ST75C530 [STMICROELECTRONICS]

SUPER INTEGRATED DEVICESWITH DSP, AFE & MEMORIES FORTELEPHONY,MODEM, FAXOVERINTERNET& POTSLINES; 超级综合DEVICESWITH DSP , AFE与MEMORIES FORTELEPHONY , MODEM , FAXOVERINTERNET & POTSLINES
ST75C530
型号: ST75C530
厂家: ST    ST
描述:

SUPER INTEGRATED DEVICESWITH DSP, AFE & MEMORIES FORTELEPHONY,MODEM, FAXOVERINTERNET& POTSLINES
超级综合DEVICESWITH DSP , AFE与MEMORIES FORTELEPHONY , MODEM , FAXOVERINTERNET & POTSLINES

电信集成电路 电信电路 石英晶振
文件: 总84页 (文件大小:596K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ST75C530  
ST75C540  
SUPER INTEGRATED DEVICES WITH DSP, AFE & MEMORIES  
FOR TELEPHONY, MODEM, FAX OVER INTERNET & POTS LINES  
SUMMARIZED FEATURES  
(for detailed features, see page 4)  
.
SINGLE CHIP FAX Up to 14.4Kbps(V.17)  
FULL DUPLEX DATA MODEM UP TO  
14.4Kbps(V.32Bis)  
DIGITAL ANSWERING MACHINE :  
- 4.8Kbps VOCODER  
- VARIABLEPLAYBACKSPEED (+50% to -50%)  
- ADPCM 32, 34, 16Kbps VOCODER  
.
.
.
FULL-DUPLEX DIGITAL SPEAKERPHONE  
WITH ECHO CANCELLATION  
PROGRAMMABLE RING DETECTION  
16 PROGRAMMABLE TONE DETECTORS  
FOR CLID AND SCWID  
DTMF DETECTION  
VERSATILE HOST INTERFACES  
16 GENERAL PURPOSE I/O PORTS  
2 RELAY DRIVE OUTPUTS  
TQFP80 (14 x 14 x 1.4mm)  
(Full Thin Plastic Quad Flat Pack)  
.
.
ORDER CODE : ST75C530FP-A  
.
.
.
.
.
.
ST75C540FP-A  
SINGLE 5V POWER SUPPLY  
TYPICAL ACTIVE POWER CONSUMPTION :  
650mW (ST75C530), 750 mW (ST75C540)  
LOW POWER MODE < 30mW  
80-PIN TQFP PACKAGE (14mm x 14mm)  
The embedded software includes :  
- handset with listening group capability,  
- full duplex handsfree,  
- voicecoder/decoderat 4.8Kbpsfor staticanswer-  
ing machine applications and ADPCM 16Kbps,  
24Kbps and 32Kbps for high quality message  
recording,  
.
.
- Tone and DTMF generators,  
- Tone and DTMF detectors,  
- FAX up to 14.4Kbps,  
- Data-Modem up to 14.4Kbps(ST75C540 only).  
DESCRIPTION  
The DSP sofware is extensively user configurable  
allowing specific functions to be supported like  
Caller Identifier (CLID) and Second Call Waiting  
Identifier (SCWID).  
The DSP software includes a transparent mode  
allowing the host controller to access directly the  
modem Analog Front End and the Audio AFE  
through the dual Port RAM. This is very useful for  
hostprocessing modem solutions (or soft modem)  
where the modulation andthe demodulation(V.34,  
V.90) are done by the application main processor.  
In transparent mode, the embedded DSP can be  
used simultaneously with the same samples.  
ST75C530 and ST75C540 are two super-inte-  
grated devices including DSP, Modem and Audio  
Analog Front Ends and memories for Telephony,  
Modem and FAX applications.  
These devices can be used for classical applica-  
tions over POTS lines or over Internet.  
The super integration technology allows a signifi-  
cant cost reduction on bill of materials for equip-  
ment like High-End phones, INTERNET phones,  
phone-Fax, INTERNET FAX, ...  
The devices are used with a host processor  
through a Dual Port RAM allowing the use of any  
kind of microcontroller (RISC, CISC, General Pur-  
The transparentmode for audio AFE is providedto  
play audio files or to record voice and/or audio.  
µ
pose 8-bit C, ...).  
1/84  
February 1999  
ST75C530 - ST75C540  
CONTENTS  
Page  
I
DETAILED FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4
II  
PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5
II.1  
II.2  
II.3  
II.4  
II.5  
II.6  
PIN CONNECTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HOST INTERFACE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ANALOG INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
GENERAL PURPOSE IO AND RELAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MISCELLANEOUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
POWER SUPPLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5
6
6
6
7
7
III  
BLOCK DIAGRAMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8
III.1  
III.2  
ANALOG INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
INTERNAL BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8
8
IV  
ELECTRICAL SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
9
IV.1  
IV.2  
IV.3  
IV.4  
IV.5  
IV.6  
MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
RECOMMENDED OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DIGITAL INTERFACE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MODEM ANALOG INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
AUDIO ANALOG INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
AC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
9
9
10  
11  
11  
12  
V
FUNCTIONAL DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
13  
V.1  
V.2  
V.3  
SYSTEM ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MODES OF OPERATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
13  
13  
13  
V.3.1  
V.3.2  
V.3.3  
V.3.4  
V.3.5  
V.3.6  
V.3.7  
V.3.8  
V.3.9  
Modem Transmitter Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Modem Receiver Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Tone Generator Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Tone Detector Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V.21 Channel 2 Flag Detector Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HDLC Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
UART Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DTMF Detector Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Ring Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
13  
13  
13  
13  
13  
13  
13  
13  
13  
14  
14  
15  
18  
18  
V.3.10 VOCODER Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V.3.11 Voice Activity Detector (VAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V.3.12 Telephony Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V.3.13 Low Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V.3.14 Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V.4  
MODEM INTERFACE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
18  
V.4.1  
V.4.2  
V.4.3  
V.4.4  
V.4.5  
Analog Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
General I/O and Relay Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Typical Application Schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Host Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
18  
18  
19  
19  
19  
VI  
USER INTERFACE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
21  
VI.1  
VI.2  
VI.3  
VI.4  
VI.5  
DUAL PORT RAM DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
COMMAND SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
COMMAND SET SHORT FORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
STATUS - REPORTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DATA EXCHANGES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
21  
25  
26  
27  
27  
2/84  
ST75C530 - ST75C540  
VII  
COMMAND SET DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
28  
43  
VIII  
STATUS DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
VIII.1  
VIII.2  
COMMAND ACKNOWLEDGE AND REPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MODEM STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
43  
44  
IX  
TONE DETECTORS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
53  
IX.1  
IX.2  
IX.3  
OVERVIEW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
EXAMPLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
53  
53  
59  
X
PARALLEL DATA EXCHANGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
60  
X.1  
X.2  
X.3  
X.4  
X.5  
X.6  
OVERVIEW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TRANSMIT BUFFER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
RECEIVE BUFFER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
INTERRUPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DATA FORMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
FORM COMMAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
60  
60  
61  
61  
61  
63  
XI  
TRANSMITTING DATA IN PARALLEL MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
64  
XI.1  
XI.2  
XI.3  
XI.4  
XI.5  
XI.6  
XI.7  
DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MODEM FLOW CHART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HOST FLOW CHART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ERROR DETECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SYNCHRONOUS MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HDLC MODE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
UART MODE DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
64  
65  
65  
66  
66  
67  
69  
XII  
RECEIVING IN PARALLEL MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
70  
XII.1  
XII.2  
XII.3  
XII.4  
XII.5  
XII.6  
XII.7  
DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MODEM FLOW CHART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HOST FLOW CHART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ERROR DETECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SYNCHRONOUS MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HDLC MODE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
UART MODE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
70  
70  
70  
71  
72  
72  
74  
XIII  
VOCODER DATA EXCHANGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
74  
XIII.1  
XIII.2  
XIII.3  
XIII.4  
OVERVIEW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
VOCODER BUFFER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TRANSMIT (DECODER) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
RECEIVE (CODER) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
74  
74  
74  
75  
XIV  
XV  
TRANSPARENT MODE DATA EXCHANGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DEFAULT CALL PROGRESS TONE DETECTORS . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DEFAULT ANSWER TONE DETECTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ELECTRICAL SCHEMATICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PCB DESIGN GUIDELINES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
APPENDIX A : MODES OF OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
75  
76  
76  
77  
78  
78  
83  
XVI  
XVII  
XVIII  
XIX  
XX  
3/84  
ST75C530 - ST75C540  
I - DETAILED FEATURES  
Single Chip Fax  
Handset Mode  
- ITU-T V.17, V.29, V.27ter, V.21 with Fax support  
- V.17, V.29 (T104), V.27ter short trains,  
V.33 half-duplex  
- V.21 flag detection and 4 tone detection during  
high speed reception modes  
- Rx and Tx AGC versus line current for line  
losses compensation comply with most of  
country regulations  
- Dynamic limiter in transmit path to prevent  
distortion  
- V.21 flag detection, DTMF detection and 4  
tone detection duringV.21 channel 2 reception  
modes  
- Programmable call progress and call waiting  
detection  
- Parallel data handling  
- HDLC and UART framing support  
- 1700Hz and 1800Hz carrier  
- Full implementation of the V.17, V.33, V.29 and  
V.27 handshakes  
- 0 to -15dBm programmable transmit power  
- 0 to -47dBmreceiverdynamicrange(ST75C530)  
0 to-45dBmreceiverdynamicrange (ST75C540)  
- Two way conversation recording  
Hands-free Mode  
- Full duplex speakerphone using LMS adaptative  
filtering including line echo cancellation and  
acoustic echo cancellation  
- Rx and Tx AGC versus line current for line  
losses compensation comply with most of  
country regulations  
- Dynamic limiter in transmit path to prevent  
distortion  
- Loudspeakervolume control  
- Two way conversation recording  
Full Duplex Data Modem  
- ITU-T V.32bis, V.32 (14400, 12000, 9600, 7200,  
4800bps) (*)  
- Maximum round trip delay : 1.2s (satellite hops)  
(*)  
- Up to 10Hz of phase roll on far end echo (*)  
- ITU-T V.22bis, V.22 (2400, 1200bps)(*)  
- V.32bis/V.32/V.22bis/V.22automode (*)  
- ITU- V.23, V.21, bell 103 full-duplex,  
Bell202 demodulator  
Extended Modes of Operations  
- Programmable ring detection  
- 16 programmabletone detectors  
- Tone and DTMF generators  
- Caller ID reception  
- Transparent mode allowing direct transfer of Mo-  
dem AFE and audio AFE samples to and from  
host processor for soft Modem applications and  
sound files playing  
- DTMF detection  
- Wide dynamic range (>48dB)  
- -10 to -25dBm programmable transmit power  
- -10 to-38dBm receiverdynamic range(*)  
- HDLC and UART framing support  
- Train based on quality line sampling (*)  
Versatile Interfaces  
- Parallel 128 x 8-bit dual port RAM  
- General purpose 16 I/O ports  
- 2 relay drive outputs  
- Full diagnostic capability  
- Dual 8-bit DAC for constellation display  
(*) ST75C540 only  
Digital Answering Machine  
- Low bit rate speech coder (4800bps)  
- Variable playback speed (+50% to -50%)  
- ARAM compatibility (error correction)  
- ADPCM 32, 24, 16Kbps  
Single 5V Power Supply  
- Typical active power consumption :  
650mW (ST75C530), 725mW (ST75C540)  
- Low power mode < 30mW  
- Line echo cancellation  
- Voice activity detector  
- Concurrent DTMF and tone detection  
4/84  
ST75C530 - ST75C540  
II - PIN DESCRIPTION  
II.1 - Pin Connections  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
SPK1N  
SPK1P  
AGNDTA  
VREFN  
GIO10  
DVDD4  
2
3
DGND4  
GIO07  
GIO06  
GIO05  
GIO04  
GIO03  
GIO02  
DVDD3  
4
5
VREFP  
6
VCM  
7
AGNDRA  
MIC1  
8
9
MIC2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
MIC3  
RxA  
DGND3  
GIO01  
GIO00  
RING  
AVDDM  
AGNDM  
TxA2  
TxA1  
RELAY1  
RELAY0  
RGND  
INT/MOT  
SINTR  
SCS  
EYEX  
EYEY  
DGND6  
DVDD6  
DGND1  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
5/84  
ST75C530 - ST75C540  
II - PIN DESCRIPTION (continued)  
II.2 - Host Interface  
The exchanges withthe control processor proceed through a 128 x 8 DUALport RAM shared between the  
ST75C530/540and the Host. The signals associated with this interface are :  
Pin Name  
Type  
Description  
SD0..SD7  
I/O  
System Data Bus. 8-bit data bus used for asynchronous exchanges between the  
ST75C530/540 and the Host through the dual port RAM. High impedance when exchanges  
are not active.  
SA0..SA6  
I
I
System Address Bus. 7-bit address bus for dual port RAM, IO and interrupt registers.  
SDS (SRD)  
System Data Strobe. In Motorola mode SDS initiates the exchange, active low. In Intel mode  
SRD initiates a read exchange, active low.  
SR/W (SWR)  
I
System Read/Write. In Motorola mode SR/W defines the type of exchange read/write. In Intel  
mode SWR initiates a write exchange, active low.  
SCS  
I
System Chip Select. Active low.  
SINTR  
OD  
System Interrupt Request. Opendrain. Active low. Thissignal isasserted by theST75C530/540  
and negated by the host.  
RESET  
I
I
Reset. Active low.  
INT/MOT  
Select Intel or Motorola Interface  
II.3 - Analog Interface  
Pin Name  
TxA1  
Type  
Description  
Transmit Analog Output 1  
O
O
I
TxA2  
RxA  
Transmit Analog Output 2  
Receive Analog Input  
SPK1P  
O
Speaker Output 1, (differential positive), must be connected through Amplifier to the  
loudspeaker.  
SPK1N  
SPK2P  
O
O
Speaker Output 1, (differential negative)  
Speaker Output 2, (differential positive), must be connected through Amplifier to the Handset  
loudspeaker.  
SPK2N  
SPK3P  
SPK3N  
MIC1  
O
O
O
I
Speaker Output 2, (differential negative)  
Speaker Output 3, (differential positive)  
Speaker Output 3, (differential negative)  
Microphone Input 1  
MIC2  
I
Microphone Input 2  
MIC3  
I
Microphone Input 3  
VCM  
I/O  
I
Analog Common Voltage (nominal+2.5V).This input must be decoupled withrespect to AGND.  
Analog Negative Reference (nominal 1.25V). This input must be decoupled with respect to  
VREFN  
VCM  
.
VREFP  
I
Analog Positive Reference (nominal 3.75V). This input must be decoupled with respect to VCM.  
II.4 - General Purpose IO and Relay  
Pin Name  
GIO[0,7]  
Type  
I/O  
Description  
General Purpose I/O Pins, can be independently selected as input or output.  
General Purpose I/O Pins, can be independently selected as input or output.  
Relay Outputs, Open Drain, Active Low. Can sink -10mA to RGND.  
GIO[10,17]  
I/O  
RELAY0,  
RELAY1  
OD  
RING  
I
Ring detectsignal. Active low. If the ST75C530/540 is inlow power mode, a low level will awake  
the chip. This input is a Schmidt’s trigger.  
RGND  
PWR Relay Digital Ground. To connect to GND.  
6/84  
ST75C530 - ST75C540  
II - PIN DESCRIPTION (continued)  
II.5 - Miscellaneous  
Pin Name  
EYEX  
Type  
Description  
O
O
O
I
Constellation X analog coordinate  
Constellation Y analog coordinate  
EYEY  
XTAL  
Internal Oscillator Output. Left open if not used.  
EXTAL  
XPLL  
Internal Oscillator Input, or External Clock Input.  
I
Reserved for future use, must be connected to digital ground.  
Output Clock, EXTAL/2 (not available in low power mode).  
CLKOUT  
TEST0  
O
I
Test pin for normal operation, must be connected to digital ground.  
Note : The nominal frequency of the crystal oscillator is 44.2368MHz with a precision better than ± 100ppm.  
II.6 - Power Supply  
Symbol  
DVDD  
Nber  
Parameter  
6
6
2
3
Digital +5V.  
DGND  
AVDD  
Digital Ground.  
Analog +5V.  
Analog Ground.  
AGND  
7/84  
ST75C530 - ST75C540  
III - BLOCK DIAGRAMS  
III.1 - Analog Interface  
TXA1  
15  
14  
DAC  
MUTE  
HYBRID  
Line  
TXA2  
RXA  
11  
ADC  
MUTE  
[0..-30]dB  
Step 3dB  
1
2
SPK1  
SPK3  
DAC  
76  
77  
78  
79  
MUTE  
MUTE  
SPK2  
MIC2  
9
8
ADC  
MIC1  
MIC3  
10  
ST75C530/540  
III.2 - Internal Block Diagram  
45 46  
ST75C530/540  
GIO AND RELAY  
EYE DAC  
Pins 34 to 40  
SA[0..6]  
DUAL  
PORT RAM  
16  
17  
EYEX  
EYEY  
Pins 22 to 29  
SD[0..7]  
42  
SINTR  
ANALOG  
FRONT  
END  
RAM  
6144 WORDS  
TIME BASE  
68  
72  
CLKOUT  
XTAL  
ROM  
16368 WORDS  
PROM  
26624  
OSC  
INSTRUCTIONS  
73  
47  
EXTAL  
RING  
AUTOTEST  
1024  
INSTRUCTIONS  
ST18932  
DSP  
(24Mips)  
8/84  
ST75C530 - ST75C540  
IV - ELECTRICAL SPECIFICATIONS  
IV.1 - Maximum Ratings (AGND = DGND = RGND = 0V, all voltages with respect to 0V)  
Symbol  
AVDD  
DVDD  
II  
Parameter  
Value  
-0.3, 6.0  
Unit  
V
Analog Power Supply  
Digital Power Supply  
-0.3, 6.0  
V
Input Current per Pin (except supply pins and RELAY0 and RELAY1)  
Output Current per Pin (except supply pins and RELAY0 and RELAY1)  
Output Current per Pin RELAY0 or RELAY1 (respect to RGND)  
Analog Input Voltage  
-10, +10  
-20, +20  
-40, 0  
mA  
mA  
mA  
V
IO  
IO2  
VIA  
-0.3, AVDD + 0.3  
-0.3, DVDD + 0.3  
5.25  
VID  
Digital Input Voltage  
V
VIDGPIO Digital Input Voltage at GPIO  
V
Toper  
Tstg  
Ptot  
Operating Temperature  
Storage Temperature  
0, +70  
°C  
°C  
mW  
- 40, +125  
1500  
Maximum Power Dissipation  
Warning : Operation beyond these limits may result in permanent damage to the device. Normal operation is not guaranted at these extremes.  
IV.2 - Recommended Operating Conditions  
(AGND = DGND = RGND = 0V, all voltages with respect to 0V)  
Symbol  
VDD  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply Voltage  
Supply Current  
4.75  
5
5.25  
V
IDD  
ST75C530  
ST75C540  
130  
145  
150  
165  
mA  
mA  
PDLP  
PD  
Low Power  
Power  
30  
mW  
ST75C530  
ST75C540  
650  
725  
790  
866  
mW  
mW  
VCM  
ICM  
Common Mode Voltage Output (refer to AVDD/2)  
Common Mode Current (see Note 1)  
-5  
+5  
%
100  
µA  
Note 1 : DC current only. If dynamic load exists, the VCM output must be buffered or the performances of ADCs and DACs will be degraded.  
9/84  
ST75C530 - ST75C540  
IV - ELECTRICAL SPECIFICATIONS (continued)  
IV.3 - Digital Interface  
(AVDD = DVDD = 5V, AGND = DGND = RGND = 0V) except XTAL, EXTAL, RING.  
Symbol  
VIH  
Parameter  
Min. Typ. Max. Unit  
High Level Input Voltage  
Low Level Input Voltage  
2.2  
-0.3  
2.4  
V
V
VIL  
0.8  
VOH  
VOL  
High Level Output Voltage (Iload = -2mA, Iload = -4mA for SD[7..0])  
Low Level Output Voltage (Iload = 2mA, Iload = 4mA for SD[7..0])  
Input Leakage Current  
V
0.4  
10  
V
ILEAK  
IOL  
-10  
-2  
µA  
mA  
Low Level Output Current (except RELAY0 and RELAY1, and SINTR)  
(0 < VOL < VOLMax.  
)
IOH  
High Level Output Current (except RELAY0 and RELAY1, and SINTR)  
(0 < VOL < VOLMax.  
2
mA  
)
IOZ  
IOZ  
GIO Three State Input Leakage Current (GND < VO < VDD  
SD Three State Input Leakage Current (GND < VO < VDD  
)
-50  
-50  
-10  
0
0
50  
50  
0
A
µ
)
µA  
IOLRELAY Low Level Output Current RELAY0 or RELAY1 (VOL = 0.8V)  
CRYSTAL OSCILLATOR  
mA  
VIH  
VIL  
IH  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
3.5  
-20  
V
V
1.5  
20  
µA  
IL  
A
µ
RING (this input have hysteresis)  
VIH  
VIL  
IH  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
2.4  
1.2  
2.8  
20  
V
1
V
-20  
A
µ
IL  
µA  
10/84  
ST75C530 - ST75C540  
IV - ELECTRICAL SPECIFICATIONS (continued)  
IV.4 - Modem Analog Interface  
AVDD = DVDD = 5V, Tamb = 25oC  
Measurement bandwidth is flat from 100Hz to 4800Hz ;Load impedance10k , 20pF  
For differentialoutput (TxA1/TxA2) : 0dBr = 1.77VRMS 1kHzsinwave (equivalent to 5VPP).  
For single input (RxA) : 0dBr = 886mVRMS 1kHz sinwave (equivalent to 2.5VPP).  
Symbol  
Rxrin  
Pin Name  
Parameter  
Min.  
Typ.  
Max.  
Unit  
kΩ  
VPP  
V
RxA  
Input Impedance  
100  
Rxmac  
Rxdc  
Maximum AC Input Voltage = 0dBr  
DC Reference Voltage  
2.5  
2.5  
Rxsndr  
Rxin  
Signal to (Noise + Distortion), at -6dBr  
Idle Noise  
75  
dB  
dBr  
mV  
kΩ  
pF  
-81  
Rxov  
DC Offset Voltage (Input = VCM  
Minimum Differential Load  
Maximum Differential Load  
Output Impedance  
)
-50  
10  
100  
TxAdrl  
TxAcl  
TxA1/TxA2  
20  
100  
5
TxArout  
TxAmac  
TxAdc  
TxAov  
TxAsndr  
TxAin  
Maximum AC Differential Output = 0dBr  
DC Reference Voltage  
VPP  
V
2.5  
DC Offset Voltage  
-200  
79  
200  
-85  
mV  
dB  
dBr  
Signal to (Noise + Distortion), at -6dBr  
Idle Noise  
IV.5 - Audio Analog Interface  
AVDD = DVDD = 5V, Tamb = 25oC  
Measurement bandwidth is flat from 100Hz to 4800Hz ;Load impedance10k , 20pF  
For differentialoutput (SPK1N/SPK1P,SPK2N/SPK2P, SPK3N/SPK3P): 0dBr = 1.77VRMS 1kHz sinwave  
(equivalent to 5VPP).  
For single input (MIC1, MIC2, MIC3) : 0dBr = 886mVRMS 1kHz sinwave (equivalent to 2.5VPP).  
Symbol  
RArin  
RAmac  
RAdc  
RAdis  
RAin  
Pin Name  
Parameter  
Min.  
Typ.  
Max.  
Unit  
kΩ  
VPP  
V
MIC1,  
MIC2,  
MIC3  
Input Impedance  
100  
Maximum AC Input Voltage = 0dBr  
DC Reference Voltage  
Distortion at -6dBr  
2.5  
2.5  
2
%
Idle Noise  
-81  
50  
dBr  
mV  
kΩ  
RAov  
TAdrl  
DC Offset Voltage (Input = VCM  
)
-50  
10  
SPK1N/SPK1P, Minimum Differential Load  
SPK2N/SPK2P,  
Output Impedance  
SPK3N/SPK3P  
TArout  
TAmac  
TAdc  
100  
5
Maximum AC Differential Output = 0dBr  
DC Reference Voltage  
DC Offset Voltage  
VPP  
V
2.5  
TAov  
-200  
200  
1
mV  
%
TAdis  
TAin  
Distortion at -6dBr  
Idle Noise  
-81  
dBr  
11/84  
ST75C530 - ST75C540  
IV - ELECTRICAL SPECIFICATIONS (continued)  
IV.6 - AC ElectricalCharacteristics  
WRITE CYCLE  
READ CYCLE  
SCS  
SA[0..6]  
1
3
2
SR/W  
SDS  
1
4
2
5
WR  
RD  
11  
6
7
10  
12  
IN  
OUT  
SD[0..7]  
SINTR  
8
9
GIO(out),  
RELAY  
13  
14  
GIO(in)  
Number  
Description  
Min.  
Typ.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
Address and Control Set-up Time  
Address and Control Hold Time  
Write Enable Low State  
Read Enable Low State  
Access Inhibition High State  
Data Set-up Time  
5
20  
3
45  
45  
70  
10  
5
4
5
6
7
Data Hold Time  
8
GIO Output, Relay, SINTR Clear Delay  
GIO Output Hold Time  
Read Data Access Time  
Data Valid to Tristate Time  
Data Hold Time  
50  
9
0
10  
11  
12  
13  
14  
35  
15  
5
0
GIO Input Delay Time  
40  
GIO Input Hold Time  
12/84  
ST75C530 - ST75C540  
V - FUNCTIONAL DESCRIPTION  
V.1 - SystemArchitecture  
pling rate at 4.8kHz. But this 4 additional tone  
detectors can also detect tones up to 3.3kHz with  
a sampling rate at 9.6kHz. In order to avoid wrong  
detectgion, relative detectgion is also provided.  
Thechipallowsthe designof a completeFAX, Data  
Modem, Hands-Free Telephone and Answering  
Machine system. A versatile dual port RAM allows  
an easy interface with most micro-controllers.  
V.3.5- V.21 Channel 2 Flag Detector Description  
Inall theReceiveFAXModes, includingV.21Chan-  
nel 2 Mode, the ST75C530/540 processes a V.21  
Flag “7E” detector, either in the idle state, the train  
sequence or the data mode. The detection time is  
3 consecutive flags to detect and 1 byte to loose  
the detection.  
