3 = CPOL Clock Polarity  
ST72344xx, ST72345xx  
This bit is set and cleared by software. This bit determines the idle state of the serial  
Clock. The CPOL bit affects both the master and slave modes.  
0: SCK pin has a low level idle state  
1: SCK pin has a high level idle state  
Note:  
If CPOL is changed at the communication byte boundaries, the SPI must be disabled by  
resetting the SPE bit.  
Bit 2 = CPHA Clock Phase  
This bit is set and cleared by software.  
0: The first clock transition is the first data capture edge.  
1: The second clock transition is the first capture edge.  
Note:  
Note:  
The slave must have the same CPOL and CPHA settings as the master.  
Bits 1:0 = SPR[1:0] Serial clock frequency  
These bits are set and cleared by software. Used with the SPR2 bit, they select the  
baud rate of the SPI serial clock SCK output by the SPI in master mode.  
These 2 bits have no effect in slave mode.  
Table 54. SPI master mode SCK frequency  
Serial clock  
CPU/4  
SPR2  
SPR1  
SPR0  
f
1
0
1
0
1
fCPU/8  
0
0
1
0
fCPU/16  
f
CPU/32  
fCPU/64  
1
fCPU/128  
SPI control/status register (SPICSR)  
Reset value: 0000 0000 (00h)  
7
0
SPIF  
WCOL  
OVR  
MODF  
-
SOD  
SSM  
SSI  
Read-only  
Reserved  
Read/Write  
Bit 7 = SPIF Serial Peripheral Data Transfer Flag (Read-only)  
This bit is set by hardware when a transfer has been completed. An interrupt is  
generated if SPIE = 1 in the SPICR register. It is cleared by a software sequence (an  
access to the SPICSR register followed by a write or a read to the SPIDR register).  
0: Data transfer is in progress or the flag has been cleared.  
1: Data transfer between the device and an external device has been completed.  
Note:  
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR  
register is read.  
126/246  
ST72344xx, ST72345xx  
Bit 6 = WCOL Write collision status (Read-only)  
On-chip peripherals  
This bit is set by hardware when a write to the SPIDR register is done during a transmit  
sequence. It is cleared by a software sequence (see Figure 61).  
0: No write collision occurred  
1: A write collision has been detected  
Bit 5 = OVR SPI overrun error (Read-only)  
This bit is set by hardware when the byte currently being received in the shift register is  
ready to be transferred into the SPIDR register while SPIF = 1 (See Overrun condition  
(OVR)). An interrupt is generated if SPIE = 1 in the SPICR register. The OVR bit is  
cleared by software reading the SPICSR register.  
0: No overrun error  
1: Overrun error detected  
Bit 4 = MODF Mode fault flag (Read-only)  
This bit is set by hardware when the SS pin is pulled low in master mode (see Master  
mode fault (MODF) on page 121). An SPI interrupt can be generated if SPIE = 1 in the  
SPICR register. This bit is cleared by a software sequence (An access to the SPICSR  
register while MODF = 1 followed by a write to the SPICR register).  
0: No master mode fault detected  
1: A fault in master mode has been detected  
Bit 3 = Reserved, must be kept cleared.  
Bit 2 = SOD SPI Output disable  
This bit is set and cleared by software. When set, it disables the alternate function of  
the SPI output (MOSI in master mode / MISO in slave mode)  
0: SPI output enabled (if SPE = 1)  
1: SPI output disabled  
Bit 1 = SSM SS management  
This bit is set and cleared by software. When set, it disables the alternate function of  
the SPI SS pin and uses the SSI bit value instead. See Slave select management on  
page 117.  
0: Hardware management (SS managed by external pin)  
1: Software management (internal SS signal controlled by SSI bit. External SS pin free  
for general-purpose I/O)  
Bit 0 = SSI SS internal mode  
This bit is set and cleared by software. It acts as a ‘chip select’ by controlling the level of  
the SS slave select signal when the SSM bit is set.  
0: Slave selected  
1: Slave deselected  
127/246  
On-chip peripherals  
ST72344xx, ST72345xx  
SPI data I/O register (SPIDR)  
Reset value: Undefined  
7
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Read/Write  
The SPIDR register is used to transmit and receive data on the serial bus. In a master  
device, a write to this register will initiate transmission/reception of another byte.  
Note:  
During the last clock cycle the SPIF bit is set, a copy of the received data byte in the shift  
register is moved to a buffer. When the user reads the serial peripheral data I/O register, the  
buffer is actually being read.  
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR  
register is read.  
Warning: A write to the SPIDR register places data directly into the  
shift register for transmission.  
A read to the SPIDR register returns the value located in the buffer and not the content of  
the shift register (see Figure 56).  
Table 55. SPI register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
SPIDR  
Reset value  
MSB  
x
LSB  
x
0021h  
0022h  
0023h  
x
x
x
x
x
x
SPICR  
Reset value  
SPIE  
0
SPE  
0
SPR2  
0
MSTR CPOL CPHA  
SPR1  
x
SPR0  
x
0
x
x
SPICSR  
Reset value  
SPIF  
0
WCOL OR  
0
MODF  
0
SOD  
0
SSM  
0
SSI  
0
0
0
128/246  
ST72344xx, ST72345xx  
On-chip peripherals  
11.5  
SCI serial communication interface  
11.5.1  
Introduction  
The serial communications interface (SCI) offers a flexible means of full-duplex data  
exchange with external equipment requiring an industry standard NRZ asynchronous serial  
data format. The SCI offers a very wide range of baud rates using two baud rate generator  
systems.  
11.5.2  
Main features  
Full-duplex, asynchronous communications  
NRZ standard format (Mark/Space)  
Dual baud rate generator systems  
Independently programmable transmit and receive baud rates up to 500K baud  
Programmable data word length (8 or 9 bits)  
Receive buffer full, Transmit buffer empty and End of Transmission flags  
2 receiver wake-up modes:  
Address bit (MSB)  
Idle line  
Muting function for multiprocessor configurations  
Separate enable bits for Transmitter and Receiver  
4 error detection flags:  
Overrun error  
Noise error  
Frame error  
Parity error  
5 interrupt sources with flags:  
Transmit data register empty  
Transmission complete  
Receive data register full  
Idle line received  
Overrun error detected  
Parity control:  
Transmits parity bit  
Checks parity of received data byte  
Reduced power consumption mode  
11.5.3  
General description  
The interface is externally connected to another device by three pins (see Figure 63). Any  
SCI bidirectional communication requires a minimum of two pins: Receive Data In (RDI) and  
Transmit Data Out (TDO):  
SCLK: Transmitter clock output. This pin outputs the transmitter data clock for  
synchronous transmission (no clock pulses on start bit and stop bit, and a software  
option to send a clock pulse on the last data bit). This can be used to control  
129/246  
On-chip peripherals  
ST72344xx, ST72345xx  
peripherals that have shift registers (e.g. LCD drivers). The clock phase and polarity  
are software programmable.  
TDO: Transmit Data Output. When the transmitter is disabled, the output pin returns to  
its I/O port configuration. When the transmitter is enabled and nothing is to be  
transmitted, the TDO pin is at high level.  
RDI: Receive Data Input is the serial data input. Oversampling techniques are used for  
data recovery by discriminating between valid incoming data and noise.  
Through these pins, serial data is transmitted and received as frames comprising:  
An Idle Line prior to transmission or reception  
A start bit  
A data word (8 or 9 bits) least significant bit first  
A Stop bit indicating that the frame is complete.  
This interface uses two types of baud rate generator:  
A conventional type for commonly-used baud rates,  
An extended type with a prescaler offering a very wide range of baud rates even with  
non-standard oscillator frequencies.  
130/246  
ST72344xx, ST72345xx  
Figure 63. SCI block diagram  
On-chip peripherals  
Write  
Read  
(DATA REGISTER) SCIDR  
Receive Data Register (RDR)  
Receive Shift Register  
Transmit Data Register (TDR)  
TDO  
RDI  
Transmit Shift Register  
R8  
T8 SCID  
M
WAKE PCE PS PIE  
SCICR1  
WAKE  
UP  
TRANSMIT  
CONTROL  
RECEIVER  
CLOCK  
RECEIVER  
CONTROL  
UNIT  
SCISR  
SCICR2  
TDRE TC RDRF IDLE OR NF FE  
PE  
TIE TCIE RIE ILIE TE RE RWU SBK  
SCI  
INTERRUPT  
CONTROL  
TRANSMITTER  
CLOCK  
TRANSMITTER RATE  
CONTROL  
f
CPU  
/PR  
/16  
SCIBRR  
SCP1  
SCT2  
SCT1SCT0SCR2 SCR1SCR0  
SCP0  
RECEIVER RATE  
CONTROL  
CONVENTIONAL BAUD RATE GENERATOR  
131/246  
On-chip peripherals  
ST72344xx, ST72345xx  
11.5.4  
Functional description  
The block diagram of the Serial Control Interface, is shown in Figure 63. It contains six  
dedicated registers:  
2 control registers (SCICR1 and SCICR2)  
A status register (SCISR)  
A baud rate register (SCIBRR)  
An extended prescaler receiver register  
(SCIERPR)  
An extended prescaler transmitter register  
(SCIETPR)  
Refer to the register descriptions in Section 11.5.7 for the definitions of each bit.  
Serial data format  
Word length may be selected as being either 8 or 9 bits by programming the M bit in the  
SCICR1 register (see Figure 64).  
The TDO pin is in low state during the start bit.  
The TDO pin is in high state during the stop bit.  
An Idle character is interpreted as an entire frame of “1”s followed by the start bit of the next  
frame which contains data.  
A Break character is interpreted on receiving “0”s for some multiple of the frame period. At  
the end of the last break frame the transmitter inserts an extra “1” bit to acknowledge the  
start bit.  
Transmission and reception are driven by their own baud rate generator.  
132/246  
ST72344xx, ST72345xx  
Figure 64. Word length programming  
On-chip peripherals  
9-bit (M bit is set)  
Data Frame  
Possible  
Parity  
Next Data Frame  
Bit  
Next  
Start  
Bit  
Start  
Bit  
Stop  
Bit  
Bit2  
Bit6  
Bit3  
Bit4  
Bit5  
Bit7  
Bit8  
Bit0 Bit1  
CLOCK  
(1)  
Start  
Bit  
Idle Frame  
Start  
Bit  
Extra  
’1’  
Break Frame  
8-bit (M bit is reset)  
Data Frame  
Possible  
Parity  
Next Data Frame  
Bit  
Next  
Start  
Bit  
Start  
Bit  
Stop  
Bit  
Bit2  
Bit6  
Bit0  
Bit1  
Bit3  
Bit4  
Bit5  
Bit7  
CLOCK  
(1)  
Start  
Bit  
Idle Frame  
Start  
Bit  
Extra  
’1’  
Break Frame  
1. LBCL bit controls last data clock pulse.  
Transmitter  
The transmitter can send data words of either 8 or 9 bits depending on the M bit status.  
When the M bit is set, word length is 9 bits and the 9th bit (the MSB) has to be stored in the  
T8 bit in the SCICR1 register.  
When the transmit enable bit (TE) is set, the data in the transmit shift register is output on  
the TDO pin.  
133/246  
On-chip peripherals  
Character transmission  
ST72344xx, ST72345xx  
During an SCI transmission, data shifts out least significant bit first on the TDO pin. In  
this mode, the SCIDR register consists of a buffer (TDR) between the internal bus and  
the transmit shift register (see Figure 64).  
Procedure:  
Select the M bit to define the word length.  
Select the desired baud rate using the SCIBRR and the SCIETPR registers.  
Set the TE bit to send an idle frame as first transmission.  
Access the SCISR register and write the data to send in the SCIDR register (this  
sequence clears the TDRE bit). Repeat this sequence for each data to be  
transmitted.  
Clearing the TDRE bit is always performed by the following software sequence:  
a) An access to the SCISR register  
b) A write to the SCIDR register  
The TDRE bit is set by hardware and it indicates:  
The TDR register is empty.  
The data transfer is beginning.  
The next data can be written in the SCIDR register without overwriting the  
previous data.  
This flag generates an interrupt if the TIE bit is set and the I bit is cleared in the CCR  
register.  
When a transmission is taking place, a write instruction to the SCIDR register stores  
the data in the TDR register and which is copied in the shift register at the end of the  
current transmission.  
When no transmission is taking place, a write instruction to the SCIDR register places  
the data directly in the shift register, the data transmission starts, and the TDRE bit is  
immediately set.  
When a frame transmission is complete (after the stop bit or after the break frame) the  
TC bit is set and an interrupt is generated if the TCIE is set and the I bit is cleared in the  
CCR register.  
Clearing the TC bit is performed by the following software sequence:  
a) An access to the SCISR register  
b) A write to the SCIDR register  
Note:  
The TDRE and TC bits are cleared by the same software sequence.  
Break characters  
Setting the SBK bit loads the shift register with a break character. The break frame  
length depends on the M bit (see Figure 64).  
As long as the SBK bit is set, the SCI send break frames to the TDO pin. After clearing  
this bit by software the SCI insert a logic 1 bit at the end of the last break frame to  
guarantee the recognition of the start bit of the next frame.  
Idle characters  
Setting the TE bit drives the SCI to send an idle frame before the first data frame.  
Clearing and then setting the TE bit during a transmission sends an idle frame after the  
current word.  
134/246  
ST72344xx, ST72345xx  
Note:  
On-chip peripherals  
Resetting and setting the TE bit causes the data in the TDR register to be lost. Therefore the  
best time to toggle the TE bit is when the TDRE bit is set, that is, before writing the next byte  
in the SCIDR.  
Receiver  
The SCI can receive data words of either 8 or 9 bits. When the M bit is set, word length is 9  
bits and the MSB is stored in the R8 bit in the SCICR1 register.  
Character reception  
During a SCI reception, data shifts in least significant bit first through the RDI pin. In  
this mode, the SCIDR register consists or a buffer (RDR) between the internal bus and  
the received shift register (see Figure 63).  
Procedure:  
Select the M bit to define the word length.  
Select the desired baud rate using the SCIBRR and the SCIERPR registers.  
Set the RE bit, this enables the receiver which begins searching for a start bit.  
When a character is received:  
The RDRF bit is set. It indicates that the content of the shift register is transferred  
to the RDR.  
An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR  
register.  
The error flags can be set if a frame error, noise or an overrun error has been  
detected during reception.  
Clearing the RDRF bit is performed by the following software sequence done by:  
a) An access to the SCISR register  
b) A read to the SCIDR register.  
The RDRF bit must be cleared before the end of the reception of the next character to  
avoid an overrun error.  
Break character  
When a break character is received, the SCI handles it as a framing error.  
Idle character  
When an idle frame is detected, there is the same procedure as a data received  
character plus an interrupt if the ILIE bit is set and the I bit is cleared in the CCR  
register.  
135/246  
On-chip peripherals  
Overrun error  
ST72344xx, ST72345xx  
An overrun error occurs when a character is received when RDRF has not been reset.  
Data cannot be transferred from the shift register to the RDR register until the RDRF bit  
is cleared.  
When a overrun error occurs:  
The OR bit is set.  
The RDR content is not lost.  
The shift register is overwritten.  
An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR  
register.  
The OR bit is reset by an access to the SCISR register followed by a SCIDR register  
read operation.  
Noise error  
Oversampling techniques are used for data recovery by discriminating between valid  
incoming data and noise.  
Normal data bits are considered valid if three consecutive samples (8th, 9th, 10th) have  
the same bit value, otherwise the NF flag is set. In the case of start bit detection, the NF  
flag is set on the basis of an algorithm combining both valid edge detection and three  
samples (8th, 9th, 10th). Therefore, to prevent the NF flag getting set during start bit  
reception, there should be a valid edge detection as well as three valid samples.  
When noise is detected in a frame:  
The NF flag is set at the rising edge of the RDRF bit.  
Data is transferred from the Shift register to the SCIDR register.  
No interrupt is generated. However this bit rises at the same time as the RDRF bit  
which itself generates an interrupt.  
The NF flag is reset by a SCISR register read operation followed by a SCIDR register  
read operation.  
During reception, if a false start bit is detected (e.g. 8th, 9th, 10th samples are  
011,101,110), the frame is discarded and the receiving sequence is not started for this  
frame. There is no RDRF bit set for this frame and the NF flag is set internally (not  
accessible to the user). This NF flag is accessible along with the RDRF bit when a next  
valid frame is received.  
Note:  
If the application Start Bit is not long enough to match the above requirements, then the NF  
Flag may get set due to the short Start Bit. In this case, the NF flag may be ignored by the  
application software when the first valid byte is received.  
See also Noise error causes.  
136/246  
ST72344xx, ST72345xx  
Framing error  
On-chip peripherals  
A framing error is detected when:  
The stop bit is not recognized on reception at the expected time, following either a  
de-synchronization or excessive noise.  
A break is received.  
When the framing error is detected:  
the FE bit is set by hardware  
Data is transferred from the Shift register to the SCIDR register.  
No interrupt is generated. However this bit rises at the same time as the RDRF bit  
which itself generates an interrupt.  
The FE bit is reset by a SCISR register read operation followed by a SCIDR register  
read operation.  
Figure 65. SCI baud rate and extended prescaler block diagram  
TRANSMITTER  
CLOCK  
EXTENDED PRESCALER TRANSMITTER RATE CONTROL  
SCIETPR  
EXTENDED TRANSMITTER PRESCALER REGISTER  
SCIERPR  
EXTENDED RECEIVER PRESCALER REGISTER  
RECEIVER  
CLOCK  
EXTENDED PRESCALER RECEIVER RATE CONTROL  
EXTENDED PRESCALER  
f
CPU  
TRANSMITTER RATE  
CONTROL  
/PR  
/16  
SCIBRR  
SCP1SCP0SCT2  
SCT1 SCT0 SCR2 SCR1SCR0  
RECEIVER RATE  
CONTROL  
CONVENTIONAL BAUD RATE GENERATOR  
137/246  
On-chip peripherals  
ST72344xx, ST72345xx  
Conventional baud rate generation  
The baud rates for the receiver and transmitter (Rx and Tx) are set independently and  
calculated as follows:  
:
fCPU  
fCPU  
Rx =  
Tx =  
(16*PR)*RR  
(16*PR)*TR  
with:  
PR = 1, 3, 4 or 13 (see SCP[1:0] bits)  
TR = 1, 2, 4, 8, 16, 32, 64,128  
(see SCT[2:0] bits)  
RR = 1, 2, 4, 8, 16, 32, 64,128  
(see SCR[2:0] bits)  
All these bits are in the SCIBRR register.  
Example: If f  
is 8 MHz (normal mode) and if PR = 13 and TR = RR = 1, the transmit and  
CPU  
receive baud rates are 38400 baud.  
Note:  
The baud rate registers MUST NOT be changed while the transmitter or the receiver is  
enabled.  
Extended baud rate generation  
The extended prescaler option gives a very fine tuning on the baud rate, using a 255 value  
prescaler, whereas the conventional Baud Rate Generator retains industry standard  
software compatibility.  
The extended baud rate generator block diagram is shown in Figure 65.  
The output clock rate sent to the transmitter or to the receiver is the output from the 16  
divider divided by a factor ranging from 1 to 255 set in the SCIERPR or the SCIETPR  
register.  
Note:  
The extended prescaler is activated by setting the SCIETPR or SCIERPR register to a value  
other than zero. The baud rates are calculated as follows:  
fCPU  
16*ERPR*(PR*RR)  
fCPU  
16*ETPR*(PR*TR)  
Rx =  
Tx =  
with:  
ETPR = 1, ..., 255 (see SCIETPR register)  
ERPR = 1, ..., 255 (see SCIERPR register)  
Receiver muting and wakeup feature  
In multiprocessor configurations it is often desirable that only the intended message  
recipient should actively receive the full message contents, thus reducing redundant SCI  
service overhead for all non addressed receivers.  
The non-addressed devices may be placed in sleep mode by means of the muting function.  
138/246  
ST72344xx, ST72345xx  
Setting the RWU bit by software puts the SCI in sleep mode:  
On-chip peripherals  
None of the reception status bits can be set.  
All the receive interrupts are inhibited.  
A muted receiver can be woken up in one of the following two ways:  
by Idle Line detection if the WAKE bit is reset,  
by Address Mark detection if the WAKE bit is set.  
A receiver wakes-up by Idle Line detection when the Receive line has recognized an Idle  
Frame. Then the RWU bit is reset by hardware but the IDLE bit is not set.  
A receiver wakes-up by Address Mark detection when it received a “1” as the most  
significant bit of a word, thus indicating that the message is an address. The reception of  
this particular word wakes up the receiver, resets the RWU bit and sets the RDRF bit, which  
allows the receiver to receive this word normally and to use it as an address word.  
Parity control  
Parity control (generation of parity bit in transmission and parity checking in reception) can  
be enabled by setting the PCE bit in the SCICR1 register. Depending on the frame length  
defined by the M bit, the possible SCI frame formats are as listed in Table 56.  
Table 56. Frame formats  
M bit  
PCE bit  
SCI frame(1)  
0
1
0
1
| SB | 8 bit data | STB |  
0
1
| SB | 7-bit data | PB | STB |  
| SB | 9-bit data | STB |  
| SB | 8-bit data PB | STB |  
1. SB: Start Bit, STB: Stop Bit, PB: Parity Bit.  
Note:  
In case of wakeup by an address mark, the MSB bit of the data is taken into account and not  
the parity bit  
Even parity: The parity bit is calculated to obtain an even number of “1s” inside the frame  
made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.  
Example: data = 00110101; 4 bits set => parity bit is 0 if even parity is selected (PS bit = 0).  
Odd parity: The parity bit is calculated to obtain an odd number of “1s” inside the frame  
made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.  
Example: data = 00110101; 4 bits set => parity bit is 1 if odd parity is selected (PS bit = 1).  
Transmission mode: If the PCE bit is set then the MSB bit of the data written in the data  
register is not transmitted but is changed by the parity bit.  
Reception mode: If the PCE bit is set then the interface checks if the received data byte  
has an even number of “1s” if even parity is selected (PS = 0) or an odd number of “1s” if  
odd parity is selected (PS = 1). If the parity check fails, the PE flag is set in the SCISR  
register and an interrupt is generated if PIE is set in the SCICR1 register.  
139/246  
On-chip peripherals  
ST72344xx, ST72345xx  
SCI clock tolerance  
During reception, each bit is sampled 16 times. The majority of the 8th, 9th and 10th  
samples is considered as the bit value. For a valid bit detection, all the three samples should  
have the same value otherwise the noise flag (NF) is set. For example: if the 8th, 9th and  
10th samples are 0, 1 and 1 respectively, then the bit value is “1”, but the Noise Flag bit is  
set because the three samples values are not the same.  
Consequently, the bit length must be long enough so that the 8th, 9th and 10th samples  
have the desired bit value. This means the clock frequency should not vary more than 6/16  
(37.5%) within one bit. The sampling clock is resynchronized at each start bit, so that when  
receiving 10 bits (one start bit, 1 data byte, 1 stop bit), the clock deviation must not exceed  
3.75%.  
Note:  
The internal sampling clock of the microcontroller samples the pin value on every falling  
edge. Therefore, the internal sampling clock and the time the application expects the  
sampling to take place may be out of sync. For example: If the baud rate is 15.625 kbaud (bit  
length is 64 µs), then the 8th, 9th and 10th samples will be at 28 µs, 32 µs and 36 µs  
respectively (the first sample starting ideally at 0 µs). But if the falling edge of the internal  
clock occurs just before the pin value changes, the samples would then be out of sync by  
~4 µs. This means the entire bit length must be at least 40 µs (36 µs for the 10th sample  
+ 4 µs for synchronization with the internal sampling clock).  
Clock deviation causes  
The causes which contribute to the total deviation are:  
D
: Deviation due to transmitter error (Local oscillator error of the transmitter or the  
TRA  
transmitter is transmitting at a different baud rate).  
D
D
: Error due to the baud rate quantization of the receiver.  
QUANT  
: Deviation of the local oscillator of the receiver: This deviation can occur during  
REC  
the reception of one complete SCI message assuming that the deviation has been  
compensated at the beginning of the message.  
D
: Deviation due to the transmission line (generally due to the transceivers)  
TCL  
All the deviations of the system should be added and compared to the SCI clock tolerance:  
+ D + D + D < 3.75 %  
D
TRA  
QUANT  
REC  
TCL  
Noise error causes  
See also description of noise error in Receiver.  
Start bit: the noise flag (NF) is set during start bit reception if one of the following  
conditions occurs:  
A valid falling edge is not detected. A falling edge is considered to be valid if the  
three consecutive samples before the falling edge occurs are detected as '1' and,  
140/246  
ST72344xx, ST72345xx  
On-chip peripherals  
after the falling edge occurs, during the sampling of the 16 samples, if one of the  
samples numbered 3, 5 or 7 is detected as a “1”.  
During sampling of the 16 samples, if one of the samples numbered 8, 9 or 10 is  
detected as a “1”.  
Therefore, a valid Start bit must satisfy both the above conditions to prevent the Noise  
Flag getting set.  
Data bits: the noise flag (NF) is set during normal data bit reception if the following  
condition occurs:  
During the sampling of 16 samples, if all three samples numbered 8, 9 and 10 are  
not the same. The majority of the 8th, 9th and 10th samples is considered as the  
bit value.  
Therefore, a valid Data bit must have samples 8, 9 and 10 at the same value to prevent the  
Noise Flag getting set.  
Figure 66. Bit sampling in reception mode  
RDI LINE  
sampled values  
Sample  
clock  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
6/16  
7/16  
7/16  
One bit time  
11.5.5  
Low-power modes  
Table 57. Mode description  
Mode  
Description  
No effect on SCI.  
Wait  
SCI interrupts cause the device to exit from Wait mode.  
SCI registers are frozen.  
Halt  
In Halt mode, the SCI stops transmitting/receiving until Halt mode is exited.  
141/246  
On-chip peripherals  
ST72344xx, ST72345xx  
11.5.6  
Interrupts  
Table 58. Interrupt events  
Interrupt event  
Enable control  
bit  
Exit from  
Wait  
Exit from  
Halt  
Event flag  
TDRE  
Transmit data register empty  
Transmission complete  
Received data ready to be read  
Overrun error detected  
Idle line detected  
TIE  
TC  
TCIE  
RDRF  
OR  
RIE  
Yes  
No  
IDLE  
PE  
ILIE  
PIE  
Parity error  
The SCI interrupt events are connected to the same interrupt vector.  
These events generate an interrupt if the corresponding Enable Control Bit is set and the  
interrupt mask in the CC register is reset (RIM instruction).  
11.5.7  
Register description  
Status register (SCISR)  
Reset value: 1100 0000 (C0h)  
7
0
TDRE  
TC  
RDRF  
IDLE  
Read-only  
Bit 7 = TDRE Transmit data register empty.  
OR  
NF  
FE  
PE  
This bit is set by hardware when the content of the TDR register has been transferred  
into the shift register. An interrupt is generated if the TIE bit = 1 in the SCICR2 register.  
It is cleared by a software sequence (an access to the SCISR register followed by a  
