ST7FL39F2UAE [STMICROELECTRONICS]

8-BIT, FLASH, 8MHz, MICROCONTROLLER, QCC20, 5 X 6 MM, ROHS COMPLIANT, QFN-20;
ST7FL39F2UAE
型号: ST7FL39F2UAE
厂家: ST    ST
描述:

8-BIT, FLASH, 8MHz, MICROCONTROLLER, QCC20, 5 X 6 MM, ROHS COMPLIANT, QFN-20

控制器 微控制器 微控制器和处理器
文件: 总234页 (文件大小:1875K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ST7L34 ST7L35  
ST7L38 ST7L39  
8-bit MCU for automotive with single voltage Flash/ROM,  
data EEPROM, ADC, timers, SPI, LINSCI™  
Features  
Memories  
– 8 Kbytes program memory: Single voltage  
extended Flash (XFlash) or ROM with  
readout protection capability. In-application  
programming and in-circuit programming  
(IAP and ICP) for XFlash devices  
SO20  
QFN20  
300 mil  
2 communication interfaces  
– Master/slave LINSCI™ asynchronous  
serial interface  
– SPI synchronous serial interface  
– 384 bytes RAM  
– 256 bytes data EEPROM (XFlash and  
ROM devices) with readout protection,  
300 K write/erase cycles guaranteed  
Interrupt management  
– XFlash and EEPROM data retention  
20 years at 55°C  
– 10 interrupt vectors plus TRAP and reset  
– 12 external interrupt lines (on 4 vectors)  
Clock, reset and supply management  
A/D converter  
– 7 input channels  
– 10-bit resolution  
– Enhanced reset system  
– Enhanced low voltage supervisor (LVD) for  
main supply and an auxiliary voltage  
Instruction set  
detector (AVD) with interrupt capability for  
implementing safe power-down procedures  
– 8-bit data manipulation  
– 63 basic instructions with illegal opcode  
detection  
– 17 main addressing modes  
– Clock sources: Internal 1% RC oscillator,  
crystal/ceramic resonator or external clock  
– Optional x8 PLL for 8 MHz internal clock  
– 5 power saving modes: Halt, active halt,  
auto wakeup from halt, wait and slow  
– 8 x 8 unsigned multiply instructions  
Development tools  
– Full hardware/software development  
package  
– DM (debug module)  
I/O ports  
– Up to 15 multifunctional bidirectional I/O  
lines  
– 7 high sink outputs  
5 timers  
– Configurable watchdog timer  
Two 8-bit lite timers with prescaler, 1 real-  
time base and 1 input capture  
Two 12-bit autoreload timers with 4 PWM  
outputs, 1 input capture and 4 output  
compare functions  
November 2011  
Doc ID 11928 Rev 8  
1/234  
www.st.com  
1
Contents  
ST7L34 ST7L35 ST7L38 ST7L39  
Contents  
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
1.1  
1.2  
Parametric data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Debug module (DM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2
3
4
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Register and memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Flash program memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.1  
4.2  
4.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Programming modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.3.1  
4.3.2  
In-circuit programming (ICP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
In-application programming (IAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.4  
4.5  
ICC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Memory protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.5.1  
4.5.2  
Readout protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Flash write/erase protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.6  
4.7  
Related documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5
Data EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Memory access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Power saving modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Access error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Data EEPROM readout protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6
Central processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.1  
6.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
2/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Contents  
6.3  
CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
7
Supply, reset and clock management . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
7.1  
7.2  
7.3  
7.4  
Internal RC oscillator adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Phase locked loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Multi-oscillator (MO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
7.4.1  
7.4.2  
7.4.3  
External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Crystal/ceramic oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Internal RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
7.5  
7.6  
Reset sequence manager (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.5.5  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Asynchronous external RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
External power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Internal low voltage detector (LVD) reset . . . . . . . . . . . . . . . . . . . . . . . . 44  
Internal watchdog reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
System integrity management (SI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
7.6.1  
7.6.2  
7.6.3  
7.6.4  
Low voltage detector (LVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
8
9
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
8.1  
8.2  
8.3  
Non maskable software interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
External interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Peripheral interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Power saving modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
9.1  
9.2  
9.3  
9.4  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Slow mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
9.4.1  
Halt mode recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
9.5  
9.6  
Active halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Auto wakeup from halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Doc ID 11928 Rev 8  
3/234  
Contents  
ST7L34 ST7L35 ST7L38 ST7L39  
10  
I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
10.2 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
10.2.1 Input modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
10.2.2 Output modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
10.2.3 Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
10.3 I/O port implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
10.4 Unused I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
10.5 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
10.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
10.7 Device-specific I/O port configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
11  
On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
11.1 Watchdog timer (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
11.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
11.1.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
11.1.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
11.1.4 Hardware watchdog option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
11.1.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
11.1.6 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
11.2 Dual 12-bit autoreload timer 3 (AT3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
11.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
11.2.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
11.2.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
11.2.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
11.2.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
11.2.6 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
11.3 Lite timer 2 (LT2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
11.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
11.3.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
11.3.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
11.3.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
11.3.5 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
11.4 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
11.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
11.4.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
4/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Contents  
11.4.3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
11.4.4 Clock phase and clock polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
11.4.5 Error flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
11.4.6 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
11.4.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
11.4.8 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
11.5 LINSCI serial communication interface (LIN master/slave) . . . . . . . . . . 122  
11.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
11.5.2 SCI features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
11.5.3 LIN features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
11.5.4 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
11.5.5 SCI mode - functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
11.5.6 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
11.5.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
11.5.8 SCI mode registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
11.5.9 LIN mode - functional description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
11.5.10 LIN mode register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
11.6 10-bit A/D converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
11.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
11.6.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
11.6.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
11.6.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
11.6.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
11.6.6 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
12  
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
12.1 ST7 addressing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
12.1.1 Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
12.1.2 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
12.1.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
12.1.4 Indexed (no offset, short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
12.1.5 Indirect (short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
12.1.6 Indirect indexed (short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
12.1.7 Relative mode (direct, indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
12.2 Instruction groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
12.2.1 Using a prebyte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
12.2.2 Illegal opcode reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Doc ID 11928 Rev 8  
5/234  
Contents  
ST7L34 ST7L35 ST7L38 ST7L39  
13  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
13.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
13.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
13.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
13.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
13.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
13.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
13.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
13.2.1 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
13.2.2 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
13.2.3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
13.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
13.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
13.3.2 Operating conditions with low voltage detector (LVD) . . . . . . . . . . . . . 186  
13.3.3 Auxiliary voltage detector (AVD) thresholds . . . . . . . . . . . . . . . . . . . . . 188  
13.3.4 Internal RC oscillator and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
13.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
13.4.1 Supply current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
13.4.2 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
13.5 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
13.5.1 General timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
13.5.2 Crystal and ceramic resonator oscillators . . . . . . . . . . . . . . . . . . . . . . 194  
13.6 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
13.6.1 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
13.6.2 Flash program memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
13.6.3 EEPROM data memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
13.7 Electromagnetic compatibility (EMC) characteristics . . . . . . . . . . . . . . . 196  
13.7.1 Functional electromagnetic susceptibility (EMS) . . . . . . . . . . . . . . . . . 196  
13.7.2 Electromagnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
13.7.3 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 198  
13.8 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
13.8.1 General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
13.8.2 Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
13.9 Control pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
13.9.1 Asynchronous RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
13.10 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . 207  
6/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Contents  
13.10.1 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
13.11 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
14  
15  
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
14.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
14.2 Packaging for automatic handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
14.3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
Device configuration and ordering information . . . . . . . . . . . . . . . . . 215  
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
15.2 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
15.2.1 Flash option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
15.2.2 ROM option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
15.3 Device ordering information and transfer of customer code . . . . . . . . . . 219  
15.4 Development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
15.4.1 Starter Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
15.4.2 Development and debugging tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
15.4.3 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
15.4.4 Order codes for development and programming tools . . . . . . . . . . . . . 225  
16  
17  
Important notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
16.1 Clearing active interrupts outside interrupt routine . . . . . . . . . . . . . . . . . 226  
16.2 LINSCI limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
16.2.1 Header time-out does not prevent wake-up from mute mode . . . . . . . 226  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
Doc ID 11928 Rev 8  
7/234  
List of tables  
ST7L34 ST7L35 ST7L38 ST7L39  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Device pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
EECSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Data EEPROM register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
CC register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
RCCR calibration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
MCCSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
RCCR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Clock cycle delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Effect of low power modes on system integrity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Supply, reset and clock management interrupt control/wake-up capability . . . . . . . . . . . . 47  
SICSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
EICR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Interrupt sensitivity bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
EISR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
LTCSR/ATCSR register status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
AWUCSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
AWUPR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
AWUPR dividing factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
AWU register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
DR value and output pin status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
I/O port mode options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
I/O configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Effect of low power modes on I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
I/O interrupt control/wake-up capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Port configuration (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Port configuration (external interrupts) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
I/O port register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Watchdog timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
WDGCR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Watchdog timer register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Effect of low power modes on AT3 timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
AT3 interrupt control/wake-up capability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
ATCSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
CNTR1H and CNTR1L register descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
ATR1H and ATR1L register descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
PWMCR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
PWMxCSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
BREAKCR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
DCRxH and DCRxL register descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
ATICRH and ATICRL register descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
ATCSR2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
ATR2H and ATR2L register descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
DTGR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Effect of low power modes on lite timer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
8/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
List of tables  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
Table 84.  
Table 85.  
Table 86.  
Table 87.  
Table 88.  
Table 89.  
Table 90.  
Table 91.  
Table 92.  
Table 93.  
Table 94.  
Table 95.  
Table 96.  
Table 97.  
Table 98.  
Table 99.  
Lite timer 2 interrupt control/wake-up capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
LTCSR2 register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
LTARR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
LTCNTR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
LTCSR1 register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
LTICR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Lite timer register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Effect of low power modes on SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
SPI interrupt control/wake-up capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
SPICR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
SPICSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
SPI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Character formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Effect of low power modes on SCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
SCI interrupt control/wake-up capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
SCISR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
SCICR1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
SCICR2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
SCIBRR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
SCIERPR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
SCIETPR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
SCISR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
SCICR1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
SCICR2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
SCICR3 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
LPR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
LIN mantissa rounded values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
LPFR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
LDIV fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
LHLR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
LIN header mantissa values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
LIN header fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
LINSCI1 register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Effect of low power modes on the A/D converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
ADCCSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
ADCDRH register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
ADCDRL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
ADC clock configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
ADC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
CPU addressing mode groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
CPU addressing mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Inherent instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Immediate instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Instructions supporting direct, indexed, indirect and indirect indexed addressing modes 173  
Short instructions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Relative mode instructions (direct and indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Instruction groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Instruction set overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Table 100. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Doc ID 11928 Rev 8  
9/234  
List of tables  
ST7L34 ST7L35 ST7L38 ST7L39  
Table 101. Operating conditions (tested for T = -40 to +125 °C) @ V = 4.5 to 5.5 V . . . . . . . . . . 183  
A
DD  
Table 102. Operating conditions (tested for T = -40 to +125 °C) @ V = 4.5 to 5.5 V . . . . . . . . . . 183  
A
DD  
Table 103. Operating conditions (tested for T = -40 to +125 °C) @ V = 3.0 to 3.6 V . . . . . . . . . . 184  
A
DD  
Table 104. Operating conditions (tested for T = -40 to +125 °C) @ V = 3.0 to 3.6 V . . . . . . . . . . 185  
A
DD  
Table 105. Operating conditions with low voltage detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Table 106. Auxiliary voltage detector (AVD) thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Table 107. Internal RC oscillator and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Table 108. Supply current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Table 109. On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Table 110. General timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
Table 111. Oscillator parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Table 112. Typical ceramic resonator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Table 113. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Table 114. Characteristics of dual voltage HDFlash memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Table 115. Characteristics of EEPROM data memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Table 116. Electromagnetic test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Table 117. EMI emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Table 118. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Table 119. Latch up results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Table 120. I/O general port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Table 121. Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Table 122. Asynchronous RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Table 123. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Table 124. 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Table 125. ADC accuracy with 4.5 V < V < 5.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
DD  
Table 126. ADC accuracy with 3 V < V < 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
DD  
Table 127. 20-pin plastic small outline package, 300-mil width, mechanical data . . . . . . . . . . . . . . . 212  
Table 128. QFN 5x6: 20-terminal very thin fine pitch quad flat no-lead package . . . . . . . . . . . . . . . . 213  
Table 129. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
Table 130. Flash and ROM option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
Table 131. Option byte 0 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
Table 132. Option byte 1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
Table 133. Option byte 0 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
Table 134. Option byte 1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
Table 135. ST7L3 development and programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Table 136. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
10/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
General block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
20-pin SO package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
20-pin QFN package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Typical ICC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
EEPROM block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Data EEPROM programming flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Data EEPROM write operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Data EEPROM programming cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 10. CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 11. Stack manipulation example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 12. PLL output frequency timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 13. Clock management block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 14. ST7 clock sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 15. Reset sequence phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 16. Reset block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 17. Reset sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 18. Low voltage detector vs. reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 19. Reset and supply management block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 20. Using the AVD to monitor V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
DD  
Figure 21. Interrupt processing flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 22. Power saving mode transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 23. Slow mode clock transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 24. Wait mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 25. Halt timing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 26. Halt mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 27. Active halt timing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 28. Active halt mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 29. AWUFH mode block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 30. AWUF halt timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 31. AWUFH mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 32. I/O port general block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 33. Interrupt I/O port state transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 34. Watchdog block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 35. Single timer mode (ENCNTR2 = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 36. Dual timer mode (ENCNTR2 = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 37. PWM polarity inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 38. PWM function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 39. PWM signal from 0% to 100%duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 40. Dead time generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 41. Block diagram of break function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 42. Block diagram of output compare mode (single timer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 43. Block diagram of input capture mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 44. Input capture timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 45. Long range input capture block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Figure 46. Long range input capture timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 47. Lite timer 2 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Figure 48. Input capture timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Doc ID 11928 Rev 8  
11/234  
List of figures  
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 49. Serial peripheral interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 50. Single master/single slave application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 51. Generic SS timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 52. Hardware/software slave select management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 53. Data clock timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Figure 54. Clearing the WCOL bit (write collision flag) software sequence . . . . . . . . . . . . . . . . . . . . 116  
Figure 55. Single master/multiple slave configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Figure 56. SCI block diagram (in conventional baud rate generator mode). . . . . . . . . . . . . . . . . . . . 125  
Figure 57. Word length programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Figure 58. SCI baud rate and extended prescaler block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Figure 59. LIN characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Figure 60. SCI block diagram in LIN slave mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Figure 61. LIN header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Figure 62. LIN identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Figure 63. LIN header reception timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Figure 64. LIN synch field measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Figure 65. LDIV read/write operations when LDUM = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Figure 66. LDIV read/write operations when LDUM = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Figure 67. Bit sampling in reception mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Figure 68. LSF bit set and clear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Figure 69. ADC block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Figure 70. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Figure 71. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Figure 72.  
f
maximum operating frequency vs V supply voltage . . . . . . . . . . . . . . . . . . . . . . 182  
CLKIN DD  
Figure 73. Typical accuracy with RCCR = RCCR0 vs. V = 4.5 to 5.5 V and temperature. . . . . . . 184  
DD  
Figure 74.  
Figure 75. Typical accuracy with RCCR = RCCR1 vs. VDD = 3 to 3.6 V and temperature. . . . . . . . 185  
Figure 76. vs. V and temperature for calibrated RCCR1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Figure 77. PLL x 8 output vs. CLKIN frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
f
vs. V and temperature for calibrated RCCR0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
RC  
DD  
f
RC  
DD  
Figure 78. Typical I in run mode vs. f  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
DD  
CPU  
Figure 79. Typical I in slow mode vs. f  
DD  
CPU  
Figure 80. Typical I in wait mode vs. f  
DD  
CPU  
Figure 81. Typical I in slow-wait mode vs. f  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
DD  
CPU  
Figure 82. Typical I vs. temperature at V = 5 V and f = 16 MHz . . . . . . . . . . . . . . . . . . . . 191  
DD  
DD  
CLKIN  
Figure 83. Typical I vs. temperature and V at f = 16 MHz. . . . . . . . . . . . . . . . . . . . . . . . . 191  
DD  
DD  
CLKIN  
Figure 84. Two typical applications with unused I/O pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Figure 85. Typical I vs. V with V = V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
PU  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
IN  
SS  
Figure 86. Typical V at V  
= 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
= 4 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
= 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
= 3 V (high-sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
= 4 V (high-sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
= 5 V (high-sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
OL  
Figure 87. Typical V at V  
OL  
Figure 88. Typical V at V  
OL  
Figure 89. Typical V at V  
OL  
Figure 90. Typical V at V  
OL  
Figure 91. Typical V at V  
OL  
Figure 92. Typical V - V at V  
= 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
= 4 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
= 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
DD  
OH  
DD  
DD  
DD  
Figure 93. Typical V - V at V  
DD  
OH  
Figure 94. Typical V - V at V  
DD  
OH  
Figure 95. Typical V vs. V  
(standard I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
OL  
DD  
Figure 96. Typical V - V vs. V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
DD  
OH  
DD  
Figure 97. RESET pin protection when LVD is disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
Figure 98. RESET pin protection when LVD Is enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
Figure 99. SPI slave timing diagram with CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Figure 100. SPI slave timing diagram with CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
12/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
List of figures  
Figure 101. SPI master timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Figure 102. Typical application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Figure 103. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Figure 104. 20-pin plastic small outline package, 300-mil width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
Figure 105. QFN 5x6, 20-terminal very thin fine pitch quad flat no-lead package . . . . . . . . . . . . . . . . 213  
Figure 106. pin 1 orientation in tape and reel conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
Figure 107. ST7FL3x Flash commercial product structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Figure 108. ST7FL3x FASTROM commercial product structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Figure 109. ROM commercial product code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Figure 110. Header reception event sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Figure 111. LINSCI interrupt routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Doc ID 11928 Rev 8  
13/234  
Description  
ST7L34 ST7L35 ST7L38 ST7L39  
1
Description  
The ST7L3x is a member of the ST7 microcontroller family suitable for automotive  
applications. All ST7 devices are based on a common industry-standard 8-bit core, featuring  
an enhanced instruction set.  
The ST7L3x features Flash memory with byte-by-byte in-circuit programming (ICP) and in-  
application programming (IAP) capability.  
Under software control, the ST7L3x devices can be placed in wait, slow or halt mode,  
reducing power consumption when the application is in idle or standby state.  
The enhanced instruction set and addressing modes of the ST7 offer both power and  
flexibility to software developers, enabling the design of highly efficient and compact  
application code. In addition to standard 8-bit data management, all ST7 microcontrollers  
feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes.  
Table 1.  
Device summary  
Feature  
ST7L34  
ST7L35  
ST7L38  
ST7L39  
Program memory  
RAM (stack)  
8 Kbytes  
384 bytes (128 bytes)  
Data EEPROM  
-
256 bytes  
Lite timer,  
Lite timer,  
autoreloadtimer,  
SPI, 10-bit ADC,  
LINSCI  
Lite timer,  
autoreload timer,  
SPI, 10-bit ADC  
Lite timer,  
autoreload timer,  
SPI, 10-bit ADC  
autoreload timer,  
SPI, 10-bit ADC,  
LINSCI  
Peripherals  
Operating supply  
CPU frequency  
Operating temperature  
Packages  
3.0 V to 5.5 V  
Up to 8 MHz (with external resonator/clock or internal RC oscillator)  
Up to -40 to 85°C / -40 to 125°C  
SO20 300mil, QFN20  
1.1  
1.2  
Parametric data  
For easy reference, all parametric data is located in Section 13: Electrical characteristics.  
Debug module (DM)  
The devices feature an on-chip debug module (DM) to support in-circuit debugging (ICD).  
For a description of the DM registers, refer to the ST7 ICC protocol reference manual.  
14/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Description  
Figure 1.  
General block diagram  
Int.  
1% RC  
1 MHz  
12-bit  
autoreload  
timer 3  
PLL x8  
CLKIN  
8-bit  
lite timer 2  
/2  
OSC1  
OSC2  
Ext.  
osc  
Internal  
clock  
1 MHz  
to  
PA7:0  
(8 bits)  
PB6:0  
(7 bits)  
Port A  
Port B  
16 MHz  
LVD  
V
Power  
supply  
DD  
ADC  
V
SS  
RESET  
Control  
Debug module  
SPI  
8-bit core  
ALU  
Program  
memory  
LINSCI  
(8 Kbytes)  
Watchdog  
RAM  
(384 bytes)  
Data EEPROM  
(128 bytes)  
Doc ID 11928 Rev 8  
15/234  
 
Pin description  
ST7L34 ST7L35 ST7L38 ST7L39  
2
Pin description  
Figure 2.  
20-pin SO package pinout  
V
OSC1/CLKIN  
SS  
1
20  
19  
18  
17  
16  
15  
14  
V
OSC2  
DD  
2
)
RESET  
3
PA0 (HS)/LTIC  
SS/AIN0/PB0  
4
PA1 (HS)/ATIC  
PA2 (HS)/ATPWM0  
PA3 (HS)/ATPWM1  
PA4 (HS)/ATPWM2  
PA5 (HS)/ATPWM3/ICCDATA  
PA6/MCO/ICCCLK/BREAK  
PA7 (HS)/TDO  
SCK/AIN1/PB1  
MISO/AIN2/PB2  
MOSI/AIN3/PB3  
CLKIN/AIN4/PB4  
AIN5/PB5  
ei3  
5
ei0  
6
ei2  
7
ei1 13  
12  
8
9
ei2  
RDI/AIN6/PB6  
10  
11  
1. eix: Associated external interrupt vector  
2. (HS): 20mA high sink capability  
Figure 3.  
20-pin QFN package pinout  
VDD  
OSC1/CLKIN  
18  
19  
20  
17  
OSC2  
VSS  
16  
15  
14  
RESET  
SS/AIN0/PB0  
SCK/AIN1/PB1  
PA0 (HS)/LTIC  
1
2
PA1 (HS)/ATIC  
ei0  
3
PA2 (HS)/ATPWM0  
PA3 (HS)/ATPWM1  
PA4 (HS)/ATPWM2  
ei3  
MISO/AIN2/PB2  
MOSI/AIN3/PB3  
13  
12  
4
5
6
ei2  
ei1  
ei2  
11 PA5 (HS)/ATPWM3/ICCDATA  
CLKIN/AIN4/PB4  
RDI/AIN6/PB6  
7
8
9
10  
PA6/MCO/ICCCLK/BREAK  
AIN5/PB5  
PA7(HS)/TDO  
16/234  
Doc ID 11928 Rev 8  
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
Legend/abbreviations for Table 2:  
Pin description  
Type:  
Input/output level:  
Output level:  
I = input, O = output, S = supply  
C = CMOS 0.3 V /0.7 V with input trigger  
HS = 20mA high sink (on N-buffer only)  
T
DD  
DD  
Port and control configuration inputs: float = floating, wpu = weak pull-up,  
int = interrupt, ana = analog ports  
Port and control configuration outputs: OD = open drain, PP = push-pull  
Note:  
The reset configuration of each pin (shown in bold) is valid as long as the device is in reset  
state.  
Table 2.  
Pin no.  
Device pin description  
Level  
Port/control  
Main  
function  
(after  
Input(1)  
Output  
Pin name  
Alternate function  
reset)  
1
2
19 VSS  
20 VDD  
S
S
Ground  
Main power supply  
Top priority non maskable interrupt  
(active low)  
3
4
5
6
7
1
2
3
4
5
RESET  
I/O CT  
X
X
ADC analog input 0 or SPI  
Port B0  
PB0/AIN0/SS  
I/O  
I/O  
I/O  
I/O  
CT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
slave select (active low)  
ADC analog input 1 or SPI  
serial clock  
PB1/AIN1/SCK  
PB2/AIN2/MISO  
PB3/AIN3/MOSI  
CT  
CT  
CT  
ei3  
Port B1  
ADC analog input 2 or SPI  
Port B2  
master in/slave out data  
ADC analog input 3 or SPI  
Port B3  
ei2  
master out/slave in data  
ADC analog input 4 or  
Port B4  
8
9
6
7
8
9
PB4/AIN4/CLKIN/  
PB5/AIN5  
I/O  
I/O  
I/O  
CT  
CT  
CT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
external clock input  
Port B5  
Port B6  
Port A7  
ADC analog input 5  
ei2  
ADC analog input 6 or  
LINSCI input  
10  
11  
PB6/AIN6/RDI  
PA7/TDO  
I/O CT HS  
X
LINSCI output  
Doc ID 11928 Rev 8  
17/234  
 
Pin description  
ST7L34 ST7L35 ST7L38 ST7L39  
Table 2.  
Pin no.  
Device pin description (continued)  
Level  
Port/control  
Input(1)  
Main  
function  
(after  
Output  
Pin name  
Alternate function  
reset)  
Main clock output or in-  
circuit communication clock  
or external BREAK  
Caution: During normal  
operation this pin must be  
pulled- up, internally or  
externally (external pull-up  
of 10 k mandatory in noisy  
environment). This is to  
avoid entering ICC mode  
unexpectedly during a reset.  
In the application, even if the  
pin is configured as output,  
any reset puts it back in  
input pull-up  
PA6 /MCO/ICCCLK/  
BREAK  
12 10  
I/O  
CT  
X
X
X Port A6  
ei1  
Autoreload timer PWM3 or  
in-circuit communication  
data  
PA5/ICCDATA/  
ATPWM3  
13 11  
I/O CT HS  
X
X
X Port A5  
14 12 PA4/ATPWM2  
15 13 PA3/ATPWM1  
16 14 PA2/ATPWM0  
I/O CT HS  
I/O CT HS  
I/O CT HS  
X
X
X
X
X
X
X
X
X
Port A4  
Port A3  
Port A2  
Autoreload timer PWM2  
Autoreload timer PWM1  
Autoreload timer PWM0  
ei0  
Autoreload timer input  
capture  
17 15 PA1/ATIC  
I/O CT HS  
X
X
X
X
X
X
Port A1  
Port A0  
18 16 PA0/LTIC  
19 17 OSC2  
I/O CT HS  
O
X
Lite timer input capture  
Resonator oscillator inverter output  
Resonator oscillator inverter input or  
external clock input  
20 18 OSC1/CLKIN  
I
X
1. For input with interrupt possibility ‘eix’ defines the associated external interrupt vector which can be assigned to one of the  
I/O pins using the EISR register. Each interrupt can be either weak pull-up or floating defined through option register OR.  
18/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Register and memory map  
3
Register and memory map  
As shown in Figure 4, the MCU can address 64 Kbytes of memories and I/O registers.  
The available memory locations consist of 128 bytes of register locations, 384 bytes of  
RAM, 256 bytes of data EEPROM and up to 8 Kbytes of user program memory. The RAM  
space includes up to 128 bytes for the stack from 180h to 1FFh.  
The highest address bytes contain the user reset and interrupt vectors.  
The Flash memory contains two sectors (see Figure 4) mapped in the upper part of the ST7  
addressing space so the reset and interrupt vectors are located in Sector 0 (F000h-FFFFh).  
The size of Flash sector 0 and other device options are configurable by option byte (refer to  
Section 15.2: Option bytes on page 215).  
Note:  
Memory locations marked as ‘Reserved’ must never be accessed. Accessing a reserved  
area can have unpredictable effects on the device.  
Figure 4.  
Memory map  
0080h  
Short addressing  
RAM (zero page)  
00FFh  
0100h  
0000h  
HW registers  
(see Table 3)  
16-bit addressing  
RAM  
007Fh  
0080h  
017Fh  
0180h  
RAM  
(384 bytes)  
01FFh  
0200h  
128 bytes stack  
01FFh  
Reserved  
0FFFh  
1000h  
DEE0h  
DEE1h  
RCCRH0  
RCCRL0  
RCCRH1  
RCCRL1  
Data EEPROM  
(256 bytes)  
10FFh  
1100h  
DEE2h  
DEE3h  
DEE4h  
Reserved  
8K Flash  
program memory  
See note 1 below and Section 7.1 on page 37  
DFFFh  
E000h  
E000h  
7 Kbytes  
sector 1  
Flash memory  
(8K)  
FBFFh  
FC00h  
1 Kbyte  
sector 0  
FFFFh  
FFDFh  
FFE0h  
Interrupt and reset vectors  
(see Table 14)  
FFFFh  
1. DEE0h, DEE1h, DEE2h and DEE3h addresses are located in a reserved area but are special bytes containing also the RC  
calibration values which are read-accessible only in user mode. If all the EEPROM data or Flash space (including the RC  
calibration values locations) has been erased (after the readout protection removal), then the RC calibration values can still  
be obtained through these four addresses.  
Doc ID 11928 Rev 8  
19/234  
 
Register and memory map  
ST7L34 ST7L35 ST7L38 ST7L39  
Legend for Table 3: x = undefined, R/W = read/write, RO = read only  
Table 3.  
Address  
Hardware register map  
Register  
Reset  
Block  
label  
Register name  
Remarks  
status  
0000h  
0001h  
0002h  
PADR  
PADDR  
PAOR  
Port A data register  
Port A data direction register  
Port A option register  
FFh(1)  
00h  
40h  
R/W  
R/W  
R/W  
Port A  
Port B  
0003h  
0004h  
0005h  
PBDR  
PBDDR  
PBOR  
Port B data register  
Port B data direction register  
Port B option register  
FFh(1)  
00h  
00h  
R/W  
R/W  
R/W(2)  
0006h  
0007h  
Reserved area (2 bytes)  
0008h  
0009h  
000Ah  
000Bh  
000Ch  
LTCSR2  
LTARR  
LTCNTR  
LTCSR1  
LTICR  
Lite timer control/status register 2  
Lite timer autoreload register  
Lite timer counter 2 register  
Lite timer control/status register 1  
Lite timer input capture register  
0Fh  
00h  
00h  
R/W  
R/W  
RO  
R/W  
RO  
Lite timer  
2
0x00 0000b  
xxh  
000Dh  
000Eh  
000Fh  
0010h  
0011h  
0012h  
0013h  
0014h  
0015h  
0016h  
0017h  
0018h  
0019h  
001Ah  
001Bh  
001Ch  
001Dh  
001Eh  
001Fh  
0020h  
0021h  
0022h  
0023h  
0024h  
0025h  
ATCSR  
CNTR1H  
CNTR1L  
ATR1H  
ATR1L  
PWMCR  
Timer control/status register  
Counter register 1 high  
Counter register 1 low  
Autoreload register 1 high  
Autoreload register 1 low  
PWM output control register  
0x00 0000b  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
03h  
00h  
00h  
00h  
00h  
R/W  
RO  
RO  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
PWM0CSR PWM 0 control/status register  
PWM1CSR PWM 1 control/status register  
PWM2CSR PWM 2 control/status register  
PWM3CSR PWM 3 control/status register  
DCR0H  
DCR0L  
DCR1H  
PWM 0 duty cycle register high  
PWM 0 duty cycle register low  
PWM 1 duty cycle register high  
PWM 1 duty cycle register low  
PWM 2 duty cycle register high  
PWM 2 duty cycle register low  
PWM 3 duty cycle register high  
PWM 3 duty cycle register low  
Input capture register high  
Auto-  
reload  
timer 3 DCR1L  
DCR2H  
DCR2L  
DCR3H  
DCR3L  
ATICRH  
ATICRL  
ATCSR2  
BREAKCR Break control register  
ATR2H  
ATR2L  
DTGR  
Input capture register low  
Timer control/status register 2  
RO  
R/W  
R/W  
R/W  
R/W  
R/W  
Autoreload register 2 high  
Autoreload register 2 low  
Dead time generator register  
0026h to  
002Dh  
Reserved area (8 bytes)  
002Eh  
WDG  
Flash  
WDGCR  
FCSR  
Watchdog control register  
7Fh  
00h  
00h  
R/W  
R/W  
R/W  
0002Fh  
Flash control/status register  
Data EEPROM control/status register  
00030h EEPROM EECSR  
20/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Register and memory map  
Table 3.  
Address  
Hardware register map (continued)  
Register  
label  
Reset  
Block  
Register name  
Remarks  
status  
0031h  
0032h  
0033h  
SPIDR  
SPICR  
SPICSR  
SPI data I/O register  
SPI control register  
SPI control/status register  
xxh  
0xh  
00h  
R/W  
R/W  
R/W  
SPI  
0034h  
0035h  
0036h  
ADCCSR  
ADCDRH  
ADCDRL  
A/D control/status register  
A/D data register high  
A/D control and data register low  
00h  
xxh  
x0h  
R/W  
RO  
R/W  
ADC  
0037h  
0038h  
ITC  
EICR  
External interrupt control register  
Main clock control/status register  
RC oscillator control register  
00h  
00h  
FFh  
R/W  
R/W  
MCC  
MCCSR  
0039h Clock and RCCR  
R/W  
R/W  
003Ah  
003Bh  
003Ch  
reset  
SICSR  
System integrity control/status register 0110 0xx0b  
Reserved area (1 byte)  
ITC  
EISR  
External interrupt selection register  
Reserved area (3 bytes)  
00h  
R/W  
003Dhto  
003Fh  
SCI status register  
SCI data register  
0040h  
0041h  
0042h  
0043h  
0044h  
0045h  
0046h  
0047h  
SCISR  
SCIDR  
LINSCI SCIBRR  
(LIN SCICR1  
master/ SCICR2  
C0h  
xxh  
00xx xxxxb  
xxh  
RO  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SCI baud rate register  
SCI control register 1  
SCI control register 2  
SCI control register 3  
SCI extended receive prescaler register  
SCI extended transmit prescaler  
register  
00h  
00h  
00h  
00h  
slave)  
SCICR3  
SCIERPR  
SCIETPR  
0048h  
Reserved area (1 byte)  
AWU prescaler register  
0049h  
004Ah  
AWUPR  
FFh  
00h  
R/W  
R/W  
AWU  
AWUCSR AWU control/status register  
004Bh  
004Ch  
004Dh  
004Eh  
004Fh  
0050h  
DMCR  
DMSR  
DMBK1H  
DMBK1L  
DMBK2H  
DMBK2L  
DM control register  
DM status register  
DM breakpoint register 1 high  
DM breakpoint register 1 low  
DM breakpoint register 2 high  
DM breakpoint register 2 low  
00h  
00h  
00h  
00h  
00h  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DM(3)  
0051h to  
007Fh  
Reserved area (47 bytes)  
1. The contents of the I/O port DR registers are readable only in output configuration. In input configuration,  
the values of the I/O pins are returned instead of the DR register contents  
2. The bits associated with unavailable pins must always keep their reset value  
3. For a description of the debug module registers, see ST7 ICC protocol reference manual  
Doc ID 11928 Rev 8  
21/234  
Flash program memory  
ST7L34 ST7L35 ST7L38 ST7L39  
4
Flash program memory  
4.1  
Introduction  
The ST7 single voltage extended Flash (XFlash) is a non-volatile memory that can be  
electrically erased and programmed either on a byte-by-byte basis or up to 32 bytes in  
parallel.  
The XFlash devices can be programmed off-board (plugged in a programming tool) or  
on-board using in-circuit programming (ICP) or in-application programming (IAP).  
The array matrix organization allows each sector to be erased and reprogrammed without  
affecting other sectors.  
4.2  
4.3  
Main features  
In-circuit programming (ICP)  
In-application programming (IAP)  
In-circuit testing (ICT) for downloading and executing user application test patterns in  
RAM  
Sector 0 size configurable by option byte  
Readout and write protection  
Programming modes  
The ST7 can be programmed in three different ways:  
Insertion in a programming tool. In this mode, Flash sectors 0 and 1, option byte  
row and data EEPROM (if present) can be programmed or erased.  
In-circuit programming. In this mode, Flash sectors 0 and 1, option byte row and  
data EEPROM (if present) can be programmed or erased without removing the  
device from the application board.  
In-application programming. In this mode, sector 1 and data EEPROM (if present)  
can be programmed or erased without removing the device from the application  
board and while the application is running.  
4.3.1  
In-circuit programming (ICP)  
ICP uses a protocol called ICC (in-circuit communication) which allows an ST7 plugged on a  
printed circuit board (PCB) to communicate with an external programming device connected  
via a cable. ICP is performed in three steps:  
Switch the ST7 to ICC mode (in-circuit communications). This is done by driving a  
specific signal sequence on the ICCCLK/DATA pins while the RESET pin is pulled  
low. When the ST7 enters ICC mode, it fetches a specific reset vector which points  
to the ST7 system memory containing the ICC protocol routine. This routine  
enables the ST7 to receive bytes from the ICC interface.  
Download ICP driver code in RAM from the ICCDATA pin  
Execute ICP driver code in RAM to program the Flash memory  
22/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Flash program memory  
Depending on the ICP driver code downloaded in RAM, Flash memory programming can be  
fully customized (number of bytes to program, program locations, or selection of the serial  
communication interface for downloading).  
4.3.2  
In-application programming (IAP)  
This mode uses an IAP driver program previously programmed in sector 0 by the user (in  
ICP mode).  
IAP mode is fully controlled by user software, allowing it to be adapted to the user  
application (such as a user-defined strategy for entering programming mode or a choice of  
communications protocol used to fetch the data to be stored). This mode can be used to  
program any memory areas except sector 0, which is write/erase protected to allow  
recovery in case errors occur during the programming operation.  
4.4  
ICC interface  
ICP needs a minimum of four and up to six pins to be connected to the programming tool.  
These pins are:  
RESET: Device reset  
: Device power supply ground  
V
SS  
ICCCLK: ICC output serial clock pin  
ICCDATA: ICC input serial data pin  
CLKIN/PB4: Main clock input for external source  
V
: Application board power supply (optional, see note 3, Figure 5: Typical ICC  
DD  
interface on page 24)  
Doc ID 11928 Rev 8  
23/234  
 
Flash program memory  
Figure 5. Typical ICC interface  
ST7L34 ST7L35 ST7L38 ST7L39  
Programming tool  
ICC connector  
ICC cable  
ICC connector  
HE10 connector type  
Application board  
(See note 3)  
Optional  
(see note 4)  
9
7
5
6
3
1
2
10  
8
4
Application reset source  
See note 2  
Application I/O  
See note 1 and caution  
See note 1  
Application  
power supply  
ST7  
1. If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal isolation is necessary. As soon as the  
programming tool is plugged to the board, even if an ICC session is not in progress, the ICCCLK and ICCDATA pins are  
not available for the application. If they are used as inputs by the application, isolation such as a serial resistor must be  
implemented in case another device forces the signal. Refer to the Programming Tool documentation for recommended  
resistor values.  
2. During the ICP session, the programming tool must control the RESET pin. This can lead to conflicts between the  
programming tool and the application reset circuit if it drives more than 5 mA at high level (push-pull output or pull-up  
resistor < 1K). A schottky diode can be used to isolate the application reset circuit in this case. When using a classical RC  
network with R > 1K or a reset management IC with open drain output and pull-up resistor > 1K, no additional components  
are needed. In all cases the user must ensure that no external reset is generated by the application during the ICC session.  
3. The use of pin 7 of the ICC connector depends on the programming tool architecture. This pin must be connected when  
using most ST programming tools (it is used to monitor the application power supply). Please refer to the programming tool  
manual.  
4. Pin 9 must be connected to the PB4 pin of the ST7 when the clock is not available in the application or if the selected clock  
option is not programmed in the option byte. ST7 devices with multi-oscillator capability must have OSC2 grounded in this  
case.  
5. With any programming tool, while the ICP option is disabled, the external clock must be provided on PB4.  
6. In ICC mode, the internal RC oscillator is forced as a clock source, regardless of the selection in the option byte.  
Caution:  
During normal operation the ICCCLK pin must be pulled up, internally or externally (external  
pull-up of 10k mandatory in noisy environment). This is to avoid entering ICC mode  
unexpectedly during a reset. In the application, even if the pin is configured as output, any  
reset puts it back in input pull-up.  
24/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Flash program memory  
4.5  
Memory protection  
There are two different types of memory protection: Readout protection and write/erase  
protection, which can be applied individually.  
4.5.1  
Readout protection  
Readout protection, when selected, protects against program memory content extraction  
and against write access to Flash memory. Even if no protection can be considered as  
totally unbreakable, the feature provides a very high level of protection for a general purpose  
microcontroller. Both program and data EE memory are protected.  
In Flash devices, this protection is removed by reprogramming the option. In this case, both  
program and data EE memory are automatically erased and the device can be  
reprogrammed.  
Readout protection selection depends on the device type:  
In Flash devices it is enabled and removed through the FMP_R bit in the option byte.  
In ROM devices it is enabled by the mask option specified in the option list.  
4.5.2  
Flash write/erase protection  
Write/erase protection, when set, makes it impossible to both overwrite and erase program  
memory. It does not apply to EE data. Its purpose is to provide advanced security to  
applications and prevent any change being made to the memory content.  
Warning: Once set, write/erase protection can never be removed. A  
write-protected Flash device is no longer reprogrammable.  
Write/erase protection is enabled through the FMP_W bit in the option byte.  
4.6  
Related documentation  
For details on Flash programming and ICC protocol, refer to the ST7 Flash programming  
reference manual and to the ST7 ICC protocol reference manual.  
Doc ID 11928 Rev 8  
25/234  
 