V.2 - Modes of Operation  
Refer to AppendixA for Block Diagrams.  
V.3 - Operations  
V.3.1 - Modem Transmitter Description  
The signal pulses are shaped in a dedicated filter  
further combined with a compromise transmit  
equalizersuited for transmissionover strongly dis-  
torted lines. 3 different compromise equalizers are  
available and can be selected by software.  
V.3.6 - HDLC Description  
In all FAX Modes (MODEM), including V.21 Chan-  
nel  
2
Mod e, and also Full Duplex  
V.32bis/V.32/V.22bis/V.22 (Modem) modes, a  
HDLC framing and deframing is supported by the  
ST75C530/540. The number of transmitted flags  
can be programmed.  
V.3.2 - Modem Receiver Description  
The receiver section handles complex signals and  
uses a fractionally spaced complex equalizer. It is  
able to cope with distant modem timing drifts up to  
10-4 as specified in the ITU-T recommendations.It  
also compensates for frequency drift up to 10Hz  
and for phase jitter at multiple and simultaneous  
frequencies.  
V.3.7 - UART Description  
In Full Duplex V.32bis/V.32/V.22bis/V.22 Modem  
ModesandTONECIDV.23receivemode,a parallel  
UART is performed by the ST75C530/540. This  
UARTmanage the Break signal either at thetrans-  
mit and the receive bit stream. The Data format  
supported are 7 and 8 bit of Data; even, odd or no  
Parity, 1 or 2 stop bits.  
V.3.3 - Tone Generator Description  
Fourtones canbe simultaneouslygeneratedby the  
ST75C530/540. These tones are determined by  
theirfrequenciesandby the outputamplitude level.  
A set of specific commands are also available for  
DTMFgeneration.Anyof the4 tonegeneratorscan  
be output independently either on the Audio DAC  
or the line DAC.  
V.3.8 - DTMF Detector Description  
ADTMF Detectoris includedin theST75C530/540,  
it allows detection of valid DTMF Digits. A valid  
DTMF Digit is defined as a dual tone with a total  
power higher than -43dBm, a duration higher than  
40msanda differentialamplitude within ±8dB. This  
DTMF Detector is enabled in all modes except in  
Fax Modem, Data Modem and Handset modes. It  
is also enabled in V.21 Channel 2 Receive Mode.  
The DTMF thresholds and duration can be  
changed from they default value by overwriting  
DSP’s RAM locations. In the default setup, this  
detectoris compliant with the NET4 standard.The  
frequencydeviationcan be changedby overwriting  
the default DTMF’s filters coefficients.  
V.3.4 - Tone Detector Description  
During TONE (respectively TONECID) Mode six-  
teen (respectively eight) tones can be simultane-  
ously detected by the ST75C530/540.Each of the  
tones to be detected is defined by the coefficients  
of a 4th order programmableIIR. Detection thresh-  
olds are programmablefrom -51dBm up to -6dBm.  
These primary detectors can detect tone up to  
3.3kHz (sampling rate 7.2kHz in all modes). They  
also have a programmable internal wiring feature  
(see Chapter IX).  
V.3.9 - Ring Detector  
In all modes, except Handset (HANDSET) and Full  
Duplex V.32bis/V.32/V.22bis/V.22 (Modem)  
modes, 4 additional tone detectors (each of them  
being a 4th order programmable IIR) are concur-  
rently running. In Handset mode only 2 additional  
tone detectors are available. Detection thresholds  
are programmable from-51dBm up to -6dBm.This  
secondary programmable detector can detect  
tones up to 1.8kHz by default set-up with a sam-  
This detector detects RING signal from 15Hz to  
68Hz, it can be programmed to expand the mini-  
mum and maximum detection frequency up to  
12Hz (for min) and 144Hz (for max). The detection  
time is equal to one period of the ring signal, and  
the loose time to the minimum between oneperiod  
of the ring signal and the inverse of the minimum  
frequency.  
The associated STA_RING status is as Figure 1.  
13/84  
ST75C530 - ST75C540  
V - FUNCTIONAL DESCRIPTION (continued)  
Figure 1  
RING  
T1  
T2  
T3  
STA_RING  
1/Fmax prog. < T1 < 1/Fmin prog.  
T2 < 1/Fmax prog.  
1/Fmin prog.  
T3  
V.3.10 - VOCODER Description  
function allows a quick message listening if speed  
up is used, or at the opposite if slow down is used,  
an enhancementof the voice intelligibility.  
The Vocoder mode allows the implementation of  
an answering machine function. In the CODER  
mode the received samples from one of the two  
analog inputs, Line or Audio, are compressed by  
the ST75C530/540 and written into the dual port  
RAM Vocoder Buffer (VOCxxx). At the same time  
the ST75C530/540 is looking for an incoming  
DTMF tone and 4 different programmable tones.  
V.3.11 - VoiceActivity Detector (VAD)  
In CODER Mode, for both of the Voice Coding  
algorithms, a Voice Activity Detector is imple-  
mented while coding by the ST75C530/540. The  
STA_109 bit and STA_109F bit reflect the state of  
the VAD. After the CONF command the VADis on  
(assume voice). The default time-out to detect si-  
lence is 2 secondsand theset-uptimeto detectthe  
voice is 15ms. This VAD information is also copied  
into the Receive Buffer Status Word MSB (VOC-  
STA bit7). This detector is fully programmable in  
level sensitivity (down to -60dBm), hysteresis, and  
various criteria.  
In the DECODER mode the compressed samples  
are read from the dual port RAM, decompressed  
and transmitted to one of the two analog output,  
Line or Micx. The ST75C530/540 synthesises an  
estimation of its echo and subtracts it from the  
received signal. At t he same time the  
ST75C530/540 is looking for an incoming DTMF  
tone and 4 different tones.  
Two algorithms of voice coding are implemented :  
- Low bit rate speech coder (4800bps or 5300bps  
with forward error correction).  
- ADPCM (ST proprietary algorithm) at 32, 24 and  
16Kbps.  
An optional silence suppressor is implemented in  
the Coder section to suppress long silence in the  
incoming message. When enabled (CONF_SUP-  
SIL equal 1) if a long silence is detected (STA_109  
equal 0) the ST75C530/540stopsgenerating Buff-  
er Interrupts. After that if a voice is again detected  
the ST75C530/540will resume the Buffer Interrupt  
mechanism.  
If the low bit rate coder algorithm is selected the  
ST75C530/540has the capability to slow down or  
speed up the DECODER flow up to ±50%. This  
Figure 2  
Rx Signal  
2s  
STA_109  
(or VOCSTA bit 7)  
Interrupt (IT1)  
14/84  
ST75C530 - ST75C540  
V - FUNCTIONAL DESCRIPTION (continued)  
V.3.12 - Telephony Functions  
tions.The softwareimplementedin ST75C530/540  
allows functions such as softclipping, AGC in both  
modes,and fullduplex modein handsfree(seeFig-  
ure 3).  
ST75C530/540 telephony software provides both  
handset and handsfree modes. ST75C530/540 is  
connected to the phone line through a D.A.A.,  
handset and loudspeaker are connected to  
ST75C530/540through amplifiers.  
V.3.12.1 - Handset Mode  
Though the D.A.A. has to comply with modem/fax  
regulations in most of the applications, the micro-  
phone and the earphone amplifier gains will be  
adjusted in compliance with the telephony regula-  
In handset mode, all the attenuations(_SPKGAIN,  
_TXGAIN, _MIKGAIN) are from 0dB to -inf  
(32768 steps). AGC and softclipping functions can  
beenabledand disabledbysoftware(seeFigure4).  
Figure 3 : Handset/HandsfreeMode Operation  
TxA1  
15  
ATT_TX  
2 TONE  
GENERATOR  
DAC  
MUTE  
HYBRID  
14  
Line  
TxA2  
RxA  
11  
ADC  
MUTE  
[0..-30]dB  
Step 3dB  
1
2
CODER  
SPK1  
SPK3  
76  
77  
78  
79  
AGC  
AGC  
DAC  
MUTE  
MUTE  
DUAL  
RAM  
INTERFACE  
HANDSFREE/  
HANDSET  
ALGORITHMS  
SPK2  
MIC2  
MIC1  
9
8
ATT_MIC  
2 TONE  
DETECTORS  
DG  
ADC  
10 MIC3  
Figure 4 : Handset Mode  
AGC = F(ILINE  
)
_MIKGAIN  
_TXGAIN  
TxA1  
TxA2  
MIC2  
Softclipping  
DP_RING  
RxA  
_SPKGAIN  
SPK2_1  
SPK2_2  
AGC = F(ILINE  
)
15/84  
ST75C530 - ST75C540  
V - FUNCTIONAL DESCRIPTION (continued)  
Tx Characteristics  
Symbol  
Parameter  
Transmit Gain  
Test Conditions  
Min. Typ. Max. Unit  
Gtx  
_MIKGAIN=7FFF,_TXGAIN=7FFF, AGC disabled  
VMIC2 = -21dBV  
18  
8
dB  
dB  
VMIC2 = -9dBV  
Ntx  
Transmit noise  
2k between MIC2 and GND  
-73  
60  
dBmp  
dB  
Mmic  
Microphone mute  
VMIC2 = -21dBV  
VLpeak Transmit softclipping  
level on TxA1-TxA2  
_MIKGAIN=7FFF,_TXGAIN=7FFF, AGC disabled  
see Figure 3, VMIC2 = -9dBV  
2.5  
Vpp  
Dtx  
Transmit distortion  
_MIKGAIN=7FFF,_TXGAIN=7FFF, AGC disabled  
see Figure 3, VMIC2 = -9dBV  
2
%
Rx Characteristics  
Symbol  
Grx  
Parameter  
Test Conditions  
Min. Typ. Max. Unit  
Receive Gain  
Receive noise  
Mute  
_SPKGAIN=7FFF, AGC disabled, VRXA = -16 dBV  
6
dB  
dBmp  
dB  
Nrx  
-79  
60  
Mrx  
VRXA = dBV  
Dtx  
Receive distortion  
(SPK2 output)  
_SPKGAIN=7FFF, AGC Disabled, VRXA = -16dBV  
2
%
AGC  
Figure 5 : SoftclippingStatic Gain  
Tx Softclipping and Distortion  
The line current information is coming from the  
D.A.A.on DP_RINGpin (frequencycoded informa-  
tion using by example a TS555 general purpose  
timer). The AGC has a 6dBdepth . Theattenuation  
table can be loaded to comply with each country  
regulation. The default table has the following val-  
ues. The value of the AGC gain is applied to both  
Tx and Rx path (see Table 1).  
The address of the table is given in the register  
@_TABLE.  
The table length is 53. The AGC is enabled using  
CONF or MODC command (see paragraph ”VII -  
COMMAND SET DESCRIPTION”.  
(mVRMS  
)
D (%)  
12  
104  
103  
102  
VTxA1-TxA2 (VRMS  
)
Distortion  
10  
8
6
4
Oncethe AGCisrunning,it ispossibletofreezethe  
AGC gain with the register AGC_FRZ.  
2
Softclipping  
The softclipping introducesa 12dB gain and has a  
18dB depth.  
The softclipping value is half digital range  
(4000 Hex) (see Figure 5).  
0
103  
10  
102  
MICX (mVRMS  
V
)
Table 1 : AGC Gain versus Period Information  
Period (ms)  
Table Index  
Gain (dB)  
<9  
<13  
0
10  
13  
10.8 11.6 14.5 13.3 14.1 15.5 16.6 17.5 18.3 19.1  
20  
24  
>20  
>24  
6
14  
15  
16  
3
17  
18  
4
19  
20  
21  
22  
23  
0.7  
1.5  
2.2  
3.4  
4.5  
4.8  
5.1  
5.4  
5.6  
5.8  
16/84  
ST75C530 - ST75C540  
V - FUNCTIONAL DESCRIPTION (continued)  
V.3.12.2- Handsfree Mode  
The handsfree uses a MIC1 and a SPK1 as microphone and loudspeaker interface (see Figure 6).  
Figure 6 : Handsfree Mode : Full Duplex  
_MIKGAIN  
_TXGAIN  
+
-
TxA1  
TxA2  
ACOUSTIC  
FILTER  
ADAPTIVE  
ATTENUATOR  
MIC1  
AGC = F(IL)  
ADAPTIVE  
FIR  
FILTER  
NLMS  
ADAPTIVE  
FIR  
FILTER  
CONTROL  
NLMS  
_SPKGAIN  
-
SPK1P  
SPK1N  
ADAPTIVE  
ATTENUATOR  
RxA  
AGC = F(IL)  
+
Softclipping  
Tx Characteristics  
Symbol  
Parameter  
Test Conditions  
Min. Typ. Max. Unit  
Gtx  
Transmit Gain  
_MIKGAIN=7FFF,_TXGAIN=7FFF ,AGC disabled,  
VMIC1 = -21dBV  
24  
dB  
Ntx  
Mmic  
Dtx  
Transmit noise  
2k between MIC1 and GND  
-70  
60  
dBmp  
dB  
Microphone mute  
Transmit distortion  
VMIC1 = - dBV  
_MIKGAIN=7FFF,_TXGAIN=7FFF ,AGC disabled,  
VMIC1 = -9dBV  
2
%
Rx Characteristics  
Symbol  
Grx  
Parameter  
Test Conditions  
Min. Typ. Max. Unit  
Receive Gain  
Mute  
_SPKGAIN=7FFF, AGC disabled, VRXA = -33dBV  
24  
60  
dB  
dB  
%
Mrx  
Dtx  
Receive distortion  
(SPK1 output)  
_SPKGAIN=7FFF, AGC disabled, VRXA = -33dBV  
2
AGC  
The AGC has the samebehavior as in Handsetmode. Furthermore,the maximum gainadded by AGCcan  
be fixed by using the RX_GAINMAX and TX_GAINMAX registers.  
Softclipping  
See Figure 7.  
SystemStability  
Parameter  
Test Conditions  
Min. Typ. Max. Unit  
Loop attenuation in Rx RxA to TxA1-TxA2  
Speaker gain is 12dB, Mike gain is 14dB 20  
dB  
dB  
Loop attenuation in Tx MICx to SPK1P-SPK1N Analogique sidetone not used  
(see DAA schematics)  
20  
It is possible to add some gain switching in the Tx and Rx path (to reduce the gain of the loop) by using  
the GAIN_RCV and GAIN_XMT registers.  
17/84  
ST75C530 - ST75C540  
V - FUNCTIONAL DESCRIPTION (continued)  
Figure 7 : SPK1 Distortion versus RxA  
Rx Softclipping and Distortion  
V.3.13 - Low Power Mode  
Sleepstatecan beattainedby a SLEEPcommand.  
Whenin sleep mode, the dual port RAM is unavail-  
able and the clocks are disabled.  
When entering the low power mode, the  
ST75C530/540stops its oscillator, all theperipher-  
als of the DSP core are stopped in order to reduce  
the power consumption. The dual port RAM is  
made inaccessible.  
(mVRMS  
103  
)
D (%)  
12  
10  
8
The ST75C530/540 can be awakened by a hard-  
ware reset, a RINGsignal or a dummywrite at any  
location in the dual port RAM.  
102  
6
There is a maximum time of 20ms to restart the  
oscillator after waking up and an additional 5ms  
after the interrupt to be able to accept any com-  
mand coming from the host.  
4
VSPK1 (VRMS  
)
Distortion  
2
V.3.14 - Reset  
After a hardware reset, or an INIT command, the  
ST75C530/540 clears all its internal memories,  
clears the whole dual port RAM and starts to initial-  
ize the delta sigma analog converters. As soon as  
these initializations are completed, the  
ST75C530/540 generates an interrupt IT6 (com-  
mandacknoledge)and is programmed to sendand  
receive tones, the sample clock are programmedto  
9600Hz.The total duration of the reset sequenceis  
about 5ms. After that time the ST75C530/540 is  
readyto executecommandssentby thehost micro-  
controller.The durationof theresetsignalshouldbe  
greater than 700ns.  
0
10  
102  
VMIC2 (mVRMS  
103  
)
Figure 8 : Speakerand Line Tx Power Spectrums  
POWER SPEC1  
POWER SPEC2  
64Avg  
64Avg  
0%Ovlp  
0%Ovlp  
Ftop  
Ftop  
0.0  
0.0  
dBm  
Speaker Output  
RMS  
V2  
dB  
V.4 - Modem Interface  
V.4.1 - Analog Interface  
RMS  
Vv2  
Refer to Block Diagram on page 7.  
Line Tx  
-80.0  
-80.0  
V.4.2 - General I/O and Relay Interface  
16 pins are dedicated to the general I/O port. Two  
are dedicatedto Relaydriver. Theequivalentsche-  
matic is as follows : see Figure 9.  
Fxd Y O  
Hz  
5k  
Note : Acoustic echo from speaker to microphone input with no  
local speech. Receiving speech on line input.  
Figure 9  
GIO0[x]  
RELAY[y]  
IODIR0[x]  
IODATA0[x]  
D Q  
IORELAY[y]  
D Q  
N
(write)  
(write)  
IODATA0[x]  
(read)  
IORELAY[y]  
(read)  
RGND  
18/84  
ST75C530 - ST75C540  
V - FUNCTIONAL DESCRIPTION (continued)  
V.4.3 - Crystal  
The crystal frequency must be 44.2368MHz for  
ST75C530 and 49.152MHzfor ST75C540 with an  
accuracy betterthat 100 ppm. When using a third  
harmonic crystal the schematicmust be as follow :  
see Figure 10.  
The crystal features are :  
- third harmonic,  
- parallel, load capacitance = 10pF,  
- æ 100ppm from 0oC to 70oC,  
- RS < 50,  
to allow transmission of Modem signal up to -  
10dBm and reception up to -10dBm. The OPAmps  
are +12/0V powered. With this application sche-  
matictheout of band transmitspectrum(from4kHz  
to 50kHz) is below -72dBm.  
Figures13 and14 are examplesofapplicationsche-  
maticswhich respectsgainvalue(respectivelyforfax  
and voice application and for Modem application)  
andtheminimumdifferentialloadonTxA1andTxA2.  
±
V.4.5 - Host Interface  
The host interface is seen by the micro as a 128x8  
RAM, with additional registers accessible through  
an 8-bit address space. A selection Pin (INT/MOT)  
allowsto configurethe hostbus for either INTELor  
MOTOROLA type control signals.  
- ATcut (example : SM55-10 MATEL).  
Figure 10  
ST75C540  
Figure 11  
73  
72  
EXTALL  
XTALL  
XTAL H3 **  
600  
1:1  
TxA1  
TxA2  
+8dB  
Line  
L*  
C2  
27pF  
COG  
-1/2  
0.82 H (ST75C530)  
0.68µH (ST75C540)  
µ
RxA  
-10dB  
C1  
10pF  
COG  
Cb  
10nF  
2.2nF  
VCM  
*
Wire wound inductor recommanded (Example : SIGMA-SC30)  
Figure 12  
** Thrird harmonic (Example : MATEL-SM55-10)  
600  
1:1  
TxA1  
TxA2  
XTAL H3 : 44.2368MHz (ST75C530)  
49.152MHz (ST75C540)  
0dB  
Line  
-1/2  
V.4.4 - Typical Application Schematic  
The Figure 11 is a block diagram designedto allow  
transmission of fax signals up to +0dBm and sine  
wave up to +6dBm on the telephone line. It allows  
receptionof faxsignalsup to0dBmand sinewaves  
upto +6dBm.Figure12 isa blockdiagramdesigned  
RxA  
2.2nF  
VCM  
0dB  
19/84  
ST75C530 - ST75C540  
V - FUNCTIONAL DESCRIPTION (continued)  
Figure 13 : Fax Mode  
56.2k1%  
270pF  
470nF 18.2k1%  
+12V  
TxA1  
560Ω  
TxA2  
1:1 *  
18.2k 1%  
470nF  
470nF  
GND  
470pF  
47.5kΩ  
30k1%  
22nF  
6.21k1%  
+6V +6V  
+12V  
470nF  
+6V +6V  
+6V  
+6V  
1.2kΩ  
2.2nF  
RxA  
24.3k1% 470nF  
VCM  
GND  
10k1%  
* Insertion loss = 2.5dB between 0 and 3.4kHz  
Figure 14 : Data Mode  
24k1%  
270pF  
470nF 18.2k1%  
+12V  
TxA1  
TxA2  
560Ω  
1:1 *  
18.2k1%  
470nF  
470nF  
GND  
470pF  
22nF  
47.5kΩ  
30k1%  
6.21k1%  
+6V +6V  
470nF  
+12V  
+6V +6V  
+6V  
1.2kΩ  
2.2nF  
+6V  
RxA  
470nF  
24.3k1%  
GND  
VCM  
33k1%  
* Insertion loss = 2.5dB between 0 and 3.4kHz  
20/84  
ST75C530 - ST75C540  
VI - USER INTERFACE  
VI.1 - Dual Port Ram Description  
VI.1.1.4 - Optional Status Area  
The dual port RAM is the standard interface be-  
tween the host controller and the ST75C530/540,  
for either commands or data. This memory is ad-  
dressedthrough a 7-bit address bus. The locations  
from $00 to $3F are RAM location, while locations  
from $40 to $60 are control registers dedicated to  
the interrupt handling and the general IO port and  
Relay output.  
The user can program (through the DOSR com-  
mand) the four locations STAOPT[0..3] of the Op-  
tional Status Area ($0C to $0F) for the real time  
monitoring of four arbitrary memory locations.  
VI.1.1.5 - Data Buffer Area  
The data area is made of four 8-byte buffers  
(see ParagraphVI.1.3 “Host InterfaceSummary”).  
Two are dedicated to transmission and the two  
others to reception. Each of the four buffers is  
attachedto a statusbyte. the meaningof thestatus  
byte depends on the selected format of transmis-  
sion. Within each buffer, D0 representsthe first bit  
in time.  
Severalfunctionalareasare definedin thedualport  
RAM mapping :  
- the command area,  
- the report area,  
- the status area,  
- the optional status area,  
- the data buffer area,  
- the interrupt control area,  
- the general I/O and Relay Output area.  
VI.1.1.6 - VOCODER Buffer Area  
(VOCODERMode)  
This area is made of a 18+2 byte buffer.Thisbuffer  
contains the VOCODER frame. The first 18 bytes  
VOCDATA contain the coded frame and the other  
2 bytes VOCCORR the Error corrections bit (only  
valid in low bit rate mode).  
In theReceive Mode (CODER)the ST75C530/540  
codes the received samples and writes the corres-  
ponding bytes in the buffer.If the low bit rate mode  
is selected,the ST75C530/540computesthe Error  
corrections 2 bytes and writes them in the buffer.  
In the Transmit Mode (DECODER) the  
ST75C530/540reads the 18 coded bytes decodes  
them and sends the signal to the analog output. In  
the low bit rate mode if the Error Correction is  
enabled, prior the decoding, the ST75C530/540  
reads the 2 Error Correction Bytes and, if any,  
corrects the first 18 bytes.  
VI.1.1 - Mapping  
VI.1.1.1- CommandArea  
The command area is located from $00 to $04.  
Address $00 holds the command byte COMSYS,  
and the next four locations hold the parameters  
COMPAR[0..3].The commandparametersmust be  
enteredbefore the command word is issued. Once  
thecommandhasbeenentered,thecommandbyte  
isresetandan acknowledgereportis issued. Anew  
command should not be issuedbeforetheacknow-  
ledge counter COMACK is incremented.  
VI.1.1.2- Report Area  
The report area is located from address $05 to  
address $07. Location $05 holds the acknowledge  
counter COMACK. Each time a command is ac-  
knowledged, the report bytes COMREP[0..1] (if  
any) are written by the ST75C530/540 into loca-  
tions $06 and $07, and the content of COMACK is  
increme nted. This count er allows the  
ST75C530/540 to accurately monitor the com-  
mand processing.  
A mechanism of flags to share the buffer access  
betweenthe ST75C530/540and thehostcontroller  
is controlled by the VOCSTA byte :  
- In CODER mode, when the ST75C530/540 has  
finis-hed writing the VOCDATA and VOCCORR  
bytes, it writes $14 in VOCSTA and generate an  
Interrupt IT1. The host must read the Data buffer  
then clear the VOCSTAbyte.  
VI.1.1.3- Status Area  
The statusarea is locatedfromaddress$08 to $0B.  
TheerrorstatuswordSYSERRislocatedat address  
$08.This errorstatusword isupdatedeachtime an  
error condition occurs. An optional interruption IT0  
may additionallybe triggeredin the case of an error  
condition. Locations$09 and $0A hold the general  
statusbytesSTATUS[0..1].The meaning of the bits  
dependsonthemodeof operation,andis described  
inChapter VIII.The third byte at address$0B holds  
the Quality Monitor byte STAQUA.  
- In DECODER mode, the host must feed the  
VOCDATAand, optionaly,the VOCCORR bytes,  
then write $14 (if low bit rate) or $12 (if ADPCM)  
in VOCSTA. The ST75C530/540 will read the  
VOCDATA and VOCCORR bytes, clear the  
VOCSTA and generate an Interrupt IT1. A si-  
lence frame can be generated, in either low bit  
rate or ADPCM mode, by writing 00 in all the  
VOCDATA buffer, including the Error Correction  
Bytes VOCCORR.  
21/84  
ST75C530 - ST75C540  
VI - USER INTERFACE (continued)  
VI.1.1.7- Interrupt Control Area  
writing a zero at one of the memory location $40 to  
$46 (Reset Interrupt Register ITRES[0..6]) will re-  
set the corresponding interrupt (and thus acknow-  
ledgeit). The source of the interrupt can be masked  
globally or individually using the Interrupt Mast  
register ITMASK located at $4F.  
The interrupt area, that start after the address $40  
controls the behaviour of the Interrupts mecha-  
nism. Register ITSRCR defines the source of the  
interrupt, the register ITMASK allows independent  
enabling or disabling of any of the interrupt’s  
source, registers ITREST0 to ITREST6 reset the  
corresponding interrupt source.  
The interrupt sources are :  
- IT0 : Error  
Theseregistersarenotaffectedby a INITcommand,  
they are only reseted by a Hardware RESETsignal.  
This signifies that an error has occurred and the  
error code is available in the error status byte  
SYSERR. This byte canbe selectivelycleared by  
the CSE command.  
VI.1.1.8 - General IO and Relay Output Area  
A set of 5 registers is directly accessible by the  
controller to program the General IO pins and  
Relay Outputs (see Paragraph VI.1.3 “Host Inter-  
face Summary”). Two registers IODIR0 and IO-  
DIR1 define the type of the IO pin, either Input or  
Output (0 = input, 1 = output), and two registers  
IODATA0 and IODATA1 define the IO pin signals.  
The fifth register defines the Relay output signals.  
Theseregistersarenotaffectedby a INITcommand,  
they are only reseted by a Hardware RESETsignal.  
The general IO are setup as input after the power  
up or an hardware RESET. The relay output are  
open after power up or an hardware RESET.  
- IT1 : VOCODER Buffer  
Each time the ST75C530/540 have coded a  
frame (CODER Mode) or decoded a frame (DE-  
CODER Mode) this interrupt is generated.  
- IT2 : Tx Buffer  
Each timethe ST75530/C540frees a databuffer,  
this interrupt is generated.  
- IT3 : Rx Buffer  
Each time the ST75C530/540 has filled a data  
buffer, this interrupt is generated.  
- IT4 : Status Byte  
This signifies that the status byte has changed  
and must be checked by the controller.  
- IT5 : Low Power Mode  
VI.1.2 - Interruptions  
TheST75C530/540hasbeenawakenedfromthe  
low power mode by a low level on the RING pin  
or a dummy write issued by the host.  
The ST75C530/540 can generate 7 interrupts for  
the controller. The interrupt handling is made with  
a set of registers located from $40 to $5F.  
- IT6 : CommandAcknowledge  
The interruptions generated by the ST75C530/540  
come from several sources. Once the  
ST75C530/540raises an interrupt,a signal(SINTR)  
is sent to the controller. The controller has then to  
processtheinterruptandclearit.Theinterruptsource  
can be examined in the interrupt source register  
ITSRCR located a $50. According to the ITSRCR  
bits, the interrupt source can be determined. Then  
This signifies that the ST75C530/540 has read  
the last command entered by the host, incre-  
mented the command counter COMACK, and is  
ready for a new command.  
Note : Interrupt registers are cleared after a Hard-  
ware RESET. These registers are not affected by  