write to the SCIDR register).  
0: Data is not transferred to the shift register  
1: Data is transferred to the shift register  
Note:  
Data is not transferred to the shift register until the TDRE bit is cleared.  
Bit 6 = TC Transmission complete.  
This bit is set by hardware when transmission of a frame containing Data is complete.  
An interrupt is generated if TCIE = 1 in the SCICR2 register. It is cleared by a software  
sequence (an access to the SCISR register followed by a write to the SCIDR register).  
0: Transmission is not complete  
1: Transmission is complete  
Note:  
TC is not set after the transmission of a Preamble or a Break.  
Bit 5 = RDRF Received data ready flag.  
This bit is set by hardware when the content of the RDR register has been transferred  
to the SCIDR register. An interrupt is generated if RIE = 1 in the SCICR2 register. It is  
142/246  
ST72344xx, ST72345xx  
On-chip peripherals  
cleared by a software sequence (an access to the SCISR register followed by a read to  
the SCIDR register).  
0: Data is not received  
1: Received data is ready to be read  
Bit 4 = IDLE Idle line detect.  
This bit is set by hardware when an Idle Line is detected. An interrupt is generated if  
the ILIE = 1 in the SCICR2 register. It is cleared by a software sequence (an access to  
the SCISR register followed by a read to the SCIDR register).  
0: No Idle Line is detected  
1: Idle Line is detected  
Note:  
The IDLE bit is not set again until the RDRF bit has been set itself (that is, a new idle line  
occurs).  
Bit 3 = OR Overrun error.  
This bit is set by hardware when the word currently being received in the shift register is  
ready to be transferred into the RDR register while RDRF = 1. An interrupt is generated  
if RIE = 1 in the SCICR2 register. It is cleared by a software sequence (an access to  
the SCISR register followed by a read to the SCIDR register).  
0: No Overrun error  
1: Overrun error is detected  
Note:  
Note:  
When this bit is set, the RDR register content is not lost but the shift register is overwritten.  
Bit 2 = NF Noise flag.  
This bit is set by hardware when noise is detected on a received frame. It is cleared by  
a software sequence (an access to the SCISR register followed by a read to the SCIDR  
register).  
0: No noise is detected  
1: Noise is detected  
This bit does not generate interrupt as it appears at the same time as the RDRF bit which  
itself generates an interrupt.  
Bit 1 = FE Framing error.  
This bit is set by hardware when a desynchronization, excessive noise or a break  
character is detected. It is cleared by a software sequence (an access to the SCISR  
register followed by a read to the SCIDR register).  
0: No Framing error is detected  
1: Framing error or break character is detected  
Note:  
This bit does not generate an interrupt as it appears at the same time as the RDRF bit which  
itself generates an interrupt. If the word currently being transferred causes both frame error  
and overrun error, it is transferred and only the OR bit is set.  
Bit 0 = PE Parity error.  
This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by  
a software sequence (a read to the status register followed by an access to the SCIDR  
data register). An interrupt is generated if PIE = 1 in the SCICR1 register.  
0: No parity error  
1: Parity error  
143/246  
On-chip peripherals  
ST72344xx, ST72345xx  
Control register 1 (SCICR1)  
Reset value: x000 0000 (x0h)  
7
0
R8  
T8  
SCID  
M
WAKE  
PCE  
PS  
PIE  
Read/Write  
Bit 7 = R8 Receive data bit 8.  
This bit is used to store the 9th bit of the received word when M = 1.  
Bit 6 = T8 Transmit data bit 8.  
This bit is used to store the 9th bit of the transmitted word when M = 1.  
Bit 5 = SCID Disabled for low power consumption  
When this bit is set the SCI prescalers and outputs are stopped and the end of the  
current byte transfer in order to reduce power consumption.This bit is set and cleared  
by software.  
0: SCI enabled  
1: SCI prescaler and outputs disabled  
Bit 4 = M Word length.  
This bit determines the word length. It is set or cleared by software.  
0: 1 Start bit, 8 Data bits, 1 Stop bit  
1: 1 Start bit, 9 Data bits, 1 Stop bit  
Note:  
The M bit must not be modified during a data transfer (both transmission and reception).  
Bit 3 = WAKE Wakeup method.  
This bit determines the SCI Wake-Up method, it is set or cleared by software.  
0: Idle Line  
1: Address Mark  
Bit 2 = PCE Parity control enable.  
This bit selects the hardware parity control (generation and detection). When the parity  
control is enabled, the computed parity is inserted at the MSB position (9th bit if M = 1;  
8th bit if M = 0) and parity is checked on the received data. This bit is set and cleared  
by software. Once it is set, PCE is active after the current byte (in reception and in  
transmission).  
0: Parity control disabled  
1: Parity control enabled  
Bit 1 = PS Parity selection.  
This bit selects the odd or even parity when the parity generation/detection is enabled  
(PCE bit set). It is set and cleared by software. The parity is selected after the current  
byte.  
0: Even parity  
1: Odd parity  
144/246  
ST72344xx, ST72345xx  
Bit 0 = PIE Parity interrupt enable.  
On-chip peripherals  
This bit enables the interrupt capability of the hardware parity control when a parity  
error is detected (PE bit set). It is set and cleared by software.  
0: Parity error interrupt disabled  
1: Parity error interrupt enabled  
Control register 2 (SCICR2)  
Reset value: 0000 0000 (00h)  
7
0
TIE  
TCIE  
RIE  
ILIE  
TE  
RE  
RWU  
SBK  
Read/Write  
Bit 7 = TIE Transmitter interrupt enable.  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SCI interrupt is generated whenever TDRE = 1 in the SCISR register  
Bit 6 = TCIE Transmission complete interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SCI interrupt is generated whenever TC = 1 in the SCISR register  
Bit 5 = RIE Receiver interrupt enable.  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SCI interrupt is generated whenever OR = 1 or RDRF = 1 in the SCISR register  
Bit 4 = ILIE Idle line interrupt enable.  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SCI interrupt is generated whenever IDLE = 1 in the SCISR register.  
Bit 3 = TE Transmitter enable.  
This bit enables the transmitter. It is set and cleared by software.  
0: Transmitter is disabled  
1: Transmitter is enabled  
Note:  
During transmission, a “0” pulse on the TE bit (“0” followed by “1”) sends a preamble (idle  
line) after the current word.  
When TE is set there is a 1 bit-time delay before the transmission starts.  
Bit 2 = RE Receiver enable.  
This bit enables the receiver. It is set and cleared by software.  
0: Receiver is disabled  
1: Receiver is enabled and begins searching for a start bit  
145/246  
On-chip peripherals  
Bit 1 = RWU Receiver wake-up.  
ST72344xx, ST72345xx  
This bit determines if the SCI is in mute mode or not. It is set and cleared by software  
and can be cleared by hardware when a wake-up sequence is recognized.  
0: Receiver in active mode  
1: Receiver in mute mode  
Note:  
Before selecting Mute mode (by setting the RWU bit) the SCI must first receive a data byte,  
otherwise it cannot function in Mute mode with wake-up by Idle line detection.  
In Address Mark Detection Wake-Up configuration (WAKE bit = 1) the RWU bit cannot be  
modified by software while the RDRF bit is set.  
Bit 0 = SBK Send break.  
This bit set is used to send break characters. It is set and cleared by software.  
0: No break character is transmitted  
1: Break characters are transmitted  
Note:  
If the SBK bit is set to “1” and then to “0”, the transmitter sends a BREAK word at the end of  
the current word.  
Data register (SCIDR)  
Reset value: Undefined  
Contains the Received or Transmitted data character, depending on whether it is read from  
or written to.  
7
0
DR7  
DR6  
DR5  
DR4  
DR3  
DR2  
DR1  
DR0  
Read/Write  
The Data register performs a double function (read and write) since it is composed of two  
registers, one for transmission (TDR) and one for reception (RDR).  
The TDR register provides the parallel interface between the internal bus and the output  
shift register (see Figure 63).  
The RDR register provides the parallel interface between the input shift register and the  
internal bus (see Figure 63).  
Baud rate register (SCIBRR)  
Reset value: 0000 0000 (00h)  
7
0
SCP1  
SCP0  
SCT2  
SCT1  
SCT0  
SCR2  
SCR1  
SCR0  
Read/Write  
Bits 7:6 = SCP[1:0] First SCI Prescaler  
These 2 prescaling bits allow several standard clock division ranges as shown in Figure 59.  
146/246  
ST72344xx, ST72345xx  
On-chip peripherals  
SCP0  
Table 59. SCP[1:0] configuration  
PR prescaling factor  
SCP1  
1
3
0
1
0
1
0
4
1
13  
Bits 5:3 = SCT[2:0] SCI Transmitter rate divisor  
These 3 bits, in conjunction with the SCP1 and SCP0 bits define the total division  
applied to the bus clock to yield the transmit rate clock in conventional baud rate  
Generator mode.  
Table 60. SCT[2:0] configuration  
TR dividing factor  
SCT2  
SCT1  
SCT0  
1
2
0
1
0
1
0
1
0
1
0
0
4
1
0
1
8
16  
32  
64  
128  
1
Note:  
This TR factor is used only when the ETPR fine tuning factor is equal to 00h; otherwise, TR  
is replaced by the (TR*ETPR) dividing factor.  
Bits 2:0 = SCR[2:0] SCI Receiver rate divisor.  
These 3 bits, in conjunction with the SCP1 and SCP0 bits define the total division  
applied to the bus clock to yield the receive rate clock in conventional Baud Rate  
Generator mode.  
Table 61. SCR[2:0] configuration  
RR dividing factor  
SCR2  
SCR1  
SCR0  
1
2
0
1
0
1
0
1
0
1
0
0
4
1
0
1
8
16  
32  
64  
128  
1
147/246  
On-chip peripherals  
Note:  
ST72344xx, ST72345xx  
This RR factor is used only when the ERPR fine tuning factor is equal to 00h; otherwise, RR  
is replaced by the (RR*ERPR) dividing factor.  
Extended receive prescaler division register (SCIERPR)  
Reset value: 0000 0000 (00h)  
7
0
ERPR7  
ERPR6  
ERPR5  
ERPR4  
Read/Write  
Bits 7:0 = ERPR[7:0] 8-bit Extended Receive Prescaler Register.  
ERPR3  
ERPR2  
ERPR1  
ERPR0  
The extended Baud Rate Generator is activated when a value other than 00h is stored  
in this register. The clock frequency from the 16 divider (see Figure 65) is divided by the  
binary factor set in the SCIERPR register (in the range 1 to 255).  
The extended baud rate generator is not active after a reset.  
Extended transmit prescaler division register (SCIETPR)  
Reset value:0000 0000 (00h)  
7
0
ETPR7  
ETPR6  
ETPR5  
ETPR4  
Read/Write  
Bits 7:0 = ETPR[7:0] 8-bit extended transmit prescaler register.  
ETPR3  
ETPR2  
ETPR1  
ETPR0  
The extended Baud Rate Generator is activated when a value other than 00h is stored  
in this register. The clock frequency from the 16 divider (see Figure 65) is divided by the  
binary factor set in the SCIETPR register (in the range 1 to 255).  
The extended baud rate generator is not active after a reset.  
Table 62. Baud rate selection  
Conditions  
Accuracy  
Baud  
Rate  
Symbol  
Parameter  
Standard  
Unit  
fCPU  
vs.  
Prescaler  
Standard  
Conventional Mode  
TR (or RR) = 128,  
300  
1200  
2400  
4800  
9600  
10400  
19200  
38400  
~300.48  
~1201.92  
~2403.84  
~4807.69  
~9615.38  
~10416.67  
~19230.77  
~38461.54  
PR = 13  
TR (or RR) = 32, PR = 13  
TR (or RR) = 16, PR =13  
TR (or RR) = 8, PR = 13  
TR (or RR) = 4, PR = 13  
TR (or RR) = 16, PR = 3  
TR (or RR) = 2, PR = 13  
TR (or RR) = 1, PR = 13  
~0.16%  
~0.79%  
fTx  
fRx  
Communication  
frequency  
8 MHz  
Hz  
Extended Mode  
ETPR (or ERPR) = 35,  
TR (or RR) = 1, PR = 1  
14400  
~14285.71  
148/246  
ST72344xx, ST72345xx  
On-chip peripherals  
Table 63. SCI register map and reset values  
Address  
(Hex.)  
Register  
Label  
7
6
5
4
3
2
1
0
SCISR  
Reset value  
TDRE  
1
TC  
1
RDRF  
0
IDLE  
0
OR  
0
NF  
0
FE  
0
PE  
0
0050h  
0051h  
0052h  
0053h  
0054h  
0056h  
0057h  
SCIDR  
Reset value  
MSB  
x
LSB  
x
x
x
x
x
x
x
SCIBRR  
Reset value  
SCP1  
0
SCP0  
0
SCT2  
0
SCT1  
0
SCT0  
0
SCR2  
0
SCR1  
0
SCR0  
0
SCICR1  
Reset value  
R8  
x
T8  
0
SCID  
0
M
0
WAKE  
0
PCE  
0
PS  
0
PIE  
0
SCICR2  
Reset value  
TIE  
0
TCIE  
0
RIE  
0
ILIE  
0
TE  
0
RE  
0
RWU  
0
SBK  
0
SCIERPR  
Reset value  
MSB  
0
LSB  
0
0
0
0
0
0
0
0
0
0
0
0
0
SCIPETPR  
Reset value  
MSB  
0
LSB  
0
149/246  
On-chip peripherals  
ST72344xx, ST72345xx  
11.6  
I2C bus interface (I2C)  
11.6.1  
Introduction  
2
2
The I C bus interface serves as an interface between the microcontroller and the serial I C  
2
bus. It provides both multimaster and slave functions, and controls all I C bus-specific  
sequencing, protocol, arbitration and timing. It supports fast I C mode (400 kHz).  
2
11.6.2  
Main features  
2
Parallel-bus/I C protocol converter  
Multi-master capability  
7-bit/10-bit Addressing  
Transmitter/Receiver flag  
End-of-byte transmission flag  
Transfer problem detection  
I2C master features  
Clock generation  
2
I C bus busy flag  
Arbitration lost flag  
End of byte transmission flag  
Transmitter/receiver flag  
Start bit detection flag  
Start and Stop generation  
I2C slave features  
Stop bit detection  
2
I C bus busy flag  
Detection of misplaced start or stop condition  
2
Programmable I C address detection  
Transfer problem detection  
End-of-byte transmission flag  
Transmitter/receiver flag  
11.6.3  
General description  
In addition to receiving and transmitting data, this interface converts it from serial to parallel  
format and vice versa, using either an interrupt or polled handshake. The interrupts are  
2
enabled or disabled by software. The interface is connected to the I C bus by a data pin  
2
(SDAI) and by a clock pin (SCLI). It can be connected both with a standard I C bus and a  
2
Fast I C bus. This selection is made by software.  
150/246  
ST72344xx, ST72345xx  
On-chip peripherals  
Mode selection  
The interface can operate in the four following modes:  
Slave transmitter/receiver  
Master transmitter/receiver  
By default, it operates in slave mode.  
The interface automatically switches from slave to master after it generates a START  
condition and from master to slave in case of arbitration loss or a STOP generation, allowing  
then Multi-Master capability.  
Communication flow  
In Master mode, it initiates a data transfer and generates the clock signal. A serial data  
transfer always begins with a start condition and ends with a stop condition. Both start and  
stop conditions are generated in master mode by software.  
In Slave mode, the interface is capable of recognizing its own address (7 or 10-bit), and the  
General Call address. The General Call address detection may be enabled or disabled by  
software.  
Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the  
start condition contain the address (one in 7-bit mode, two in 10-bit mode). The address is  
always transmitted in Master mode.  
A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must  
send an acknowledge bit to the transmitter. Refer to Figure 67.  
2
Figure 67. I C bus protocol  
SDA  
ACK  
9
MSB  
1
SCL  
2
8
Stop  
Condition  
Start  
Condition  
Acknowledge may be enabled and disabled by software.  
2
The I C interface address and/or general call address can be selected by software.  
2
The speed of the I C interface may be selected between Standard (up to 100 kHz) and Fast  
2
I C (up to 400 kHz).  
SDA/SCL line control  
Transmitter mode: the interface holds the clock line low before transmission to wait for the  
microcontroller to write the byte in the Data Register.  
Receiver mode: the interface holds the clock line low after reception to wait for the  
microcontroller to read the byte in the Data Register.  
The SCL frequency (f  
the I C bus mode.  
) is controlled by a programmable clock divider which depends on  
SCL  
2
151/246  
On-chip peripherals  
ST72344xx, ST72345xx  
2
When the I C cell is enabled, the SDA and SCL ports must be configured as floating inputs.  
In this case, the value of the external pull-up resistor used depends on the application.  
2
When the I C cell is disabled, the SDA and SCL ports revert to being standard I/O port pins.  
2
Figure 68. I C interface block diagram  
Data register (DR)  
Data control  
SDA or SDAI  
Data shift register  
Comparator  
Own address register 1 (OAR1)  
Own address register 2 (OAR2)  
Clock control  
SCL or SCLI  
Clock control register (CCR)  
Control register (CR)  
Status register 1 (SR1)  
Status register 2 (SR2)  
Control logic  
Interrupt  
11.6.4  
Functional description  
Refer to the CR, SR1 and SR2 registers in Section 11.6.7. for the bit definitions.  
2
By default the I C interface operates in Slave mode (M/SL bit is cleared) except when it  
initiates a transmit or receive sequence.  
First the interface frequency must be configured using the FRi bits in the OAR2 register.  
Slave mode  
As soon as a start condition is detected, the address is received from the SDA line and sent  
to the shift register; then it is compared with the address of the interface or the General Call  
address (if selected by software).  
Note:  
In 10-bit addressing mode, the comparison includes the header sequence (11110xx0) and  
the two most significant bits of the address.  
Header matched (10-bit mode only): the interface generates an acknowledge pulse if the  
ACK bit is set.  
152/246  
ST72344xx, ST72345xx  
On-chip peripherals  
Address not matched: the interface ignores it and waits for another Start condition.  
Address matched: the interface generates in sequence:  
Acknowledge pulse if the ACK bit is set.  
EVF and ADSL bits are set with an interrupt if the ITE bit is set.  
Then the interface waits for a read of the SR1 register, holding the SCL line low (see  
Figure 69 Transfer sequencing EV1).  
Next, in 7-bit mode read the DR register to determine from the least significant bit (Data  
Direction Bit) if the slave must enter Receiver or Transmitter mode.  
In 10-bit mode, after receiving the address sequence the slave is always in receive mode. It  
will enter transmit mode on receiving a repeated Start condition followed by the header  
sequence with matching address bits and the least significant bit set (11110xx1).  
Slave receiver  
Following the address reception and after SR1 register has been read, the slave receives  
bytes from the SDA line into the DR register via the internal shift register. After each byte the  
interface generates in sequence:  
Acknowledge pulse if the ACK bit is set  
EVF and BTF bits are set with an interrupt if the ITE bit is set.  
Then the interface waits for a read of the SR1 register followed by a read of the DR register,  
holding the SCL line low (see Figure 69 Transfer sequencing EV2).  
Slave transmitter  
Following the address reception and after SR1 register has been read, the slave sends  
bytes from the DR register to the SDA line via the internal shift register.  
The slave waits for a read of the SR1 register followed by a write in the DR register, holding  
the SCL line low (see Figure 69 Transfer sequencing EV3).  
When the acknowledge pulse is received:  
The EVF and BTF bits are set by hardware with an interrupt if the ITE bit is set.  
Closing slave communication  
After the last data byte is transferred a Stop Condition is generated by the master. The  
interface detects this condition and sets:  
EVF and STOPF bits with an interrupt if the ITE bit is set.  
Then the interface waits for a read of the SR2 register (see Figure 69 Transfer sequencing  
EV4).  
Error cases  
BERR: Detection of a Stop or a Start condition during a byte transfer. In this case, the  
EVF and the BERR bits are set with an interrupt if the ITE bit is set.  
If it is a Stop then the interface discards the data, released the lines and waits for  
another Start condition.  
If it is a Start then the interface discards the data and waits for the next slave address  
on the bus.  
AF: Detection of a non-acknowledge bit. In this case, the EVF and AF bits are set with  
an interrupt if the ITE bit is set.  
The AF bit is cleared by reading the I2CSR2 register. However, if read before the  
completion of the transmission, the AF flag will be set again, thus possibly generating a  
153/246  
On-chip peripherals  
ST72344xx, ST72345xx  
new interrupt. Software must ensure either that the SCL line is back at 0 before reading  
the SR2 register, or be able to correctly handle a second interrupt during the 9th pulse  
of a transmitted byte.  
Note:  
In both cases, SCL line is not held low; however, the SDA line can remain low if the last bits  
transmitted are all 0. It is then necessary to release both lines by software. The SCL line is  
not held low while AF=1 but by other flags (SB or BTF) that are set at the same time.  
How to release the SDA / SCL lines  
Set and subsequently clear the STOP bit while BTF is set. The SDA/SCL lines are released  
after the transfer of the current byte.  
SMBus compatibility  
2
ST7 I C is compatible with SMBus V1.1 protocol. It supports all SMBus addressing modes,  
SMBus bus protocols and CRC-8 packet error checking. Refer to AN1713: SMBus Slave  
2
Driver For ST7 I C Peripheral.  
Master mode  
To switch from default Slave mode to Master mode a Start condition generation is needed.  
Start condition  
Setting the START bit while the BUSY bit is cleared causes the interface to switch to Master  
mode (M/SL bit set) and generates a Start condition.  
Once the Start condition is sent:  
The EVF and SB bits are set by hardware with an interrupt if the ITE bit is set.  
Then the master waits for a read of the SR1 register followed by a write in the DR register  
with the Slave address, holding the SCL line low (see Figure 69 Transfer sequencing  
EV5).  
Slave address transmission  
Then the slave address is sent to the SDA line via the internal shift register.  
In 7-bit addressing mode, one address byte is sent.  
In 10-bit addressing mode, sending the first byte including the header sequence causes the  
following event:  
The EVF bit is set by hardware with interrupt generation if the ITE bit is set.  
Then the master waits for a read of the SR1 register followed by a write in the DR register,  
holding the SCL line low (see Figure 69 Transfer sequencing EV9).  
Then the second address byte is sent by the interface.  
After completion of this transfer (and acknowledge from the slave if the ACK bit is set):  
The EVF bit is set by hardware with interrupt generation if the ITE bit is set.  
Then the master waits for a read of the SR1 register followed by a write in the CR register  
(for example set PE bit), holding the SCL line low (see Figure 69 Transfer sequencing  
EV6).  
Next the master must enter Receiver or Transmitter mode.  
154/246  
ST72344xx, ST72345xx  
Note:  
On-chip peripherals  
In 10-bit addressing mode, to switch the master to Receiver mode, software must generate  
a repeated Start condition and resend the header sequence with the least significant bit set  
(11110xx1).  
Master receiver  
Following the address transmission and after SR1 and CR registers have been accessed,  
the master receives bytes from the SDA line into the DR register via the internal shift  
register. After each byte the interface generates in sequence:  
Acknowledge pulse if the ACK bit is set  
EVF and BTF bits are set by hardware with an interrupt if the ITE bit is set.  
Then the interface waits for a read of the SR1 register followed by a read of the DR register,  
holding the SCL line low (see Figure 69 Transfer sequencing EV7).  
To close the communication: before reading the last byte from the DR register, set the STOP  
bit to generate the Stop condition. The interface goes automatically back to slave mode  
(M/SL bit cleared).  
Note:  
In order to generate the non-acknowledge pulse after the last received data byte, the ACK  
bit must be cleared just before reading the second last data byte.  
Master transmitter  
Following the address transmission and after SR1 register has been read, the master sends  
bytes from the DR register to the SDA line via the internal shift register.  
The master waits for a read of the SR1 register followed by a write in the DR register,  
holding the SCL line low (see Figure 69 Transfer sequencing EV8).  
When the acknowledge bit is received, the interface sets:  
EVF and BTF bits with an interrupt if the ITE bit is set.  
To close the communication: after writing the last byte to the DR register, set the STOP bit to  
generate the Stop condition. The interface goes automatically back to slave mode (M/SL bit  
cleared).  
Error cases  
BERR: Detection of a Stop or a Start condition during a byte transfer. In this case, the  
EVF and BERR bits are set by hardware with an interrupt if ITE is set.  
Note that BERR will not be set if an error is detected during the first pulse of each 9-bit  
transaction:  
Single Master Mode  
If a Start or Stop is issued during the first pulse of a 9-bit transaction, the BERR flag will  
not be set and transfer will continue however the BUSY flag will be reset. To work  
around this, slave devices should issue a NACK when they receive a misplaced Start or  
Stop. The reception of a NACK or BUSY by the master in the middle of communication  
gives the possibility to re-initiate transmission.  
Multimaster Mode  
Normally the BERR bit would be set whenever unauthorized transmission takes place  
while transfer is already in progress. However, an issue will arise if an external master  
2
generates an unauthorized Start or Stop while the I C master is on the first pulse of a  
2
9-bit transaction. It is possible to work around this by polling the BUSY bit during I C  
155/246  
On-chip peripherals  
ST72344xx, ST72345xx  
master mode transmission. The resetting of the BUSY bit can then be handled in a  
similar manner as the BERR flag being set.  
AF: Detection of a non-acknowledge bit. In this case, the EVF and AF bits are set by  
hardware with an interrupt if the ITE bit is set. To resume, set the Start or Stop bit.  
The AF bit is cleared by reading the I2CSR2 register. However, if read before the  
completion of the transmission, the AF flag will be set again, thus possibly generating a  
new interrupt. Software must ensure either that the SCL line is back at 0 before reading  
the SR2 register, or be able to correctly handle a second interrupt during the 9th pulse  
of a transmitted byte.  
ARLO: Detection of an arbitration lost condition.  
In this case the ARLO bit is set by hardware (with an interrupt if the ITE bit is set and  
the interface goes automatically back to slave mode (the M/SL bit is cleared).  
Note:  
In all these cases, the SCL line is not held low; however, the SDA line can remain low if the  
last bits transmitted are all 0. It is then necessary to release both lines by software. The SCL  
line is not held low while AF=1 but by other flags (SB or BTF) that are set at the same time.  
156/246  
ST72344xx, ST72345xx  
On-chip peripherals  
Figure 69. Transfer sequencing  
7-bit Slave receiver:  
S Address A Data1 A  
Data2 A  
DataN A  
P
.....  
EV1  
EV2  
EV2  
EV2  
EV4  
7-bit Slave transmitter:  
S Address A  
EV1 EV3  
Data1 A  
Data2 A  
Data2 A  
DataN NA  
DataN NA  
P
.....  
.....  
EV3  
EV3  
EV7  
EV3-1  
EV4  
7-bit Master receiver:  
S
Address A  
Data1 A  
P
EV5  
7-bit Master transmitter:  
Address A  
EV6  
EV7  
EV7  
S
Data1 A  
Data2 A  
DataN A  
P
.....  
EV5  
EV6 EV8  
EV8  
EV2  
EV8  
EV8  
10-bit Slave receiver:  
S Header A Address A  
Data1 A  
DataN A  
P
.....  
EV1  
10-bit Slave transmitter:  
Sr Header A  
EV2  
EV4  
Data1 A  
DataN A  
P
.....  
EV1 EV3  
EV3  
EV3-1  
P
EV4  
10-bit Master transmitter  
Header A Address A  