 
Flash program memory  
ST7L34 ST7L35 ST7L38 ST7L39  
4.7  
Register description  
Flash control/status register (FCSR)  
Reset value: 0000 0000 (00h)  
1st RASS key: 0101 0110 (56h)  
2nd RASS key: 10101110 (AEh)  
FCSR  
7
6
5
4
3
2
1
0
Reserved Reserved Reserved Reserved Reserved  
OPT  
LAT  
PGM  
-
-
-
-
-
R/W  
R/W  
R/W  
Note:  
This register is reserved for programming using ICP, IAP or other programming methods. It  
controls the XFlash programming and erasing operations.  
When an EPB or another programming tool is used (in socket or ICP mode), the RASS keys  
are sent automatically.  
26/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Data EEPROM  
5
Data EEPROM  
5.1  
Introduction  
The electrically erasable programmable read only memory can be used as a non volatile back-up for  
storing data. Using the EEPROM requires a basic access protocol described in this chapter.  
5.2  
Main features  
Up to 32 bytes programmed in the same cycle  
EEPROM mono-voltage (charge pump)  
Chained erase and programming cycles  
Internal control of the global programming cycle duration  
Wait mode management  
Readout protection  
Figure 6.  
EEPROM block diagram  
High voltage pump  
EECSR  
0
0
0
0
0
0
E2LAT E2PGM  
EEPROM  
Row  
decoder  
Address  
decoder  
4
memory matrix  
(1 row = 32 x 8 bits)  
128  
128  
4
4
32 x 8 bits  
data latches  
Data  
multiplexer  
Address bus  
Data bus  
Doc ID 11928 Rev 8  
27/234  
Data EEPROM  
ST7L34 ST7L35 ST7L38 ST7L39  
5.3  
Memory access  
The data EEPROM memory read/write access modes are controlled by the E2LAT bit of the  
EEPROM control/status register (EECSR). The flowchart in Figure 7: Data EEPROM  
programming flowchart on page 29 describes these different memory access modes.  
Read operation (E2LAT = 0)  
The EEPROM can be read as a normal ROM location when the E2LAT bit of the EECSR  
register is cleared.  
On this device, data EEPROM can also be used to execute machine code. Do not write to  
the data EEPROM while executing from it. This would result in an unexpected code being  
executed.  
Write operation (E2LAT = 1)  
To access the write mode, the E2LAT bit must be set by software (the E2PGM bit remains  
cleared). When a write access to the EEPROM area occurs, the value is latched inside the  
32 data latches according to its address.  
When PGM bit is set by the software, all the previous bytes written in the data latches (up to  
32) are programmed in the EEPROM cells. The effective high address (row) is determined  
by the last EEPROM write sequence. To avoid wrong programming, the user must ensure  
that all the bytes written between two programming sequences have the same high address:  
Only the five least significant bits of the address can change.  
At the end of the programming cycle, the PGM and LAT bits are cleared simultaneously.  
Note:  
Care should be taken during the programming cycle. Writing to the same memory location  
over-programs the memory (logical AND between the two write access data results)  
because the data latches are only cleared at the end of the programming cycle and by the  
falling edge of the E2LAT bit. It is not possible to read the latched data. This note is  
illustrated by Figure 9: Data EEPROM programming cycle on page 31.  
28/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 7. Data EEPROM programming flowchart  
Data EEPROM  
Read mode  
E2LAT = 0  
E2PGM = 0  
Write mode  
E2LAT = 1  
E2PGM = 0  
Write up to 32 bytes  
in EEPROM area  
Read bytes  
in EEPROM area  
(with the same 11 MSB of the address)  
Start programming cycle  
E2LAT = 1  
E2PGM = 1 (set by software)  
0
1
E2LAT  
Cleared by hardware  
Figure 8.  
Data EEPROM write operation  
Row/byte ⇒  
0
1
2
3
...  
30 31  
Physical address  
00h...1Fh  
0
1
Row definition  
20h...3Fh  
...  
N
Nx20h...Nx20h+1Fh  
Read operation impossible  
Read operation possible  
Programming cycle  
Byte 1  
Byte 2  
Phase 1  
Byte 32  
Phase 2  
Writing data latches  
Waiting E2PGM and E2LAT to fall  
E2LAT bit  
Set by user application  
Cleared by hardware  
E2PGM bit  
1. If a programming cycle is interrupted (by a reset action), the integrity of the data in memory is not guaranteed.  
Doc ID 11928 Rev 8  
29/234  
 
Data EEPROM  
ST7L34 ST7L35 ST7L38 ST7L39  
5.4  
Power saving modes  
Wait mode  
The data EEPROM can enter wait mode on execution of the WFI instruction of the  
microcontroller or when the microcontroller enters active halt mode.The data EEPROM  
immediately enters this mode if there is no programming in progress, otherwise the data  
EEPROM finishes the cycle and then enters wait mode.  
Active halt mode  
Refer to wait mode.  
Halt mode  
The data EEPROM immediately enters halt mode if the microcontroller executes the HALT  
instruction. Therefore, the EEPROM stops the function in progress, and data may be  
corrupted.  
5.5  
Access error handling  
If a read access occurs while E2LAT = 1, then the data bus is not driven.  
If a write access occurs while E2LAT = 0, then the data on the bus is not latched.  
If a programming cycle is interrupted (by reset action), the integrity of the data in memory is  
not guaranteed.  
5.6  
Data EEPROM readout protection  
The readout protection is enabled through an option bit (see Section 15.2: Option bytes on  
page 215).  
When this option is selected, the programs and data stored in the EEPROM memory are  
protected against readout (including a rewrite protection). In Flash devices, when this  
protection is removed by reprogramming the option byte, the entire program memory and  
EEPROM is first automatically erased.  
Note:  
Both program memory and data EEPROM are protected using the same option bit.  
30/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Data EEPROM  
Figure 9.  
Data EEPROM programming cycle  
Read operation not possible  
Read operation possible  
Internal  
programming  
voltage  
Erase cycle  
Write cycle  
Write of  
data latches  
t
PROG  
LAT  
PGM  
5.7  
Register description  
EEPROM control/status register (EECSR)  
EECSR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
-
Reserved  
Reserved  
E2LAT  
E2PGM  
-
-
-
-
-
R/W  
R/W  
Table 4.  
EECSR register description  
Bit name  
Bit  
Function  
7:2  
Reserved, forced by hardware to 0  
Latch access transfer  
-
This bit is set by software. It is cleared by hardware at the end of the programming  
cycle. It can only be cleared by software if the E2PGM bit is cleared.  
1
E2LAT  
0: Read mode  
1: Write mode  
Programming control and status  
This bit is set by software to begin the programming cycle. At the end of the  
programming cycle, this bit is cleared by hardware.  
0: Programming finished or not yet started  
0
E2PGM  
1: Programming cycle is in progress  
Note: If the E2PGM bit is cleared during the programming cycle, the  
memory data is not guaranteed  
Table 5.  
Data EEPROM register map and reset values  
Address (Hex.)  
Register label  
7
6
5
4
3
2
1
0
EECSR  
Reset value  
E2LAT  
0
E2PGM  
0
0030h  
0
0
0
0
0
0
Doc ID 11928 Rev 8  
31/234  
Central processing unit  
ST7L34 ST7L35 ST7L38 ST7L39  
6
Central processing unit  
6.1  
Introduction  
This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-  
bit data manipulation.  
6.2  
Main features  
63 basic instructions  
Fast 8-bit by 8-bit multiply  
17 main addressing modes  
Two 8-bit index registers  
16-bit stack pointer  
Low power modes  
Maskable hardware interrupts  
Non-maskable software interrupt  
6.3  
CPU registers  
The six CPU registers shown in Figure 10 are not present in the memory mapping and are  
accessed by specific instructions.  
Figure 10. CPU registers  
7
0
Accumulator register  
X index register  
Reset value = XXh  
7
0
0
Reset value = XXh  
7
Y index register  
Reset value = XXh  
15  
PCH  
8
7
PCL  
0
Program counter regsiter  
Condition code register  
Reset value = reset vector @ FFFEh-FFFFh  
7
0
C
X
1
1
1
1
1
H
X
I
N
X
Z
X
Reset value =  
8
1
1
15  
7
0
Stack pointer register  
Reset value = stack higher address  
1. X = undefined value  
32/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Central processing unit  
Accumulator register (A)  
The accumulator is an 8-bit general purpose register used to hold operands and the results  
of the arithmetic and logic calculations and to manipulate data.  
Index registers (X and Y)  
In indexed addressing modes, these 8-bit registers are used to create either effective  
addresses or temporary storage areas for data manipulation. (The cross-assembler  
generates a precede instruction (PRE) to indicate that the following instruction refers to the  
Y register.)  
The Y register is not affected by the interrupt automatic procedures (not pushed to and  
popped from the stack).  
Program counter register (PC)  
The program counter is a 16-bit register containing the address of the next instruction to be  
executed by the CPU. It is made of two 8-bit registers, PCL (program counter low which is  
the LSB) and PCH (program counter high which is the MSB).  
Condition code register (CC)  
CC  
Reset value: 111x 1xxx  
7
1
6
1
5
1
4
3
I
2
1
Z
0
H
N
C
R/W  
R/W  
R/W  
R/W  
R/W  
The 8-bit condition code register contains the interrupt masks and four flags representative  
of the result of the instruction just executed. This register can also be handled by the PUSH  
and POP instructions.  
These bits can be individually tested and/or controlled by specific instructions.  
Table 6.  
Bit  
CC register description  
Bit name  
Function  
Half carry  
This bit is set by hardware when a carry occurs between bits 3 and 4  
of the ALU during an ADD or ADC instructions. It is reset by  
hardware during the same instructions.  
4
H
0: No half carry has occurred  
1: A half carry has occurred  
This bit is tested using the JRH or JRNH instruction. The H bit is  
useful in BCD arithmetic subroutines.  
Doc ID 11928 Rev 8  
33/234  
Central processing unit  
ST7L34 ST7L35 ST7L38 ST7L39  
Table 6.  
Bit  
CC register description (continued)  
Bit name  
Function  
Interrupt mask  
This bit is set by hardware when entering in interrupt or by software  
to disable all interrupts except the TRAP software interrupt. This bit  
is cleared by software.  
0: Interrupts are enabled  
1: Interrupts are disabled  
This bit is controlled by the RIM, SIM and IRET instructions and is  
tested by the JRM and JRNM instructions.  
3
I
Note: Interrupts requested while I is set are latched and can be  
processed when I is cleared. By default an interrupt routine is  
not interruptible because the I bit is set by hardware at the start  
of the routine and reset by the IRET instruction at the end of the  
routine. If the I bit is cleared by software in the interrupt routine,  
pending interrupts are serviced regardless of the priority level of  
the current interrupt routine.  
Negative  
This bit is set and cleared by hardware. It is representative of the  
result sign of the last arithmetic, logical or data manipulation. It is a  
copy of the 7th bit of the result.  
0: The result of the last operation is positive or null  
1: The result of the last operation is negative (in other words, the  
most significant bit is a logic 1)  
2
1
N
Z
This bit is accessed by the JRMI and JRPL test instructions.  
Zero  
This bit is set and cleared by hardware. This bit indicates that the  
result of the last arithmetic, logical or data manipulation is zero.  
0: The result of the last operation is different from zero  
1: The result of the last operation is zero  
This bit is accessed by the JREQ and JRNE test instructions.  
Carry/borrow  
This bit is set and cleared by hardware and software. It indicates an  
overflow or an underflow has occurred during the last arithmetic  
operation.  
0: No overflow or underflow has occurred  
1: An overflow or underflow has occurred  
This bit is driven by the SCF and RCF instructions and tested by the  
JRC and JRNC instructions. It is also affected by the ‘bit test and  
branch’, shift and rotate instructions.  
0
C
34/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Central processing unit  
Stack pointer register (SP)  
SP  
Reset value: 01 FFh  
15  
14  
13  
12  
11  
10  
9
8
1
Reserved Reserved Reserved Reserved Reserved Reserved Reserved  
-
-
-
-
-
-
-
R/W  
0
7
6
5
4
3
2
1
1
SP[6:0]  
R/W  
R/W  
The stack pointer is a 16-bit register which always points to the next free location in the  
stack. It is then decremented after data has been pushed onto the stack and incremented  
before data is popped from the stack (see Figure 11: Stack manipulation example on  
page 36).  
Since the stack is 128 bytes deep, the 9 most significant bits are forced by hardware.  
Following an MCU reset, or after a reset stack pointer instruction (RSP), the stack pointer  
contains its reset value (the SP6 to SP0 bits are set) which is the stack higher address.  
The least significant byte of the stack pointer (called S) can be directly accessed by a LD  
instruction.  
Note:  
When the lower limit is exceeded, the stack pointer wraps around to the stack upper limit,  
without indicating the stack overflow. The previously stored information is then overwritten  
and therefore lost. The stack also wraps in case of an underflow.  
The stack is used to save the return address during a subroutine call and the CPU context  
during an interrupt. The user may also directly manipulate the stack by means of the PUSH  
and POP instructions. In the case of an interrupt, the PCL is stored at the first location  
pointed to by the SP. Then the other registers are stored in the next locations as shown in  
Figure 11: Stack manipulation example on page 36.  
When an interrupt is received, the SP is decremented and the context is pushed on the  
stack  
On return from interrupt, the SP is incremented and the context is popped from the  
stack  
A subroutine call occupies two locations and an interrupt five locations in the stack area.  
Doc ID 11928 Rev 8  
35/234  
Central processing unit  
Figure 11. Stack manipulation example  
ST7L34 ST7L35 ST7L38 ST7L39  
Call  
subroutine  
PUSH Y  
POP Y  
IRET  
RET or RSP  
Interrupt  
event  
@ 0180h  
SP  
SP  
SP  
Y
CC  
A
CC  
A
CC  
A
X
X
X
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
SP  
SP  
PCH  
PCL  
PCH  
PCL  
SP  
@ 01FFh  
1. Legend: stack higher address = 01FFh; stack lower address = 0180h  
36/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Supply, reset and clock management  
7
Supply, reset and clock management  
The device includes a range of utility features for securing the application in critical  
situations (for example, in case of a power brown-out) and reducing the number of external  
components.  
Main features  
Clock management  
1 MHz internal RC oscillator (enabled by option byte)  
1 to 16 MHz or 32 kHz external crystal/ceramic resonator (selected by option byte)  
External clock input (enabled by option byte)  
PLL for multiplying the frequency by 8 (enabled by option byte)  
Reset sequence manager (RSM)  
System integrity management (SI)  
Main supply low voltage detection (LVD) with reset generation (enabled by option  
byte)  
Auxiliary voltage detector (AVD) with interrupt capability for monitoring the main  
supply (enabled by option byte)  
7.1  
Internal RC oscillator adjustment  
The device contains an internal RC oscillator with high accuracy for a given device,  
temperature and voltage. It must be calibrated to obtain the frequency required in the  
application. This is done by the software writing an 8-bit calibration value in the RCCR (RC  
control register) and in the bits [6:5] in the SICSR (SI control status register).  
Whenever the microcontroller is reset, the RCCR returns to its default value (FFh), that is,  
each time the device is reset, the calibration value must be loaded in the RCCR. Predefined  
calibration values are stored in EEPROM for 3.3 V and 5 V V supply voltages at 25°C, as  
DD  
shown in Table 7.  
Table 7.  
RCCR calibration registers  
RCCR  
Conditions  
ST7L3 addresses  
DEE0h(2) (CR[9:2] bits)  
DEE1h(2) (CR[1:0] bits)  
DEE2h(2)(CR[9:2] bits)  
DEE3h(2) (CR[1:0] bits)  
RCCRH0  
RCCRL0  
RCCRH1  
RCCRL1  
VDD = 5 V  
TA = 25°C  
fRC = 1 MHz(1)  
VDD = 3.3 V  
TA = 25°C  
fRC = 1 MHz(1)  
1. RCCR0 and RCCR1 calibrated within these conditions in order to reach RC accuracy as mentioned in  
Table 101: Operating conditions (tested for TA = -40 to +125 °C) @ VDD = 4.5 to 5.5 V on page 183 and  
Table 103: Operating conditions (tested for TA = -40 to +125 °C) @ VDD = 3.0 to 3.6 V on page 184  
2. DEE0h, DEE1h, DEE2h and DEE3h addresses are located in a reserved area but are special bytes  
containing also the RC calibration values which are read-accessible only in user mode. If all the EEPROM  
data or Flash space (including the RC calibration values locations) has been erased (after the readout  
protection removal), then the RC calibration values can still be obtained through these four addresses.  
For compatibility reasons with the SICSR register, CR[1:0] bits are stored in the fifth and sixth positions of  
DEE1 and DEE3 addresses.  
Doc ID 11928 Rev 8  
37/234  
 
 
 
Supply, reset and clock management  
ST7L34 ST7L35 ST7L38 ST7L39  
Note:  
1
2
3
In ICC mode, the internal RC oscillator is forced as a clock source, regardless of the  
selection in the option byte.  
For more information on the frequency and accuracy of the RC oscillator see Section 13:  
Electrical characteristics.  
To improve clock stability and frequency accuracy, it is recommended to place a decoupling  
capacitor, typically 100 nF, between the V and V pins as close as possible to the ST7  
DD  
SS  
device.  
4
5
These bytes are systematically programmed by ST, including on FASTROM devices.  
Consequently, customers intending to use FASTROM service must not use these bytes.  
RCCR0 and RCCR1 calibration values are not erased if the readout protection bit is reset  
after it has been set (see Section 4.5.1: Readout protection on page 25).  
Caution:  
If the voltage or temperature conditions change in the application, the frequency may need  
to be recalibrated.  
Refer to application note AN1324 for information on how to calibrate the RC frequency using  
an external reference signal.  
7.2  
Phase locked loop  
The PLL can be used to multiply a 1 MHz frequency from the RC oscillator or the external  
clock by 8 to obtain an f  
of 8 MHz. The PLL is enabled (by 1 option bit) and the  
OSC  
multiplication factor is 8.  
The x8 PLL is intended for operation with V in the 3.6 V to 5.5 V range.  
DD  
If the PLL is disabled and the RC oscillator is enabled, then f  
= 1 MHz.  
OSC  
If both the RC oscillator and the PLL are disabled, f  
is driven by the external clock.  
OSC  
Figure 12. PLL output frequency timing diagram  
LOCKED bit set  
4/8 x input freq.  
t
STAB  
t
LOCK  
t
STARTUP  
t
When the PLL is started, after reset or wakeup from halt mode or AWUFH mode, it outputs  
the clock after a delay of t  
.
STARTUP  
38/234  
Doc ID 11928 Rev 8  
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
Supply, reset and clock management  
When the PLL output signal reaches the operating frequency, the locked bit in the SICSCR  
register is set. Full PLL accuracy (ACC ) is reached after a stabilization time of t  
(see  
PLL  
STAB  
Figure 12 and Section 13.3.4: Internal RC oscillator and PLL on page 188).  
Refer to Section 7.6.4: Register description on page 48 for a description of the locked bit in  
the SICSR register.  
7.3  
Register description  
Main clock control/status register (MCCSR)  
MCCSR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
Reserved Reserved Reserved Reserved Reserved Reserved  
MCO  
SMS  
-
-
-
-
-
-
R/W  
R/W  
Table 8.  
Bit  
MCCSR register description  
Bit name  
Function  
7:2  
-
Reserved, must be kept cleared  
Main clock out enable  
This bit is read/write by software and cleared by hardware after a  
reset. This bit enables the MCO output clock.  
0: MCO clock disabled, I/O port free for general purpose I/O  
1: MCO clock enabled  
1
MCO  
Slow mode select  
This bit is read/write by software and cleared by hardware after a  
reset. This bit selects the input clock fOSC or fOSC/32.  
0
SMS  
0: Normal mode (fCPU = fOSC  
)
1: Slow mode (fCPU = fOSC/32)  
RC control register (RCCR)  
RCCR  
Reset value: 1111 1111 (FFh)  
7
6
5
4
3
2
1
0
CR[9:2]  
R/W  
Doc ID 11928 Rev 8  
39/234  
 
Supply, reset and clock management  
ST7L34 ST7L35 ST7L38 ST7L39  
Table 9.  
Bit  
RCCR register description  
Bit name  
Function  
RC oscillator frequency adjustment bits  
These bits must be written immediately after reset to adjust the RC  
oscillator frequency and to obtain an accuracy of 1%. The  
application can store the correct value for each voltage range in  
EEPROM and write it to this register at startup.  
00h = Maximum available frequency  
FFh = Lowest available frequency  
7:0  
CR[9:2]  
These bits are used with the CR[1:0] bits in the SICSR register.  
Refer to Section 7.6.4: Register description on page 48.  
Note: To tune the oscillator, write a series of different values in the  
register until the correct frequency is reached. The fastest  
method is to use a dichotomy starting with 80h.  
Figure 13. Clock management block diagram  
CR9 CR8 CR7 CR6 CR5 CR4 CR3 CR2 RCCR  
CR1 CR0  
SICSR  
CLKIN/2 (ext clock)  
RC OSC  
Tunable  
1% RC oscillator  
1 MHz  
f
PLL clock 8 MHz  
OSC  
PLL 1 MHz -> 8 MHz  
OSC option bit  
OSCRANGE[2:0]  
option bits  
CLKIN  
/2  
CLKIN  
OSC,PLLOFF,  
OSCRANGE[2:0]  
option bits  
fCLKIN  
divider  
CLKIN  
CLKIN/  
OSC1  
OSC2  
OSC  
1-16 MHZ  
or 32 kHz  
Crystal OSC /2  
/2  
divider  
f
LTIMER  
8-bit lite timer 2 counter  
(1ms timebase @ 8 MHz fOSC)  
f
f
/32  
OSC  
OSC  
/32 divider  
1
f
CPU  
f
To CPU and  
peripherals  
OSC  
0
MCO SMS MCCSR  
f
CPU  
MCO  
40/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Supply, reset and clock management  
7.4  
Multi-oscillator (MO)  
The main clock of the ST7 can be generated by four different source types coming from the  
multi-oscillator block (1 to 16 MHz or 32 kHz):  
An external source  
5 crystal or ceramic resonator oscillators  
An internal high frequency RC oscillator  
Each oscillator is optimized for a given frequency range in terms of consumption and is  
selectable through the option byte. The associated hardware configurations are shown in  
Table 14: ST7 clock sources on page 42. Refer to Section 13: Electrical characteristics for  
more details.  
7.4.1  
External clock source  
In external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle must  
drive the OSC1 pin while the OSC2 pin is tied to ground.  
Note:  
When the multi-oscillator is not used, PB4 is selected by default as the external clock.  
7.4.2  
Crystal/ceramic oscillators  
This family of oscillators has the advantage of producing a very accurate rate on the main  
clock of the ST7. The selection within a list of four oscillators with different frequency ranges  
has to be done by option byte in order to reduce consumption (refer to Section 15.2 on page  
215 for more details on the frequency ranges). In this mode of the multi-oscillator, the  
resonator and the load capacitors must be placed as close as possible to the oscillator pins  
to minimize output distortion and startup stabilization time. The loading capacitance values  
must be adjusted according to the selected oscillator.  
These oscillators are not stopped during the reset phase to avoid losing time in the oscillator  
startup phase.  
7.4.3  
Internal RC oscillator  
In this mode, the tunable 1%RC oscillator is the main clock source. The two oscillator pins  
must be tied to ground.  
The calibration is done through the RCCR[7:0] and SICSR[6:5] registers.  
Doc ID 11928 Rev 8  
41/234  
 
Supply, reset and clock management  
Figure 14. ST7 clock sources  
ST7L34 ST7L35 ST7L38 ST7L39  
Hardware configuration  
ST7  
OSC1  
OSC2  
External source  
ST7  
OSC1  
OSC2  
CL1  
CL2  
Load  
capacitors  
ST7  
OSC1  
OSC2  
7.5  
Reset sequence manager (RSM)  
7.5.1  
Introduction  
The reset sequence manager includes three reset sources as shown in Figure 16: Reset  
block diagram on page 44:  
External RESET source pulse  
Internal LVD reset (low voltage detection)  
Internal watchdog reset  
Note:  
A reset can also be triggered following the detection of an illegal opcode or prebyte code.  
Refer to Section 12.2.2: Illegal opcode reset on page 175 for further details.  
These sources act on the RESET pin which is always kept low during the delay phase.  
The reset service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory  
map.  
42/234  
Doc ID 11928 Rev 8  
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
Supply, reset and clock management  
The basic reset sequence consists of three phases as shown in Figure 15:  
Active phase depending on the reset source  
256 or 4096 CPU clock cycle delay (see Table 10)  
Reset vector fetch  
Caution:  
When the ST7 is unprogrammed or fully erased, the Flash is blank and the reset vector is  
not programmed. For this reason, it is recommended to keep the RESET pin in low state  
until programming mode is entered, in order to avoid unwanted behavior.  
The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilize and ensures that  
recovery has taken place from the reset state. The shorter or longer clock cycle delay is  
automatically selected depending on the clock source chosen by option byte: The reset  
vector fetch phase duration is two clock cycles.  
Table 10. Clock cycle delays  
Clock source  
CPU clock cycle delay  
Internal RC oscillator  
256  
External clock (connected to CLKIN pin)  
External crystal/ceramic oscillator  
(connected to OSC1/OSC2 pins)  
4096  
If the PLL is enabled by option byte, it outputs the clock after an additional delay of t  
STARTUP  
(see Figure 12: PLL output frequency timing diagram on page 38).  
Figure 15. Reset sequence phases  
Reset  
Internal reset  
Fetch vector  
Active phase  
256 or 4096 clock cycles  
7.5.2  
Asynchronous external RESET pin  
The RESET pin is both an input and an open-drain output with integrated R weak pull-up  
ON  
resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It  
can be pulled low by external circuitry to reset the device. See Section 13: Electrical  
characteristics for more details.  
A reset signal originating from an external source must have a duration of at least t  
h(RSTL)in  
in order to be recognized (see Figure 17: Reset sequences on page 45). This detection is  
asynchronous and therefore the MCU can enter the reset state even in halt mode.  
Doc ID 11928 Rev 8  
43/234  
 
 
Supply, reset and clock management  
Figure 16. Reset block diagram  
ST7L34 ST7L35 ST7L38 ST7L39  
V
DD  
R
ON  
Internal reset  
Filter  
RESET  
Watchdog reset  
Illegal opcode reset  
(1)  
Pulse  
generator  
LVD reset  
1. See Section 12.2.2: Illegal opcode reset on page 175 for more details on illegal opcode reset conditions  
The RESET pin is an asynchronous signal which plays a major role in EMS performance. In  
a noisy environment, it is recommended to follow the guidelines mentioned in Section 13:  
Electrical characteristics.  
7.5.3  
7.5.4  
External power-on reset  
If the LVD is disabled by the option byte, to start up the microcontroller correctly, the user  
must use an external reset circuit to ensure that the reset signal is held low until V is over  
the minimum level specified for the selected f  
DD  
frequency.  
OSC  
A proper reset signal for a slow rising V supply can generally be provided by an external  
RC network connected to the RESET pin.  
DD  
Internal low voltage detector (LVD) reset  
Two different reset sequences caused by the internal LVD circuitry can be distinguished:  
Power-on reset  
Voltage drop reset  
The device RESET pin acts as an output that is pulled low when V < V (rising edge) or  
DD  
IT+  
V
< V (falling edge) as shown in Figure 17: Reset sequences on page 45.  
DD  
IT-  
The LVD filter spikes on V larger than t  
to avoid parasitic resets.  
DD  
g(VDD)  
7.5.5  
Internal watchdog reset  
The reset sequence generated by an internal Watchdog counter overflow is shown in  
Figure 17: Reset sequences on page 45.  
Starting from the Watchdog counter underflow, the device RESET pin acts as an output that  
is pulled low during at least t  
.
w(RSTL)out  
44/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 17. Reset sequences  
Supply, reset and clock management  
V
DD  
V
V
IT+(LVD)  
IT-(LVD)  
LVD  
reset  
External  
reset  
Watchdog  
reset  
Run  
Run  
Run  
Run  
Active  
phase  
Active  
phase  
Active phase  
t
h(RSTL)in  
t
w(RSTL)out  
External  
RESET  
source  
RESET pin  
Watchdog  
reset  
Watchdog underflow  
Internal reset (256 or 4096 t  
Vector fetch  
)
CPU  
7.6  
System integrity management (SI)  
The system integrity management block contains the low voltage detector (LVD) and  
auxiliary voltage detector (AVD) functions. It is managed by the SICSR register.  
Note:  
A reset can also be triggered following the detection of an illegal opcode or prebyte code.  
Refer to Section 12.2.2: Illegal opcode reset on page 175 for further details.  
7.6.1  
Low voltage detector (LVD)  
The low voltage detector (LVD) function generates a static reset when the V supply  
DD  
voltage is below a V  
reference value. This means that it secures the power-up as well  
IT-(LVD)  
as the power-down, keeping the ST7 in reset.  
The V reference value for a voltage drop is lower than the V  
reference value  
IT+(LVD)  
IT-(LVD)  
for power-on to avoid a parasitic reset when the MCU starts running and sinks current on the  
supply (hysteresis).  
The LVD reset circuitry generates a reset when V is below:  
DD  
V
V
when V is rising  
DD  
IT+(LVD)  
IT-(LVD)  
when V is falling  
DD  
The LVD function is illustrated in Figure 18: Low voltage detector vs. reset on page 46.  
The LVD can be enabled by option byte with highest voltage threshold.  
Doc ID 11928 Rev 8  
45/234  
 
 
Supply, reset and clock management  
ST7L34 ST7L35 ST7L38 ST7L39  
Provided the minimum V value (guaranteed for the oscillator frequency) is above V  
,
DD  
IT-(LVD)  
the MCU can only be in two modes:  
Under full software control  
In static safe reset  
In these conditions, secure operation is always ensured for the application without the need  
for external reset hardware.  
During a low voltage detector reset, the RESET pin is held low, thus permitting the MCU to  
reset other devices.  
Note:  
1
2
3
The LVD allows the device to be used without any external reset circuitry.  
The LVD is an optional function which can be selected by the option byte.  
Use of LVD with capacitive power supply: With this type of power supply, if power cuts occur  
in the application, it is recommended to pull V down to 0 V to ensure optimum restart  
DD  
conditions. Refer to the circuit example in Figure 98: RESET pin protection when LVD Is  
enabled on page 206 and Note on the same page.  
4
For the application to function correctly, it is recommended to make sure that the V supply  
DD  
voltage rises monotonously when the device is exiting from reset, to ensure the application  
functions properly.  
Figure 18. Low voltage detector vs. reset  
V
DD  
V
hys  
V
IT+(LVD)  
V
IT-(LVD)  
RESET  
46/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Supply, reset and clock management  
Figure 19. Reset and supply management block diagram  
Watchdog timer  
(WDG)  
Status flag  
System integrity management  
AVD interrupt request  
Reset sequence  
manager (RSM)  
RESET  
SICSR  
WD  
LOC LV AV AV  
GRF KED DRF DF DIE  
Low voltage  
detector  
(LVD)  
V
SS  
V
DD  
Auxiliary voltage  
detector  
(AVD)  
7.6.2  
7.6.3  
Low power modes  
Table 11. Effect of low power modes on system integrity  
Mode  
Description  
Wait  
No effect on SI. AVD interrupts cause the device to exit from wait mode.  
The SICSR register is frozen. The AVD becomes inactive and the AVD interrupt  
cannot be used to exit from halt mode.  
Halt  
Interrupts  
The AVD interrupt event generates an interrupt if the corresponding enable control bit  
(AVDIE) is set and the interrupt mask in the CC register is reset (RIM instruction).  
Table 12. Supply, reset and clock management interrupt control/wake-up capability  
Interrupt event  
Event flag  
Enable control bit  
Exit from wait  
Exit from halt  
AVD event  
AVDF  
AVDIE  
Yes  
No  
Auxiliary voltage detector (AVD)  
The voltage detector function (AVD) is based on an analog comparison between a V  
IT-(AVD)  
). The V  
AVD IT-(AVD)  
and V  
reference value and the V main supply voltage (V  
IT+(AVD)  
DD  
reference value for falling voltage is lower than the V  
reference value for rising  
IT+(AVD)  
voltage in order to avoid parasitic detection (hysteresis).  
The output of the AVD comparator is directly readable by the application software through a  
real time status bit (AVDF) in the SICSR register. This bit is read only.  
Caution:  
The AVD functions only if the LVD is enabled through the option byte.  
Doc ID 11928 Rev 8  
47/234  
 
Supply, reset and clock management  
ST7L34 ST7L35 ST7L38 ST7L39  
Monitoring the VDD main supply  
The AVD voltage threshold value is relative to the selected LVD threshold configured by  
option byte (see Section 15.2 on page 215).  
If the AVD interrupt is enabled, an interrupt is generated when the voltage crosses the  
V
or V  
threshold (AVDF bit is set).  
IT+(LVD)  
IT-(AVD)  
In the case of a drop in voltage, the AVD interrupt acts as an early warning, allowing  
software to shut down safely before the LVD resets the microcontroller. See Figure 20.  
Figure 20. Using the AVD to monitor V  
DD  
V
DD  
Early warning interrupt  
(power has dropped, MCU  
not yet in reset)  
V
hyst  
V
IT+(AVD)  
V
IT-(AVD)  
V
V
IT+(LVD)  
IT-(LVD)  
AVDF bit  
0
1
RESET  
1
0
AVD interrupt  
request if  
AVDIE bit = 1  
Interrupt cleared by reset  
Interrupt cleared by hardware  
LVD RESET  
7.6.4  
Register description  
System integrity (SI) control/status register (SICSR)  
SICSR  
Reset value: 0110 0xx0 (6xh)  
7
6
5
4
3
2
1
0
Reserved  
CR[1:0]  
R/W  
WDGRF  
LOCKED  
LVDRF  
AVDF  
AVDIE  
-
R/W  
R/W  
R/W  
R/W  
R/W  
Table 13. SICSR register description  
Bit  
Bit name  
Function  
Reserved, must be kept cleared  
RC oscillator frequency adjustment bits  
7
-
These bits, as well as CR[9:2] bits in the RCCR register must be  
written immediately after reset to adjust the RC oscillator frequency  
and to obtain an accuracy of 1%. Refer to Section 7.3: Register  
description on page 39  
6:5  
CR[1:0]  
48/234  
Doc ID 11928 Rev 8  
 
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
Supply, reset and clock management  
Function  
Table 13. SICSR register description (continued)  
Bit  
Bit name  
Watchdog reset flag  
This bit indicates that the last reset was generated by the watchdog  
peripheral. It is set by hardware (watchdog reset) and cleared by  
software (by reading SICSR register) or an LVD reset (to ensure a  
stable cleared state of the WDGRF flag when CPU starts).  
Combined with the LVDRF flag information, the flag description is  
given as follows:  
4
WDGRF  
00 (LVDRF, WDGRF): Reset sources = External RESET pin  
01 (LVDRF, WDGRF): Reset sources = Watchdog  
1X (LVDRF, WDGRF): Reset sources = LVD  
PLL locked flag  
This bit is set and cleared by hardware. It is set automatically when  
the PLL reaches its operating frequency.  
0: PLL not locked  
3
2
LOCKED  
1: PLL locked  
LVD reset flag  
This bit indicates that the last reset was generated by the LVD block.  
It is set by hardware (LVD reset) and cleared by software (by  
reading). When the LVD is disabled by option byte, the LVDRF bit  
value is undefined.  
LVDRF  
Note: The LVDRF flag is not cleared when another reset type occurs  
(external or watchdog), the LVDRF flag remains set to keep  
trace of the original failure. In this case, a watchdog reset can  
be detected by software while an external reset can not.  
Voltage detector flag  
This read-only bit is set and cleared by hardware. If the AVDIE bit is  
set, an interrupt request is generated when the AVDF bit is set. Refer  
to Figure 20 and to Monitoring the VDD main supply on page 48 for  
additional details.  
0: VDD over AVD threshold  
1: VDD under AVD threshold  
1
0
AVDF  
Voltage detector interrupt enable  
This bit is set and cleared by software. It enables an interrupt to be  
generated when the AVDF flag is set. The pending interrupt  
information is automatically cleared when software enters the AVD  
interrupt routine.  
AVDIE  
0: AVD interrupt disabled  
1: AVD interrupt enabled  
Doc ID 11928 Rev 8  
49/234  
Interrupts  
ST7L34 ST7L35 ST7L38 ST7L39  
8
Interrupts  
The ST7 core may be interrupted by one of two different methods: Maskable hardware  
interrupts as listed in Table 14: Interrupt mapping on page 53 and a non-maskable software  
interrupt (TRAP). The interrupt processing flowchart is shown in Figure 21: Interrupt  
processing flowchart on page 52.  
The maskable interrupts must be enabled by clearing the I bit in order to be serviced.  
However, disabled interrupts may be latched and processed when they are enabled (see  
external interrupts subsection).  
Note:  
After reset, all interrupts are disabled.  
When an interrupt has to be serviced:  
Normal processing is suspended at the end of the current instruction execution.  
The PC, X, A and CC registers are saved onto the stack.  
The I bit of the CC register is set to prevent additional interrupts.  
The PC is then loaded with the interrupt vector of the interrupt to service and the first  
instruction of the interrupt service routine is fetched (refer to Table 14: Interrupt  
mapping for vector addresses).  
The interrupt service routine should finish with the IRET instruction which causes the  
contents of the saved registers to be recovered from the stack.  
Note:  
As a consequence of the IRET instruction, the I bit is cleared and the main program  
resumes.  
Priority management  
By default, a servicing interrupt cannot be interrupted because the I bit is set by hardware  
entering in interrupt routine.  
In the case when several interrupts are simultaneously pending, an hardware priority  
defines which one will be serviced first (see Table 14: Interrupt mapping).  
Interrupts and low power mode  
All interrupts allow the processor to leave the wait low power mode. Only external and  
specifically mentioned interrupts allow the processor to leave the halt low power mode (refer  
to the ‘Exit from halt’ column inTable 14: Interrupt mapping).  
8.1  
Non maskable software interrupt  
This interrupt is entered when the TRAP instruction is executed regardless of the state of  
the I bit. It is serviced according to the flowchart in Figure 21: Interrupt processing flowchart  
on page 52.  
50/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Interrupts  
8.2  
External interrupts  
External interrupt vectors can be loaded into the PC register if the corresponding external  
interrupt occurred and if the I bit is cleared. These interrupts allow the processor to leave the  
halt low power mode.  
The external interrupt polarity is selected through the miscellaneous register or interrupt  
register (if available).  
An external interrupt triggered on edge will be latched and the interrupt request  
automatically cleared upon entering the interrupt service routine.  
Caution:  
The type of sensitivity defined in the miscellaneous or interrupt register (if available) applies  
to the ei source. In case of a NANDed source (as described in Section 10: I/O ports), a low  
level on an I/O pin, configured as input with interrupt, masks the interrupt request even in  
case of rising-edge sensitivity.  
8.3  
Peripheral interrupts  
Different peripheral interrupt flags in the status register are able to cause an interrupt when  
they are active if both the following conditions are met:  
The I bit of the CC register is cleared  
The corresponding enable bit is set in the control register  
If either of these two conditions is false, the interrupt is latched and thus remains pending.  
Clearing an interrupt request is done by:  
Writing ‘0’ to the corresponding bit in the status register or  
Access to the status register while the flag is set followed by a read or write of an  
associated register.  
Note:  
The clearing sequence resets the internal latch. A pending interrupt (that is, waiting for  
being enabled) will therefore be lost if the clear sequence is executed.  
Doc ID 11928 Rev 8  
51/234  
 