a INIT Command.  
22/84  
ST75C530 - ST75C540  
VI - USER INTERFACE (continued)  
Figure 15 : Functional Schematic  
ITREST 0  
(write only)  
R
S
Q
Q
Q
Q
Q
Q
Q
IT0 : Error  
ITREST 1  
(write only)  
R
S
IT1 : VOCODER  
Buffer  
ITREST 2  
(write only)  
R
S
IT2 : Tx Buffer  
IT3 : Rx Buffer  
IT4 : Status  
ITREST 3  
(write only)  
R
S
ITREST 4  
(write only)  
R
S
ITREST 5  
(write only)  
R
S
IT5 : Low Power  
ITREST 6  
(write only)  
R
S
IT6 : Command  
0
ITSRCR  
(read only)  
6
5
4
3
2
1
SINTR  
(open drain)  
ITMASK  
(read write)  
7
6
5
4
3
2
1
0
23/84  
ST75C530 - ST75C540  
VI - USER INTERFACE (continued)  
VI.1.3 - Host Interface Summary  
Address (hex)  
Description  
Size (Byte)  
Mnemonic  
COMMAND AREA  
$00  
Command  
1
4
COMSYS  
$01-$04  
Command Parameters  
COMPAR[0..3]  
REPORT AREA  
$05  
Acknowledge Counter  
Report  
1
2
COMACK  
$06-$07  
COMREP[0..1]  
STATUS AREA  
$08  
Error Status  
1
2
1
3
SYSERR  
$09-$0A  
$0B  
General Status  
Quality Monitor  
Optional Report  
STATUS[0..1]  
STAQUA  
$0C-$0F  
STAOPT[0..3]  
DATA BUFFER AREA (FAX Modes and Data Modes)  
$1C  
Data Rx Buffer 0 Status  
Data Rx Buffer 0  
1
8
1
8
1
8
1
8
DTRBS0  
$1D-$24  
$25  
DTRBF0[0..7]  
DTRBS1  
Data Rx Buffer 1 Status  
Data Rx Buffer 1  
$26-$2D  
$2E  
DTRBF1[0..7]  
DTTBS0  
Data Tx Buffer 0 Status  
Data Tx Buffer 0  
$2F-$36  
$37  
DTTBF0[0..7]  
DTTBS1  
Data Tx Buffer 1 Status  
Data Tx Buffer 1  
$38-$3F  
DTTBF1[0..7]  
VOCODER BUFFER AREA (Vocoder Mode)  
$1C  
Vocoder Buffer Status  
Vocoder Buffer Data  
1
18  
2
VOCSTA  
$1D-$2E  
$2F-$30  
VOCDATA  
VOCCORR  
Vocoder Buffer Corrector  
INTERRUPT AREA  
$40-$46  
$4F  
Reset Interrupt Register  
Interrupt Mask Register  
Interrupt Source Register  
7
1
1
ITREST[0..6]  
ITMASK  
$50  
ITSRCR  
GENERAL IO AND RELAY  
$60  
$61  
$62  
$63  
$64  
I/O Direction 0  
1
1
1
1
1
IODIR0  
I/O Direction 1  
I/O Data 0  
IODIR1  
IODATA0  
IODATA1  
IORELAY  
I/O Data 1  
I/O Relay Register  
Note : Registers which address is higher or equal to $40 are not affectedby a INIT Command or a Low Power wake-up. They are reseted  
only by a Hardware RESET.  
24/84  
ST75C530 - ST75C540  
VI - USER INTERFACE (continued)  
VI.2 - Command Set  
The Command Set has the following attractive  
features :  
- user friendly with easyto remembermnemonics,  
- possibility of straightforwardexpansion with new  
commands to suit specific customer require-  
ments,  
- easy upgrade of existing softwareusing previous  
modem based SGS-THOMSON products.  
SYNC  
CSE  
FAXSynchronize.Start/Stopof FAXHalf-  
duplex receiver. Parametric command.  
ClearStatusError.SelectivelyclearstheError  
statusbyteSYSERR.Parametriccommand.  
SETGN Set Gain. This command sets the global  
gainfactor,which is usedfor thetransmit  
samples. Parametric command.  
VI.2.1.2 - Data Communication Commands  
The commandsethasbeendesignedto providethe  
necessaryfunctionalcontrolon theST75C530/540.  
Each command is classified accordingto its syntax  
and the presence/absence of parameters. In the  
case of a parametric command, parameters must  
first be written into the dual port RAM before the  
command is issued. Acknowledge and error report  
is issued for each command entered.  
XMIT  
Transmit Data. Start/stop the  
transmission of data. After a XMIT  
command,the ST75C530/540sendsthe  
data contained in its dual port RAM.  
FORM Selects the Transmission Format. This  
command configures the data interface  
for both receiver and transmitter  
according to the selected data format.  
Parametric command (HDLC, UART or  
synchronous).  
VI.2.1 - Command Set Summary  
VI.2.1.1 - Operational Control Commands  
INIT  
Initialize. Initialize the modem engine.  
Set all parametersto their default values  
and wait for commands of the control  
processor. Non parametric command.  
VI.2.1.3 - Memory Handling Commands  
MWI  
MWLO  
MW  
Memory Write Indirect  
Memory Write Low Word  
MemoryWrite. This command is used to  
write an arbitrary 16-bit value into the  
writable memory location currently  
specified by a parameter. Parametric  
command.  
IDT  
Identify.Returnthe productidentification  
code. Non parametric command.  
SLEEP Turn to low power mode, the  
ST75C530/540 enters the low power  
mode and stops its crystal oscillator to  
reducepower consumption.Inthismode  
all the clocks are stopped and the dual  
RAM is unreachable.  
MRI  
MRLO  
MR  
Memory Read Indirect  
Memory Read Low Word  
HSHK  
Handshake. Begins the handshake  
sequence.The modemengine generates  
all the sequences defined in the ITU-T  
recommendations. A status report  
indicatesto thecontrolprocessorthestate  
of the handshake. This command only  
applies to modes where a handshake  
sequence is defined. A CONF command  
must havebeen issued prior to the use of  
HSHK. Non parametric command.  
FAX Stop. Stop FAX Half-duplex  
transmitter. Non parametric command.  
Retrain. Begin a retrain sequence in  
V.32bis/V.32 or V.22bis modes as  
MemoryRead.Thiscommandallowsthe  
controller to read any of the ERAM or  
CROM (ST75C530/5 40 memo ry  
spaces) location without interrupting the  
processor. Parametric command.  
Complex Read. This command allows  
the controller to read at the same time  
the real and imaginary part of a complex  
value stored in a double ERAM or  
CROM location. This feature is very  
interesting for eye pattern software  
control and for equalization monitoring.  
This command insures that the real and  
imaginary parts are sampled in the  
memory at the same time (integrity).  
Parametric command.  
CR  
STOP  
RTRA  
described  
in  
the  
ITU-T  
recommendations(ST75C540 only).  
25/84  
ST75C530 - ST75C540  
VI - USER INTERFACE (continued)  
VI.2.1.4 - Configuration Control Commands  
TDWW Write Tone Detector Wiring. Write one  
Tone Detector Wiring connection.  
Parametric command.  
ASEL Select the Analog path option, like  
Microphone input, Speaker attenuation.  
Parametric command.  
CONF Configure. This command configuresthe  
modem engine for data transmission and  
handshake procedures (if any) in any of  
the supported modes. The transmission  
parametersare set to their default values  
and can be modified with the MODC  
command. Parametric command.  
MODC Modify Configuration. This command  
allows modification of some of the  
parameters which have been set up by  
the CONF command. It can also be used  
to alter the mode of operations (short  
train). Parametric command.  
DOSR Define Optional Status Report. This  
command allows the modification of the  
optionalstatusreport locatedin thestatus  
area of the dual port RAM. One can thus  
select a particular parameter to be  
monitored during all modes of operation.  
Parametric command.  
TDZ  
Clear Tone Detector Cell. Clear internal  
variables of a Tone Detector Cell.  
Parametric command.  
VI.2.1.7 - Miscellaneous Commands  
CALL Call a Subroutine. Call a subroutine with  
one Parameter. Parametric command.  
JSR  
Call a Low Level Subroutine. Call an  
internal subroutine with one parameter.  
Parametric command.  
VI.3 - Command Set Short Form  
CCI Command  
Mnemonic Value  
Description  
XMIT  
SETGN  
SLEEP  
HSHK  
RTRA*  
INIT  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x10  
0x11  
0x12  
0x13  
0x14  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x20  
0x21  
0x25  
0x26  
0x28  
0x29  
0x2A  
0x2B  
Transmit Data  
Set Transmit Gain  
Power Down the ST75C530/540  
FAX Start Transmitter  
Retrain (V.32bis/V.32 and V.22bis)  
Initialize (Software Reset)  
Clear Error Status Word  
Define Data Format  
CSE  
DSIT  
Define Status Interrupt. This command  
allows the programming of the status  
word bit that will generate an Interrupt to  
the controller. Parametric command.  
FORM  
DOSR  
ASEL  
TONE  
TGEN  
DEFT  
MR  
Define Optional Status Report  
Select the Analog Path Options  
Generate Predefined Tones  
Enable Tone Generator  
Define Arbitrary Tone  
VI.2.1.5 - Tone Generation Commands  
TONE SelectTone.Programsthetonegenerator(s)  
for the desired default tone(s). Additional  
mnemonics provide quick programming of  
DTMF tones or other currently used tones.  
Parametric command.  
DEFT Define Tone. Programs the tone  
generator(s) for arbitrary tone synthesis.  
Parametric command.  
Memory Read  
CR  
Complex Read  
MW  
Memory Write  
DSIT  
Define Status Interrupt  
ReturnProductIdentification Code  
Call a Low Level Routine  
Call a Routine  
IDT  
JSR  
CALL  
TDRC  
TDRW  
TDWC  
TDWW  
TDZ  
Tone Detector Read Coefficient  
Tone Detector Read Wiring  
Tone Detector Write Coefficient  
Tone Detector Write Wiring  
Tone Detector Clear Cell  
Configure  
TGEN Tone Generator Control. Enables or  
disables the tone generator(s).  
Parametric command.  
VI.2.1.6 - Tone Detection Commands  
CONF  
MODC  
STOP  
SYNC  
MRI  
TDRC Read Tone Detector Coefficient. Read  
one Tone Detect or Coefficient.  
Parametric command.  
TDWC Write Tone Detector Coefficient. Write  
one Tone Detect or Coefficient.  
Parametric command.  
TDRW Read Tone Detector Wiring. Read one  
Tone Detector Wiring connection.  
Parametric command.  
Modify Default Configuration  
FAX Stop Transmitter  
FAX Synchronize Receiver  
Memory Read Indirect  
Memory Read Low Word  
Memory Write Indirect  
Memory Write Low Word  
MRLO  
MWI  
MWLO  
* ST75C540 only.  
26/84  
ST75C530 - ST75C540  
VI - USER INTERFACE (continued)  
VI.4 - Status - Reports  
VI.4.1 - Status  
The ST75C530/540 has a dedicated statusreport-  
ing area located in its dual port RAM. This allow a  
continuousmonitoring of the statusvariables with-  
out interrupting the ST75C530/540.  
The first status byte gives the error status. Issuing  
of an error status can also be flagged by a mask-  
able interrupt for the controller. The signification of  
the error codes are given in Chapter VIII.  
VI.5.1.1 - Transmit  
The controller must first fill at least the first buffer  
of data (Tx Buffer 0) with the bits to be transmitted.  
In order to perform this operation, the controller  
must first check the Tx Buffer 0 status word  
DTTBS0. If this buffer is empty, the controller fills  
the data buffer locations (up to 64 bits), and then  
writesin DTTBS0 the numberof bytescontained in  
the buffer. The controller can then either proceed  
with the second buffer or initiate the transmission  
with a XMIT command.  
The second and third status bytes give the general  
status of the modem. These status include for  
example the ITU-T circuit status and other items  
described in Chapter VIII “STATUS DESCRIP-  
TION”. These two status can generate, when a  
change occurs, an interrupt to the controller ; each  
bit of the two byte word can be masked inde-  
pendently.  
TheST75C530/540copiesthe contentsof thedata  
buffer and then clears the buffer status word in  
order to make it again available, then generatesan  
IT2 interrupt. The number of bytes specifiedby the  
status word is then queued for transmission. The  
processgoes on with the two buffers until an XMIT  
command stops the transmission. After the finish-  
ing XMIT command has been issued, the last buff-  
ers are emptied by the ST75C530/540.  
The forth byte gives in real time a measure of the  
receptionquality.Thisinformationmaybe usedbythe  
controllerto monitorthe qualityof the receivedbits.  
Four other locations are dedicated for custom  
status reporting. The controller can program the  
ST75C530/540for a real time monitoring of any of  
its internal RAM location. High byte or low byte of  
any word can thus be monitored.  
Errors occur whenboth buffersare emptywhile the  
transmit bit queue is also empty. Error is signalled  
with an IT0 interruption to the controller.  
VI.5.1.2 - Receive  
The controller should take care of releasingthe Rx  
buffers before the Data Carrier Detect goes true.  
This is made by writing zero in the Rx BufferStatus  
0 and 1. The ST75C530/540 then fills the first  
buffer,and once filled sets the statusword with the  
number of bytes received and then generates an  
IT3 interrupt. It then takes control of the second  
buffer and operates the same way. The controller  
must check the status of the buffers and empty  
them. Once the data read, the controller must  
release the used bufferand wait for the nextbuffer  
to be filled.  
VI.4.2 - Reports  
The ST75C530/540 features an acknowledgeand  
report facility. The acknowledge of a command is  
monitored by a counter COMACK located in the  
dual port RAM. Each time a command is read from  
the command area, the ST75C530/540 will incre-  
mentthiscounter. For instance, when a MR (Mem-  
ory Read) command is issued, the data is first  
written in the report area, and the counter is incre-  
mentedafterwards.Thisway of processinginsures  
data integrity and gives additional synchronization  
between the controller and the data pump.  
Error occurs when both buffers are declared full,  
and incoming bits continue to arrive from the line.  
Error is signaled by an IT0 interrupt.  
VI.5 - Data Exchanges  
The ST75C530/540 accepts many kinds of data  
exchange: thedefaultmode usesthe synchronous  
parallel exchange. Other modes include HDLC  
framing support and UART. Detailed description of  
the Data Buffer Exchanges modes is available in  
the paragraph X.  
VI.5.2 - HDLC Parallel Mode  
This mode implements part of the High Level Data  
Link Control formats and procedures. It is well  
suited for error correcting protocols like ECM or  
FAXT4/T30recommendations.It supportsthe flag-  
ginggeneration,16-bitFrameCheck Sequence,as  
well as the Zero insertion/deletion mechanism.  
VI.5.1 - SynchronousParallel Mode  
The data exchanges are made through the dual  
port RAM and are byte synchronousoriented. The  
double buffer facilities of the ST75C530/540allow  
an efficient buffering of the data.  
VI.5.3 - UART Parallel Mode  
This mode implement a 7 or 8 bit data format, it is  
well suited for Caller ID or Minitel applications.  
27/84  
ST75C530 - ST75C540  
VII - COMMAND SET DESCRIPTION  
Commands are presented according to the following form :  
COMMAND  
Command Name Meaning  
COMMAND  
Opcode  
Hexadecimal digit  
X
X
X
X
X
X
X
X
Synopsis Short description of the functions performed by the command.  
Parameters  
Field  
Name  
Byte  
X
Pos.  
b..a  
Value  
Definition  
Explanation of the parameter  
Default value  
xx *  
Field  
Byte  
Pos.  
Name of the addressed bit field.  
Index (or addressin the dual port RAM) of the parameter byte (from 1 to 4).  
Bit field position inside the parameter byte. Can either be a single position (from 0 to 7, 0  
being LSB) or a range.  
Value  
Possiblevaluesforthebit(resp.bitfield).Rangemeansallvaluesareallowed.Astarmeansa default  
value.Valuesareexpressedeitherundertheformof a bit string, or underhexadecimal format.  
ASEL  
ASEL  
Opcode:  
0B  
0
0
0
0
1
0
1
1
Synopsis Select the analog path options. This command select the Attenuation/Mute of the outputs  
TxA1/TxA2 and SPK1/SPK2/SPK3.This command select also the source of the Mic signal  
MIC1/MIC2/MIC2 and the source of the Line Signal RxA/MIC3.  
Parameters  
Field  
ASEL_ASPK1  
Byte  
1
Pos.  
7..4  
Value  
Definition  
0000* Infinity attenuation  
0001 30dB attenuation  
0010 27dB attenuation  
...  
...  
1010 3dB attenuation  
1011 0dB attenuation  
Other Reserved  
ASEL_MICSEL  
2
1..0  
00*  
01  
10  
11  
Select Rx input as MIC1  
Select Rx input as MIC1  
Select Rx input as MIC2  
Select Rx input as MIC3  
ASEL_LINESEL  
ASEL_ESPK1  
ASEL_ESPK2  
ASEL_ESPK3  
ASEL_MTXA  
2
2
2
2
2
2
3
4
5
7
0*  
1
0*  
1
0*  
1
0*  
1
Select RxA as line input  
Select Mic3 as line input  
SPK1 output muted  
SPK1 output normal  
SPK2 output muted  
SPK2 output normal  
SPK3 output muted  
SPK3 output normal  
0*  
1
TxA output normal  
TxA output muted  
CALL  
Call a Subroutine  
CALL  
Opcode:  
19  
0
0
0
1
1
0
0
1
Synopsis CALL allows to execute a part of the ST75C530/540 firmware with a specific argument.  
Field  
C_ADDR_L  
C_ADDR_H  
C_DATA_L  
C_DATA_H  
Byte  
Pos.  
7..0  
7..0  
7..0  
7..0  
Value  
Definition  
Low byte of the call address  
High byte of the call address  
Low byte of the argument  
High byte of the argument  
Parameters  
1
2
3
4
This instruction can be used with SGS-THOMSON Microelectronics Application Laboratory Support for  
special applications development or debuggingneeds. Contact your local representative.  
28/84  
ST75C530 - ST75C540  
VII - COMMAND SET DESCRIPTION (continued)  
Configure for Operations  
CONF  
CONF  
Opcode :  
20  
0
0
1
0
0
0
0
0
Synopsis CONF allows the complete definition of the ST75C530/540operation, including the mode of  
operation (Tone, FAX Transmit, Voice Transmit, Voice Receive, DTMF Receiver, ...) and the  
Modem or Vocoder Parameters (Standard, speed, ...). According with the 4 first bits of the  
CONF Parameter the ST75C530/540 is put into the following mode of operation.  
Detectors  
CONF_  
OPER  
Mode  
Tone (2) Tone (3) DTMF Ring VAD V.21 Flag CPT (5) Answ (6)  
0000*  
0001  
0010  
0100  
1000  
1001  
1100  
1111  
Other  
TONE  
TONECID(1)  
DECODER  
TRANSPARENT  
CODER  
16  
6
4
4
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes No  
Yes No  
Yes No  
No No  
Yes Yes  
No No  
No No  
Yes  
Yes  
No  
Yes  
Yes  
No  
Yes  
No  
No  
Yes  
No  
No  
No  
No  
0
4
6
4
No  
Yes  
No  
0
4
No  
ROOM-MONITOR  
HANDSET/HANDSFREE  
MODEM  
0
4
No  
No  
0
2
No  
No  
0
4 (7)  
Yes (4) No No  
Yes  
Yes (4)  
Reserved  
Notes :  
1. This mode includes V.23/Bell202 FSK Demodulator and UART.  
2. This primary Tone Detectors allows Detection of signal up to 3.3kHz. (Sampling Rate 7.2kHz).  
3. Thissecondary ToneDetectorsallowsDetectionofsignalupto1.8kHz(withSamplingRate4.8kHz) or upto3.3kHz (withSamplingRate9.6kHz).  
4. The DTMF detector and Call Progress Tone detector (CPT) are available only for V.21 Channel 2.  
5. STA_CPT0, STA_CPT1 and STA_CPT10 in STATUS0.  
6. STA_CCITT and STA_AT in STATUS1.  
7. Not available in V.32bis/V.32.  
29/84  
ST75C530 - ST75C540  
VII - COMMAND SET DESCRIPTION (continued)  
Parameters When the CONF_OPERis setto F, selecting the Modem Mode of operation,the parameters  
have the following meaning :  
Field  
CONF_OPER  
CONF_ANAL  
Byte  
Pos.  
3..0  
4
Value  
Definition  
1
1
1111 Select Modem Mode  
0
1
Normal mode  
Analog loop back (test mode only)  
CONF_PSTN  
CONF_AO  
1
1
1
2
5
6
0
1
PSTN (carrier detect set to -43/-48dBm)  
Leased line (carrier detect -33/-38dBm)  
0
1
Answer mode  
Originate mode  
CONF_DTINIT  
(only in tone mode)  
7
0
1
Global init of secondary tone detector  
Partial init of secondary tone detector (8)  
CONF_MODE  
5..0  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
Automode (V.32bis/V.32/V.22bis/V.22) (9)  
Bell 103 (full duplex)  
Bell 212A (full duplex) (9)  
V.21 (full duplex)  
V.23 (full duplex)  
V.22 (full duplex) (9)  
V.22bis (full duplex) (9)  
V.27ter  
V.29  
V.17  
V.32 (full duplex) (9)  
V.32bis (full duplex) (9)  
V.33 (half duplex)  
V.21 channel 2  
Other Reserved  
CONF_TXEQ  
2
7..6  
0
1
2
3
No transmit equalizer  
Transmit equalizer #1  
Transmit equalizer #2  
Transmit equalizer #3 (V.17/V.33/V.29/V.27ter)  
CONF_CAR  
CONF_TCM  
CONF_SP0  
3
3
3
0
1
0
1
1800Hz carrier (V.17/V.33 only)  
1700Hz carrier (V.17/V.33 only)  
0
1
Treillis coding not allowed (V.32 only)  
Treillis coding allowed (V.32bis, V.32)  
7..4  
xxx1 1200bps allowed (V.22, V.22bis) (10)  
xx1x 2400bps allowed (V.22bis, V.27) (10)  
x1xx 4800bps allowed (V.32bis, V.32, V.27, V.29) (10)  
1xxx 7200bps allowed (V.32bis, V.29, V.17) (10)  
CONF_SP1  
4
2..0  
xx1  
x1x  
1xx  
9600bps allowed (V.32bis, V.32, V.29, V.17) (10)  
12000bps allowed (V.32bis, V.17, V.33) (10)  
14400bps allowed (V.32bis, V.17, V.33) (10)  
Notes :  
8.  
9.  
With conf 80 00 00 00 the coefficients of secondary tone detectors are not initialized.  
ST75C540 only.  
10. V.22bis, V.22, V.32bis and V.32 modes ST75C540 only.  
30/84  
ST75C530 - ST75C540  
VII - COMMAND SET DESCRIPTION (continued)  
Parameters CODER andDECODER Modes  
In the VOCODER Modes, either CODER or DECODER, (CONF_OPER equals 2 or 8) the  
parametershave the following meaning :  
Field  
Byte  
Pos.  
3..0  
0
Value  
Definition  
CONF_OPER  
CONF_CODE  
1
3
-
Define mode : see table above  
0
1
Low bit rate coded  
ADPCM coded  
CONF_VPF  
3
3
1
0
1
Decoder post filter off  
Decoder post filter on (not in ADPCM)  
CONF_VASP  
3..2  
00  
01  
10  
11  
ADPCM 32000 bps  
ADPCM 24000 bps  
ADPCM 16000 bps  
Reserved  
CONF_EC  
3
3
3
3
4
5
6
7
0
1
Line echo canceller disabled  
Line echo canceller enabled  
CONF_SRC  
0
1
Coder source is line input  
Coder source is audio input  
CONF_SUPSIL  
CONF_ERCOR  
0
1
Coder silence supressor disabled  
Coder silence supressor enabled  
0
1
Low bit rate decoder disable error correction  
Low bit rate decoder enable error correction  
Parameters ROOM-MONITOR Mode  
In the ROOM MONITOR Mode (CONF_OPER equals 9) the parameters have the following  
meaning :  
Field  
CONF_OPER  
CONF_EC  
Byte  
Pos.  
3..0  
4
Value  
Definition  
1
3
1001 Define ROOM-MONITOR mode  
0
1
Line echo canceller disabled  
Line echo canceller enabled  
Parameters HANDSET/HANDSFREE Mode  
In the HANDSET/HANDSFREE mode (CONF_OPER equals C), the parameters have the  
following meaning:  
Field  
Byte  
Pos.  
3..0  
6
Value  
Definition  
CONF_OPER  
CONF_INHINI  
1
3
1100 Define HANDSET/HANDSFREE mode  
0
1
Init all telephony parameters  
Disable init of telephony parameters  
CONF_HFREE  
CONF_LEC  
3
4
4
4
4
4
4
7
0
1
2
3
4
5
0
1
Handset mode  
Handsfree mode  
0
1
Line echo canceller enabled  
Line echo canceller disabled  
CONF_AEC  
0
1
Audio echo canceller enabled  
Audio echo canceller disabled  
CONF_FULLD  
CONF_SOFTRx  
CONF_AGC  
0
1
Full duplex mode enabled  
Half duplex mode enabled  
0
1
Softclipping enabled on Rx  
Softclipping disabled on Tx  
0
1
AGC active  
AGC frozen  
CONF_SOFTTx  
0
1
Softclipping enabled on Tx  
Softclipping disabled on Rx  
31/84  
ST75C530 - ST75C540  
VII - COMMAND SET DESCRIPTION (continued)  
CR  
Opcode:  
Complex Read  
CR  
11  
0
0
0
1
0
0
0
1
Synopsis  
CRallowsthereadingofa complexparameter.Theparameterspecifiestheparameteraddress(for  
the real part : the imaginary part is next location). CR returns the high byte valueof bothreal and  
imaginary partof theaddressedcomplex parameter(see ChapterVIIISTATUS DESCRIPTION”).  
Parameters  
Field  
CR_ADDR_L  
CR_ADDR_H  
Byte  
1
2
Pos.  
7..0  
7..0  
Value  
Definition  
Low byte of the 16-bit address  
High byte of the 16-bit address  
CSE  
Opcode:  
Clear Error Status  
CSE  
08  
0
0
0
0
1
0
0
0
Synopsis  
CSE is used to clear the ST75C530/540 error status SYSERR byte. It is also used as an  
acknowledge to the error condition handler.  
Parameters  
Field  
ERR_MASK  
Byte  
1
Pos.  
7..0  
Value  
Definition  
Error mask. See report appendix for detailed meaning  
DEFT  
Opcode:  
Define Arbitrary Tone  
DEFT  
0E  
0
0
0
0
1
1
1
0
Synopsis  
DEFT programs one of the four tone generatorfor arbitrary tone generation.The parameter  
is the frequencyof the generatedtone expressed in Hertz between 0 and 3600Hz.  
Parameters  
Field  
TONE_GEN_SL  
Byte  
1
Pos.  
1..0  
Value  
Definition  
Index of the tone generator (3..0)  
TONE_FREQ_L  
TONE_FREQ_H  
TONE_SCALE  
2
3
4
7..0  
7..0  
7..0  
Low byte of the frequency  
High byte of the frequency (internally masked with 0F)  
Amplitude scaling factor (high byte)  
3F gives the nominal amplitude  
DOSR  
Opcode:  
Define Optional Status Report  
DOSR  
0A  
0
0
0
0
1
0
1
0
Synopsis  
DOSR specifies the address of the RAM variables to be monitored in the 4 locations  
STAOPT[0..3] of the dual port RAM. It also specifies the assignment within the 4 locations.  
Parameters  
Field  
STA_OPT_ASS  
STA_OPT_ADL  
Byte  
1
2
Pos.  
1..0  
7..0  
Value  
0..3  
Definition  
Index of the STAOPT destination  
Low byte of source address  
STA_OPT_ADH  
STA_OPT_HL  
3
3
3..0  
7
High byte of source address  
0
1
Select low byte of source  
Select high byte of source  
32/84  
ST75C530 - ST75C540  
VII - COMMAND SET DESCRIPTION (continued)  
DSIT  
Opcode:  
Define Status Interrupt  