S
Data1 A  
DataN A  
.....  
EV5  
EV9  
EV6 EV8  
EV8  
EV8  
10-bit Master receiver:  
Sr  
Header A  
Data1  
A
DataN  
A
P
.....  
EV5  
EV6  
EV7  
EV7  
Legend: S = Start, S = Repeated Start, P = Stop, A = Acknowledge, NA = Non-  
r
acknowledge, EVx = Event (with interrupt if ITE=1)  
EV1: EVF=1, ADSL=1, cleared by reading SR1 register.  
EV2: EVF=1, BTF=1, cleared by reading SR1 register followed by reading DR register.  
EV3: EVF=1, BTF=1, cleared by reading SR1 register followed by writing DR register.  
EV3-1: EVF=1, AF=1, BTF=1; AF is cleared by reading SR1 register. BTF is cleared by  
releasing the lines (STOP=1, STOP=0) or by writing DR register (DR=FFh).  
Note:  
If lines are released by STOP=1, STOP=0, the subsequent EV4 is not seen.  
EV4: EVF=1, STOPF=1, cleared by reading SR2 register.  
EV5: EVF=1, SB=1, cleared by reading SR1 register followed by writing DR register.  
157/246  
On-chip peripherals  
ST72344xx, ST72345xx  
EV6: EVF=1, cleared by reading SR1 register followed by writing CR register (for example  
PE=1).  
EV7: EVF=1, BTF=1, cleared by reading SR1 register followed by reading DR register.  
EV8: EVF=1, BTF=1, cleared by reading SR1 register followed by writing DR register.  
EV9: EVF=1, ADD10=1, cleared by reading SR1 register followed by writing DR register.  
11.6.5  
Low-power modes  
Table 64. Mode description  
Mode  
Description  
No effect on I2C interface.  
Wait  
I2C interrupts cause the device to exit from Wait mode.  
I2C registers are frozen.  
In HALT mode, the I2C interface is inactive and does not acknowledge data on the bus.  
The I2C interface resumes operation when the MCU is woken up by an interrupt with “exit  
from HALT mode” capability.  
Halt  
11.6.6  
Interrupts  
Figure 70. Event flags and interrupt generation  
ADD10  
ITE  
BTF  
ADSL  
SB  
Interrupt  
EVF  
AF  
STOPF  
ARLO  
BERR  
*
* EVF can also be set by EV6 or an error from the SR2 register.  
(1)  
Table 65. Interrupt events  
Enable  
control bit  
Exit from Exit from  
Interrupt event  
Event flag  
Wait  
Halt  
10-bit address sent event (Master mode)  
End of byte transfer event  
ADD10  
BTF  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Address matched event (Slave mode)  
Start bit generation event (Master mode)  
Acknowledge failure event  
ADSL  
SB  
ITE  
AF  
Stop detection event (Slave mode)  
Arbitration lost event (Multimaster configuration)  
Bus error event  
STOPF  
ARLO  
BERR  
1. The I2C interrupt events are connected to the same interrupt vector (see Interrupts chapter). They  
generate an interrupt if the corresponding Enable Control Bit is set and the I-bit in the CC register is reset  
(RIM instruction).  
158/246  
ST72344xx, ST72345xx  
On-chip peripherals  
11.6.7  
Register description  
I2C control register (CR)  
Reset value: 0000 0000 (00h)  
7
0
0
0
PE  
ENGC  
START  
ACK  
STOP  
ITE  
Read / Write  
Bits 7:6 = Reserved. Forced to 0 by hardware.  
Bit 5 = PE Peripheral enable.  
This bit is set and cleared by software.  
0: Peripheral disabled  
1: Master/Slave capability  
Note:  
When PE=0, all the bits of the CR register and the SR register except the Stop bit are reset.  
All outputs are released while PE=0  
When PE=1, the corresponding I/O pins are selected by hardware as alternate functions.  
2
To enable the I C interface, write the CR register TWICE with PE=1 as the first write only  
activates the interface (only PE is set).  
Bit 4 = ENGC Enable General Call.  
This bit is set and cleared by software. It is also cleared by hardware when the interface  
is disabled (PE=0). The 00h General Call address is acknowledged (01h ignored).  
0: General Call disabled  
1: General Call enabled  
Note:  
In accordance with the I2C standard, when GCAL addressing is enabled, an I2C slave can  
only receive data. It will not transmit data to the master.  
Bit 3 = START Generation of a Start condition.  
This bit is set and cleared by software. It is also cleared by hardware when the interface  
is disabled (PE=0) or when the Start condition is sent (with interrupt generation if  
ITE=1).  
In master mode:  
0: No start generation  
1: Repeated start generation  
In slave mode:  
0: No start generation  
1: Start generation when the bus is free  
Bit 2 = ACK Acknowledge enable.  
This bit is set and cleared by software. It is also cleared by hardware when the interface  
is disabled (PE=0).  
0: No acknowledge returned  
1: Acknowledge returned after an address byte or a data byte is received  
Bit 1 = STOP Generation of a Stop condition.  
This bit is set and cleared by software. It is also cleared by hardware in master mode.  
159/246  
On-chip peripherals  
ST72344xx, ST72345xx  
Note:  
This bit is not cleared when the interface is disabled (PE=0).  
In master mode:  
0: No stop generation  
1: Stop generation after the current byte transfer or after the current Start condition is  
sent. The STOP bit is cleared by hardware when the Stop condition is sent.  
In slave mode:  
0: No stop generation  
1: Release the SCL and SDA lines after the current byte transfer (BTF=1). In this mode  
the STOP bit has to be cleared by software.  
Bit 0 = ITE Interrupt enable.  
This bit is set and cleared by software and cleared by hardware when the interface is  
disabled (PE=0).  
0: Interrupts disabled  
1: Interrupts enabled  
Refer to Figure 70 for the relationship between the events and the interrupt.  
SCL is held low when the ADD10, SB, BTF or ADSL flags or an EV6 event (See  
Figure 69) is detected.  
I2C status register 1 (SR1)  
Reset value: 0000 0000 (00h)  
7
0
EVF  
ADD10  
TRA  
BUSY  
BTF  
ADSL  
M/SL  
SB  
Read Only  
Bit 7 = EVF Event flag.  
This bit is set by hardware as soon as an event occurs. It is cleared by software reading  
SR2 register in case of error event or as described in Figure 69. It is also cleared by  
hardware when the interface is disabled (PE=0).  
0: No event  
1: One of the following events has occurred:  
BTF=1 (Byte received or transmitted)  
ADSL=1 (Address matched in Slave mode while ACK=1)  
SB=1 (Start condition generated in Master mode)  
AF=1 (No acknowledge received after byte transmission)  
STOPF=1 (Stop condition detected in Slave mode)  
ARLO=1 (Arbitration lost in Master mode)  
BERR=1 (Bus error, misplaced Start or Stop condition detected)  
ADD10=1 (Master has sent header byte)  
Address byte successfully transmitted in Master mode.  
Bit 6 = ADD10 10-bit addressing in Master mode.  
This bit is set by hardware when the master has sent the first byte in 10-bit address  
mode. It is cleared by software reading SR2 register followed by a write in the DR  
160/246  
ST72344xx, ST72345xx  
On-chip peripherals  
register of the second address byte. It is also cleared by hardware when the peripheral  
is disabled (PE=0).  
0: No ADD10 event occurred.  
1: Master has sent first address byte (header)  
Bit 5 = TRA Transmitter/Receiver.  
When BTF is set, TRA=1 if a data byte has been transmitted. It is cleared automatically  
when BTF is cleared. It is also cleared by hardware after detection of Stop condition  
(STOPF=1), loss of bus arbitration (ARLO=1) or when the interface is disabled (PE=0).  
0: Data byte received (if BTF=1)  
1: Data byte transmitted  
Bit 4 = BUSY Bus busy.  
This bit is set by hardware on detection of a Start condition and cleared by hardware on  
detection of a Stop condition. It indicates a communication in progress on the bus. The  
BUSY flag of the I2CSR1 register is cleared if a Bus Error occurs.  
0: No communication on the bus  
1: Communication ongoing on the bus  
Bit 3 = BTF Byte transfer finished.  
This bit is set by hardware as soon as a byte is correctly received or transmitted with  
interrupt generation if ITE=1. It is cleared by software reading SR1 register followed by  
a read or write of DR register. It is also cleared by hardware when the interface is  
disabled (PE=0).  
Following a byte transmission, this bit is set after reception of the acknowledge clock  
pulse. In case an address byte is sent, this bit is set only after the EV6 event (See  
Figure 69). BTF is cleared by reading SR1 register followed by writing the next byte in  
DR register.  
Following a byte reception, this bit is set after transmission of the acknowledge clock  
pulse if ACK=1. BTF is cleared by reading SR1 register followed by reading the byte  
from DR register.  
The SCL line is held low while BTF=1.  
0: Byte transfer not done  
1: Byte transfer succeeded  
Bit 2 = ADSL Address matched (Slave mode).  
This bit is set by hardware as soon as the received slave address matched with the  
OAR register content or a general call is recognized. An interrupt is generated if ITE=1.  
It is cleared by software reading SR1 register or by hardware when the interface is  
disabled (PE=0).  
The SCL line is held low while ADSL=1.  
0: Address mismatched or not received  
1: Received address matched  
Bit 1 = M/SL Master/Slave.  
This bit is set by hardware as soon as the interface is in Master mode (writing  
START=1). It is cleared by hardware after detecting a Stop condition on the bus or a  
loss of arbitration (ARLO=1). It is also cleared when the interface is disabled (PE=0).  
0: Slave mode  
1: Master mode  
161/246  
On-chip peripherals  
Bit 0 = SB Start bit (Master mode).  
ST72344xx, ST72345xx  
This bit is set by hardware as soon as the Start condition is generated (following a write  
START=1). An interrupt is generated if ITE=1. It is cleared by software reading SR1  
register followed by writing the address byte in DR register. It is also cleared by  
hardware when the interface is disabled (PE=0).  
0: No Start condition  
1: Start condition generated  
2
I C status register 2 (SR2)  
Reset value: 0000 0000 (00h)  
7
0
0
0
0
AF  
STOPF  
ARLO  
BERR  
GCAL  
Read Only  
Bit 7:5 = Reserved.  
Forced to 0 by hardware.  
Bit 4 = AF Acknowledge failure.  
This bit is set by hardware when no acknowledge is returned. An interrupt is generated  
if ITE=1. It is cleared by software reading SR2 register or by hardware when the  
interface is disabled (PE=0).  
The SCL line is not held low while AF=1 but by other flags (SB or BTF) that are set at  
the same time.  
0: No acknowledge failure  
1: Acknowledge failure  
Bit 3 = STOPF Stop detection (Slave mode).  
This bit is set by hardware when a Stop condition is detected on the bus after an  
acknowledge (if ACK=1). An interrupt is generated if ITE=1. It is cleared by software  
reading SR2 register or by hardware when the interface is disabled (PE=0).  
The SCL line is not held low while STOPF=1.  
0: No Stop condition detected  
1: Stop condition detected  
Bit 2 = ARLO Arbitration lost.  
This bit is set by hardware when the interface loses the arbitration of the bus to another  
master. An interrupt is generated if ITE=1. It is cleared by software reading SR2  
register or by hardware when the interface is disabled (PE=0).  
After an ARLO event the interface switches back automatically to Slave mode  
(M/SL=0).  
The SCL line is not held low while ARLO=1.  
0: No arbitration lost detected  
1: Arbitration lost detected  
Note:  
In a Multimaster environment, when the interface is configured in Master Receive mode it  
does not perform arbitration during the reception of the Acknowledge Bit. Mishandling of the  
ARLO bit from the I2CSR2 register may occur when a second master simultaneously  
2
requests the same data from the same slave and the I C master does not acknowledge the  
data. The ARLO bit is then left at 0 instead of being set.  
162/246  
ST72344xx, ST72345xx  
Bit 1 = BERR Bus error.  
On-chip peripherals  
This bit is set by hardware when the interface detects a misplaced Start or Stop  
condition. An interrupt is generated if ITE=1. It is cleared by software reading SR2  
register or by hardware when the interface is disabled (PE=0).  
The SCL line is not held low while BERR=1.  
0: No misplaced Start or Stop condition  
1: Misplaced Start or Stop condition  
Note:  
If a Bus Error occurs, a Stop or a repeated Start condition should be generated by the  
Master to re-synchronize communication, get the transmission acknowledged and the bus  
released for further communication  
Bit 0 = GCAL General Call (Slave mode).  
This bit is set by hardware when a general call address is detected on the bus while  
ENGC=1. It is cleared by hardware detecting a Stop condition (STOPF=1) or when the  
interface is disabled (PE=0).  
0: No general call address detected on bus  
1: general call address detected on bus  
I2C clock control register (CCR)  
Reset value: 0000 0000 (00h)  
7
0
FM/SM  
CC6  
CC5  
CC4  
CC3  
CC2  
CC1  
CC0  
Read / Write  
2
Bit 7 = FM/SM Fast/Standard I C mode.  
This bit is set and cleared by software. It is not cleared when the interface is disabled  
(PE=0).  
2
0: Standard I C mode  
2
1: Fast I C mode  
Bit 6:0 = CC[6:0] 7-bit clock divider.  
2
These bits select the speed of the bus (F  
) depending on the I C mode. They are not  
SCL  
cleared when the interface is disabled (PE=0).  
Refer to the Electrical Characteristics section for the table of values.  
Note:  
The programmed f  
assumes no load on SCL and SDA lines.  
SCL  
163/246  
On-chip peripherals  
ST72344xx, ST72345xx  
I2C data register (DR)  
Reset value: 0000 0000 (00h)  
7
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Read / Write  
Bits 7:0 = D[7:0] 8-bit Data Register.  
These bits contain the byte to be received or transmitted on the bus.  
Transmitter mode: byte transmission start automatically when the software writes in the  
DR register.  
Receiver mode: the first data byte is received automatically in the DR register using the  
least significant bit of the address.  
Then, the following data bytes are received one by one after reading the DR register.  
I2C own address register (OAR1)  
Reset value: 0000 0000 (00h)  
7
0
ADD7  
ADD6  
ADD5  
ADD4  
ADD3  
ADD2  
ADD1  
ADD0  
Read / Write  
7-bit addressing mode  
Bits 7:1 = ADD[7:1] Interface address.  
2
These bits define the I C bus address of the interface. They are not cleared when the  
interface is disabled (PE=0).  
Bit 0 = ADD0 Address direction bit.  
This bit is don’t care, the interface acknowledges either 0 or 1. It is not cleared when  
the interface is disabled (PE=0).  
Note:  
Address 01h is always ignored.  
10-bit addressing mode  
Bit 7:0 = ADD[7:0] Interface address.  
2
These are the least significant bits of the I C bus address of the interface. They are not  
cleared when the interface is disabled (PE=0).  
164/246  
ST72344xx, ST72345xx  
On-chip peripherals  
I2C own address register (OAR2)  
Reset value: 0100 0000 (40h)  
7
0
FR1  
FR0  
0
0
0
ADD9  
ADD8  
0
Read / Write  
Bit 7:6 = FR[1:0] Frequency bits.  
These bits are set by software only when the interface is disabled (PE=0). To configure  
2
the interface to I C specified delays select the value corresponding to the  
microcontroller frequency f  
.
CPU  
Table 66. FR[1:0] configuration  
fCPU  
FR1  
FR0  
< 6 MHz  
0
0
0
1
6 to 8 MHz  
Bits 5:3 = Reserved  
Bits 2:1 = ADD[9:8] Interface address.  
2
These are the most significant bits of the I C bus address of the interface (10-bit mode  
only). They are not cleared when the interface is disabled (PE=0).  
Bit 0 = Reserved.  
2
Table 67. I C register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
I2CCR  
Reset value  
PE  
0
ENGC  
0
START  
0
ACK  
0
STOP  
0
ITE  
0
0058h  
0059h  
005Ah  
005Bh  
005Ch  
005Dh  
005Eh  
0
0
I2CSR1  
Reset value  
EVF  
0
ADD10  
0
TRA  
0
BUSY  
0
BTF  
0
ADSL  
0
M/SL  
0
SB  
0
I2CSR2  
Reset value  
AF  
0
STOPF  
0
ARLO  
0
BERR  
0
GCAL  
0
0
0
0
I2CCCR  
Reset value  
FM/SM  
0
CC6  
0
CC5  
0
CC4  
0
CC3  
0
CC2  
0
CC1  
0
CC0  
0
I2COAR1  
Reset value  
ADD7  
0
ADD6  
0
ADD5  
0
ADD4  
0
ADD3  
0
ADD2  
0
ADD1  
0
ADD0  
0
I2COAR2  
Reset value  
FR1  
0
FR0  
1
ADD9  
0
ADD8  
0
0
0
0
0
0
0
0
I2CDR  
Reset value  
MSB  
0
LSB  
0
0
0
0
165/246  
On-chip peripherals  
ST72344xx, ST72345xx  
11.7  
I2C triple slave interface with DMA (I2C3S)  
11.7.1  
Introduction  
2
The I C3S interface provides three I2C slave functions, supporting both standard (up to  
2
100 kHz) and fast I C mode (100 to 400 kHz). Special features are provided for:  
2
2
Full-speed emulation of standard I C E PROMs  
Receiving commands to perform user-defined operations such as IAP  
11.7.2  
Main features  
Three user configurable independent slave addresses can be individually enabled  
2x 256 bytes and 1x 128 bytes buffers with fixed addresses in RAM  
7-bit addressing  
2
DMA transfer to/from I C bus and RAM  
Standard (transfers 256 bytes at up to 100 kHz)  
Fast mode (transfers 256 bytes at up to 400 kHz)  
Transfer error detection and handling  
3 interrupt flags per address for maximum flexibility  
Two interrupt request lines (one for Slaves 1 and 2, the other for Slave 3)  
2
Full emulation of standard I C EEPROMs:  
Supports 5 read/write commands and combined format  
2
No I C clock stretching  
Programmable page size (8/16 bytes) or full buffer  
Configurable write protection  
2
Data integrity and byte-pair coherency when reading 16-bit words from I C bus  
166/246  
ST72344xx, ST72345xx  
On-chip peripherals  
2
Figure 71. I C3S interface block diagram  
I2C SLAVE ADDRESS 1  
I2C SLAVE ADDRESS 2  
I2C SLAVE ADDRESS 3  
2
DATA E PROM  
256 BYTES  
RAM  
SLAVE 1 BUFFER  
256 BYTES  
COMPARATOR  
8-BIT  
SHIFT REGISTER  
SDA or SDAI  
SLAVE 2 BUFFER  
256 BYTES  
SCL or SCLI  
SLAVE 3 BUFFER  
128 BYTES  
DMA  
SHADOW  
REGISTER  
CONTROL LOGIC  
Slave 1 or 2 Interrupt  
Slave 3 Interrupt  
CPU  
11.7.3  
General description  
In addition to receiving and transmitting data, I2C3S converts it from serial to parallel format  
and vice versa. The interrupts are enabled or disabled by software. The I2C3S is connected  
2
to the I C bus by a data pin (SDA) and by a clock pin (SCL). It can be connected both with a  
2
2
standard I C bus and a Fast I C bus. The interface operates only in Slave mode as  
transmitter/receiver.  
2
In order to fully emulate standard I C EEPROM devices with highest transfer speed, the  
2
peripheral prevents I C clock signal stretching and performs data transfer between the shift  
register and the RAM buffers using DMA.  
Communication flow  
A serial data transfer normally begins with a start condition and ends with a stop condition.  
Both start and stop conditions are generated by an external master. Refer to Figure 67 for  
the standard protocol. The I2C3S is not a master and is not capable of generating a  
start/stop condition on the SDA line. The I2C3S is capable of recognizing 3 slave addresses  
2
which are user programmable. The three I C slave addresses can be individually  
enabled/disabled by software.  
Since the I2C3S interface always acts as a slave it does not generate a clock. Data and  
addresses are transferred as 8-bit bytes, MSB first. The first byte following the start  
condition contains the slave address. A 9th clock pulse follows the 8 clock cycles of a byte  
transfer, during which the receiver must send an acknowledge bit to the transmitter.  
167/246  
On-chip peripherals  
ST72344xx, ST72345xx  
SDA/SCL line control  
When the I2C3S interface is enabled, the SDA and SCL ports must be configured as floating  
inputs. In this case, the value of the external pull-up resistor used depends on the  
application.  
When the I2C3S interface is disabled, the SDA and SCL ports revert to being standard I/O  
port pins.  
2
Figure 72. I C bus protocol  
SDA  
ACK  
9
MSB  
1
SCL  
2
8
Start  
Stop  
condition  
condition  
11.7.4  
Functional description  
2
The three slave addresses 1, 2 and 3 can be used as general purpose I C slaves. They also  
2
support all features of standard I C EEPROMs like the ST M24Cxx family and are able to  
fully emulate them.  
Slaves 1 and 2 are mapped on the same interrupt vector. Slave 3 has a separate interrupt  
vector with higher priority.  
The three slave addresses are defined by writing the 7 MSBs of the address in the  
I2C3SSAR1, I2C3SSAR2 and I2C3SSAR3 registers. The slaves are enabled by setting the  
enable bits in the same registers.  
Each slave has its own RAM buffer at a fixed location in the ST7 RAM area.  
2
Slaves 1 and 2 have 256-byte buffers which can be individually protected from I C  
master write accesses.  
Slave 3 has a 128-byte RAM buffer without write protection feature.  
All three slaves have individual read flags (RF) and write flags (WF) with maskable  
2
interrupts. These flags are set when the I C master has completed a read or write operation.  
Paged operation  
2
To allow emulation of Standard I C EEPROM devices, pages can be defined in the RAM  
buffer. The pages are configured using the PL[1:0] bits in the I2C3SCR1 register. 8/16-Byte  
page length has to be selected depending on the EEPROM device to emulate. The Full  
Page option is to be used when no paging of the RAM buffer is required. The configuration is  
common to the 3 slave addresses. The Full Page configuration corresponds to 256 bytes for  
address 1 and 2 and to 128 bytes for address 3.  
Paging affects the handling of rollover when write operations are performed. In case the  
bottom of the page is reached, the write continues from the first address of the same page.  
Page length does not affect read operations: rollover is done on the whole RAM buffer  
whatever the configured page length.  
168/246  
ST72344xx, ST72345xx  
On-chip peripherals  
The Byte count register is reset when it reaches 256 bytes, whatever the page length, for all  
slave addresses, including slave 3.  
DMA  
2
The I C slaves use a DMA controller to write/read data to/from their RAM buffer.  
A DMA request is issued to the DMA controller on reception of a byte or just before  
transmission of a byte.  
When a byte is written by DMA in RAM, the CPU is stalled for max. 2 cycles. When several  
bytes are transferred from the I2C bus to RAM, the DMA releases between each byte and  
the CPU resumes processing until the DMA writes the next byte.  
RAM buffer write protection  
By setting the WP1/WP2 bits in the I2C3SCR2 register it is possible to protect the RAM  
buffer of Slaves 1/2 respectively against write access from the master.  
If a write operation is attempted, the slave address is acknowledged, the current address  
register is overwritten, data is also acknowledged but it is not written to the RAM. Both the  
current address and byte count registers are incremented as in normal operation.  
In case of write access to a write protected address, no interrupt is generated and the  
BusyW bit in the I2C3SCR2 register is not set.  
Only write operations are disabled/enabled. Read operations are not affected.  
Byte-pair coherency for I2C read operations  
2
Byte-pair coherency allows the I C master to read a 16-bit word and ensures that it is not  
corrupted by a simultaneous CPU update. Two mechanisms are implemented, covering the  
two possible cases:  
1. CPU updates a word in RAM after the first byte has been transferred to the I2C shift  
register from RAM. In this case, the first byte read from RAM would be the MSB of the  
old word and 2nd byte would be the LSB of the new word.  
To prevent this corruption, the I2C3S uses DMA to systematically read a 2-byte word  
2
when it receives a read command from the I C master. The MSB of the word should be  
at address 2n. Using DMA, the MSB is moved from RAM address 2n to the I2C shift  
register and the LSB from RAM address 2n+1 moved to a shadow register in the I2C3S  
peripheral. The CPU is stalled for a maximum of 2 cycles during word transfer.  
In case only one byte is read, the unused content of the shadow register will be  
automatically overwritten when a new read operation is performed.  
2
In case a second byte is read in the same I C message (no Stop or Restart condition)  
the content of the shadow register is transferred to the shift register and transmitted to  
the master.  
This process continues until a Stop or Restart condition occurs.  
2. I2C3S attempts to read a word while the CPU is updating the RAM buffer. To prevent  
data corruption, the CPU must switch operation to Word mode prior to updating a word  
in the RAM buffer. Word mode is enabled by software using the B/W bit in the  
I2C3SCR2 register. In Word mode, when the CPU writes the MSB of a word to address  
2n, it is stored in a shadow register rather than being actually written in RAM. When the  
CPU writes the second byte (the LSB) at address 2n+1, it is directly written in RAM.  
The next cycle after the write to address 2n+1, the MSB is automatically written from  
the shadow register to RAM address 2n. DMA is disabled for a 1 cycle while the CPU is  
writing a word.  
169/246  
On-chip peripherals  
ST72344xx, ST72345xx  
Word mode is disabled by hardware after the word update is performed. It must be  
enabled before each word update by CPU.  
Use the following procedure when the ST7 writes a word in RAM:  
1. Disable interrupts  
2. Enable Word mode by setting the B/W and BusyW bits in the I2C3SCR2 register.  
BusyW bit is set to 1 when modifying any bits in Control Register 2. Writing a 1 to this  
bit does not actually modify BusyW but prevents accidental clearing of the bit.  
3. Write Byte 1 in an even address in RAM. The byte is not actually written in RAM but in  
a shadow register. This address must be within the I2C RAM buffer of slave addresses  
1, 2 or 3.  
4. Write Byte 2 in the next higher address in RAM. This byte is actually written in RAM.  
During the next cycle, the shadow register content is written in the lower address. The  
DMA request is disabled during this cycle.  
5. Byte mode resumes automatically after writing byte 2 and DMA is re-enabled.  
6. Enable interrupts  
Note:  
Word mode does not guarantee byte-pair coherency of words WRITTEN by the I2C master  
in RAM and read by the ST7. Byte pair coherency in this case must be handled by software.  
Figure 73. 16-bit word write operation flowchart  
HOST  
ST7 I2C3SNS  
ST7 CPU  
Sends address  
Decodes I2C3SNS address  
decodes R/W bit  
and write bit  
Normal execution  
sets write flag  
Updates current address-  
register  
Sends write address  
Issues DMA request  
Halts execution  
N
Word mode?  
1 Cycle  
max  
Y
Repeat  
Delays while CPU  
completes word write  
Sends 1 byte of data  
STOP condition  
Writes one byte to RAM  
Resumes execution  
1 Cycle  
max  
Sets BUSYW in control -  
register + I2C3S disabled  
issues interrupt  
Services I2C3SNS interrupt  
Resets I2C3SNS write flag  
Enables I2C3SNS  
Reads I2C3SNS status register  
Updates control register  
Byte-Pair Coherency ensured by setting Word Mode  
RAM start address depends on slave address  
170/246  
ST72344xx, ST72345xx  
Figure 74. 16-bit word read operation flowchart  
On-chip peripherals  
Host  
ST7 I2C3SNS  
ST7 CPU  
Sends address  
and read bit  
Decodes I2C3SNS address  
Decodes R/W bit  
Normal execution  
Sets read flag  
Updates current address-  
register  
Sends read address  
Issues DMA request  
Halts execution  
N
Word mode?  
Y
Delays while CPU  
completes word write  
3 cycles  
max  
Repeat  
Reads 1 word from RAM  
Byte 1 => Shift reg  
Resumes execution  
Receives byte 1  
Byte 2 => Shadow reg  
Releases DMA  
Y
STOP?  
N
Shadow reg => Shift reg  
Receives byte 2  
Stop condition  
Services I2C3SNS interrupt  
Updates status + DMA CNTL  
Resets read flag  
Reads I2C3SNS status register  
Byte-Pair Coherency ensured by setting Word Mode + DMA on Words  
RAM start address depends on slave address  
Application note  
Taking full advantage of its higher interrupt priority Slave 3 can be used to allow the  
addressing master to send data bytes as commands to the ST7. These commands can be  