Interrupts  
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 21. Interrupt processing flowchart  
From reset  
N
I bit set?  
Y
N
Interrupt  
pending?  
Y
Fetch next instruction  
N
IRET?  
Y
Stack PC, X, A, CC  
set I bit  
load pc from interrupt vector  
Execute instruction  
Restore PC, X, A, CC from stack  
this clears I bit by default  
52/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Interrupts  
Table 14. Interrupt mapping  
Source  
Register  
label  
Priority Exit from halt  
Address  
vector  
No.  
Description  
block  
order  
or AWUFH  
Reset  
TRAP  
AWU  
ei0  
Reset  
Highest  
priority  
Yes  
No  
Yes(1)  
FFFEh-FFFFh  
FFFCh-FFFDh  
FFFAh-FFFBh  
FFF8h-FFF9h  
FFF6h-FFF7h  
FFF4h-FFF5h  
FFF2h-FFF3h  
FFF0h-FFF1h  
-
Software interrupt  
Auto wakeup interrupt  
External interrupt 0  
External interrupt 1  
External interrupt 2  
External interrupt 3  
0
1
2
3
4
5
AWUCSR  
ei1  
-
Yes  
ei2  
ei3  
Lite timer Lite timer RTC2 interrupt  
LTCSR2  
No  
No  
No  
No  
SCICR1/  
SCICR2  
6
7
8
LINSCI  
SI  
LINSCI interrupt  
AVD interrupt  
FFEEh-FFEFh  
FFECh-FFEDh  
FFEAh-FFEBh  
SICSR  
At timer output compare Interrupt  
or input capture interrupt  
PWMxCSR  
or ATCSR  
At timer  
9
At timer overflow interrupt  
Lite timer input capture interrupt  
Lite timer RTC1 interrupt  
SPI peripheral interrupts  
ATCSR  
LTCSR  
LTCSR  
SPICSR  
Yes(2)  
No  
Yes(2)  
FFE8h-FFE9h  
FFE6h-FFE7h  
FFE4h-FFE5h  
FFE2h-FFE3h  
10  
11  
12  
Lite timer  
SPI  
Yes  
lowest  
priority  
13  
At timer  
At timer overflow interrupt 2  
ATCSR2  
No  
FFE0h-FFE1h  
1. This interrupt exits the MCU from ‘auto wakeup from halt’ mode only  
2. These interrupts exit the MCU from ‘active halt’ mode only  
Doc ID 11928 Rev 8  
53/234  
 
Interrupts  
ST7L34 ST7L35 ST7L38 ST7L39  
External interrupt control register (EICR)  
EICR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
IS3[1:0]  
R/W  
IS2[1:0]  
R/W  
IS1[1:0]  
R/W  
IS0[1:0]  
R/W  
Table 15. EICR register description  
Bit  
Bit name  
Function  
ei3 sensitivity  
7:6  
IS3[1:0]  
These bits define the interrupt sensitivity for ei3 (port B0) according  
to Table 16  
ei2 sensitivity  
5:4  
3:2  
1:0  
IS2[1:0]  
IS1[1:0]  
IS0[1:0]  
These bits define the interrupt sensitivity for ei2 (port B3) according  
to Table 16  
ei1 sensitivity  
These bits define the interrupt sensitivity for ei1 (port A7) according  
to Table 16  
ei0 sensitivity  
These bits define the interrupt sensitivity for ei0 (port A0) according  
to Table 16  
Note:  
1
These 8 bits can be written only when the I bit in the CC register is set.  
Table 16. Interrupt sensitivity bits  
ISx1  
ISx0  
External interrupt sensitivity  
Falling edge and low level  
0
0
1
1
0
1
0
1
Rising edge only  
Falling edge only  
Rising and falling edge  
54/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Interrupts  
External interrupt selection register (EISR)  
Reset value: 0000 0000 (00h)  
EISR  
7
6
5
4
3
2
1
0
ei3[1:0]  
R/W  
ei2[1:0]  
R/W  
ei1[1:0]  
R/W  
ei0[1:0]  
R/W  
Table 17. EISR register description  
Bit  
Bit name  
Function  
ei3 pin selection  
These bits are written by software. They select the port B I/O pin  
used for the ei3 external interrupt as follows:  
00: I/O pin = No interrupt (reset state)  
01: I/O pin = PB0  
7:6  
ei3[1:0]  
10: I/O pin = PB1  
11: I/O pin = PB2  
ei2 pin selection  
These bits are written by software. They select the port B I/O pin  
used for the ei2 external interrupt as follows:  
00: I/O pin = No interrupt (reset state)  
01: I/O pin = PB3  
10: I/O pin = PB5  
11: I/O pin = PB6  
5:4  
3:2  
1:0  
ei2[1:0]  
ei1[1:0]  
ei0[1:0]  
ei1 pin selection  
These bits are written by software. They select the port A I/O pin  
used for the ei1 external interrupt as follows:  
00: I/O pin = No interrupt (reset state)  
01: I/O pin = PA4  
10: I/O pin = PA5  
11: I/O pin = PA6  
ei0 pin selection  
These bits are written by software. They select the port A I/O pin  
used for the ei0 external interrupt as follows:  
00: I/O pin = No interrupt (reset state)PA0 (reset state)  
01: I/O pin = PA1  
10: I/O pin = PA2  
11: I/O pin = PA3  
Doc ID 11928 Rev 8  
55/234  
Power saving modes  
ST7L34 ST7L35 ST7L38 ST7L39  
9
Power saving modes  
9.1  
Introduction  
To give a large measure of flexibility to the application in terms of power consumption, five  
main power saving modes are implemented in the ST7 (see Figure 22):  
Slow  
Wait (and Slow-Wait)  
Active halt  
Auto wakeup from halt (AWUFH)  
Halt  
After a reset, the normal operating mode is selected by default (run mode). This mode  
drives the device (CPU and embedded peripherals) by means of a master clock which is  
based on the main oscillator frequency divided or multiplied by 2 (f  
).  
OSC2  
From run mode, the different power saving modes can be selected by setting the relevant  
register bits or by calling the specific ST7 software instruction whose action depends on the  
oscillator status.  
Figure 22. Power saving mode transitions  
High  
Run  
Slow  
Wait  
Slow wait  
Active halt  
Auto wakeup from halt  
Halt  
Low  
Power consumption  
56/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Power saving modes  
9.2  
Slow mode  
This mode has two targets:  
To reduce power consumption by decreasing the internal clock in the device  
To adapt the internal clock frequency (f ) to the available supply voltage.  
CPU  
Slow mode is controlled by the SMS bit in the MCCSR register which enables or disables  
slow mode.  
In this mode, the oscillator frequency is divided by 32. The CPU and peripherals are clocked  
at this lower frequency.  
Note:  
Slow-wait mode is activated when entering wait mode while the device is already in slow  
mode.  
Figure 23. Slow mode clock transition  
f
/32  
f
OSC  
OSC  
f
CPU  
f
OSC  
SMS  
Normal run mode request  
Doc ID 11928 Rev 8  
57/234  
Power saving modes  
ST7L34 ST7L35 ST7L38 ST7L39  
9.3  
Wait mode  
Wait mode places the MCU in a low power consumption mode by stopping the CPU.  
This power saving mode is selected by calling the ‘WFI’ instruction.  
All peripherals remain active. During wait mode, the I bit of the CC register is cleared to  
enable all interrupts. All other registers and memory remain unchanged. The MCU remains  
in wait mode until a reset or an interrupt occurs, causing it to wake up. Then the program  
counter branches to the starting address of the interrupt or reset service routine.  
Refer to Figure 24: Wait mode flowchart.  
Figure 24. Wait mode flowchart  
Oscillator  
Peripherals  
CPU  
On  
On  
Off  
0
WFI instruction  
I bit  
N
Reset  
Y
N
Interrupt  
Y
Oscillator  
Peripherals  
CPU  
On  
Off  
On  
0
I BIT  
256 or 4096 CPU clock  
cycle delay  
Oscillator  
On  
On  
On  
Peripherals  
CPU  
(1)  
I bit  
X
Fetch reset vector or  
service interrupt  
1. Before servicing an interrupt, the CC register is pushed on the stack. The I bit of the CC register is set  
during the interrupt routine and cleared when the CC register is popped.  
58/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Power saving modes  
9.4  
Halt mode  
The halt mode is the lowest power consumption mode of the MCU. It is entered by executing  
the ‘HALT’ instruction when active halt is disabled (see Section 9.5: Active halt mode on  
page 61 for more details) and when the AWUEN bit in the AWUCSR register is cleared.  
The MCU can exit halt mode on reception of either a specific interrupt (see Table 14:  
Interrupt mapping on page 53) or a reset. When exiting halt mode by means of a reset or an  
interrupt, the oscillator is immediately turned on and the 256 or 4096 CPU cycle delay is  
used to stabilize the oscillator. After the startup delay, the CPU resumes operation by  
servicing the interrupt or by fetching the reset vector which woke it up (see Figure 26: Halt  
mode flowchart on page 60).  
When entering halt mode, the I bit in the CC register is forced to 0 to enable interrupts.  
Therefore, if an interrupt is pending, the MCU wakes up immediately.  
In halt mode, the main oscillator is turned off, stopping all internal processing, including the  
operation of the on-chip peripherals. All peripherals are not clocked except those which  
receive their clock supply from another clock generator (such as an external or auxiliary  
oscillator).  
The compatibility of watchdog operation with halt mode is configured by the ‘WDGHALT’  
option bit of the option byte. The HALT instruction, when executed while the watchdog  
system is enabled, can generate a watchdog reset (see Section 15.2: Option bytes on  
page 215 for more details).  
Figure 25. Halt timing overview  
256 or 4096 CPU  
Run  
Halt  
Run  
cycle delay  
Reset or interrupt  
HALT  
instruction  
Fetch  
vector  
[Active halt disabled]  
Doc ID 11928 Rev 8  
59/234  
 
Power saving modes  
Figure 26. Halt mode flowchart  
ST7L34 ST7L35 ST7L38 ST7L39  
HALT instruction  
(active Halt disabled)  
(AWUCSR.AWUEN=0)  
Watchdog  
Disable  
Enable  
0
(1)  
WDGHALT  
1
Oscillator  
Peripherals  
CPU  
Off  
Off  
Off  
0
WATCHDOG  
RESET  
(2)  
I bit  
N
Reset  
Y
N
(3)  
Interrupt  
Oscillator  
Peripherals  
CPU  
On  
Off  
On  
Y
(4)  
I bit  
X
256 or 4096 CPU clock  
(5)  
cycle delays  
Oscillator  
On  
Peripherals  
CPU  
On  
On  
(4)  
I bit  
X
Fetch reset vector  
or service interrupt  
1. WDGHALT is an option bit. See option byte section for more details.  
2. Peripheral clocked with an external clock source can still be active.  
3. Only some specific interrupts can exit the MCU from HALT mode (such as external interrupt). Refer to  
Table 14: Interrupt mapping on page 53 for more details.  
4. Before servicing an interrupt, the CC register is pushed on the stack. The I bit of the CC register is set  
during the interrupt routine and cleared when the CC register is popped.  
5. If the PLL is enabled by option byte, it outputs the clock after a delay of tSTARTUP (see Figure 12 on  
page 38).  
60/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Power saving modes  
9.4.1  
Halt mode recommendations  
Make sure that an external event is available to wake up the microcontroller from halt  
mode.  
When using an external interrupt to wake up the microcontroller, re-initialize the  
corresponding I/O as ‘input pull-up with interrupt’ or ‘floating interrupt’ before executing  
the HALT instruction. The main reason for this is that the I/O may be incorrectly  
configured due to external interference or by an unforeseen logical condition.  
For the same reason, re-initialize the level sensitiveness of each external interrupt as a  
precautionary measure.  
The opcode for the HALT instruction is 0x8E. To avoid an unexpected HALT instruction  
due to a program counter failure, it is advised to clear all occurrences of the data value  
0x8E from memory. For example, avoid defining a constant in program memory with  
the value 0x8E.  
As the HALT instruction clears the interrupt mask in the CC register to allow interrupts,  
the user may choose to clear all pending interrupt bits before executing the HALT  
instruction. This avoids entering other peripheral interrupt routines after executing the  
external interrupt routine corresponding to the wakeup event (reset or external  
interrupt).  
9.5  
Active halt mode  
Active halt mode is the lowest power consumption mode of the MCU with a real-time clock  
(RTC) available. It is entered by executing the ‘HALT’ instruction. The decision to enter either  
in active halt or halt mode is given by the LTCSR/ATCSR register status as shown in the  
following table:  
Table 18. LTCSR/ATCSR register status  
LTCSR1 TB1IE  
bit  
ATCSR OVFIE  
bit  
ATCSRCK1  
bit  
ATCSRCK0  
bit  
Meaning  
0
0
1
x
x
0
x
1
x
x
x
0
0
x
x
1
Active halt mode disabled  
Active halt mode enabled  
The MCU exits in active halt mode on reception of a specific interrupt (see Table 14:  
Interrupt mapping on page 53) or a reset.  
When exiting active halt mode by means of a reset, a 256 CPU cycle delay occurs.  
After the startup delay, the CPU resumes operation by fetching the reset vector which  
woke it up (see Figure 28: Active halt mode flowchart on page 62).  
When exiting active halt mode by means of an interrupt, the CPU immediately resumes  
operation by servicing the interrupt vector which woke it up (see Figure 28: Active halt  
mode flowchart on page 62).  
When entering active halt mode, the I bit in the CC register is cleared to enable interrupts.  
Therefore, if an interrupt is pending, the MCU wakes up immediately (see  
Note 2).  
Figure 28,  
Doc ID 11928 Rev 8  
61/234  
Power saving modes  
ST7L34 ST7L35 ST7L38 ST7L39  
In active halt mode, only the main oscillator and the selected timer counter (LT/AT) are  
running to keep a wakeup time base. All other peripherals are not clocked except those  
which receive their clock supply from another clock generator (such as external or auxiliary  
oscillator).  
Note:  
As soon as active halt is enabled, executing a HALT instruction while the watchdog is active  
does not generate a reset. This means that the device cannot exceed a defined delay in this  
power saving mode.  
Figure 27. Active halt timing overview  
Active  
halt  
256 or 4096 CPU  
cycle delay  
(1)  
Run  
Run  
Reset or interrupt  
HALT  
instruction  
Fetch  
vector  
[Active halt enabled]  
1. This delay occurs only if the MCU exits active halt mode by means of a reset.  
Figure 28. Active halt mode flowchart  
Oscillator  
Peripherals  
CPU  
On  
Off  
Off  
0
HALT instruction  
(active halt enabled)  
(AWUCSR.AWUEN = 0)  
(1)  
I bit  
N
Reset  
Y
N
(2)  
Interrupt  
Oscillator  
Peripherals  
CPU  
On  
Off  
On  
Y
(1)  
(3)  
I bit  
X
256 or 4096 CPU clock  
cycle delay  
Oscillator  
Peripherals  
CPU  
On  
On  
On  
(3)  
I bit  
X
Fetch reset vector  
or service interrupt  
1. Peripherals clocked with an external clock source can still be active.  
2. Only the RTC1 interrupt and some specific interrupts can exit the MCU from active halt mode. Refer to  
Table 14: Interrupt mapping for more details.  
3. Before servicing an interrupt, the CC register is pushed on the stack. The I bit of the CC register is set  
during the interrupt routine and cleared when the CC register is popped.  
62/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Power saving modes  
9.6  
Auto wakeup from halt mode  
Auto wakeup from halt (AWUFH) mode is similar to halt mode with the addition of a specific  
internal RC oscillator for wakeup (auto wakeup from halt oscillator). Compared to active halt  
mode, AWUFH has lower power consumption (the main clock is not kept running but there is  
no accurate real-time clock available).  
It is entered by executing the HALT instruction when the AWUEN bit in the AWUCSR  
register has been set.  
Figure 29. AWUFH mode block diagram  
AWUCK opt bit  
1
AWU RC oscillator  
32 kHz oscillator  
To autoreload timer input capture  
0
fAWU_RC  
AWUFH interrupt  
(ei0 source)  
AWUFH  
prescaler/1 .. 255  
/64  
divider  
As soon as halt mode is entered and if the AWUEN bit has been set in the AWUCSR  
register, the AWU RC oscillator provides a clock signal (f ). Its frequency is divided by  
AWU_RC  
a fixed divider and a programmable prescaler controlled by the AWUPR register. The output  
of this prescaler provides the delay time. When the delay has elapsed, the AWUF flag is set  
by hardware and an interrupt wakes up the MCU from halt mode. At the same time, the main  
oscillator is immediately turned on and a 256-cycle delay is used to stabilize it. After this  
startup delay, the CPU resumes operation by servicing the AWUFH interrupt. The AWU flag  
and its associated interrupt are cleared by software reading the AWUCSR register.  
To compensate for any frequency dispersion of the AWU RC oscillator, it can be calibrated  
by measuring the clock frequency f  
and then calculating the right prescaler value.  
AWU_RC  
Measurement mode is enabled by setting the AWUM bit in the AWUCSR register in run  
mode. This connects f to the input capture of the 12-bit autoreload timer, allowing  
AWU_RC  
the f  
to be measured using the main oscillator clock as a reference timebase.  
AWU_RC  
Doc ID 11928 Rev 8  
63/234  
Power saving modes  
ST7L34 ST7L35 ST7L38 ST7L39  
Similarities with halt mode  
The following AWUFH mode behavior is the same as normal halt mode:  
The MCU can exit AWUFH mode by means of any interrupt with exit from halt capability or a reset  
(see Section 9.4: Halt mode on page 59).  
When entering AWUFH mode, the I bit in the CC register is forced to 0 to enable interrupts.  
Therefore, if an interrupt is pending, the MCU wakes up immediately.  
In AWUFH mode, the main oscillator is turned off, stopping all internal processing, including the  
operation of the on-chip peripherals. None of the peripherals are clocked except those which receive  
their clock supply from another clock generator (such as an external or auxiliary oscillator like the  
AWU oscillator).  
The compatibility of watchdog operation with AWUFH mode is configured by the WDGHALT option  
bit in the option byte. Depending on this setting, the HALT instruction, when executed while the  
Watchdog system is enabled, can generate a watchdog reset.  
Figure 30. AWUF halt timing diagram  
t
AWU  
Run mode  
Halt mode  
256 or 4096 tCPU  
Run mode  
f
f
CPU  
AWU_RC  
Clear  
by software  
AWUFH interrupt  
64/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 31. AWUFH mode flowchart  
Power saving modes  
Halt instruction  
(active halt disabled)  
(AWUCSR.AWUEN = 1)  
Enable  
Watchdog  
Disable  
0
(1)  
WDGHALT  
1
AWU RC OSC  
Main OSC  
On  
Off  
Off  
Off  
10  
Watchdog  
reset  
(2)  
Peripherals  
CPU  
I[1:0] bits  
N
Reset  
Y
N
3)  
Interrupt(  
AWU RC OSC  
Main OSC  
Off  
On  
Y
Peripherals  
Off  
On  
CPU  
4)  
I[1:0] bits  
XX(  
256 or 4096 CPU clock  
(5)  
cycle delay  
AWU RC OSC  
Main OSC  
Peripherals  
CPU  
Off  
On  
On  
On  
(4)  
I[1:0] bits  
XX  
Fetch reset vector  
or service interrupt  
1. WDGHALT is an option bit. See Section 15.2: Option bytes on page 215 for more details.  
2. Peripheral clocked with an external clock source can still be active.  
3. Only an AWUFH interrupt and some specific interrupts can exit the MCU from halt mode (such as external  
interrupt). Refer to Table 14: Interrupt mapping on page 53 for more details.  
4. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are  
set to the current software priority level of the interrupt routine and recovered when the CC register is  
popped.  
5. If the PLL is enabled by the option byte, it outputs the clock after an additional delay of tSTARTUP (see  
Figure 12: PLL output frequency timing diagram on page 38).  
Doc ID 11928 Rev 8  
65/234  
 
Power saving modes  
ST7L34 ST7L35 ST7L38 ST7L39  
Register description  
AWUFH control/status register (AWUCSR)  
AWUCSR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
Reserved Reserved Reserved Reserved Reserved  
AWUF  
AWUM  
AWUEN  
-
-
-
-
-
R/W  
R/W  
R/W  
Table 19. AWUCSR register description  
Bit  
Bit name  
Function  
7:3  
-
Reserved, must be kept cleared  
Auto wakeup flag  
This bit is set by hardware when the AWU module generates an  
interrupt and cleared by software on reading AWUCSR. Writing to  
this bit does not change its value.  
0: No AWU interrupt occurred  
1: AWU interrupt occurred  
2
1
AWUF  
AWUM  
Auto wakeup measurement  
This bit enables the AWU RC oscillator and connects its output to the  
input capture of the 12-bit autoreload timer. This allows the timer to  
measure the AWU RC oscillator dispersion and then compensate  
this dispersion by providing the right value in the AWUPR register.  
0: Measurement disabled  
1: Measurement enabled  
Auto wakeup from halt enabled  
This bit enables the auto wakeup from halt feature: Once halt mode  
is entered, the AWUFH wakes up the microcontroller after a time  
delay dependent on the AWU prescaler value. It is set and cleared  
by software.  
0
AWUEN  
0: AWUFH (auto wakeup from halt) mode disabled  
1: AWUFH (auto wakeup from halt) mode enabled  
66/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Power saving modes  
AWUFH prescaler register (AWUPR)  
AWUPR  
Reset value: 1111 1111 (FFh)  
7
6
5
4
3
2
1
0
AWUPR[7:0]  
R/W  
Table 20. AWUPR register description  
Bit  
Bit name  
Function  
Auto wakeup prescaler  
These 8 bits define the AWUPR dividing factor as explained in Table 21  
7:0  
AWUPR[7:0]  
Table 21. AWUPR dividing factor  
AWUPR[7:0]  
Dividing factor  
00h  
01h  
...  
Forbidden  
1
...  
FEh  
FFh  
254  
255  
In AWU mode, the period that the MCU stays in halt mode (t  
in Figure 30: AWUF halt timing diagram  
AWU  
on page 64) is defined by  
1
t
= 64 × AWUPR × ------------------------- + t  
AWU  
RCSTRT  
f
AWURC  
This prescaler register can be programmed to modify the time that the MCU stays in halt mode before  
waking up automatically.  
Note:  
If 00h is written to AWUPR, depending on the product, an interrupt is generated immediately  
after a HALT instruction or the AWUPR remains unchanged.  
Table 22. AWU register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
AWUPR  
Reset value  
AWUPR7 AWUPR6 AWUPR5 AWUPR4 AWUPR3 AWUPR2 AWUPR1 AWUPR0  
0049h  
004Ah  
1
1
1
1
1
1
1
1
AWUCSR  
Reset value  
0
0
0
0
0
AWUF  
AWUM  
AWUEN  
Doc ID 11928 Rev 8  
67/234  
 
I/O ports  
ST7L34 ST7L35 ST7L38 ST7L39  
10  
I/O ports  
10.1  
10.2  
Introduction  
The I/O ports allow data transfer. An I/O port contains up to eight pins. Each pin can be  
programmed independently either as a digital input or digital output. In addition, specific pins  
may have several other functions. These functions can include external interrupt, alternate  
signal input/output for on-chip peripherals or analog input.  
Functional description  
A data register (DR) and a data direction register (DDR) are always associated with each  
port. The option register (OR), which allows input/output options, may or may not be  
implemented. The following description takes into account the OR register. Refer  
toSection 10.7: Device-specific I/O port configuration on page 73 for device specific  
information.  
An I/O pin is programmed using the corresponding bits in the DDR, DR and OR registers:  
Bit x corresponding to pin x of the port.  
Figure 32: I/O port general block diagram on page 70 shows the generic I/O block diagram.  
10.2.1  
Input modes  
Clearing the DDRx bit selects input mode. In this mode, reading its DR bit returns the digital  
value from that I/O pin.  
If an OR bit is available, different input modes can be configured by software: Floating or  
pull-up. Refer to Section 10.3: I/O port implementation on page 72 for configuration.  
Note:  
1
Writing to the DR modifies the latch value but does not change the state of the input pin.  
Do not use read/modify/write instructions (BSET/BRES) to modify the DR register.  
2
External interrupt function  
Depending on the device, setting the ORx bit while in input mode can configure an I/O as an  
input with interrupt. In this configuration, a signal edge or level input on the I/O generates an  
interrupt request via the corresponding interrupt vector (eix).Falling or rising edge sensitivity  
is programmed independently for each interrupt vector. The external interrupt control  
register (EICR) or the miscellaneous register controls this sensitivity, depending on the  
device.  
Each external interrupt vector is linked to a dedicated group of I/O port pins (see pinout  
description in Section 2: Pin description on page 16 and interrupt section).If several I/O  
interrupt pins on the same interrupt vector are selected simultaneously, they are logically  
combined. For this reason, if one of the interrupt pins is tied low, it may mask the others.  
External interrupts are hardware interrupts. Fetching the corresponding interrupt vector  
automatically clears the request latch. Changing the sensitivity bits clears any pending  
interrupts.  
68/234  
Doc ID 11928 Rev 8  
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
I/O ports  
10.2.2  
Output modes  
Setting the DDRx bit selects output mode. Writing to the DR bits applies a digital value to the  
I/O through the latch. Reading the DR bits returns the previously stored value.  
If an OR bit is available, different output modes can be selected by software: Push-pull or  
open-drain. Refer to Section 10.3: I/O port implementation on page 72 for configuration.  
Table 23. DR value and output pin status  
DR  
Push-pull  
Open-drain  
0
1
VOL  
VOH  
VOL  
Floating  
10.2.3  
Alternate functions  
Many ST7 I/Os have one or more alternate functions. These may include output signals  
from, or input signals to, on-chip peripherals. Table 2: Device pin description on page 17  
describes which peripheral signals can be input/output to which ports.  
A signal coming from an on-chip peripheral can be output on an I/O. To do this, enable the  
on-chip peripheral as an output (enable bit in the peripheral’s control register). The  
peripheral configures the I/O as an output and takes priority over standard I/O programming.  
The I/O’s state is readable by addressing the corresponding I/O data register.  
Configuring an I/O as floating enables alternate function input. It is not recommended to  
configure an I/O as pull-up as this increases current consumption. Before using an I/O as an  
alternate input, configure it without interrupt. Otherwise spurious interrupts can occur.  
Configure an I/O as input floating for an on-chip peripheral signal which can be input and  
output.  
Caution:  
I/Os which can be configured as both an analog and digital alternate function need special  
attention. The user must control the peripherals so that the signals do not arrive at the same  
time on the same pin. If an external clock is used, only the clock alternate function should be  
employed on that I/O pin and not the other alternate function.  
Doc ID 11928 Rev 8  
69/234  
I/O ports  
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 32. I/O port general block diagram  
Alternate  
1
0
Register  
access  
output  
P-buffer  
V
DD  
from on-chip peripheral  
(see table below)  
Alternate  
enable bit  
Pull-up  
(see table below  
DR  
V
DD  
DDR  
OR  
Pull-up  
Pad  
condition  
If implemented  
OR SEL  
DDR SEL  
DR SEL  
N-buffer  
Diodes  
(see table below)  
Analog input  
CMOS  
Schmitt  
trigger  
1
0
Alternate input  
t
to on-chip peripheral  
External  
Combinational  
Logic  
Interrupt  
From  
other  
bits  
request (eix)  
Sensitivity  
selection  
(1)  
Table 24. I/O port mode options  
Configuration mode  
Diodes  
Pull-up  
P-buffer  
(2)  
to VDD  
to VSS  
Floating with/without interrupt  
Pull-up with/without interrupt  
Push-pull  
Off  
On  
Input  
Off  
On  
On  
Off  
NI  
On  
Off  
NI  
Output  
Open drain (logic level)  
True open drain  
NI(3)  
1. Legend: Off = implemented not activated; On = implemented and activated  
2. The diode to VDD is not implemented in the true open drain pads. A local protection between the pad and VOL is  
implemented to protect the device against positive stress.  
3. For further details on port configuration, please refer to Table 28: Port configuration (standard ports) and Table 29: Port  
configuration (external interrupts) on page 73.  
70/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
I/O ports  
Table 25. I/O configuration  
Hardware configuration  
DR register access  
V
DD  
Note 3  
Pull-up  
condition  
R
W
R
PU  
DR  
register  
Data bus  
Pad  
Alternate input to on-chip  
peripheral  
From other  
pins  
External interrupt  
source (ei )  
x
Interrupt  
condition  
Combinational  
logic  
Polarity  
selection  
Analog input  
Note 3  
V
DD  
DR register access  
R
PU  
Pad  
R/W  
DR  
Data bus  
register  
DR register access  
R/W  
Note 3  
V
DD  
R
PU  
DR  
register  
Data bus  
Pad  
Alternate  
enable bit  
Alternate output  
from on-chip peripheral  
1. When the I/O port is in input configuration and the associated alternate function is enabled as an output,  
reading the DR register will read the alternate function output status.  
2. When the I/O port is in output configuration and the associated alternate function is enabled as an input,  
the alternate function reads the pin status given by the DR register content.  
3. For true open drain, these elements are not implemented  
Analog alternate function  
Configure the I/O as floating input to use an ADC input. The analog multiplexer (controlled  
by the ADC registers) switches the analog voltage present on the selected pin to the  
common analog rail, connected to the ADC input.  
Doc ID 11928 Rev 8  
71/234  
I/O ports  
ST7L34 ST7L35 ST7L38 ST7L39  
Analog recommendations  
Do not change the voltage level or loading on any I/O while conversion is in progress. Do not  
have clocking pins located close to a selected analog pin.  
Warning: The analog input voltage level must be within the limits  
stated in the absolute maximum ratings.  
10.3  
I/O port implementation  
The hardware implementation on each I/O port depends on the settings in the DDR and OR  
registers and specific I/O port features such as ADC input or open drain.  
Switching these I/O ports from one state to another should be done in a sequence that  
prevents unwanted side effects. Recommended safe transitions are illustrated in Figure 33.  
Other transitions are potentially risky and should be avoided, since they may present  
unwanted side-effects such as spurious interrupt generation.  
Figure 33. Interrupt I/O port state transitions  
01  
00  
10  
11  
Input  
floating/pull-up  
interrupt  
Input  
floating  
(reset state)  
Output  
open-drain  
Output  
push-pull  
= DDR, OR  
XX  
10.4  
10.5  
Unused I/O pins  
Unused I/O pins must be connected to fixed voltage levels. Refer to Section 13.8: I/O port  
pin characteristics on page 199.  
Low-power modes  
Table 26. Effect of low power modes on I/O ports  
Mode  
Wait  
Halt  
Description  
No effect on I/O ports. External interrupts cause the device to exit from wait mode.  
No effect on I/O ports. External interrupts cause the device to exit from halt mode.  
72/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
I/O ports  
10.6  
Interrupts  
The external interrupt event generates an interrupt if the corresponding configuration is  
selected with DDR and OR registers and if the I bit in the CC register is cleared (RIM  
instruction).  
Table 27. I/O interrupt control/wake-up capability  
Interrupt event  
Event flag Enable control bit Exit from wait Exit from halt  
External interrupt on selected  
external event  
DDRx  
ORx  
-
Yes  
Yes  
Related documentation  
SPI communication between ST7 and EEPROM (AN970)  
2
S/W implementation of I C bus master (AN1045)  
Software LCD driver (AN1048)  
10.7  
Device-specific I/O port configuration  
The I/O port register configurations are summarized as follows:  
Table 28. Port configuration (standard ports)  
Input (DDR = 0)  
Output (DDR = 1)  
Port  
Pin name  
OR = 0  
OR = 1  
OR = 0  
OR = 1  
Port A  
Port B  
PA7:0  
PB6:0  
Floating  
Pull-up  
Open drain  
Push-pull  
On ports where the external interrupt capability is selected using the EISR register, the  
configuration is as follows:  
Table 29. Port configuration (external interrupts)  
Input with interrupt (DDR = 0; EISR 00)  
Port  
Pin name  
OR = 0  
OR = 1  
Port A  
Port B  
PA6:1  
PB5:0  
Floating  
Pull-up  
Table 30. I/O port register map and reset values  
Address (Hex.) Register label  
7
6
5
4
3
2
1
0
PADR  
0000h  
MSB  
1
LSB  
1
Reset value  
1
0
1
0
1
0
1
0
1
0
1
0
PADDR  
0001h  
MSB  
0
LSB  
0
Reset value  
Doc ID 11928 Rev 8  
73/234  
I/O ports  
ST7L34 ST7L35 ST7L38 ST7L39  
Table 30. I/O port register map and reset values (continued)  
Address (Hex.) Register label  
7
6
5
4
3
2
1
0
PAOR  
0002h  
MSB  
0
LSB  
0
Reset value  
1
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
PBDR  
0003h  
MSB  
1
LSB  
1
Reset value  
PBDDR  
0004h  
MSB  
0
LSB  
0
Reset value  
PBOR  
0005h  
MSB  
0
LSB  
0
Reset value  
74/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
11  
On-chip peripherals  
11.1  
Watchdog timer (WDG)  
11.1.1  
Introduction  
The watchdog timer is used to detect the occurrence of a software fault, usually generated  
by external interference or by unforeseen logical conditions, which causes the application  
program to abandon its normal sequence. The watchdog circuit generates an MCU reset  
upon expiration of a programmed time period, unless the program refreshes the counter’s  
contents before the T6 bit is cleared.  
11.1.2  
11.1.3  
Main features  
Programmable free-running downcounter (64 increments of 16000 CPU cycles)  
Programmable reset  
Reset (if watchdog activated) when the T6 bit reaches zero  
Optional reset on HALT instruction (configurable by option byte)  
Hardware watchdog selectable by option byte  
Functional description  
The counter value stored in the CR register (bits T[6:0]) is decremented every 16000  
machine cycles and the length of the timeout period can be programmed by the user in 64  
increments.  
If the watchdog is activated (the WDGA bit is set) and when the 7-bit timer (bits T[6:0]) rolls  
over from 40h to 3Fh (T6 becomes cleared), it initiates a reset cycle pulling low the reset pin  
for typically 30 µs.  
Figure 34. Watchdog block diagram  
Reset  
Watchdog control register (CR)  
WDGA  
T6  
T5  
T1  
T0  
T4  
7-bit downcounter  
T2  
T3  
Clock divider ÷ 16000  
f
CPU  
Doc ID 11928 Rev 8  
75/234  
 
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
The application program must write in the CR register at regular intervals during normal  
operation to prevent an MCU reset. This downcounter is free-running: It counts down, even  
if the watchdog is disabled. The value to be stored in the CR register must be between FFh  
and C0h (see Table 31):  
The WDGA bit is set (watchdog enabled)  
The T6 bit is set to prevent generating an immediate reset  
The T[5:0] bits contain the number of increments which represents the time delay  
before the watchdog produces a reset.  
Following a reset, the watchdog is disabled. Once activated, it can be disabled only by a  
reset.  
The T6 bit can generate a software reset (the WDGA bit is set and the T6 bit is cleared).  
If the watchdog is activated, the HALT instruction generates a reset.  
.
(1)  
Table 31. Watchdog timing  
fCPU = 8 MHz  
WDG counter code  
min. (ms)  
max (ms)  
C0h  
FFh  
1
2
127  
128  
1. The timing variation shown in Table 31 is due to the unknown status of the prescaler when writing to the  
CR register.  
11.1.4  
Hardware watchdog option  
If hardware watchdog is selected by the option byte, the watchdog is always active and the  
WDGA bit in the CR is not used.  
Refer to the option byte description in Section 15.2: Option bytes on page 215.  
Using halt mode with the WDG (WDGHALT option)  
If halt mode with watchdog is enabled by the option byte (no watchdog reset on HALT  
instruction), it is recommended before executing the HALT instruction to refresh the WDG  
counter, to avoid an unexpected WDG reset immediately after waking up the microcontroller.  
11.1.5  
Interrupts  
None.  
76/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
11.1.6  
Register description  
Watchdog control register (WDGCR)  
WDGCR  
Reset value: 0111 1111 (7Fh)  
7
6
5
4
3
2
1
0
WDGA  
T[6:0]  
R/W  
R/W  
Table 32. WDGCR register description  
Bit  
Bit name  
Function  
Activation bit(1)  
This bit is set by software and only cleared by hardware after a reset.  
When WDGA = 1, the watchdog can generate a reset.  
0: Watchdog disabled  
7
WDGA  
1: Watchdog enabled  
7-bit counter (MSB to LSB)  
6:0  
T[6:0]  
These bits contain the decremented value. A reset is produced when  
it rolls over from 40h to 3Fh (T6 becomes cleared).  
1. The WDGA bit is not used if the hardware watchdog option is enabled by option byte.  
Table 33. Watchdog timer register map and reset values  
Address (Hex.) Register label  
7
6
5
4
3
2
1
0
WDGCR  
002Eh  
WDGA  
0
T6  
1
T5  
1
T4  
1
T3  
1
T2  
1
T1  
1
T0  
1
Reset value  
Doc ID 11928 Rev 8  
77/234  
 
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
11.2  
Dual 12-bit autoreload timer 3 (AT3)  
11.2.1  
Introduction  
The 12-bit autoreload timer can be used for general-purpose timing functions. It is based on  
one or two free-running 12-bit upcounters with an input capture register and four PWM  
output channels. There are six external pins:  
4 PWM outputs  
ATIC/LTIC pin for the input capture function  
BREAK pin for forcing a break condition on the PWM outputs  
11.2.2  
Main features  
Single timer or dual timer mode with two 12-bit upcounters (CNTR1/CNTR2) and two  
12-bit autoreload registers (ATR1/ATR2)  
Maskable overflow interrupts  
PWM mode  
Generation of four independent PWMx signals  
Dead time generation for half-bridge driving mode with programmable dead time  
Frequency 2 kHz to 4 MHz (@ 8 MHz f  
Programmable duty-cycles  
Polarity control  
)
CPU  
Programmable output modes  
Output compare mode  
Input capture mode  
12-bit input capture register (ATICR)  
Triggered by rising and falling edges  
Maskable IC interrupt  
Long range input capture  
Break control  
Flexible clock control  
78/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 35. Single timer mode (ENCNTR2 = 0)  
On-chip peripherals  
12-bit input capture  
ATIC  
Edge detection circuit  
CMP  
interrupt  
Output compare  
OE0  
PWM0  
PWM1  
PWM0 duty cycle generator  
PWM1 duty cycle generator  
Dead time  
12-bit autoreload register 1  
12-bit upcounter 1  
OE1  
generator  
Clock  
Control  
DTE bit  
OE2  
OE3  
PWM2 duty cycle generator  
PWM3 duty cycle generator  
PWM2  
PWM3  
BPEN bit  
OVF1 interrupt  
Figure 36. Dual timer mode (ENCNTR2 = 1)  
12-bit input capture  
ATIC  
Edge detection circuit  
CMP  
interrupt  
Output compare  
OE0  
OE1  
12-bit autoreload register 1  
PWM0 duty cycle generator  
PWM1 duty cycle generator  
PWM0  
PWM1  
Dead time  
generator  
12-bit upcounter 1  
OVF1 interrupt  
OVF2 interrupt  
Clock  
control  
DTE bit  
OE2  
OE3  
PWM2 duty cycle generator  
PWM3 duty cycle generator  
PWM2  
PWM3  
12-bit upcounter 2  
12-bit autoreload register 2  
BPEN bit  
11.2.3  
Functional description  
PWM mode  
This mode allows up to four pulse width modulated signals to be generated on the PWMx  
output pins.  
PWM frequency  
Doc ID 11928 Rev 8  
79/234  
 
 
 
On-chip peripherals  
The four PWM signals can have the same frequency (f  
ST7L34 ST7L35 ST7L38 ST7L39  
) or can have two different  
PWM  
frequencies. This is selected by the ENCNTR2 bit which enables single timer or dual timer  
mode (see Figure 35: Single timer mode (ENCNTR2 = 0) on page 79 and Figure 36: Dual  
timer mode (ENCNTR2 = 1) on page 79).  
The frequency is controlled by the counter period and the ATR register value. In dual timer  
mode, PWM2 and PWM3 can be generated with a different frequency controlled by CNTR2  
and ATR2.  
f
= f  
/(4096 - ATR)  
COUNTER  
PWM  
Following the above formula, if f  
is 4 MHz the maximum value of f  
is 2 MHz  
COUNTER  
,
PWM  
(ATR register value = 4094), the minimum value is 1 kHz (ATR register value = 0).  
Duty cycle  
The duty cycle is selected by programming the DCRx registers. These are preload registers.  
The DCRx values are transferred in active duty cycle registers after an overflow event if the  
corresponding transfer bit (TRANx bit) is set.  
The TRAN1 bit controls the PWMx outputs driven by counter 1 and the TRAN2 bit controls  
the PWMx outputs driven by counter 2.  
PWM generation and output compare are done by comparing these active DCRx values  
with the counter.  
The maximum available resolution for the PWMx duty cycle is:  
Resolution = 1/(4096 - ATR)  
Where ATR is equal to 0. With this maximum resolution, 0% and 100% duty cycle can be  
obtained by changing the polarity.  
At reset, the counter starts counting from 0.  
When an upcounter overflow occurs (OVF event), the preloaded duty cycle values are  
transferred to the active duty cycle registers and the PWMx signals are set to a high level.  
When the upcounter matches the active DCRx value, the PWMx signals are set to a low  
level. To obtain a signal on a PWMx pin, the contents of the corresponding active DCRx  
register must be greater than the contents of the ATR register.  
Note:  
For ROM devices only: The PWM can be enabled/disabled only in overflow ISR, otherwise  
the first pulse of PWM can be different from expected one because no force overflow  
function is present.  
The maximum value of ATR is 4094 because it must be lower than the DCR value, which in  
this case must be 4095.  
Polarity inversion  
The polarity bits can be used to invert any of the four output signals. The inversion is  
synchronized with the counter overflow if the corresponding transfer bit in the ATCSR2  
register is set (reset value). See Figure 37.  
80/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
Figure 37. PWM polarity inversion  
Inverter  
PWMx pin  
PWMx  
PWMxCSR register  
ATCSR2 register  
OPx  
DFF  
TRANx  
Counter overflow  
The data flip flop (DFF) applies the polarity inversion when triggered by the counter overflow input.  
Output control  
The PWMx output signals can be enabled or disabled using the OEx bits in the PWMCR register.  
Figure 38. PWM function  
4095  
Duty cycle  
register  
(DCRx)  
Autoreload  
register  
(ATR)  
000  
t
With OE=1  
and OPx=0  
With OE=1  
and OPx=1  
Doc ID 11928 Rev 8  
81/234  
 