DSIT  
13  
0
0
0
1
0
0
1
1
Synopsis  
DSIT specifies the bit mask used with the STATUS[0] and STATUS[1] byte to generate an  
interrupt IT4 to controller. Each time a bit change happens in the status words, assuming  
the correspondingbit mask will be set, an interrupt will be generated.  
Parameters  
Field  
STA_IT_MSK0  
STA_IT_MSK1  
Byte  
1
2
Pos.  
7..0  
7..0  
Value  
Definition  
Status[0] bit mask pattern  
Status[1] bit mask pattern  
Note :  
The default IT Status is 0x3F for STATUS[0]and 0xFF for STATUS[1].  
FORM  
Select Transmission Format  
FORM  
Opcode:  
09  
0
0
0
0
1
0
0
1
Synopsis  
FORM defines the type of transmission used on the line.  
Parameters  
Field  
X_SYNC  
Byte  
1
Pos.  
2..0  
Value  
Definition  
000* Synchronous format  
(1)  
001  
010  
011  
100  
Transmit continous “1”  
HDLC framing  
Transmit continous ”0” (1)  
UART  
X_ANBIT  
X_APAR  
2
2
1..0  
3..2  
00  
01  
00  
01  
10  
7 Bit per character  
8 Bit per character  
No parity  
Even parity  
Odd parity  
X_ASTOP  
2
5
0
1
1 stop bit(1)  
2 stop bit(1)  
Note :  
1. Valid only when transmitting.  
HSHK  
Handshake  
HSHK  
Opcode:  
04  
0
0
0
0
0
1
0
0
Synopsis  
HSHK is used to command the ST75C530/540to begin the transmit handshakesequence  
processing. The progress of the handshakeis reported to the control processor.  
Parameter Non parametric command.  
33/84  
ST75C530 - ST75C540  
VII - COMMAND SET DESCRIPTION (continued)  
IDT  
Identify  
IDT  
Opcode:  
14  
0
0
0
1
0
1
0
0
Synopsis  
IDTReturntheST75C530/540HardwareandSoftwarereleasenumber.SeeparagraphVIII.1.4.  
Parameter Non parametric command.  
INIT  
Initialization  
INIT  
Opcode:  
06  
0
0
0
0
0
1
1
0
Synopsis  
INIT forces the ST75C530/540to reset all parameters to their default conditions and restart  
operations.  
Parameter Non parametric command.  
Note :  
This command makes a software reset of the ST75C530/540 and so cannot have the regular handshake protocol. It  
does not increment the COMACK, neither generate an Interrupt.  
JSR  
Call a Low Level Subroutine  
JSR  
Opcode:  
18  
0
0
0
1
1
0
0
0
Synopsis  
JSR allows to execute a part of the ST75C530/540 firmware with a specific argument.  
Parameters  
Field  
Byte  
Pos.  
Value  
Definition  
Low byte of the call address  
C_ADDR_L  
1
7..0  
C_ADDR_H  
C_DATA_L  
C_DATA_H  
2
3
4
7..0  
7..0  
7..0  
High byte of the call address  
Low byte of the argument  
High byte of the argument  
This instruction can be used with SGS-THOMSON Microelectronics Application Laboratory Support for  
special applications development or debuggingneeds. Contact your local representative.  
34/84  
ST75C530 - ST75C540  
VII - COMMAND SET DESCRIPTION (continued)  
MODC  
Modify Configuration  
MODC  
Opcode:  
21  
0
0
1
0
0
0
0
1
Synopsis  
MODC allows the modification of the parameters defined by the CONF command.  
Parameters  
Field  
MODC_SDM  
Byte  
1
Pos. Value  
Definition  
0
0
1
Normal data mode  
Short data mode (e.g. TVR) (5)  
MODC_DV21F  
MODC_DDTMF  
MODC_DTDT4  
MODC_DTDT16  
MODC_SH  
1
1
1
1
1
1
2
1
0
1
Normal V.21ch2 (1)  
Disable V.21ch2 flag detector  
2
0
1
Normal DTMF detector (1)  
Disable DTMF detector  
3
0
1
Normal secondary tone detector (1)  
Disable secondary tone detector  
4
0
1
Normal primary tone detector (1)  
Disable primary tone detector  
6
0*  
1
Normal training sequence  
Short training sequence (2)  
MODC_FS  
7
0*  
1
Secondary tone detector sampling frequency is 4.8kHz  
Secondary tone detector sampling frequency is 9.6kHz  
MODC_V22G (6)  
1..0  
00*  
01  
10  
No guard tone  
1800Hz guard tone (V.22bis/V.22)  
550Hz guard tone (V.22bis/V.22)  
MODC_FPT  
2
2
3..2  
4
00*  
01  
No echo protection tone  
Long echo protection tone (180ms) (4)  
10  
Short echo protection tone (30ms) (4)  
Answer mode : generate answer tone for handshake  
Originate mode : wait answer tone for handshake  
Answer mode : do not generate answer  
Originate mode : do not wait answer tone  
Cut answer tone when receiving AA (V.32bis, V.32)  
Continue answer tone when receiving AA.  
Enable V.32bis/V.32 autoretrain on quality.  
Disable V.32bis/V.32 autoretrain on quality.  
MODC_NOTA (6)  
0*  
1
MODC_NOSA (6)  
2
2
3
6
7
0*  
1
0*  
1
(6)  
MODC_NOQA  
MODC_ADCFD  
0..3  
0000* Low bit rate decoder voice frame duration 30ms (nominal)  
0001 Low bit rate decoder voice frame duration 35ms (+16%)  
0010 Low bit rate decoder voice frame duration 40ms (+33%)  
0011 Low bit rate decoder voice frame duration 45ms (+50%)  
1111 Low bit rate decoder voice frame duration 25ms (-16%)  
1110 Low bit rate decoder voice frame duration 20ms (-33%)  
1101 Low bit rate decoder voice frame duration 15ms (-50%)  
0111 Low bit rate decoder pause  
Other Reserved  
MODC_COD  
MODC_LEC  
3
4
4
4
4
4
4
5
0
1
2
3
4
5
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Low bit rate coder disabled  
Low bit rate coder enabled(3)  
Line echo canceller enabled  
Line echo canceller disabled  
MODC_AEC  
Audio echo canceller enabled  
Audio echo canceller disabled(3)  
MODC_FULLD  
MODC_SOFTRx  
MODC_AGC  
Full duplex mode enabled  
Half duplex mode enabled  
Softclipping enabled on Rx  
Softclipping disabled on Rx  
AGC active  
AGC frozen  
Softclipping enabled on Tx  
Softclipping disabled on Tx  
MODC_SOFTTx  
Notes :  
1. In the modes where they are active.  
2. Short train sequence must be preceded by at least one successful long train sequence at the same data rate. For  
V.17 a successful long train at any data rate must preceded the short train.  
3. Only coder or decoder can be enabled at the same time.  
4. Only when sending V.17, V.33, V.29 or V.27ter.  
5. French Minitel Application (TVR : TeletelVitesse Rapide).  
6. ST75C540 only  
35/84  
ST75C530 - ST75C540  
VII - COMMAND SET DESCRIPTION (continued)  
MR  
Memory Read  
MR  
Opcode:  
10  
0
0
0
1
0
0
0
0
Synopsis  
MR allowsthereadingof a 16-bitparameter.The parameterspecifiestheparameteraddress.  
Field  
Byte  
Pos.  
7..0  
7..0  
Value  
Definition  
Low byte of the 16-bit address  
High byte of the 16-bit address  
Parameters  
MR_ADDR_L  
MR_ADDR_H  
1
2
MRI  
Memory Read Indirect  
MRI  
Opcode:  
28  
0
0
1
0
1
0
0
0
Synopsis  
MRI allows the reading of a 16-bit parameter. The parameter specifies an indirect address.  
Refer to the “RAM Mapping Application Note” (delivered on request according to revision  
number). The advantageto use MRI instead of MR is that the Indirect Address is constant  
over the differentrelease of the product.  
Parameters  
Field  
Byte  
Pos.  
Value  
Definition  
MRI_IADDR  
1
7..0  
Indirect Address  
MRLO  
Memory Read Low Word  
MRLO  
Opcode:  
29  
0
0
1
0
1
0
0
1
Synopsis  
MRLOallows the readingof thememorylocation whichaddress coresponds to theprevious  
MR or MRI Absolute Adress minus 1. This command must be preceded by a MR or MRI  
command. This command does not have any parameter. The double word reading is  
executed by the MR or MRI previous command.  
MW  
Memory Write  
MW  
Opcode:  
12  
0
0
0
1
0
0
1
0
Synopsis  
MW allows the writing of a 16-bit parameter. The parameter specifies the address as well  
as the value to be transferred.  
Parameters  
Field  
Byte  
Pos.  
7..0  
7..0  
7..0  
Value  
Definition  
Low byte of the 16-bit address  
MW_ADDR_L  
MW_ADDR_H  
MW_VALUE_L  
1
2
3
High byte of the 16-bit address  
Low byte of the 16-bit value  
High byte of the 16-bit value  
MW_VALUE_H  
4
7..0  
36/84  
ST75C530 - ST75C540  
VII - COMMAND SET DESCRIPTION (continued)  
MWI  
Memory Write Indirect  
MWI  
Opcode:  
2A  
0
0
1
0
1
0
1
0
Synopsis  
MWI allowsthewriting of a 16-bitparameter.Theparametersspecifiesanindirectaddressaswell  
asthe valuetobe transferred.RefertotheRAMMappingApplicationNote” (deliveredon request  
accordingtorevisionnumber).TheadvantagetouseMWIinsteadofMWisthattheIndirectAddress  
is constantover the differentrelease of the product.  
Parameters  
Field  
Byte  
Pos.  
7..0  
7..0  
7..0  
Value  
Definition  
MWI_IADDR  
MWI_IVALUE_L  
MWI_IVALUE_H  
1
2
3
Indirect address  
Low byte of the 16-bit value  
High byte of the 16-bit value  
MWLO  
Opcode:  
Memory Write Low Word  
MWLO  
2B  
0
0
1
0
1
0
1
1
Synopsis  
MWLO allows the writing of a 16-bit parameter at the address defined by the following MW  
or MW Absolute Address minus 1. This command must be followed by a MW or MWI  
command.The double word writing is executedby the MW or MWI following command.  
Parameters  
Field  
Byte  
Pos.  
7..0  
7..0  
Value  
Definition  
Low byte of the 16-bit value  
High byte of the 16-bit value  
MWLO_VALUE_L  
MWLO_VALUE_H  
1
2
RTRA (ST75C540 only)  
Retrain  
RTRA  
Opcode:  
02A  
0
0
0
0
0
1
0
1
Synopsis  
RTRAis used to force the ST75C530/540to initiate a retrainsequence or a rate negotiation.  
If MODC_NOQUAbit is set, the ST75C530/540will initiate a transmission at the maximum  
speed defined by the RTRAparameter,otherwise it will found the bestreliable speed based  
on the quality of the line (within the RTRA allowed speed).  
Parameters  
Field  
Byte  
Pos.  
Value  
Definition  
RTRA_NEG0  
1
0
0
1
Retrain (V.22bis, V.32, V.32bis)  
Ratr negotiation (V.32bis, V.22bis)  
RTRA_SP0  
RTRA_SP1  
1
2
7..4  
2..0  
xxx1 1200bps allowed (V.22bis)  
xx1x 2400bps allowed (V.22bis)  
x1xx 4800bps allowed (V.32bis, V.32)  
1xxx 7200bps allowed (V.32bis)  
xx1  
x1x  
1xx  
9600bps allowed (V.32bis, V.32)  
12000bps allowed (V.32bis)  
14400bps allowed (V.32bis)  
37/84  
ST75C530 - ST75C540  
VII - COMMAND SET DESCRIPTION (continued)  
SETGN  
Set Output Gain  
SETGN  
Opcode:  
02  
0
0
0
0
0
0
1
0
Synopsis  
SETGN is a command which sets the scaling factor of the transmit samples. It is used for  
settingthe outputlevel or for setting the level of the tone generators.The gain value is given  
in the form of a 2’s complement 16-bit value.  
Parameter  
Field  
GAIN_L  
Byte  
1
Pos.  
7..0  
Value  
Definition  
range FF* Low byte of the 16-bit gain value  
GAIN_H  
2
7..0  
range 7F* High byte of the 16-bit gain value  
Example  
Gain (dB)  
Gain (Hex)  
7FFF  
Gain (dB)  
Gain (Hex)  
47FA  
Gain (dB)  
-10  
Gain (Hex)  
287A  
0
-5  
-6  
-7  
-8  
-9  
-1  
-2  
-3  
-4  
7214  
4026  
-11  
2413  
65AC  
392C  
-12  
2026  
5A9D  
32F5  
-13  
1CA7  
50C3  
2D6A  
-14  
198A  
The multiplication factor is : 10(-1/20) = 0.89125 for 1dB step.  
SLEEP  
Turn to Sleep Mode  
SLEEP  
Opcode:  
03  
0
0
0
0
0
0
1
1
Synopsis  
SLEEP is used to force the ST75C530/540 to turn to low power mode.  
Parameter Non parametric command.  
Note :  
When receiving this command the ST75C530/540will stop processing and so cannot have the regular handshake protocol.  
It does not increment the COMACK, neither generate an Interrupt.  
STOP  
FAX Stop Transmitter  
STOP  
Opcode:  
25  
0
0
1
0
0
1
0
1
Synopsis  
STOP is used, in FAX Modes, to force the ST75C530/540 to turn off the transmitter in  
accordancewith the correspondingITU-T V.33/V.17/V.29/V.27recommendation.  
Parameter Non parametric command.  
Note :  
When receiving this command the ST75C530/540 will stop sending regular Data. This command must be preceded by a  
XMIT Stop command. The ST75C530/540 will wait until all the transmit buffers are sent before starting the Stop sequence.  
SYNC  
FAX Synchronize the Receiver  
SYNC  
Opcode:  
26  
0
0
1
0
0
1
1
0
Synopsis  
SYNC is used, in FAX Modes, to force the ST75C530/540 to Start/Stop the receiver in  
accordancewith the correspondingITU-T V.33/V.17/V.29/V.27recommendation.Assoon as  
the ST75C530/540receives the SYNC Startcommand it sets its receiver to detect the FAX  
synchronizationsignal.This command is the equivalent HSHK commandfor the receiver.  
Parameters  
Field  
Byte  
Pos.  
Value  
Definition  
RX_SYNC  
1
0
0*  
1
Stop receiver  
Start receiver synchronization  
38/84  
ST75C530 - ST75C540  
VII - COMMAND SET DESCRIPTION (continued)  
TDRC  
Opcode:  
Tone Detector Read Coefficient  
TDRC  
1A  
0
0
0
1
1
0
1
0
Synopsis  
TDRC Read one Coefficient of the selected Tone DetectorCell.  
Parameters  
Field  
Byte  
Pos.  
4..0  
7..0  
Value  
Definition  
TD_CELL  
1
2
0..13 Tone detector cell number  
TD_C_ADDR  
0..B  
10  
20  
Biquad coefficient  
Energy coefficient  
Static level  
30 (1) Energy coefficient for relative comparison  
40 (1) Gain for relative comparison  
The command answer is : Low Byte of Coefficient followed by High Byte of Coefficient.  
Value 30 and 40 of byte 2 are available only for secondary tone detector.  
Note 1 :  
TDRW  
Tone Detector Read Wiring  
TDRW  
Opcode:  
1B  
0
0
0
1
1
0
1
1
Synopsis  
TDRW Read Wiring of the selected Tone Detector Cell.  
Parameters  
Field  
TD_CELL  
Byte  
1
Pos.  
4..0  
Value  
Definition  
0..13 Tone detector cell number  
For primary tone detector  
TD_W_ADDR  
2
0
0
1
Biquad and energy input  
Comparator inputs  
Other Reserved  
The command answer is :  
a) If TD_W_ADDR = 0 :  
- First Byte is the Node Number of the Signal connected to Biquadratic Filter input.  
- Second Byte is the Node Number of the Signal connectedto the Energy estimator input.  
b) if TD_W_ADDR = 1 :  
- First Byte is the Node Number of the Signal connected to Comparator Negative input.  
- SecondByte is the Node Number of the Signal connectedto the ComparatorPositive input.  
For secondary tone detector TD_W_ADDR is not defined.  
- First byte is 00 if relative comparison is not mandatory,  
First byte is 01 if relative comparison is mandatory.  
- Second byte is for the configurationof the secondary tone detector :  
C0 configuration1+1 of secondary tone detectors,  
E0 configuration1+1+2,  
F0 configuration 1+1+1.  
39/84  
ST75C530 - ST75C540  
VII - COMMAND SET DESCRIPTION (continued)  
TDWC  
Tone Detector Write Coefficient  
TDWC  
Opcode:  
1C  
0
0
0
1
1
1
0
0
Synopsis  
TDWC Write one Coefficient of the selected Tone Detector Cell.  
Parameters  
Field  
TD_CELL  
Byte  
1
Pos.  
4..0  
Value  
Definition  
0..13 Tone detector cell number  
TD_C_ADDR  
2
7..0  
0..B  
10  
Biquad coefficient  
Energy coefficient  
Static level  
20  
30 (1) Energy coefficient for relative comparison  
40 (1) Gain for relative comparison  
TD_COEFL  
TD_COEFH  
3
4
7..0  
7..0  
Low byte of coefficient  
High byte of coefficient  
Note 1 :  
Value 30 and 40 of byte 2 are available only for secondary tone detector.  
TDWW  
Tone Detector Write Wiring  
TDWW  
Opcode:  
1D  
0
0
0
1
1
1
0
1
Synopsis  
TDWW Write Wiring of the selected Tone Detector Cell.  
Parameters  
Field  
TD_CELL  
Byte  
1
Pos.  
4..0  
Value  
Definition  
0..13 Tone detector cell number  
For Primary Tone Detector  
Field  
Byte  
Pos.  
Value  
Definition  
TD_W_ADDR  
2
0
0
1
Biquad and energy input  
Comparator inputs  
Other Reserved  
If TD_W_ADDR = 0 (Select Biquad and Energy Inputs)  
Field  
Byte  
Pos.  
Value  
Definition  
TD_W_ERN  
TD_W_BIQ  
3
4
0..3F Energy estimator signal input  
0..3F Biquad filter signal input  
If TD_W_ADDR = 1 (Select Comparator Inputs)  
Field  
Byte  
Pos.  
Value  
Definition  
TD_W_CN  
TD_W_CP  
3
4
0..3F Negative comparator signal input  
0..3F Positive comparator signal input  
For Secondary Tone Detector  
Field  
Byte  
Pos.  
Value  
Definition  
TD_4DIFF  
2
7..0  
00  
01  
Relative comparison not enable  
Relative comparison enable  
other Reserved  
TD_4_CONF  
TD_4_CONF2  
3
4
7..0  
7..0  
0
Mandatory  
C0  
E0  
F0  
1+1 configuration  
1+1+2 configuration  
1+1+1+1 configuration  
other Reserved  
40/84  
ST75C530 - ST75C540  
VII - COMMAND SET DESCRIPTION (continued)  
TDZ  
Tone DetectorClear Cell  
TDZ  
Opcode:  
1E  
0
0
0
1
1
1
1
0
Synopsis  
TDZ Clears all internalvariables of one Tonedetector cell including Filter local variablesand  
energy estimator. This command must be sent after changing coefficients of a cell to avoid  
instability.  
Parameters  
Field  
TD_CELL  
Byte  
1
Pos.  
4..0  
Value  
Definition  
0..13 Tone detector cell number  
TGEN  
Enable/DisableTone Generators  
TGEN  
Opcode:  
0D  
0
0
0
0
1
1
0
1
Synopsis  
Enable or disable one of the four tone generator, define the output of the tone generator  
either Line or Audio.  
Parameters  
Field  
TONE_0_ENA  
Byte  
1
Pos.  
0
Value  
0*  
1
Definition  
Generator #0 disabled  
Generator #0 enabled  
TONE_1_ENA  
TONE_2_ENA  
TONE_3_ENA  
TONE_0_OUT  
TONE_1_OUT  
TONE_2_OUT  
TONE_3_OUT  
1
1
1
1
1
1
1
1
2
3
4
5
6
7
0*  
1
0*  
1
0*  
1
0*  
1
0*  
1
0*  
1
Generator #1 disabled  
Generator #1 enabled  
Generator #2 disabled  
Generator #2 enabled  
Generator #3 disabled  
Generator #3 enabled  
Generator #0 output to line  
Generator #0 output to audio  
Generator #1 output to line  
Generator #1 output to audio  
Generator #2 output to line  
Generator #2 output to audio  
0*  
1
Generator #3 output to line  
Generator #3 output to audio  
41/84  
ST75C530 - ST75C540  
VII - COMMAND SET DESCRIPTION (continued)  
TONE  
Opcode:  
Predefined Tones  
TONE  
0C  
0
0
0
0
1
1
0
0
Synopsis  
TONE programs the tone generator for the predifined tones. The tone generator #0 and  
eventualy#1 are reprogrammed with this command. The tone generator #0 and eventualy  
the #1 are enabled. Using a value not in the following table will disable tone generator #0  
and #1.  
Parameters  
Field  
Byte  
Pos.  
Value  
Definition  
TONE_SELECT  
1
5..0  
0
1
DTMF digit 0  
DTMF digit 1  
DTMF digit 2  
DTMF digit 3  
DTMF digit 4  
DTMF digit 5  
DTMF digit 6  
DTMF digit 7  
DTMF digit 8  
DTMF digit 9  
DTMF digit A  
DTMF digit B  
DTMF digit C  
DTMF digit D  
DTMF digit *  
DTMF digit #  
Answer tone 2100Hz  
Tone 1650Hz  
Tone 2225Hz  
Tone 1300Hz  
Tone 1100Hz  
2
3
4
5
6
7
8
9
A
B
C
D
E
F
10  
11  
12  
13  
14  
TONE_OUT  
1
7
0
1
Output on line  
Output on audio  
XMIT  
Opcode:  
Start/stop Transmission  
XMIT  
01  
0
0
0
0
0
0
0
1
Synopsis  
XMIT start or stop the transmission of the Transmit Data.  
Parameters  
Field  
Byte  
Pos.  
Value  
Definition  
TX_START  
1
0
0*  
1
Stop transmission  
Start transmission  
42/84  
ST75C530 - ST75C540  
VIII - STATUS DESCRIPTION  
This appendix is dedicated to the ST75C530/540  
reporting features. In the following sections the  
command acknowledge process and the report  
and status definitions are explained.  
In the case of a memory reading command (CR,  
TDRC, TDRW, IDT or MR) once the command  
enteredis executed,the reportarea is filled and the  
acknowledge counter is incremented afterwards.  
This insures that the controller will read the value  
correspondingto its request.  
Furthermore, the ST75C530/540 resets the value  
of the COMSYS register and the interruption IT6  
is raised.  
VIII.1 - Command Acknowledge and Report  
VIII.1.1 - Command Acknowledge Process  
The ST75C530/540 features an acknowledge  
processbased on a counterCOMACK. On power-  
on reset (or INITcommand), this counter’s value is  
set to 0. Each time a command is successfully  
executedby the ST75C530/540, the acknowledge  
counter COMACK is incremented. This allows a  
precise monitoring of the command entered and  
avoids command collision.  
VIII.1.2 - Reports Specification  
The report section of the Dual Port RAM is dedi-  
catedtomemoryreading.In responsetoa CR, MR,  
MRI, MRLO, TDRC, TDRW, IDT commands, the  
value read is transferred to the report registers  
COMREP[0..1].  
Figure 16 : Command Acknowledge Process  
BEGIN  
Yes  
No  
COMSYS = 0  
Yes  
No  
COMMAND EXIST  
CLEAR  
ANSWER  
EXECUTE  
COMMAND  
COPY ANSWER  
INTO  
SET SYSERR  
ERR_IPRM  
SET SYSERR  
ERR_IOCD  
COMREP  
ASSERT  
INTERRUPT  
IT0  
ASSERT  
INTERRUPT  
IT0  
INCREMENT  
COMACK  
CLEAR  
COMSYS  
ASSERT  
INTERRUPT  
IT6  
END  
43/84  
ST75C530 - ST75C540  
VIII - STATUS DESCRIPTION (continued)  
VIII.1.3 - CR Command  
Issuing a CR command causes the ST75C530/540 to dump a specificmemory location in complex mode.  
This instruction is particularly useful for equalizer state analysis or for software eye-pattern display. The  
report area has this meaning :  
RP7  
IP7  
RP6  
IP6  
RP5  
IP5  
RP4  
IP4  
RP3  
IP3  
RP2  
IP2  
RP1  
IP1  
RP0  
IP0  
COMREP[0]  
COMREP[1]  
RP0..RP7 is the MSB part of the 16-bit value of the real part and IP0..IP7is the MSB part of the imaginary  
part. The CR command insures that the real and imaginary part of the desired complex value are sampled  
internally at the same time. The address given in the parameter field of CR is the address of the real part.  
VIII.1.4 - MR/TDRC/TDRW/IDT/MRI/MRLO Commands  
The report issued by the MR/TDRC/TDRW/IDT/MRI/MRLO commands follow the same rules as for CR.  
The report meaning is :  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D9  
D0  
D8  
COMREP[0]  
COMREP[1]  
D15  
D14  
D13  
D12  
D11  
D10  
D0..D15 is the 16-bit value requested by the command.  
Inthecaseof IDT,D15..D12containstheproductidentification(3for ST75C530,7 for ST75C5540), D11..D8  
contains the hardware revision identification and D7..D0 contains the software revision identification.  
VIII.2 - Modem Status  
VIII.2.1 - Modem Status Description  
The Status of ST75C530/540 is divided into 4 fields :  
- The error status byte SYSERR that provides information about error. This status can trigger an IT0  
interrupt,  
- The general status byte STATUS[0] and STATUS[1] that contains all the modem signals. These status  
bytes can trigger an IT4 interrupt,  
- The quality status STAQUA, that contains the quality of the received transmission,  
- The optional status bytes STAOP[0], STAOP[1], STAOP[2] and STAOP[3], that contains additional  
information regarding the ST75C530/540 operating mode. This default information can be changed to  
monitor any internal variables using the DOSR command.  
All these informations are updated on a Baud basis :  
Mode  
Baud Rate (2) (Hz)  
2400  
V.32bis/V.32 (ST75C540 only)  
V.22bis/V.22/Bell 212A (ST75C540 only)  
Tone  
2400  
2400  
Bell 103 (full duplex)  
V.21 (full duplex)  
V.23 (full duplex)  
V.27ter 2400bps  
V.27ter 4800bps  
V.29  
2400  
2400  
2400  
1200  
1600 (1)  
2400  
V.17/V.33  
2400  
V.21 channel 2  
2400  
HANDSET, CODER or DECODER Modes  
1200  
Notes : 1. In this mode the tone detectors outputs are update 800 times by second.  
2. This baud rate defines also, the maximum command rate. Each baud time the ST75C530/540 looks at the COMSYS location  
(Address $00) to see if a command have been sent by the host processor. If the content of this location is different from zero the  
ST75C530/540 execute the command.  
44/84  
ST75C530 - ST75C540  
VIII - STATUS DESCRIPTION (continued)  
Starting at the adddress $08 the status area have the following format :  
Bit  
Add.  
Name  
7
6
5
4
3
2
1
0
$08 SYSERR ERR_RTK  
-
-
ERR_IPRM ERR_IOCD ERR_VOCO ERR_RX ERR_TX  
$09 STATUS0 STA_109F STA_CPT10 STA_CPT1 STA_CPT0 STA_RING STA_106 STA_107 STA_109  
STA_VAD  
$0A STATUS1 STA_DTMF STA_FLAG STA_RNEG STA_HR  
STA_CLR* STA_RTRN*  
STA_AT  
STA_CCITT STA-TIM STA_H  
$0B STAQUA  
$0C STAOP0  
$0D STAOP1  
$0E STAOP2  
$0F STAOP3  
* ST75C540 only  
-
Quality  
Depend on operating mode (see below)  
VIII.2.2 - Error Status  
The error status changes each time an error occurs. When the ST75C530/540 signals an error by setting  
one of the SYSERR bit, it generates an interrupt IT0. These bits can only be cleared by the host controler  
using the CSE command.  
The meaning of the different bits of the SYSERR byte is discribed below :  
SYSERR  
Field  
Pos.  
Meaning when set  
ERR_TX  
0
Transmit buffer underflow. Lossof synchronisation between the host and ST75C530/540 transmit  
data buffer managment.  
ERR_RX  
1
2
Receive buffer overflow. Loss of synchronisation between the host and ST75C530/540 receive  
data buffer managment.  
ERR_VOCO  
Vocoder buffer underflow (Decoder) or overflow (Coder). Lost of synchronisation between the  
Host and ST75C530/540 VOCODER Buffer management.  
ERR_IOCD  
ERR_IPRM  
ERR_RTK  
3
4
7
Incorrect command  
Incorrect parameter for the command  
Real time kernel error. ST75C530/540 not able to perform all its tasks within the baud period  
(transmit or receive samples lost).  
45/84  
ST75C530 - ST75C540  
VIII - STATUS DESCRIPTION (continued)  
VIII.2.3 - Modem General Status  
The modem generalstatus word is composedof twobytes STATUS[0]and STATUS[1]. Any bit changecan  