decoded by the ST7 software to perform various operations such as programming the Data  
E2PROM via IAP (In-Application Programming).  
Slave 3 writes the command byte and other data in the RAM and generates an interrupt.  
The ST7 then decodes the command and processes the data as decoded from the  
command byte. The ST7 also writes a status byte in the RAM which the addressing master  
can poll.  
11.7.5  
Address handling  
As soon as a start condition is detected, the address is received from the SDA line and sent  
to the shift register. Then it is compared with the three addresses of the interface to decode  
which slave of the interface is being addressed.  
Address not matched: the interface ignores it and waits for another Start condition.  
171/246  
On-chip peripherals  
ST72344xx, ST72345xx  
Address matched: the interface generates in sequence the following:  
An Acknowledge pulse  
Depending on the LSB of the slave address sent by the master, slaves enter transmitter  
or receiver mode.  
Send an interrupt to the CPU after completion of the read/write operation after  
detecting the Stop/ Restart condition on the SDA line.  
Note:  
The Status Register has to be read to clear the event flag associated with the interrupt  
An interrupt will be generated only if the interrupt enable bit is set in the Control Register  
Slaves 1 and 2 have a common interrupt and the Slave 3 has a separate interrupt.  
At the end of write operation, I2C3S is temporarily disabled by hardware by setting BusyW  
bit in CR2. The byte count register, status register and current address register should be  
saved before resetting BusyW bit.  
Slave reception (write operations)  
Byte Write: The Slave address is followed by an 8-bit byte address. Upon receipt of this  
address an acknowledge is generated, address is moved into the current address register  
and the 8 bit data is clocked in. Once the data is shifted in, a DMA request is generated and  
the data is written in the RAM. The addressing device will terminate the write sequence with  
a stop condition. Refer to Figure 76  
Page Write: A page write is initiated in similar way to a byte write, but the addressing device  
does not send a stop condition after the first data byte. The page length is programmed  
using bits 7:6 (PL[1:0]) in the Control Register1.  
The current address register value is incremented by one every time a byte is written. When  
this address reaches the page boundary, the next byte will be written at the beginning of the  
same page. Refer to Figure 77.  
Slave transmission (Read operations)  
Current address read: The current address register maintains the last address accessed  
during the last read or write operation incremented by one.  
During this operation the I2C slave reads the data pointed by the current address register.  
Refer to Figure 78.  
Random read: Random read requires a dummy byte write sequence to load in the byte  
address. The addressing device then generates restart condition and resends the device  
address similar to current address read with the read/write bit high. Refer to Figure 79.  
Some types of I2C masters perform a dummy write with a stop condition and then a current  
address read.  
In either case, the slave generates a DMA request, sends an acknowledge and serially  
clocks out the data.  
When the memory address limit is reached the current address will roll over and the random  
read will continue till the addressing master sends a stop condition.  
Sequential read: Sequential reads are initiated by either a current address read or a  
random address read. After the addressing master receives the data byte it responds with  
an acknowledge. As long as the slave receives an acknowledge it will continue to increment  
the current address register and clock out sequential data bytes.  
172/246  
ST72344xx, ST72345xx  
On-chip peripherals  
When the memory address limit is reached the current address will roll over and the  
sequential read will continue till the addressing master sends a stop condition. Refer to  
Figure 81  
Combined format  
If a master wants to continue communication either with another slave or by changing the  
direction of transfer then the master would generate a restart and provide a different slave  
address or the same slave address with the R/W bit reversed. Refer to Figure 82.  
Rollover handling  
The RAM buffer of each slave is divided into pages whose length is defined according to  
PL1:0 bits in I2C3SCR1. Rollover takes place in these pages as described below.  
In the case of Page Write, if the number of data bytes transmitted is more than the page  
length, the current address will roll over to the first byte of the current page and the previous  
data will be overwritten. This page size is configured using PL[1:0] bit in the I2C3SCR1  
register.  
In case of Sequential Read, if the current address register value reaches the memory  
address limit the address will roll over to the first address of the reserved area for the  
respective slave.  
There is no status flag to indicate the roll over.  
Note:  
The reserved areas for slaves 1 and 2 have a limit of 256 bytes. The area for slave 3 is 128  
bytes. The MSB of the address is hardwired, the addressing master therefore needs to send  
only an 8 bit address.  
The page boundaries are defined based on page size configuration using PL[1:0] bit in the  
I2C3SCR1 register. If an 8-byte page size is selected, the upper 5 bits of the RAM address  
are fixed and the lower 3 bits are incremented. For example, if the page write starts at  
register address 0x0C, the write will follow the sequence 0x0C, 0x0D, 0x0E, 0x0F, 0x08,  
0x09, 0x0A, 0x0B. If a 16-byte page size is selected, the upper 4 bits of the RAM address  
are fixed and the lower 4 bits are incremented. For example if the page write starts at  
register address 0x0C, the write will follow the sequence 0x0C, 0x0D, 0x0E, 0x0F, 0x00,  
0x01, etc.  
Error conditions  
BERR: Detection of a Stop or a Start condition during a byte transfer. In this case, the  
BERR bit is set by hardware with an interrupt if ITER is set. During a stop condition, the  
interface discards the data, releases the lines and waits for another Start condition.  
However, a BERR on a Start condition will result in the interface discarding the data  
and waiting for the next slave address on the bus.  
NACK: Detection of a non-acknowledge bit not followed by a Stop condition. In this  
case, NACK bit is set by hardware with an interrupt if ITER is set.  
173/246  
On-chip peripherals  
ST72344xx, ST72345xx  
Figure 75. Transfer sequencing  
7-bit Slave receiver:  
S Address A Data1  
A
A
Data2  
Data2  
A
A
DataN  
A
P
.....  
.....  
WF  
7-bit Slave transmitter:  
S Address A Data1  
BusyW  
DataN NA P  
RF  
Legend: S = Start, P = Stop, A = Acknowledge, NA = Non-acknowledge,  
WF = WF event, WFx bit is set (with interrupt if ITWEx=1, after Stop or Restart conditions),  
cleared by reading the I2C3SSR register while no communication is ongoing.  
RF = RF event, RFx is set (with interrupt if ITREx=1, after Stop or Restart conditions),  
cleared by reading the I2C3SSR register while no communication is ongoing.  
BusyW = BusyW flag in the I2C3CR2 register set, cleared by software writing 0.  
Note:  
The I2C3S supports a repeated start (S ) in place of a stop condition (P).  
r
Figure 76. Byte write  
Start  
SA  
W
Ack  
BA  
Ack  
Data  
Ack Stop  
Figure 77. Page write  
Start  
SA  
W
Ack  
BA  
Ack  
Data  
Ack  
Data  
Ack  
Stop  
Figure 78. Current address read  
Start  
SA  
R
Ack  
Data  
Nack  
Stop  
Figure 79. Random read (dummy write + restart + current address read)  
Start  
SA  
W
Ack  
BA  
Ack Start  
SA  
Ack  
R
Data Nack  
Stop  
174/246  
ST72344xx, ST72345xx  
On-chip peripherals  
Figure 80. Random read (dummy write + stop + start + current address read)  
Start  
SA  
W
Ack  
BA  
Ack Stop Start  
SA  
R
Ack Data Nack  
Stop  
Figure 81. Sequential read  
Start  
SA  
R
Ack  
Data  
Ack  
Ack  
Data Nack  
Stop  
Data  
Figure 82. Combined format for read  
Start  
SA  
Nack  
SA  
R
Ack Data  
Nack  
Stop  
Restart  
R
Ack Data  
Legend: SA - Slave Address, BA - Byte Address, W: Write, R: Read  
11.7.6  
Low-power modes  
Table 68. Mode description  
Mode  
Description  
No effect on I2C interface.  
I2C interrupts causes the device to exit from Wait mode.  
Wait  
I2C registers are frozen.  
In Halt mode, the I2C interface is inactive and does not acknowledge data on the bus.  
The I2C interface resumes operation when the MCU is woken up by an interrupt with  
“exit from Halt mode” capability.  
Halt  
I2C registers are frozen.  
In Active halt mode, the I2C interface is inactive and does not acknowledge data on the  
bus. The I2C interface resumes operation when the MCU is woken up by an interrupt  
with “exit from Active-halt mode” capability.  
Active-halt  
175/246  
On-chip peripherals  
ST72344xx, ST72345xx  
11.7.7  
Interrupt generation  
Figure 83. Event flags and interrupt generation  
Restart:  
Restart condition on SDA  
Restart: Restart condition on SDA  
Stop: Stop condition on SDA  
Dummy Write: True if no data is written in RAM  
Write Protect: True for Write operation and if slaves  
are write protected (since this is applicable for  
slaves 1 and 2. For slave 3 and for Read operation  
write protect will always be 0)  
Restart  
Stop  
Data Status Flag  
Dummy Write  
Write Protect  
Data Status Flag: Actual Interrupt is produced when  
this condition is true  
Data Status Flag  
RF1  
RF2  
ITRE1/2  
NACK  
INTERRUPT 1  
(Slave address 1/2)  
ITER  
BERR  
WF1  
WF2  
ITWE1/2  
Data Status Flag  
Data Status Flag  
WF3  
ITWE3  
BERR  
INTERRUPT 2  
ITER  
NACK  
(Slave address 3)  
RF3  
ITRE3  
Data Status Flag  
Note:  
Read/Write interrupts are generated only after stop or restart conditions. Figure 83 shows  
the conditions for the generation of the two interrupts.  
Table 69. Interrupt events  
Interrupt event  
Enable  
Control  
Bit  
Exit  
from  
Wait  
Exit  
from  
Halt  
Flag  
Interrupt on write to Slave 1  
Interrupt on write to Slave 2  
Interrupt on write to Slave 3  
Interrupt on Read from Slave 1, Slave 2 or Slave 3.  
Errors  
WF1  
WF2  
ITWE1  
ITWE1  
ITWE2  
ITREx  
ITER  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
WF3  
RF1- RF3  
BERR, NACK  
176/246  
ST72344xx, ST72345xx  
On-chip peripherals  
11.7.8  
Register description  
I2C 3S control register 1 (I2C3SCR1)  
Reset value: 0000 0000 (00h)  
7
0
ITWE  
PL1  
PL0  
0
ITER  
Read / Write  
Bits 7:6 = PL1:0 Page length configuration  
ITRE3  
ITRE1/2  
ITWE3  
1/2  
This bit is set and cleared by software. It is also cleared by hardware when the interface  
is disabled (PE=0).  
Table 70. PL configuration  
PL1  
PL0  
Page length  
0
0
1
1
0
1
0
1
8
16  
Full Page (256 bytes for slave 1 & 2, 128 bytes for slave 3)  
NA  
Bit 5 = Reserved, must be kept at 0.  
Bit 4 = ITER BERR / NACK Interrupt enable  
This bit is set and cleared by software. It is also cleared by hardware when the interface  
is disabled (PE=0).  
0: BERR / NACK interrupt disabled  
1: BERR / NACK interrupt enabled  
Note:  
In case of error, if ITER is enabled either interrupt 1 or 2 is generated depending on which  
slave flags the error (see Figure 83).  
Bit 3= ITRE3 Interrupt enable on read from Slave 3  
This bit is set and cleared by software It is also cleared by hardware when interface is  
disabled (PE =0).  
0: Interrupt on Read from Slave 3 disabled  
1: Interrupt on Read from Slave 3 enabled  
Bit 2 = ITRE1/2 Interrupt enable on read from Slave 1 or 2  
This bit is set and cleared by software It is also cleared by hardware when interface is  
disabled  
(PE =0)  
0: Interrupt on Read from Slave 1 or 2 disabled  
1: Interrupt on Read from Slave 1 or 2 enabled  
177/246  
On-chip peripherals  
Bit 1= ITWE3 Interrupt enable on write to Slave 3  
ST72344xx, ST72345xx  
This bit is set and cleared by software. It is also cleared by hardware when interface is  
disabled.  
0: Interrupt after write to Slave 3 disabled  
1: Interrupt after write to Slave 3 enabled  
Bit 0 = ITWE1/2 Interrupt enable on write to Slave 1 or 2  
This bit is set and cleared by software. It is also cleared by hardware when interface is  
disabled software. It is also cleared by hardware when interface is disabled.  
0: Interrupt after write to Slave 1 or 2 disabled  
1: Interrupt after write to Slave 1 or 2 enabled  
I2C control register 2 (I2C3SCR2)  
Reset value: 0000 0000 (00h)  
7
0
0
0
0
WP2  
WP1  
PE  
BusyW  
B/W  
Read / Write  
Bits 7:5 = Reserved, must be kept at 0.  
Bit 4 = WP2 Write Protect enable for Slave 2  
This bit is set and cleared by software. It is also cleared by hardware when the interface  
is disabled (PE=0)  
0: Write access to Slave 2 RAM buffer enabled  
1: Write access to Slave 2 RAM buffer disabled  
Bit 3 = WP1 Write Protect enable for Slave 1  
This bit is set and cleared by software. It is also cleared by hardware when the interface  
is disabled (PE=0).  
0: Write access to Slave 1 RAM buffer enabled  
1: Write access to Slave 1 RAM buffer disabled  
Note:  
(Applicable for both WP2/ WP1)  
Only write operations are disabled/enabled. Read operations are not affected.  
If a write operation is attempted, the slave address is acknowledged, the current address  
register is overwritten, data is also acknowledged but it is not written to the RAM.  
Both the current address and byte count registers are incremented as in normal operation.  
No interrupt generated if slave is write protected  
BusyW will not be set if slave is write protected  
Bit 2 = PE Peripheral enable  
This bit is set and cleared by software.  
0: Peripheral disabled  
1: Slave capability enabled  
2
Note:  
To enable the I C interface, write the CR register TWICE with PE=1 as the first write only  
activates the interface (only PE is set)  
178/246  
ST72344xx, ST72345xx  
Bit 1 = BusyW Busy on Write to RAM Buffer  
On-chip peripherals  
This bit is set by hardware when a STOP/ RESTART is detected after a write operation.  
The I2C3S peripheral is temporarily disabled till this bit is reset. This bit is cleared by  
software. If this bit is not cleared before the next slave address reception, further  
communication will be non-acknowledged. This bit is set to 1 when modifying any bits  
in Control Register 2. Writing a 1 to this bit does not actually modify BusyW but  
prevents accidentally clearing of the bit.  
0: No BusyW event occurred  
1: A STOP/ RESTART is detected after a write operation  
Bit 0 = B/W Byte / Word Mode  
This control bit must be set by software before a word is updated in the RAM buffer and  
cleared by hardware after completion of the word update. In Word mode the CPU  
cannot be interrupted when it is modifying the LSB byte and MSB byte of the word. This  
mode is to ensure the coherency of data stored as words.  
0: Byte mode  
1: Word mode  
Note:  
When word mode is enabled, all interrupts should be masked while the word is being written  
in RAM.  
I2C3S status register (I2C3SSR)  
Reset value: 0000 0000 (00h)  
7
0
NACK  
BERR  
WF3  
WF2  
Read Only  
Bit 7= NACK Non Acknowledge not followed by Stop  
WF1  
RF3  
RF2  
RF1  
This bit is set by hardware when a non acknowledge returned by the master is not  
followed by a Stop or Restart condition. It is cleared by software reading the SR register  
or by hardware when the interface is disabled (PE=0).  
0: No NACK error occurred  
1: Non Acknowledge not followed by Stop  
Bit 6 = BERR Bus error  
This bit is set by hardware when the interface detects a misplaced Start or Stop  
condition. It is cleared by software reading SR register or by hardware when the  
interface is disabled (PE=0).  
The SCL line is not held low while BERR=1.  
0: No misplaced Start or Stop condition  
1: Misplaced Start or Stop condition  
Bit 5 = WF3 Write operation to Slave 3  
2
This bit is set by hardware on reception of the direction bit in the I C address byte for  
Slave 3. This bit is cleared when the status register is read when there is no  
communication ongoing or when the peripheral is disabled (PE = 0)  
0: No write operation to Slave 3  
1: Write operation performed to Slave 3  
179/246  
On-chip peripherals  
Bit 4 = WF2 Write operation to Slave 2  
ST72344xx, ST72345xx  
2
This bit is set by hardware on reception of the direction bit in the I C address byte for  
Slave 2. This bit is cleared when the status register is read when there is no  
communication ongoing or when the peripheral is disabled (PE = 0)  
0: No write operation to Slave 2  
1: Write operation performed to Slave 2  
Bit 3 = WF1 Write operation to Slave 1  
2
This bit is set by hardware on reception of the direction bit in the I C address byte for  
Slave 1. This bit is cleared by software when the status register is read when there is  
no communication ongoing or by hardware when the peripheral is disabled (PE = 0).  
0: No write operation to Slave 1  
1: Write operation performed to Slave 1  
Bit 2 = RF3 Read operation from Slave 3  
2
This bit is set by hardware on reception of the direction bit in the I C address byte for  
Slave 3. It is cleared by software reading the SR register when there is no  
communication ongoing. It is also cleared by hardware when the interface is disabled  
(PE=0).  
0: No read operation from Slave 3  
1: Read operation performed from Slave 3  
Bit 1= RF2 Read operation from Slave 2  
2
This bit is set by hardware on reception of the direction bit in the I C address byte for  
Slave 2. It is cleared by software reading the SR register when there is no  
communication ongoing. It is also cleared by hardware when the interface is disabled  
(PE=0).  
0: No read operation from Slave 2  
1: Read operation performed from Slave 2  
Bit 0= RF1 Read operation from Slave 1  
2
This bit is set by hardware on reception of the direction bit in the I C address byte for  
Slave 1. It is cleared by software reading SR register when there is no communication  
ongoing. It is also cleared by hardware when the interface is disabled (PE=0).  
0: No read operation from Slave 1  
1: Read operation performed from Slave 1  
I2C byte count register (I2C3SBCR)  
Reset value: 0000 0000 (00h)  
7
0
NB7  
NB6  
NB5  
NB4  
NB3  
NB2  
NB1  
NB0  
Read only  
Bits 7:0 = NB [7:0] Byte Count Register  
This register keeps a count of the number of bytes received or transmitted through any  
of the three addresses. This byte count is reset after reception by a slave address of a  
new transfer and is incremented after each byte is transferred. This register is not  
limited by the full page length. It is also cleared by hardware when interface is disabled  
(PE =0).  
180/246  
ST72344xx, ST72345xx  
On-chip peripherals  
I2C slave 1 address register (I2C3SSAR1)  
Reset value: 0000 0000 (00h)  
7
0
ADDR7  
ADDR6  
ADDR5  
ADDR4  
Read / Write  
Bits 7:1 = ADDR[7:1] Address of Slave 1  
ADDR3  
ADDR2  
ADDR1  
EN1  
This register contains the first 7 bits of Slave 1 address (excluding the LSB) and is user  
programmable. It is also cleared by hardware when interface is disabled (PE =0).  
Bit 0= EN1 Enable bit for Slave Address 1  
This bit is used to enable/disable Slave Address 1. It is also cleared by hardware when  
interface is disabled (PE =0).  
0: Slave Address 1 disabled  
1: Slave Address 1 enabled  
I2C slave 2 address register (I2C3SSAR2)  
Reset value: 0000 0000 (00h)  
7
0
ADDR7  
ADDR6  
ADDR5  
ADDR4  
Read / Write  
Bits 7:1 = ADDR[7:1] Address of Slave 2.  
ADDR3  
ADDR2  
ADDR1  
EN2  
This register contains the first 7 bits of Slave 2 address (excluding the LSB) and is user  
programmable. It is also cleared by hardware when interface is disabled (PE =0).  
Bit 0= EN2 Enable bit for Slave Address 2  
This bit is used to enable/disable Slave Address 2. It is also cleared by hardware when  
interface is disabled (PE =0).  
0: Slave Address 2 disabled  
1: Slave Address 2 enabled  
I2C slave 3 address register (I2C3SSAR3)  
Reset value: 0000 0000 (00h)  
7
0
ADDR7  
ADDR6  
ADDR5  
ADDR4  
ADDR3  
ADDR2  
ADDR1  
EN3  
Read / Write  
Bit 7:1 = ADDR[7:1] Address of Slave 3  
This register contains the first 7 bits of Slave 3 address (excluding the LSB) and is user  
programmable. It is also cleared by hardware when interface is disabled (PE =0).  
Bit 0= EN3 Enable bit for Slave Address 3  
This bit is used to enable/disable Slave Address 3. It is also cleared by hardware when  
interface is disabled (PE =0).  
0: Slave Address 3 disabled  
1: Slave Address 3 enabled  
181/246  
On-chip peripherals  
ST72344xx, ST72345xx  
I2C slave 1 memory current address register (I2C3SCAR1)  
Reset value: 0000 0000 (00h)  
7
0
CA7  
CA6  
CA5  
CA4  
Read only  
Bit 7:0 = CA[7:0] Current address of Slave 1 buffer  
CA3  
CA2  
CA1  
CA0  
This register contains the 8 bit offset of Slave Address 1 reserved area in RAM. It is  
also cleared by hardware when interface is disabled (PE =0).  
I2C slave 2 memory current address register (I2C3SCAR2)  
Reset value: 0000 0000 (00h)  
7
0
CA7  
CA6  
CA5  
CA4  
Read only  
Bit 7:0 = CA[7:0] Current address of Slave 2 buffer  
CA3  
CA2  
CA1  
CA0  
This register contains the 8-bit offset of Slave Address 2 reserved area in RAM. It is  
also cleared by hardware when interface is disabled (PE =0).  
I2C slave 3 memory current address register (I2C3SCAR3)  
Reset value: 0000 0000 (00h)  
7
0
CA7  
CA6  
CA5  
CA4  
Read only  
Bit 6:0 = CA[6:0] Current address of Slave 3 buffer  
CA3  
CA2  
CA1  
CA0  
This register contains the 8-bit offset of slave address 3 reserved area in RAM. It is also  
cleared by hardware when interface is disabled (PE =0).  
Note:  
Slave address 3 can store only 128 bytes. For slave address 3, CA7 bit will remain 0. i.e. if  
the Byte Address sent is 0x80 then the Current Address register will hold the value 0x00 due  
to an overflow.  
2
Table 71. I C3S register map  
Address Register  
7
6
5
4
3
2
1
0
(Hex.)  
name  
0060h  
0061h  
0062h  
0063h  
I2C3SCR1  
I2C3SCR2  
I2C3SSR  
PL1  
0
PL0  
0
0
ITER  
WP2  
WF2  
NB4  
ITRE3 ITRE1/2 ITWE3 ITWE1/2  
0
WP1  
WF1  
NB3  
PE  
BusyW  
RF2  
B/W  
RF1  
NB1  
EN1  
NACK BERR  
NB7 NB6  
WF3  
NB5  
RF3  
NB2  
I2C3SBCR  
NB1  
0064h I2C3SSAR1 ADDR7 ADDR6 ADDR5 ADDR4 ADDR3 ADDR2 ADDR1  
0065h I2C3SCAR1 CA 7 .. CA0  
182/246  
ST72344xx, ST72345xx  
On-chip peripherals  
2
Table 71. I C3S register map (continued)  
Address Register  
7
6
5
4
3
2
1
0
(Hex.)  
0066h I2C3SSAR2 ADDR7 ADDR6 ADDR5 ADDR4 ADDR3 ADDR2 ADDR1  
0067h I2C3SCAR2 CA 7 .. CA0  
0068h I2C3SSAR3 ADDR7 ADDR6 ADDR5 ADDR4 ADDR3 ADDR2 ADDR1  
0069h I2C3SCAR3 CA 7 .. CA0  
name  
EN2  
EN3  
183/246  
On-chip peripherals  
ST72344xx, ST72345xx  
11.8  
10-bit A/D converter (ADC)  
11.8.1  
Introduction  
The on-chip Analog to Digital Converter (ADC) peripheral is a 10-bit, successive  
approximation converter with internal sample and hold circuitry. This peripheral has up to 16  
multiplexed analog input channels (refer to device pinout description) that allow the  
peripheral to convert the analog voltage levels from up to 16 different sources.  
The result of the conversion is stored in a 10-bit Data Register. The A/D converter is  
controlled through a Control/Status Register.  
Note:  
Whenever you change the channel or write in the ADCCSR register, the ADC conversion  
starts again.  
11.8.2  
Main features  
10-bit conversion  
Up to 16 channels with multiplexed input  
Linear successive approximation  
Data register (DR) which contains the results  
Conversion complete status flag  
ON/OFF bit (to reduce consumption)  
The block diagram is shown in Figure 84.  
Figure 84. ADC block diagram  
fCPU  
DIV 4  
0
fADC  
DIV 2  
1
CH3  
EOC SPEEDADON  
0
CH2 CH1 CH0  
ADCCSR  
4
AIN0  
AIN1  
ANALOG TO DIGITAL  
CONVERTER  
ANALOG  
MUX  
AINx  
ADCDRH  
D9 D8 D7 D6 D5 D4 D3 D2  
ADCDRL  
0
0
0
0
0
0
D1 D0  
184/246  
ST72344xx, ST72345xx  
On-chip peripherals  
11.8.3  
Functional description  
The conversion is monotonic, meaning that the result never decreases if the analog input  
does not and never increases if the analog input does not.  
If the input voltage (V ) is greater than V  
(high-level voltage reference) then the  
AIN  
AREF  
conversion result is FFh in the ADCDRH register and 03h in the ADCDRL register (without  
overflow indication).  
If the input voltage (V ) is lower than V  
(low-level voltage reference) then the  
SSA  
AIN  
conversion result in the ADCDRH and ADCDRL registers is 00 00h.  
The A/D converter is linear and the digital result of the conversion is stored in the ADCDRH  
and ADCDRL registers. The accuracy of the conversion is described in the Electrical  
Characteristics Section.  
R
is the maximum recommended impedance for an analog input signal. If the impedance  
AIN  
is too high, this will result in a loss of accuracy due to leakage and sampling not being  
completed in the allotted time.  
A/D converter configuration  
The analog input ports must be configured as input, no pull-up, no interrupt. Refer to the  
«I/O ports» chapter. Using these pins as analog inputs does not affect the ability of the port  
to be read as a logic input.  
In the ADCCSR register:  
Select the CS[3:0] bits to assign the analog channel to convert.  
Starting the conversion  
In the ADCCSR register:  
Set the ADON bit to enable the A/D converter and to start the conversion. From this  
time on, the ADC performs a continuous conversion of the selected channel.  
When a conversion is complete:  
The EOC bit is set by hardware.  
The result is in the ADCDR registers.  
A read to the ADCDRH resets the EOC bit.  
To read the 10 bits, perform the following steps:  
1. Poll the EOC bit  
2. Read the ADCDRL register  
3. Read the ADCDRH register. This clears EOC automatically.  
Note:  
The data is not latched, so both the low and the high data register must be read before the  
next conversion is complete, so it is recommended to disable interrupts while reading the  
conversion result.  
To read only 8 bits, perform the following steps:  
1. Poll the EOC bit  
2. Read the ADCDRH register. This clears EOC automatically.  
185/246  
On-chip peripherals  
ST72344xx, ST72345xx  
Changing the conversion channel  
The application can change channels during conversion. When software modifies the  
CH[3:0] bits in the ADCCSR register, the current conversion is stopped, the EOC bit is  
cleared, and the A/D converter starts converting the newly selected channel.  
11.8.4  
Low-power modes  
Note:  
The A/D converter may be disabled by resetting the ADON bit. This feature allows reduced  
power consumption when no conversion is needed.  
Table 72. Mode description  
Mode  
Description  
Wait  
Halt  
No effect on A/D Converter  
A/D Converter disabled.  
After wakeup from Halt mode, the A/D Converter requires a stabilization time  
STAB (see Electrical characteristics) before accurate conversions can be  
performed.  
t
11.8.5  
11.8.6  
Interrupts  
None.  
Register description  
Control/status register (ADCCSR)  
Reset value: 0000 0000 (00h)  
7
0
EOC  
SPEED  
ADON  
Read/Write (Except bit 7 read only)  
Bit 7 = EOC End of Conversion  
0
CH3  
CH2  
CH1  
CH0  
This bit is set by hardware. It is cleared by hardware when software reads the ADCDRH  
register or writes to any bit of the ADCCSR register.  
0: Conversion is not complete  
1: Conversion complete  
Bit 6 = SPEED ADC clock selection  
This bit is set and cleared by software.  
0: f  
1: f  
= f  
= f  
/4  
/2  
ADC  
ADC  
CPU  
CPU  
Bit 5 = ADON A/D Converter on  
This bit is set and cleared by software.  
0: Disable ADC and stop conversion  
1: Enable ADC and start conversion  
Bit 4 = Reserved. Must be kept cleared.  
186/246  
ST72344xx, ST72345xx  