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 39. PWM signal from 0% to 100%duty cycle  
fCOUNTER  
ATR= FFDh  
Counter  
FFDh  
FFEh  
FFFh  
FFDh  
FFEh  
FFFh  
FFDh  
FFEh  
DCRx=000h  
DCRx=FFDh  
DCRx=FFEh  
DCRx=000h  
t
Dead time generation  
A dead time can be inserted between PWM0 and PWM1 using the DTGR register. This is required for  
half-bridge driving where PWM signals must not be overlapped. The non-overlapping PWM0/PWM1  
signals are generated through a programmable dead time by setting the DTE bit.  
Dead time value = DT[6:0] x Tcounter1  
DTGR[7:0] is buffered inside so as to avoid deforming the current PWM cycle. The DTGR effect will take  
place only after an overflow.  
Note:  
1
Dead time is generated only when DTE = 1 and DT[6:0] 0. If DTE is set and DT[6:0] = 0,  
PWM output signals will be at their reset state.  
2
Half-bridge driving is possible only if polarities of PWM0 and PWM1 are not inverted, that is,  
if OP0 and OP1 are not set. If polarity is inverted, overlapping PWM0/PWM1 signals will be  
generated.  
82/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 40. Dead time generation  
On-chip peripherals  
T
counter1  
CK_CNTR1  
CNTR1  
DCR0  
DCR0+1  
OVF  
ATR1  
counter = DCR0  
PWM 0  
PWM 1  
counter = DCR1  
Tdt  
PWM 0  
PWM 1  
Tdt  
T
= DT[6:0] x T  
dt  
counter1  
In the above example, when the DTE bit is set:  
PWM goes low at DCR0 match and goes high at ATR1 + T  
dt  
PWM1 goes high at DCR0 + T and goes low at ATR match.  
dt  
With this programmable delay (T ), the PWM0 and PWM1 signals which are generated are  
dt  
not overlapped.  
Break function  
The break function can be used to perform an emergency shutdown of the application being  
driven by the PWM signals.  
The break function is activated by the external BREAK pin (active low). In order to use the  
break pin it must be previously enabled by software setting the BPEN bit in the BREAKCR  
register.  
When a low level is detected on the break pin, the BA bit is set and the break function is  
activated. In this case, the four PWM signals are stopped.  
Software can set the BA bit to activate the break function without using the break pin.  
When a break function is activated (BA bit = 1 and BREN1/BREN2 = 1):  
The break pattern (PWM[3:0] bits in the BREAKCR is forced directly on the PWMx  
output pins (after the inverter)  
The 12-bit PWM counter CNTR1 is put to its reset value, that is, 00h  
The 12-bit PWM counter CNTR2 is put to its reset value, that is 00h  
ATR1, ATR2, preload and active DCRx are put to their reset values  
The PWMCR register is reset  
Counters stop counting  
Doc ID 11928 Rev 8  
83/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
When the break function is deactivated after applying the break (BA bit goes from 1 to 0 by  
software):  
The control of the four PWM outputs is transferred to the port registers.  
Figure 41. Block diagram of break function  
BREAK pin (active low)  
BREAKCR register  
BA  
BPEN PWM3 PWM2 PWM1 PWM0  
PWM0  
PWM1  
PWM2  
PWM3  
1
PWM0  
PWM1  
PWM2  
PWM3  
0
When BA is set:  
(Inverters)  
PWM counter -> reset value  
ATRx & DCRx -> reset value  
PWM Mode -> reset value  
1. The BREAK pin value is latched by the BA bit  
84/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Output compare mode  
On-chip peripherals  
To use this function, load a 12-bit value in the preload DCRxH and DCRxL registers.  
When the 12-bit upcounter CNTR1 reaches the value stored in the active DCRxH and  
DCRxL registers, the CMPFx bit in the PWMxCSR register is set and an interrupt request is  
generated if the CMPIE bit is set.  
The output compare function is always performed on CNTR1 in both single timer mode and  
dual timer mode and never on CNTR2. The difference is that in single timer mode the  
counter 1 can be compared with any of the four DCR registers and in dual timer mode, the  
counter 1 is compared with DCR0 or DCR1.  
Note:  
1
2
The output compare function is only available for DCRx values other than 0 (reset value).  
Duty cycle registers are buffered internally. The CPU writes in preload duty cycle registers  
and these values are transferred to active duty cycle registers after an overflow event if the  
corresponding transfer bit (TRAN1 bit) is set. Output compare is done by comparing these  
active DCRx values with the counter.  
Figure 42. Block diagram of output compare mode (single timer)  
DCRx  
Preload duty cycle regx  
(ATCSR2) TRAN1  
(ATCSR) OVF  
Active duty cycle regx  
Output compare circuit  
CNTR1  
Counter 1  
CMPFx (PWMxCSR)  
CMP  
Interrupt request  
CMPIE(ATCSR)  
Doc ID 11928 Rev 8  
85/234  
On-chip peripherals  
Input capture mode  
ST7L34 ST7L35 ST7L38 ST7L39  
The 12-bit ATICR register is used to latch the value of the 12-bit free running upcounter CNTR1 after a  
rising or falling edge is detected on the ATIC pin. When an input capture occurs, the ICF bit is set and the  
ATICR register contains the value of the free running upcounter. An IC interrupt is generated if the ICIE  
bit is set. The ICF bit is reset by reading the ATICRH/ATICRL register when the ICF bit is set. The ATICR  
is a read only register and always contains the free running upcounter value which corresponds to the  
most recent input capture. Any further input capture is inhibited while the ICF bit is set.  
Figure 43. Block diagram of input capture mode  
ATIC  
12-bit input capture register  
IC interrupt request  
ATICR  
ATCSR  
ICF  
ICIE  
CK1  
CK0  
f
LTIMER  
(1 ms  
timebase  
@ 8 MHz)  
12-bit upcounter1  
f
CNTR1  
CPU  
12-bit autoreload register  
Off  
ATR1  
Figure 44. Input capture timing diagram  
fCOUNTER  
Counter1  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
ATIC pin  
ICF flag  
Interrupt  
ATICR read  
Interrupt  
09h  
xxh  
04h  
t
86/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Long input capture  
On-chip peripherals  
Pulses that last between 8 µs and 2 s can be measured with an accuracy of 4µs if f  
=
OSC  
8 MHz under the following conditions:  
The 12-bit AT3 timer is clocked by the lite timer (RTC pulse: CK[1:0] = 01 in the ATCSR  
register)  
The ICS bit in the ATCSR2 register is set so that the LTIC pin is used to trigger the AT3  
timer capture.  
The signal to be captured is connected to LTIC pin  
Input capture registers LTICR, ATICRH and ATICRL are read  
This configuration allows to cascade the lite timer and the 12-bit AT3 timer to get a 20-bit  
input capture value. Refer to Figure 45.  
Figure 45. Long range input capture block diagram  
LTICR  
8 LSB bits  
8-bit input capture register  
8-bit timebase counter1  
f
OSC/32  
Lite timer  
20  
12-bit ARTIMER  
cascaded  
bits  
ATR1  
12-bit autoreload register  
f
CNTR1  
LTIMER  
f
12-bit upcounter1  
cpu  
ICS  
Off  
LTIC  
ATIC  
ATICR  
1
0
12-bit input capture register  
12 MSB bits  
Since the input capture flags (ICF) for both timers (AT3 timer and LT timer) are set when  
signal transition occurs, software must mask one interrupt by clearing the corresponding  
ICIE bit before setting the ICS bit.  
If the ICS bit changes (from 0 to 1 or from 1 to 0), a spurious transition might occur on the  
input capture signal because of different values on LTIC and ATIC. To avoid this situation, it  
is recommended to do the following:  
First, reset both ICIE bits  
Then set the ICS bit  
Reset both ICF bits  
Then set the ICIE bit of desired interrupt  
Doc ID 11928 Rev 8  
87/234  
 
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Both timers are used to compute a pulse length with long input capture feature. The  
procedure is not straight-forward and is as follows:  
At the first input capture on the rising edge of the pulse, we assume that values in the  
registers are as follows:  
LTICR = LT1  
ATICRH = ATH1  
ATICRL = ATL1  
Hence ATICR1 [11:0] = ATH1 & ATL1  
Refer to Figure 46.  
At the second input capture on the falling edge of the pulse, we assume that the values  
in the registers are as follows:  
LTICR = LT2  
ATICRH = ATH2  
ATICRL = ATL2  
Hence ATICR2 [11:0] = ATH2 & ATL2  
Now pulse width P between first capture and second capture is:  
P = decimal (F9 – LT1 + LT2 + 1) * 0.004ms + decimal (ATICR2 - ATICR1 – 1) * 1ms  
Figure 46. Long range input capture timing diagram  
fOSC/32  
_ _ _  
_ _ _  
_ _ _  
_ _ _  
_ _ _  
TB counter1  
CNTR1  
F9h  
00h  
LT1  
F9h  
00h  
LT2  
_ _ _  
_ _ _  
ATH1 & ATL1  
ATH2 & ATL2  
LTIC  
00h  
0h  
LT1  
LT2  
LTICR  
ATH2  
ATH1  
ATL1  
ATICRH  
ATICRL  
00h  
ATL2  
ATICR = ATICRH[3:0] & ATICRL[7:0]  
11.2.4  
Low power modes  
Table 34. Effect of low power modes on AT3 timer  
Mode Description  
Slow  
Wait  
The input frequency is divided by 32  
No effect on AT timer  
88/234  
Doc ID 11928 Rev 8  
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
Table 34. Effect of low power modes on AT3 timer (continued)  
On-chip peripherals  
Active halt  
AT timer halted except if CK0 = 1, CK1 = 0 and OVFIE = 1  
Halt  
AT timer halted  
11.2.5  
Interrupts  
Table 35. AT3 interrupt control/wake-up capability  
Interrupt  
event(1)  
Event  
flag  
Enable  
control bit  
Exit  
from wait  
Exit  
from Halt  
Exit from  
active halt  
Overflow event  
AT3 IC event  
CMP event  
OVF1  
OVFIE1  
Yes(2)  
ICF  
ICIE  
Yes  
No  
No  
CMPFx  
CMPIE  
1. The CMP and AT3 IC events are connected to the same interrupt vector. The OVF event is mapped on a  
separate vector (see Section 8: Interrupts). They generate an interrupt if the enable bit is set in the ATCSR  
register and the interrupt mask in the CC register is reset (RIM instruction).  
2. Only if CK0 = 1 and CK1 = 0 (fCOUNTER = fLTIMER  
)
11.2.6  
Register description  
Timer control status register (ATCSR)  
ATCSR  
Reset value: 0x00 0000 (x0h)  
7
6
5
4
3
2
1
0
Reserved  
ICF  
ICIE  
CK[1:0]  
R/W  
OVF1  
OVFIE1  
CMPIE  
-
R/W  
R/W  
R/W  
R/W  
R/W  
Table 36. ATCSR register description  
Bit  
Bit name  
Function  
7
-
Reserved, must be kept cleared  
Input capture flag  
This bit is set by hardware and cleared by software by reading the  
ATICR register (a read access to ATICRH or ATICRL clears this flag).  
Writing to this bit does not change the bit value.  
0: No input capture  
6
5
ICF  
1: An input capture has occurred  
IC interrupt enable  
This bit is set and cleared by software.  
0: Input capture interrupt disabled  
1: Input capture interrupt enabled  
ICIE  
Doc ID 11928 Rev 8  
89/234  
 
On-chip peripherals  
Table 36. ATCSR register description (continued)  
ST7L34 ST7L35 ST7L38 ST7L39  
Bit  
Bit name  
Function  
Counter clock selection  
These bits are set and cleared by software and cleared by hardware  
after a reset. They select the clock frequency of the counter as follows/  
00: Counter clock selection = off  
4:3  
CK[1:0]  
01: Counter clock selection = fLTIMER (1ms timebase @ 8 MHz)  
10: Counter clock selection = fCPU  
11: Counter clock selection = off  
Overflow flag  
This bit is set by hardware and cleared by software by reading the  
TCSR register. It indicates the transition of the counter1 CNTR1 from  
FFh to ATR1 value.  
0: No counter overflow occurred  
1: Counter overflow occurred  
2
1
0
OVF1  
OVFIE1  
CMPIE  
Overflow interrupt enable  
This bit is read/write by software and cleared by hardware after a  
reset.  
0: Overflow interrupt disabled  
1: Overflow interrupt enabled  
Compare interrupt enable  
This bit is read/write by software and cleared by hardware after a  
reset. It can be used to mask the interrupt generated when any of the  
CMPFx bit is set.  
0: Output compare interrupt disabled  
1: Output compare interrupt enabled  
Counter register 1 high (CNTR1H)  
CNTR1H  
Reset value: 0000 0000 (00h)  
15  
14  
13  
12  
11  
10  
9
8
Reserved Reserved Reserved Reserved  
CNTR1[11:8]  
-
-
-
-
R
Counter register 1 low (CNTR1L)  
CNTR1L  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
CNTR1[7:0]  
R
90/234  
Doc ID 11928 Rev 8  
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
Table 37. CNTR1H and CNTR1L register descriptions  
Bit  
Bit name  
Function  
Reserved, must be kept cleared  
Counter value  
15:12  
-
This 12-bit register is read by software and cleared by hardware after  
a reset. The counter CNTR1 increments continuously as soon as a  
counter clock is selected. To obtain the 12-bit value, software should  
read the counter value in two consecutive read operations. The  
CNTR1H register can be incremented between the two reads, and in  
order to be accurate when fTIMER = fCPU, the software should take  
this into account when CNTR1L and CNTR1H are read. If CNTR1L  
is close to its highest value, CNTR1H could be incremented before it  
is read. When a counter overflow occurs, the counter restarts from  
the value specified in the ATR1 register.  
11:0  
CNTR1[11:0]  
Doc ID 11928 Rev 8  
91/234  
 
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Autoreload register high (ATR1H)  
ATR1H  
15  
Reset value: 0000 0000 (00h)  
14  
13  
12  
11  
10  
ATR1[11:8]  
9
8
Reserved Reserved Reserved Reserved  
-
-
-
-
R/W  
Autoreload register low (ATR1L)  
ATR1L  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
ATR1[7:0]  
2
1
0
R/W  
Table 38. ATR1H and ATR1L register descriptions  
Bit  
Bit name  
Function  
Reserved, must be kept cleared  
Autoreload register 1  
15:12  
-
This is a 12-bit register which is written by software. The ATR1  
register value is automatically loaded into the upcounter CNTR1  
when an overflow occurs. The register value is used to set the PWM  
frequency.  
11:0  
ATR1[11:0]  
PWM output control register (PWMCR)  
PWMCR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
Reserved  
OE3  
Reserved  
OE2  
Reserved  
OE1  
Reserved  
OE0  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
Table 39. PWMCR register description  
Bit  
Bit name  
Function  
7, 5, 3, 1  
-
Reserved, must be kept cleared  
PWMx output enable  
These bits are set and cleared by software and cleared by hardware  
after a reset.  
0: PWM mode disabled. PWMx output alternate function disabled  
(I/O pin free for general purpose I/O)  
6, 4, 2, 0  
OE[3:0]  
1: PWM mode enabled  
92/234  
Doc ID 11928 Rev 8  
 
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
PWMx control status register (PWMxCSR)  
PWMxCSR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
Reserved Reserved Reserved Reserved Reserved Reserved  
OPx  
CMPFx  
-
-
-
-
-
-
R/W  
R/W  
Table 40. PWMxCSR register description  
Bit  
Bit name  
Function  
7:2  
-
Reserved, must be kept cleared  
PWMx output polarity  
This bit is read/write by software and cleared by hardware after a  
reset. This bit selects the polarity of the PWM signal.  
0: The PWM signal is not inverted  
1
0
OPx  
1: The PWM signal is inverted  
PWMx compare flag  
This bit is set by hardware and cleared by software by reading the  
PWMxCSR register. It indicates that the upcounter value matches  
the active DCRx register value.  
CMPFx  
0: Upcounter value does not match DCRx value  
1: Upcounter value matches DCRx value  
Doc ID 11928 Rev 8  
93/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Break control register (BREAKCR)  
BREAKCR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
Reserved Reserved  
BA  
BPEN  
PWM[3:0]  
R/W  
-
-
R/W  
R/W  
Table 41. BREAKCR register description  
Bit  
Bit name  
Function  
7:6  
-
Reserved, must be kept cleared  
Break active  
This bit is read/write by software, cleared by hardware after reset  
and set by hardware when the break pin is low. It  
activates/deactivates the break function.  
0: Break not active  
5
BA  
1: Break active  
Break pin enable  
This bit is read/write by software and cleared by hardware after  
reset.  
4
BPEN  
0: Break pin disabled  
1: Break pin enabled  
Break pattern  
These bits are read/write by software and cleared by hardware after  
a reset. They are used to force the four PWMx output signals into a  
stable state when the break function is active and corresponding  
OEx bit is set.  
3:0  
PWM[3:0]  
94/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
PWMx duty cycle register high (DCRxH)  
DCRxH  
15  
Reset value: 0000 0000 (00h)  
14  
13  
12  
11  
10  
9
8
Reserved Reserved Reserved Reserved  
DCRx[11:8]  
-
-
-
-
R/W  
PWMx duty cycle register low (DCRxL)  
DCRxL  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
DCRx[7:0]  
R/W  
Table 42. DCRxH and DCRxL register descriptions  
Bit  
Bit name  
Function  
Reserved, must be kept cleared  
PWMx duty cycle value  
15:12  
-
This 12-bit value is written by software. It defines the duty cycle of  
the corresponding PWM output signal (see Figure 38: PWM function  
on page 81). In PWM mode (OEx = 1 in the PWMCR register) the  
DCRx[11:0] bits define the duty cycle of the PWMx output signal  
(see Figure 38). In output compare mode, they define the value to be  
compared with the 12-bit upcounter value.  
11:0  
DCRx[11:0]  
Doc ID 11928 Rev 8  
95/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Input capture register high (ATICRH)  
ATICRH  
15  
Reset value: 0000 0000 (00h)  
14  
13  
12  
11  
10  
9
8
Reserved Reserved Reserved Reserved  
ICR[11:8]  
R
-
-
-
-
Input capture register low (ATICRL)  
ATICRL  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
ICR[7:0]  
R
Table 43. ATICRH and ATICRL register descriptions  
Bit  
Bit name  
Function  
Reserved, must be kept cleared  
Input capture data  
15:12  
-
This is a 12-bit register which is readable by software and cleared by  
hardware after a reset. The ATICR register contains the captured  
value of the 12-bit CNTR1 register when a rising or falling edge  
occurs on the ATIC or LTIC pin (depending on ICS). Capture will only  
be performed when the ICF flag is cleared.  
11:0  
ICR[11:0]  
96/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
Timer control register2 (ATCSR2)  
ATCSR2  
7
Reset value: 0000 0011 (03h)  
6
5
4
3
2
1
0
Reserved Reserved  
ICS  
OVFIE2  
OVF2  
ENCNTR2  
TRAN2  
TRAN1  
-
-
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 44. ATCSR2 register description  
Bit  
Bit name  
Function  
7:6  
-
Reserved, must be kept cleared  
Input capture shorted  
This bit is read/write by software. It allows the AT timer CNTR1 to  
use the LTIC pin for long input capture.  
0: ATIC for CNTR1 input capture  
5
4
ICS  
1: LTIC for CNTR1 input capture  
Overflow interrupt 2 enable  
This bit is read/write by software and controls the overflow interrupt  
of counter 2.  
OVFIE2  
0: Overflow interrupt disabled  
1: Overflow interrupt enabled  
Overflow flag  
This bit is set by hardware and cleared by software by reading the  
ATCSR2 register. It indicates the transition of the counter 2 from  
FFFh to ATR2 value.  
0: No counter overflow occurred  
1: Counter overflow occurred  
3
2
OVF2  
Enable counter 2  
This bit is read/write by software and switches the second counter  
CNTR2. If this bit is set, PWM2/3 is generated using CNTR2  
0: CNTR2 stopped  
ENCNTR2  
1: CNTR2 starts running  
Transfer enable 2  
This bit is read/write by software, cleared by hardware after each  
completed transfer and set by hardware after reset. It controls the  
transfers on CNTR2. It allows the value of the preload DCRx  
registers to be transferred to the active DCRx registers after the next  
overflow event. The OPx bits are transferred to the shadow OPx bits  
in the same way.  
1
TRAN2  
Note: Only DCR2/3 can be controlled using this bit  
Doc ID 11928 Rev 8  
97/234  
 
 
On-chip peripherals  
Table 44. ATCSR2 register description (continued)  
ST7L34 ST7L35 ST7L38 ST7L39  
Bit  
Bit name  
Function  
Transfer enable 1  
This bit is read/write by software, cleared by hardware after each  
completed transfer and set by hardware after reset. It controls the  
transfers on CNTR1. It allows the value of the preload DCRx  
registers to be transferred to the active DCRx registers after the next  
overflow event. The OPx bits are transferred to the shadow OPx bits  
in the same way.  
0
TRAN1  
Autoreload register2 high (ATR2H)  
ATR2H  
Reset value: 0000 0000 (00h)  
15  
14  
13  
12  
11  
10  
ATR2[11:8]  
9
8
Reserved Reserved Reserved Reserved  
-
-
-
-
R/W  
Autoreload register2 low (ATR2L)  
ATR2L  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
ATR2[7:0]  
R/W  
Table 45. ATR2H and ATR2L register descriptions  
Bit  
Bit name  
Function  
Reserved, must be kept cleared  
Autoreload register 2  
15:12  
-
This is a 12-bit register which is written by software. The ATR2  
register value is automatically loaded into the upcounter CNTR2  
when an overflow of CNTR2 occurs. The register value is used to set  
the PWM2/PWM3 frequency when ENCNTR2 is set.  
11:0  
ATR2[11:0]  
Dead time generator register (DTGR)  
DTGR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
DTE  
DT[6:0]  
R/W  
R/W  
98/234  
Doc ID 11928 Rev 8  
 
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
Table 46. DTGR register description  
Bit  
Bit name  
Function  
Dead time enable  
This bit is read/write by software. It enables a dead time generation  
on PWM0/PWM1.  
7
DTE  
0: No dead time insertion  
1: Dead time insertion enabled  
Dead time value  
These bits are read/write by software. They define the dead time  
inserted between PWM0/PWM1. Dead time is calculated as follows:  
Dead time = DT[6:0] x Tcounter1  
6:0  
DT[6:0]  
Doc ID 11928 Rev 8  
99/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Table 47. Register map and reset values  
Add  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
ATCSR  
Reset value  
ICF  
0
ICIE  
0
CK1  
0
CK0  
0
OVF1  
0
OVFIE1  
0
CMPIE  
0
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
0
0
CNTR1H  
Reset value  
CNTR1_11 CNTR1_10 CNTR1_9 CNTR1_8  
0
0
0
0
0
0
0
CNTR1L  
Reset value  
CNTR1_7 CNTR1_6 CNTR1_5 CNTR1_4 CNTR1_3 CNTR1_2 CNTR1_1 CNTR1_0  
0
0
0
0
0
0
0
0
ATR1H  
Reset value  
ATR11  
0
ATR10  
0
ATR9  
0
ATR8  
0
0
0
0
0
ATR1L  
Reset value  
ATR7  
0
ATR6  
0
ATR5  
0
ATR4  
0
ATR3  
0
ATR2  
0
ATR1  
0
ATR0  
0
PWMCR  
Reset value  
OE3  
0
OE2  
0
OE1  
0
OE0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PWM0CSR  
Reset value  
OP0  
0
CMPF0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PWM1CSR  
Reset value  
OP1  
0
CMPF1  
0
PWM2CSR  
Reset value  
OP2  
0
CMPF2  
0
PWM3CSR  
Reset value  
OP3  
0
CMPF3  
0
DCR0H  
Reset value  
DCR11  
0
DCR10  
0
DCR9  
0
DCR8  
0
DCR0L  
Reset value  
DCR7  
0
DCR6  
0
DCR5  
0
DCR4  
0
DCR3  
0
DCR2  
0
DCR1  
0
DCR0  
0
DCR1H  
Reset value  
DCR11  
0
DCR10  
0
DCR9  
0
DCR8  
0
0
0
0
0
DCR1L  
Reset value  
DCR7  
0
DCR6  
0
DCR5  
0
DCR4  
0
DCR3  
0
DCR2  
0
DCR1  
0
DCR0  
0
DCR2H  
Reset value  
DCR11  
0
DCR10  
0
DCR9  
0
DCR8  
0
0
0
0
0
DCR2L  
Reset value  
DCR7  
0
DCR6  
0
DCR5  
0
DCR4  
0
DCR3  
0
DCR2  
0
DCR1  
0
DCR0  
0
DCR3H  
Reset value  
DCR11  
0
DCR10  
0
DCR9  
0
DCR8  
0
0
0
0
0
DCR3L  
Reset value  
DCR7  
0
DCR6  
0
DCR5  
0
DCR4  
0
DCR3  
0
DCR2  
0
DCR1  
0
DCR0  
0
ATICRH  
Reset value  
ICR11  
0
ICR10  
0
ICR9  
0
ICR8  
0
0
0
0
0
ATICRL  
Reset value  
ICR7  
0
ICR6  
0
ICR5  
0
ICR4  
0
ICR3  
0
ICR2  
0
ICR1  
0
ICR0  
0
ATCSR2  
Reset value  
ICS  
0
OVFIE2  
0
OVF2  
0
ENCNTR2 TRAN2  
TRAN1  
1
0
0
0
1
100/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
Table 47. Register map and reset values (continued)  
Add  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
BREAKCR  
Reset value  
BA  
0
BPEN  
0
PWM3  
0
PWM2  
0
PWM1  
0
PWM0  
0
22  
23  
24  
25  
0
0
0
0
ATR2H  
Reset value  
ATR11  
0
ATR10  
0
ATR9  
0
ATR8  
0
0
0
ATR2L  
Reset value  
ATR7  
0
ATR6  
0
ATR5  
0
ATR4  
0
ATR3  
0
ATR2  
0
ATR1  
0
ATR0  
0
DTGR  
Reset value  
DTE  
0
DT6  
0
DT5  
0
DT4  
0
DT3  
0
DT2  
0
DT1  
0
DT0  
0
11.3  
Lite timer 2 (LT2)  
11.3.1  
Introduction  
The lite timer is used for general-purpose timing functions. It is based on two free-running 8-bit  
upcounters and an 8-bit input capture register.  
11.3.2  
Main features  
Real-time clock (RTC)  
One 8-bit upcounter 1 ms or 2 ms timebase period (@ 8 MHz f  
)
OSC  
One 8-bit upcounter with autoreload and programmable timebase period from 4µs to 1.024ms  
in 4µs increments (@ 8 MHz f  
)
OSC  
2 maskable timebase interrupts  
Input capture  
8-bit input capture register (LTICR)  
Maskable interrupt with wakeup from halt mode capability  
Doc ID 11928 Rev 8  
101/234  
 
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 47. Lite timer 2 block diagram  
f
OSC/32  
LTTB2  
LTCNTR  
Interrupt request  
LTCSR2  
0
8-bit timebase counter 2  
0
0
0
0
0
TB2IE TB2F  
8
LTARR  
f
LTIMER  
To 12-bit AT timer  
8-bit autoreload register  
/2  
1
0
8-bit timebase counter 1  
Timebase  
1 or 2 ms  
(@ 8 MHz  
f
LTIMER  
f
)
OSC  
8
LTICR  
8-bit  
LTIC  
input capture register  
LTCSR1  
ICIE  
ICF  
TB  
TB1IE TB1F  
LTTB1 interrupt request  
LTIC interrupt request  
102/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
11.3.3  
Functional description  
Timebase counter 1  
The 8-bit value of counter 1 cannot be read or written by software. After an MCU reset, it  
starts incrementing from 0 at a frequency of f /32. An overflow event occurs when the  
OSC  
counter rolls over from F9h to 00h. If f  
= 8 MHz, then the time period between two  
OSC  
counter overflow events is 1 ms. This period can be doubled by setting the TB bit in the  
LTCSR1 register.  
When counter 1 overflows, the TB1F bit is set by hardware and an interrupt request is  
generated if the TB1IE bit is set. The TB1F bit is cleared by software reading the LTCSR1  
register.  
Timebase counter 2  
Counter 2 is an 8-bit autoreload upcounter. It can be read by accessing the LTCNTR  
register. After an MCU reset, it increments at a frequency of f  
/32 starting from the value  
OSC  
stored in the LTARR register. A counter overflow event occurs when the counter rolls over  
from FFh to the LTARR reload value. Software can write a new value at anytime in the  
LTARR register, this value will be automatically loaded in the counter when the next overflow  
occurs.  
When counter 2 overflows, the TB2F bit in the LTCSR2 register is set by hardware and an  
interrupt request is generated if the TB2IE bit is set. The TB2F bit is cleared by software  
reading the LTCSR2 register.  
Input capture  
The 8-bit input capture register is used to latch the free-running upcounter (counter 1) 1  
after a rising or falling edge is detected on the LTIC pin. When an input capture occurs, the  
ICF bit is set and the LTICR register contains the value of counter 1. An interrupt is  
generated if the ICIE bit is set. The ICF bit is cleared by reading the LTICR register.  
The LTICR is a read-only register and always contains the data from the last input capture.  
Input capture is inhibited if the ICF bit is set.  
Figure 48. Input capture timing diagram  
4µs  
(@ 8 MHz f  
)
OSC  
f
CPU  
f
OSC/32  
Cleared  
by S/W  
reading  
LTIC register  
8-bit counter 1  
LTIC pin  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
ICF flag  
07h  
xxh  
04h  
LTICR register  
t
Doc ID 11928 Rev 8  
103/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
11.3.4  
Low power modes  
Table 48. Effect of low power modes on lite timer 2  
Mode  
Description  
No effect on lite timer  
Slow  
(this peripheral is driven directly by fOSC/32)  
Wait  
No effect on lite timer  
Active halt  
Halt  
Lite timer stops counting  
(1)  
Table 49. Lite timer 2 interrupt control/wake-up capability  
Exit from  
active halt  
Interrupt event Event flag Enable control bit Exit from wait  
Exit from halt  
Timebase 1 event  
Timebase 2 event  
IC event  
TB1F  
TB2F  
ICF  
TB1IE  
TB2IE  
ICIE  
Yes  
No  
Yes  
No  
1. The TBxF and ICF interrupt events are connected to separate interrupt vectors (see Section 8: Interrupts).  
They generate an interrupt if the enable bit is set in the LTCSR1 or LTCSR2 register and the interrupt mask  
in the CC register is reset (RIM instruction).  
104/234  
Doc ID 11928 Rev 8  
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
11.3.5  
Register description  
Lite timer control/status register 2 (LTCSR2)  
LTCSR2  
Reset value: 0x00 0000 (x0h)  
7
6
5
4
3
2
1
0
Reserved Reserved Reserved Reserved Reserved  
Reserved  
TB2IE  
TB2F  
-
-
-
-
-
-
R/W  
R/W  
Table 50. LTCSR2 register description  
Bit  
Bit name  
Function  
7:2  
-
Reserved, must be kept cleared  
Timebase 2 interrupt enable  
This bit is set and cleared by software.  
0: Timebase (TB2) interrupt disabled  
1: Timebase (TB2) interrupt enabled  
1
0
TB2IE  
TB2F  
Timebase 2 interrupt flag  
This bit is set by hardware and cleared by software reading the  
LTCSR register. Writing to this bit has no effect.  
0: No counter 2 overflow  
1: A counter 2 overflow has occurred  
Lite timer autoreload register (LTARR)  
LTARR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
AR[7:0]  
R/W  
Table 51. LTARR register description  
Bit  
Bit name  
Function  
Counter 2 reload value  
These bits are read/write by software. The LTARR value is  
automatically loaded into counter 2 (LTCNTR) when an overflow  
occurs.  
7:0  
AR[7:0]  
Doc ID 11928 Rev 8  
105/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Lite timer counter 2 (LTCNTR)  
LTCNTR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
CNT[7:0]  
R
Table 52. LTCNTR register description  
Bit  
Bit name  
Function  
Counter 2 reload value  
7:0  
CNT[7:0]  
This register is read by software. The LTARR value is automatically  
loaded into counter 2 (LTCNTR) when an overflow occurs.  
Lite timer control/status register (LTCSR1)  
LTCSR1  
Reset value: 0x00 0000 (x0h)  
7
6
5
4
3
2
1
0
ICIE  
ICF  
TB  
TB1IE  
TB1F  
Reserved  
Reserved Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
-
-
-
Table 53. LTCSR1 register description  
Bit  
Bit name  
Function  
Interrupt enable  
This bit is set and cleared by software.  
0: Input capture (IC) interrupt disabled  
1: Input capture (IC) interrupt enabled  
7
ICIE  
Input capture flag  
This bit is set by hardware and cleared by software by reading the  
LTICR register. Writing to this bit does not change the bit value.  
0: No input capture  
6
ICF  
1: An input capture has occurred  
Note: After an MCU reset, software must initialize the ICF bit by  
reading the LTICR register  
Timebase period selection  
This bit is set and cleared by software.  
0: Timebase period = tOSC * 8000 (1ms @ 8 MHz)  
1: Timebase period = tOSC * 16000 (2ms @ 8 MHz)  
5
4
TB  
Timebase interrupt enable  
This bit is set and cleared by software.  
0: Timebase (TB1) interrupt disabled  
1: Timebase (TB1) interrupt enabled  
TB1IE  
106/234  
Doc ID 11928 Rev 8  
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
Table 53. LTCSR1 register description (continued)  
On-chip peripherals  
Bit  
Bit name  
Function  
Timebase interrupt flag  
This bit is set by hardware and cleared by software reading the  
LTCSR register. Writing to this bit has no effect.  
0: No counter overflow  
3
TB1F  
-
1: A counter overflow has occurred  
Reserved, must be kept cleared  
2:0  
Lite timer input capture register (LTICR)  
LTICR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
ICR[7:0]  
R
Table 54. LTICR register description  
Bit  
Bit name  
Function  
Input capture value  
These bits are read by software and cleared by hardware after a  
reset. If the ICF bit in the LTCSR is cleared, the value of the 8-bit up-  
counter is captured when a rising or falling edge occurs on the LTIC  
pin.  
7:0  
ICR[7:0]  
Table 55. Lite timer register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
LTCSR2  
Reset value  
TB2IE  
0
TB2F  
0
08  
09  
0A  
0B  
0C  
0
0
0
0
0
0
LTARR  
Reset value  
AR7  
0
AR6  
0
AR5  
0
AR4  
0
AR3  
0
AR2  
0
AR1  
0
AR0  
0
LTCNTR  
Reset value  
CNT7 CNT6 CNT5 CNT4 CNT3  
0
CNT2  
0
CNT1  
0
CNT0  
0
0
0
0
0
LTCSR1  
Reset value  
ICIE  
0
ICF  
x
TB  
0
TB1IE TB1F  
0
0
0
0
0
LTICR  
Reset value  
ICR7  
0
ICR6  
0
ICR5  
0
ICR4  
0
ICR3  
0
ICR2  
0
ICR1  
0
ICR0  
0
Doc ID 11928 Rev 8  
107/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
11.4  
Serial peripheral interface (SPI)  
11.4.1  
Introduction  
The serial peripheral interface (SPI) allows full-duplex, synchronous, serial communication  
with external devices. An SPI system may consist of a master and one or more slaves or a  
system in which devices may be either masters or slaves.  
11.4.2  
Main features  
Full duplex synchronous transfers (on three lines)  
Simplex synchronous transfers (on two lines)  
Master or slave operation  
6 master mode frequencies (f  
/4 max.)  
CPU  
f
/2 max. slave mode frequency (see note below)  
CPU  
SS management by software or hardware  
Programmable clock polarity and phase  
End of transfer interrupt flag  
Write collision, master mode fault and overrun flags  
Note:  
In slave mode, continuous transmission is not possible at maximum frequency due to the  
software overhead for clearing status flags and to initiate the next transmission sequence.  
11.4.3  
General description  
Figure 49: Serial peripheral interface block diagram on page 109 shows the serial peripheral  
interface (SPI) block diagram. There are three registers:  
SPI control register (SPICR)  
SPI control/status register (SPICSR)  
SPI data register (SPIDR)  
The SPI is connected to external devices through four pins:  
MISO: master in/slave out data  
MOSI: master out/slave In data  
SCK: Serial clock out by SPI masters and input by SPI slaves  
SS: Slave select: This input signal acts as a ‘chip select’ to let the SPI master  
communicate with slaves individually and to avoid contention on the data lines.  
Slave SS inputs can be driven by standard I/O ports on the master device.  
108/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 49. Serial peripheral interface block diagram  
Data/address bus  
On-chip peripherals  
Read  
SPIDR  
Interrupt request  
Read buffer  
MOSI  
7
0
SPICSR  
MISO  
8-bit shift register  
Write  
SPIF WCOL OVR MODF  
SOD SSM  
SSI  
0
SOD  
bit  
1
SS  
0
SPI state control  
SCK  
SPICR  
0
7
MSTR  
SPR0  
CPOL CPHA SPR1  
SPIE SPE SPR2  
Master control  
Serial clock generator  
SS  
Functional description  
A basic example of interconnections between a single master and a single slave is illustrated in  
Figure 50: Single master/single slave application on page 110.  
The MOSI pins are connected together and the MISO pins are connected together. In this way data are  
transferred serially between master and slave (most significant bit first).  
The communication is always initiated by the master. When the master device transmits data to a slave  
device via MOSI pin, the slave device responds by sending data to the master device via the MISO pin.  
This implies full duplex communication with both data out and data in synchronized with the same clock  
signal (which is provided by the master device via the SCK pin).  
To use a single data line, the MISO and MOSI pins must be connected at each node (in this case only  
simplex communication is possible).  
Four possible data/clock timing relationships may be chosen (see Figure 53: Data clock timing diagram  
on page 114) but master and slave must be programmed with the same timing mode.  
Doc ID 11928 Rev 8  
109/234  
 
On-chip peripherals  
Figure 50. Single master/single slave application  
ST7L34 ST7L35 ST7L38 ST7L39  
Master  
Slave  
MSbit  
LSbit  
MSbit  
LSbit  
MISO  
MOSI  
MISO  
MOSI  
8-bit shift register  
8-bit shift register  
SPI clock  
generator  
SCK  
SS  
SCK  
SS  
+5 V  
Not used if SS is managed  
by software  
Slave select management  
As an alternative to using the SS pin to control the slave select signal, the application can  
choose to manage the slave select signal by software. This is configured by the SSM bit in  
the SPICSR register (see Figure 52: Hardware/software slave select management on  
page 111).  
In software management, the external SS pin is free for other application uses and the  
internal SS signal level is driven by writing to the SSI bit in the SPICSR register.  
In master mode:  
SS internal must be held high continuously  
In slave mode:  
There are two cases depending on the data/clock timing relationship (see Figure 51:  
Generic SS timing diagram on page 111):  
If CPHA = 1 (data latched on second clock edge):  
SS internal must be held low during the entire transmission. This implies that in  
single slave applications the SS pin either can be tied to V , or made free for  
SS  
standard I/O by managing the SS function by software (SSM = 1 and SSI = 0 in  
the in the SPICSR register)  
If CPHA = 0 (data latched on first clock edge):  
SS internal must be held low during byte transmission and pulled high between  
each byte to allow the slave to write to the shift register. If SS is not pulled high, a  
write collision error occurs when the slave writes to the shift register (see Write  
collision error (WCOL) on page 115).  
110/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 51. Generic SS timing diagram  
On-chip peripherals  
Byte 3  
Byte 1  
Byte 2  
MOSI/MISO  
Master SS  
Slave SS  
(if CPHA = 0)  
Slave SS  
(if CPHA = 1)  
Figure 52. Hardware/software slave select management  
SSM bit  
SSI bit  
1
0
SS internal  
SS external pin  
Master mode operation  
In master mode, the serial clock is output on the SCK pin. The clock frequency, polarity and  
phase are configured by software (refer to the description of the SPICSR register).  
Note:  
The idle state of SCK must correspond to the polarity selected in the SPICSR register (by  
pulling up SCK if CPOL = 1 or pulling down SCK if CPOL = 0).  
How to operate the SPI in master mode  
To operate the SPI in master mode, perform the following steps in order:  
1. Write to the SPICR register:  
Select the clock frequency by configuring the SPR[2:0] bits.  
Select the clock polarity and clock phase by configuring the CPOL and CPHA bits.  
Figure 53: Data clock timing diagram on page 114 shows the four possible  
configurations.  
Note:  
Note:  
The slave must have the same CPOL and CPHA settings as the master  
2. Write to the SPICSR register:  
Either set the SSM bit and set the SSI bit or clear the SSM bit and tie the SS pin  
high for the complete byte transmit sequence.  
3. Write to the SPICR register:  
Set the MSTR and SPE bits  
1
2
MSTR and SPE bits remain set only if SS is high).  
If the SPICSR register is not written first, the SPICR register setting (MSTR bit) may be not  
taken into account.  
The transmit sequence begins when software writes a byte in the SPIDR register.  
Doc ID 11928 Rev 8  
111/234  
 