generate an IT4 interrupt. Using the DSIT command allows the selection of the corresponding bit that will  
generate an interrupt each time they will change. The default pattern is $3F for STATUS[0] and $FF for  
STATUS[1].  
The different bits have the following meaning :  
STATUS[0]  
Field  
Pos.  
Meaning when set  
STA_109  
STA_VAD  
0
In FAX MODEM and TONECID modes STA_109 : CCITT Circuit109 (Carrier Detect). Indicates  
that valid data are received.  
In CODER and DECODER modes : VAD: Voice Activity Detected  
STA_107  
STA_106  
1
2
CCITT Circuit 107 (Data Set Ready). Valid only in FAX & DATA MODEM modes.  
CCITT Circuit 106 (Clear To Send). Indicates that the training sequence has been completed  
and that any data in the Transmit Buffer will be transmitted. Valid only in FAX & DATA MODEM  
modes.  
STA_RING  
STA_CPT0  
STA_CPT1  
3
4
5
Ring Detected. A valid ring signal is present at the Ring pin. Valid only in Tones modes. The  
precise frequency can be read in the optional status byte STAOP2.  
In TONE and TONECID modes STA_CPT0: Call progress tone detector #0. Low pass filter  
650Hz.  
In TONE and TONECID modes STA_CPT1: Call progress tone detector #1. High pass filter  
600Hz.  
STA_CPT10  
STA_109F  
6
7
In TONE and TONECID modes STA_CPT10: Signal in Filter #0 is higher than #1.  
In FAX MODEM mode, V.22bis mode* and TONECID mode STA_109F: Fast Carrier Detect.  
* ST75C540 only  
STATUS[1]  
Field  
STA_H  
Pos.  
Meaning  
0
1
2
Transmit synchronisation in progress. Valid only in FAX & DATA MODEM modes.  
Handshake timeout. Valid only in Data Modem mode.  
STA_TIM*  
STA_CCITT  
CCITT 2100Hz versus 2225Hz answer tone detect. Valid if STA_AT is set. Valid only in Tone  
mode.  
STA_AT  
3
4
Answer tone (either 2100Hz or 2225Hz) detected. Valid only in Tone mode.  
STA_HR  
STA_RTRN*  
STA_HR : Receive synchronisation in progress. Valid only in Fax Modem mode.  
STA_RTRN : Remote retrain detec, valid only in V.32bis/V.32/V.22bis Data Modem modes.  
STA_RENEG*  
5
6
Remote rate negotiation detected, valid only in V.32bis/V.32/V.22bis Data Modem modes.  
STA_FLAG  
STA_CLR*  
STA_FLAG : V.21 channel 2 flag detect. Valid only in FAX Modem mode and Tone mode.  
STA_CLR : Remote clear down detected V.32bis/V.32 Data Modem modes.  
STA_DTMF  
7
DTMF digit detect. The digit itself is available in the optional status byte STAOP3.  
* ST75C540 only  
46/84  
ST75C530 - ST75C540  
VIII - STATUS DESCRIPTION (continued)  
VIII.2.4 - Quality Status  
The quality bytesSTAQUAand STAQUAS monitoran evaluationof the line quality.They are updated once  
per baud and their value ranges from 127 (perfect quality)to 0 (terrible quality). This value is automaticaly  
adjusted according to the current receiving mode. Refer to the following chart to convert the value of  
STAQUA into its Bit Error Rate equivalence. The time constant for STAQUA is 100ms. The slow quality  
byte(available on STAOP1in Fax and Data mode except FSK)STAQUAS gives the equivalentqualitywith  
a 1 seconde time constant.  
BER  
1e-2  
1e-3  
1e-4  
1e-5  
1e-6  
1e-7  
1e-8  
STAQUA  
1e-9  
0
31  
63  
95  
127  
VIII.2.5 - Optional Status  
According to the operating mode of the ST75C530/540the optional status is displaying different informa-  
tions.  
The optional status are automatically reprogrammed after each CONF command with the address of the  
variablesto monitoraccordingwiththeoperatingmode selected(CONF_OPER).AftertheCONFcommand  
the user must overwrite this default programming by using the DOSR command. In order to change the  
default set-up please refer to the “RAM Mapping application note” (delivered on request according to  
revision number) to obtain the addresses of the DSP Internal variables.  
VIII.2.5.1 - Default Optional Status in All modes Except MODEM  
While in Tone mode the format of the STAOP word is as follows :  
Optional Status Words  
Bit  
Add.  
Name  
7
6
5
4
3
2
1
0
$0C  
$0D  
$0E  
$0F  
STAOP0  
STAOP1  
STAOP2  
STAOP3  
TDT7  
TDT15  
TDT6  
TDT14  
TDT5  
TDT13  
TDT4  
TDT3  
TDT2  
TDT10  
TDT1  
TDT9  
TDT0  
TDT8  
TDT12  
TDT11  
RING_PERIOD (1)  
TDT16  
TDT19  
TDT18  
TDT17  
DTMF_DIGIT(4)  
Notes : 1. RING_PERIOD is valid when the Bit 3 of the STATUS0(STA_RING goes high. This value is updated at each falling edge of the  
RING Signal. The RING_PERIOD value must be multiplied by 2400 to obtain the Period in second.  
2. TDTx (x in [0..15]) is the Output of the 16 Tone detectors x (sampling rate 7200Hz).  
3. TDTy (y in [16..19] is the Output of the secondary Tonedetectors (sampling rate 4800Hz or 9600Hz) with absolute comparison  
or relative comparison.  
4. DTMF_DIGIT is valid when the Bit 7 of STATUS1(STA_DTMF) goes high. This value remains unchanged until a new DTMF  
Digit is detected.  
47/84  
ST75C530 - ST75C540  
VIII - STATUS DESCRIPTION (continued)  
VIII.2.5.2- Default Optional Status in Fax Mode  
While in Fax Modem mode the format of the STAOP word is as follows :  
Optional Status Words in MODEM Mode  
Bit  
Add.  
Name  
7
6
5
4
3
2
1
0
$0C  
$0D  
$0E  
$0F  
STAOP0  
STAOP1  
STAOP2  
STAOP3  
x
x
x
SPEED (2)(5)  
SPVAL (1)(5)  
STAQUAS  
PNSUCs PRDETs PNDETs  
TDT19 TDT18 TDT17  
SCR1s  
TDT16  
PRs  
PNs  
P2s  
P1s  
DTMF_DIGIT(4)  
Notes : 1. SPVAL is active in V.33receiver only at the same time as the rising transition of the SCR1s signal. When SPVAL is set, it indicates  
that the SPEED bits contain the Data speed information.  
2. SPEED is valid in V.33 receiver only it can have 2 values, after the SCR1s signal goes high : 1000 for 14400bps and 0111 for  
12000bps.  
3. The STAOP2 Bit reflects the progression of the Synchronisation.  
4. Only valid in V.21 Channel 2 Receive mode.  
The STAOP2 Bits have the following meanings :  
STAOP2 in Fax Modem Mode  
Name  
P1s  
Position  
Description  
Unmodulated carrier sequence. Optional, used for echo protection.  
Continuous 180° phase reversal sequence  
Equalizer trainning sequence  
0
1
2
3
4
5
6
7
P2s  
PNs  
PRs  
V.33 and V.17 rate sequence  
SCR1s  
PNDETs  
PRDETs  
PNSUCs  
Continuous scrambled 1 sequence  
Turned on after PN sequence detection  
Turned on after PR sequence detection (V.33 and V.17 only)  
Turned on after succesfull training of the receive equalizer. When on at the end of the  
synchronization, the transmition BER is statisticaly bellow 10ppm.  
48/84  
ST75C530 - ST75C540  
VIII - STATUS DESCRIPTION (continued)  
With the following timing :  
P1  
P2  
T3  
PN  
T4  
R
SCR1  
T6  
Data  
T1  
T2  
T5  
Transmit  
STA_H  
P1s  
P2s  
PNs  
PRs  
SCR1s  
(6)  
T7  
T7  
T8  
T8  
T8  
T8  
Receive  
STA_HR  
(7)  
STA_109F  
P2s  
PNDETs  
PNs  
(1)  
PRDETs  
PNSUCs  
SCR1s  
(2) (8)  
STA_109  
RxData  
Mode  
T1 (4)  
192  
192  
192  
192  
192  
192  
192  
192  
T1p (5)  
30  
T2  
22  
22  
22  
22  
22  
22  
22  
22  
T3  
107  
107  
53  
41  
31  
9
T4  
T5  
T6  
T7  
5
T8  
7
Unit  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
V.17  
V.17 short  
V.29  
1240  
16  
27  
0
20  
20  
20  
8
30  
5
7
30  
160  
26  
0
5
7
V.29 short  
V.27 4800  
V.27 4800 short  
V.27 2400  
V.27 2400 short  
30  
0
5
7
30  
670  
36  
0
5
5
7
30  
0
5
5
7
30  
42  
12  
895  
48  
0
7
6
7
30  
0
7
6
7
49/84  
ST75C530 - ST75C540  
VIII - STATUS DESCRIPTION (continued)  
Data  
SCR1  
T10  
T11 min  
Transmit  
STA_H  
P1s  
P2s  
PNs  
PRs  
(6)  
SCR1s  
T12  
Receive  
STA_HR  
STA_109F  
(3)  
T13  
(3)  
PNDETs  
PNs  
(3)  
PRDETs  
(3)  
PNSUCs  
STA_109  
RxData  
Mode  
V.17  
T10  
13  
13  
13  
13  
20  
20  
27  
27  
T11  
20  
20  
20  
20  
30  
30  
40  
40  
T12  
8
T13  
Unit  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
25  
25  
25  
25  
25  
25  
25  
25  
V.17 short  
V.29  
8
8
V.29 short  
V.27 4800  
V.27 4800 short  
V.27 2400  
V.27 2400 short  
8
8
8
8
8
Notes : 1.  
In the case of V.29 or V.27, PRs and PRDETs bits are not active.  
PNSUCs indicates the quality of the Rx signal that will give a ber of approximation of 1e-5  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
.
After sending the command SYNC0, all bits are reset.  
When using long echo protection tone, otherwise 0.  
When using short echo protection tone, otherwise 0.  
STA-106 is set at the end of T6 and reset at the beginning of T10.  
After sending the command SYNC1, this bit is set.  
PNSUC is evaluated twice, first at SCR1 detection and further 256 baud (V.29,V.17, V.33 : 106ms ; V.27 4800bps : 160ms ;  
V.27 2400bps : 212ms) after STA_109.  
9.  
For V.21 channel 2, timing for loss of STA_109 is 25ms and timing for detection of STA_109 is 7ms.  
10. For V.21 channel 2 after a STOP command, STA_H is set to “1” during 13ms when the last HDLC flag is transmitted.  
50/84  
ST75C530 - ST75C540  
VIII - STATUS DESCRIPTION (continued)  
VIII.2.5.3- Default Optional Status in DATA MODEM Mode (ST75C540 only)  
While in Data Modem mode the format of the STAOP word is as follows :  
Optional Status Words in MODEM Mode  
Bit  
Add.  
Name  
7
6
5
4
3
2
1
0
$0C  
$0D  
$0E  
$0F  
STAOP0  
STAOP1  
STAOP2  
STAOP3  
x
x
x
SPEED (2)(5)  
STAQUAS  
HSHK_PHA  
TDT16 Not Used  
SPVAL (1)(5)  
TDT19  
TDT18  
TDT17  
Notes : 1. SPVALis active in V.33 receiver only at the same time as the rising transition of the SCR1s signal. When SPVALis set, it  
indicates that the SPEED bits contain the Data speed information.  
2. SPEED is valid in V.32bis, V.32, V.22bis, V.22, Bell 212A and V.33 receiver only with the following meaning :  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Data Speed  
1200bps  
0
0
0
0
0
0
1
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
2400bps  
4800bps  
7200bps  
9600bps  
12000bps  
14400bps  
Reserved  
Other  
3. The STAOP2 Bit reflects the progression of the Synchronisation.  
4. Only valid in V.21Channel 2 Receive mode.  
5. SPVALis active in V.32bis/V.32/V.22bis/V.22 at the end of the training sequence and at least 8 baud before entering Data mode.  
SPVALand SPEED are also updated with each retrain and rate negotiation.  
6. The SPAOP1 bits reflect the progression of the synchronization in Data modes.  
51/84  
ST75C530 - ST75C540  
VIII - STATUS DESCRIPTION (continued)  
The STAOP2 Bits have the following meanings in Data Modem mode :  
HSHK_PHA(R) Handshake progression counter contains information about the progress of the  
hadshake in V.32and V.22bismodes. This 8-bit value is availablein STAOP2in modem  
mode. It can be readto examine the progressio of thehandshakeand it containsnormal  
values and error values as below :  
AUTOBAUD ORIG MODE  
Event  
HSHK_PHA Value  
Wait Answer Tone  
Wait End Answer Tone  
Not Autobaud and Waiting  
USC1  
$01  
$02  
$03  
$04  
Autobaud Waiting AC or USC1  
AUTOBAUD ANSW MODE  
Event  
HSHK_PHA Value  
Waiting HSK Command  
Generating Answer Tone  
Generating Silence  
$10  
$11  
$12  
V.32 ORIG MODE  
EVENT  
HSHK_PHA Normal Value  
HSHK_PHA Error Value  
AC_DET  
AC/CA DET  
CA/AC DET  
NO AC DET  
S_DET  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
$30  
$1  
$2  
$B for RTN, $C for RTN  
$4  
SB_DET  
$5  
R1_DET  
$6  
S_DET  
$7  
SB_DET  
$8  
R3_DET  
$9, $D no R5 det after RRN  
$A  
E_DET  
DATA_MODE  
V.32 ANSW MODE  
EVENT  
HSHK_PHA Normal Value  
HSHK_PHA Error Value  
AA_DET  
AA/CC DET  
NO CC DET  
S_DET  
$40  
$41  
$42  
$43  
$44  
$45  
$46  
$47  
$50  
$8 for RTN, $9 for RRN  
$1  
$2  
$3  
SB_DET2  
SB_DET  
$4  
$5  
R2_DET  
$6, $A if no R det after RRN  
$7  
E_DET  
DATA_MODE  
V.22bis ORIG MODE  
EVENT  
HSHK_PHA Normal Value  
HSHK  
$60  
$61  
$62  
$63  
$70  
USC1_DET  
SCR1_DET  
S1_DET  
DATA_MODE  
V.22bis ANSW MODE  
EVENT  
HSHK_PHA Normal Value  
HSHK  
SCR1_DET  
S1_DET  
$80  
$82  
$83  
$90  
DATA_MODE  
52/84  
ST75C530 - ST75C540  
IX - TONE DETECTORS  
IX.1 - Overview  
monitored on a baud basis using the DOSR com-  
mand.  
The general purpose ST75C530/540 tone detec-  
tors block is a powerful module that covers a lot of  
applications :  
- call progress tone detection, fully programmable  
for all countries,  
- FAX, voice, data automatic detection,  
- call waiting detection, while in vocoder or data  
mode.  
The16primarytonedetectorsareinitializedeachtime  
entering thetone mode.However the previous coeffi-  
cient values could be kept usinga MW command.  
The secondary tone detector have been added to  
the ST75C530/540.The filter structure is the same  
as the primary tone detector.  
The sampling rate is 4800Hz allowing detection of  
signallessthan 1800Hz by defaultprogrammingor  
with a MODC command, the sampling rate is  
9600Hz allowing detection of signal less than  
3300Hz. The level of detection is programmable  
from -6dBm down to -51dBm. In order to increase  
the reliability of the detection,using a TDWW com-  
mand,2 comparisonsare provided,onewitha fixed  
level (absolute)or with the receivesignal (relative).  
The 4 secondary tone detectors are initialiazed  
each time entering the tone mode. However the  
previous coefficient values could be kept using a  
CONF command.  
IX.2 - Description  
The primary tone detector block is a set of 16  
identical Cells. Each cell is composed of a Double  
Biquadratic Filter, a Power estimator section, a  
Static level and a Level comparator.  
EachBiquadraticFilter, PowerEstimatorandStatic  
Level can be programmed using a complete set of  
commands(TDRC, TDRW, TDWC, TDWW, TDZ).  
The wiring between the different Cells can be de-  
fined by the user, using the associated command  
allowing a wide range of applications.  
ThecommandTDRC, TDWC, TDWW, TDRW, TDZ  
with the TD_CELL parameter of 0x10, 0x11, 0x12  
or 0x13 can be used to program these filters.  
The sampling frequencyis 7200Hz,allowing detec-  
tion of signalslessthan 3300Hz.The level of detec-  
tion is programmable from -6dBmdown to -51dBm.  
IX.2.1 - Biquadratic Filters  
The 16 ComparatorOutputsgive, on a baud basis,  
the information into two 8 bits words TONEDET0  
(for cells number 0 to 7) and TONEDET1 (for cells  
number 8 to F). These TONEDET variables can be  
accessed using a MRI command or, more easily,  
Each Biquadratic Filter is a double regular section  
that can performany Transferfunctionwith 4 Poles  
and 4 Zeros.  
This routine is run on a sample basis.  
Figure 17 : BiquadraticIIR Filter  
-1  
IN  
C0  
C5  
C6  
CB  
OUT  
Z
2
2
-1  
-1  
Z
Z
Z
Z
C1  
C2  
C3  
C7  
C8  
C9  
-1  
-1  
C4  
CA  
The corresponding transfer function is :  
1
2
1
2
Out  
Input  
C5  
1
2
C3 z−  
C1 z−  
2
C4 z−  
C2 z−  
CB  
1
2
C9 z−  
C7 z−  
2
CA z−  
+
+
+
+
= C0  
C6  
z1  
2
2
2
2
C8 z−  
1
2
1
2
Note : All coefficients are coded on 16 bits 2’s complement in the range +1, -1 (Q15). To avoid the possibility of overflow the user must check  
that the internal node must not be higher that 0.5 (in Q15 representation).  
53/84  
ST75C530 - ST75C540  
IX - TONE DETECTORS (continued)  
corresponding bit into the TONEDET[0..1] word; if  
not it clear this bit.  
IX.2.2 - Power Estimation  
The Power estimation Cell is needed to measure  
the amplitude of the different tones. It is run on a  
sample basis.  
IX.2.5 - Wiring  
The user must specify the connection (wiring) be-  
tweenthe input/outputof theFilter,the input/output  
of the Power estimator, the output of the static  
levels and the two inputs of the Comparators.  
Figure 18 : Power Estimator  
OUT  
IN  
+
-1  
ABS(.)  
P1  
Z
The output signals have an absolute address:  
Node Address  
Signal  
-1  
Z
Address  
Description  
Name  
Ground  
RxSig  
00  
01  
Signal always equal to 0000  
The corresponding transfer function is :  
Receive signal from the  
Analog front end  
P1  
z−  
1
RxSig2  
RxSig4  
02  
03  
Receive signal multiplied by 2  
Receive signal multiplied by 4  
Out  
=
|Input|  
1 (1 P1) z1  
04..0F Reserved  
IX.2.3 - Static Level  
Filter[0..F]  
10..1F Biquadratic Filter Outputs  
A single Threshold level is associated with each  
Cell. It canbe useto comparetheoutputof a Power  
Estimation with an Absolute Value.  
Power[0..F] 20..2F Power Estimator Outputs  
Level[0..F] 30..3F Static Levels  
The user will specifythe inputs of the filters, Power  
andComparator.At leastoneinputmust comefrom  
the RxSig (node 01, 02 or 03). It is mandatory to  
connect all unused cell inputs to the Ground signal  
(node 00).  
IX.2.4 - Comparator  
The Comparator computes, on a baud basis, the  
differenceof the signal on itsPositive andNegative  
Inputs. If the result is Higher that zero it sets the  
54/84  
ST75C530 - ST75C540  
IX - TONEDETECTORS (continued)  
Figure 19 : Tone Detector Wiring Address (first half)  
@10  
@11  
@12  
@13  
@14  
@15  
@16  
@17  
BIQUADRATIC  
FILTER  
#0  
@20  
@30  
POWER  
#0  
COMP.  
#0  
LEVEL #0  
BIQUADRATIC  
FILTER  
@21  
@31  
POWER  
#1  
#1  
COMP.  
#1  
LEVEL #1  
BIQUADRATIC  
FILTER  
@22  
@32  
POWER  
#2  
#2  
COMP.  
#2  
LEVEL #2  
@00  
D0  
BIQUADRATIC  
FILTER  
#3  
@23  
@33  
GROUND  
POWER  
#3  
D1  
COMP.  
#3  
D2  
D3  
LEVEL #3  
@01  
@02  
@03  
Rx SIGNAL  
BIQUADRATIC  
FILTER  
D4  
D5  
D6  
@24  
@34  
POWER  
#4  
#4  
COMP.  
#4  
2
2
LEVEL #4  
D7  
BIQUADRATIC  
FILTER  
@25  
@35  
POWER  
#5  
TONEDET0  
#5  
COMP.  
#5  
LEVEL #5  
BIQUADRATIC  
FILTER  
@26  
@36  
POWER  
#6  
#6  
COMP.  
#6  
LEVEL #6  
BIQUADRATIC  
FILTER  
@27  
@37  
POWER  
#7  
#7  
COMP.  
#7  
LEVEL #7  
55/84  
ST75C530 - ST75C540  
IX - TONEDETECTORS (continued)  
Figure 20 : Tone Detector Wiring Address (second half)  
@18  
BIQUADRATIC  
FILTER  
@28  
@38  
POWER  
#8  
#8  
COMP.  
#8  
LEVEL #8  
@19  
BIQUADRATIC  
FILTER  
@29  
@39  
POWER  
#9  
#9  
COMP.  
#9  
LEVEL #9  
BIQUADRATIC @1A  
@2A  
@3A  
POWER  
#A  
FILTER  
#A  
COMP.  
#A  
LEVEL #A  
D0  
D1  
D2  
D3  
D4  
BIQUADRATIC @1B  
@2B  
@3B  
POWER  
#B  
FILTER  
#B  
COMP.  
#B  
LEVEL #B  
BIQUADRATIC @1C  
@2C  
@3C  
POWER  
#C  
FILTER  
#C  
D5  
D6  
D7  
COMP.  
#C  
LEVEL #C  
BIQUADRATIC @1D  
@2D  
@3D  
POWER  
#D  
TONEDET1  
FILTER  
#D  
COMP.  
#D  
LEVEL #D  
BIQUADRATIC  
FILTER  
@1E  
@1F  
@2E  
@3E  
POWER  
#E  
#E  
COMP.  
#E  
LEVEL #E  
BIQUADRATIC  
FILTER  
@2F  
@3F  
POWER  
#F  
#F  
COMP.  
#F  
LEVEL #F  
56/84  
ST75C530 - ST75C540  
IX - TONEDETECTORS (continued)  
Figure 21a : SecondaryTone Detector Configuration (2 tone detectors1 + 1)  
FOURTH ORDER  
IIR FILTER #16  
POW ()  
#16  
INPUT SIGNAL  
absolu  
COMPARATOR  
#16  
TDT16  
AND  
Relative  
LEVEL #16  
COMPARATOR  
#16  
OR  
POW ()  
#20  
GAIN  
#16  
-TD4DIFF or  
TDWW 1001 00C0  
FOURTH ORDER  
IIR FILTER #17  
POW ()  
#17  
absolu  
COMPARATOR  
#17  
TDT17  
AND  
Relative  
LEVEL #17  
COMPARATOR  
#17  
OR  
POW ()  
#20  
GAIN  
#17  
-TD4DIFF or  
TDWW 1100 00C0  
Figure 21b : SecondaryTone Detector Configuration (3 tone detectors 1 + 1 + 2)  
FOURTH ORDER  
IIR FILTER #16  
POW ()  
#16  
INPUT SIGNAL  
absolu  
COMPARATOR  
#16  
TDT16  
Relative  
AND  
AND  
AND  
LEVEL #16  
COMPARATOR  
#16  
OR  
POW ()  
#20  
GAIN  
#16  
-TD4DIFF or  
TDWW 1001 00E0  
FOURTH ORDER  
IIR FILTER #17  
POW ()  
#17  
absolu  
COMPARATOR  
#17  
TDT17  
Relative  
LEVEL #17  
COMPARATOR  
#17  
OR  
POW ()  
#20  
GAIN  
#17  
-TD4DIFF or  
TDWW 1100 00E0  
FOURTH ORDER  
IIR FILTER #18  
FOURTH ORDER  
IIR FILTER #19  
POW ()  
#18  
absolu  
COMPARATOR  
#18  
TDT18  
Relative  
LEVEL #18  
COMPARATOR  
#18  
OR  
POW ()  
#20  
GAIN  
#18  
-TD4DIFF or  
TDWW 1200 00E0  
57/84  
ST75C530 - ST75C540  
IX - TONEDETECTORS (continued)  
Figure 21c : SecondaryTone Detector Configuration (4 tone detectors1 + 1 + 1 + 1)  
FOURTH ORDER  
IIR FILTER #16  
POW ()  
#16  
INPUT SIGNAL  
absolu  
COMPARATOR  
#16  
TDT16  
Relative  
AND  
AND  
AND  
AND  
LEVEL #16  
COMPARATOR  
#16  
OR  
POW ()  
#20  
GAIN  
#16  
-TD4DIFF or  
TDWW 1001 00F0  
FOURTH ORDER  
IIR FILTER #17  
POW ()  
#17  
absolu  
COMPARATOR  
#17  
TDT17  
Relative  
LEVEL #17  
COMPARATOR  
#17  
OR  
POW ()  
#20  
GAIN  
#17  
-TD4DIFF or  
TDWW 1100 00F0  
FOURTH ORDER  
IIR FILTER #18  
POW ()  
#18  
absolu  
COMPARATOR  
#18  
TDT18  
Relative  
LEVEL #18  
COMPARATOR  
#18  
OR  
POW ()  
#20  
GAIN  
#18  
-TD4DIFF or  
TDWW 1201 00F0  
FOURTH ORDER  
IIR FILTER #19  
POW ()  
#19  
absolu  
COMPARATOR  
#19  
TDT19  
Relative  
LEVEL #19  
COMPARATOR  
#19  
OR  
POW ()  
#20  
GAIN  
#19  
-TD4DIFF or  
TDWW 1300 00F0  
58/84  
ST75C530 - ST75C540  
IX - TONE DETECTORS (continued)  
IX.3 - Example  
Hereunder is an example of programming a single  
Tone detection (using Cell #3) and a complex dif-  
ferentialtone detection (using Cell #4 and #5).  
Bit 3 of the TONEDET variable will be triggered  
eachtime the energyof thatfiltered signalis higher  
than Static Level number 3.  
Bit 4 of the TONEDETvariablewill be on eachtime  
a receive signal has an energy higher than the  
Static Level number 4. Bit 5 will be on only when  
the Filtered (Filter section 4 and 5) received signal  
higher than the energy of the wide-band signal  
number 4 ; this prevents triggering on noise.  
Figure 22 : Wiring Example  
@00  
@13  
@14  
@15  
BIQUADRATIC  
FILTER  
@23  
POWER  
#3  
GROUND  
#3  
COMP.  
#3  
@33  
LEVEL #3  
@01  
Rx SIGNAL  
@24  
@34  
BIQUADRATIC  
FILTER  
POWER  
#4  
D3  
D4  
@02  
@03  
#4  
COMP.  
#4  
2
2
LEVEL #4  
D5  
@25  
@35  
TONEDET0  
BIQUADRATIC  
FILTER  
POWER  
#5  
#5  
COMP.  
#5  
LEVEL #5  
Program Cell #3 :  
TDWW  
03  
00  
13  
01  
Connect Received signal to Filter and Filter to Energy.  
TDWW 03 01  
Connect Level to Comparator Neg Input and Energy to Pos Input.  
33  
23  
Program Cell #4 and #5 :  
TDWW  
Connect Received Signal to Filter and Energy.  
TDWW 04 01  
04  
00  
01  
34  
01  
24  
14  
25  
Connect Level to Comparator Neg Input and Energy to Pos Input.  
TDWW  
Connect Filter#4 Output to Filter and Filter to Energy.  
TDWW 05 01  
Connect Wide-band Energy to Neg Input and Energy to Pos Input.  
05  
00  
15  
24  
59/84  
ST75C530 - ST75C540  
X - PARALLEL DATA EXCHANGE  
X.1 - Overview  
Name  
Address  
$2E  
$2F  
$30  
Description  
Buffer 0 Status Byte  
Buffer 0 Data Byte 0  
Buffer 0 Data Byte 1  
Buffer 0 Data Byte 2  
Buffer 0 Data Byte 3  
Buffer 0 Data Byte 4  
Buffer 0 Data Byte 5  
Buffer 0 Data Byte 6  
Buffer 0 Data Byte 7  
Buffer 1 Status Byte  
Buffer 1 Data Byte 0  
Buffer 1 Data Byte 1  
Buffer 1 Data Byte 2  
Buffer 1 Data Byte 3  
Buffer 1 Data Byte 4  
Buffer 1 Data Byte 5  
Buffer 1 Data Byte 6  
Buffer 1 Data Byte 7  
DTTBS0  
While transmiting (respectively receiving) data to  
(from) the telephone line data are exchanged be-  
tween the host and the ST75C530/540.  
DTTBS0 [0]  
DTTBS0 [1]  
DTTBS0 [2]  
DTTBS0 [3]  
DTTBS0 [4]  
DTTBS0 [5]  
DTTBS0 [6]  
DTTBS0 [7]  
DTTBS1  
$31  
Two totaly independent channels are provived for  
transmit and receive data. Even while using half  
duplex modes of operation, the transmitted data  
comes from the transmit buffers and the receive  
data arrives in the receive buffers.  
$32  
$33  
$34  
$35  
$36  
IT2  
Two independent interrupts,  
IT3 (forreceive) are availablefor synchronizingthe  
IT0  
(for transmit) and  
$37  
ST75C530/540 and the host. An additional  
DTTBS1 [0]  
DTTBS1 [1]  
DTTBS1 [2]  
DTTBS1 [3]  
DTTBS1 [4]  
DTTBS1 [5]  
DTTBS1 [6]  
DTTBS1 [7]  
$38  
interruptwill signalthe errorsinthesynchronization  
mechanism.  
The equivalent data flow is as follows (see Fig-  
ure 20).  
The ST75C530/540 has a buit-in HDLC capability.  
This feature automatically performs HDLC fram-  
ing/deframing, CRC generation/detectionand “0”  
insertion/deletion. The ST75C530/540 have also  
UART capability, the format of data is selected by  
$39  
$3A  
$3B  
$3C  
$3D  
$3E  
$3F  
Bit 0 (LSB) of the Buffer 0 Data Byte 0 is thefirst in  
time to be transmited.  
FORM  
the  
commanddescribed bellow.  
According to the Data Format, the Status byte of a  
buffer has different meanings. However a value of  
0 signals to the host that a buffer is empty. This  
value is set by the ST75C530/540 each time it has  
emptied the buffer. After having used one buffer,  
the host must select the other buffer for the next  
operation. The host must start with the Buffer 0 as  
soon as the ST_106 signal goes on and BEFORE  
X.2 - Transmit Buffers  
Twoidentical buffersare provided to exchangethe  