Bits 3:0 = CH[3:0] Channel Selection  
On-chip peripherals  
These bits are set and cleared by software. They select the analog input to convert.  
Table 73. Channel selection  
Channel pin(1)  
CH3  
CH2  
CH1  
CH0  
AIN0  
AIN1  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
AIN2  
AIN3  
AIN4  
AIN5  
Reserved  
Reserved  
AIN8  
Reserved  
AIN10  
Reserved  
AIN12  
AIN13  
AIN14  
AIN15  
1. The number of channels is device dependent. Refer to the device pinout description.  
Data register (ADCDRH)  
Reset value: 0000 0000 (00h)  
7
0
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
Read Only  
Bits 7:0 = D[9:2] MSB of Converted Analog Value  
Data register (ADCDRL)  
Reset value: 0000 0000 (00h)  
7
0
0
0
0
0
0
0
D1  
D0  
Read Only  
Bits7:2 = Reserved. Forced by hardware to 0.  
Bits 1:0 = D[1:0] LSB of Converted Analog Value  
187/246  
On-chip peripherals  
ST72344xx, ST72345xx  
Table 74. ADC register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
ADCCSR  
Reset value  
EOC SPEED ADON  
CH3  
0
CH2  
0
CH1  
0
CH0  
0
0070h  
0071h  
0072h  
0
0
0
0
ADCDRH  
Reset value  
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
ADCDRL  
Reset value  
D1  
0
D0  
0
0
0
0
0
0
0
188/246  
ST72344xx, ST72345xx  
Instruction set  
12  
Instruction set  
12.1  
ST7 addressing modes  
The ST7 Core features 17 different addressing modes which can be classified in seven main  
groups:  
Table 75. Addressing mode groups  
Addressing mode  
Example  
Inherent  
Immediate  
Direct  
nop  
ld A,#$55  
ld A,$55  
Indexed  
ld A,($55,X)  
ld A,([$55],X)  
jrne loop  
Indirect  
Relative  
Bit operation  
bset byte,#5  
The ST7 Instruction set is designed to minimize the number of bytes required per  
instruction: To do so, most of the addressing modes may be subdivided in two submodes  
called long and short:  
Long addressing mode is more powerful because it can use the full 64 Kbyte address  
space, however it uses more bytes and more CPU cycles.  
Short addressing mode is less powerful because it can generally only access page  
zero (0000h - 00FFh range), but the instruction size is more compact, and faster. All  
memory to memory instructions use short addressing modes only (CLR, CPL, NEG,  
BSET, BRES, BTJT, BTJF, INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP)  
The ST7 Assembler optimizes the use of long and short addressing modes.  
Table 76. ST7 addressing mode overview  
Destination/  
Source  
Pointer  
addres Size (Hex.)  
Pointer  
Length  
(Bytes)  
Mode  
Syntax  
Inherent  
nop  
+ 0  
+ 1  
Immedi  
ate  
ld A,#$55  
Short  
Long  
Direct  
Direct  
ld A,$10  
00..FF  
+ 1  
+ 2  
ld A,$1000  
0000..FFFF  
00..FF  
No  
Offset  
+ 0 (with X register)  
+ 1 (with Y register)  
Direct Indexed ld A,(X)  
Short  
Long  
Short  
Long  
Direct Indexed ld A,($10,X)  
Direct Indexed ld A,($1000,X)  
00..1FE  
+ 1  
+ 2  
+ 2  
+ 2  
0000..FFFF  
00..FF  
Indirect  
Indirect  
ld A,[$10]  
00..FF  
00..FF  
byte  
ld A,[$10.w]  
0000..FFFF  
word  
189/246  
Instruction set  
ST72344xx, ST72345xx  
Table 76. ST7 addressing mode overview (continued)  
Destination/  
Pointer  
addres Size (Hex.)  
Pointer  
Length  
(Bytes)  
Mode  
Syntax  
Source  
Short  
Long  
Indirect Indexed ld A,([$10],X)  
Indirect Indexed ld A,([$10.w],X)  
00..1FE  
00..FF  
00..FF  
byte  
+ 2  
+ 2  
+ 1  
+ 2  
+ 1  
+ 2  
+ 2  
+ 3  
0000..FFFF  
PC-128/PC+127(1)  
PC-128/PC+127(1)  
00..FF  
word  
Relative Direct  
Relative Indirect  
jrne loop  
jrne [$10]  
00..FF  
00..FF  
00..FF  
byte  
byte  
byte  
Bit  
Bit  
Bit  
Bit  
Direct  
bset $10,#7  
bset [$10],#7  
Indirect  
00..FF  
Direct Relative btjt $10,#7,skip  
Indirect Relative btjt [$10],#7,skip  
00..FF  
00..FF  
1. At the time the instruction is executed, the Program Counter (PC) points to the instruction following JRxx.  
12.1.1  
Inherent  
All Inherent instructions consist of a single byte. The opcode fully specifies all the required  
information for the CPU to process the operation.  
Table 77. Inherent instructions  
Inherent instruction  
Function  
NOP  
No operation  
S/W Interrupt  
TRAP  
WFI  
Wait for interrupt (low-power mode)  
Halt oscillator (lowest power mode)  
Subroutine return  
HALT  
RET  
IRET  
SIM  
Interrupt subroutine return  
Set interrupt mask  
Reset interrupt mask  
Set carry flag  
RIM  
SCF  
RCF  
Reset carry flag  
RSP  
Reset stack pointer  
Load  
LD  
CLR  
Clear  
PUSH/POP  
INC/DEC  
TNZ  
Push/Pop to/from the stack  
Increment/Decrement  
Test negative or zero  
1 or 2 complement  
Byte Multiplication  
CPL, NEG  
MUL  
190/246  
ST72344xx, ST72345xx  
Table 77. Inherent instructions (continued)  
Instruction set  
Inherent instruction  
Function  
Shift and Rotate Operations  
Swap Nibbles  
SLL, SRL, SRA, RLC, RRC  
SWAP  
12.1.2  
Immediate  
Immediate instructions have 2 bytes, the first byte contains the opcode, the second byte  
contains the operand value.  
Table 78. Immediate instructions  
Immediate instruction  
Function  
LD  
Load  
CP  
Compare  
BCP  
Bit Compare  
Logical Operations  
Arithmetic Operations  
AND, OR, XOR  
ADC, ADD, SUB, SBC  
12.1.3  
Direct  
In Direct instructions, the operands are referenced by their memory address.  
The direct addressing mode consists of two submodes:  
Direct (Short)  
The address is a byte, thus requires only 1 byte after the opcode, but only allows 00 - FF  
addressing space.  
Direct (Long)  
The address is a word, thus allowing 64 Kbyte addressing space, but requires 2 bytes after  
the opcode.  
12.1.4  
Indexed (No Offset, Short, Long)  
In this mode, the operand is referenced by its memory address, which is defined by the  
unsigned addition of an index register (X or Y) with an offset.  
The indirect addressing mode consists of three submodes:  
191/246  
Instruction set  
ST72344xx, ST72345xx  
Indexed (No offset)  
There is no offset (no extra byte after the opcode), and allows 00 - FF addressing space.  
Indexed (Short)  
The offset is a byte, thus requires only 1 byte after the opcode and allows 00 - 1FE  
addressing space.  
Indexed (Long)  
The offset is a word, thus allowing 64 Kbyte addressing space and requires 2 bytes  
after the opcode.  
12.1.5  
Indirect (Short, Long)  
The required data byte to do the operation is found by its memory address, located in  
memory (pointer).  
The pointer address follows the opcode. The indirect addressing mode consists of two  
submodes:  
Indirect (Short)  
The pointer address is a byte, the pointer size is a byte, thus allowing 00 - FF addressing  
space, and requires 1 byte after the opcode.  
Indirect (Long)  
The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing  
space, and requires 1 byte after the opcode.  
12.1.6  
Indirect Indexed (Short, Long)  
This is a combination of indirect and short indexed addressing modes. The operand is  
referenced by its memory address, which is defined by the unsigned addition of an index  
register value (X or Y) with a pointer value located in memory. The pointer address follows  
the opcode.  
The indirect indexed addressing mode consists of two submodes:  
Indirect Indexed (Short)  
The pointer address is a byte, the pointer size is a byte, thus allowing 00 - 1FE addressing  
space, and requires 1 byte after the opcode.  
Indirect Indexed (Long)  
The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing  
space, and requires 1 byte after the opcode.  
192/246  
ST72344xx, ST72345xx  
Instruction set  
Table 79. Instructions supporting direct, indexed, indirect and indirect indexed  
addressing modes  
Long and short instructions  
Function  
LD  
CP  
Load  
Compare  
AND, OR, XOR  
ADC, ADD, SUB, SBC  
BCP  
Logical Operations  
Arithmetic Addition/subtraction operations  
Bit Compare  
Table 80. Short instructions  
Short instructions only  
Function  
CLR  
Clear  
INC, DEC  
Increment/Decrement  
Test Negative or Zero  
1 or 2 Complement  
Bit Operations  
TNZ  
CPL, NEG  
BSET, BRES  
BTJT, BTJF  
SLL, SRL, SRA, RLC, RRC  
SWAP  
Bit Test and Jump Operations  
Shift and Rotate Operations  
Swap Nibbles  
CALL, JP  
Call or Jump subroutine  
12.1.7  
Relative Mode (direct, indirect)  
This addressing mode is used to modify the PC register value by adding an 8-bit signed  
offset to it.  
Table 81. Relative direct/indirect instructions  
Available relative direct/indirect instructions  
Function  
JRxx  
Conditional Jump  
Call Relative  
CALLR  
The relative addressing mode consists of two submodes:  
Relative (Direct)  
The offset follows the opcode.  
Relative (Indirect)  
The offset is defined in memory, of which the address follows the opcode.  
193/246  
Instruction set  
ST72344xx, ST72345xx  
12.2  
Instruction groups  
The ST7 family devices use an instruction set consisting of 63 instructions. The instructions  
may be subdivided into 13 main groups as illustrated in the following table:  
Table 82. Main instruction groups  
Load and Transfer  
LD  
CLR  
Stack operation  
PUSH POP  
RSP  
Increment/Decrement  
Compare and Tests  
Logical operations  
INC  
CP  
DEC  
TNZ  
OR  
BCP  
XOR  
AND  
CPL NEG  
Bit Operation  
BSET BRES  
BTJT BTJF  
Conditional Bit Test and Branch  
Arithmetic operations  
Shift and Rotates  
ADC  
SLL  
ADD  
SRL  
JRT  
SUB  
SRA  
JRF  
SBC MUL  
RLC RRC SWAP SLA  
Unconditional Jump or Call  
Conditional Branch  
Interruption management  
JRA  
JRxx  
JP  
CALL CALLR NOP RET  
TRAP WFI  
HALT IRET  
SCF RCF  
Condition Code Flag modification SIM  
RIM  
Using a prebyte  
The instructions are described with 1 to 4 bytes.  
In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three  
different prebyte opcodes are defined. These prebytes modify the meaning of the instruction  
they precede.  
The whole instruction becomes:  
PC-2  
PC-1  
PC  
End of previous instruction  
Prebyte  
Opcode  
PC+1  
Additional word (0 to 2) according to the number of bytes required to  
compute the effective address  
These prebytes enable instruction in Y as well as indirect addressing modes to be  
implemented. They precede the opcode of the instruction in X or the instruction using direct  
addressing mode. The prebytes are:  
PDY 90  
Replace an X based instruction using immediate, direct, indexed, or inherent  
addressing mode by a Y one.  
PIX 92  
Replace an instruction using direct, direct bit or direct relative addressing mode  
to an instruction using the corresponding indirect addressing mode.  
It also changes an instruction using X indexed addressing mode to an  
instruction using indirect X indexed addressing mode.  
PIY 91  
Replace an instruction using X indirect indexed addressing mode by a Y one.  
194/246  
ST72344xx, ST72345xx  
Instruction set  
12.2.1  
Illegal opcode reset  
In order to provide enhanced robustness to the device against unexpected behavior, a  
system of illegal opcode detection is implemented. If a code to be executed does not  
correspond to any opcode or prebyte value, a reset is generated. This, combined with the  
Watchdog, allows the detection and recovery from an unexpected fault or interference.  
Note:  
A valid prebyte associated with a valid opcode forming an unauthorized combination does  
not generate a reset.  
Table 83. Illegal opcode detection  
Mnemo  
Description  
Function/Example  
Dst  
Src  
H
I
N
Z
C
ADC  
ADD  
AND  
Add with Carry  
Addition  
A = A + M + C  
A = A + M  
A
A
A
M
H
H
N
N
N
Z
Z
Z
C
C
M
M
Logical And  
A = A . M  
Bit compare A,  
Memory  
BCP  
tst (A . M)  
A
M
N
Z
BRES Bit Reset  
bres Byte, #3  
bset Byte, #3  
M
M
M
M
BSET  
BTJF  
BTJT  
CALL  
Bit Set  
Jump if bit is false (0) btjf Byte, #3, Jmp1  
Jump if bit is true (1) btjt Byte, #3, Jmp1  
Call subroutine  
C
C
Call subroutine  
relative  
CALLR  
CLR  
CP  
Clear  
reg, M  
reg  
0
N
N
N
1
Z
Z
Z
Arithmetic Compare  
One Complement  
Decrement  
tst(Reg - M)  
A = FFH-A  
dec Y  
M
C
1
CPL  
DEC  
HALT  
reg, M  
reg, M  
Halt  
0
I
Interrupt routine  
return  
IRET  
Pop CC, A, X, PC  
H
N
N
Z
Z
C
INC  
JP  
Increment  
inc X  
reg, M  
Absolute Jump  
Jump relative always  
Jump relative  
Never jump  
jp [TBL.w]  
JRA  
JRT  
JRF  
jrf *  
Jump if ext. interrupt  
= 1  
JRIH  
JRIL  
Jump if ext. interrupt  
= 0  
JRH  
Jump if H = 1  
Jump if H = 0  
H = 1 ?  
H = 0 ?  
JRNH  
195/246  
Instruction set  
ST72344xx, ST72345xx  
Table 83. Illegal opcode detection (continued)  
Mnemo Description Function/Example  
JRM Jump if I = 1 I = 1 ?  
JRNM Jump if I = 0 I = 0 ?  
Jump if N = 1 (minus) N = 1 ?  
Jump if N = 0 (plus) N = 0 ?  
Dst  
Src  
H
I
N
Z
C
JRMI  
JRPL  
JREQ  
Jump if Z = 1 (equal) Z = 1 ?  
Jump if Z = 0 (not  
Z = 0 ?  
JRNE  
equal)  
JRC  
Jump if C = 1  
Jump if C = 0  
C = 1 ?  
JRNC  
C = 0 ?  
JRULT Jump if C = 1  
Unsigned <  
Jmp if unsigned >=  
Unsigned >  
Unsigned <=  
dst <= src  
JRUGE Jump if C = 0  
JRUGT Jump if (C + Z = 0)  
JRULE Jump if (C + Z = 1)  
LD  
Load  
reg, M M, reg  
A, X, Y X, Y, A  
reg, M  
N
N
N
N
Z
Z
Z
Z
MUL  
NEG  
NOP  
OR  
Multiply  
X,A = X * A  
neg $10  
0
0
Negate (2's compl)  
No Operation  
OR operation  
Pop from the Stack  
C
A = A + M  
pop reg  
A
M
M
M
POP  
reg  
CC  
pop CC  
H
I
C
0
reg,  
CC  
PUSH Push onto the Stack push Y  
M
RCF  
RET  
RIM  
RLC  
RRC  
RSP  
SBC  
SCF  
SIM  
Reset carry flag  
Subroutine Return  
Enable Interrupts  
Rotate left true C  
Rotate right true C  
Reset Stack Pointer  
Subtract with Carry  
Set carry flag  
C = 0  
I = 0  
0
C <= Dst <= C  
C => Dst => C  
S = Max allowed  
A = A - M - C  
C = 1  
reg, M  
reg, M  
N
N
Z
Z
C
C
A
M
N
Z
C
1
Disable Interrupts  
Shift left Arithmetic  
Shift left Logic  
I = 1  
1
SLA  
SLL  
C <= Dst <= 0  
C <= Dst <= 0  
0 => Dst => C  
reg, M  
reg, M  
reg, M  
reg, M  
N
N
0
Z
Z
Z
Z
C
C
C
C
SRL  
SRA  
Shift right Logic  
Shift right Arithmetic Dst7 => Dst => C  
N
196/246  
ST72344xx, ST72345xx  
Table 83. Illegal opcode detection (continued)  
Instruction set  
Mnemo  
Description  
Subtraction  
Function/Example  
A = A - M  
Dst  
Src  
H
I
N
Z
C
SUB  
A
M
N
N
N
Z
Z
Z
C
SWAP SWAP nibbles  
Dst[7..4] <=> Dst[3..0]  
tnz lbl1  
reg, M  
TNZ  
Test for Neg & Zero  
TRAP  
WFI  
S/W trap  
S/W interrupt  
1
0
Wait for Interrupt  
Exclusive OR  
XOR  
A = A XOR M  
A
M
N
Z
197/246  
Electrical characteristics  
ST72344xx, ST72345xx  
13  
Electrical characteristics  
13.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
13.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T =25°C and T =T max (given by the  
A
A
A
selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3Σ).  
13.1.2  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 5 V (for the  
A
DD  
4.5 V V 5.5 V voltage range) and V = 3.3 V (for the 3 V V 3.6 V voltage range).  
DD  
DD  
DD  
They are given only as design guidelines and are not tested.  
13.1.3  
13.1.4  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 85.  
Figure 85. Pin loading conditions  
ST7 PIN  
C
L
198/246  
ST72344xx, ST72345xx  
Electrical characteristics  
13.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 86.  
Figure 86. Pin input voltage  
ST7 PIN  
V
IN  
13.2  
Absolute maximum ratings  
Stresses above those listed as “absolute maximum ratings” may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Table 84. Voltage characteristics  
Symbol  
DD - VSS Supply voltage  
Ratings  
Maximum value  
Unit  
V
7.0  
VIN  
Input voltage on any pin (1)&(2)  
VSS-0.3 to VDD+0.3  
V
|VDDx- VDD  
|
Variations between different power pins  
0.3  
0.3  
|VSSx - VSS  
| Variations between all the different ground pins  
see Section 13.8.3: Absolute  
maximum ratings (electrical  
sensitivity) on page 213  
Electrostatic discharge voltage (human body  
model)  
VESD(HBM)  
1. Directly connecting the RESET and I/O pins to VDD or VSS could damage the device if an unintentional  
internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a  
corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up  
or pull-down resistor (typical: 4.7 kΩ for RESET, 10 kΩ for I/Os). Unused I/O pins must be tied in the same  
way to VDD or VSS according to their reset configuration.  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain  
pads, there is no positive injection current, and the corresponding VIN maximum must always be respected  
199/246  
Electrical characteristics  
ST72344xx, ST72345xx  
Maximum value Unit  
Table 85. Current characteristics  
Symbol  
Ratings  
IVDD  
IVSS  
Total current into VDD power lines (source) (1)  
Total current out of VSS ground lines (sink) (1)  
Output current sunk by any standard I/O and control pin  
Output current sunk by any high sink I/O pin  
Output current source by any I/Os and control pin  
Injected current on ISPSEL pin  
75  
150  
20  
IIO  
40  
- 25  
5
5
5
mA  
Injected current on RESET pin  
(2)(3)  
IINJ(PIN)  
Injected current on OSC1 and OSC2 pins  
Injected current on PB0 pin (4)  
+5  
Injected current on any other pin (5)  
5
(2)  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins) (5)  
20  
1. All power (VDD) and ground (VSS) lines must always be connected to the external supply.  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain  
pads, there is no positive injection current, and the corresponding VIN maximum must always be respected  
3. Negative injection disturbs the analog performance of the device. In particular, it induces leakage currents  
throughout the device including the analog inputs. To avoid undesirable effects on the analog functions,  
care must be taken:  
- Analog input pins must have a negative injection less than 0.8 mA (assuming that the impedance of the  
analog voltage is lower than the specified limits)  
- Pure digital pins must have a negative injection less than 1.6 mA. In addition, it is recommended to inject  
the current as far as possible from the analog input pins.  
4. No negative current injection allowed on PB0 pin.  
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on  
characterisation with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.  
Table 86. thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
–65 to +150  
°C  
Maximum junction temperature (see Table 118 on page 230)  
200/246  
ST72344xx, ST72345xx  
Electrical characteristics  
13.3  
Operating conditions  
(1)  
Table 87. General operating conditions  
Symbol  
Parameter  
Conditions  
CPU = 8 MHz. max.  
Min  
Max  
Unit  
f
3.3  
2.7  
5.5  
5.5  
VDD  
Supply voltage  
V
fCPU = 4 MHz. max.  
3.3 V VDD5.5 V  
2.7 V VDD < 3.3 V  
Up to 16  
Up to 8  
fOSC  
External clock frequency  
MHz  
1. TA = -40 to +85 °C unless otherwise specified.  
Note:  
When the power supply is between 2.7 and 2.95 V (V  
max), the device is either in the  
IT+(LVD)  
guaranteed functional area or in reset state, thus allowing deterministic application behavior.  
However the LVD may generate a reset below 2.95 V and the user should therefore not use  
the device below this level when the LVD is enabled.  
Figure 87. f  
maximum operating frequency versus V supply voltage  
DD  
CPU  
fCPU [MHz]  
8
FUNCTIONALITY  
NOT GUARANTEED  
IN THIS AREA  
4
2
0
FUNCTIONALITY  
GUARANTEED  
IN THIS AREA  
CAUTION: RESET MAY  
BE ACTIVATED BY LVD  
IN THIS AREA  
SUPPLY VOLTAGE [V]  
5.5  
4.0  
4.5  
5.0  
2.7 3.3  
3.6  
Table 88. LVD thresholds  
Symbol  
Parameter  
Conditions(1)  
Min  
Typ  
Max  
Unit  
High threshold  
Med. threshold  
Low threshold  
3.85  
3.24  
2.60  
4.20  
3.56  
2.88  
4.61  
3.90  
3.14  
Reset release threshold  
(VDD rise)  
VIT+(LVD)  
V
High threshold  
Med. threshold  
Low threshold  
3.66  
3.04  
2.45  
3.98  
3.36  
2.71  
4.36  
3.66  
2.95  
Reset generation threshold  
(VDD fall)  
VIT-(LVD)  
LVD voltage threshold  
hysteresis  
Vhys(LVD)  
VIT+(LVD)-VIT-(LVD)  
200  
mV  
VtPOR  
VDD rise time rate  
20 (2)  
100 (2)  
ms/V  
ns  
tg(VDD)  
VDD glitches filtered by LVD  
150  
1. TA = -40 to +85 °C unless otherwise specified.  
2. Not tested in production, guaranteed by design  
201/246  
Electrical characteristics  
ST72344xx, ST72345xx  
Table 89. AVD thresholds  
Symbol  
Parameter  
Conditions(1)  
Min (2) Typ Max (2) Unit  
High threshold  
Med. threshold  
Low threshold  
4.15  
3.64  
3.00  
4.50  
3.96  
3.28  
4.91  
4.30  
3.54  
1=>0 AVDF flag toggle threshold  
(VDD rise)  
VIT+(AVD)  
V
High threshold  
Med. threshold  
Low threshold  
3.96  
3.44  
2.85  
4.28  
3.76  
3.11  
4.66  
4.06  
3.35  
0=>1 AVDF flag toggle threshold  
(VDD fall)  
VIT-(AVD)  
Vhys(AVD) AVD voltage threshold hysteresis VIT+(AVD)-VIT-(AVD)  
Voltage drop between ADV flag  
200  
mV  
mV  
ΔVIT-  
V
IT-(AVD)-VIT-(LVD)  
450  
set and LVD reset activated  
1. TA = -40 to +85°C unless otherwise specified.  
2. Not tested in production, guaranteed by characterization.  
Table 90. PLL characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDD = 2.7 to 3.65 V  
PLL option x4 selected  
0.95  
1
1.05  
fPLLIN  
PLL Input frequency (1)  
MHz  
VDD = 3.3 to 5.5 V  
PLL option x8 selected  
0.90  
1
1.10  
PLL option x4 selected (2)  
PLL option x8 selected  
fRC = 1 MHz  
2.7  
3.3  
3.65  
5.5  
VDD(PLL)  
tw(JIT)  
PLL operating range  
PLL jitter period  
V
kHz  
%
8
VDD = 3.0 V  
3.0  
1.6  
JITPLL  
PLL jitter (ΔfCPU/fCPU)  
VDD = 5.0 V  
PLL current  
consumption  
IDD(PLL)  
TA=25 °C  
600  
µA  
1. Guaranteed by design.  
2. To obtain a x4 multiplication ratio in the range 3.3 to 5.5V, the DIV2EN option bit must enabled.  
The ST7 internal clock can be supplied by an internal RC oscillator and PLL (selectable by  
option byte).  
Table 91. Internal RC oscillator and PLL  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
Internal RC oscillator  
operating voltage  
Refer to operating range  
of VDD with TA,  
VDD(RC)  
2.7  
5.5  
Section Table 87. on  
page 201  
V
VDD(x4PLL) x4 PLL operating voltage  
VDD(x8PLL) x8 PLL operating voltage  
2.7  
3.3  
5.5  
5.5  
PLL input  
tSTARTUP  
PLL Startup time  
60  
clock(fPLL  
)
cycles  
202/246  
ST72344xx, ST72345xx  
Electrical characteristics  
13.4  
Internal RC oscillator characteristics  
Table 92. Internal RC oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RCCR = FF (reset value), TA = 25 °C,  
VDD = 5 V  
625  
1000  
612  
RCCR = RCCR0(2), TA = 25 °C, VDD = 5 V  
Internal RC oscillator  
frequency (1)  
fRC  
kHz  
RCCR = FF (reset value), TA = 25 °C,  
VDD = 3 V  
RCCR = RCCR1(2), TA = 25 °C, VDD = 3 V  
1000  
TA = 25 °C, VDD = 5 V  
-1  
-1  
+1  
+1  
%
%
%
%
%
TA = 25 °C, VDD = 4.5 to 5.5 V(3)  
TA = 25 to +85 °C, VDD = 5 V(3)  
Accuracy of Internal RC  
ACCRC oscillator with  
-3  
+3  
RCCR=RCCR0(2)  
TA = 25 to +85 °C, VDD = 4.5 to 5.5 V(3)  
TA = -40 to +25 °C, VDD = 4.5 to 5.5 V(3)  
-3.5  
-3  
+3.5  
+7  
RC oscillator current  
IDD(RC)  
TA = 25 °C, VDD = 5 V  
600(3)  
μA  
μs  
consumption  
tsu(RC)  
RC oscillator setup time TA = 25 °C, VDD = 5 V  
10(2)  
1. If the RC oscillator clock is selected, to improve clock stability and frequency accuracy, it is recommended to place a  
decoupling capacitor, typically 100 nF, between the VDD and VSS pins as close as possible to the ST7 device.  
It is also recommended to perform the calibration on board.  
2. See Internal RC oscillator on page 45  
3. Expected results. Data based on characterization, not tested in production  
Figure 88. Typical RC frequency vs. RCCR  
Typical Rc freq (MHz) = f(RCCR) @ 25°C  
1.7  
1.6  
Rc @ 5V  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
Rc @ 3V  
0
50  
100  
150  
200  
250  
RCCR (decimal)  
203/246  
Electrical characteristics  
ST72344xx, ST72345xx  
13.5  
Supply current characteristics  
The following current consumption specified for the ST7 functional operating modes over  
temperature range does not take into account the clock source current consumption. To get  
the total device consumption, the two current values must be added (except for Halt mode  
for which the clock is stopped).  
Table 93. Supply current  
Symbol  
Parameter  
Conditions(1)  
Typ Max Unit  
Supply current in Run mode  
Supply current in Wait mode  
Supply current in Slow mode  
fCPU = 8 MHz (2)  
fCPU = 8 MHz (3)  
fCPU = 250 kHz(4)  
8.5  
3.7  
4.1  
13  
6
mA  
µA  
7
Supply current in Slow-wait  
mode  
f
CPU = 250 kHz (5)  
2.2  
1
3.5  
10  
60  
IDD  
Supply current in Halt mode(6)  
-40°C TA +85 °C  
TA= +25 °C  
Supply current in AWUFH  
mode (7)(8)  
50  
Supply current in Active-halt  
mode 6)(7)  
TA= +25 °C  
500  
700  
1. TA = -40 to +85°C unless otherwise specified  
2. CPU running with memory access, all I/O pins in input mode with a static value at VDD or VSS (no load), all  
peripherals in reset state; clock input (OSC1) driven by external square wave, LVD disabled.  
3. All I/O pins in input mode with a static value at VDD or VSS (no load), all peripherals in reset state; clock  
input (OSC1) driven by external square wave, LVD disabled.  
4. Slow mode selected with fCPU based on fOSC divided by 32. All I/O pins in input mode with a static value at  
V
DD or VSS (no load), all peripherals in reset state; clock input (OSC1) driven by external square wave,  
LVD disabled.  
5. Slow-wait mode selected with fCPU based on fOSC divided by 32. All I/O pins in input mode with a static  
value at VDD or VSS (no load), all peripherals in reset state; clock input (OSC1) driven by external square  
wave, LVD disabled.  
6. All I/O pins in output mode with a static value at VSS (no load), LVD disabled. Data based on  
characterization results, tested in production at VDD max and fCPU max.  
7. All I/O pins in input mode with a static value at VDD or VSS (no load). Data tested in production at VDD max.  
and fCPU max.  
8. This consumption refers to the Halt period only and not the associated run period which is software  
dependent.  
Figure 89. Typical I in Run vs. f  
DD  
CPU  
9
.5  
8
1
2
7
4
6
5
4
3
2
1
0
6
8
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
Vdd (V)  
1. Graph displays data beyond the normal operating range of 3 V - 5.5 V.  
204/246  
ST72344xx, ST72345xx  
Electrical characteristics  
Figure 90. Typical I in Run at f  
= 8 MHz  
DD  
CPU  
9
8
7
6
5
4
3
2
1
140°C  
90°C  
25°C  
-5°C  
-45°C  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
Vdd (V)  
1. Graph displays data beyond the normal operating range of 3 V - 5.5 V.  
Figure 91. Typical I in Slow vs. f  
DD  
CPU  
0.90  
250KHz  
125KHz  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
62KHz  
2.7  
3.3  
4
5
6
VDD (V)  
1. Graph displays data beyond the normal operating range of 3 V - 5.5 V.  
Figure 92. Typical I in Wait vs. f  
DD  
CPU  
4
3.5  
3
0.5  
1
2
4
2.5  
2
6
8
1.5  
1
0.5  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
Vdd (V)  
1. Graph displays data beyond the normal operating range of 3 V - 5.5 V.  
205/246  
Electrical characteristics  
ST72344xx, ST72345xx  
Figure 93. Typical I in Wait at f  
= 8 MHz  
CPU  
DD  
4
3.5  
0.5  
1
2
4
6
8
3
2.5  
2
1.5  
1
0.5  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
Vdd (V)  
1. Graph displays data beyond the normal operating range of 3 V - 5.5 V.  
Figure 94. Typical I in Slow-wait vs. f  
DD  
CPU  
0.60  
250KHz  
0.50  
125KHz  
62KHz  
0.40  
0.30  
0.20  
0.10  
0.00  
2.7  
3.3  
4
5
6
VDD (V)  
1. Graph displays data beyond the normal operating range of 3 V - 5.5 V.  
Figure 95. Typical I vs. temp. at V = 5 V and f  
= 8 MHz  
DD  
DD  
CPU  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
RUN  
WAIT  
SLOW  
SLOW-WAIT  
-45  
25  
90  
110  
Temperature (°C)  
206/246  
ST72344xx, ST72345xx  
Electrical characteristics  
Table 94. On-chip peripherals  
Symbol Parameter  
Conditions  
Typ  
Unit  
fCPU = 4 MHz VDD = 3.0 V  
fCPU = 8 MHz VDD = 5.0 V  
fCPU = 4 MHz VDD = 3.0 V  
20  
100  
250  
800  
300  
1000  
100  
500  
250  
800  
IDD(16-bit timer) 16-bit Timer supply current (1)  
IDD(SPI)  
IDD(ADC)  
IDD(I2C)  
IDD(SCI)  