 
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Master mode transmit sequence  
When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift  
register and then shifted out serially to the MOSI pin most significant bit first.  
When data transfer is complete:  
The SPIF bit is set by hardware  
An interrupt request is generated if the SPIE bit is set and the interrupt mask in the  
CCR register is cleared  
Clearing the SPIF bit is performed by the following software sequence:  
1. An access to the SPICSR register while the SPIF bit is set  
2. A read to the SPIDR register  
Note:  
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR  
register is read.  
Slave mode operation  
In slave mode, the serial clock is received on the SCK pin from the master device.  
To operate the SPI in slave mode:  
1. Write to the SPICSR register to perform the following actions:  
Select the clock polarity and clock phase by configuring the CPOL and CPHA bits  
(see Figure 53: Data clock timing diagram on page 114).  
Note:  
The slave must have the same CPOL and CPHA settings as the master.  
Manage the SS pin as described in Slave select management on page 110 and  
Figure 51: Generic SS timing diagram on page 111. If CPHA = 1 SS must be held  
low continuously. If CPHA = 0 SS must be held low during byte transmission and  
pulled up between each byte to let the slave write in the shift register.  
2. Write to the SPICR register to clear the MSTR bit and set the SPE bit to enable the SPI  
I/O functions.  
Slave mode transmit sequence  
When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift  
register and then shifted out serially to the MISO pin most significant bit first.  
The transmit sequence begins when the slave device receives the clock signal and the most  
significant bit of the data on its MOSI pin.  
When data transfer is complete:  
The SPIF bit is set by hardware.  
An interrupt request is generated if SPIE bit is set and interrupt mask in the CCR  
register is cleared.  
Clearing the SPIF bit is performed by the following software sequence:  
1. An access to the SPICSR register while the SPIF bit is set  
2. A write or a read to the SPIDR register  
112/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
Note:  
1
2
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR  
register is read.  
The SPIF bit can be cleared during a second transmission; however, it must be cleared  
before the second SPIF bit in order to prevent an overrun condition (see Overrun condition  
(OVR) on page 115).  
11.4.4  
Clock phase and clock polarity  
Four possible timing relationships may be chosen by software, using the CPOL and CPHA  
bits (see Figure 53: Data clock timing diagram on page 114).  
Note:  
The idle state of SCK must correspond to the polarity selected in the SPICSR register (by  
pulling up SCK if CPOL = 1 or pulling down SCK if CPOL = 0).  
The combination of the CPOL clock polarity and CPHA (clock phase) bits selects the data  
capture clock edge.  
Figure 53: Data clock timing diagram on page 114 shows an SPI transfer with the four  
combinations of the CPHA and CPOL bits. The diagram may be interpreted as a master or  
slave timing diagram where the SCK pin, the MISO pin and the MOSI pin are directly  
connected between the master and the slave device.  
Note:  
If CPOL is changed at the communication byte boundaries, the SPI must be disabled by  
resetting the SPE bit.  
Doc ID 11928 Rev 8  
113/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 53. Data clock timing diagram  
CPHA = 1  
SCK  
(CPOL = 1)  
SCK  
(CPOL = 0)  
MISO  
(from master)  
MSbit  
MSbit  
Bit 6  
Bit 6  
Bit 5  
Bit 5  
Bit 4  
Bit 4  
Bit3  
Bit3  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
LSbit  
MOSI  
(from slave)  
LSbit  
SS  
(to slave)  
Capture strobe  
CPHA = 0  
SCK  
(CPOL = 1)  
SCK  
(CPOL = 0)  
MISO  
(from master)  
MSbit  
Bit 6  
Bit 6  
Bit 5  
Bit 5  
Bit 4  
Bit 4  
Bit3  
Bit3  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
LSbit  
LSbit  
MOSI  
(from slave)  
MSbit  
SS  
(to slave)  
Capture strobe  
1. This figure should not be used as a replacement for parametric information. Refer to Section 13: Electrical characteristics.  
114/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
11.4.5  
Error flags  
Master mode fault (MODF)  
Master mode fault occurs when the master device’s SS pin is pulled low.  
When a master mode fault occurs:  
The MODF bit is set and an SPI interrupt request is generated if the SPIE bit is  
set.  
The SPE bit is reset. This blocks all output from the device and disables the SPI  
peripheral.  
The MSTR bit is reset, thus forcing the device into slave mode.  
Clearing the MODF bit is done through a software sequence:  
1. A read access to the SPICSR register while the MODF bit is set.  
2. A write to the SPICR register.  
Note:  
1
To avoid any conflicts in an application with multiple slaves, the SS pin must be pulled high  
during the MODF bit clearing sequence. The SPE and MSTR bits may be restored to their  
original state during or after this clearing sequence.  
2
3
4
Hardware does not allow the user to set the SPE and MSTR bits while the MODF bit is set  
except in the MODF bit clearing sequence.  
In a slave device, the MODF bit can not be set, but in a multimaster configuration the device  
can be in slave mode with the MODF bit set.  
The MODF bit indicates that there might have been a multimaster conflict and allows  
software to handle this using an interrupt routine and either perform a reset or return to an  
application default state.  
Overrun condition (OVR)  
An overrun condition occurs when the master device has sent a data byte and the slave  
device has not cleared the SPIF bit issued from the previously transmitted byte.  
When an overrun occurs:  
The OVR bit is set and an interrupt request is generated if the SPIE bit is set.  
In this case, the receiver buffer contains the byte sent after the SPIF bit was last cleared. A  
read to the SPIDR register returns this byte. All other bytes are lost.  
The OVR bit is cleared by reading the SPICSR register.  
Write collision error (WCOL)  
A write collision occurs when the software tries to write to the SPIDR register while a data  
transfer is taking place with an external device. When this happens, the transfer continues  
uninterrupted and the software write will be unsuccessful.  
Write collisions can occur both in master and slave mode. See also Slave select  
management on page 110.  
Note:  
A ‘read collision’ will never occur since the received data byte is placed in a buffer in which  
access is always synchronous with the CPU operation.  
The WCOL bit in the SPICSR register is set if a write collision occurs.  
No SPI interrupt is generated when the WCOL bit is set (the WCOL bit is a status flag only).  
Doc ID 11928 Rev 8  
115/234  
 
 
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Clearing the WCOL bit is done through a software sequence (see Figure 54).  
Figure 54. Clearing the WCOL bit (write collision flag) software sequence  
Clearing sequence after SPIF = 1 (end of a data byte transfer)  
1st step  
Read SPICSR  
Result  
SPIF = 0  
WCOL = 0  
2nd step  
Read SPIDR  
Clearing sequence before SPIF = 1 (during a data byte transfer)  
1st step  
2nd step  
Read SPICSR  
Read SPIDR  
Result  
WCOL = 0  
1. Writing to the SPIDR register instead of reading it does not reset the WCOL bit.  
Single master and multimaster configurations  
There are two types of SPI systems:  
Single master system  
Multimaster system  
Single Master System  
A typical single master system may be configured using a device as the master and four  
devices as slaves (see Figure 55: Single master/multiple slave configuration on page 117).  
The master device selects the individual slave devices by using four pins of a parallel port to  
control the four SS pins of the slave devices.  
The SS pins are pulled high during reset since the master device ports will be forced to be  
inputs at that time, thus disabling the slave devices.  
Note:  
To prevent a bus conflict on the MISO line, the master allows only one active slave device  
during a transmission.  
For more security, the slave device may respond to the master with the received data byte.  
Then the master will receive the previous byte back from the slave device if all MISO and  
MOSI pins are connected and the slave has not written to its SPIDR register.  
Other transmission security methods can use ports for handshake lines or data bytes with  
command fields.  
Multimaster system  
A multimaster system may also be configured by the user. Transfer of master control could  
be implemented using a handshake method through the I/O ports or by an exchange of  
code messages through the serial peripheral interface system.  
The multimaster system is principally handled by the MSTR bit in the SPICR register and  
the MODF bit in the SPICSR register.  
116/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 55. Single master/multiple slave configuration  
On-chip peripherals  
SS  
SS  
SS  
SS  
SCK  
SCK  
SCK  
SCK  
Slave device  
Slave device  
Slave device  
Slave device  
MOSI  
MISO  
MOSI  
MISO  
MOSI  
MISO  
MISO  
MOSI  
MISO  
MOSI  
SCK  
Master  
device  
5 V  
SS  
11.4.6  
Low power modes  
Table 56. Effect of low power modes on SPI  
Mode  
Description  
No effect on SPI  
Wait  
SPI interrupt events cause the device to exit from wait mode.  
SPI registers are frozen  
In halt mode, the SPI is inactive. SPI operation resumes when the device is  
woken up by an interrupt with ‘exit from Halt mode’ capability. The data received  
is subsequently read from the SPIDR register when the software is running  
(interrupt vector fetching). If several data are received before the wakeup event,  
then an overrun error is generated. This error can be detected after the fetch of  
the interrupt routine that woke up the device.  
Halt  
Using the SPI to wake up the device from halt mode  
In slave configuration, the SPI is able to wake up the device from halt mode through a SPIF  
interrupt. The data received is subsequently read from the SPIDR register when the  
software is running (interrupt vector fetch). If multiple data transfers have been performed  
before software clears the SPIF bit, then the OVR bit is set by hardware.  
Note:  
When waking up from halt mode, if the SPI remains in slave mode, it is recommended to  
perform an extra communications cycle to bring the SPI from halt mode state to normal  
state. If the SPI exits from slave mode, it returns to normal state immediately.  
Caution:  
The SPI can wake up the device from halt mode only if the slave select signal (external SS  
pin or the SSI bit in the SPICSR register) is low when the device enters halt mode. So, if  
slave selection is configured as external (see Slave select management on page 110), make  
sure the master drives a low level on the SS pin when the slave enters halt mode.  
Doc ID 11928 Rev 8  
117/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
11.4.7  
Interrupts  
(1)  
Table 57. SPI interrupt control/wake-up capability  
Interrupt event  
Event flag  
Enable control bit  
Exit from wait  
Exit from halt  
SPI end of transfer event  
Master mode fault event  
Overrun error  
SPIF  
MODF  
OVR  
Yes  
SPIE  
Yes  
No  
1. The SPI interrupt events are connected to the same interrupt vector (see Section 8: Interrupts). They  
generate an interrupt if the corresponding enable control bit is set and the interrupt mask in the CC register  
is reset (RIM instruction).  
11.4.8  
Register description  
SPI control register (SPICR)  
SPICR  
7
Reset value: 0000 xxxx (0xh)  
6
5
4
3
2
1
0
SPIE  
R/W  
SPE  
SPR2  
MSTR  
CPOL  
CPHA  
SPR[1:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 58. SPICR register description  
Bit  
Bit name  
Function  
Serial peripheral interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SPI interrupt is generated whenever an end of transfer  
7
SPIE  
event, master mode fault or overrun error occurs (SPIF = 1,  
MODF = 1 or OVR = 1 in the SPICSR register)  
Serial peripheral output enable  
This bit is set and cleared by software. It is also cleared by hardware  
when, in master mode, SS = 0 (see Master mode fault (MODF) on  
page 115). The SPE bit is cleared by reset, so the SPI peripheral is  
not initially connected to the external pins.  
0: I/O pins free for general purpose I/O  
1: SPI I/O pin alternate functions enabled  
6
5
SPE  
Divider enable  
This bit is set and cleared by software and is cleared by reset. It is  
used with the SPR[1:0] bits to set the baud rate (see bits [1:0]  
below).  
SPR2  
0: Divider by 2 enabled  
1: Divider by 2 disabled  
Note: The SPR2 bit has no effect in slave mode  
118/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Table 58. SPICR register description (continued)  
On-chip peripherals  
Bit  
Bit name  
Function  
Master mode  
This bit is set and cleared by software. It is also cleared by hardware  
when, in master mode, SS = 0 (see Master mode fault (MODF) on  
page 115).  
4
MSTR  
0: Slave mode  
1: Master mode. The function of the SCK pin changes from an input  
to an output and the functions of the MISO and MOSI pins are  
reversed.  
Clock polarity  
This bit is set and cleared by software. This bit determines the idle  
state of the serial clock. The CPOL bit affects both the master and  
slave modes.  
0: SCK pin has a low level idle state  
1: SCK pin has a high level idle state  
3
2
CPOL  
CPHA  
Note: If CPOL is changed at the communication byte boundaries, the  
SPI must be disabled by resetting the SPE bit.  
Clock phase  
This bit is set and cleared by software.  
0: The first clock transition is the first data capture edge  
1: The second clock transition is the first capture edge  
Note: The slave must have the same CPOL and CPHA settings as the  
master.  
Serial clock frequency  
These bits are set and cleared by software. Used with the SPR2 bit,  
they select the baud rate of the SPI serial clock SCK output by the  
SPI in master mode:  
100: serial clock = fCPU/4  
1:0  
SPR[1:0]  
000: serial clock = fCPU/8  
001: serial clock = fCPU/16  
110: serial clock = fCPU/32  
010: serial clock = fCPU/64  
011: serial clock = fCPU/128  
Note: These 2 bits have no effect in slave mode.  
Doc ID 11928 Rev 8  
119/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
SPI control/status register (SPICSR)  
SPICSR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
SPIF  
R
WCOL  
OVR  
MODF  
Reserved  
SOD  
SSM  
SSI  
R
R
R
-
R/W  
R/W  
R/W  
Table 59. SPICSR register description  
Bit  
Bit name  
Function  
Serial peripheral data transfer flag  
This bit is set by hardware when a transfer has been completed. An  
interrupt is generated if SPIE = 1 in the SPICR register. It is cleared  
by a software sequence (an access to the SPICSR register followed  
by a write or a read to the SPIDR register).  
0: Data transfer is in progress or the flag has been cleared  
1: Data transfer between the device and an external device has been  
completed  
7
SPIF  
Note: While the SPIF bit is set, all writes to the SPIDR register are  
inhibited until the SPICSR register is read.  
Write collision status  
This bit is set by hardware when a write to the SPIDR register is  
made during a transmit sequence. It is cleared by a software  
sequence (see Figure 54: Clearing the WCOL bit (write collision flag)  
software sequence on page 116).  
0: No write collision occurred  
1: A write collision has been detected  
6
5
WCOL  
SPI overrun error  
This bit is set by hardware when the byte currently being received in  
the shift register is ready to be transferred into the SPIDR register  
while SPIF = 1 (see Overrun condition (OVR) on page 115). An  
interrupt is generated if SPIE = 1 in SPICR register. The OVR bit is  
cleared by software reading the SPICSR register.  
0: No overrun error  
OVR  
1: Overrun error detected  
Mode fault flag  
This bit is set by hardware when the SS pin is pulled low in master  
mode (see Master mode fault (MODF) on page 115). An SPI  
interrupt can be generated if SPIE = 1 in the SPICR register. This bit  
is cleared by a software sequence (an access to the SPICSR  
register while MODF = 1 followed by a write to the SPICR register).  
0: No master mode fault detected  
4
3
MODF  
1: A fault in master mode has been detected  
-
Reserved, must be kept cleared.  
120/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Table 59. SPICSR register description (continued)  
On-chip peripherals  
Bit  
Bit name  
Function  
SPI output disable  
This bit is set and cleared by software. When set, it disables the  
alternate function of the SPI output (MOSI in master mode/MISO in  
slave mode).  
2
SOD  
0: SPI output enabled (if SPE = 1)  
1: SPI output disabled  
SS management  
This bit is set and cleared by software. When set, it disables the  
alternate function of the SPI SS pin and uses the SSI bit value  
instead. See Slave select management on page 110.  
0: Hardware management (SS managed by external pin)  
1: Software management (internal SS signal controlled by SSI bit.  
External SS pin free for general-purpose I/O)  
1
0
SSM  
SSI  
SS internal mode  
This bit is set and cleared by software. It acts as a ‘chip select’ by  
controlling the level of the SS slave select signal when the SSM bit is  
set.  
0 : Slave selected  
1 : Slave deselected  
SPI data I/O register (SPIDR)  
SPIDR  
Reset value: undefined  
7
6
5
4
3
2
1
0
D[7:0]  
R/W  
The SPIDR register is used to transmit and receive data on the serial bus. In a master  
device, a write to this register initiates transmission/reception of another byte.  
Note:  
1
2
During the last clock cycle the SPIF bit is set, a copy of the received data byte in the shift  
register is moved to a buffer. When the user reads the serial peripheral data I/O register, the  
buffer is actually being read.  
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR  
register is read.  
Warning: A write to the SPIDR register places data directly into the  
shift register for transmission.  
A read to the SPIDR register returns the value located in the buffer and not the content of  
the shift register (see Figure 49: Serial peripheral interface block diagram on page 109).  
Doc ID 11928 Rev 8  
121/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Table 60. SPI register map and reset values  
Address (Hex.) Register label  
7
6
5
4
3
2
1
0
SPIDR  
Reset Value  
MSB  
x
LSB  
x
0031h  
0032h  
0033h  
x
x
x
x
x
x
SPICR  
Reset Value  
SPIE SPE SPR2 MSTR CPOL CPHA SPR1 SPR0  
0
0
0
0
x
x
x
x
SPICSR  
Reset Value  
SPIF WCOL OVR MODF  
0
SOD SSM  
0
SSI  
0
0
0
0
0
0
11.5  
LINSCI serial communication interface (LIN master/slave)  
11.5.1  
Introduction  
The serial communications interface (SCI) offers a flexible means of full-duplex data  
exchange with external equipment requiring an industry standard NRZ asynchronous serial  
data format. The SCI offers a very wide range of baud rates using two baud rate generator  
systems.  
The LIN-dedicated features support the LIN (local interconnect network) protocol for both  
master and slave nodes.  
This chapter is divided into SCI Mode and LIN mode sections. For information on general  
SCI communications, refer to the SCI mode section. For LIN applications, refer to both the  
SCI mode and LIN mode sections.  
122/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
11.5.2  
SCI features  
Full duplex, asynchronous communications  
NRZ standard format (mark/space)  
Independently programmable transmit and receive baud rates up to 500 K baud  
Programmable data word length (8 or 9 bits)  
Receive buffer full, transmit buffer empty and end of transmission flags  
2 receiver wake-up modes:  
Address bit (MSB)  
Idle line  
Muting function for multiprocessor configurations  
Separate enable bits for transmitter and receiver  
Overrun, noise and frame error detection  
6 interrupt sources  
Transmit data register empty  
Transmission complete  
Receive data register full  
Idle line received  
Overrun error  
Parity interrupt  
Parity control:  
Transmits parity bit  
Checks parity of received data byte  
Reduced power consumption mode  
11.5.3  
LIN features  
LIN master  
13-bit LIN synch break generation  
LIN slave  
Automatic header handling  
Automatic baud rate resynchronization based on recognition and measurement of  
the LIN synch field (for LIN slave nodes)  
Automatic baud rate adjustment (at CPU frequency precision)  
11-bit LIN synch break detection capability  
LIN Parity check on the LIN identifier field (only in reception)  
LIN error management  
LIN header timeout  
Hot plugging support  
Doc ID 11928 Rev 8  
123/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
11.5.4  
General description  
The interface is externally connected to another device by two pins:  
TDO: Transmit data output. When the transmitter is disabled, the output pin returns to  
its I/O port configuration. When the transmitter is enabled and nothing is to be  
transmitted, the TDO pin is at high level.  
RDI: Receive data input is the serial data input. Oversampling techniques are used for  
data recovery by discriminating between valid incoming data and noise.  
Through these pins, serial data is transmitted and received as characters comprising:  
An Idle line prior to transmission or reception  
A start bit  
A data word (8 or 9 bits) least significant bit first  
A stop bit indicating that the character is complete  
This interface uses three types of baud rate generator:  
A conventional type for commonly-used baud rates  
An extended type with a prescaler offering a very wide range of baud rates even with  
non-standard oscillator frequencies  
A LIN baud rate generator with automatic resynchronization  
124/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
Figure 56. SCI block diagram (in conventional baud rate generator mode)  
Write  
Read  
(Data register) SCIDR  
Received data register (RDR)  
Receive Shift Register  
Transmit data register (TDR)  
TDO  
RDI  
Transmit shift register  
SCICR1  
PCE  
PS PIE  
SC  
ID  
WA  
KE  
R8  
T8  
M
Wake up  
unit  
Receiver clock  
Transmit control  
Receiver control  
SCISR  
SCICR2  
TC  
RW  
SBK  
U
TD  
RE  
RD ID OR  
TC  
TIE  
RIE ILIE TE RE  
NF  
FE PE  
IE  
RF LE LHE  
SCI interrupt control  
Transmitter clock  
Transmitter rate  
control  
f
/16  
/PR  
CPU  
SCIBRR  
SC SC  
P0 T2  
SC  
P1  
SC SC SC SC SC  
T1 T0 R2 R1 R0  
Receiver rate  
control  
Conventional baud rate generator  
11.5.5  
SCI mode - functional description  
Conventional baud rate generator mode  
The block diagram of the serial control interface in conventional baud rate generator mode is  
shown in Figure 56.  
It uses four registers:  
2 control registers (SCICR1 and SCICR2)  
A status register (SCISR)  
A baud rate register (SCIBRR)  
Doc ID 11928 Rev 8  
125/234  
 
On-chip peripherals  
Extended prescaler mode  
ST7L34 ST7L35 ST7L38 ST7L39  
Two additional prescalers are available in extended prescaler mode. They are shown in  
Figure 58: SCI baud rate and extended prescaler block diagram on page 131.  
An extended prescaler receiver register (SCIERPR)  
An extended prescaler transmitter register (SCIETPR)  
Serial data format  
Word length may be selected as being either 8 or 9 bits by programming the M bit in the  
SCICR1 register (see Figure 57).  
The TDO pin is in low state during the start bit.  
The TDO pin is in high state during the stop bit.  
An idle character is interpreted as a continuous logic high level for 10 (or 11) full bit times.  
A break character is a character with a sufficient number of low level bits to break the normal  
data format followed by an extra “1” bit to acknowledge the start bit.  
Figure 57. Word length programming  
9-bit word length (M bit is set)  
Data character  
Bit2 Bit3  
Possible  
Next data character  
parity bit  
Next  
start  
bit  
Start  
bit  
Stop  
bit  
Bit0  
Bit1  
Bit4  
Bit5  
Bit6  
Bit7 Bit8  
Start  
Bit  
Idle line  
Start  
bit  
Extra  
’1’  
Break character  
8-bit word length (M bit is reset)  
Possible  
parity bit  
Data character  
Bit2  
Next data character  
Next  
start  
Start  
bit  
Stop  
bit  
bit  
Bit0  
Bit1  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
Start  
bit  
Idle line  
Start  
bit  
Extra  
’1’  
Break character  
Transmitter  
The transmitter can send data words of either 8 or 9 bits depending on the M bit status.  
When the M bit is set, word length is 9 bits and the 9th bit (the MSB) has to be stored in the  
T8 bit in the SCICR1 register.  
126/234  
Doc ID 11928 Rev 8  
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
Character transmission  
On-chip peripherals  
During an SCI transmission, data shifts out least significant bit first on the TDO pin. In this  
mode, the SCIDR register consists of a buffer (TDR) between the internal bus and the  
transmit shift register (see Figure 56).  
Procedure  
Select the M bit to define the word length.  
Select the desired baud rate using the SCIBRR and the SCIETPR registers.  
Set the TE bit to send a preamble of 10 (M = 0) or 11 (M = 1) consecutive ones (idle  
line) as first transmission.  
Access the SCISR register and write the data to send in the SCIDR register (this  
sequence clears the TDRE bit). Repeat this sequence for each data to be transmitted.  
Clearing the TDRE bit is always performed by the following software sequence:  
1. An access to the SCISR register  
2. A write to the SCIDR register  
The TDRE bit is set by hardware and it indicates:  
The TDR register is empty  
The data transfer is beginning  
The next data can be written in the SCIDR register without overwriting the previous  
data  
This flag generates an interrupt if the TIE bit is set and the I[|1:0] bits are cleared in the CCR  
register.  
When a transmission is taking place, a write instruction to the SCIDR register stores the  
data in the TDR register and which is copied in the shift register at the end of the current  
transmission.  
When no transmission is taking place, a write instruction to the SCIDR register places the  
data directly in the shift register, the data transmission starts, and the TDRE bit is  
immediately set.  
When a character transmission is complete (after the stop bit) the TC bit is set and an  
interrupt is generated if the TCIE is set and the I[1:0] bits are cleared in the CCR register.  
Clearing the TC bit is performed by the following software sequence:  
1. An access to the SCISR register  
2. A write to the SCIDR register  
Note:  
The TDRE and TC bits are cleared by the same software sequence.  
Break characters  
Setting the SBK bit loads the shift register with a break character. The break character  
length depends on the M bit (see Figure 57: Word length programming on page 126).  
As long as the SBK bit is set, the SCI sends break characters to the TDO pin. After clearing  
this bit by software, the SCI inserts a logic 1 bit at the end of the last break character to  
guarantee the recognition of the start bit of the next character.  
Idle line  
Setting the TE bit drives the SCI to send a preamble of 10 (M = 0) or 11 (M = 1) consecutive  
‘1’s (idle line) before the first character.  
Doc ID 11928 Rev 8  
127/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
In this case, clearing and then setting the TE bit during a transmission sends a preamble  
(idle line) after the current word. Note that the preamble duration (10 or 11 consecutive ‘1’s  
depending on the M bit) does not take into account the stop bit of the previous character.  
Note:  
Resetting and setting the TE bit causes the data in the TDR register to be lost. Therefore the  
best time to toggle the TE bit is when the TDRE bit is set, that is, before writing the next byte  
in the SCIDR.  
Receiver  
The SCI can receive data words of either 8 or 9 bits. When the M bit is set, word length is 9  
bits and the MSB is stored in the R8 bit in the SCICR1 register.  
Character reception  
During a SCI reception, data shifts in least significant bit first through the RDI pin. In this  
mode, the SCIDR register consists or a buffer (RDR) between the internal bus and the  
received shift register (see Figure 56: SCI block diagram (in conventional baud rate  
generator mode) on page 125).  
Procedure  
Select the M bit to define the word length.  
Select the desired baud rate using the SCIBRR and the SCIERPR registers.  
Set the RE bit, this enables the receiver which begins searching for a start bit.  
When a character is received:  
The RDRF bit is set. It indicates that the content of the shift register is transferred to the  
RDR  
An interrupt is generated if the RIE bit is set and the I[1:0] bits are cleared in the CCR  
register  
The error flags can be set if a frame error, noise or an overrun error has been detected  
during reception  
Clearing the RDRF bit is performed by the following software sequence done by:  
1. An access to the SCISR register  
2. A read to the SCIDR register  
The RDRF bit must be cleared before the end of the reception of the next character to avoid  
an overrun error.  
Idle line  
When an idle line is detected, there is the same procedure as a data received character plus  
an interrupt if the ILIE bit is set and the I[|1:0] bits are cleared in the CCR register.  
Overrun error  
An overrun error occurs when a character is received when RDRF has not been reset. Data  
can not be transferred from the shift register to the TDR register as long as the RDRF bit is  
not cleared.  
128/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
When an overrun error occurs:  
The OR bit is set  
The RDR content will not be lost  
The shift register will be overwritten  
An interrupt is generated if the RIE bit is set and the I[|1:0] bits are cleared in the CCR  
register.  
The OR bit is reset by an access to the SCISR register followed by a SCIDR register read  
operation.  
Noise error  
Oversampling techniques are used for data recovery by discriminating between valid  
incoming data and noise.  
When noise is detected in a character:  
The NF bit is set at the rising edge of the RDRF bit  
Data is transferred from the Shift register to the SCIDR register  
No interrupt is generated. However this bit rises at the same time as the RDRF bit  
which itself generates an interrupt  
The NF bit is reset by a SCISR register read operation followed by a SCIDR register read  
operation.  
Framing error  
A framing error is detected when:  
The stop bit is not recognized on reception at the expected time, following either a  
desynchronization or excessive noise.  
A break is received  
When the framing error is detected:  
the FE bit is set by hardware  
Data is transferred from the shift register to the SCIDR register  
No interrupt is generated. However this bit rises at the same time as the RDRF bit  
which itself generates an interrupt.  
The FE bit is reset by a SCISR register read operation followed by a SCIDR register read  
operation.  
Break character  
When a break character is received, the SCI handles it as a framing error. To differentiate a  
break character from a framing error, it is necessary to read the SCIDR. If the received value  
is 00h, it is a break character. Otherwise it is a framing error.  
Doc ID 11928 Rev 8  
129/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Conventional baud rate generation  
The baud rates for the receiver and transmitter (Rx and Tx) are set independently and  
calculated as follows:  
fCPU  
fCPU  
Rx =  
Tx =  
(16*PR)*RR  
(16*PR)*TR  
where:  
PR = 1, 3, 4 or 13 (see SCP[1:0] bits)  
TR = 1, 2, 4, 8, 16, 32, 64,128 (see SCT[2:0] bits)  
RR = 1, 2, 4, 8, 16, 32, 64,128 (see SCR[2:0] bits)  
All these bits are in the Baud rate register (SCIBRR) on page 139.  
Example: If f is 8 MHz (normal mode) and if PR = 13 and TR = RR = 1, the transmit and  
CPU  
receive baud rates are 38400 baud.  
Note:  
The baud rate registers MUST NOT be changed while the transmitter or the receiver is  
enabled.  
Extended baud rate generation  
The extended prescaler option gives a very fine tuning on the baud rate, using a 255 value  
prescaler, whereas the conventional baud rate generator retains industry standard software  
compatibility.  
The extended baud rate generator block diagram is described in Figure 58: SCI baud rate  
and extended prescaler block diagram on page 131.  
The output clock rate sent to the transmitter or to the receiver will be the output from the 16  
divider divided by a factor ranging from 1 to 255 set in the SCIERPR or the SCIETPR  
register.  
Note:  
The extended prescaler is activated by setting the SCIETPR or SCIERPR register to a value  
other than zero.  
The baud rates are calculated as follows:  
fCPU  
16*ERPR*(PR*RR)  
fCPU  
16*ETPR*(PR*TR)  
Rx =  
Tx =  
where:  
ETPR = 1, ..., 255 (see SCIETPR register on page 140)  
ERPR = 1, ..., 255 (see SCIERPR register on page 140)  
130/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
Figure 58. SCI baud rate and extended prescaler block diagram  
Transmitter clock  
Extended prescaler transmitter rate control  
SCIETPR  
Extended transmitter prescaler register  
SCIERPR  
Extended receiver prescaler register  
Receiver clock  
Extended prescaler receiver rate control  
Extended prescaler  
f
CPU  
Transmitter rate control  
/16  
/PR  
SCIBRR  
SCP1  
SCT2  
SCT1 SCT0 SCR2 SCR1 SCR0  
SCP0  
Receiver rate control  
Conventional baud rate generator  
Receiver muting and wake-up feature  
In multiprocessor configurations it is often desirable that only the intended message  
recipient should actively receive the full message contents, thus reducing redundant SCI  
service overhead for all non-addressed receivers.  
The non-addressed devices may be placed in sleep mode by means of the muting function.  
Doc ID 11928 Rev 8  
131/234  
 
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Setting the RWU bit by software puts the SCI in sleep mode:  
All the reception status bits cannot be set.  
All the receive interrupts are inhibited.  
A muted receiver may be woken up in one of the following ways:  
by idle line detection if the WAKE bit is reset,  
by address mark detection if the WAKE bit is set.  
Idle line detection  
The receiver wakes up by idle line detection when the receive line has recognized an idle  
line. Then the RWU bit is reset by hardware but the IDLE bit is not set.  
This feature is useful in a multiprocessor system when the first characters of the message  
determine the address and when each message ends by an idle line: As soon as the line  
becomes idle, every receiver is awakened and the first characters of the message are  
analysed which indicates the addressed receiver. The receivers which are not addressed  
set the RWU bit to enter in mute mode. Consequently, they will not read the next characters  
constituting the next part of the message. At the end of the message, an idle line is sent by  
the transmitter: this wakes up every receiver which are ready to analyse the addressing  
characters of the new message.  
In such a system, the inter-characters space must be smaller than the idle time.  
Address mark detection  
The receiver wakes up by address mark detection when it receives a ‘1’ as the most  
significant bit of a word, thus indicating that the message is an address. The reception of  
this particular word wakes up the receiver, resets the RWU bit and sets the RDRF bit, which  
allows the receiver to receive this word normally and to use it as an address word.  
This feature is useful in a multiprocessor system when the most significant bit of each  
character (except for the break character) is reserved for address detection. As soon as the  
receivers receive an address character (most significant bit = ’1’), the receivers are woken  
up. The receivers which are not addressed set RWU bit to enter in mute mode.  
Consequently, they will not treat the next characters constituting the next part of the  
message.  
Parity control  
Hardware byte parity control (generation of parity bit in transmission and parity checking in  
reception) can be enabled by setting the PCE bit in the SCICR1 register. Depending on the  
character format defined by the M bit, the possible SCI character formats are as listed in  
Table 61.  
Note:  
In case of wake-up by an address mark, the MSB bit of the data is taken into account and  
not the parity bit  
(1)  
Table 61. Character formats  
M bit  
PCE bit  
Character format  
0
1
0
1
| SB | 8 bit data | STB |  
0
| SB | 7-bit data | PB | STB |  
| SB | 9-bit data | STB |  
1
| SB | 8-bit data | PB | STB |  
1. Legend: SB = start bit, STB = stop bit, PB = parity bit  
132/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Even parity  
On-chip peripherals  
The parity bit is calculated to obtain an even number of ‘1s’ inside the character made of the  
7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.  
Example: data = 00110101; 4 bits set => parity bit will be 0 if even parity is selected  
(PS bit = 0).  
Odd parity  
The parity bit is calculated to obtain an odd number of ‘1s’ inside the character made of the  
7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.  
Example: data = 00110101; 4 bits set => parity bit will be 1 if odd parity is selected  
(PS bit = 1).  
Transmission mode  
If the PCE bit is set then the MSB bit of the data written in the data register is not transmitted  
but is changed by the parity bit.  
Reception mode  
If the PCE bit is set then the interface checks if the received data byte has an even number  
of ‘1s’ if even parity is selected (PS = 0) or an odd number of ‘1s’ if odd parity is selected  
(PS = 1). If the parity check fails, the PE flag is set in the SCISR register and an interrupt is  
generated if PCIE is set in the SCICR1 register.  
11.5.6  
Low power modes  
Table 62. Effect of low power modes on SCI  
Mode  
Description  
No effect on SCI  
Wait  
SCI interrupts cause the device to exit from wait mode  
SCI registers are frozen  
Halt  
In halt mode, the SCI stops transmitting/receiving until halt mode is  
exited  
11.5.7  
Interrupts  
Table 63. SCI interrupt control/wake-up capability  
Interrupt event  
Event flag Enable control bit Exit from wait Exit from halt  
Transmit data register empty  
Transmission complete  
TDRE  
TC  
TIE  
TCIE  
Received data ready to be read  
RDRF  
RIE  
Overrun error or LIN synch  
error detected  
OR/LHE  
Yes  
No  
Idle line detected  
Parity error  
IDLE  
PE  
ILIE  
PIE  
LIN header detection  
LHDF  
LHIE  
Doc ID 11928 Rev 8  
133/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
The SCI interrupt events are connected to the same interrupt vector (see Section 8:  
Interrupts).  
These events generate an interrupt if the corresponding enable control bit is set and the  
interrupt mask in the CC register is reset (RIM instruction).  
11.5.8  
SCI mode registers  
Status register (SCISR)  
SCISR  
7
Reset value: 1100 0000 (C0h)  
6
5
4
3
2
1
0
TDRE  
TC  
RDRF  
IDLE  
OR(1)  
NF(1)  
FE(1)  
PE(1)  
R
R
R
R
R
R
R
R
1. This bit has a different function in LIN mode, please refer to the LIN mode register description  
Table 64. SCISR register description  
Bit  
Bit name  
Function  
Transmit data register empty  
This bit is set by hardware when the content of the TDR register has  
been transferred into the shift register. An interrupt is generated if the  
TIE bit = 1 in the SCICR2 register. It is cleared by a software  
sequence (an access to the SCISR register followed by a write to the  
SCIDR register).  
7
TDRE  
0: Data is not transferred to the shift register  
1: Data is transferred to the shift register  
Transmission complete  
This bit is set by hardware when transmission of a character  
containing data is complete. An interrupt is generated if TCIE = 1 in  
the SCICR2 register. It is cleared by a software sequence (an access  
to the SCISR register followed by a write to the SCIDR register).  
0: Transmission is not complete  
6
TC  
1: Transmission is complete  
Note: TC is not set after the transmission of a preamble or a break.  
Received data ready flag  
This bit is set by hardware when the content of the RDR register has  
been transferred to the SCIDR register. An interrupt is generated if  
RIE = 1 in the SCICR2 register. It is cleared by a software sequence  
(an access to the SCISR register followed by a read to the SCIDR  
register).  
5
RDRF  
0: Data are not received  
1: Received data are ready to be read  
134/234  
Doc ID 11928 Rev 8  
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
Table 64. SCISR register description (continued)  
On-chip peripherals  
Bit  
Bit name  
Function  
Idle line detect  
This bit is set by hardware when an idle line is detected. An interrupt  
is generated if the ILIE = 1 in the SCICR2 register. It is cleared by a  
software sequence (an access to the SCISR register followed by a  
read to the SCIDR register).  
4
IDLE  
0: No idle line is detected  
1: Idle line is detected  
Note: The IDLE bit is not set again until the RDRF bit is set (i.e. a new  
idle line occurs).  
Overrun error  
This bit is set by hardware when the word currently being received in  
the shift register is ready to be transferred into the RDR register  
while RDRF = 1. An interrupt is generated if RIE = 1 in the SCICR2  
register. It is cleared by a software sequence (an access to the  
SCISR register followed by a read to the SCIDR register).  
0: No overrun error  
3
OR  
1: Overrun error is detected  
Note: When the IDLE bit is set the RDR register content is not lost but  
the shift register is overwritten.  
Noise flag  
This bit is set by hardware when noise is detected on a received  
character. It is cleared by a software sequence (an access to the  
SCISR register followed by a read to the SCIDR register).  
0: No noise is detected  
2
NF  
1: Noise is detected  
Note: The NF bit does not generate an interrupt as it appears at the  
same time as the RDRF bit which itself generates an interrupt.  
Framing error  
This bit is set by hardware when a de-synchronization, excessive  
noise or a break character is detected. It is cleared by a software  
sequence (an access to the SCISR register followed by a read to the  
SCIDR register).  
1
FE  
0: No framing error is detected  
1: Framing error or break character is detected  
Note: The FE bit does not generate an interrupt as it appears at the  
same time as the RDRF bit which itself generates an interrupt.  
If the word currently being transferred causes both frame error  
and overrun error, it is transferred and only the OR bit is set.  
Parity error  
This bit is set by hardware when a parity error occurs (if the PCE bit  
is set) in receiver mode. It is cleared by a software sequence (a read  
to the status register followed by an access to the SCIDR data  
register). An interrupt is generated if PIE = 1 in the SCICR1 register.  
0: No parity error  
0
PE  
1: Parity error  
Doc ID 11928 Rev 8  
135/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Control register 1 (SCICR1)  
SCICR1  
7
Reset value: x000 0000 (x0h)  
6
5
4
3
2
1
0
R8  
T8  
SCID  
M
WAKE  
PCE(1)  
PS  
PIE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1. This bit has a different function in LIN mode, please refer to the LIN mode register description  
Table 65. SCICR1 register description  
Bit  
Bit name  
Function  
Receive data bit 8  
7
R8  
This bit is used to store the 9th bit of the received word when M = 1.  
Transmit data bit 8  
6
5
T8  
This bit is used to store the 9th bit of the transmitted word when  
M = 1.  
Disabled for low power consumption  
When this bit is set the SCI prescalers and outputs are stopped at  
the end of the current byte transfer in order to reduce power  
consumption.This bit is set and cleared by software.  
0: SCI enabled  
SCID  
1: SCI prescaler and outputs disabled  
Word length  
This bit determines the word length. It is set or cleared by software.  
0: 1 Start bit, 8 data bits, 1 stop bit  
1: 1 Start bit, 9 data bits, 1 stop bit  
4
3
2
M
Note: The M bit must not be modified during a data transfer (both  
transmission and reception).  
Wake up method  
This bit determines the SCI wake up method, it is set or cleared by  
software.  
0: Idle line  
1: Address mark  
WAKE  
Note: If the LINE bit is set, the WAKE bit is deactivated and replaced  
by the LHDM bit.  
Parity control enable  
This bit is set and cleared by software. It selects the hardware parity  
control (generation and detection for byte parity, detection only for  
LIN parity).  
PCE  
0: Parity control disabled  
1: Parity control enabled  
136/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Table 65. SCICR1 register description (continued)  
On-chip peripherals  
Bit  
Bit name  
Function  
Parity selection  
This bit selects the odd or even parity when the parity  
generation/detection is enabled (PCE bit set). It is set and cleared by  
software. The parity is selected after the current byte.  
0: Even parity  
1
PS  
1: Odd parity  
Parity interrupt enable  
This bit enables the interrupt capability of the hardware parity control  
when a parity error is detected (PE bit set). The parity error involved  
can be a byte parity error (if bit PCE is set and bit LPE is reset) or a  
LIN parity error (if bit PCE is set and bit LPE is set).  
0: Parity error interrupt disabled  
0
PIE  
1: Parity error interrupt enabled  
Control register 2 (SCICR2)  
SCICR2  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
TIE  
TCIE  
RIE  
ILIE  
TE  
RE  
RWU(1)  
SBK(1)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1. This bit has a different function in LIN mode, please refer to the LIN mode register description  
Table 66. SCICR2 register description  
Bit  
Bit name  
Function  
Transmitter interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
7
TIE  
1: An SCI interrupt is generated whenever TDRE = 1 in the SCISR  
register  
Transmission complete interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SCI interrupt is generated whenever TC = 1 in the SCISR  
register  
6
5
4
TCIE  
RIE  
Receiver interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SCI interrupt is generated whenever OR = 1 or RDRF = 1 in  
the SCISR register  
Idle line interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
ILIE  
1: An SCI interrupt is generated whenever IDLE = 1 in the SCISR  
register  
Doc ID 11928 Rev 8  
137/234  
 