data between the host interface and the  
ST75C530/540. When the host is writing data into  
a buffer, the ST75C530/540 is transmitting the  
other one. After that, both the host and the  
ST75C530/540switch to use the other buffer. This  
mechanism, called “Double-Buffering”, ensures  
that the host has the maximum time to fill one  
buffer.  
XMIT 1  
the  
command is sent.  
A mechanism of interruption (IT2 for Transmit) is  
associated with the data buffer managment. Each  
time a buffer is emptied by the ST75C530/540 it  
generates an interrupt.  
The DUAL Ram area associated with the transmit  
buffers is as following table.  
Figure 23  
IT2  
Tx  
HDLC  
UART  
Tx  
MODUL.  
BUFFERS  
Telephone  
Line  
H
HDLC  
UART  
Rx  
BUFFERS  
DEMOD.  
Rx  
Control  
Data  
IT3  
60/84  
ST75C530 - ST75C540  
X - PARALLEL DATA EXCHANGE (continued)  
X.3 - ReceiveBuffers  
X.4 - Interruption  
Two Interrupt signals are provided in order to syn-  
chronize the Data Buffer Exchanges. IT2 is asso-  
Symetrically two identical buffers are provided to  
exchange receive data b etween the  
ST75C530/540 and the host processor. While the  
ST75C530/540is filling one of the buffers with the  
receivebits, the host processoris reading the other  
buffer. As soon as the host has emptied a buffer it  
frees it by writing 0 in the buffer status byte.  
IT3  
ciatedwiththe Transmit Buffermechanismand  
with the Receive Buffer mechanism.  
In order to enable these interrupts, the Host proc-  
essor must set the bit 2 (for IT2) and the bit 3 (for  
IT3  
) of the  
ITMASK  
Register to 1. It must also set  
the Bit 7 of the ITMASK register to 1 in order to  
globallyenable allthe selectedsourcesof interrup-  
tion.  
The DUAL Ram area associated with the receive  
buffers is as following table.  
SINTR  
When an Interrupt occurs (low level on  
the user must read the ITSRCR Register to deter-  
IT2  
pin)  
Name  
Address  
$1C  
$1D  
$1E  
$1F  
$20  
Description  
Buffer 0 Status Byte  
Buffer 0 Data Byte 0  
Buffer 0 Data Byte 1  
Buffer 0 Data Byte 2  
Buffer 0 Data Byte 3  
Buffer 0 Data Byte 4  
Buffer 0 Data Byte 5  
Buffer 0 Data Byte 6  
Buffer 0 Data Byte 7  
Buffer 1 Status Byte  
Buffer 1 Data Byte 0  
Buffer 1 Data Byte 1  
Buffer 1 Data Byte 2  
Buffer 1 Data Byte 3  
Buffer 1 Data Byte 4  
Buffer 1 Data Byte 5  
Buffer 1 Data Byte 6  
Buffer 1 Data Byte 7  
DTRBS0  
mine the sourceof the interrupt, either  
forTx (if  
DTRBS0 [0]  
DTRBS0 [1]  
DTRBS0 [2]  
DTRBS0 [3]  
DTRBS0 [4]  
DTRBS0 [5]  
DTRBS0 [6]  
DTRBS0 [7]  
DTRBS1  
the bit 2 is 1) or IT3 for Rx (if the bit 3 is 1).  
Once the Interrupt has been serviced, the host  
must acknowledgeit by writinga $00 valueinto the  
ITRES2  
IT2 IT3  
register  
for  
, or ITRES3 for .  
$21  
These registers have the following address :  
$22  
Name  
ITRES2  
ITRES3  
ITMASK  
ITSRCR  
Address  
$42  
Type  
Description  
$23  
Write only Clear IT2  
$24  
$43  
Write only Clear IT3  
$25  
$4F  
Read/Write Interrupt Mask  
Read Only Interrupt Source  
DTRBS1 [0]  
DTRBS1 [1]  
DTRBS1 [2]  
DTRBS1 [3]  
DTRBS1 [4]  
DTRBS1 [5]  
DTRBS1 [6]  
DTRBS1 [7]  
$26  
$50  
$27  
Notes : 1. The ST75C530/540 does not check thatthe interrupt has  
been acknowledged.  
$28  
2. Even if the Host does not use the interruption, the  
IT2  
ST75C530/540 will set the bit 2 (for  
IT3) of the ITSRCR.  
) and/or bit 3 (for  
$29  
$2A  
$2B  
$2C  
$2D  
3. The ST75C530/540 uses only the Data Buffer Status  
Bytes to detectOverrun or Underrun Error.These errors  
SYSERR  
are reported into the  
an interrupt IT0.  
byte, and could generate  
The equivalent schematic is : see Figure 21.  
The interrupt mechanism assumes that the Host  
processor uses a Level sensitive interrupt (active  
low). The Flow chart of the Host interrupt service  
routine looks generaly like Figure 22.  
The Bit 0 (LSB) of the Buffer 0 Data Byte 0 is the  
first received bit in time (the oldest).  
According to the Data Format, the Status byte of a  
buffer has different meaning. Howevera value of 0  
signalsto theST75C530/540thata buffer isempty.  
This value is set by the Host each time it has  
emptied the buffer. After having used one buffer,  
the host must select the other buffer for the next  
operation. The Host must start with the Buffer 0 as  
X.5 - Data Format  
Different Formats of Data can be Transmitted/Re-  
ceived to/from the Telephone Line.  
These Formats can be selected when entering the  
Data Mode by using the FORM command.  
The Format of the Data can be changed,on the fly  
in the Data Mode duringthe same communication,  
STA_109  
soon as the  
signal goes.  
IT3  
FORM  
commandat anytime.  
A mechanism of interruption (  
for Receive) is  
by sendinga different  
associatedwith the Data Buffermanagment.Each  
time a bufferis filled by the ST75C530/540 it gen-  
erates an interrupt.  
Note that for Full Duplex operation the Data For-  
mat is the same for the transmitter and the re-  
ceiver.  
61/84  
ST75C530 - ST75C540  
X - PARALLEL DATA EXCHANGE (continued)  
Figure 24  
ITRES 2  
(write only)  
R
S
Q
Q
(Tx buffer emptied)  
ITRES 3  
(write only)  
From  
ST75C540  
DSP  
R
S
(Rx buffer filled)  
ITSRCR  
(read only)  
6
5
4
3
2
1
0
SINTR  
ITMASK  
(read write)  
7
6
5
4
3
2
1
0
Figure 25  
IT  
Check only the Interrupt sources  
that we want to manage under Interrupt  
READ ITSRCR  
MASK UNWANTED BITS  
Yes  
= 0  
RETURN  
If all sources served return from interrupt  
No  
Yes  
Execute Tx Buffer  
BIT 2 = 1  
No  
EXECUTE IT_TRANSMIT  
WRITE 00 INTO ITRES2  
Management  
Reset IT2  
Yes  
Execute Rx Buffer  
Management  
BIT 3 = 1  
No  
EXECUTE IT_RECEIVE  
WRITE 00 INTO ITRES3  
Reset IT3  
(Other Interrupts)  
62/84  
ST75C530 - ST75C540  
X - PARALLEL DATA EXCHANGE (continued)  
X.6 - FORM Command  
- Flag generation (7E) at the end of a frame.  
- Abort frame.  
- Programmable number of Starting flags.  
- Programmable number of Inter frame flags.  
- Programmable number of Ending flags.  
The Buffer Status Byte DTTBSx defines the frame  
type, and the number of Data Bytes to transmit.  
FORM  
The  
command allows the selection of the  
Data Format. The Parameter syntax is as follows :  
Field  
Byte Pos. Value  
Definition  
X_SYNC  
1
2..0 000* Synchronous format  
001 Transmit continuous  
“1”(1)  
010 HDLC framming  
011 Transmit continuous  
”0”(1)  
X.6.2.2 - HDLC Receive  
The HDLC Receiver performs the following tasks :  
- Flag recognition.  
- Opening flag recognition.  
- Zero deletion.  
100 UART  
X_ANBIT  
X_APAR  
2
2
1..0  
3..2  
00  
01  
7 Bit per character  
8 Bit per character  
00  
01  
10  
No parity  
Even parity  
Odd parity  
- CRC16 computation.  
- CRC16 check ; error CRC16 detection.  
- Closing flag recognition.  
- Abort frame detection.  
X_ASTOP  
2
5
0
1
1 stop bit(1)  
2 stop bit(1)  
Note : 1. Transmit only  
- Received CRC.  
DTRBSx  
TheBufferStatusByte  
containsthe frame  
X.6.1 - Synchronous Mode  
The synchronous mode is the default mode, if no  
FORM  
type, the number of Data Bytesand theerror report  
if any. The errors detected are :  
command is used.  
The transmitter reads the bits in the DUAL Ram  
DTTBFx  
- CRC16 Error : Wrong CRC received.  
- Non byte-alligned frame : The number of Data bits  
betweenthebeginingoftheframeandtheendofthe  
frame (after “zero” deletion)is nota byte-multiple.  
- Aborted frame : More that 6 consecutive “1” re-  
ceived.  
Buffer  
(starting with the Bit 0 of Byte 0 of  
Buffer 0) and send them over the Telephone line.  
The Buffer Status Byte DTTBSxcontains the num-  
ber of Data Bytes to transmit.  
The Receiver write the received bits coming from the  
Telephone line and write them into the DUAL Ram  
Buffer DTRBFx (startingwith theBit 0 ofthe Byte0 of  
X.6.3 - UART Mode  
In the UART mode the buffers contains only one  
Characterto transmit or received. The worse case  
of interruptrate isobtained withthe lowercharacter  
bit length (7bit of data, no parity and 1 stopbit) and  
is provided in the following table.  
DTRBSx contains  
theBuffer0).TheBufferStatusByte  
thenumberof Data Bytes received (generaly 8).  
IT2 IT3  
The timebetweeneach  
interrupts(or ) is equal  
to 64-bit if the number of Data Bytes is set to 8. The  
Host hasthe full 64bitstime to serve the interrupt :  
Bit Rate (bps)  
Interrupt Time (ms)  
14400  
12000  
9600  
7200  
4800  
2400  
1200  
300  
0.41  
0.41  
0.82  
1.25  
1.64  
3.75  
7.5  
Bit Rate (bps)  
Interrupt Time (ms)  
14400  
12000  
9600  
7200  
4800  
2400  
1200  
300  
4.4  
5.3  
6.6  
8.8  
13.3  
26.6  
53.3  
213.3  
853.3  
30  
75  
120  
75  
X.6.3.1 - UART Transmit  
TheUARTTransmitterperformsthefollowing tasks:  
- Start bit generation.  
- Parity Computation.  
X.6.2 - HDLC Mode  
The HDLC Format can be used for T.30 or ECM  
implementations  
- Stop Bit generation.  
- Break generation.  
X.6.2.1 - HDLC Transmit  
X.6.3.2 - UART Receive  
The UART Receiver performs the following tasks :  
- Start bit recognition.  
- Parity Checking.  
- Stop bit Checking.  
TheHDLC Transmitterperformsthefollowingtasks:  
- Flag generation(7E) while in inter-frame.  
- Flag generation(7E) at the begining of a frame.  
- Zero insertion (after 5 consecutive1”).  
- CRC16 computation.  
- CRC16 transmission at the end of a frame.  
- Break detection.  
63/84  
ST75C530 - ST75C540  
XI - TRANSMITTING DATA IN PARALLEL MODE  
XI.1 - Description  
XI.1.1 - XMIT Command  
transmission, to stop sending the carrier on the  
telephone line.  
STOP  
Prior to the  
command the user must have  
XMIT  
The  
the Parallel Data process.  
XMIT  
Command works like a CTS signal for  
stop the parallel transmition with a XMIT off com-  
mand.  
When the currentdata bufferwillbe totalytransmit-  
ted, and that no more buffers will be available,that  
is to said both DTTBF0 and DTTBF1 will be $00  
(equivalent to an Underrun condition).  
When  
continuous1”. When on theST75C530/540trans-  
FORM  
is off, the ST75C530/540 transmits  
mitsData in accordancewith the  
and starts to manage the Data Buffer.  
command  
This command can be sent at any time, while in  
Data Mode (see Table below).  
XI.1.4 - Timing  
Here are regular sequences to stop properly the  
transmition (see Figure 27).  
XI.1.2 - FORM Command  
FORM  
The  
redefine the current format. The effect will take  
XMIT  
Command can be sent at any time to  
Field  
Byte Pos. Value  
Definition  
(Off) Send  
continuous “1” (**)  
place only when  
is on.  
TX_START  
1
0
0 *  
1
.
Here is a formal example showing the relationship  
(On) Send Data  
according with the  
Format defined in the  
FORM command.  
XMIT  
, and  
FORM  
Commands (see Fig-  
between  
ure 26).  
XI.1.3 - STOP Command  
The STOP command is used, at the end of the  
** The XMITOff command takes effectonly when thetwo Transmit  
DTTBF0 and DTTBF1 equal to $00.  
buffers are empty :  
Figure 26  
STA_106  
DATA  
1
1
0
1
0
$7E  
TRANSMITTED  
COMMANDS :  
FORM3  
XMIT 1  
XMIT 0  
XMIT 1  
FORM 2  
XMIT 0  
Figure 27  
Case # 1 Synchronous Format  
STA_106  
FeedLast Buffer  
XMIT0  
STOP  
(ignored until here)  
Last Buffer  
DATA  
1
TRANSMITTED  
Case # 2 HDLC Format  
STA_106  
FeedLast Buffer  
XMIT0  
STOP  
(ignored until here)  
DATA  
TRANSMITTED  
Last Buffer CRC16 $7E  
1
Case # 3 UART Format  
STA_106  
XMIT0  
STOP  
(ignored until here)  
DATA  
TRANSMITTED  
Last Buffer  
1
64/84  
ST75C530 - ST75C540  
XI - TRANSMITTING DATA IN PARALLEL MODE (continued)  
XI.1.5 - FSK Full Duplex Mode  
Establisha V.29transmition and send the very first  
Buffer (see Figure 29).  
In FSK Full duplex Mode the parallel mode as-  
sumes that the Bit time duration is the nominal Bit  
rate.  
Figure 28  
Each bit element from the Transmit buffer is main-  
tained during the full bit time.  
BEGIN  
The Nominal bit clock is defined as follows :  
READ BIT IN  
INTERNAL BUFFER  
FSK Standard Nominal Transmit Bit Rate (Hz) (1)  
V.21  
300  
300  
75  
No  
Bell 103  
INTERNAL BUFFER  
EMPTY  
V.23 Originate  
V.23 Answer  
Yes  
1200  
RETURN  
SELECT NEXT DUAL  
RAM BUFFER X  
Note 1 : The accuracy of the Bit clock is given by the  
ST75C530/540 oscillator, and must better than 100ppm.  
XI.2 - Modem Flow Chart  
Yes  
DTTBSx= 0  
When Data Mode, each time the ST75C530/540  
need a bit to transmit it executes the following  
routine (see Figure 28). Where x starts with the  
value 0 and toggle thereafter between 1 and 0.  
No  
SIGNAL ERROR  
INTO ERR_TX  
MOVE DTTBFx DATA  
TO INTERNAL BUFFER  
XI.3 - Host Flow Chart  
Here after are Flowcharts to :  
- Establisha V.29 transmission  
- Send Synchronous continuous “$AA, $55, $AA,  
$55, ...sequence.The managmentof the Buffers  
are done under Interrupt.  
RAISE IT0 INTERRUPT  
CLEAR DTTBSx  
RAISE IT2 INTERRUPT  
RETURN  
SELECT DUAL  
RAM BUFFER x = 0  
RETURN  
- Stop properly the transmition.  
Figure 29  
Subroutine :  
CONF 0F 08 00 01  
HSHK  
Select V.29 9600bps  
FILL FIRST BUFFER  
Start V.29 sequence  
WRITE AA, 55 ...  
INTO DTTBF [0..7]  
FORM 00 (opt)  
FILL FIRST BUFFER  
Format synchronous  
Fill the first buffer # 0  
WRITE 08 INTO DTTBFS0  
SELECT NEXT BUFFER  
IBUF = 1  
No  
Wait until end  
of training  
STA_106 = 1  
Tx_COMPLETED = FALSE  
Yes  
Start to transmit  
the first buffer  
XMIT 1  
ENABLE IT2  
ITMASK = 0 x 84  
RET  
65/84  
ST75C530 - ST75C540  
XI - TRANSMITTING DATA IN PARALLEL MODE (continued)  
DTTBSx buffer. An abort frame is transmitted in  
place of the regular Buffer.  
- This condition cannot append in UART mode.  
When an underflow condition occur the host must  
restart thewhole parallelinitialization, as explained  
above.  
These flowcharts show two CPU variables labeled  
IBUF and Tx_Completed, they are necessary for  
the understanding of the mechanism, but there is  
different manners to implement it. These two vari-  
ables have the following meanning :  
- IBUF: Thisis thenumberof theDUALRAMBuffer  
currently in use by the Host processor. It starts  
with 0 and then alternate 1, 0, 1, 0, ...  
Figure 31  
- Tx_Completed : This is a Flag to dialog with the  
interrupt process in order to stop properly the  
transmition.  
Stop sending parallel  
data (delayed)  
XMIT 00  
The other Buffers are sent under interrupt control  
(refer to the interrupt flow chart, Figure 30).  
STOP  
Stop signal  
To stop properly the transmition, without loss of  
Data (see Figure 31).  
Tx_COMPLETED = TRUE Semaphore with interrupt  
Figure 30  
EXECUTE_IT_TRANSMIT  
Wait until last buffer is  
No  
STA_106 = 1  
transmitted and CCITT  
stop sequence completed  
Yes  
Yes  
Tx_COMPLETED ?  
No  
XI.5 - Synchronous Mode  
XI.5.1 - Description  
No  
IBUF = 1  
In synchronousmode theST75C530/540transmits  
the bits containedin the DUALRAM Buffer without  
any modification. It starts with the Bit 0 of the  
(1)  
(1)  
Yes  
WRITE AA, 55, ...  
INTO DTTBF1  
WRITE AA, 55, ...  
INTO DTTBF0  
DTTBF0[0]  
byte.  
WRITE 08 INTO DTTBS1  
IBUF = 0  
WRITE 08 INTO DTTBS0  
IBUF = 1  
XI.5.2 - Status Word Format  
DTTBS0  
havethesamefollowingmeaning(seetablebelow).  
DTTBS1  
or  
The Transmit Status Bytes  
DTTBSx in Synchronous Mode  
Field  
Pos. Value  
Definition  
RETURN  
BUFF_LENG 3 .. 0  
0
1
Buffer empty.  
1 Byte to transmit  
DTTBFx[0]  
(
).  
2 Bytes to transmit  
DTTBFx[0]  
2
XI.4 - Error Detection  
Error occurs when the ST75C530/540 need some  
DTTBSx  
(
and  
DTTBFx[1]).  
..  
8
..  
bitsfromthetransmitbuffer  
is empty. This condition is called “Underflow”.  
ERR_TX  
andthisbuffer  
8 Bytes to transmit  
(DTTBFx[0 .. 7]).  
This error is signaled in the bit  
SYSERR byte, and generates an interrupt IT0. To  
CSE01  
of the  
Other Not allowed.  
Other  
7 .. 4  
0
Reserved, must be 0.  
cleartheerror a  
commandmust be issued.  
This status byte must be written by the Host, after  
DTTBFx[0..7]  
with the right number of data bytes to transmit.  
An Underflow contition occurs when :  
- In synchronous mode: the host processor “for-  
filing the corresponding data buffer  
DTTBSx  
gets” to feed the current  
buffer.  
- In HDLC mode: when, while inside a frame, the  
host processor “forgets” to feed the current  
This status byte is cleared by the ST75C530/540,  
IT2  
just before generating the  
interrupt.  
66/84  
ST75C530 - ST75C540  
XI - TRANSMITTING DATA IN PARALLEL MODE (continued)  
XI.6 - HDLC Mode  
XI.6.1 - Description  
will be transmitted, the ST75C530/540 will send  
8 consecutive1” and wait for the next buffer.  
In HDLC mode the ST75C530/540 transmits the  
data bytes contained into the DUAL Ram buffer  
packed inside an HDLC frame. The mechanism is  
as follows :  
- While the Host has no frame to transmit, that is:  
a s long as DTTBSx equals $00, the  
ST75C530/540transmits the HDLC Flag $7E.  
- When the Host wants to sendsome data,it feeds  
the buffer with some data bytes to transmit (be-  
XI.6.2 - Status Word Format  
DTTBSx in HDLC Mode  
Field  
Pos. Value  
Definition  
Buffer empty.  
1 Byte to transmit  
BUFF_LENG 3 .. 0  
0
1
DTTBFx[0]  
(
).  
2
2 Bytes to transmit  
(DTTBFx[0] and  
DTTBFx[1]).  
..  
8
..  
BUFF_SFRM  
tween 1 and 8) and set the  
bit in  
8 Bytes to transmit  
(DTTBFx[0 .. 7]).  
the DTTBSx status buffer. At that time the  
ST75C530/540 start sending data contained in  
the Buffer, computin the CRC and performing  
“zero intertion” if needed.  
- When the host wants to send additional data  
(within the same frame) it feeds the buffers just  
like in synchronousmode. If an Underflowcondi-  
tion occurs, the ST75C530/540 will abort the  
frameby sending 8 consecutive1”, and the Host  
must restart the whole parallel initialization.  
- When the host wants to close a frame, it set the  
other Not allowed.  
BUFF_SFRM  
BUFF_EFRM  
4
5
0
1
Data stream.  
Start of frame : the buffer  
is a beginning of frame.  
0
1
Data stream.  
End of frame : the buffer  
will be followed by the  
transmission of the CRC  
and closing flag.  
BUFF_FRAB  
Other  
6
7
0
1
Data stream.  
Abort frame :  
8 consecutive “1” will be  
transmitted (whatever  
BUFF_LENG is).  
BUFF_EFRM  
DTTBSx  
statusbuffer. At  
bit in the  
that time the ST75C530/540 will send the con-  
tents of the buffer, then send the CRC and an  
HDLC closing flag $7E.  
- If the Host, wantsto abort a frame(while sending  
a frame)it settheBUFF_FRABbit intheDTTBSx  
status buffer.Atthattime,as soonasthelastbuffer  
0
Reserved, must be 0.  
Notes : 1. A buffer can have BUFF_SFRM and BUFF_EFRM set  
DTTBSx byte, this means that the frame  
in the same  
transmitted is short (between 1 and 8 Bytes long).  
2. An ending frame (with BUFF_EFRM set) must have at  
least ONE byte of data to transmit.  
XI.6.3 - Single Short Frame (see Figure 32)  
Figure 32  
TRANSMITTED  
DATA  
$7E  
D0 CRC $7ED1 CRC  
$7E  
D2  
CRC $7E D3 CRC $7E  
BUFF_FRAB  
BUFF_SFRM  
BUFF_EFRM  
BUFF_LENG  
(BUFF_DATA)  
0
6
2
0
8
0
5
0
D0 D1  
D2  
D3  
67/84  
ST75C530 - ST75C540  
XI - TRANSMITTING DATA IN PARALLEL MODE (continued)  
XI.6.4 - Long Frame  
Figure 33  
TRANSMITTED  
DATA  
D0  
$7E  
D1  
D2  
D3 CRC  
$7E  
BUFF_FRAB  
BUFF_SFRM  
BUFF_EFRM  
BUFF_LENG  
(BUFF_DATA)  
5
4
0
8
8
0
D0  
D1  
D2  
D3  
XI.6.5 - Abort Frame  
Figure 34  
TRANSMITTED  
DATA  
D0  
$7E  
D4  
$7E  
D1  
D2  
ABORT  
D3  
D5  
BUFF_FRAB  
BUFF_SFRM  
BUFF_EFRM  
BUFF_LENG  
5
x
x
8
0
8
8
0
6
8
(BUFF_DATA)  
D0  
D1  
D2  
D3  
D4  
D5  
XI.6.6 - Abort Due to Underflow  
Figure 35  
TRANSMITTED  
DATA  
ABORT  
$7E  
D4  
$7E D0  
D1  
D2  
D3  
D5  
BUFF_FRAB  
BUFF_SFRM  
BUFF_EFRM  
BUFF_LENG  
0
5
8
8
0
6
8
8
D4  
(BUFF_DATA)  
D0  
D1  
D2  
D3  
D5  
(1)  
(3)  
(2)  
ERR_TX  
Where : 1. The Underflow condition appears when the ST75C530/540 needs, inside a frame, some bytes to transmit and that the  
corresponding buffer is empty.  
2. The ERR_TX bit is cleared with a CSE 01 Command.  
3. After an Underflow condition restart the initialization of the parallel mode and use the buffer number 0.  
68/84  
ST75C530 - ST75C540  
XI - TRANSMITTING DATA IN PARALLEL MODE (continued)  
XI.6.7 - HDLC Special Timming  
Figure 36  
XMIT 0  
FORM 2  
XMIT 1  
STOP  
_NHFBF  
7E..7E 7E  
_NHFCF  
_NHFST  
7E 7E..7E  
CRC  
DATA  
Time  
CRC 7E..7E 7E  
DATA  
DATA TRANSMITTED  
Time to fill the Buffer 0  
Time  
Time to fill the  
Time  
(Otherwise Extra  
Flags Added)  
to fill the  
Buffer 1  
to fill the Buffer 1(Otherwise to fill the  
Buffer 0 Extra Flags Added) Buffer 0  
IT  
Tx  
IT  
Tx  
IT  
Tx  
IT  
Tx  
IT  
Tx  
Aset of global variables allows the programmation  
of the number of flags (7E) generated by the  
ST75C530/540:  
- _NHFBF : Number of flagsbefore the first frame.  
- _NHFCF : Number of flags between frames.  
- _NHFST : Number of flags after the last frame.  
command).  
- If the user wants to send a break signal, he has  
BUFF_UBRK  
toset the  
ing Status Word (  
defined as a totaly null character with all stop bits  
duration maintained to “0” (e.g: if format is 7 bit,  
even parity and 2 stop bit, break is a ”0” durring  
10 bit). Multiple continuous breaks (“0” continu-  
ous signal) can be send by using consecutive  
bitwithinthe correspond-  
DTTBSx  
). A break signal is  
The default value for all these variables is 0, the  
programming range is from 0 to 7FFF (32767).  
These varaibales must be modified with a MW or  
MWI command (see Figure 36).  
BUFF_UBRK  
buffers with  
set to 1.  
XI.7.1 - Status Word Format  
XI.7 - UART Mode Description  
DTTBSx in UART Mode  
Pos. Value Definition  
In UART mode the ST75C530/540 transmits the  
data Character contained into the DUAL Ram  
buffe. The mechanism is as follows :  
Field  
BUFF_LENG 3 .. 0  
0
1
Buffer empty.  
1 character to transmit  
(DTTBFx[0]).  
- While the Host has no character to transmit, that  
DTTBSx  
is: as long as  
equals $00, the  
ST75C530/540transmits continuous “1”.  
other Not allowed.  
- Whenthe Hostwantsto send a chacarter,it feeds  
the buffer with the character to transmit.  
- The ST75C530/540 start to send a stop bit (“0”)  
then thecharactercontainedintheBuffer,comput-  
ing the parity. It send the parity bit, if needed, and  
BUFF_UBRK  
Other  
6
7
0
1
Normal character.  
Break signal : a complete  
“0” character with all stop  
bits equal to ”0”.  
0
Reserved, must be 0.  
FORM  
the stop bits (1 or 2 according with the  
69/84  
ST75C530 - ST75C540  
XII - RECEIVING IN PARALLEL MODE  
Figure 37  
DEMODULATED  
SIGNAL  
SAMPLE TIME  
0
0
1
0
0
1
0
0
1
1
RECEIVE BIT  
XII.1 - Description  
XII.3 - Host Flow Chart  
When the STA_109 (CD) signal goes on, the  
ST75C530/540 will write received data into the  
DUAL RAM buffer DTRBS0 at first.  
Hereafter are flowcharts to :  
- Establish a V.29 reception.  
- Receive synchronous data. This task is per-  
formed under interrupt.  
- Handle properly some temporary loss of carrier.  
XII.1.1 - Initialization  
The host processor must enable the IT3 receive  
interrupt first.  
Figure 38  
BEGIN  
Thenit must empty the two DTRBS0 and DTRBS1  
registers by writting $00 at these locations.  
As soon as the first IT3 interrupt appears, the host  
must proceed with the DTRBS0 buffer.  
WRITE BIT IN  
INTERNAL BUFFER  
XII.1.2 - Loss of Carrier  
No  
INTERNAL BUFFER  
FULL  
Each time a loss of carrier appears the  
ST75C530/540 stops updating the Data buffer. If  
the carrier reappers the host must proceed again  
with the initialisation sequence.  
Yes  
RETURN  
SELECT NEXT DUAL  
RAM BUFFER X  
XII.1.3 - FSK Synchronization  
No  
The FSK Full Duplex demodulator uses an algo-  
rithm based on the transitions of the received sig-  
nal. The synchronization mechanism is adjusted  
with each signal transiton in order to sample the  
demodulated signal at the middle of the bit  
(see Figure 37).  
DTRBSx = 0  
Yes  
SIGNAL ERROR  
INTO ERR_Rx  
MOVE DATA FROM INTERNAL  
BUFFER TO DTRBFx  
RAISE IT0 INTERRUPT  
WRITE DTRBSx  
RAISE IT3 INTERRUPT  
RETURN  
XII.2 - Modem Flow Chart  
When in parallel data mode, each time the  
ST75C530/540 has receive some bit of data it  
executesthe following routine (see Figure 38).  
SELECT DUAL  
RAM BUFFER x = 0  
Where x start with the value 0 and toggle between  
1 and 0.  
RETURN  
70/84  