SPI supply current (2)  
f
CPU = 8 MHz VDD = 5.0 V  
fADC = 2 MHz VDD = 3.0 V  
fADC = 4 MHz VDD = 5.0 V  
fCPU = 4 MHz VDD = 3.0 V  
fCPU = 8 MHz VDD = 5.0 V  
fCPU = 4 MHz VDD = 3.0 V  
ADC supply current when  
converting (3)  
μA  
I2C supply current (4)  
SCI supply current (5)  
f
CPU = 8 MHz VDD = 5.0 V  
1. Data based on a differential IDD measurement between reset configuration (timer stopped) and a timer  
running in PWM mode at fcpu=8 MHz.  
2. Data based on a differential IDD measurement between reset configuration and a permanent SPI master  
communication (data sent equal to 55h).  
3. Data based on a differential IDD measurement between reset configuration and continuous A/D  
conversions.  
4. Data based on a differential IDD measurement between reset configuration (I2C disabled) and a  
permanent I2C master communication at 100 kHz (data sent equal to 55h). This measurement include the  
pad toggling consumption  
(4.7 kΩ external pull-up on clock and data lines).  
5. Data based on a differential IDD measurement between SCI low power state (SCID=1) and a permanent  
SCI data transmit sequence.  
207/246  
Electrical characteristics  
ST72344xx, ST72345xx  
13.6  
Clock and timing characteristics  
Subject to general operating conditions for V , f  
, and T .  
DD OSC  
A
Table 95. General timings  
Symbol  
Parameter (1)  
Conditions  
Min  
Typ (2)  
Max  
Unit  
2
3
12  
1500  
22  
tCPU  
ns  
tc(INST) Instruction cycle time  
fCPU=8 MHz  
250  
10  
375  
Interrupt reaction time (3)  
tv(IT)  
tCPU  
µs  
fCPU=8 MHz  
tv(IT) = Δtc(INST) + 10  
1.25  
2.75  
1. Guaranteed by Design. Not tested in production.  
2. Data based on typical application software.  
3. Time measured between interrupt event and interrupt vector fetch. Dtc(INST) is the number of tCPU cycles  
needed to finish the current instruction execution.  
Table 96. External clock source  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VOSC1H OSC1 input pin high level voltage  
0.7xVDD VDD  
V
VOSC1L  
OSC1 input pin low level voltage  
OSC1 high or low time (1)  
VSS  
15  
0.3xVDD  
tw(OSC1H)  
tw(OSC1L)  
see Figure 96  
ns  
tr(OSC1)  
tf(OSC1)  
OSC1 rise or fall time (1)  
15  
1
IL  
OSCx Input leakage current  
VSS VIN VDD  
µA  
1. Data based on design simulation and/or technology characteristics, not tested in production.  
Figure 96. Typical application with an external clock source  
90%  
V
OSC1H  
OSC1L  
10%  
V
t
t
w(OSC1H)  
t
t
w(OSC1L)  
f(OSC1)  
r(OSC1)  
OSC2  
Not connected internally  
f
OSC  
EXTERNAL  
CLOCK SOURCE  
I
L
OSC1  
ST72XXX  
208/246  
ST72344xx, ST72345xx  
Electrical characteristics  
Table 97. Auto-wakeup from Halt oscillator (AWU) characteristics  
Symbol  
fAWU  
tRCSRT  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
AWU oscillator frequency  
AWU oscillator startup time  
50  
125  
250  
50  
kHz  
µs  
13.6.1  
Crystal and ceramic resonator oscillators  
The ST7 internal clock can be supplied with four different Crystal/Ceramic resonator  
oscillators. All the information given in this paragraph is based on characterization results  
with specified typical external components. In the application, the resonator and the load  
capacitors have to be placed as close as possible to the oscillator pins in order to minimize  
output distortion and startup stabilization time. Refer to the crystal/ceramic resonator  
manufacturer for more details (frequency, package, accuracy, etc.).  
Table 98. Crystal/ceramic resonator oscillator characteristics  
Symbol  
Parameter  
Oscillator frequency (1)  
Conditions  
Min Max Unit  
fOSC  
RF  
1
16  
40  
MHz  
Feedback resistor(2)  
20  
kΩ  
Recommended load capacitance versus  
equivalent serial resistance of the  
crystal or ceramic resonator (RS)(3)  
CL1  
CL2  
See Table 99 below  
pF  
µA  
fOSC= 2 MHz, C0 = 6 pF,  
CL1 = CL2 = 68 pF  
426  
425  
456  
660  
fOSC= 4 MHz, C0 = 6 pF,  
CL1 = CL2 = 68 pF  
i2  
OSC2 driving current  
f
OSC= 8 MHz, C0 = 6 pF,  
CL1 = CL2 = 40 pF  
fOSC= 16 MHz, C0 = 7 pF,  
CL1 = CL2 = 20 pF  
1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with  
small RS value. Refer to crystal/ceramic resonator manufacturer for more details.  
2. Data based on characterisation results, not tested in production. The relatively low value of the RF  
resistor, offers a good protection against issues resulting from use in a humid environment, due to the  
induced leakage and the bias condition change. However, it is recommended to take this point into  
account if the µC is used in tough humidity conditions.  
3. For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5-pF to 25-pF range (typ.)  
designed for high-frequency applications and selected to match the requirements of the crystal or  
resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load  
capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be  
included when sizing CL1 and CL2 (10 pF can be used as a rough estimate of the combined pin and board  
capacitance).  
209/246  
Electrical characteristics  
ST72344xx, ST72345xx  
Table 99. Recommended load capacitance vs. equivalent serial resistance of ceramic  
resonator  
Typical ceramic resonators(1)  
Supply  
voltage  
range (V)  
CL1 (2) CL2 (2)  
RF  
[Ω]  
Rd  
[Ω]  
Temperature  
range (°C)  
fOSC  
Supplier  
[pF]  
[pF]  
Type(3)  
Reference  
[MHz]  
2
4
SMD CSTCC2M00G56Z-R0  
SMD CSTCR4M00G55Z-R0  
LEAD CSTLS4M00G56Z-B0  
SMD CSTCE8M00G52Z-R0  
LEAD CSTLS8M00G53Z-B0  
SMD CSTCE16M0V51Z-R0  
(47)  
(39)  
(47)  
(10)  
(15)  
(5)  
(47)  
(39)  
(47)  
(10)  
(15)  
(5)  
Open  
Open  
Open  
Open  
Open  
Open  
6.8 k  
0
0
0
0
0
0
2.7 to 5.5  
Murata  
–40 °C to 85 °C  
8
3.3 to 5.5  
3.4 to 5.5  
16  
LEAD CSTLS16M0X53Z-B0 (15)  
(15)  
0
1. Resonator characteristics given by the ceramic resonator manufacturer. For more information on these resonators, please  
consult Murata’s web site.  
2. () means load capacitor built in resonator.  
3. SMD = [-R0: Plastic tape package (Ø =180mm), -B0: Bulk]  
LEAD = [-B0: Bulk].  
Figure 97. Typical application with a crystal or ceramic resonator  
When resonator with  
f
integrated capacitors  
OSC  
POWER DOWN  
LOGIC  
C
L1  
OSC1  
LINEAR  
AMPLIFIER  
FEEDBACK  
LOOP  
i
V
/2  
2
DD  
Ref  
Resonator  
OSC2  
R
F
C
L2  
ST72XXX  
210/246  
ST72344xx, ST72345xx  
Electrical characteristics  
13.7  
Memory characteristics  
T = –40°C to 85°C, unless otherwise specified.  
A
Table 100. RAM and hardware registers  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VRM  
Data retention mode (1)  
Halt mode (or reset)  
1.6  
V
1. Minimum VDD supply voltage without losing data stored in RAM (in Halt mode or under reset) or in  
hardware registers (only in Halt mode). Guaranteed by construction, not tested in production.  
Table 101. Flash program memory  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Refer to operating range of  
VDD with TA, Table 87 on  
page 201  
Operating voltage for  
Flash write/erase  
VDD  
2.7  
5.5  
V
Programming time for  
1~32 bytes (1)  
tprog  
TA=40 to +85°C  
5
10  
ms  
tRET  
NRW  
Data retention (2)  
TA=+55°C(3)  
TA=+25°C  
20  
years  
Write erase cycles  
10K (4)  
cycles  
Read / Write / Erase modes  
fCPU = 8 MHz, VDD = 5.5V  
2.6  
mA  
IDD  
Supply current (5)  
No Read/No Write Mode  
Power down mode / Halt  
100  
0.1  
µA  
µA  
0
1. Up to 32 bytes can be programmed at a time.  
2. Data based on reliability test results and monitored in production.  
3. The data retention time increases when the TA decreases.  
4. Design target value pending full product characterization.  
5. Guaranteed by Design. Not tested in production.  
Table 102. EEPROM data memory  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Refer to operating range of  
VDD with TA, Table 87:  
General operating conditions  
on page 201  
Operating voltage for  
EEPROM write/erase  
VDD  
2.7  
5.5  
V
Programming time for  
1~32 bytes  
tprog  
tret  
TA=40 to +85°C  
TA=+55°C (2)  
TA=+25°C  
5
10  
ms  
Data retention(1)  
20  
years  
cycles  
300K  
NRW  
Write erase cycles  
(3)  
1. Data based on reliability test results and monitored in production.  
2. The data retention time increases when the TA decreases.  
3. Design target value pending full product characterization.  
211/246  
Electrical characteristics  
ST72344xx, ST72345xx  
13.8  
EMC characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
13.8.1  
Functional EMS (electromagnetic susceptibility)  
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),  
the product is stressed by two electro magnetic events until a failure occurs (indicated by the  
LEDs).  
ESD: Electro-Static Discharge (positive and negative) is applied on all pins of the  
device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2  
standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test  
SS  
conforms with the IEC 1000-4-4 standard.  
A device reset allows normal operations to be resumed. The test results are given in the  
table below based on the EMS levels and classes defined in application note AN1709.  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations:  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials:  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Table 103. EMS test results  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 5 V, TA = +25 °C,  
fOSC = 8 MHz  
conforms to IEC 1000-4-2  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
TBD  
Fast transient voltage burst limits to be  
VDD = 5 V, TA = +25 °C,  
VFFTB applied through 100 pF on VDD and VDD pins fOSC = 8 MHz  
to induce a functional disturbance  
TBD  
conforms to IEC 1000-4-4  
212/246  
ST72344xx, ST72345xx  
Electrical characteristics  
13.8.2  
EMI (electromagnetic interference)  
Based on a simple application running on the product (toggling 2 LEDs through the I/O  
ports), the product is monitored in terms of emission. This emission test is in line with the  
norm SAE J 1752/3 which specifies the board and the loading of each pin.  
(1)  
Table 104. EMI emissions  
Max vs. [fOSC/fCPU  
]
Monitored  
frequency band  
Symbol Parameter  
Conditions  
Unit  
8/4 MHz 16/8 MHz  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
SAE EMI Level  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
VDD=5V, TA=+25°C,  
SO20 package,  
conforming to  
dBµV  
-
SEMI  
Peak level  
SAE J 1752/3  
1. Data based on characterization results, not tested in production.  
13.8.3  
Absolute maximum ratings (electrical sensitivity)  
Based on two different tests (ESD and LU) using specific measurement methods, the  
product is stressed in order to determine its performance in terms of electrical sensitivity.  
For more details, refer to the application note AN1181.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Human body  
model can be simulated. This test conforms to the JESD22-A114A/A115A standard.  
Table 105. ESD absolute maximum ratings  
Symbol  
Ratings  
Conditions  
Maximum value(1) Unit  
>2000  
Electrostatic discharge voltage  
(human body model)  
VESD(HBM)  
TA = +25 °C  
V
1. Data based on characterization results, not tested in production.  
Static latch-up (LU)  
Two complementary static tests are required on 6 parts to assess the latch-up performance.  
A supply overvoltage (applied to each power supply pin)  
a current injection (applied to each input, output and configurable I/O pin) performed on  
each sample.  
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the  
application note AN1181.  
Table 106. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
TA=+25°C  
Class  
A
A
LU  
Static latch-up class  
TA=+85°C  
213/246  
Electrical characteristics  
ST72344xx, ST72345xx  
13.9  
I/O port pin characteristics  
(1)  
Table 107. General characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
VIH  
Input low level voltage (4)  
Input high level voltage (4)  
VSS - 0.3  
0.7xVDD  
0.3xVDD  
VDD + 0.3  
V
Schmitt trigger voltage  
hysteresis (4)  
Vhys  
IL  
400  
400  
mV  
µA  
Input leakage current  
VSS VIN VDD  
1
Static current consumption  
induced by each floating  
input pin(2)  
IS  
Floating input mode  
VDD=5V  
VIN=VSS  
50  
120  
160  
5
250  
Weak pull-up equivalent  
resistor(3)  
RPU  
kΩ  
VDD=3V  
CIO  
I/O pin capacitance  
pF  
Output high to low level fall  
time (4)  
tf(IO)out  
25  
25  
CL=50 pF  
Between 10% and  
90%  
ns  
Output low to high level rise  
time (4)  
tr(IO)out  
tw(IT)in  
External interrupt pulse  
time (5)  
1
tCPU  
1. Subject to general operating conditions for VDD, fOSC, and TA unless otherwise specified.  
2. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of  
the I/O for example or an external pull-up or pull-down resistor (see Figure 98). Static peak current value  
taken at a fixed VIN value, based on design simulation and technology characteristics, not tested in  
production. This value depends on VDD and temperature values.  
3. The RPU pull-up equivalent resistor is based on a resistive transistor.  
4. Data based on validation/design results.  
5. To generate an external interrupt, a minimum pulse width has to be applied on an I/O port pin configured  
as an external interrupt source.  
214/246  
ST72344xx, ST72345xx  
Figure 98. Two typical applications with unused I/O pin  
Electrical characteristics  
V
ST7XXX  
DD  
UNUSED I/O PORT  
10kΩ  
10kΩ  
UNUSED I/O PORT  
ST7XXX  
1. I/O can be left unconnected if it is configured as output (0 or 1) by the software. This has the advantage of  
greater EMC robustness and lower cost.  
Caution:  
During normal operation the ICCCLK pin must be pulled-up, internally or externally (external  
pull-up of 10k mandatory in noisy environment). This is to avoid entering ICC mode  
unexpectedly during a reset.  
(1)  
Table 108. Output driving current  
Symbol  
Parameter  
Conditions  
IIO = +5 mA  
IIO = +2 mA  
IIO = +20 mA  
Min  
Max  
1.0  
Unit  
Output low level voltage for a standard I/O  
pin when 8 pins are sunk at same time  
(see Figure 101)  
0.4  
(2)  
VOL  
Output low level voltage for a high sink I/O  
pin when 4 pins are sunk at same time  
(see Figure 104)  
1.3  
I
IO = +8 mA  
0.75  
Output high level voltage for an I/O pin  
when 4 pins are sourced at same time  
(see Figure 113)  
IIO = -5 mA  
IIO = -2 mA  
VDD-1.5  
VDD-0.8  
(3)  
VOH  
Output low level voltage for a standard I/O  
pin when 8 pins are sunk at same time  
(see Figure 100)  
IIO = +2 mA  
IIO = +8 mA  
IIO = -2 mA  
0.7  
0.5  
VOL  
(2)(4)  
Output low level voltage for a high sink I/O  
pin when 4 pins are sunk at same time  
V
Output high level voltage for an I/O pin  
when 4 pins are sourced at same time  
(Figure 111)  
VOH  
VDD-0.8  
(3)(4)  
Output low level voltage for a standard I/O  
pin when 8 pins are sunk at same time  
(see Figure 102)  
IIO = +2 mA  
IIO = +8 mA  
IIO = -2 mA  
0.9  
0.6  
VOL  
(2)(4)  
Output low level voltage for a high sink I/O  
pin when 4 pins are sunk at same time  
Output high level voltage for an I/O pin  
when 4 pins are sourced at same time  
(see Figure 110)  
VOH  
VDD-0.9  
(3)(4)  
1. Subject to general operating conditions for VDD, fCPU, and TA unless otherwise specified.  
2. The IIO current sunk must always respect the absolute maximum rating specified in Table 85: Current  
characteristics and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
3. The IIO current sourced must always respect the absolute maximum rating specified in Table 85: Current  
characteristics and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
4. Not tested in production, based on characterization results.  
215/246  
Electrical characteristics  
Figure 99. Typical V at V = 2.4 V (std I/Os)  
ST72344xx, ST72345xx  
OL  
DD  
1000  
800  
600  
400  
200  
0
-45°C  
25°C  
90°C  
130°C  
0
2
4
6
ILOAD (mA)  
Figure 100. Typical V at V = 3 V (std I/Os)  
OL  
DD  
1000  
800  
600  
400  
200  
0
-45°C  
25°C  
90°C  
130°C  
0
2
4
6
ILOAD (mA)  
Figure 101. Typical V at V = 5 V (std I/Os)  
OL  
DD  
1000  
-45°C  
25°C  
800  
600  
400  
200  
0
90°C  
130°C  
0
2
4
6
ILOAD (mA)  
216/246  
ST72344xx, ST72345xx  
Electrical characteristics  
Figure 102. Typical V at V = 2.4 V (high-sink I/Os)  
OL  
DD  
1000  
800  
600  
400  
200  
0
-45°C  
25°C  
90°C  
130°C  
0
2
4
6
8
10 12 14 16 18 20  
ILOAD (mA)  
Figure 103. Typical V at V = 3 V (high-sink I/Os)  
OL  
DD  
1200  
-45°C  
25°C  
1000  
800  
600  
400  
200  
0
90°C  
130°C  
0
2
4
6
8
10 12 14 16 18 20  
ILOAD (mA)  
Figure 104. Typical V at V = 5 V (high-sink I/Os)  
OL  
DD  
700  
600  
500  
400  
300  
200  
100  
0
-45°C  
25°C  
90°C  
130°C  
0
2
4
6
8
10 12 14 16 18 20  
ILOAD (mA)  
217/246  
Electrical characteristics  
Figure 105. Typical V vs. V (std I/Os, 2 mA)  
ST72344xx, ST72345xx  
OL  
DD  
1000  
-45°C  
25°C  
800  
600  
400  
200  
0
90°C  
130°C  
2.4  
2.6  
2.8  
3
5
Ilo (mA)  
Figure 106. Typical V vs. V (std I/Os, 6 mA)  
OL  
DD  
500  
400  
300  
200  
100  
0
-45°C  
25°C  
90°C  
130°C  
2.5  
3
3.5  
Ilo (mA)  
4
5
Figure 107. Typical V vs. V (HS I/Os, I = 8 mA)  
OL  
DD  
IO  
1000  
-45°C  
25°C  
800  
600  
400  
200  
0
90°C  
130°C  
2.4  
2.6  
2.8  
Ilo (mA)  
3
5
218/246  
ST72344xx, ST72345xx  
Figure 108. Typical V vs. V (HS I/Os, I = 2 mA)  
Electrical characteristics  
OL  
DD  
IO  
200  
160  
120  
80  
-45°C  
25°C  
90°C  
130°C  
40  
0
2.5  
3
3.5  
Ilo (mA)  
4
5
Figure 109. Typical V vs. V (HS I/Os, I = 12 mA)  
OL  
DD  
IO  
1000  
-45°C  
25°C  
800  
600  
400  
200  
0
90°C  
130°C  
2.4  
2.6  
2.8  
Ilo (mA)  
3
5
Figure 110. Typical V – v at V = 2.4 V (std I/Os)  
DD  
OH  
DD  
1400  
1200  
1000  
800  
600  
400  
200  
0
-45°C  
25°C  
90°C  
130°C  
0
-2 -4 -6 -8 -10 -12 -14 -16 -18 -20  
ILOAD (mA)  
219/246  
Electrical characteristics  
Figure 111. Typical V – V at V = 3 V (std I/Os)  
ST72344xx, ST72345xx  
DD  
OH  
DD  
1800  
-45°C  
25°C  
1500  
1200  
900  
600  
300  
0
90°C  
130°C  
0
-2 -4 -6 -8 -10 -12 -14 -16 -18 -20  
ILOAD (mA)  
Figure 112. Typical V – V at V = 4 V (std)  
DD  
OH  
DD  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
-45°C  
25°C  
90°C  
130°C  
0
-2 -4 -6 -8 -10 -12 -14 -16 -18 -20  
ILOAD (mA)  
Figure 113. Typical V – V at V = 5 V (std)  
DD  
OH  
DD  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
-45°C  
25°C  
90°C  
130°C  
0
-2 -4 -6 -8 -10 -12 -14 -16 -18 -20  
ILOAD (mA)  
220/246  
ST72344xx, ST72345xx  
Electrical characteristics  
Figure 114. Typical V – V vs. V (high sink)  
DD  
OH  
DD  
200  
160  
120  
80  
500  
400  
300  
200  
100  
0
-45°C  
25°C  
90°C  
130°C  
-45°C  
25°C  
90°C  
40  
130°C  
0
2.5  
3
3.5  
Ilo (mA)  
4
5
2.5  
3
3.5  
Ilo (mA)  
4
5
13.10  
Control pin characteristics  
13.10.1 Asynchronous RESET pin  
T = -40 °C to 85 °C, unless otherwise specified.  
A
Table 109. Asynchronous RESET pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
0.3VDD  
Unit  
VIL  
VIH  
Input low level voltage  
Input high level voltage  
Vss - 0.3  
0.7VDD  
V
VDD + 0.3  
Schmitt trigger voltage  
hysteresis (1)  
Vhys  
2
V
V
I
IO = +5 mA  
0.5  
0.2  
40  
1.0  
0.4  
80  
VOL  
Output low level voltage (2) VDD = 5 V  
IIO = +2 mA  
VDD = 5 V  
VDD = 3 V  
20  
40  
Pull-up equivalent resistor  
RON  
kΩ  
(3)(1)  
70  
120  
Generated reset pulse  
duration  
tw(RSTL)out  
Internal reset sources  
14 (1)  
12 (1)  
32  
µs  
External reset pulse hold  
time (4)  
th(RSTL)in  
µs  
ns  
tg(RSTL)in Filtered glitch duration  
200  
1. Data based on characterization results, not tested in production.  
2. The IIO current sunk must always respect the absolute maximum rating specified in Table 85: Current  
characteristics and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
3. The RON pull-up equivalent resistor is based on a resistive transistor. Specified for voltages on RESET pin  
between VILmax and VDD  
4. To guarantee the reset of the device, a minimum pulse has to be applied to the RESET pin. All short pulses  
applied on RESET pin with a duration below th(RSTL)in can be ignored.  
221/246  
Electrical characteristics  
Figure 115. RESET pin protection when LVD is enabled  
ST72344xx, ST72345xx  
(1)(2)(3)(4)  
VDD  
ST72XXX  
Optional  
(note 3)  
Required  
R
ON  
Filter  
INTERNAL  
RESET  
EXTERNAL  
RESET  
0.01 µF  
1 MΩ  
WATCHDOG  
ILLEGALOPCODE  
LVD RESET  
PULSE  
GENERATOR  
(5)  
1. The reset network protects the device against parasitic resets.  
- The output of the external reset circuit must have an open-drain output to drive the ST7 reset pad.  
Otherwise the device can be damaged when the ST7 generates an internal reset (LVD or watchdog).  
- Whatever the reset source is (internal or external), the user must ensure that the level on the RESET pin  
can go below the VIL max. level specified in Section 13.10.1 on page 221. Otherwise the reset will not be  
taken into account internally.  
- Because the reset circuit is designed to allow the internal reset to be output in the RESET pin, the user  
must ensure that the current sunk on the RESET pin is less than the absolute maximum value specified  
for IINJ(RESET) in Table 85 on page 200.  
2. When the LVD is enabled, it is recommended not to connect a pull-up resistor or capacitor. A 10nF pull-  
down capacitor is required to filter noise on the reset line.  
3. In case a capacitive power supply is used, it is recommended to connect a 1MΩ pull-down resistor to the  
RESET pin to discharge any residual voltage induced by the capacitive effect of the power supply (this will  
add 5µA to the power consumption of the MCU).  
4. Tips when using the LVD:  
1. Check that all recommendations related to the reset circuit have been applied (see notes above)  
2. Check that the power supply is properly decoupled (100nF + 10µF close to the MCU). Refer to AN1709  
and AN2017. If this cannot be done, it is recommended to put a 100nF + 1MΩ pull-down on the RESET  
pin.  
3. The capacitors connected on the RESET pin and also the power supply are key to avoid any startup  
marginality. In most cases, steps 1 and 2 above are sufficient for a robust solution. Otherwise: replace  
10nF pull-down on the RESET pin with a 5µF to 20µF capacitor.”  
5. Please refer to Section 12.2.1: Illegal opcode reset for more details on illegal opcode reset conditions.  
(1)  
Figure 116. RESET pin protection when LVD is disabled  
VDD  
ST72XXX  
R
ON  
Filter  
INTERNAL  
RESET  
USER  
EXTERNAL  
RESET  
CIRCUIT  
0.01 µF  
WATCHDOG  
PULSE  
GENERATOR  
(2)  
ILLEGALOPCODE  
Required  
1. The reset network protects the device against parasitic resets.  
- The output of the external reset circuit must have an open-drain output to drive the ST7 reset pad.  
Otherwise the device can be damaged when the ST7 generates an internal reset (LVD or watchdog).  
- Whatever the reset source is (internal or external), the user must ensure that the level on the RESET pin  
can go below the VIL max. level specified in Section 13.10.1 on page 221. Otherwise the reset will not be  
taken into account internally.  
- Because the reset circuit is designed to allow the internal reset to be output in the RESET pin, the user  
must ensure that the current sunk on the RESET pin is less than the absolute maximum value specified  
for IINJ(RESET) in Table 85 on page 200.  
2. Please refer to Section 12.2.1: Illegal opcode reset for more details on illegal opcode reset conditions.  
222/246  
ST72344xx, ST72345xx  
Electrical characteristics  
13.11  
Communication interface characteristics  
2
13.11.1 I C and I²C3SNS interfaces  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD OSC  
Refer to I/O port characteristics for more details on the input/output alternate function  
2
characteristics (SDAI and SCLI). The ST7 I C and I2C3SNS interfaces meet the electrical  
2
and timing requirements of the Standard I C communication protocol.  
T = -40°C to 85°C, unless otherwise specified.  
A
2
Table 110. I C and I²C3SNS interfaces characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
CPU=4 MHz to 8 MHz (1)  
,
fSCL  
I²C SCL frequency  
400  
400  
kHz  
kHz  
f
fSCL3SNS I²C3SNS SCL frequency (2)  
VDD= 2.7 V to 5.5 V  
1. The I2C and I2C3SNS interfaces will not function below the minimum clock speed of 4 MHz.  
2. Not tested in production within the whole operating range. Guaranteed by design/validation test results.  
The following table gives the values to be written in the I2CCCR register to obtain the  
2
required I C SCL line frequency.  
2
(1)  
Table 111. SCL frequency table (multimaster I C interface)  
I2CCCR value  
f
CPU = 4 MHz.  
VDD = 5 V  
fCPU = 8 MHz.  
fSCL  
V
DD = 3.3 V  
VDD = 3.3 V  
VDD = 5 V  
RP=3.3kΩ RP=4.7kΩ RP=3.3kΩ RP=4.7kΩ RP=3.3kΩ RP=4.7kΩ RP=3.3kΩ RP=4.7kΩ  
400  
300  
200  
100  
50  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
84h  
86h  
8Ah  
25h  
4Bh  
FFh  
84h  
86h  
8Ah  
24h  
4Ch  
FFh  
84h  
85h  
8Bh  
28h  
53h  
FFh  
84h  
87h  
8Ch  
28h  
54h  
FFh  
84h  
11h  
25h  
60h  
84h  
10h  
24h  
5Fh  
84h  
11h  
25h  
60h  
84h  
11h  
26h  
62h  
20  
1.  
R
P = External pull-up resistance, fSCL = I2C speed, NA = Not achievable.  
Note:  
For speeds around 200 kHz, achieved speed can have 5% tolerance, for other speed  
ranges, achieved speed can have 2% tolerance.  
The above variations depend on the accuracy of the external components used.  
223/246  
Electrical characteristics  
ST72344xx, ST72345xx  
13.12  
10-bit ADC characteristics  
T = -40 °C to 85 °C, unless otherwise specified  
A
Table 112. ADC accuracy  
Symbol  
Parameter  
Conditions (1)(2)  
fCPU = 8 MHz,  
fADC = 4 MHz  
RAIN < 10κΩ,  
VDD = 2.7 V to 5.5 V  
Typ  
Max (3)  
Unit  
|ET|  
|EO|  
|EG|  
|ED|  
Total unadjusted error  
Offset error  
4
-1  
-2  
3
8
-2  
-4  
6
LSB  
Gain Error  
Differential linearity error  
1. Data based on characterization results over the whole temperature range.  
2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins may  
reduce the accuracy of the conversion being performed on another analog input.  
The effect of negative injection current on robust pins is specified in Section 13.10 on page 221  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 13.9 does not  
affect the ADC accuracy.  
3. Data based on characterization results, monitored in production to guarantee 99.73% within max value  
from -40 °C to +125 °C ( 3σ distribution limits).  
Figure 117. ADC accuracy characteristics  
Digital Result ADCDR  
E
G
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(3) End point correlation line  
1023  
1022  
1021  
V
V  
DD  
SS  
1LSB  
= -------------------------------  
IDEAL  
1024  
(2)  
E =Total Unadjusted Error: maximum deviation  
T
E
between the actual and the ideal transfer curves.  
T
(3)  
7
6
5
4
3
2
1
E =Offset Error: deviation between the first actual  
O
transition and the first ideal one.  
(1)  
E =Gain Error: deviation between the last ideal  
G
transition and the last actual one.  
E
O
E
L
E =Differential Linearity Error: maximum deviation  
D
between actual steps and the ideal one.  
E =Integral Linearity Error: maximum deviation  
L
E
between any actual transition and the end point  
correlation line.  
D
1 LSB  
IDEAL  
V
(LSB  
)
in  
IDEAL  
0
1
2
3
4
5
6
7
1021 1022 1023 1024  
V
V
DD  
SS  
ai15169  
224/246  
ST72344xx, ST72345xx  
Subject to general operating condition for V , f  
Electrical characteristics  
, and T unless otherwise specified.  
DD OSC  
A
Table 113. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ (1)  
Max  
Unit  
fADC  
VAIN  
ADC clock frequency  
0.4  
4
MHz  
V
Conversion voltage range (2)  
VSSA  
VDDA  
10 (3)  
RAIN  
CADC  
External input resistor  
kΩ  
pF  
Internal sample and hold capacitor  
6
Stabilization time after ADC  
enable  
tSTAB  
0(4)  
3.5  
µs  
fCPU = 8 MHz,  
fADC = 4 MHz  