 
On-chip peripherals  
Table 66. SCICR2 register description (continued)  
ST7L34 ST7L35 ST7L38 ST7L39  
Bit  
Bit name  
Function  
Transmitter enable  
This bit enables the transmitter. It is set and cleared by software.  
0: Transmitter is disabled  
1: Transmitter is enabled  
3
TE  
Note: During transmission, an ‘0’ pulse on the TE bit (‘0’ followed by  
‘1’) sends a preamble (idle line) after the current word.  
When TE is set there is a 1 bit-time delay before the  
transmission starts.  
Receiver enable  
This bit enables the receiver. It is set and cleared by software.  
0: Receiver is disabled in the SCISR register  
2
RE  
1: Receiver is enabled and begins searching for a start bit  
Receiver wake up  
This bit determines if the SCI is in mute mode or not. It is set and  
cleared by software and can be cleared by hardware when a wake  
up sequence is recognized.  
0: Receiver in active mode  
1: Receiver in mute mode  
1
RWU  
Note: Before selecting mute mode (by setting the RWU bit), the SCI  
must first receive a data byte, otherwise it cannot function in  
mute mode with wakeup by idle line detection.  
In address mark detection wake up configuration (WAKE bit =  
1) the RWU bit cannot be modified by software while the RDRF  
bit is set.  
Send break  
This bit set is used to send break characters. It is set and cleared by  
software.  
0
SBK  
0: No break character is transmitted  
1: Break characters are transmitted  
Note: If the SBK bit is set to ‘1’ and then to ‘0’, the transmitter sends a  
BREAK word at the end of the current word.  
Data register (SCIDR)  
Contains the received or transmitted data character, depending on whether it is read from or  
written to.  
SCIDR  
7
Reset value: undefined  
6
5
4
3
2
1
0
DR[7:0]  
R/W  
The data register performs a double function (read and write) since it is composed of two  
registers, one for transmission (TDR) and one for reception (RDR).  
138/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
The TDR register provides the parallel interface between the internal bus and the output  
shift register (see Figure 56: SCI block diagram (in conventional baud rate generator mode)  
on page 125).  
The RDR register provides the parallel interface between the input shift register and the  
internal bus (see Figure 56).  
Baud rate register (SCIBRR)  
SCIBRR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
SCP[1:0]  
R/W  
SCT[2:0]  
SCR[2:0]  
R/W  
R/W  
Note:  
When LIN slave mode is disabled, the SCIBRR register controls the conventional baud rate  
generator.  
Table 67. SCIBRR register description  
Bit  
Bit name  
Function  
First SCI prescaler  
These 2 prescaling bits allow several standard clock division ranges:  
00: PR prescaling factor = 1  
01: PR prescaling factor = 3  
7:6  
SCP[1:0]  
10: PR prescaling factor = 4  
11: PR prescaling factor = 13  
SCI transmitter rate divisor  
These 3 bits, in conjunction with the SCP1 and SCP0 bits define the  
total division applied to the bus clock to yield the transmit rate clock  
in conventional baud rate generator mode:  
000: TR dividing factor = 1  
001: TR dividing factor = 2  
010: TR dividing factor = 4  
5:3  
SCT[2:0]  
011: TR dividing factor = 8  
100: TR dividing factor = 16  
101: TR dividing factor = 32  
110: TR dividing factor = 64  
111: TR dividing factor = 128  
SCI receiver rate divider  
These 3 bits, in conjunction with the SCP[1:0] bits define the total  
division applied to the bus clock to yield the receive rate clock in  
conventional baud rate generator mode:  
000: RR dividing factor = 1  
001: RR dividing factor = 2  
010: RR dividing factor = 4  
2:0  
SCR[2:0]  
011: RR dividing factor = 8  
100: RR dividing factor = 16  
101: RR dividing factor = 32  
110: RR dividing factor = 64  
111: RR dividing factor = 128  
Doc ID 11928 Rev 8  
139/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Extended receive prescaler division register (SCIERPR)  
SCIERPR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
ERPR[7:0]  
R/W  
Table 68. SCIERPR register description  
Bit  
Bit name  
Function  
8-bit extended receive prescaler register  
The extended baud rate generator is activated when a value different  
from 00h is stored in this register. Therefore the clock frequency  
issued from the 16 divider (see Figure 58: SCI baud rate and  
extended prescaler block diagram on page 131) is divided by  
the binary factor set in the SCIERPR register (in the range 1 to 255).  
The extended baud rate generator is not active after a reset.  
7:0  
ERPR[7:0]  
Extended transmit prescaler division register (SCIETPR)  
SCIETPR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
ETPR[7:0]  
R/W  
Table 69. SCIETPR register description  
Bit  
Bit name  
Function  
8-bit extended transmit prescaler register  
The extended baud rate generator is activated when a value different  
from 00h is stored in this register. Therefore the clock frequency  
issued from the 16 divider (see Figure 58: SCI baud rate and  
extended prescaler block diagram on page 131) is divided by  
the binary factor set in the SCIETPR register (in the range 1 to 255).  
The extended baud rate generator is not used after a reset.  
7:0  
ETPR[7:0]  
Note: In LIN slave mode, the conventional and extended baud rate  
generators are disabled.  
140/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
11.5.9  
LIN mode - functional description.  
The block diagram of the serial control interface, in LIN slave mode is shown in Figure 60:  
SCI block diagram in LIN slave mode on page 143.  
It uses six registers:  
3 control registers: SCICR1, SCICR2 and SCICR3  
2 status registers: SCISR register and LHLR register mapped at the SCIERPR address  
A baud rate register: LPR mapped at the SCIBRR address and an associated fraction  
register LPFR mapped at the SCIETPR address  
The bits dedicated to LIN are located in the SCICR3. Refer to the register descriptions in  
Section 11.5.10: LIN mode register description for the definitions of each bit.  
Entering LIN mode  
To use the LINSCI in LIN mode the following configuration must be set in SCICR3 register:  
Clear the M bit to configure 8-bit word length.  
Set the LINE bit.  
Master  
To enter master mode the LSLV bit must be reset In this case, setting the SBK bit will send  
13 low bits.  
Then the baud rate can programmed using the SCIBRR, SCIERPR and SCIETPR registers.  
In LIN master mode, the conventional and/or extended prescaler define the baud rate (as in  
standard SCI mode)  
Slave  
Set the LSLV bit in the SCICR3 register to enter LIN slave mode. In this case, setting the  
SBK bit will have no effect.  
In LIN slave mode the LIN baud rate generator is selected instead of the conventional or  
extended prescaler. The LIN baud rate generator is common to the transmitter and the  
receiver.  
Then the baud rate can be programmed using LPR and LPRF registers.  
Note:  
It is mandatory to set the LIN configuration first before programming LPR and LPRF,  
because the LIN configuration uses a different baud rate generator from the standard one.  
LIN transmission  
In LIN mode the same procedure as in SCI mode has to be applied for a LIN transmission.  
To transmit the LIN header the proceed as follows:  
First set the SBK bit in the SCICR2 register to start transmitting a 13-bit LIN synch  
break  
Reset the SBK bit  
Load the LIN synch field (0x55) in the SCIDR register to request synch field  
transmission  
Wait until the SCIDR is empty (TDRE bit set in the SCISR register)  
Load the LIN message Identifier in the SCIDR register to request Identifier  
transmission.  
Doc ID 11928 Rev 8  
141/234  
On-chip peripherals  
Figure 59. LIN characters  
ST7L34 ST7L35 ST7L38 ST7L39  
8-bit word length (M bit is reset)  
Data character  
Start  
Next data character  
Next  
start  
bit  
Stop  
bit  
Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7  
bit  
Start  
bit  
Idle line  
LIN synch field  
LIN synch break = 13 low bits  
Start  
Extra  
bit  
‘1’  
LIN synch field  
Next  
start  
bit  
Start  
Stop  
bit  
Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7  
bit  
Measurement for baud rate autosynchronization  
142/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 60. SCI block diagram in LIN slave mode  
On-chip peripherals  
Write  
Read  
Data register (SCIDR)  
Received data register (RDR)  
Receive shift register  
Transmit data register (TDR)  
TDO  
RDI  
Transmit shift register  
SCICR1  
PCE PS PIE  
WA/  
KE  
SC/  
ID  
R8  
T8  
M
Wake  
up  
unit  
Transmit control  
Receiver control  
Receiver  
clock  
SCICR2  
SCISR  
ID/  
RD/  
OR/  
RW/  
TD/  
RE  
TIE TCIE RIE ILIE TE RE  
SBK  
TC  
NF FE PE  
RF LE LHE  
U
SCI interrupt control  
Transmitter clock  
SCICR3  
f
CPU  
LH/  
LD/ LI/  
UM NE  
LA/  
SE  
LSF  
LSLV  
LHDM LHIE  
DF  
LIN slave baud rate  
auto synchronization unit  
SCIBRR  
Conventional baud rate  
generator and  
extended prescaler  
LPR7  
LPR0  
/16  
0
1
f
/LDIV  
CPU  
LIN slave baud rate generator  
LIN reception  
In LIN mode the reception of a byte is the same as in SCI mode but the LINSCI has features  
for handling the LIN header automatically (identifier detection) or semi-automatically (synch  
break detection) depending on the LIN header detection mode. The detection mode is  
selected by the LHDM bit in the SCICR3.  
Doc ID 11928 Rev 8  
143/234  
 
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Additionally, an automatic resynchronization feature can be activated to compensate for any  
clock deviation, for more details please refer to LIN baud rate on page 148.  
LIN header handling by a slave  
Depending on the LIN header detection method the LINSCI will signal the detection of a LIN  
header after the LIN synch break or after the Identifier has been successfully received.  
Note:  
1
2
It is recommended to combine the header detection function with mute mode. Putting the  
LINSCI in mute mode allows the detection of headers only and prevents the reception of any  
other characters.  
This mode can be used to wait for the next header without being interrupted by the data  
bytes of the current message in case this message is not relevant for the application.  
Synch break detection (LHDM = 0)  
When a LIN synch break is received:  
The RDRF bit in the SCISR register is set. It indicates that the content of the shift  
register is transferred to the SCIDR register, a value of 0x00 is expected for a break.  
The LHDF flag in the SCICR3 register indicates that a LIN synch break field has been  
detected.  
An interrupt is generated if the LHIE bit in the SCICR3 register is set and the I[1:0] bits  
are cleared in the CCR register.  
Then the LIN synch field is received and measured.  
If automatic resynchronization is enabled (LASE bit = 1), the LIN synch field is not  
transferred to the shift register: There is no need to clear the RDRF bit.  
If automatic resynchronization is disabled (LASE bit = 0), the LIN synch field is  
received as a normal character and transferred to the SCIDR register and RDRF is  
set.  
Note:  
Note:  
In LIN slave mode, the FE bit detects all frame error which does not correspond to a break.  
Identifier detection (LHDM = 1):  
This case is the same as the previous one except that the LHDF and the RDRF flags are set  
only after the entire header has been received (this is true whether automatic  
resynchronization is enabled or not). This indicates that the LIN Identifier is available in the  
SCIDR register.  
During LIN synch field measurement, the SCI state machine is switched off and no  
characters are transferred to the data register.  
LIN slave parity  
In LIN slave mode (LINE and LSLV bits are set) LIN parity checking can be enabled by  
setting the PCE bit.  
In this case, the parity bits of the LIN identifier field are checked. The identifier character is  
recognized as the third received character after a break character (included). See Figure 61:  
LIN header on page 145.  
144/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 61. LIN header  
On-chip peripherals  
Parity bits  
LIN synch  
break  
LIN synch  
field  
Identifier  
field  
The bits involved are the two MSB positions (7th and 8th bits if M = 0; 8th and 9th bits if  
M = 0) of the identifier character. The check is performed as specified in Figure 62 by the  
LIN specification.  
Figure 62. LIN identifier  
Stop bit  
Parity bits  
Start bit  
Identifier bits  
ID0 ID1 ID2 ID3 ID4 ID5 P0 P1  
Identifier field  
P0= ID0 ID1 ID2 ID4  
P1= ID1 ID3 ID4 ID5  
M = 0  
LIN error detection  
LIN header error flag  
The LIN header error flag indicates that an invalid LIN header has been detected.  
When a LIN header error occurs:  
The LHE flag is set  
An interrupt is generated if the RIE bit is set and the I[1:0] bits are cleared in the CCR  
register.  
If autosynchronization is enabled (LASE bit = 1), this can mean that the LIN synch field is  
corrupted, and that the SCI is in a blocked state (LSF bit is set). The only way to recover is to  
reset the LSF bit and then to clear the LHE bit.  
The LHE bit is reset by an access to the SCISR register followed by a read of the  
SCIDR register.  
LHE/OVR error conditions  
When auto resynchronization is disabled (LASE bit = 0), the LHE flag detects:  
That the received LIN synch field is not equal to 55h.  
That an overrun occurred (as in standard SCI mode)  
Furthermore, if LHDM is set it also detects that a LIN header reception timeout  
occurred (only if LHDM is set).  
Doc ID 11928 Rev 8  
145/234  
 
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
When the LIN auto-resynchronization is enabled (LASE bit = 1), the LHE flag detects:  
That the deviation error on the synch field is outside the LIN specification which allows  
up to ± 15.5% of period deviation between the slave and master oscillators.  
A LIN header reception timeout occurred. If T  
> T  
then the LHE flag  
HEADER_MAX  
HEADER  
is set. Refer to Figure 63 (only if LHDM is set to 1).  
An overflow during the synch field measurement, which leads to an overflow of the  
divider registers. If LHE is set due to this error then the SCI goes into a blocked state  
(LSF bit is set).  
That an overrun occurred on Fields other than the Synch Field (as in standard SCI  
mode)  
Deviation error on the synch field  
The deviation error is checked by comparing the current baud rate (relative to the slave  
oscillator) with the received LIN synch field (relative to the master oscillator). Two checks are  
performed in parallel:  
The first check is based on a measurement between the first falling edge and the last  
falling edge of the synch field. Let us refer to this period deviation as D:  
If the LHE flag is set, it means that D > 15.625%  
If LHE flag is not set, it means that D < 16.40625%  
If 15.625% D < 16.40625%, then the flag can be either set or reset depending on the  
dephasing between the signal on the RDI line and the CPU clock.  
The second check is based on the measurement of each bit time between both edges  
of the synch field. This checks that each of these bit times is large enough compared to  
the bit time of the current baud rate.  
When LHE is set due to this error then the SCI goes into a blocked state (LSF bit is set).  
LIN header time-out error  
When the LIN identifier field detection method is used (by configuring LHDM to 1) or when  
LIN auto-resynchronization is enabled (LASE bit = 1), the LINSCI automatically monitors the  
T
condition given by the LIN protocol.  
HEADER_MAX  
If the entire header (up to and including the STOP bit of the LIN identifier field) is not  
received within the maximum time limit of 57 bit times then a LIN header error is signalled  
and the LHE bit is set in the SCISR register.  
Figure 63. LIN header reception timeout  
Identifier  
field  
LIN synch  
field  
LIN synch  
break  
T
HEADER  
The time-out counter is enabled at each break detection. It is stopped in the following  
conditions:  
146/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
1. A LIN Identifier field has been received  
2. An LHE error occurred (other than a timeout error)  
3. A software reset of LSF bit (transition from high to low) occurred during the analysis of  
the LIN synch field  
4. If LHE bit is set due to this error during the LIN synchr field (if LASE bit = 1) then the  
SCI goes into a blocked state (LSF bit is set)  
If LHE bit is set due to this error during fields other than LIN synch field or if LASE bit is reset  
then the current received header is discarded and the SCI searches for a new break field.  
Note on LIN header time-out limit  
According to the LIN specification, the maximum length of a LIN header which does not  
cause a timeout is equal to 1.4 * (34 + 1) = 49 T  
master baud rate.  
. T  
refers to the  
BIT_MASTER BIT_MASTER  
When checking this timeout, the slave node is desynchronized for the reception of the LIN  
break and synch fields. Consequently, a margin must be allowed, taking into account the  
worst case: This occurs when the LIN identifier lasts exactly 10 T  
periods. In this  
BIT_MASTER  
case, the LIN break and synch fields lasts 49 - 10 = 39 T  
periods.  
BIT_MASTER  
Assuming the slave measures these first 39 bits with a desynchronized clock of 15.5%. This  
leads to a maximum allowed header length of: 39 x (1/0.845) T + 10T  
BIT_MASTER  
BIT_MASTER  
= 56.15 T  
. A margin is provided so that the time-out occurs when the header  
BIT_SLAVE  
length is greater than 57 T  
periods. If it is less than or equal to 57 T  
BIT_SLAVE  
BIT_SLAVE  
periods, then no timeout occurs.  
LIN header length  
Even if no timeout occurs on the LIN header, it is possible to have access to the effective LIN  
header length (T ) through the LHL register. This allows monitoring at software level  
HEADER  
the T  
condition given by the LIN protocol.  
FRAME_MAX  
This feature is only available when LHDM bit = 1 or when LASE bit = 1.  
Mute mode and errors  
In mute mode when LHDM bit = 1, if an LHE error occurs during the analysis of the LIN  
synch field or if a LIN header time-out occurs then the LHE bit is set but it does not wake up  
from mute mode. In this case, the current header analysis is discarded. If needed, the  
software has to reset LSF bit. Then the SCI searches for a new LIN header.  
In mute mode, if a framing error occurs on a data (which is not a break), it is discarded and  
the FE bit is not set.  
When LHDM bit = 1, any LIN header which respects the following conditions causes a wake-  
up from mute mode:  
A valid LIN break field (at least 11 dominant bits followed by a recessive bit)  
A valid LIN synch field (without deviation error)  
A LIN identifier field without framing error. Note that a LIN parity error on the LIN  
identifier field does not prevent wake-up from mute mode.  
No LIN header time-out should occur during header reception.  
Doc ID 11928 Rev 8  
147/234  
On-chip peripherals  
Figure 64. LIN synch field measurement  
ST7L34 ST7L35 ST7L38 ST7L39  
T
T
= CPU period  
CPU  
= Baud rate period  
BR  
SM = Synch measurement register (15 bits)  
= 16.LP.T  
T
BR  
CPU  
T
BR  
LIN synch field  
Bit5  
LIN synch break  
Next  
start  
Start  
bit  
Bit3 Bit4  
Bit6 Bit7  
Bit0 Bit1 Bit2  
bit  
Extra  
’1’  
Stop  
bit  
Measurement = 8.T = SM.t  
BR  
CPU  
LPR(n)  
LPR(n+1)  
LPR = T /(16.T  
) = rounding (SM/128)  
BR  
CPU  
LIN baud rate  
Baud rate programming is done by writing a value in the LPR prescaler or performing an  
automatic resynchronization as described below.  
Automatic resynchronization  
To automatically adjust the baud rate based on measurement of the LIN synch field:  
Write the nominal LIN prescaler value (usually depending on the nominal baud rate) in  
the LPFR/LPR registers  
Set the LASE bit to enable the auto synchronization unit  
When auto synchronization is enabled, after each LIN synch break, the time duration  
between five falling edges on RDI is sampled on f and the result of this measurement is  
CPU  
stored in an internal 15-bit register called SM (not user accessible) (see Figure 64). Then  
the LDIV value (and its associated LPFR and LPR registers) are automatically updated at  
the end of the fifth falling edge. During LIN synch field measurement, the SCI state machine  
is stopped and no data is transferred to the data register.  
LIN slave baud rate generation  
In LIN mode, transmission and reception are driven by the LIN baud rate generator  
Note:  
LIN master mode uses the extended or conventional prescaler register to generate the baud  
rate.  
If LINE bit = 1 and LSLV bit = 1 then the conventional and extended baud rate generators  
are disabled The baud rate for the receiver and transmitter are both set to the same value,  
depending on the LIN slave baud rate generator:  
fCPU  
Tx = Rx =  
(16*LDIV)  
where:  
LDIV is an unsigned fixed point number. The mantissa is coded on 8 bits in the LPR register  
and the fraction is coded on 4 bits in the LPFR register.  
If LASE bit = 1 then LDIV is automatically updated at the end of each LIN synch field.  
148/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
Three registers are used internally to manage the auto-update of the LIN divider (LDIV):  
LDIV_NOM (nominal value written by software at LPR/LPFR addresses)  
LDIV_MEAS (results of the field synch measurement)  
LDIV (used to generate the local baud rate)  
The control and interactions of these registers, explained in Figure 65 and Figure 66,  
depend on the LDUM bit setting (LIN divider update method).  
Note:  
As explained in Figure 65 and Figure 66, LDIV can be updated by two concurrent actions: a  
transfer from LDIV_MEAS at the end of the LIN sync field and a transfer from LDIV_NOM  
due to a software write of LPR. If both operations occur at the same time, the transfer from  
LDIV_NOM has priority.  
Figure 65. LDIV read/write operations when LDUM = 0  
Write LPFR  
Write LPR  
LIN sync field  
measurement  
LDIV_NOM  
MANT(7:0) FRAC(3:0)  
Write LPR  
LDIV_MEAS  
MANT(7:0)  
FRAC(3:0)  
Update  
at end of  
synch field  
MANT(7:0) FRAC(3:0)  
LDIV  
Baud rate generation  
Read LPR  
Read LPFR  
Doc ID 11928 Rev 8  
149/234  
 
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 66. LDIV read/write operations when LDUM = 1  
Write LPFR  
Write LPR  
LIN sync field  
measurement  
MANT(7:0) FRAC(3:0)  
LDIV_NOM  
RDRF = 1  
LDIV_MEAS  
MANT(7:0)  
FRAC(3:0)  
Update  
at end of  
synch field  
MANT(7:0)  
FRAC(3:0)  
LDIV  
Baud rate generation  
Read LPR  
Read LPFR  
LINSCI clock tolerance  
LINSCI clock tolerance when unsynchronized  
When LIN slaves are unsynchronized (meaning no characters have been transmitted for a  
relatively long time), the maximum tolerated deviation of the LINSCI clock is ±15%.  
If the deviation is within this range then the LIN synch break is detected properly when a  
new reception occurs.  
This is made possible by the fact that masters send 13 low bits for the LIN synch break,  
which can be interpreted as 11 low bits (13 bits -15% = 11.05) by a ‘fast’ slave and then  
considered as a LIN synch break. According to the LIN specification, a LIN synch break is  
valid when its duration is greater than t  
must last at least 11 low bits.  
= 10. This means that the LIN synch break  
SBRKTS  
Note:  
If the period desynchronization of the slave is +15% (slave too slow), the character ‘00h’  
which represents a sequence of 9 low bits must not be interpreted as a break character (9  
bits + 15% = 10.35). Consequently, a valid LIN synch break must last at least 11 low bits.  
LINSCI clock tolerance when synchronized  
When synchronization has been performed, following reception of a LIN synch break, the  
LINSCI, in LIN mode, has the same clock deviation tolerance as in SCI mode, which is  
explained below:  
During reception, each bit is oversampled 16 times. The mean of the 8th, 9th and 10th  
samples is considered as the bit value.  
Consequently, the clock frequency should not vary more than 6/16 (37.5%) within one bit.  
The sampling clock is resynchronized at each start bit, so that when receiving 10 bits (one  
start bit, 1 data byte, 1 stop bit), the clock deviation should not exceed 3.75%.  
150/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Clock deviation causes  
On-chip peripherals  
The causes which contribute to the total deviation are:  
: Deviation due to transmitter error.  
D
TRA  
Note:  
The transmitter can be either a master or a slave (in case of a slave listening to the  
response of another slave)  
D
D
D
: Error due to the LIN synch measurement performed by the receiver  
MEAS  
: Error due to the baud rate quantization of the receiver  
QUANT  
: Deviation of the local oscillator of the receiver. This deviation can occur  
REC  
during the reception of one complete LIN message assuming that the deviation  
has been compensated at the beginning of the message.  
D
: Deviation due to the transmission line (generally due to the transceivers)  
TCL  
All the deviations of the system should be added and compared to the LINSCI clock  
tolerance:  
D
+ D  
+D  
+ D  
+ D  
< 3.75%  
TCL  
TRA  
MEAS  
QUANT  
REC  
Figure 67. Bit sampling in reception mode  
RDI line  
Sampled values  
Sample  
clock  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14 15  
16  
6/16  
7/16  
7/16  
One bit time  
Error due to LIN synch measurement  
The LIN synch field is measured over eight bit times.  
This measurement is performed using a counter clocked by the CPU clock. The edge  
detections are performed using the CPU clock cycle.  
This leads to a precision of 2 CPU clock cycles for the measurement which lasts 16*8*LDIV  
clock cycles.  
Consequently, this error (D  
) is equal to: 2/(128*LDIV ).  
MIN  
MEAS  
LDIV  
corresponds to the minimum LIN prescaler content, leading to the maximum baud  
MIN  
rate, taking into account the maximum deviation of +/-15%.  
Error due to baud rate quantization  
The baud rate can be adjusted in steps of 1/(16 * LDIV). The worst case occurs when the  
“real” baud rate is in the middle of the step.  
This leads to a quantization error (D  
) equal to 1/(2*16*LDIV ).  
MIN  
QUANT  
Doc ID 11928 Rev 8  
151/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Impact of clock deviation on maximum baud rate  
The choice of the nominal baud rate (LDIV  
) will influence both the quantization error  
NOM  
(D  
) and the measurement error (D  
). The worst case occurs for LDIV  
.
QUANT  
MEAS  
MIN  
Consequently, at a given CPU frequency, the maximum possible nominal baud rate  
(LPR ) should be chosen with respect to the maximum tolerated deviation given by the  
MIN  
equation:  
D
+ 2 / (128*LDIV ) + 1 / (2*16*LDIV  
)
MIN  
TRA  
MIN  
+ D  
+ D  
< 3.75%  
TCL  
REC  
Example:  
A nominal baud rate of 20 Kbits/s at T  
= 125ns (8 MHz) leads to LDIV  
= 25d  
CPU  
NOM  
LDIV  
= 25 - 0.15*25 = 21.25  
MIN  
D
D
= 2 / (128*LDIV ) * 100 = 0.00073%  
MIN  
MEAS  
= 1 / (2*16*LDIV ) * 100 = 0.0015%.  
QUANT  
MIN  
LIN slave systems  
For LIN slave systems (the LINE and LSLV bits are set), receivers wake up by LIN synch  
break or LIN identifier detection (depending on the LHDM bit).  
Hot plugging feature for LIN slave nodes  
In LIN slave mute mode (the LINE, LSLV and RWU bits are set) it is possible to hot plug to a  
network during an ongoing communication flow. In this case the SCI monitors the bus on the  
RDI line until 11 consecutive dominant bits have been detected and discards all the other  
bits received.  
11.5.10 LIN mode register description  
Status register (SCISR)  
SCISR  
Reset value: 1100 0000 (C0h)  
7
6
5
4
3
2
1
0
TDRE  
TC  
RDRF  
IDLE  
LHE  
NF  
FE  
PE  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
152/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
(1)  
Table 70. SCISR register description  
Bit Name  
Function  
Transmit data register empty  
This bit is set by hardware when the content of the TDR register has been transferred  
into the shift register. An interrupt is generated if the TIE = 1 in the SCICR2 register. It  
is cleared by a software sequence (an access to the SCISR register followed by a  
write to the SCIDR register).  
TDRE  
7
0: Data is not transferred to the shift register  
1: Data is transferred to the shift register  
Transmission complete  
This bit is set by hardware when transmission of a character containing data is  
complete. An interrupt is generated if TCIE = 1 in the SCICR2 register. It is cleared by  
a software sequence (an access to the SCISR register followed by a write to the  
SCIDR register).  
0: Transmission is not complete  
1: Transmission is complete  
6
5
4
TC  
Note: TC is not set after the transmission of a preamble or a break.  
Received data ready flag  
This bit is set by hardware when the content of the RDR register has been transferred  
to the SCIDR register. An interrupt is generated if RIE = 1 in the SCICR2 register. It is  
cleared by a software sequence (an access to the SCISR register followed by a read  
to the SCIDR register).  
0: Data is not received  
1: Received data are ready to be read  
RDRF  
Idle line detected  
This bit is set by hardware when an idle line is detected. An interrupt is generated if  
the ILIE = 1 in the SCICR2 register. It is cleared by a software sequence (an access to  
the SCISR register followed by a read to the SCIDR register).  
0: No idle line is detected  
IDLE  
1: idle line is detected  
Note: The IDLE bit is not set again until the RDRF bit has been set itself (that is, a new  
idle line occurs).  
LIN header error  
During LIN header this bit signals three error types:  
The LIN synch field is corrupted and the SCI is blocked in LIN synch state (LSF  
bit = 1).  
A timeout occurred during LIN header reception.  
An overrun error was detected on one of the header field (see OR bit description in  
Status register (SCISR) on page 134).  
An interrupt is generated if RIE = 1 in the SCICR2 register. If blocked in the LIN synch  
state, the LSF bit must first be reset (to exit LIN synch field state and then to be able to  
clear LHE flag). Then it is cleared by the following software sequence: An access to  
the SCISR register followed by a read to the SCIDR register.  
0: No LIN header error  
3
LHE  
1: LIN header error detected  
Note: Apart from the LIN header this bit signals an overrun error as in SCI mode, (see  
description in Status register (SCISR) on page 134).  
Doc ID 11928 Rev 8  
153/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
(1)  
Table 70. SCISR register description (continued)  
Bit Name Function  
Noise flag  
In LIN master mode (LINE bit = 1 and LSLV bit = 0) this bit has the same function as in  
SCI mode, please refer to Status register (SCISR) on page 134.  
2
NF  
In LIN slave mode (LINE bit = 1 and LSLV bit = 1) this bit has no meaning.  
Framing error  
In LIN slave mode, this bit is set only when a real framing error is detected (if the stop  
bit is dominant (0) and at least one of the other bits is recessive (1). It is not set when  
a break occurs, the LHDF bit is used instead as a break flag (if the LHDM bit = 0). It is  
cleared by a software sequence (an access to the SCISR register followed by a read  
to the SCIDR register).  
1
FE  
0: No framing error  
1: Framing error detected  
Parity error  
This bit is set by hardware when a LIN parity error occurs (if the PCE bit is set) in  
receiver mode. It is cleared by a software sequence (a read to the status register  
followed by an access to the SCIDR data register). An interrupt is generated if PIE = 1  
in the SCICR1 register.  
0
PE  
0: No LIN parity error  
1: LIN parity error detected  
1. Bits 7:4 have the same function as in SCI mode, please refer to Status register (SCISR) on page 134.  
Control register 1 (SCICR1)  
SCICR1  
7
Reset value: x000 0000 (x0h)  
6
5
4
3
2
1
0
R8  
T8  
SCID  
M
WAKE  
PCE  
Reserved  
PIE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
R/W  
(1)  
Table 71. SCICR1 register description  
Bit Name  
Function  
Receive data bit 8  
R8  
T8  
7
6
This bit is used to store the 9th bit of the received word when M = 1.  
Transmit data bit 8  
This bit is used to store the 9th bit of the transmitted word when M = 1.  
Disabled for low power consumption  
When this bit is set the SCI prescalers and outputs are stopped and the end of the  
current byte transfer in order to reduce power consumption.This bit is set and cleared  
by software.  
5
SCID  
0: SCI enabled  
1: SCI prescaler and outputs disabled  
154/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
(1)  
Table 71. SCICR1 register description (continued)  
Bit Name Function  
Word length  
This bit determines the word length. It is set or cleared by software.  
0: 1 start bit, 8 data bits, 1 stop bit  
1: 1 start bit, 9 data bits, 1 stop bit  
4
3
M
Note: The M bit must not be modified during a data transfer (both transmission and  
reception).  
Wake-up method  
This bit determines the SCI wake-up method. It is set or cleared by software.  
0: Idle line  
WAKE  
1: Address mark  
Note: If the LINE bit is set, the WAKE bit is deactivated and replaced by the LHDM bit.  
Parity control enable  
This bit is set and cleared by software. It selects the hardware parity control for LIN  
identifier parity check.  
0: Parity control disabled  
1: Parity control enabled  
When a parity error occurs, the PE bit in the SCISR register is set.  
2
1
PCE  
-
Reserved, must be kept cleared  
Parity interrupt enable  
This bit enables the interrupt capability of the hardware parity control when a parity  
error is detected (PE bit set). The parity error involved can be a byte parity error (if bit  
PCE is set and bit LPE is reset) or a LIN parity error (if bit PCE is set and bit LPE is  
set).  
0
PIE  
0: Parity error interrupt disabled  
1: Parity error interrupt enabled  
1. Bits 7:3 and bit 0 have the same function as in SCI mode; please refer to Control register 1 (SCICR1) on  
page 136.  
Control register 2 (SCICR2)  
SCICR2  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
TIE  
TCIE  
RIE  
ILIE  
TE  
RE  
RWU  
SBK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Doc ID 11928 Rev 8  
155/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
(1)  
Table 72. SCICR2 register description  
Bit Name  
Function  
Transmitter interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SCI interrupt is generated whenever TDRE = 1 in the SCISR register  
TIE  
TCIE  
RIE  
7
6
5
4
Transmission complete interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SCI interrupt is generated whenever TC = 1 in the SCISR register  
Receiver interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SCI interrupt is generated whenever OR = 1 or RDRF = 1 in the SCISR register  
Idle line interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
ILIE  
1: An SCI interrupt is generated whenever IDLE = 1 in the SCISR register  
Transmitter enable  
This bit enables the transmitter. It is set and cleared by software.  
0: Transmitter is disabled  
1: Transmitter is enabled  
3
2
TE  
RE  
Note: During transmission, a ‘0’ pulse on the TE bit (‘0’ followed by ‘1’) sends a  
preamble (idle line) after the current word.  
When TE is set, there is a 1 bit-time delay before the transmission starts.  
Receiver enable  
This bit enables the receiver. It is set and cleared by software.  
0: Receiver is disabled in the SCISR register  
1: Receiver is enabled and begins searching for a start bit  
Receiver wake-up  
This bit determines if the SCI is in mute mode or not. It is set and cleared by software  
and can be cleared by hardware when a wake-up sequence is recognized.  
0: Receiver in active mode  
1: Receiver in mute mode  
1
RWU  
Note: Mute mode is recommended for detecting only the header and avoiding the  
reception of any other characters. For more details please refer to LIN reception  
on page 143.  
In LIN slave mode, when RDRF is set, the software can not set or clear the RWU  
bit.  
Send break  
This bit set is used to send break characters. It is set and cleared by software.  
0: No break character is transmitted  
1: Break characters are transmitted  
0
SBK  
Note: If the SBK bit is set to ‘1’ and then to ‘0’, the transmitter sends a BREAK word at  
the end of the current word.  
1. Bits 7:2 have the same function as in SCI mode; please refer to Control register 2 (SCICR2) on page 137.  
156/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
Control register 3 (SCICR3)  
SCICR3  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
LDUM  
R/W  
LINE  
LSLV  
LASE  
LHDM  
LHIE  
LHDF  
LSF  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 73. SCICR3 register description  
Bit  
Name  
Function  
LIN divider update method  
This bit is set and cleared by software and is also cleared by hardware (when  
RDRF = 1). It is only used in LIN slave mode. It determines how the LIN divider  
can be updated by software.  
0: LDIV is updated as soon as LPR is written  
(if no auto synchronization update occurs at the same time)  
1: LDIV is updated at the next received character (when RDRF = 1)  
after a write to the LPR register  
LDUM  
7
Note: If no write to LPR is performed between the setting of LDUM bit and the  
reception of the next character, LDIV is updated with the old value.  
After LDUM has been set, it is possible to reset the LDUM bit by software.  
In this case, LDIV can be modified by writing into LPR/LPFR registers.  
LIN mode enable bits  
These bits configure the LIN mode:  
0x: LIN mode disabled  
10: LIN master mode  
11: LIN slave mode  
The LIN master configuration enables sending of LIN synch breaks (13 low  
bits) using the SBK bit in the SCICR2 register.  
The LIN slave configuration enables:  
The LIN slave baud rate generator. The LIN divider (LDIV) is then represented by  
the LPR and LPFR registers. The LPR and LPFR registers are read/write  
accessible at the address of the SCIBRR register and the address of the  
SCIETPR register.  
6:5 LINE, LSLV  
Management of LIN headers  
LIN synch break detection (11-bit dominant)  
LIN wake-up method (see LHDM bit) instead of the normal SCI wake-up method  
Inhibition of break transmission capability (SBK has no effect)  
LIN parity checking (in conjunction with the PCE bit)  
LIN auto synch enable  
This bit enables the auto synch unit (ASU). It is set and cleared by software. It is  
only usable in LIN slave mode.  
4
LASE  
0: Auto synch unit disabled  
1: Auto synch unit enabled  
Doc ID 11928 Rev 8  
157/234  
On-chip peripherals  
Table 73. SCICR3 register description (continued)  
ST7L34 ST7L35 ST7L38 ST7L39  
Bit  
Name  
Function  
LIN header detection method  
This bit is set and cleared by software. It is only usable in LIN slave mode. It  
enables the header detection method. In addition if the RWU bit in the SCICR2  
register is set, the LHDM bit selects the wake-up method (replacing the WAKE  
bit).  
3
LHDM  
0: LIN synch break detection method  
1: LIN identifier field detection method  
LIN header interrupt enable  
This bit is set and cleared by software. It is only usable in LIN slave mode.  
0: LIN header interrupt is inhibited  
2
LHIE  
1: An SCI interrupt is generated whenever LHDF = 1  
LIN header detection flag  
This bit is set by hardware when a LIN header is detected and cleared by a  
software sequence (an access to the SCISR register followed by a read of the  
SCICR3 register). It is only usable in LIN slave mode.  
0: No LIN header detected  
1: LIN header detected  
1
LHDF  
Note: The header detection method depends on the LHDM bit:  
- If LHDM = 0, a header is detected as a LIN synch break  
- If LHDM = 1, a header is detected as a LIN Identifier, meaning that a LIN  
synch break field + a LIN synch field + a LIN identifier field have been  
consecutively received.  
LIN synch field state  
This bit indicates that the LIN synch field is being analyzed. It is only used in LIN  
slave mode. In auto synchronization mode (LASE bit = 1), when the SCI is in the  
LIN synch field state it waits or counts the falling edges on the RDI line.  
It is set by hardware as soon as a LIN synch break is detected and cleared by  
hardware when the LIN synch field analysis is finished (see Figure 68). This bit  
can also be cleared by software to exit LIN Synch state and return to idle mode.  
0: The current character is not the LIN synch field  
0
LSF  
1: LIN synch field state (LIN synch field undergoing analysis)  
Figure 68. LSF bit set and clear  
Parity bits  
11 dominant bits  
LSF bit  
LIN synch  
break  
Identifier  
field  
LIN synch  
field  
158/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
LIN divider registers  
On-chip peripherals  
LDIV is coded using the two registers LPR and LPFR. In LIN slave mode, the LPR register is  
accessible at the address of the SCIBRR register and the LPFR register is accessible at the  
address of the SCIETPR register.  
LIN prescaler register (LPR)  
LPR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
LPR[7:0]  
R/W  
Table 74. LPR register description  
Bit Name  
Function  
LIN prescaler (mantissa of LDIV)  
LPR[7:0]  
7:0  
These 8 bits define the value of the mantissa of the LDIV (see Table 75).  
Table 75. LIN mantissa rounded values  
LPR[7:0]  
Rounded mantissa (LDIV)  
00h  
01h  
...  
SCI clock disabled  
1
...  
FEh  
FFh  
254  
255  
Caution:  
LPR and LPFR registers have different meanings when reading or writing to them.  
Consequently bit manipulation instructions (BRES or BSET) should never be used to modify  
the LPR[7:0] bits, or the LPFR[3:0] bits.  
LIN prescaler fraction register (LPFR)  
LPFR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
Reserved  
-
LPFR[3:0]  
R/W  
Doc ID 11928 Rev 8  
159/234  
 