ST75C530 - ST75C540  
XII - RECEIVING IN PARALLEL MODE (continued)  
Establish the reception (see Figure 39).  
Figure 39  
Subroutine :  
CONF 0F 08 00 01  
Select V.29 9600bps  
CLEAR FIRST BUFFER  
SYNC1  
Arm V.29 receiver  
WRITE 00 INTO DTRBFS0  
WRITE 00 INTO DTRBFS1  
Clear the first  
buffers #0 and #1  
CLEAR FIRST BUFFER  
FORM 00 (opt)  
SELECT NEXT BUFFER  
IBUF = 0  
Format synchronous  
ENABLE IT3  
ITMASK = 0 x 88  
Wait until V.29  
carrier detected  
No  
STA_109 = 1  
Yes  
RET  
No  
In case of lost of carrier  
while in data mode  
STA_109 = 0  
Yes  
These flowcharts show one CPU variable labeled  
IBUF which is necessary for the understanding of  
the mechanism, but there are different manners to  
implement it.  
Figure 40  
EXECUTE_IT_RECEIVE  
- IBUF: thisis thenumber of theDUAL RAMbuffer  
currently inuse by theHostprocessor.It startswit  
0 an then alternates 1, 0, 1, 0, ...  
No  
IBUF = 1  
(1) Yes  
(1)  
The received bits are read by an interrupt routine  
(See Figure 40).  
READ DTRBS1  
EXTRACT BUFF_LENG  
READ DTRBS0  
EXTRACT BUFF_LENG  
XII.4 - Error Detection  
BUFF_LENGTIMES (2)  
READ DTRBF1 DATA  
BUFF_LENGTIMES (2)  
READ DTRBF0 DATA  
Error occurs when the ST75C530/540 has re-  
ceivedsome bits andthat the bufferDTRBSx isnot  
empty, this condition is called “Overflow”.  
WRITE 00 INTO DTRBS1  
IBUF = 0  
WRITE 00 INTO DTRBS0  
IBUF = 1  
ERR_RX of the  
This error is signaled in the bit  
SYSERR  
IT0  
byte, and generates an interrupt  
. To  
clear theerror a CSE02 commandmust be issued.  
An Overflow condition occurs when :  
- In synchronous mode: the host processor “for-  
RETURN  
DTRBSx  
gets” to empty the current  
buffer.  
- In HDLC mode: when, while inside a frame, the  
host processors “forgets” to empty the current  
DTRBSx buffer.  
Notes : 1. At that step the host can check that the corresponding  
DTRBSx buffer is full (different from $00), otherwise it is  
an error.  
BUFF_LENG bytes, insidethe Receive  
2. This means read  
- In UART mode, this cannot happen.  
buffer DTRBFx starting from location DTRBFx[0] to  
DTRBFx[BUFF_LENG - 1]. In synchronous mode, the  
When an Overflow condition occurs the host must  
restart the whole parallel initialisation.  
BUFF_LENG  
STA_109  
isalways 8bytes, exceptwhena  
lost appears in the middle of the buffer.  
71/84  
ST75C530 - ST75C540  
XII - RECEIVING IN PARALLEL MODE (continued)  
XII.5 - Synchronous Mode  
XII.5.1 - Description  
inside the frame, are erroneous.  
Non Byte-Aligned frame (middle priority): the  
received data bit count (after deletion of the  
“zero inserted”), between the opening and the  
closing flag, is not a multiple of 8.  
In synchronous mode the ST75C530/540 writes  
the received bit into the DUALRAM Buffer without  
any modification. It starts with the Bit 0 of the  
Aborted frame (highest priority): the frame was  
aborted with at least 7 consecutive1”  
DTRBF0[0]  
byte.  
- An abortframe can be also detected,while in the  
inter framemode, if insteadof receiving $7E flag,  
theST75C530/540receivemorethan 7 consecu-  
tive “1”. In this case only one Aborted frame is  
signaled, event if the ”1” condition is maintained.  
XII.5.2 - Status Word Format  
DTRBS0 DTRBS1  
have  
the same following meaning (See Table below).  
ThereceiveStatusByte  
or  
The BUFF_LENG is always 8 except when a lost  
STA_109  
of carrier (  
going to 0) happens.  
DTRBSx in Synchronous Mode  
This status byte is set by the ST75C530/540, just  
Field  
Pos. Value  
Definition  
IT3  
before generating the  
interrupt.  
BUFF_LENG 3 .. 0  
0
1
Buffer empty.  
1 Byte received  
(DTRBFx[0]).  
XII.6 - HDLC Mode  
XII.6.1 - Description  
In HDLC mode the ST75C530/540 extracts from  
the received HDLC frame the Data information  
only. It reports, trough the DUAL Ram buffer, only  
data information and frame validity. The mecha-  
nism is as follows :  
2
2 Bytes received  
DTRBFx[0]  
(
and  
DTRBFx[1]  
).  
..  
8
..  
8 Bytes received  
(DTRBFx[0 .. 7]).  
Other Not used.  
Other  
7 .. 4  
0
Not used.  
- As long as the ST75C530/540 receives continu-  
ous HDLC Flag $7E, nothing happens. Note that  
the ST75C530/540allows zero sharing between  
adjacent flags.  
- When the ST75C530/540 receives some data, it  
removes inserted “zero” if needed, and starts to  
compute the CRC. As soon as its internal buffer  
is full,theST75C530/540writesthereceiveddata  
XII.6.2 - Status Word Format  
DTRBSx in HDLC Mode  
Pos. Value Definition  
Field  
BUFF_LENG 3 .. 0  
0
1
Buffer empty.  
1 Byte received  
(DTRBFx[0]).  
2 Bytes received  
(DTRBFx[0] and  
DTRBFx[1]).  
..  
DTRBFx  
into the  
buffer and sets the  
2
BUFF_SFRM  
DTRBSx  
inside the  
status byte.  
- Wh en receiving additional data, the  
ST75C530/540 feeds the buffer just like in syn-  
chronous mode.  
- When the ST75C530/540receives a closing flag  
(which can be shared with the following opening  
flag) it compares the received CRC with its inter-  
nal computation. It writes the contents of the  
..  
8
8 Bytes received  
DTRBFx[0 .. 7]  
(
).  
other Not allowed.  
BUFF_ERRS 5 .. 4 0 0  
No error.  
0 1  
1 0  
1 1  
CRC error.  
Non Byte-Aligned frame.  
Aborted frame.  
DTRBFx  
received last data into the  
buffer, sets  
bit and reports any frame error  
BUFF_SFRM  
BUFF_EFRM  
6
7
0
1
Data stream.  
BUFF_EFRM  
the  
Start of frame : the buffer  
is a beginning of frame.  
in theDTRBSx registervia the BUFF_ERRS bits.  
Reported errors are :  
CRC error (lowest priority): the received CRC  
is not equal to the computed CRC. Some bits,  
0
1
Data stream.  
End of frame : the buffer  
is a closing frame.  
72/84  
ST75C530 - ST75C540  
XII - RECEIVING IN PARALLEL MODE (continued)  
XII.6.3 - Single Short frame  
Figure 41  
RECEIVED  
DATA  
$7E  
D0 CRC $7ED1 CRC  
$7E  
D2  
CRC $7E D3 CRC $7E  
BUFF_ERRS  
BUFF_SFRM  
BUFF_EFRM  
BUFF_LENG  
(BUFF_DATA)  
0
6
0
2
0
8
D0  
D1  
D2  
XII.6.4 - Long Frame  
Figure 42  
RECEIVED  
DATA  
$7E D0  
D1  
D2  
D3 CRC $7E  
(1)  
BUFF_ERRS  
BUFF_SFRM  
BUFF_EFRM  
BUFF_LENG  
(BUFF_DATA)  
5
0
8
8
0
8
D0  
D1  
D2  
D3  
Note : 1. If error occurs during the reception, it is signaled in this last buffer.  
XII.6.5 - Aborted Frame  
Figure 43  
RECEIVED  
DATA  
ABORT  
D0  
$7E  
D4  
$7E  
D1  
D2  
D3  
D5  
BUFF_ERRS  
11  
BUFF_SFRM  
BUFF_EFRM  
BUFF_LENG  
8
x
x
8
0
8
(BUFF_DATA)  
D0  
D1  
D3  
73/84  
ST75C530 - ST75C540  
XII - RECEIVING IN PARALLEL MODE (continued) the Hostprocessor. Thisareaisusedeitherforrecord-  
ing (CODER) or playing back (DECODER) the voice  
signal.  
The DUAL Ram area associated with the VO-  
CODER is as follows :  
XII.7 - UART Mode  
XII.7.1 - Description  
In UART mode the ST75C530/540extracts from the  
received Characters the Data information only. It re-  
ports,troughtheDUAL Rambuffer,onlydatainforma-  
tion charactervalidity. The mechanism is as follows :  
- As long as the ST75C530/540 receives continu-  
ous “1” nothing happens.  
Name  
VOCSTA  
Address  
Description  
$1C  
Vocoder Buffer Status  
VOCDATA  
VOCCORR  
$1D..$2E Vocoder Buffer Data  
$2F..$30 Vocoder Buffer Corrector  
- When the ST75C530/540 receives the start bit  
(“0”) itstarts to compute theparity.As soonas the  
number of data bit (defined by the FORM com-  
mand) is received, the ST75C530/540writes the  
received character into the DTRBFx buffer and  
update the receive Status word DTRBSx.  
- The Reported errors are :  
The IT1interrupt signalis dedicatedto the Vocoder  
Buffer Management.  
XIII.3 - Transmit(DECODER)  
This mode is entered with the CONF DECODER  
command.  
Parity error (lowest priority): the receivedparity  
is not equal to the computed parity. Some bits,  
inside the character, are erroneous.  
If the ADPCM or Low bit rate without error correc-  
tion mode (CONF_ERCOR = 0) are selected, the  
user needsto feed the vocoderbufferwith18 bytes  
of voice data, then set the VOCSTA byte with a  
value different from zero.  
Stop bit error (middle priority): the bit after the  
parity was not a stop bit (“1”). Note that if the  
two stop bit format was selected, only the first  
stop bit will be checked.  
In the low bit rate with error mode (CONF_ERCOR  
= 1), theuser needsto feed the vocoderbufferwith  
20 bytes of voice data, then set the VOCSTA byte  
with a valuedifferent from zero.  
BreakDetection (highestpriority): the characteris  
a breaksignalasdefinedinthetransmit section.If  
theduration of the break is longerthan onechar-  
acter, onlyonebreakbufferwill be reported.  
Once the ST75C530/540 have read the buffer, it  
clearstheVOCSTAbyte andraisethe IT1 interrupt.  
The IT1 interrupt rate is as follows :  
XI.7.2 - Status Word Format  
Number of  
DTRBSx in UART Mode  
Interrupt  
Time (ms)  
Voice Samples  
in the Buffer  
Mode  
Field  
Pos. Value  
Definition  
(8kHz sampling)  
BUFF_LENG 3 .. 0  
0
1
Buffer empty.  
ADPCM 32Kpbs  
ADPCM 24Kpbs  
ADPCM 16Kpbs  
4.5  
6
36  
48  
1 character received  
(DTRBFx[0]).  
Other Not allowed.  
9
72  
BUFF_ERRS  
5..4  
00  
01  
10  
11  
No error.  
Low BitRate Nominal  
(with and without  
error correction)  
30  
240  
Parity error  
Stop bit error  
Break signal detected  
Low Bit Rate  
Depends on  
Depends on  
Fast/Slow Playback speed 15 to 45 speed 120 to 360  
XIII - VOCODER DATA EXCHANGE  
XIII.1 - Overview  
Low Bit Rate Pause  
0
-
Asilencecan be generatedby writing zeroto allthe  
VOCDATA bytes (and VOCCORR bytes if  
CONF_ERCOR = 1). The duration of the silence  
will be the same as the other frames of signal.  
The ST75C530/540 can receive (or transmit)  
coded voice from (to) the telephone line or the  
audiointerface. The receiving modeis theCODER  
mode while the transmit is the DECODER mode.  
Two formats of Voice compression are provided: Low  
bit rate and ADPCM. In all the formatsand speedthe  
managementof the CodedVoice is exactlythe same.  
In any format a frame of all data equal to zero will  
be synthesised(DECODER) as a frame of silence.  
As the buffer contains always a complete number  
of samples representing the same duration, it is  
easy to randomly advance forward/backward in a  
message.  
If the user does not feed the Buffer within the  
Interrupt time, the ST75C530/540 will signal this  
errorbyrisingtheERR_VOCOin theSYSERRbyte  
and rising the IT0 Interrupt. In this case the pre-  
vious frame will be re-transmited.  
XIII.2 - Vocoder Buffer  
A buffer area is reserved in the DUAL ram to  
exchange Voice between the ST75C530/540 and  
74/84  
ST75C530 - ST75C540  
XIII - VOCODER DATA EXCHANGE (continued)  
XIII.4 - Receive(CODER)  
Note that the VOCCORR are always computed,  
whatever the value of CONF_ERCOR.  
This function can be entered either by :  
The format of the VOCSTA byte is as follows :  
- TheCONFCODERCommand.This corresponds  
to the “Normal Answering Machine” function.  
- The MODC Command with MODC_COD = 1, in  
the HANDSET Mode. This corresponds, in the  
HANDSET mode to the “Conversation Record-  
ing” function. This reduced sub-mode does not  
allow ADPCM format and does not perform VAD  
(Voice Activity Detector).  
VOCSTAT  
Format Field Pos. Value  
Definition  
Low Bit  
Rate  
VOC  
_VAD  
7
0
1
VAD Unvoiced Signal.  
VAD Voice Signal.  
VOC  
_NUM  
4..0 10100 (20 decimal) Number  
of VOCDATA Bytes  
ADPCM VOC  
_VAD  
7
0
1
VAD Unvoiced Signal.  
VAD Voice Signal.  
Once this function is selected, the ST75C530/540  
starts to codethe voice signal, writes one frame of  
compressed voice into the VOCDATA bytes (if the  
low bit ratemode is selected, computesalways the  
Corrector bytes and writes them in the VOCCORR  
bytes)thenwrites theVOCSTAbyteandgenerates  
the IT1 interrupt.  
VOC  
_NUM  
4..0 10010 (18 decimal) Number  
of VOCDATA Bytes  
Note that in “Conversationrecording” the VOCSTA  
byte is always $14.  
The user must read the VOCDATA (and optionally  
the VOCCORR) bytes and clear the VOCSTA byte  
(writing $00).  
The IT1 interrupt rate is as follows :  
Number of Voice  
Interrupt  
If the user does not clear the VOCSTA byte within  
the interrupt time, the ST75C530/540 will signal  
this error by rising the ERR_VOCOin the SYSERR  
byte and rising the IT0 Interrupt. In this case the  
current frame is lost.  
Samples  
Mode  
Time  
(ms)  
in the Buffer  
(8kHz sampling)  
ADPCM 32Kpbs  
ADPCM 24Kpbs  
ADPCM 16Kpbs  
4.5  
6
36  
48  
9
72  
If the CONF_SUPSIL bit is 1 in the CONF CODER  
command, the interrupts IT1 appears only when  
the VAD has detected a voiced signal.  
Low Bit Rate (with and  
without error correction)  
30  
240  
75/84  
ST75C530 - ST75C540  
XIV - TRANSPARENT MODE DATA EXCHANGE  
The mode uses the DPR locations to exchange  
samples between the hostand the AFE’s. To allow  
maximum interrupt latency, the DSP uses internal  
buffers to store samples and updates the DPR  
buffers when internal buffers are ready. The DPR  
buffersare bidirectional,thusdoublingthe effective  
DPR capacity.  
the full 0x10 .. 0x3F DPR locations are available.  
The Modem sample buffer (MODEMDPR) uses  
locations 0x10 to 0x27 (24 bytes) to exchange  
12 MAFE samples. The audio sample buffer  
(AUDIODPR) uses locations 0x28 to 0x3F to ex-  
change 12 VAFE samples. Samples are repre-  
sented in 16-bit linear data format, byte order is  
little-Endian(Intel-like, LSByteat lowaddress),and  
consecutive locations correspond to consecutive  
samples in time. Example : locations (0x10, 0x11)  
correspond to the first sample (LSB, MSB) re-  
ceived from the line AFE.  
The transfer mechanism is depicted below :  
1. At baud rate (every 4 samples at 9.6kHz), the  
DSP transfers 4 samples from the Modem AFE  
to theinternal receive buffer,after sending them  
througha high-passfilter witha transferfunction  
H(z) = (z-1)/ (z-0.875) used to remove all DC  
components from the signal, and transfers  
4 samplesfromtheInternaltransmit bufferto the  
Modem AFE. This comes from the currently  
implemented internal scheduling. The same  
operation is performed for the voice AFE.  
2. After 3 bauds, the internal receive buffer is full  
(the internal transmit buffer is also empty), the  
DPR buffer is copied to the internal transmit  
buffer, then the internal receive buffer is copied  
into the DPR.  
XIV.2 - Interrupts  
The DSP signal events to the host using the inter-  
rupt mailbox (ITREST[0..6], ITMASK, ITSRCR).  
IT2 is set by the DSP whenever the DPR buffers  
are ready. This interrupt source can be masked  
through ITMASK, and acknowledged using  
ITSRCR[0..6]. The host interrupt service routine  
shouldread received samples from the DPR, write  
transmitted samples to the DPR, then acknow-  
ledgeby clearingthe IT2 flag. The interruptlatency  
is approximately equal to the interrupt period, i.e.  
T = 1/800 = 1.25ms. Overrun and underrun condi-  
tions may occur if the host interrupt latency ex-  
ceeds the previous value. Since this situation is  
unrecoverable, no specific action is taken. Never-  
theless, for debug purposes the user can detect  
this conditionby probingthe interrupt line (SINTR),  
and trigger on a pulsewidth greater than the maxi-  
mum allowed latency.  
3. A host interrupt is generated : during servicing,  
the host reads the DPR sample buffer then  
writes it with new transmitted samples.  
XIV.1 - Samplebuffers  
The mode uses the DPR locations to exchange  
samplesbetweenthe hostand theAFE’s; since no  
data transfer (HDLC, UART) occurs in this mode,  
76/84  
ST75C530 - ST75C540  
XV - DEFAULT CALL PROGRESS TONE DETECTORS  
Figure 44 : Call Progress Tone Detector Band 1  
Figure 45 : Call Progress Tone Detector Band 2  
dB  
dB  
0
0
no detection  
detection  
no detection  
detection  
-10  
-8  
step = 10Hz  
reference level = 0dB  
-20  
-30  
-40  
-50  
-16  
step = 100Hz  
reference level = 0dB  
-24  
-32  
f (Hz)  
1000  
f (Hz)  
2880 3600  
-40  
0
200  
400  
600  
800  
0
720  
1440  
2160  
XVI - DEFAULT ANSWER TONE DETECTORS  
Figure 46 : 2100HzAnswer Tone Detector  
Figure 47 : 440Hz Tone Detector  
dB  
0
dB  
0
step = 10Hz  
reference level = 0dB  
-10  
-10  
-20  
no detection  
detection  
-20  
-30  
step = 10Hz  
reference level = 0dB  
-30  
-40  
-50  
-40  
no detection  
f (Hz)  
2200  
f (Hz)  
detection  
-50  
2000  
2040  
2080  
2120  
2160  
200  
320  
440  
560  
680  
800  
77/84  
ST75C530 - ST75C540  
XVII - ELECTRICAL SCHEMATICS  
Figure 48  
G I O 1 1  
G I O 1 2  
S A 6  
S A 5  
S A 4  
S A 3  
S A 2  
S A 1  
S A 0  
S D S  
S R / W  
G I O 1 3  
G I O 1 4  
G I O 1 5  
G I O 1 6  
G I O 1 7  
C L K O U T  
X P L L  
D G N D 5  
5 D D D V  
X T A L L  
E X T A L L  
T E S T 0  
R E S E T  
S P K 3 N  
S P K 3 P  
S P K 2 N  
S P K 2 P  
D D 2 D V  
D G N D 2  
S D 7  
S D 6  
S D 5  
S D 4  
S D 3  
S D 2  
S D 1  
S D 0  
D V  
D D A  
D D 1  
A V  
78/84  
ST75C530 - ST75C540  
XVIII - PCB DESIGN GUIDELINES  
Performances of the FAX modem depends on the  
ST75C530/540 intrinsic performances and on the  
proper PC board layout.  
All aspects of the proper engineeringpractices, for  
PC board design, are beyond the scope of this  
paragraph.  
of the band and connect to avoid small islands,  
- both AGNDR and AGNDT must be connected  
with very low impedance to a single point, (see  
Chapter I.6, Power Supply),  
- the four 2.2nF capacitors connected to the RxA  
and MIC1, MIC2, MIC3 Pins must be as close as  
possible to them,  
We recommend the following points :  
- thetwo100nFcapacitorsconnectedtotheVREFP and  
VREFN pinsmust be as close as possible to them,  
- analog and digital supplies must be connected  
together,at a single point, as close as possibleto  
the chip.  
- in a 4-layer PC board : Separated digital ground  
and analog ground, connected together at one  
point, as close as possible to theST75C530/540,  
- in a 2-layer PC board: Providea groundgrid in all  
spacearoundandundercomponentsonbothsides  
XIX - APPENDIX A : MODES OF OPERATION  
Figure 49 : ToneMode (TONE)  
TxA1  
15  
ATT_TX  
4 TONES  
GENERATOR  
DAC  
MUTE  
HYBRID  
14  
Line  
DTMF  
DETECTOR  
TxA2  
RxA  
11  
16 TONE  
DETECTORS  
DG  
ADC  
DUAL  
RAM  
INTERFACE  
4 TONE  
DETECTORS  
MUTE  
[0..-30]dB  
Step 3dB  
1
2
ATT_LOC  
DAC  
V.21 FLAG  
DETECTOR  
SPK1  
SPK3  
ATT_SPK  
76  
77  
78  
79  
MUTE  
MUTE  
RING  
DETECTOR  
SPK2  
MIC2  
MIC1  
9
8
ADC  
Programmable  
Attenuation  
Automatic  
Gain  
Addition  
of Signals  
DG  
10 MIC3  
Figure 50 : ToneMode with Caller ID (TONECID)  
TxA1  
ATT_TX  
15  
14  
4 TONES  
DAC  
MUTE  
GENERATOR  
HYBRID  
Line  
DTMF  
DETECTOR  
TxA2  
RxA  
11  
6 TONE  
DETECTORS  
DG  
ADC  
DUAL  
RAM  
INTERFACE  
4 TONE  
DETECTORS  
MUTE  
[0..-30]dB  
Step 3dB  
1
2
ATT_LOC  
DAC  
V.21 FLAG  
DETECTOR  
SPK1  
SPK3  
ATT_SPK  
76  
77  
78  
79  
MUTE  
MUTE  
V.23  
DEMODULATOR  
UART  
RING  
DETECTOR  
SPK2  
MIC2  
MIC1  
9
8
ADC  
Programmable  
Attenuation  
Automatic  
Gain  
Addition  
of Signals  
DG  
10 MIC3  
79/84  
ST75C530 - ST75C540  
XIX - APPENDIX A : MODES OF OPERATION (continued)  
Figure 51 : Fax Modem Mode (MODEM)  
TxA1  
ATT_TX  
15  
14  
HDLC  
Tx  
FAX  
TRANSMITTER  
DAC  
MUTE  
HYBRID  
Line  
TxA2  
RxA  
DUAL  
RAM  
INTERFACE  
HANDSHAKE  
AND STATUS  
REPORT  
SD[0..7]  
11  
DG  
ADC  
HDLC  
Rx  
FAX  
RECEIVER  
MUTE  
[0..-30]dB  
Step 3dB  
1
2
SPK1  
SPK3  
4 TONE  
DETECTORS  
42  
SINTR  
76  
77  
78  
79  
DAC  
MUTE  
MUTE  
V.21 FLAG  
DETECTOR  
ATT_LOC  
DTMF  
DETECTOR  
(V.21ch2 only)  
SPK2  
MIC2  
MIC1  
9
8
ADC  
Programmable  
Attenuation  
Automatic  
Gain  
Addition  
of Signals  
DG  
10 MIC3  
Figure 52 : Data Modem Mode (Full Duplex Modem) (ST75C540 only)  
TxA1  
ATT_TX  
UART  
HDLC  
Tx  
15  
MODEM  
TRANSMITTER  
DAC  
MUTE  
HYBRID  
14  
Line  
TxA2  
RxA  
DUAL  
RAM  
INTERFACE  
HANDSHAKE  
AND STATUS  
REPORT  
11  
ECHO  
CANCELLER  
SD[0..7]  
ADC  
MUTE  
[0..-30]dB  
Step 3dB  
UART  
HDLC  
Rx  
1
2
MODEM  
RECEIVER  
SPK1  
SPK3  
42  
SINTR  
76  
77  
78  
79  
DAC  
MUTE  
MUTE  
ATT_LOC  
SPK2  
MIC2  
9
8
ADC  
Programmable  
Attenuation  
Automatic  
Gain  
MIC1  
MIC3  
Addition  
of Signals  
DG  
10  
80/84  
ST75C530 - ST75C540  
XIX - APPENDIX A : MODES OF OPERATION (continued)  
Figure 53 : DecoderMode (DECODER)  
TxA1  
15  
ATT_TX  
DAC  
MUTE  
DECODER  
HYBRID  
14  
Line  
TxA2  
RxA  
4 TONE  
GENERATORS  
LINE ECHO  
CANCELLER  
11  
ADC  
4 TONE  
DETECTORS  
DG  
DUAL  
RAM  
INTERFACE  
MUTE  
[0..-30]dB  
Step 3dB  
ATT_LOC  
DAC  
1
2
DTMF  
DETECTOR  
SPK1  
SPK3  
RING  
DETECTOR  
76  
77  
78  
79  
MUTE  
MUTE  
SPK2  
MIC2  
MIC1  
9
8
ADC  
Programmable  
Attenuation  
Automatic  
Gain  
Addition  
of Signals  
DG  
10 MIC3  
Figure 54 : Coder Mode (CODER)  
TxA1  
15  
4 TONE  
GENERATORS  
DAC  
ADC  
MUTE  
HYBRID  
14  
Line  
CODER  
AGC  
TxA2  
RxA  
ATT_SEL  
11  
VOICE  
ACTIVITY  
DETECTOR  
DTMF  
DETECTOR  
DUAL  
RAM  
INTERFACE  
MUTE  
[0..-30]dB  
Step 3dB  
DG  
1
2
SPK1  
SPK3  
4 TONE  
DETECTORS  
76  
77  
78  
79  
DAC  
MUTE  
MUTE  
RING  
DETECTOR  
ATT_LOC  
SPK2  
MIC2  
9
8
ADC  
MIC1  
MIC3  
Programmable  
Attenuation  
Automatic  
Gain  
Addition  
of Signals  
DG  
ATT_MIC  
10  
81/84  
ST75C530 - ST75C540  
XIX - APPENDIX A : MODES OF OPERATION (continued)  
Figure 55 : Room Monitoring Mode (ROOM)  
TxA1  
15  
14  
DAC  
MUTE  
HYBRID  
Line  
ATT_TX  
TxA2  
RxA  
LINE ECHO  
CANCELLER  
11  
ADC  
DTMF  
DETECTOR  
DUAL  
RAM  
DG  
INTERFACE  
MUTE  
[0..-30]dB  
Step 3dB  
1
2
4 TONE  
DETECTORS  
SPK1  
SPK3  
76  
77  
78  
79  
DAC  
MUTE  
MUTE  
Programmable  
Attenuation  
Addition  
of Signals  
Automatic  
Gain  
DG  
SPK2  
MIC2  
MIC1  
9
8
AGC  
ADC  
ATT_MIC  
10 MIC3  
Figure 56 : TelephoneMode (HANDSET)  
4 TONE *  
GENERATOR  
TxA1  
15  
ATT_TX  
DAC  
MUTE  
HYBRID  
14  
Line  
TxA2  
11  
ADC  
RxA  
CODER  
DUAL  
RAM  
MUTE  
1
[0..-30]dB  
Step 3dB  
INTERFACE  
2
AGC  
AGC  
SPK1  
76  
SPK3  
77  
DAC  
MUTE  
MUTE  
78  
4 TONE *  
DG  
79  
SPK2  
DETECTORS  
9
MIC2  
RING  
DETECTOR  
ADC  
8
* default is 2.  
MIC1  
ATT_MIC  
10 MIC3  
82/84  
ST75C530 - ST75C540  
XIX - APPENDIX A : MODES OF OPERATION (continued)  
Figure 57 : TransparentMode  
ATT_MODTX  
ATT_TX  
4 TONE  
GENERATORS  
TxA1  
15  
DAC  
MUTE  
ATT_MODRX  
HYBRID  
Line  
14  
TxA2  
RxA  
11  
(*)  
DTMF  
DETECTOR  
DC-  
BLOCK  
DG  
ADC  
6 PRIMARY  
TONE  
DETECTORS  
MUTE  
[0..-30]dB  
Step 3dB  
1
2
ATT_SEL  
SPK1  
SPK3  
4 SECONDARY  
TONE  
DETECTORS  
76  
77  
78  
79  
ATT_LOC  
MUTE  
MUTE  
DAC  
SPK2  
MIC2  
MIC1  
ATT_AUDTX  
ATT_SPK  
9
8
ATT_AUDRX  
ATT_MIC  
(*)  
DC-  
BLOCKA  
ADC  
10 MIC3  
Programmable  
Attenuation  
Automatic  
Gain  
Addition  
of Signals  
DG  
z - 1  
H(z) =  
(*)  
z - 0.875  
83/84  
ST75C530 - ST75C540  
XX - PACKAGE MECHANICAL DATA  
80 PINS - FULL THIN PLASTIC QUAD FLAT PACK (TQFP)  
A
A2  
A1  
e
80  
61  
0,10 mm  
.004 inch  
SEATING PLANE  
60  
1
20  
41  
21  
40  
D3  
D1  
D
0,25 mm  
.010 inch  
GAGE PLANE  
K
Millimeters  
Typ.  
Inches  
Typ.  
Dimensions  
Min.  
Max.  
1.60  
0.15  
1.45  
0.38  
0.20  
Min.  
Max.  
0.063  
0.006  
0.057  
0.014  
0.008  
A
A1  
A2  
B
0.05  
1.35  
0.22  
0.09  
0.002  
0.053  
0.010  
0.004  
1.40  
0.32  
0.055  
0.012  
C
D
16.00  
14.00  
12.35  
0.65  
0.630  
0.551  
0.486  
0.026  
0.630  
0.551  
0.486  
0.024  
0.039  
D1  
D3  
e
E
16.00  
14.00  
12.35  
0.60  
E1  
E3  
L
0.45  
0.75  
0.020  
0.030  
L1  
K
1.00  
0o (Min.), 7o (Max.)  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from  
its use. No licence is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information  
previouslysupplied. STMicroelectronics products are notauthorizedfor use as criticalcomp onentsin lifesupport devicesor systems  
without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
1999 STMicroelectronics - All Rights Reserved  
Purchase of I2C Components of STMicroelectronics, conveys a license under the Philips I2C Patent.  
Rights to use these components in a I2C system, is granted provided that the system conforms to  
the I2C Standard Specifications as defined by Philips.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands  
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
http://www.st.com  
84/84  