Conversion time (Sample+Hold)  
tADC  
– Sample capacitor loading time  
– Hold conversion time  
4
10  
1/fADC  
mA  
Analog Part  
Digital Part  
1
IADC  
0.2  
1. Unless otherwise specified, typical data are based on TA= 25 °C and VDD-VSS= 5 V. They are given only  
as design guidelines and are not tested.  
2. When VDDA and VSSA pins are not available on the pinout, the ADC refers to VDD and VSS.  
3. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than  
10 kΩ). Data based on characterization results, not tested in production.  
4. The stabilization time of the AD converter is masked by the first tLOAD. The first conversion after the enable  
is then always valid.  
Figure 118. Typical A/D converter application  
V
DD  
ST72XXX  
V
T
0.6 V  
R
AIN  
2 kΩ (max)  
AINx  
10-Bit A/D  
V
AIN  
Conversion  
C
V
0.6 V  
AIN  
T
I
C
L
ADC  
6 pF  
1 μA  
Note:  
1
2
C
represents the capacitance of the PCB (dependent on soldering and PCB layout  
PARASITIC  
quality) plus the pad capacitance (3 pF). A high C  
accuracy. To remedy this, f  
value will downgrade conversion  
PARASITIC  
should be reduced.  
ADC  
This graph shows that depending on the input signal variation (f ), C  
can be increased  
AIN  
AIN  
for stabilization time and decreased to allow the use of a larger serial resistor (R  
.
AIN)  
225/246  
Package characteristics  
ST72344xx, ST72345xx  
14  
Package characteristics  
®
In order to meet environmental requirements, ST offers these devices in ECOPACK  
packages. These packages have a Lead-free second level interconnect. The category of  
second level interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label.  
®
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
Figure 119. 32-pin low profile quad flat package (7 x 7 mm) outline  
D
A
A2  
D1  
A1  
e
b
E
E1  
c
L1  
L
h
1. Drawing is not to scale.  
Table 114. 32-pin low profile quad flat package (7 x 7 mm) mechanical data  
mm  
Typ  
inches(1)  
Dim.  
Min  
Max  
Min  
Typ  
Max  
A
1.60  
0.15  
1.45  
0.45  
0.20  
0.0630  
0.0059  
0.0571  
0.0177  
0.0079  
A1  
0.05  
1.35  
0.30  
0.09  
0.0020  
0.0531  
0.0118  
0.0035  
A2  
1.40  
0.37  
0.0551  
0.0146  
b
C
D
9.00  
7.00  
9.00  
7.00  
0.80  
3.5°  
0.60  
1.00  
0.3543  
0.2756  
0.3543  
0.2756  
0.0315  
3.5°  
D1  
E
E1  
e
θ
0°  
7°  
0°  
7°  
L
L1  
0.45  
0.75  
0.0177  
0.0236  
0.0394  
0.0295  
N (number of pins)  
32  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
226/246  
ST72344xx, ST72345xx  
Package characteristics  
Figure 120. 40-lead very thin fine pitch quad flat no-lead package outline  
A
SEATING  
PLANE  
A3  
A1  
D
D2  
E2  
E
PIN #1 ID TYPE C  
RADIUS  
2
1
L
e
b
1. Drawing is not to scale.  
Table 115. 40-lead very thin fine pitch quad flat no-lead package mechanical data  
mm  
Typ  
inches(1)  
Dim.  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
A3  
b
0.80  
0.90  
0.02  
0.65  
0.20  
0.25  
6.00  
2.9  
1.00  
0.05  
1.00  
0.0315  
0.0354  
0.0008  
0.0256  
0.0079  
0.0098  
0.2362  
0.1142  
0.2362  
0.1142  
0.0197  
0.0157  
0.0394  
0.0020  
0.0394  
0.18  
5.85  
2.75  
5.85  
2.75  
0.30  
6.15  
3.05  
6.15  
3.05  
0.0071  
0.2303  
0.1083  
0.2303  
0.1083  
0.0118  
0.2421  
0.1201  
0.2421  
0.1201  
D
D2  
E
6
E2  
e
2.9  
0.50  
0.40  
L
0.30  
0.50  
0.0118  
Number of pins  
40  
0.0197  
N
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
227/246  
Package characteristics  
Figure 121. 44-pin low profile quad flat package outline  
ST72344xx, ST72345xx  
A
D
D1  
A2  
A1  
b
e
E1  
E
c
L1  
L
h
1. Drawing is not to scale.  
Table 116. 44-pin low profile quad flat package mechanical data  
mm  
Typ  
inches(1)  
Dim.  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.45  
0.20  
0.0630  
0.0059  
0.0571  
0.0177  
0.0079  
0.05  
1.35  
0.30  
0.09  
0.0020  
0.0531  
0.0118  
0.0035  
1.40  
0.37  
0.0551  
0.0146  
C
D
12.00  
10.00  
12.00  
10.00  
0.80  
0.4724  
0.3937  
0.4724  
0.3937  
0.0315  
3.5°  
D1  
E
E1  
e
θ
0°  
3.5°  
7°  
0°  
7°  
L
0.45  
0.60  
0.75  
0.0177  
0.0236  
0.0394  
0.0295  
L1  
1.00  
Number of pins  
44  
N
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
228/246  
ST72344xx, ST72345xx  
Figure 122. 48-pin low profile quad flat package outline  
Package characteristics  
D
A
D1  
A2  
A1  
b
e
E1  
E
c
L1  
L
θ
1. Drawing is not to scale.  
Table 117. 48-pin low profile quad flat package mechanical data  
mm  
Typ  
inches(1)  
Dim.  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.27  
0.20  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.05  
1.35  
0.17  
0.09  
0.0020  
0.0531  
0.0067  
0.0035  
1.40  
0.22  
0.0551  
0.0087  
C
D
9.00  
7.00  
9.00  
7.00  
0.50  
3.5°  
0.60  
1.00  
0.3543  
0.2756  
0.3543  
0.2756  
0.0197  
3.5°  
D1  
E
E1  
e
θ
0°  
7°  
0°  
7°  
L
0.45  
0.75  
0.0177  
0.0236  
0.0394  
0.0295  
L1  
Number of pins  
48  
N
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
229/246  
Package characteristics  
ST72344xx, ST72345xx  
Table 118. Thermal characteristics  
Symbol  
Ratings  
Value (1)  
Unit  
LQFP32  
60  
54  
RthJA  
Package thermal resistance (junction to ambient) LQFP44  
°C/W  
°C  
LQFP48  
73  
TJmax Maximum junction temperature (2)  
PDmax Power dissipation(3)  
150  
415  
460  
340  
LQFP32  
LQFP44  
LQFP48  
mW  
1. Values given for a 4-layer board. PDmax computed for TA = 125 °C.  
2. The maximum chip-junction temperature is based on technology characteristics.  
3. The maximum power dissipation is obtained from the formula PD = (TJ -TA) / RthJA  
.
The power dissipation of an application can be defined by the user with the formula: PD=PINT+PPORT  
where PINT is the chip internal power (IDD x VDD) and PPORT is the port power dissipation depending on the  
ports used in the application.  
230/246  
ST72344xx, ST72345xx  
Device configuration and ordering information  
15  
Device configuration and ordering information  
Each device is available for production in user programmable versions (Flash).  
ST72F34x Flash devices are shipped to customers with a default content (FFh). This implies  
that Flash devices have to be configured by the customer using the Option Bytes.  
15.1  
Option bytes  
The four option bytes allow the hardware configuration of the microcontroller to be selected.  
The option bytes can be accessed only in programming mode (for example using a standard  
ST7 programming tool).  
15.1.1  
Option byte 0  
OPT7 = WDG Halt Watchdog Reset on Halt  
This option bit determines if a reset is generated when entering Halt mode while the  
Watchdog is active.  
0: No Reset generation when entering Halt mode  
1: Reset generation when entering Halt mode  
OPT6 = WDG SW Hardware or Software Watchdog  
This option bit selects the watchdog type.  
0: Hardware (watchdog always enabled)  
1: Software (watchdog to be enabled by software)  
OPT5:4 = LVD[1:0] Low voltage detection selection  
These option bits enable the LVD block with a selected threshold as shown in  
Table 119.  
Table 119. LVD threshold configuration  
Configuration  
LVD1  
LVD0  
LVD Off  
1
1
0
0
1
0
1
0
Highest voltage threshold (4.1V)  
Medium voltage threshold (3.5V)  
Lowest voltage threshold (2.8V)  
OPT3:2 = SEC[1:0] Sector 0 size definition  
These option bits indicate the size of sector 0 according to the following table.  
Table 120. Size of sector 0  
Sector 0 size  
SEC1  
SEC0  
0.5k  
1k  
0
0
0
1
231/246  
Device configuration and ordering information  
ST72344xx, ST72345xx  
Table 120. Size of sector 0  
Sector 0 size  
SEC1  
SEC0  
2k  
4k  
1
1
0
1
OPT1 = FMP_R Read-out protection  
Readout protection, when selected provides a protection against program memory  
content extraction and against write access to Flash memory. Erasing the option bytes  
when the FMP_R option is selected will cause the whole memory to be erased first and  
the device can be reprogrammed. Refer to the ST7 Flash Programming Reference  
Manual and Section 4.5 on page 29 for more details  
0: Read-out protection off  
1: Read-out protection on  
OPT0 = FMP_W Flash write protection  
This option indicates if the Flash program memory is write protected.  
Warning: When this option is selected, the program memory (and the option bit itself)  
can never be erased or programmed again.  
0: Write protection off  
1: Write protection on  
Option byte 0  
Option byte 1  
7
1
6
1
5
1
4
1
3
1
2
1
1
0
0
0
7
1
6
1
5
1
4
1
3
0
2
1
1
1
0
1
Default  
value  
15.1.2  
Option byte 1  
OPT7 = RSTC reset clock cycle selection  
This option bit selects the number of CPU cycles inserted during the reset phase and  
when exiting Halt mode. For resonator oscillators, it is advised to select 4096 due to the  
long crystal stabilization time.  
0: Reset phase with 4096 CPU cycles  
1: Reset phase with 256 CPU cycles  
OPT6:4 = OSCRANGE[2:0] Oscillator range  
When the internal RC oscillator is not selected (Option OSC=1), these option bits  
select the range of the resonator oscillator current source or the external clock source.  
232/246  
ST72344xx, ST72345xx  
Device configuration and ordering information  
Table 121. Selection of the resonator oscillator range  
OSCRANGE  
1
2
0
LP  
1~2 MHz  
2~4 MHz  
4~8 MHz  
8~16 MHz  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
MP  
MS  
HS  
Typical frequency range  
with Resonator  
Reserved  
External clock  
OPT3 = OSC RC Oscillator selection  
0: RC oscillator on  
1: RC oscillator off  
OPT2 = DIV2EN PLL Divide by 2 enable  
0: PLL division by 2 enabled  
1: PLL division by 2 disabled  
Note:  
DIV2EN must be kept disabled when PLLx4 is enabled.  
OPT1 = PLLx4x8 PLL Factor selection  
0: PLLx4  
1: PLLx8  
OPT0 = PLLOFF PLL disable  
0: PLL enabled  
1: PLL disabled (by-passed)  
These option bits must be configured as described in Table 122 depending on the voltage  
range and the expected CPU frequency  
Table 122. List of valid option combinations  
Option bits  
Target ratio  
VDD  
DIV2 EN  
PLL OFF  
PLL x4x8  
x4(1)  
2.7 V - 3.65 V  
3.3 V - 5.5 V  
x
0
1
0
0
0
0
1
1
x4  
x8  
1. For a target ratio of x4 between 3.3V - 3.65V, this is the recommended configuration.  
15.1.3  
Option byte 2  
Note:  
OPT7:0 = Reserved. Must be kept at 1.  
233/246  
Device configuration and ordering information  
ST72344xx, ST72345xx  
15.1.4  
Option byte 3  
OPT7:6 = PKG1:0 Package selection  
These option bits select the package.  
Table 123. Package selection  
Version  
Selected package  
PKG 1  
PKG 0  
K
S
C
LQFP32  
LQFP44  
LQFP48  
0
0
1
0
1
x
OPT5 = I2C3S I2C3SNS selection  
0: I2C3SNS selected  
1: I2C3SNS not selected  
OPT4:0 = Reserved. Must be kept at 1.  
Table 124. Option byte default values  
Option byte 2  
Option byte 3  
7
1
6
1
5
1
4
3
2
1
1
1
0
1
7
x
6
x
5
x
4
3
2
Reserved  
1
1
1
0
1
Reserved  
Default  
value  
1
1
1
1
234/246  
ST72344xx, ST72345xx  
Device configuration and ordering information  
15.2  
Device ordering information  
Figure 123. ST7234x ordering information scheme  
Example:  
ST72  
F
34x  
K
2
T
6
TR  
Product class  
ST7 microcontroller  
Version  
Flash  
Sub-family  
344, 345  
No. of pins  
K = 32 pins  
S = 44 pins  
C = 48 pins  
Memory size  
2 = 8K  
4 = 16K  
Package  
T = LQFP  
Temperature range  
6 = -40 ˚C to 85 ˚C  
Shipping  
TR = Tape and Reel  
No character = Tray  
ai15170  
For a list of available options (e.g. memory size, package) and orderable part numbers or for  
further information on any aspect of this device, please contact the nearest ST sales office.  
15.3  
Development tools  
Development tools for the ST7 microcontrollers include a complete range of hardware  
systems and software tools from STMicroelectronics and third-party tool suppliers. The  
range of tools includes solutions to help you evaluate microcontroller peripherals, develop  
and debug your application, and program your microcontrollers.  
15.3.1  
Starter kits  
ST offers complete, affordable starter kits. Starter kits are complete, affordable  
hardware/software tool packages that include features and samples to help you quickly start  
developing your application.  
235/246  
Device configuration and ordering information  
ST72344xx, ST72345xx  
15.3.2  
Development and debugging tools  
Application development for ST7 is supported by fully optimizing C Compilers and the ST7  
Assembler-Linker toolchain, which are all seamlessly integrated in the ST7 integrated  
development environments in order to facilitate the debugging and fine-tuning of your  
application. The Cosmic C Compiler is available in a free version that outputs up to  
16KBytes of code.  
The range of hardware tools includes full-featured ST7-EMU3 series emulators and the  
low-cost RLink in-circuit debugger/programmer. These tools are supported by the ST7  
Toolset from STMicroelectronics, which includes the STVD7 integrated development  
environment (IDE) with high-level language debugger, editor, project manager and  
integrated programming interface.  
15.3.3  
Programming tools  
During the development cycle, the ST7-EMU3 series emulators and the RLink provide in-  
circuit programming capability for programming the Flash microcontroller on your application  
board.  
ST also provides a low-cost dedicated in-circuit programmer, the ST7-STICK, as well as  
ST7 Socket Boards which provide all the sockets required for programming any of the  
devices in a specific ST7 sub-family on a platform that can be used with any tool with in-  
circuit programming capability for ST7.  
For production programming of ST7 devices, ST’s third-party tool partners also provide a  
complete range of gang and automated programming solutions, which are ready to integrate  
into your production environment.  
236/246  
ST72344xx, ST72345xx  
Device configuration and ordering information  
15.3.4  
Order codes for ST72F34x development tools  
Table 125. Development tool order codes  
Programming tool  
MCU  
Starter kit  
Emulator  
In-circuitdebugger/  
Dedicated  
programmer  
programmer  
ST72F344  
ST72F345  
ST72F34x-  
SK/RAIS (1)  
STX-RLINK (2)  
ST7SB20J/xx(3)(5)  
ST7MDT40-EMU3  
ST7-STICK (3)(4)  
ST7SB40-QP48/xx(3)(6)  
1. USB connection to PC  
2. RLink with ST7 tool set  
3. Add suffix /EU, /UK or /US for the power supply for your region  
4. Parallel port connection to PC  
5. Only available for LQFP32 and LQFP44 packages  
6. Only available for LQFP48 package  
For additional ordering codes for spare parts and accessories, refer to the online product  
selector at www.st.com/mcu.  
237/246  
Known limitations  
ST72344xx, ST72345xx  
16  
Known limitations  
16.1  
External interrupt missed  
To avoid any risk if generating a parasitic interrupt, the edge detector is automatically  
disabled for one clock cycle during an access to either DDR and OR. Any input signal edge  
during this period will not be detected and will not generate an interrupt.  
This case can typically occur if the application refreshes the port configuration registers at  
intervals during runtime.  
16.1.1  
Workaround  
The workaround is based on software checking the level on the interrupt pin before and after  
writing to the PxOR or PxDDR registers. If there is a level change (depending on the  
sensitivity programmed for this pin) the interrupt routine is invoked using the call instruction  
with three extra PUSH instructions before executing the interrupt routine (this is to make the  
call compatible with the IRET instruction at the end of the interrupt service routine).  
But detection of the level change does not make sure that edge occurs during the critical 1  
cycle duration and the interrupt has been missed. This may lead to occurrence of same  
interrupt twice (one hardware and another with software call).  
To avoid this, a semaphore is set to '1' before checking the level change. The semaphore is  
changed to level '0' inside the interrupt routine. When a level change is detected, the  
semaphore status is checked and if it is '1' this means that the last interrupt has been  
missed. In this case, the interrupt routine is invoked with the call instruction.  
There is another possible case i.e. if writing to PxOR or PxDDR is done with global  
interrupts disabled (interrupt mask bit set). In this case, the semaphore is changed to '1'  
when the level change is detected. Detecting a missed interrupt is done after the global  
interrupts are enabled (interrupt mask bit reset) and by checking the status of the  
semaphore. If it is '1' this means that the last interrupt was missed and the interrupt routine  
is invoked with the call instruction.  
To implement the workaround, the following software sequence is to be followed for writing  
into the PxOR/PxDDR registers. The example is for Port PF1 with falling edge interrupt  
sensitivity. The software sequence is given for both cases (global interrupt  
disabled/enabled).  
Case 1: Writing to PxOR or PxDDR with global interrupts enabled:  
LD A,#01  
LD sema,A  
LD A,PFDR  
AND A,#02  
LD X,A  
; set the semaphore to '1'  
; store the level before writing to PxOR/PxDDR  
; Write to PFDDR  
LD A,#$90  
LD PFDDR,A  
LD A,#$ff  
LD PFOR,A  
; Write to PFOR  
238/246  
ST72344xx, ST72345xx  
Known limitations  
LD A,PFDR  
AND A,#02  
LD Y,A  
; store the level after writing to PxOR/PxDDR  
; check for falling edge  
LD A,X  
cp A,#02  
jrne OUT  
TNZ Y  
jrne OUT  
LD A,sema  
CP A,#01  
jrne OUT  
; check the semaphore status if edge is detected  
call call_routine ; call the interrupt routine  
OUT:LD A,#00  
LD sema,A  
.call_routine  
PUSH A  
; entry to call_routine  
PUSH X  
PUSH CC  
.ext1_rt  
LD A,#00  
LD sema,A  
IRET  
; entry to interrupt routine  
Case 2: Writing to PxOR or PxDDR with global interrupts disabled:  
SIM  
; set the interrupt mask  
LD A,PFDR  
AND A,#$02  
LD X,A  
; store the level before writing to PxOR/PxDDR  
; Write into PFDDR  
LD A,#$90  
LD PFDDR,A  
LD A,#$ff  
LD PFOR,A  
LD A,PFDR  
AND A,#$02  
LD Y,A  
; Write to PFOR  
; store the level after writing to PxOR/PxDDR  
; check for falling edge  
LD A,X  
239/246  
Known limitations  
cp A,#$02  
ST72344xx, ST72345xx  
jrne OUT  
TNZ Y  
jrne OUT  
LD A,#$01  
LD sema,A  
RIM  
; set the semaphore to '1' if edge is detected  
; reset the interrupt mask  
; check the semaphore status  
LD A,sema  
CP A,#$01  
jrne OUT  
call call_routine; call the interrupt routine  
RIM  
OUT:  
RIM  
JP while_loop  
.call_routine  
PUSH A  
; entry to call_routine  
PUSH X  
PUSH CC  
.ext1_rt  
LD A,#$00  
LD sema,A  
IRET  
; entry to interrupt routine  
16.1.2  
Unexpected reset fetch  
If an interrupt request occurs while a “POP CC” instruction is executed, the interrupt  
controller does not recognise the source of the interrupt and, by default, passes the reset  
vector address to the CPU.  
Workaround  
To solve this issue, a “POP CC” instruction must always be preceded by a “SIM” instruction.  
16.2  
Clearing active interrupts outside interrupt routine  
When an active interrupt request occurs at the same time as the related flag is being  
cleared, an unwanted reset may occur.  
Note:  
Clearing the related interrupt mask will not generate an unwanted reset  
240/246  
ST72344xx, ST72345xx  
Known limitations  
Concurrent interrupt context  
The symptom does not occur when the interrupts are handled normally, i.e. when:  
The interrupt flag is cleared within its own interrupt routine  
The interrupt flag is cleared within any interrupt routine  
The interrupt flag is cleared in any part of the code while this interrupt is disabled  
If these conditions are not met, the symptom can be avoided by implementing the following  
sequence:  
Perform SIM and RIM operation before and after resetting an active interrupt request.  
Example:  
SIM  
reset interrupt flag  
RIM  
Nested interrupt context:  
The symptom does not occur when the interrupts are handled normally, i.e. when:  
The interrupt flag is cleared within its own interrupt routine  
The interrupt flag is cleared within any interrupt routine with higher or identical priority  
level  
The interrupt flag is cleared in any part of the code while this interrupt is disabled  
If these conditions are not met, the symptom can be avoided by implementing the following  
sequence:  
PUSH CC  
SIM  
reset interrupt flag  
POP CC  
16.3  
16-bit timer PWM mode  
In PWM mode, the first PWM pulse is missed after writing the value FFFCh in the OC1R  
register (OC1HR, OC1LR). It leads to either full or no PWM during a period, depending on  
the OLVL1 and OLVL2 settings.  
16.4  
TIMD set simultaneously with OC interrupt  
If the 16-bit timer is disabled at the same time the output compare event occurs then output  
compare flag gets locked and cannot be cleared before the timer is enabled again.  
16.4.1  
Impact on the application  
If output compare interrupt is enabled, then the output compare flag cannot be cleared in the  
timer interrupt routine. Consequently the interrupt service routine is called repeatedly.  
241/246  
Known limitations  
ST72344xx, ST72345xx  
16.4.2  
Workaround  
Disable the timer interrupt before disabling the timer. Again while enabling, first enable the  
timer then the timer interrupts.  
Perform the following to disable the timer:  
TACR1 = 0x00h; // Disable the compare interrupt  
TACSR |= 0x40; // Disable the timer  
Perform the following to enable the timer again:  
TACSR &= ~0x40; // Enable the timer  
TACR1 = 0x40; // Enable the compare interrupt  
16.5  
SCI wrong break duration  
16.5.1  
Description  
A single break character is sent by setting and resetting the SBK bit in the SCICR2 register.  
In some cases, the break character may have a longer duration than expected:  
20 bits instead of 10 bits if M=0  
22 bits instead of 11 bits if M=1  
In the same way, as long as the SBK bit is set, break characters are sent to the TDO pin.  
This may lead to generate one break more than expected.  
16.5.2  
16.5.3  
Occurrence  
The occurrence of the problem is random and proportional to the baudrate. With a transmit  
frequency of 19200 baud (f  
occurrence is around 1%.  
=8 MHz and SCIBRR=0xC9), the wrong break duration  
CPU  
Workaround  
If this wrong duration is not compliant with the communication protocol in the application,  
software can request that an Idle line be generated before the break character. In this case,  
the break duration is always correct assuming the application is not doing anything between  
the idle and the break. This can be ensured by temporarily disabling interrupts.  
The exact sequence is:  
Disable interrupts  
Reset and Set TE (IDLE request)  
Set and Reset SBK (Break Request)  
Re-enable interrupts  
16.6  
In-application programming  
Not available on the first silicon revision currently in production (rev Z). This limitation will be  
corrected on the next silicon revision. Refer to Table 126.  
242/246  
ST72344xx, ST72345xx  
Known limitations  
16.7  
Programming of EEPROM data  
16.7.1  
Description  
In user mode, when programming EEPROM data memory, the read access to the program  
memory between E000h and FFFFh can be corrupted.  
16.7.2  
16.7.3  
Impact on application  
The EEPROM programming routine must be located outside this program memory area.  
Any access to the interrupt vector table can result in an unexpected code being executed, so  
the interrupts must be masked.  
Workaround  
The sequence to program the EEPROM data (refer to Section 5.3 on page 31) must be  
executed within C000h-DFFFh area or from the RAM. It is as follows:  
set E2LAT bit  
write up to 32 bytes in E2PROM area  
SIM ; to disable the interrupts  
set E2PGM bit  
wait for E2PGM=0  
RIM ; to enable the interrupts  
return to the program memory  
16.8  
Flash write/erase protection  
Not available on the first silicon revision currently in production (rev Z). This limitation will be  
corrected on the next silicon revision. Refer to Table 126.  
Table 126. Silicon revision identification  
Trace code  
marked on device  
internal sales types  
on box label  
Device  
Status  
72F344xxxx$x2  
72F345xxxx$x2  
In production  
“xxxxxxxxZ”  
“xxxxxxxxX”  
ST72F344xxxx  
ST72F345xxxx  
72F344xxxx$x4  
72F345xxxx$x4  
Under qualification  
243/246  
Revision history  
ST72344xx, ST72345xx  
17  
Revision history  
Table 127. Document revision history  
Date  
Revision  
Changes  
29-April-2006  
1
First release on internet  
Removed references to BGA56 and QFN40 packages  
TQFP package naming changed to LQFP (Low-profile Quad Flat)  
Changed number of I/O ports on first page  
PDVD (Power Down Voltage Detector) replaced by AVD (Auxiliary  
Voltage Detector)  
Modified note 3 to Table 4 on page 24  
Added PF4 to Figure 3 on page 18 and Figure 4 on page 19  
Modified Memory access on page 31  
Modified Figure 8, Figure 9 on page 33 and Figure 10 on page 34  
Changed RCCR table in Section 7.3 on page 43 (fRC=1 MHz)  
References to PDVDF, PDVDIE corrected to AVDF, AVDIE:  
Section 7.6.2 on page 49  
Current characteristics Table 85 on page 200 updated  
General operating conditions table updated, Table 87 on page 201  
Data updated in Table 88 on page 201, note replaced  
Table modified in Table 89 on page 202  
Notes adjusted for table in Table 90 on page 202  
Modified Section 13.4 on page 203 (for VDD=5V)  
Table in Table 93 on page 204 modified  
23-Oct-2006  
2
Updated Table 94 on page 207  
Added Table 96 on page 208 and Figure 96 on page 208  
Table in Table 101 on page 211 modified  
Absolute maximum ratings and electrical sensitivity table updated,  
Section 13.8.3 on page 213  
Added note 1 to VIL and VIH in Table 107 on page 214  
Table in Table 108 on page 215 modified (for VDD= 3.3V and VDD=2.7V)  
Modified graphs in Table 108 on page 215  
tg(RSTL)in updated in Table 13.10 on page 221  
Updated Table 111 on page 223  
Updated Table 118 on page 230  
Modified default values for option byte 2 and 3 on Option byte 2 on  
page 233  
Added option list on Option byte 2 on page 233  
Added Section 15.3: Development tools on page 235  
Added known limitations: Section 16.6: In-application programming on  
page 242, Section 16.7: Programming of EEPROM data on page 243,  
and Section 16.8: Flash write/erase protection on page 243  
Modified Section 16.7 on page 243  
Changed status of the document (datasheet instead of preliminary data)  
244/246  
ST72344xx, ST72345xx  
Table 127. Document revision history (continued)  
Revision history  
Date  
Revision  
Changes  
Document reformatted  
Title modified  
Removed references to ST72340 devices and FASTROM devices  
Modified device summary on first page  
Added note 1 and note 3 to Table 3 on page 20 and removed note on  
ICCDATA and ICCCLK  
Added note 5 and “caution” to Section 4.4 on page 28  
Added one caution to Section 7.2 on page 42  
Modified note in Section 7.3.3 on page 45,  
Added caution to Section 7.5 on page 46  
Added one caution to Section 7.6.2 on page 49  
Modified Figure 24 on page 60  
Modified note 3 in Output compare on page 99  
Added note to Section 11.8.1 on page 184  
Modified table in Table 84 on page 199  
22-Sep-2008  
3
Modified Section 13.4 on page 203: modified note 1 and added fRC  
values for VDD= 3 V  
Modified Table 94 on page 207  
Modified Section 13.6.1 on page 209  
Modified EMC characteristics on page 212 and removed references to  
DLU in Absolute maximum ratings (electrical sensitivity) on page 213  
Modified Section 13.10.1 on page 221  
Added note 2 to Section 13.11.1 on page 223  
Added Section 16.4 on page 241 Section 16.4 on page 241  
Modified Section 14 on page 226 (values in inches rounded to 4 decimal  
digits instead of 3 decimal digits)  
Modified Section 15 on page 231, Device ordering information on  
page 235  
Removed option list.  
245/246  
ST72344xx, ST72345xx  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
246/246  