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Table 76. LPFR register description  
Bit  
Name  
Function  
-
Reserved, must be kept cleared  
Fraction of LDIV  
7:4  
These 4 bits define the fraction of the LDIV (see Table 77).  
Note: When initializing LDIV, the LPFR register must be written first. Then, the  
write to the LPR register effectively updates LDIV and so the clock  
generation.  
3:0 LPFR[3:0]  
In LIN slave mode, if the LPR[7:0] register is equal to 00h, the transceiver  
and receiver input clocks are switched off.  
Table 77. LDIV fractions  
LPFR[3:0]  
Fraction (LDIV)  
0h  
1h  
...  
0
1/16  
...  
Eh  
Fh  
14/16  
15/16  
Examples of LDIV coding  
Example 1: LPR = 27d and LPFR = 12d  
This leads to:  
Mantissa (LDIV) = 27d  
Fraction (LDIV) = 12/16 = 0.75d  
Therefore LDIV = 27.75d  
Example 2: LDIV = 25.62d  
This leads to:  
LPFR = rounded(16*0.62d) = rounded(9.92d) = 10d = Ah  
LPR = mantissa (25.620d) = 25d = 1Bh  
Example 3: LDIV = 25.99d  
This leads to:  
LPFR = rounded(16*0.99d) = rounded(15.84d) = 16d  
The carry must be propagated to the mantissa: LPR = mantissa (25.99) +  
1 = 26d = 1Ch.  
LIN header length register (LHLR)  
LHLR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
LHL[7:0]  
R
160/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
Note:  
In LIN slave mode when LASE = 1 or LHDM = 1, the LHLR register is accessible at the  
address of the SCIERPR register. Otherwise this register is always read as 00h.  
Table 78. LHLR register description  
Bit  
Name  
Function  
LIN header length  
This is a read-only register, which is updated by hardware if one of the following  
conditions occurs:  
After each break detection, it is loaded with ‘FFh’  
If a timeout occurs on THEADER, it is loaded with 00h  
After every successful LIN header reception (at the same time as the setting of  
LHDF bit), it is loaded with a value (LHL) which gives access to the number of  
bit times of the LIN header length (THEADER).  
LHL[7:0]  
7:0  
LHL register coding is as follows:  
T
HEADER_MAX = 57  
LHL (7:2) represents the mantissa of (57 - THEADER) (see Table 79)  
LHL (1:0) represents the fraction (57 - THEADER) (see Table 80)  
Table 79. LIN header mantissa values  
LHL[7:2]  
Mantissa (57 - THEADER  
)
Mantissa (THEADER  
)
0h  
1h  
0
57  
1
56  
...  
...  
...  
39h  
3Ah  
3Bh  
...  
56  
57  
58  
...  
1
0
Never occurs  
...  
3Eh  
3Fh  
62  
63  
Never occurs  
Initial value  
Table 80. LIN header fractions  
LHL[1:0]  
Fraction (57 - THEADER  
)
0h  
1h  
2h  
3h  
0
1/4  
1/2  
3/4  
Doc ID 11928 Rev 8  
161/234  
 
 
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Examples of LHL coding:  
Example 1: LHL = 33h = 001100 11b  
LHL(7:3) = 1100b = 12d  
LHL(1:0) = 11b = 3d  
This leads to:  
Mantissa (57 - T  
) = 12d  
HEADER  
Fraction (57 - T  
Therefore:  
) = 3/4 = 0.75  
HEADER  
(57 - T  
) = 12.75d and T  
= 44.25d  
HEADER  
HEADER  
Example 2:  
57 - T  
= 36.21d  
HEADER  
LHL(1:0) = rounded(4*0.21d) = 1d  
LHL(7:2) = Mantissa (36.21d) = 36d = 24h  
Therefore LHL(7:0) = 10010001 = 91h  
Example 3:  
57 - T  
= 36.90d  
HEADER  
LHL(1:0) = rounded(4*0.90d) = 4d  
The carry must be propagated to the matissa:  
LHL(7:2) = Mantissa (36.90d) + 1 = 37d  
Therefore LHL(7:0) = 10110000 = A0h  
Table 81. LINSCI1 register map and reset values  
Addr. (Hex.)  
Register name  
7
6
5
4
3
2
1
0
SCISR  
Reset value  
TDRE  
1
TC  
1
RDRF  
0
IDLE OR/LHE  
NF  
0
FE  
0
PE  
0
40  
0
0
DR0  
-
SCIDR  
Reset value  
DR7  
-
DR6  
-
DR5  
-
DR4  
-
DR3  
-
DR2  
-
DR1  
-
41  
42  
SCIBRR  
LPR (LIN slave mode)  
Reset value  
SCP1  
LPR7  
0
SCP0  
LPR6  
0
SCT2  
LPR5  
0
SCT1  
LPR4  
0
SCT0  
LPR3  
0
SCR2 SCR1 SCR0  
LPR2  
0
LPR1  
0
LPR0  
0
SCICR1  
Reset value  
R8  
x
T8  
0
SCID  
0
M
0
WAKE  
0
PCE  
0
PS  
0
PIE  
0
43  
44  
45  
SCICR2  
Reset value  
TIE  
0
TCIE  
0
RIE  
0
ILIE  
0
TE  
0
RE  
0
RWU  
0
SBK  
0
SCICR3  
Reset value  
NP  
0
LINE  
0
LSLV  
0
LASE  
0
LHDM  
0
LHIE  
0
LHDF  
0
LSF  
0
SCIERPR  
ERPR7 ERPR6 ERPR5 ERPR4 ERPR3 ERPR2 ERPR1 ERPR0  
46  
LHLR (LIN slave mode) LHL7  
LHL6  
0
LHL5  
0
LHL4  
0
LHL3  
0
LHL2  
0
LHL1  
0
LHL0  
0
Reset value  
0
SCITPR  
ETPR7 ETPR6 ETPR5 ETPR4 ETPR3 ETPR2 ETPR1 ETPR0  
47  
LPFR (LIN slave mode) LDUM  
0
0
0
0
0
0
LPFR3 LPFR2 LPFR1 LPFR0  
0
0
0
0
0
Reset value  
162/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
Table 81. LINSCI1 register map and reset values (continued)  
Addr. (Hex.)  
Register name  
7
6
5
4
3
2
1
0
SCISR  
Reset value  
TDRE  
1
TC  
1
RDRF  
0
IDLE OR/LHE  
NF  
0
FE  
0
PE  
0
40  
0
0
SCIDR  
Reset value  
DR7  
-
DR6  
-
DR5  
-
DR4  
-
DR3  
-
DR2  
-
DR1  
-
DR0  
-
41  
11.6  
10-bit A/D converter (ADC)  
11.6.1  
Introduction  
The on-chip analog to digital converter (ADC) peripheral is a 10-bit, successive  
approximation converter with internal sample and hold circuitry. This peripheral has up to  
seven multiplexed analog input channels (refer to device pinout description) that allow the  
peripheral to convert the analog voltage levels from up to seven different sources.  
The result of the conversion is stored in a 10-bit data register. The A/D converter is  
controlled through a control/status register.  
11.6.2  
Main features  
10-bit conversion  
Up to 7 channels with multiplexed input  
Linear successive approximation  
Data register (DR) which contains the results  
Conversion complete status flag  
On/off bit (to reduce consumption)  
The block diagram is shown in Figure 69: ADC block diagram on page 164.  
11.6.3  
Functional description  
Analog power supply  
V
and V  
are the high and low level reference voltage pins. In some devices (refer to  
SSA  
DDA  
Section 2: Pin description) they are internally connected to the V and V pins.  
DD  
SS  
Conversion accuracy may therefore be impacted by voltage drops and noise in the event of  
heavily loaded or badly decoupled power supply lines.  
Doc ID 11928 Rev 8  
163/234  
On-chip peripherals  
Figure 69. ADC block diagram  
ST7L34 ST7L35 ST7L38 ST7L39  
Div 4  
1
0
f
ADC  
f
Div 2  
CPU  
0
1
Slow bit  
AD  
ON  
SPE  
ED  
0
EOC  
0
CH2 CH1 CH0 ADCCSR  
3
Hold control  
AIN0  
AIN1  
R
ADC  
Analog to digital  
converter  
Analog  
mux  
AINx  
C
ADC  
D5  
ADCDRH  
D9  
D8  
D7  
D6  
D4  
D3  
D2  
AMP  
CAL  
AMP  
SL  
ADCDRL  
0
0
0
D1  
D0  
OW SEL  
Digital A/D conversion result  
The conversion is monotonic, meaning that the result never decreases if the analog input  
does not decrease and never increases if the analog input does not increase.  
If the input voltage (V ) is greater than V  
(high-level voltage reference) then the  
AIN  
DDA  
conversion result is FFh in the ADCDRH register and 03h in the ADCDRL register (without  
overflow indication).  
If the input voltage (V ) is lower than V  
(low-level voltage reference) then the  
SSA  
AIN  
conversion result in the ADCDRH and ADCDRL registers is 00 00h.  
The A/D converter is linear and the digital result of the conversion is stored in the ADCDRH  
and ADCDRL registers. The accuracy of the conversion is described in the Section 13:  
Electrical characteristics.  
R
is the maximum recommended impedance for an analog input signal. If the impedance  
AIN  
is too high, this results in a loss of accuracy due to leakage and sampling not being  
completed in the allotted time.  
A/D conversion  
The analog input ports must be configured as input, no pull-up, no interrupt. Refer to  
Section 10: I/O ports. Using these pins as analog inputs does not affect the ability of the port  
to be read as a logic input.  
In the ADCCSR register, select the CH[2:0] bits to assign the analog channel to convert.  
164/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
ADC conversion mode  
On-chip peripherals  
In the ADCCSR register, set the ADON bit to enable the A/D converter and to start the  
conversion. From this time on, the ADC performs a continuous conversion of the selected  
channel.  
When a conversion is complete:  
The EOC bit is set by hardware  
The result is in the ADCDR registers  
A read to the ADCDRH resets the EOC bit.  
To read the 10 bits, perform the following steps:  
1. Poll the EOC bit  
2. Read ADCDRL  
3. Read ADCDRH. This clears EOC automatically  
To read only 8 bits, perform the following steps:  
1. Poll EOC bit  
2. Read ADCDRH. This clears EOC automatically  
11.6.4  
Low-power modes  
Note:  
The A/D converter may be disabled by resetting the ADON bit. This feature allows reduced  
power consumption when no conversion is needed and between single shot conversions  
.
Table 82. Effect of low power modes on the A/D converter  
Mode  
Description  
Wait  
No effect on A/D converter  
A/D converter disabled  
After wakeup from halt mode, the A/D converter requires a stabilization time  
STAB (Section 13: Electrical characteristics) before accurate conversions can be  
performed.  
Halt  
t
11.6.5  
Interrupts  
None.  
Doc ID 11928 Rev 8  
165/234  
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
11.6.6  
Register description  
Control/status register (ADCCSR)  
ADCCSR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
EOC  
SPEED  
ADON  
Reserved Reserved  
CH[2:0]  
R
R/W  
R/W  
-
-
R/W  
Table 83. ADCCSR register description  
Bit  
Bit name  
Function  
End of conversion  
This bit is set by hardware. It is cleared by software reading the  
ADCDRH register.  
7
EOC  
0: Conversion is not complete  
1: Conversion complete  
ADC clock selection  
This bit is set and cleared by software. It is used together with the  
SLOW bit to configure the ADC clock speed. Refer to Table 86: ADC  
clock configuration on page 167 concerning the SLOW bit  
description of the ADCDRL register.  
6
SPEED  
A/D converter on  
This bit is set and cleared by software.  
0: A/D converter is switched off  
1: A/D converter is switched on  
5
ADON  
-
4:3  
Reserved, must be kept cleared.  
Channel selection  
These bits are set and cleared by software. They select the analog  
input to convert:  
000: channel pin = AIN0  
001: channel pin = AIN1  
010: channel pin = AIN2  
011: channel pin = AIN3  
2:0  
CH[2:0]  
100: channel pin = AIN4  
101: channel pin = AIN5  
110: channel pin = AIN6  
Note: The number of channels is device dependent. Refer to  
Section 2: Pin description.  
166/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
On-chip peripherals  
Data register high (ADCDRH)  
ADCDRH  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
D[9:2]  
R
Table 84. ADCDRH register description  
Bit  
Bit name  
Function  
7:0  
D[9:2]  
MSB of analog converted value  
Control and data register low (ADCDRL)  
ADCDRL  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
Reserved Reserved Reserved Reserved  
SLOW  
Reserved  
D[1:0]  
R/W  
-
-
-
-
R/W  
-
Table 85. ADCDRL register description  
Bit  
Bit name  
Function  
7:5  
4
-
-
Reserved, must be kept cleared  
Reserved, must be kept cleared  
Slow mode  
This bit is set and cleared by software. It is used together with the  
SPEED bit to configure the ADC clock speed as shown in Table 86:  
ADC clock configuration on page 167  
3
SLOW  
2
-
Reserved, must be kept cleared  
LSB of converted analog value  
1:0  
D[1:0]  
(1)  
Table 86. ADC clock configuration  
fADC  
SLOW  
SPEED  
fCPU/2  
fCPU  
0
0
1
0
1
x
fCPU/4  
1. Max fADC allowed = 4 MHz (see Section 13.11: 10-bit ADC characteristics on page 210)  
Doc ID 11928 Rev 8  
167/234  
 
On-chip peripherals  
ST7L34 ST7L35 ST7L38 ST7L39  
Table 87. ADC register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
ADCCSR  
Reset value  
EOC SPEED ADON  
0
0
0
0
CH2  
0
CH1  
0
CH0  
0
0034h  
0035h  
0036h  
0
0
0
ADCDRH  
Reset value  
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
ADCDRL  
Reset value  
0
0
0
0
0
0
0
0
SLOW  
0
0
0
D1  
x
D0  
x
168/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Instruction set  
12  
Instruction set  
12.1  
ST7 addressing modes  
The ST7 core features 17 different addressing modes which can be classified in seven main  
groups (see Table 88).  
Table 88. CPU addressing mode groups  
Addressing mode  
Example  
Inherent  
Immediate  
Direct  
nop  
ld A,#$55  
ld A,$55  
Indexed  
Indirect  
ld A,($55,X)  
ld A,([$55],X)  
jrne loop  
Relative  
Bit operation  
bset byte,#5  
The ST7instruction set is designed to minimize the number of bytes required per instruction.  
To do so, most of the addressing modes may be subdivided in two sub-modes called long  
and short:  
Long addressing mode is more powerful because it can use the full 64 Kbyte address  
space, however it uses more bytes and more CPU cycles.  
Short addressing mode is less powerful because it can generally only access page  
zero (0000h - 00FFh range), but the instruction size is more compact, and faster. All  
memory to memory instructions use short addressing modes only (CLR, CPL, NEG,  
BSET, BRES, BTJT, BTJF, INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP)  
The ST7 assembler optimizes the use of long and short addressing modes.  
Doc ID 11928 Rev 8  
169/234  
 
Instruction set  
ST7L34 ST7L35 ST7L38 ST7L39  
Table 89. CPU addressing mode overview  
Destination/s Pointer Pointer  
Length  
(bytes)  
Mode  
Syntax  
ource  
address  
size  
Inherent  
nop  
+ 0  
Immediate  
Short  
ld A,#$55  
ld A,$10  
+ 1  
+ 1  
+ 2  
Direct  
Direct  
00..FF  
Long  
ld A,$1000  
0000..FFFF  
+ 0 (with X  
register)  
+1 (with Y  
register)  
No offset  
Direct Indexed ld A,(X)  
00..FF  
Short  
Long  
Short  
Long  
Short  
Long  
Direct Indexed ld A,($10,X)  
Direct Indexed ld A,($1000,X)  
00..1FE  
+ 1  
+ 2  
+ 2  
+ 2  
+ 2  
+ 2  
0000..FFFF  
00..FF  
Indirect  
Indirect  
ld A,[$10]  
00..FF  
00..FF  
00..FF  
00..FF  
byte  
ld A,[$10.w]  
0000..FFFF  
00..1FE  
word  
byte  
Indirect Indexed ld A,([$10],X)  
Indirect Indexed ld A,([$10.w],X)  
0000..FFFF  
word  
PC-  
Relative  
Relative  
Direct  
jrne loop  
jrne [$10]  
+ 1  
+ 2  
128/PC+127(1)  
PC-  
Indirect  
00..FF  
byte  
128/PC+127(1)  
Bit  
Bit  
Bit  
Bit  
Direct  
bset $10,#7  
00..FF  
00..FF  
00..FF  
+ 1  
+ 2  
+ 2  
+ 3  
Indirect  
bset [$10],#7  
00..FF  
00..FF  
byte  
byte  
Direct Relative btjt $10,#7,skip  
Indirect Relative btjt [$10],#7,skip 00..FF  
1. At the time the instruction is executed, the program counter (PC) points to the instruction following JRxx.  
170/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Instruction set  
12.1.1  
Inherent  
All inherent instructions consist of a single byte. The opcode fully specifies all the required  
information for the CPU to process the operation.  
Table 90. Inherent instructions  
Inherent instruction  
Function  
NOP  
No operation  
S/W interrupt  
TRAP  
WFI  
Wait for interrupt (low power mode)  
Halt oscillator (lowest power mode)  
Subroutine return  
HALT  
RET  
IRET  
SIM  
Interrupt subroutine return  
Set interrupt mask  
Reset interrupt mask  
Set carry flag  
RIM  
SCF  
RCF  
Reset carry flag  
RSP  
Reset stack pointer  
Load  
LD  
CLR  
Clear  
PUSH/POP  
INC/DEC  
TNZ  
Push/pop to/from the stack  
Increment/decrement  
Test negative or zero  
1 or 2 complement  
Byte multiplication  
Shift and rotate operations  
Swap nibbles  
CPL, NEG  
MUL  
SLL, SRL, SRA, RLC, RRC  
SWAP  
12.1.2  
Immediate  
Immediate instructions have 2 bytes, the first byte contains the opcode, the second byte  
contains the operand value.  
Table 91. Immediate instructions  
Immediate instruction  
Function  
LD  
Load  
CP  
Compare  
BCP  
Bit compare  
Logical operations  
Arithmetic operations  
AND, OR, XOR  
ADC, ADD, SUB, SBC  
Doc ID 11928 Rev 8  
171/234  
Instruction set  
ST7L34 ST7L35 ST7L38 ST7L39  
12.1.3  
Direct  
In direct instructions, the operands are referenced by their memory address.  
The direct addressing mode consists of two sub-modes:  
Direct instructions (short)  
The address is a byte, thus requires only one byte after the opcode, but only allows  
00 - FF addressing space.  
Direct instructions (long)  
The address is a word, thus allowing 64 Kbyte addressing space, but requires two  
bytes after the opcode.  
12.1.4  
Indexed (no offset, short, long)  
In this mode, the operand is referenced by its memory address, which is defined by the  
unsigned addition of an index register (X or Y) with an offset.  
The indirect addressing mode consists of three sub-modes:  
Indexed (no offset)  
There is no offset, (no extra byte after the opcode), and allows 00 - FF addressing  
space.  
Indexed (short)  
The offset is a byte, thus requires only one byte after the opcode and allows 00 - 1FE  
addressing space.  
Indexed (long)  
The offset is a word, thus allowing 64 Kbyte addressing space and requires two bytes  
after the opcode.  
12.1.5  
Indirect (short, long)  
The required data byte to do the operation is found by its memory address, located in  
memory (pointer).  
The pointer address follows the opcode. The indirect addressing mode consists of two sub-  
modes:  
Indirect (short)  
The pointer address is a byte, the pointer size is a byte, thus allowing 00 - FF  
addressing space, and requires 1 byte after the opcode.  
Indirect (long)  
The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte  
addressing space, and requires 1 byte after the opcode.  
172/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Instruction set  
12.1.6  
Indirect indexed (short, long)  
This is a combination of indirect and short indexed addressing modes. The operand is  
referenced by its memory address, which is defined by the unsigned addition of an index  
register value (X or Y) with a pointer value located in memory. The pointer address follows  
the opcode.  
The indirect indexed addressing mode consists of two sub-modes:  
Indirect indexed (short)  
The pointer address is a byte, the pointer size is a byte, thus allowing 00 - 1FE  
addressing space, and requires 1 byte after the opcode.  
Indirect indexed (long)  
The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte  
addressing space, and requires 1 byte after the opcode.  
Table 92. Instructions supporting direct, indexed, indirect and indirect indexed  
addressing modes  
Long and short instructions  
Function  
LD  
CP  
Load  
Compare  
AND, OR, XOR  
ADC, ADD, SUB, SBC  
BCP  
Logical operations  
Arithmetic addition/subtraction operations  
Bit compare  
Table 93. Short instructions and functions  
Short instructions only  
Function  
CLR  
Clear  
INC, DEC  
Increment/decrement  
Test negative or zero  
1 or 2 complement  
Bit operations  
TNZ  
CPL, NEG  
BSET, BRES  
BTJT, BTJF  
SLL, SRL, SRA, RLC, RRC  
SWAP  
Bit test and jump operations  
Shift and rotate operations  
Swap nibbles  
CALL, JP  
Call or jump subroutine  
Doc ID 11928 Rev 8  
173/234  
Instruction set  
ST7L34 ST7L35 ST7L38 ST7L39  
12.1.7  
Relative mode (direct, indirect)  
This addressing mode is used to modify the PC register value, by adding an 8-bit signed  
offset to it.  
Table 94. Relative mode instructions (direct and indirect)  
Available relative direct/indirect instructions  
Function  
JRxx  
Conditional jump  
Call relative  
CALLR  
The relative addressing mode consists of two sub-modes:  
Relative (direct)  
The offset follows the opcode  
Relative (indirect)  
The offset is defined in memory, of which the address follows the opcode.  
12.2  
Instruction groups  
The ST7 family devices use an instruction set consisting of 63 instructions. The instructions  
may be subdivided into 13 main groups as illustrated in Table 95.  
Table 95. Instruction groups  
Load and transfer  
LD  
CLR  
Stack operation  
PUSH POP  
RSP  
Increment/decrement  
Compare and tests  
INC  
CP  
DEC  
TNZ  
OR  
BCP  
XOR  
Logical operations  
AND  
CPL NEG  
Bit operation  
BSET BRES  
BTJT BTJF  
Conditional bit test and branch  
Arithmetic operations  
Shift and rotates  
ADC  
SLL  
ADD  
SRL  
JRT  
SUB  
SRA  
JRF  
SBC MUL  
RLC RRC SWAP SLA  
Unconditional jump or call  
Conditional branch  
JRA  
JRxx  
JP  
CALL CALLR NOP RET  
Interruption management  
Condition code flag modification  
TRAP WFI  
SIM RIM  
HALT IRET  
SCF RCF  
174/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Instruction set  
12.2.1  
Using a prebyte  
The instructions are described with one to four bytes.  
In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three  
different prebyte opcodes are defined. These prebytes modify the meaning of the instruction  
they precede.  
The whole instruction becomes:  
PC-2  
PC-1  
PC  
End of previous instruction  
Prebyte  
Opcode  
PC+1  
Additional word (0 to 2) according to the number of bytes required to compute  
the effective address  
These prebytes enable instructions in Y as well as indirect addressing modes to be  
implemented. They precede the opcode of the instructions in X or the instructions using  
direct addressing mode. The prebytes are:  
PDY 90 Replaces an X based instruction using immediate, direct, indexed, or inherent  
addressing mode by a Y one  
PIX 92  
PIY 91  
Replaces an instruction using direct, direct bit, or direct relative addressing mode  
by an instruction using the corresponding indirect addressing mode  
It also changes an instruction using X indexed addressing mode to an instruction  
using indirect X indexed addressing mode  
Replaces an instruction using X indirect indexed addressing mode by a Y one  
12.2.2  
Illegal opcode reset  
In order to provide the device with enhanced robustness against unexpected behavior, a  
system of illegal opcode detection is implemented. If a code to be executed does not  
correspond to any opcode or prebyte value, a reset is generated. This, combined with the  
watchdog, allows the detection and recovery from an unexpected fault or interference.  
Note:  
A valid prebyte associated with a valid opcode forming an unauthorized combination does  
not generate a reset.  
Doc ID 11928 Rev 8  
175/234  
 
Instruction set  
ST7L34 ST7L35 ST7L38 ST7L39  
Table 96. Instruction set overview  
Mnemo.  
Description  
Add with carry  
Function/example  
Dst  
Src  
H
I
N
Z
C
ADC  
ADD  
AND  
BCP  
BRES  
BSET  
BTJF  
BTJT  
CALL  
CALLR  
CLR  
A = A + M + C  
A = A + M  
A
M
M
M
M
H
H
N
N
N
N
Z
Z
Z
Z
C
C
Addition  
A
Logical and  
A = A . M  
A
Bit compare A, memory  
Bit reset  
tst (A . M)  
A
bres Byte, #3  
bset Byte, #3  
btjf Byte, #3, Jmp1  
btjt Byte, #3, Jmp1  
M
M
M
M
Bit set  
Jump if bit is false (0)  
Jump if bit is true (1)  
Call subroutine  
Call subroutine relative  
Clear  
C
C
reg, M  
reg  
0
N
N
N
1
Z
Z
Z
CP  
Arithmetic compare  
One complement  
Decrement  
tst(Reg - M)  
A = FFH-A  
dec Y  
M
C
1
CPL  
reg, M  
reg, M  
DEC  
HALT  
IRET  
INC  
Halt  
0
I
Interrupt routine return  
Increment  
Pop CC, A, X, PC  
inc X  
H
N
N
Z
Z
C
reg, M  
JP  
Absolute jump  
Jump relative always  
Jump relative  
jp [TBL.w]  
JRA  
JRT  
JRF  
Never jump  
jrf *  
JRIH  
JRIL  
JRH  
Jump if ext. interrupt = 1  
Jump if ext. interrupt = 0  
Jump if H = 1  
H = 1 ?  
H = 0 ?  
I = 1 ?  
JRNH  
JRM  
JRNM  
JRMI  
JRPL  
JREQ  
JRNE  
JRC  
Jump if H = 0  
Jump if I = 1  
Jump if I = 0  
I = 0 ?  
Jump if N = 1 (minus)  
Jump if N = 0 (plus)  
Jump if Z = 1 (equal)  
N = 1 ?  
N = 0 ?  
Z = 1 ?  
Jump if Z = 0 (not equal) Z = 0 ?  
Jump if C = 1  
Jump if C = 0  
Jump if C = 1  
C = 1 ?  
JRNC  
JRULT  
C = 0 ?  
Unsigned <  
Jmp if unsigned >=  
JRUGE Jump if C = 0  
176/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Instruction set  
Table 96. Instruction set overview (continued)  
Mnemo.  
Description  
Function/example  
Dst  
Src  
H
I
N
Z
C
JRUGT  
JRULE  
LD  
Jump if (C + Z = 0)  
Jump if (C + Z = 1)  
Load  
Unsigned >  
Unsigned <=  
dst <= src  
X,A = X * A  
neg $10  
reg, M  
M, reg  
N
N
N
N
Z
Z
Z
Z
MUL  
NEG  
NOP  
OR  
Multiply  
A, X, Y X, Y, A  
reg, M  
0
0
Negate (2's compl)  
No operation  
OR operation  
C
A = A + M  
pop reg  
pop CC  
push Y  
C = 0  
A
M
reg  
CC  
M
M
POP  
Pop from the stack  
M
H
I
C
0
PUSH  
RCF  
RET  
RIM  
Push onto the stack  
Reset carry flag  
Subroutine return  
Enable interrupts  
Rotate left true C  
Rotate right true C  
Reset stack pointer  
Subtract with carry  
Set carry flag  
reg, CC  
I = 0  
0
RLC  
RRC  
RSP  
SBC  
SCF  
SIM  
C <= Dst <= C  
C => Dst => C  
S = Max allowed  
A = A - M - C  
C = 1  
reg, M  
reg, M  
N
N
Z
Z
C
C
A
M
N
Z
C
1
Disable interrupts  
Shift left arithmetic  
Shift left logic  
I = 1  
1
SLA  
C <= Dst <= 0  
C <= Dst <= 0  
0 => Dst => C  
Dst7 => Dst => C  
A = A - M  
reg, M  
reg, M  
reg, M  
reg, M  
A
N
N
0
Z
Z
Z
Z
Z
Z
Z
C
C
C
C
C
SLL  
SRL  
SRA  
SUB  
SWAP  
TNZ  
TRAP  
WFI  
Shift right logic  
Shift right arithmetic  
Subtraction  
N
N
N
N
M
M
SWAP nibbles  
Dst[7..4] <=> Dst[3..0] reg, M  
tnz lbl1  
Test for neg & zero  
S/W trap  
S/W interrupt  
1
0
Wait for Interrupt  
Exclusive OR  
XOR  
A = A XOR M  
A
N
Z
Doc ID 11928 Rev 8  
177/234  
Electrical characteristics  
ST7L34 ST7L35 ST7L38 ST7L39  
13  
Electrical characteristics  
13.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
13.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3σ).  
13.1.2  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 5 V (for the  
A
DD  
4.5 V V 5.5 V voltage range) and V = 3.3 V (for the 3 V V 3.6 V voltage  
DD  
DD  
DD  
range). They are given only as design guidelines and are not tested.  
13.1.3  
13.1.4  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 70.  
Figure 70. Pin loading conditions  
ST7 pin  
C
L
178/234  
Doc ID 11928 Rev 8  
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
Electrical characteristics  
13.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 71.  
Figure 71. Pin input voltage  
ST7 pin  
V
IN  
13.2  
Absolute maximum ratings  
Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Doc ID 11928 Rev 8  
179/234  
 
Electrical characteristics  
ST7L34 ST7L35 ST7L38 ST7L39  
13.2.1  
Voltage characteristics  
Table 97. Voltage characteristics  
Symbol  
Ratings  
Maximum value  
Unit  
V
DD - VSS  
Supply voltage  
7.0  
V
VIN  
Input voltage on any pin(1)(2)  
VSS - 0.3 to VDD + 0.3  
VESD(HBM) Electrostatic discharge voltage (human body model)  
VESD(MM) Electrostatic discharge voltage (machine model)  
See Section 13.7.3: Absolute  
maximum ratings (electrical  
sensitivity) on page 198  
1. Directly connecting the RESET and I/O pins to VDD or VSS could damage the device if an unintentional  
internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a  
corrupted program counter). To guarantee safe operation, this connection must be made through a pull-up  
or pull-down resistor (typical: 4.7 kΩ for RESET, 10 kΩ for I/Os). Unused I/O pins must be tied in the same  
way to VDD or VSS according to their reset configuration.  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. For true open-drain  
pads, there is no positive injection current and the corresponding VIN maximum must always be respected  
13.2.2  
Current characteristics  
Table 98. Current characteristics  
Symbol  
IVDD  
IVSS  
Ratings  
Maximum value Unit  
Total current into VDD power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by any standard I/O and control pin  
Output current sunk by any high sink I/O pin  
Output current source by any I/Os and control pin  
Injected current on RESET pin  
150  
150  
20  
40  
- 25  
5
mA  
IIO  
(2)(3)  
(2)  
IINJ(PIN)  
Injected current on OSC1 and OSC2 pins  
Injected current on any other pin(4)  
5
mA  
mA  
5
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(4)  
20  
1. All power (VDD) and ground (VSS) lines must always be connected to the external supply.  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS  
.
3. Negative injection disturbs the analog performance of the device. In particular, it induces leakage currents  
throughout the device including the analog inputs. To avoid undesirable effects on the analog functions,  
care must be taken:  
- Analog input pins must have a negative injection less than 0.8 mA (assuming that the impedance of the  
analog voltage is lower than the specified limits)  
- Pure digital pins must have a negative injection less than 1.6 mA. In addition, it is recommended to inject  
the current as far as possible from the analog input pins.  
4. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on  
characterization with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.  
180/234  
Doc ID 11928 Rev 8  
 
 
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
Electrical characteristics  
13.2.3  
Thermal characteristics  
Table 99. Thermal characteristics  
Symbol  
Ratings  
Storage temperature range  
Value  
Unit  
TSTG  
-65 to +150  
°C  
Maximum junction temperature (see Table 129: Thermal characteristics on  
page 214)  
TJ  
Doc ID 11928 Rev 8  
181/234  
Electrical characteristics  
ST7L34 ST7L35 ST7L38 ST7L39  
13.3  
Operating conditions  
13.3.1  
General operating conditions  
T = -40 to +125 °C unless otherwise specified.  
A
Table 100. General operating conditions  
Symbol  
Parameter  
Conditions  
Min.  
Max.  
Unit  
fOSC = 16 MHz max.  
TA = -40°C to TA max.  
VDD  
Supply voltage  
3.0  
5.5  
V
V
DD = 3 to 3.3 V  
0
0
8.8  
16  
MHz  
MHz  
fCLKIN  
External clock frequency on CLKIN pin  
Ambient temperature range  
VDD = 3.3 to 5.5 V  
A suffix version  
C suffix version  
+85  
+125  
TA  
-40  
°C  
Figure 72.  
f
maximum operating frequency vs V supply voltage  
CLKIN DD  
Functionality guaranteed  
in this area (unless  
f
[MHz]  
otherwise stated in the  
CLKIN  
tables of parametric data)  
Refer to Section 13.3.4:  
Internal RC oscillator and  
PLL for PLL operating  
range  
16  
Functionality  
not guaranteed  
in this area  
8.8  
4
1
0
Supply voltage [V]  
5.5  
3.0  
2.0  
2.7  
3.3  
3.5  
4.0  
4.5  
5.0  
1. For further information on clock management block diagram for fCLKIN description, refer to Figure 13: Clock management  
block diagram on page 40.  
182/234  
Doc ID 11928 Rev 8  
 
 
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
Electrical characteristics  
The RC oscillator and PLL characteristics are temperature-dependent.  
Table 101. Operating conditions (tested for T = -40 to +125 °C) @ V = 4.5 to 5.5 V  
A
DD  
Flash  
Min. Typ. Max. Min. Typ. Max.  
630 630  
930 1000 1050 TBD 1000 TBD  
ROM  
Symbol  
Parameter  
Conditions  
Unit  
RCCR = FF (reset value),  
TA = 25 °C, VDD = 5 V  
Internal RC oscillator  
frequency  
(1)  
fRC  
kHz  
RCCR = RCCR0(2)  
,
TA = -40 to 125 °C, VDD = 5 V  
RC resolution  
VDD = 5 V  
-1  
-3  
+1  
+5  
TBD  
TBD  
TBD  
TBD  
TA = -40 to +125 °C,  
VDD = 5 V  
Accuracy of internal  
RC oscillator with  
ACCRC  
%
RCCR = RCCR0(2)(3)  
TA = -40 to +125 °C,  
-4.5  
+6.5 TBD  
TBD  
VDD = 4.5 V to 5.5 V(4)  
1. If the RC oscillator clock is selected, to improve clock stability and frequency accuracy, it is recommended to place a  
decoupling capacitor, typically 100nF, between the VDD and VSS pins as close as possible to the ST7 device.  
2. See Section 7.1: Internal RC oscillator adjustment on page 37  
3. Minimum value is obtained for hot temperature and maximum value is obtained for cold temperature  
4. Data based on characterization results, not tested in production  
Table 102. Operating conditions (tested for T = -40 to +125 °C) @ V = 4.5 to 5.5 V  
A
DD  
Flash and ROM  
Symbol  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
IDD(RC)  
tsu(RC)  
fPLL  
RC oscillator current consumption  
RC oscillator setup time  
x8 PLL input clock  
600(1)(2)  
µA  
µs  
TA = 25 °C, VDD = 5 V  
10(3)  
1
2
4
MHz  
tLOCK  
tSTAB  
PLL lock time(4)  
ms  
PLL stabilization time(4)  
f
CLKIN/2 or fRC = 1 MHz  
ACCPLL x8 PLL accuracy  
JITPLL PLL jitter (ΔfCPU/fCPU  
0.2(5)  
@ TA = -40 to +125 °C  
%
)
1(6)  
IDD(PLL) PLL current consumption  
TA = 25 °C  
550(2)  
µA  
1. Measurement made with RC calibrated at 1 MHz  
2. Data based on characterization results, not tested in production  
3. See Section 7.1: Internal RC oscillator adjustment on page 37  
4. After the LOCKED bit is set ACCPLL is maximum 10% until tSTAB has elapsed. See Figure 12: PLL output frequency timing  
diagram on page 38.  
5. Averaged over a 4ms period. After the LOCKED bit is set, a period of tSTAB is required to reach ACCPLL accuracy  
6. Guaranteed by design  
Doc ID 11928 Rev 8  
183/234  
 
 
Electrical characteristics  
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 73. Typical accuracy with RCCR = RCCR0 vs. V = 4.5 to 5.5 V and  
DD  
temperature  
3.00%  
2.50%  
2.00%  
1.50%  
1.00%  
0.50%  
0.00%  
-0.50%  
-1.00%  
-45°C  
0°C  
25°C  
90°C  
110°C  
130°C  
4.5  
5
5.5  
VDD (V)  
Figure 74.  
f
vs. V and temperature for calibrated RCCR0  
RC  
DD  
RCCR0 Typical behavior  
1.1  
1.05  
-45°C'  
0°C'  
25°C'  
90°C'  
110°C'  
130°C'  
1
0.95  
0.9  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
5.7  
5.9  
VDD supply (V)  
Table 103. Operating conditions (tested for T = -40 to +125 °C) @ V = 3.0 to 3.6 V  
A
DD  
Flash  
Min. Typ. Max. Min. Typ. Max.  
630 630  
970 1000 1050 TBD 1000 TBD  
ROM  
Symbol  
Parameter  
Conditions  
Unit  
RCCR = FF (reset value),  
TA = 25 °C, VDD = 3.3 V  
Internal RC oscillator  
frequency  
(1)  
fRC  
kHz  
RCCR = RCCR(2)  
TA = -40 to +125 °C, VDD = 3.3 V  
,
184/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Electrical characteristics  
Table 103. Operating conditions (tested for T = -40 to +125 °C) @ V = 3.0 to 3.6 V  
A
DD  
Flash  
ROM  
Symbol  
Parameter  
Conditions  
Unit  
Min. Typ. Max. Min. Typ. Max.  
RC resolution  
VDD = 3.3 V  
-1  
-3  
+1 TBD  
+5 TBD  
TBD  
TBD  
TA = -40 to +125 °C,  
VDD = 3.3 V  
Accuracy of internal  
RC oscillator with  
ACCRC  
%
RCCR = RCCR0(2)(3)  
TA = -40 to +125 °C,  
-4  
+6 TBD  
TBD  
VDD = 3.0 V to 3.6 V(4)  
1. If the RC oscillator clock is selected, to improve clock stability and frequency accuracy, it is recommended to place a  
decoupling capacitor, typically 100nF, between the VDD and VSS pins as close as possible to the ST7 device.  
2. See Section 7.1: Internal RC oscillator adjustment on page 37.  
3. Minimum value is obtained for hot temperature and max. value is obtained for cold temperature.  
4. Data based on characterization results, not tested in production.  
(1)  
Table 104. Operating conditions (tested for T = -40 to +125 °C) @ V = 3.0 to 3.6 V  
A
DD  
Flash and ROM  
Parameter(1)  
Conditions  
Min.  
Typ.  
Max.  
RC oscillator current  
consumption  
IDD(RC)  
tsu(RC)  
500(2)  
µA  
µs  
TA = 25 °C, VDD = 3.3 V  
RC oscillator setup time  
10(2)  
1. Data based on characterization results, not tested in production.  
2. Measurement made with RC calibrated at 1 MHz.  
Figure 75. Typical accuracy with RCCR = RCCR1 vs. V = 3 to 3.6 V and  
DD  
temperature  
1.50%  
1.00%  
0.50%  
0.00%  
-0.50%  
-1.00%  
-45°C  
0°C  
25°C  
90°C  
110°C  
130°C  
3
3.3  
3.6  
VDD (V)  
Doc ID 11928 Rev 8  
185/234  
 