相关型号:

ST75C530FP-A

SUPER INTEGRATED DEVICESWITH DSP, AFE & MEMORIES FORTELEPHONY,MODEM, FAXOVERINTERNET& POTSLINES
STMICROELECTR

ST75C530PQFP

Telecommunication IC
ETC

ST75C530TQFP

暂无描述
STMICROELECTR

ST75C540

SUPER INTEGRATED DEVICESWITH DSP, AFE & MEMORIES FORTELEPHONY,MODEM, FAXOVERINTERNET& POTSLINES
STMICROELECTR

ST75C540FP-A

SUPER INTEGRATED DEVICESWITH DSP, AFE & MEMORIES FORTELEPHONY,MODEM, FAXOVERINTERNET& POTSLINES
STMICROELECTR

ST75C540PQFP

Telecommunication IC
ETC

ST75C540TQFP

14.4kbps DATA, 14.4kbps FAX, MODEM-DATA/FAX, PQFP80, PLASTIC, TQFP-80
STMICROELECTR

ST760K

Circular DC Power Connector,
SWITCH

ST760L

Circular DC Power Connector, 2.032mm Dia,
SWITCH

ST7624

65K Color Dot Matrix LCD Controller/Driver
SITRONIX

ST7625

65K Color Dot Matrix LCD Controller/Driver
SITRONIX

ST7626

65K Color Dot Matrix LCD Controller/Driver
SITRONIX