相关型号:

ST72F34X-SK/RAIS

Raisonance’s complete, low-cost starter kits for ST7
STMICROELECTR

ST72F361AR6T3

8-BIT MCU WITH FLASH OR ROM, 10-BIT ADC, 5 TIMERS, SPI, 2x LINSCI
STMICROELECTR

ST72F361AR6T3/XXX

IC,MICROCONTROLLER,8-BIT,ST72 CPU,CMOS,QFP,64PIN,PLASTIC
STMICROELECTR

ST72F361AR6T3/XXXTR

IC,MICROCONTROLLER,8-BIT,ST72 CPU,CMOS,QFP,64PIN,PLASTIC
STMICROELECTR

ST72F361AR6T3/XXXTRE

IC,MICROCONTROLLER,8-BIT,ST72 CPU,CMOS,QFP,64PIN,PLASTIC
STMICROELECTR

ST72F361AR6T3E

IC,MICROCONTROLLER,8-BIT,ST72 CPU,CMOS,QFP,64PIN,PLASTIC
STMICROELECTR

ST72F361AR6T3TR

IC,MICROCONTROLLER,8-BIT,ST72 CPU,CMOS,QFP,64PIN,PLASTIC
STMICROELECTR

ST72F361AR6T3TRE

IC,MICROCONTROLLER,8-BIT,ST72 CPU,CMOS,QFP,64PIN,PLASTIC
STMICROELECTR

ST72F361AR6T6

8-BIT MCU WITH FLASH OR ROM, 10-BIT ADC, 5 TIMERS, SPI, 2x LINSCI
STMICROELECTR

ST72F361AR6T6/XXXE

IC,MICROCONTROLLER,8-BIT,ST72 CPU,CMOS,QFP,64PIN,PLASTIC
STMICROELECTR

ST72F361AR6T6/XXXTR

IC,MICROCONTROLLER,8-BIT,ST72 CPU,CMOS,QFP,64PIN,PLASTIC
STMICROELECTR

ST72F361AR6T6/XXXTRE

IC,MICROCONTROLLER,8-BIT,ST72 CPU,CMOS,QFP,64PIN,PLASTIC
STMICROELECTR