Electrical characteristics  
ST7L34 ST7L35 ST7L38 ST7L39  
vs. V and temperature for calibrated RCCR1  
Figure 76.  
f
RC  
DD  
RCCR1 Typical behavior  
1.1  
1.05  
1
-45°C'  
0°C'  
25°C'  
90°C'  
110°C'  
130°C'  
0.95  
0.9  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
5.7  
5.9  
VDD supply (V)  
Figure 77. PLL x 8 output vs. CLKIN frequency  
11.00  
9.00  
7.00  
5.00  
3.00  
1.00  
5.5  
5
4.5  
4
0.85  
0.9  
1
1.5  
2
2.5  
External Input Clock Frequency (MHz)  
1. fOSC = fCLKIN/2*PLL8  
13.3.2  
Operating conditions with low voltage detector (LVD)  
T = -40 to +125 °C, unless otherwise specified  
A
Table 105. Operating conditions with low voltage detector  
Symbol  
Parameter  
Conditions(1)  
High threshold  
High threshold  
Min. Typ. Max. Unit  
Reset release threshold  
(VDD rise)  
VIT+  
3.60(2) 4.15 4.50  
3.40  
3.95 4.40(2)  
(LVD)  
V
Reset generation threshold  
(VDD fall)  
VIT-  
(LVD)  
186/234  
Doc ID 11928 Rev 8  
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
Table 105. Operating conditions with low voltage detector  
Electrical characteristics  
Min. Typ. Max. Unit  
Symbol  
Parameter  
Conditions(1)  
Vhys  
LVD voltage threshold hysteresis VIT+(LVD)-VIT-  
VDD rise time rate(3)(4)  
200  
mV  
(LVD)  
10000  
VtPOR  
20(2)  
µs/V  
(2)  
tg(VDD) Filtered glitch delay on VDD  
DD(LVD) LVD/AVD current consumption  
Not detected by the LVD  
150(5)  
ns  
I
200  
µA  
1. LVD functionality guaranteed only within the VDD operating range specified in Section 13.3.1: General  
operating conditions on page 182.  
2. Not tested in production.  
3. Not tested in production. The VDD rise time rate condition is needed to insure a correct device power-on  
and LVD reset. When the VDD slope is outside these values, the LVD may not ensure a proper reset of the  
MCU.  
4. Use of LVD with capacitive power supply: With this type of power supply, if power cuts occur in the  
application, it is recommended to pull VDD down to 0 V to ensure optimum restart conditions. Refer to  
circuit example in Figure 97: RESET pin protection when LVD is disabled on page 206.  
5. Based on design simulation.  
Doc ID 11928 Rev 8  
187/234  
Electrical characteristics  
ST7L34 ST7L35 ST7L38 ST7L39  
13.3.3  
Auxiliary voltage detector (AVD) thresholds  
T = -40 to +125°C, unless otherwise specified  
A
Table 106. Auxiliary voltage detector (AVD) thresholds  
Symbol  
Parameter  
Conditions(1)  
Min. Typ. Max. Unit  
1 = >0 AVDF flag toggle threshold  
(VDD rise)  
VIT +  
High threshold  
3.85(2) 4.45 4.90  
V
3.80 4.40 4.85(2)  
(AVD)  
0 = >1 AVDF flag toggle threshold  
(VDD fall)  
VIT-  
High threshold  
VIT + (AVD) - VIT-  
(AVD)  
Vhys  
AVD voltage threshold hysteresis  
150  
mV  
V
(AVD)  
Voltage drop between AVD flag set  
and LVD reset activation  
ΔVIT-  
VDD fall  
0.45  
1. LVD functionality guaranteed only within the VDD operating range specified in Figure 70: Pin loading  
conditions on page 178  
2. Not tested in production  
13.3.4  
Internal RC oscillator and PLL  
The ST7 internal clock can be supplied by an internal RC oscillator and PLL (selectable by  
option byte).  
Table 107. Internal RC oscillator and PLL  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
Internal RC Oscillator operating Refer to operating  
VDD(RC)  
3.0  
3.6  
5.5  
5.5  
voltage  
range of VDD with TA,  
Figure 70: Pin  
V
loading conditions on  
page 178  
VDD(x8PLL) x8 PLL operating voltage  
188/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Electrical characteristics  
13.4  
Supply current characteristics  
The following current consumption specified for the ST7 functional operating modes over  
temperature range does not take into account the clock source current consumption. To  
obtain the total device consumption, the two current values must be added (except for halt  
mode for which the clock is stopped).  
13.4.1  
Supply current  
T = -40 to +125°C, unless otherwise specified  
A
Table 108. Supply current  
Symbol  
Parameter  
Conditions  
Typ. Max. Unit  
Supply current in run mode  
Supply current in wait mode  
Supply current in slow mode  
Supply current in slow wait mode  
fCPU = 8 MHz(2)  
6
9
4
f
CPU = 8 MHz(3)  
2.4  
0.7  
0.6  
(1)  
(1)  
IDD  
mA  
µA  
f
CPU = 250 kHz(4)  
1.1  
1
fCPU = 250 kHz(5)  
-40°C TA +85°C  
-40°C TA +125°C  
-40°C TA +85°C  
-40°C TA +125°C  
-40°C TA +125°C  
10  
50  
50  
300  
1
IDD  
Supply current in halt mode(6)  
<1  
Supply current in AWUFH  
mode(7)(8)(9)  
(1)  
(1)  
IDD  
IDD  
20  
µA  
Supply current in active halt mode  
0.7  
mA  
1. VDD = 5.5 V  
2. CPU running with memory access, all I/O pins in input mode with a static value at VDD or VSS (no load), all  
peripherals in reset state; clock input (CLKIN) driven by external square wave, LVD disabled.  
3. All I/O pins in input mode with a static value at VDD or VSS (no load), all peripherals in reset state; clock  
input (CLKIN) driven by external square wave, LVD disabled.  
4. Slow mode selected with fCPU based on fOSC divided by 32. All I/O pins in input mode with a static value at  
VDD or VSS (no load), all peripherals in reset state; clock input (CLKIN) driven by external square wave,  
LVD disabled.  
5. Slow-wait mode selected with fCPU based on fOSC divided by 32. All I/O pins in input mode with a static  
value at VDD or VSS (no load), all peripherals in reset state; clock input (CLKIN) driven by external square  
wave, LVD disabled.  
6. All I/O pins in output mode with a static value at VSS (no load), LVD disabled. Data based on  
characterization results, tested in production at VDD max. and fCPU max.  
7. All I/O pins in input mode with a static value at VDD or VSS (no load). Data tested in production at VDD max.  
and fCPU max.  
8. This consumption refers to the Halt period only and not the associated run period which is software  
dependent.  
9. If low consumption is required, AWUFH mode is recommended.  
Doc ID 11928 Rev 8  
189/234  
 
 
Electrical characteristics  
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 78. Typical I in run mode vs. f  
DD  
CPU  
8MHz  
4MHz  
1MHz  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
2.4  
2.7  
3.3  
4
5
6
Vdd (V)  
Figure 79. Typical I in slow mode vs. f  
DD  
CPU  
8MHz  
1000.00  
800.00  
600.00  
400.00  
200.00  
4MHz  
1MHz  
0.00  
2.4  
2.7  
3.3  
Vdd (V)  
4
5
6
Figure 80. Typical I in wait mode vs. f  
DD  
CPU  
8MHz  
2.5  
4MHz  
2.0  
1MHz  
1.5  
1.0  
0.5  
0.0  
2.4  
2.7  
3.3  
4
5
6
Vdd (V)  
190/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 81. Typical I in slow-wait mode vs. f  
Electrical characteristics  
DD  
CPU  
8MHz  
4MHz  
1MHz  
800.00  
700.00  
600.00  
500.00  
400.00  
300.00  
200.00  
100.00  
0.00  
2.4  
2.7  
3.3  
Vdd (V)  
4
5
6
Figure 82. Typical I vs. temperature at V = 5 V and f  
= 16 MHz  
DD  
DD  
CLKIN  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
RUN  
WAIT  
SLOW  
SLOW-WAIT  
-45  
25  
90  
110  
Temperature (°C)  
Figure 83. Typical I vs. temperature and V at f  
= 16 MHz  
DD  
DD  
CLKIN  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
5
3.3  
2.7  
-45  
25  
90  
130  
Temperature (°C)  
Doc ID 11928 Rev 8  
191/234  
Electrical characteristics  
ST7L34 ST7L35 ST7L38 ST7L39  
13.4.2  
On-chip peripherals  
Table 109. On-chip peripherals  
Symbol  
Parameter  
Conditions  
Typ. Unit  
fCPU = 4 MHz VDD = 3.0 V  
fCPU = 8 MHz VDD = 5 V  
fCPU = 4 MHz VDD = 3.0 V  
150  
IDD(AT)  
12-bit autoreload timer supply current(1)  
1000  
50  
µA  
200  
IDD(SPI)  
SPI supply current(2)  
f
CPU = 8 MHz VDD = 5 V  
VDD = 3.0 V  
250  
IDD(ADC)  
ADC supply current when converting(3) fADC = 4 MHz  
VDD = 5 V  
1100  
LINSCI supply current when  
IDD(LINSCI)  
fCPU = 8 MHz VDD = 5.0V  
650  
µA  
transmitting(4)  
1. Data based on a differential IDD measurement between reset configuration (timer stopped) and a timer  
running in PWM mode at fCPU = 8 MHz.  
2. Data based on a differential IDD measurement between reset configuration and a permanent SPI master  
communication (data sent equal to 55h).  
3. Data based on a differential IDD measurement between reset configuration and continuous A/D  
conversions.  
4. Data based on a differential IDD measurement between LINSCI running at maximum speed configuration  
(500 Kbaud, continuous transmission of AA +RE enabled and LINSCI off. This measurement includes the  
pad toggling consumption.  
192/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Electrical characteristics  
13.5  
Clock and timing characteristics  
Subject to general operating conditions for V , f  
and T .  
A
DD OSC  
13.5.1  
General timings  
Table 110. General timings  
Symbol  
Parameter(1)  
Conditions  
Min. Typ.(2) Max.  
Unit  
2
3
12  
1500  
22  
tCPU  
ns  
tc(INST)  
Instruction cycle time  
250  
10  
375  
fCPU = 8 MHz  
Interrupt reaction time(3)  
tv(IT) = Δtc(INST) + 10  
tCPU  
µs  
tv(IT)  
1.25  
2.75  
1. Guaranteed by design. Not tested in production.  
2. Data based on typical application software.  
3. Time measured between interrupt event and interrupt vector fetch. Dtc(INST) is the number of tCPU cycles  
needed to finish the current instruction execution.  
Doc ID 11928 Rev 8  
193/234  
Electrical characteristics  
ST7L34 ST7L35 ST7L38 ST7L39  
13.5.2  
Crystal and ceramic resonator oscillators  
The ST7 internal clock can be supplied with four different crystal/ceramic resonator  
oscillators. All the information given in this paragraph are based on characterization results  
with specified typical external components. In the application, the resonator and the load  
capacitors have to be placed as close as possible to the oscillator pins in order to minimize  
output distortion and start-up stabilization time. Refer to the crystal/ceramic resonator  
manufacturer for more details (frequency, package, accuracy...).  
Table 111. Oscillator parameters  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
fCrOSC  
Crystal oscillator frequency(1)  
2
16  
MHz  
Recommended load capacitance  
versus equivalent serial  
resistance of the crystal or  
ceramic resonator (RS)  
See Table 112: Typical  
ceramic resonator  
characteristics  
CL1  
CL2  
pF  
1. When PLL is used, please refer to Section 7: Supply, reset and clock management (fCrOSC min. is 8 MHz  
with PLL).  
Table 112. Typical ceramic resonator characteristics  
Typical ceramic resonators(1)  
fCrOSC  
(MHz)  
CL1  
[pF]  
CL2 Supply voltage  
Supplier  
[pF]  
range (V)  
Reference(2)  
Oscillator modes  
2
4
CSTCC2M00G56-R0  
CSTCR4M00G55-R0  
CSTCE8M00G55-R0  
CSTCE16M0V53-R0  
LP or MP  
MP or MS  
MS or HS  
HS  
(47)  
(39)  
(33)  
(15)  
(47)  
(39)  
(33)  
(15)  
Murata  
3.0 V to 5.5 V  
8
16  
1. Resonator characteristics given by the ceramic resonator manufacturer. For more information on these  
resonators, please consult www.murata.com  
2. SMD = [-R0: Plastic tape package (= 180mm), -B0: Bulk]  
194/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Electrical characteristics  
13.6  
Memory characteristics  
13.6.1  
RAM and hardware registers  
T = -40 to +125 °C, unless otherwise specified.  
A
Table 113. RAM and hardware registers  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
VRM  
Data retention mode(1)  
Halt mode (or reset)  
1.6  
V
1. Minimum VDD supply voltage without losing data stored in RAM (in halt mode or under reset) or in  
hardware registers (only in halt mode). Not tested in production.  
13.6.2  
Flash program memory  
T = -40 to +85°C, unless otherwise specified.  
A
Table 114. Characteristics of dual voltage HDFlash memory  
Symbol  
Parameter  
Conditions  
Min. Typ. Max.  
Unit  
Refer to operating range of  
Operating voltage for Flash VDD with TA, Section 13.3.1:  
VDD  
3.0  
5.5  
10  
V
write/erase  
General operating conditions  
on page 182  
Programming time for 1~32  
bytes(1)  
TA = −40 to +85 °C  
5
ms  
tprog  
Programming time for 1.5  
Kbytes  
TA = 25 °C  
0.24 0.48  
s
(2)  
tRET  
Data retention  
TA = 55 °C(3)  
20  
1K  
Years  
TPROG = 25 °C  
TPROG = 85 °C  
NRW  
Write erase cycles  
Cycles  
mA  
300  
Read/write/erase modes  
fCPU = 8 MHz, VDD = 5.5 V  
2.6(4)  
100  
IDD  
Supply current  
No read/no write mode  
Power down mode/halt  
µA  
0
0.1  
1. Up to 32 bytes can be programmed at a time  
2. Data based on reliability test results and monitored in production  
3. The data retention time increases when the TA decreases  
4. Guaranteed by design. Not tested in production  
Doc ID 11928 Rev 8  
195/234  
 
 
 
 
Electrical characteristics  
ST7L34 ST7L35 ST7L38 ST7L39  
13.6.3  
EEPROM data memory  
T = -40 to +125°C, unless otherwise specified.  
A
Table 115. Characteristics of EEPROM data memory  
Symbol  
Parameter  
Conditions  
Min.  
Typ. Max. Unit  
Refer to operating  
range of VDD with TA,  
Section 13.3.1:  
General operating  
conditions on  
Operating voltage for EEPROM  
write/erase  
VDD  
3.0  
5.5  
10  
V
page 182  
tprog  
Programming time for 1~32 bytes TA = −40 to +125 °C  
5
ms  
Data retention with 1 k cycling  
(TPROG = −40 to +125 °C  
20  
10  
1
Data retention with 10 k cycling  
TA = 55 °C(2)  
(1)  
tRET  
Years  
(TPROG = −40 to +125 °C)  
Data retention with 100 k cycling  
(TPROG = −40 to +125 °C)  
1. Data based on reliability test results and monitored in production  
2. The data retention time increases when the TA decreases  
13.7  
Electromagnetic compatibility (EMC) characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
13.7.1  
Functional electromagnetic susceptibility (EMS)  
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),  
the product is stressed by two electromagnetic events until a failure occurs (indicated by the  
LEDs). See Table 116: Electromagnetic test results on page 197.  
ESD: Electro-static discharge (positive and negative) is applied on all pins of the device  
until a functional disturbance occurs. This test conforms with the  
IEC 1000 - 4 - 2 standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
DD  
SS  
through a 100pF capacitor, until a functional disturbance occurs. This test conforms  
with the IEC 1000 - 4 - 4 standard.  
A device reset allows normal operations to be resumed. The test results are given in the  
table below based on the EMS levels and classes defined in application note AN1709.  
196/234  
Doc ID 11928 Rev 8  
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
Electrical characteristics  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Table 116. Electromagnetic test results  
Level/  
Symbol  
Parameter  
Conditions  
class  
Voltage limits to be applied on any I/O pin VDD = 5 V, TA = 25 °C, fOSC = 8 MHz,  
VFESD  
to induce a functional disturbance  
conforms to IEC 1000-4-2  
3B  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VDD  
pins to induce a functional disturbance  
VDD = 5 V, TA = 25 °C, fOSC = 8 MHz,  
conforms to IEC 1000-4-4  
VFFTB  
13.7.2  
Electromagnetic interference (EMI)  
Based on a simple application running on the product (toggling 2 LEDs through the I/O  
ports), the product is monitored in terms of emission. This emission test is in line with the  
norm SAE J 1752/3 which specifies the board and the loading of each pin. See Table 117:  
EMI emissions on page 197.  
Table 117. EMI emissions  
Max. vs. [fOSC/fCPU  
]
Monitored  
frequency band  
Sym. Parameter  
Conditions  
Unit  
8/4 MHz 16/8 MHz  
0.1MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
SAE EMI level  
15  
13  
9
15  
19  
13  
3
VDD = 5 V, TA = 25 °C,  
SO20 package,  
conforming to SAE J 1752/3  
dBµV  
-
Peak  
SEMI  
level(1)  
2.5  
1. Data based on characterization results, not tested in production.  
Doc ID 11928 Rev 8  
197/234  
 
 
Electrical characteristics  
ST7L34 ST7L35 ST7L38 ST7L39  
13.7.3  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, DLU and LU) using specific measurement methods, the  
product is stressed in order to determine its performance in terms of electrical sensitivity.  
For more details, refer to the application note AN1181.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models  
can be simulated: the human body model and the machine model. This test conforms to the  
JESD22-A114A/A115A standard.  
Table 118. ESD absolute maximum ratings  
Symbol  
Ratings  
Conditions  
Maximum value(1) Unit  
Electro-static discharge voltage  
(Human body model)  
VESD(HBM)  
4000  
Electro-static discharge voltage  
(Machine model)  
VESD(MM)  
TA = +25 °C  
400  
V
Electro-static discharge voltage  
(Charged device model)  
VESD(CDM)  
1000  
1. Data based on characterization results, not tested in production  
Static and dynamic latch-up (LU)  
LU: Three complementary static tests are required on 10 parts to assess the latch-up  
performance. A supply overvoltage (applied to each power supply pin) and a current  
injection (applied to each input, output and configurable I/O pin) are performed on each  
sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer  
to application note AN1181.  
DLU: Electro-Static Discharges (one positive then one negative test) are applied to each pin  
of three samples when the micro is running to assess the latch-up performance in dynamic  
mode. Power supplies are set to the typical values, the oscillator is connected as near as  
possible to the pins of the micro and the component is put in reset mode. This test conforms  
to the IEC1000-4-2 and SAEJ1752/3 standards. For more details, refer to the application  
note AN1181.  
Electrical sensitivities  
Table 119. Latch up results  
Symbol  
LU  
DLU  
Parameter  
Conditions  
Class(1)  
TA = 25 °C  
TA = 125 °C  
Static latch-up class  
A
Dynamic latch-up class  
VDD = 5.5 V, fOSC = 4 MHz, TA = 25 °C  
1. Class description: A class is an STMicroelectronics internal specification. All its limits are higher than the  
JEDEC specifications, which means when a device belongs to class A it exceeds the JEDEC standard.  
Class B strictly covers all the JEDEC criteria (international standard). Class B strictly covers all the JEDEC  
criteria (international standard)  
198/234  
Doc ID 11928 Rev 8  
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
Electrical characteristics  
13.8  
I/O port pin characteristics  
13.8.1  
General characteristics  
Subject to general operating conditions for V , f  
, and T (-40 to +125°C), unless  
A
DD OSC  
otherwise specified.  
Table 120. I/O general port pin characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VIL  
VIH  
Input low level voltage  
Input high level voltage  
VSS - 0.3  
0.7 x VDD  
0.3 x VDD  
VDD + 0.3  
V
Schmitt trigger voltage  
hysteresis(1)  
Vhys  
IL  
400  
400  
mV  
µA  
Input leakage current  
VSS VIN VDD  
1
Static current consumption  
induced by each floating  
input pin(2)  
IS  
Floating input mode  
Weak pull-up equivalent  
resistor(3)  
RPU  
VIN = VSS, VDD = 5 V  
50  
100  
5
170  
kΩ  
CIO  
I/O pin capacitance  
pF  
Output high to low level fall  
time(1)  
tf(IO)out  
CL = 50 pF  
between 10% and 90%  
25  
ns  
Output low to high level rise  
time(1)  
tr(IO)out  
tw(IT)in  
External interrupt pulse  
time(4)  
1
tCPU  
1. Data based on characterization results, not tested in production  
2. Configuration not recommended, all unused pins must be kept at a fixed voltage: Using the output mode of  
the I/O for example or an external pull-up or pull-down resistor (see Figure 84). Static peak current value  
taken at a fixed VIN value, based on design simulation and technology characteristics, not tested in  
production. This value depends on VDD and temperature values  
3. The RPU pull-up equivalent resistor is based on a resistive transistor (corresponding IPU current  
characteristics described in Figure 84: Two typical applications with unused I/O pin on page 199)  
4. To generate an external interrupt, a minimum pulse width must be applied on an I/O port pin configured as  
an external interrupt source.  
Figure 84. Two typical applications with unused I/O pin  
V
DD  
ST7  
Unused I/O port  
ST7  
10kΩ  
10kΩ  
Unused I/O port  
1. I/O can be left unconnected if it is configured as output (0 or 1) by the software. This has the advantage of  
greater EMC robustness and lower cost.  
Doc ID 11928 Rev 8  
199/234  
 
 
 
Electrical characteristics  
ST7L34 ST7L35 ST7L38 ST7L39  
Caution:  
During normal operation the ICCCLK pin must be pulled up, internally or externally (external  
pull-up of 10 k mandatory in noisy environments). This is to avoid entering ICC mode  
unexpectedly during a reset.  
Figure 85. Typical I vs. V with V = V  
PU  
DD  
IN  
SS  
90  
Ta=140°C  
Ta=95°C  
Ta=25°C  
Ta=-45°C  
80  
70  
60  
50  
40  
30  
20  
10  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Vdd(V)  
13.8.2  
Output driving current  
Subject to general operating conditions for V , f  
, and T (-40 to +125 °C) unless otherwise specified.  
A
DD OSC  
Table 121. Output driving current  
Symbol  
Parameter  
Conditions  
IIO = +5 mA  
IO = +2 mA  
Min.  
Typ.  
Max. Unit  
Output low level voltage for a  
standard I/O pin when eight pins are  
sunk at same time (see Figure 88)  
1.0  
0.4  
1.4  
I
(1)  
VOL  
Output low level voltage for a high  
sink I/O pin when four pins are sunk  
at same time (see Figure 94)  
IIO = +20 mA  
IIO = +8 mA  
V
DD = 5 V  
V
0.75  
Output high level voltage for an I/O  
pin when four pins are sourced at  
same time (see Figure 94)  
IIO = -5 mA VDD - 1.5  
IIO = -2 mA VDD - 1.0  
(2)  
VOH  
1. The IIO current sunk must always respect the absolute maximum rating specified in Section 13.2.2: Current characteristics  
on page 180 and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
2. The IIO current sourced must always respect the absolute maximum rating specified in Section 13.2.2: Current  
characteristics on page 180 and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
200/234  
Doc ID 11928 Rev 8  
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 86. Typical V at V  
Electrical characteristics  
= 3 V  
OL  
DD  
-45°C  
25°C  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
90°C  
110°C  
130°C  
0.01  
1
2
3
4
4
4
5
5
5
6
6
6
lio (mA)  
Figure 87. Typical V at V  
= 4 V  
OL  
DD  
-45°C  
25°C  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
90°C  
110°C  
130°C  
0.0  
0.01  
1
2
3
lio (mA)  
Figure 88. Typical V at V  
= 5 V  
OL  
DD  
-45°C  
25°C  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.01  
90°C  
110°C  
130°C  
1
2
3
lio (mA)  
Doc ID 11928 Rev 8  
201/234  
Electrical characteristics  
Figure 89. Typical V at V  
ST7L34 ST7L35 ST7L38 ST7L39  
= 3 V (high-sink)  
DD  
OL  
-45°C  
25°C  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
90°C  
110°C  
130°C  
5
8
10  
15  
lio (mA)  
Figure 90. Typical V at V  
= 4 V (high-sink)  
DD  
OL  
-45°C  
25°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
90°C  
110°C  
130°C  
0.0  
5
8
10  
15  
lio (mA)  
Figure 91. Typical V at V  
= 5 V (high-sink)  
OL  
DD  
-45°C  
25°C  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
90°C  
110°C  
130°C  
0.0  
5
8
10  
15  
lio (mA)  
202/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 92. Typical V - V at V = 3 V  
DD  
Electrical characteristics  
DD  
OH  
-45°C  
1.8  
25°C  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
90°C  
110°C  
130°C  
-0.01  
-1  
-2  
-3  
-4  
lio (mA)  
Figure 93. Typical V - V at V = 4 V  
DD  
DD  
OH  
-45°C  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
25°C  
90°C  
110°C  
130°C  
-0.01  
-1  
-2  
-3  
-4  
-5  
-6  
lio (mA)  
Figure 94. Typical V - V at V  
= 5 V  
DD  
OH  
DD  
-45°C  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
25°C  
90°C  
110°C  
130°C  
-0.01  
-1  
-2  
-3  
-4  
-5  
-6  
lio (mA)  
Doc ID 11928 Rev 8  
203/234  
Electrical characteristics  
Figure 95. Typical V vs. V  
ST7L34 ST7L35 ST7L38 ST7L39  
(standard I/Os)  
DD  
OL  
-45°C  
0.5  
0.4  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0.0  
25°C  
90°C  
110°C  
130°C  
3
4
5
VDD (V)  
Typical V vs. V  
(standard I/Os)  
DD  
OL  
-45°C  
25°C  
-45°C  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0.0  
25°C  
90°C  
90°C  
110°C  
130°C  
110°C  
130°C  
3
4
5
3
4
5
VDD (V)  
VDD (V)  
Figure 96. Typical V - V vs. V  
DD  
DD  
OH  
-45°C  
-45°C  
25°C  
0.7  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
25°C  
90°C  
90°C  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
110°C  
130°C  
110°C  
130°C  
3
4
5
3
4
5
VDD (V)  
VDD (V)  
204/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Electrical characteristics  
13.9  
Control pin characteristics  
13.9.1  
Asynchronous RESET pin  
T = -40 to +125 °C, unless otherwise specified.  
A
Table 122. Asynchronous RESET pin  
Symbol  
VIL  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Input low-level voltage  
Vss - 0.3  
0.3 x VDD  
VDD + 0.3  
VIH  
Input high-level voltage  
0.7 x VDD  
Vhys  
Schmitt trigger voltage hysteresis(1)  
1
IIO = +5 mA,  
TA +85 °C  
TA +125 °C  
1.0(2)  
1.2(2)  
V
0.5  
VOL  
Output low-level voltage(1)  
VDD = 5 V  
IIO = +2 mA,  
TA +85 °C  
TA +125 °C  
0.7(2)  
0.9(2)  
0.45  
RON  
Pull-up equivalent resistor(1)(3)  
VDD = 5 V  
Internal reset sources  
10  
20  
39  
30  
70  
kΩ  
µs  
ns  
tw(RSTL)out Generated reset pulse duration  
th(RSTL)in  
tg(RSTL)in  
External reset pulse hold time(4)  
Filtered glitch duration  
200  
1. The IIO current sunk must always respect the absolute maximum rating specified in Section 13.2.2: Current characteristics  
on page 180 and the sum of IIO (I/O ports and control pins) must not exceed IVSS.  
2. Guaranteed by design. Not tested in production.  
3. The RON pull-up equivalent resistor is based on a resistive transistor. Specified for voltages on RESET pin between VILmax  
and VDD.  
4. To guarantee the reset of the device, a minimum pulse must be applied to the RESET pin. All short pulses applied on  
RESET pin with a duration below th(RSTL)in can be ignored.  
RESET circuit design recommendations  
The reset network protects the device against parasitic resets. The output of the external  
reset circuit must have an open-drain output to drive the ST7 reset pad. Otherwise the  
device can be damaged when the ST7 generates an internal reset (LVD or watchdog).  
Whatever the reset source is (internal or external), the user must ensure that the level on the  
RESET pin can go below the V level specified in Section 13.9.1: Asynchronous RESET pin  
IL  
on page 205. Otherwise the reset is not taken into account internally. Because the reset  
circuit is designed to allow the internal reset to be output in the RESET pin, the user must  
ensure that the current sunk on the RESET pin is less than the absolute maximum value  
specified for I  
in Section 13.2.2: Current characteristics on page 180.  
INJ(RESET)  
Refer to Section 12.2.2: Illegal opcode reset on page 175 for details on illegal opcode reset  
conditions.  
Doc ID 11928 Rev 8  
205/234  
 
 
 
 
Electrical characteristics  
ST7L34 ST7L35 ST7L38 ST7L39  
RESET pin protection when LVD is disabled  
Figure 97. RESET pin protection when LVD is disabled  
VDD  
ST7  
RON  
User  
Internal reset  
external  
Filter  
reset  
circuit  
0.01µF  
Watchdog  
Illegal opcode  
Pulse  
generator  
Required  
RESET pin protection when LVD is enabled  
Figure 98. RESET pin protection when LVD Is enabled  
VDD  
ST7  
Optional  
(note 3)  
Required  
RON  
Filter  
Internal reset  
External  
reset  
0.01µF  
1MΩ  
Watchdog  
Illegal opcode  
LVD reset  
Pulse  
generator  
Note:  
When the LVD is enabled, it is recommended not to connect a pull-up resistor or capacitor. A  
10nF pull-down capacitor is required to filter noise on the reset line.  
If a capacitive power supply is used, it is recommended to connect a 1 MΩ pull-down  
resistor to the RESET pin to discharge any residual voltage induced by the capacitive effect  
of the power supply (this adds 5 µA to the power consumption of the MCU).  
Tips when using the LVD  
1. Check that all recommendations related to reset circuit have been applied (see RESET  
circuit design recommendations)  
2. Check that the power supply is properly decoupled (100 nF + 10 µF close to the MCU).  
Refer to AN1709. If this cannot be done, it is recommended to put a 100 nF + 1MΩ pull-  
down on the RESET pin.  
3. The capacitors connected on the RESET pin and also the power supply are key to  
avoiding any start-up marginality. In most cases, steps 1 and 2 above are sufficient for a  
robust solution. Otherwise: replace 10nF pull-down on the RESET pin with a 5 µF to  
20 µF capacitor.  
206/234  
Doc ID 11928 Rev 8  
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
Electrical characteristics  
13.10  
Communication interface characteristics  
13.10.1 Serial peripheral interface (SPI)  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD OSC  
Refer to Section 10: I/O ports for more details on the input/output alternate function  
characteristics (SS, SCK, MOSI, MISO).  
Table 123. SPI characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Max.  
Unit  
Master, fCPU = 8 MHz  
Slave, fCPU = 8 MHz  
fCPU/128 = 0.0625 fCPU/4 = 2  
fSCK = 1/  
tc(SCK)  
SPI clock frequency  
MHz  
0
fCPU/2 = 4  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall  
time  
See Table 2: Device pin description  
on page 17  
(1)  
tsu(SS)  
SS setup time(2)  
SS hold time  
(4 x TCPU) + 50  
Slave  
(1)  
th(SS)  
120  
100  
90  
(1)  
tw(SCKH)  
Master  
Slave  
SCK high and low time  
Data input setup time  
Data input hold time  
(1)  
tw(SCKL)  
(1)  
tsu(MI)  
Master  
Slave  
(1)  
tsu(SI)  
100  
0
ns  
(1)  
th(MI)  
Master  
Slave  
(1)  
th(SI)  
(1)  
ta(SO)  
Data output access time  
Data output disable time  
Data output valid time  
Data output hold time  
Data output valid time  
Data output hold time  
120  
240  
120  
Slave  
(1)  
tdis(SO)  
(1)  
tv(SO)  
Slave  
(after enable edge)  
(1)  
(1)  
th(SO)  
0
0
tv(MO)  
120  
Master  
(after enable edge)  
tCPU  
(1)  
th(MO)  
1. Data based on design simulation, not tested in production.  
2. Depends on fCPU. For example, if fCPU = 8 MHz, then tCPU = 1/fCPU = 125 ns and tsu(SS) = 550 ns.  
Doc ID 11928 Rev 8  
207/234  
 
 
 
Electrical characteristics  
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 99. SPI slave timing diagram with CPHA = 0  
SS INPUT  
tsu(SS)  
tc(SCK)  
th(SS)  
CPHA = 0  
CPOL = 0  
CPHA = 0  
CPOL = 1  
tw(SCKH)  
tw(SCKL)  
tv(SO)  
th(SO)  
tdis(SO)  
ta(SO)  
tr(SCK)  
tf(SCK)  
MISO OUTPUT  
see note 2  
tsu(SI)  
MSB OUT  
th(SI)  
BIT6 OUT  
LSB OUT  
see note 2  
MOSI INPUT  
MSB IN  
BIT1 IN  
LSB IN  
1. Measurement points are made at CMOS levels: 0.3 x VDD and 0.7 x VDD  
2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its  
alternate function capability released. In this case, the pin status depends of the I/O port configuration.  
Figure 100. SPI slave timing diagram with CPHA = 1  
SS INPUT  
tsu(SS)  
tc(SCK)  
th(SS)  
CPHA = 1  
CPOL = 0  
CPHA = 1  
CPOL = 1  
tw(SCKH)  
tw(SCKL)  
tdis(SO)  
tv(SO)  
th(SO)  
tr(SCK)  
tf(SCK)  
ta(SO)  
MISO OUTPUT  
HZ  
MSB OUT  
th(SI)  
BIT6 OUT  
LSB OUT  
see note 2  
see note 2  
tsu(SI)  
MOSI INPUT  
MSB IN  
BIT1 IN  
LSB IN  
1. Measurement points are made at CMOS levels: 0.3 x VDD and 0.7 x VDD  
.
2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its  
alternate function capability released. In this case, the pin status depends of the I/O port configuration.  
208/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 101. SPI master timing diagram  
Electrical characteristics  
SS INPUT  
tc(SCK)  
CPHA = 0  
CPOL = 0  
CPHA = 0  
CPOL = 1  
CPHA=1  
CPOL=0  
CPHA = 1  
CPOL = 1  
tw(SCKH)  
tw(SCKL)  
tr(SCK)  
tf(SCK)  
th(MI)  
MSB IN  
tsu(MI)  
MISO INPUT  
BIT6 IN  
LSB IN  
tv(MO)  
th(MO)  
MOSI OUTPUT  
see note 2  
LSB OUT  
see note 2  
MSB OUT  
BIT6 OUT  
1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD  
.
2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave  
mode) has its alternate function capability released. In this case, the pin status depends of the I/O port  
configuration.  
Doc ID 11928 Rev 8  
209/234  
 
Electrical characteristics  
ST7L34 ST7L35 ST7L38 ST7L39  
13.11  
10-bit ADC characteristics  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD OSC  
Table 124. 10-bit ADC characteristics  
Symbol  
Parameter  
Conditions  
Min.(1) Typ.(2) Max.(1) Unit  
fADC  
VAIN  
RAIN  
CADC  
tSTAB  
ADC clock frequency  
0.5  
4
MHz  
V
Conversion voltage range(3)  
VSSA  
VDDA  
10(4)  
External input resistor  
kΩ  
pF  
Internal sample and hold capacitor  
Stabilization time after ADC enable  
Conversion time (sample+hold)  
6
0(5)  
µs  
fCPU = 8 MHz, fADC  
= 4 MHz  
3.5  
tADC  
- Sample capacitor loading time  
- Hold conversion time  
4
10  
1/fADC  
1. Data based on characterization results, not tested in production  
2. Unless otherwise specified, typical data is based on TA = 25 °C and VDD - VSS = 5 V. They are given only  
as design guidelines and are not tested.  
3. When VDDA and VSSA pins are not available on the pinout, the ADC refers to VDD and VSS  
4. Any added external serial resistor downgrades the ADC accuracy (especially for resistance greater than  
10kΩ). Data based on characterization results, not tested in production.  
5. The stabilization time of the AD converter is masked by the first tLOAD. The first conversion after the enable  
is then always valid.  
Figure 102. Typical application with ADC  
VDD  
ST7  
VT  
0.6V  
RAIN  
AINx  
10-bit A/D  
conversion  
VAIN  
VT  
0.6V  
IL  
1µA  
CADC  
Table 125. ADC accuracy with 4.5 V < V < 5.5 V  
DD  
Symbol  
|ET|  
Parameter  
Conditions  
Typ. Max.(1) Unit  
Total unadjusted error  
Offset error  
2.0  
0.4  
0.4  
1.9  
1.8  
3.4  
1.7  
1.5  
3.1  
2.9  
|EO|  
|EG|  
|ED|  
|EL|  
Gain error  
fCPU = 8 MHz, fADC = 4 MHz(2)(3)  
LSB  
Differential linearity error  
Integral linearity error  
1. Data based on characterization results, monitored in production to guarantee 99.73% within max value  
from -40 °C to +125 °C ( 3σ distribution limits).  
210/234  
Doc ID 11928 Rev 8  
 
 
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
Electrical characteristics  
2. Data based on characterization results over the whole temperature range, monitored in production.  
3. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins may  
reduce the accuracy of the conversion being performed on another analog input.  
The effect of negative injection current on robust pins is specified in Section 13.11: 10-bit ADC  
characteristics on page 210  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 13.8: I/O port  
pin characteristics on page 199 does not affect the ADC accuracy.  
Table 126. ADC accuracy with 3 V < V < 3.6 V  
DD  
Symbol  
Parameter  
Conditions  
Typ. Max.(1) Unit  
|ET|  
|EO|  
|EG|  
|ED|  
|EL|  
Total unadjusted error  
Offset error  
1.9  
0.3  
0.3  
1.8  
1.7  
3.1  
1.2  
1
Gain error  
fCPU = 4 MHz, fADC = 2 MHz(2)(3)  
LSB  
Differential linearity error  
Integral linearity error  
3
2.8  
1. Data based on characterization results, monitored in production to guarantee 99.73% within max value  
from -40 °C to +125 °C ( 3σ distribution limits).  
2. Data based on characterization results over the whole temperature range, monitored in production.  
3. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins may  
reduce the accuracy of the conversion being performed on another analog input.  
The effect of negative injection current on robust pins is specified in Section 13.11: 10-bit ADC  
characteristics on page 210  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 13.8: I/O port  
pin characteristics on page 199 does not affect the ADC accuracy.  
Figure 103. ADC accuracy characteristics  
Digital result ADCDR  
EG  
1023  
V
V  
DD  
SS  
1022  
1021  
1LSB  
= -------------------------------  
IDEAL  
1024  
(2)  
(1) = Example of an actual transfer curve  
ET  
(3)  
7
6
5
4
3
2
1
(2) = Ideal transfer curve  
(1)  
(3) = End point correlation line  
EO  
EL  
ED  
1 LSBIDEAL  
Vin (LSBIDEAL  
)
0
1
2
3
4
5
6
7
10211022 1023 1024  
VDD  
VSS  
1. Legend:  
ET = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves  
O = Offset error: deviation between the first actual transition and the first ideal one  
E
EG = Gain error: deviation between the last ideal transition and the last actual one  
ED = Differential linearity error: maximum deviation between actual steps and the ideal one  
EL = Integral linearity error: maximum deviation between any actual transition and the end point correlation  
line  
Doc ID 11928 Rev 8  
211/234  
 
Package characteristics  
ST7L34 ST7L35 ST7L38 ST7L39  
14  
Package characteristics  
In order to meet environmental requirements, ST offers these devices in ECOPACK®  
packages. These packages have a lead-free second level interconnect. The category of  
second level interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label.  
ECOPACK is an ST trademark. ECOPACK specifications are available at www.st.com.  
14.1  
Package mechanical data  
Figure 104. 20-pin plastic small outline package, 300-mil width  
h x 45×  
D
B
L
A
c
A1  
α
e
E
H
Table 127. 20-pin plastic small outline package, 300-mil width, mechanical data  
mm  
inches  
Typ.  
Dim.  
Min.  
Typ.  
Max.  
Min.  
Max.  
A
A1  
B
2.35  
0.10  
0.33  
0.23  
12.60  
7.40  
2.65  
0.30  
0.51  
0.32  
13.00  
7.60  
0.093  
0.004  
0.013  
0.009  
0.496  
0.291  
0.104  
0.012  
0.020  
0.013  
0.512  
0.299  
C
D
E
e
1.27  
0.050  
H
h
10.00  
0.25  
10.65  
0.75  
0.394  
0.010  
0.419  
0.030  
α
0°  
8°  
0°  
8°  
L
0.40  
1.27  
0.016  
0.050  
212/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Package characteristics  
Figure 105. QFN 5x6, 20-terminal very thin fine pitch quad flat no-lead package  
D2  
D
D2/2  
Nx L  
1
2
E2/2  
(NE - 1) x e  
E2  
E
2
1
Pin 1 ID  
R0.20  
K
2X  
2X  
Nx b  
e
See detail A  
(ND - 1) x e  
Top view  
Bottom view  
Seating plane  
A1  
A
A3  
C
L
C
Side view  
L
L
L
e
e
e/2  
Terminal tip  
For even terminal side  
For odd terminal side  
Detail A  
Table 128. QFN 5x6: 20-terminal very thin fine pitch quad flat no-lead package  
mm  
inches  
Typ.  
Dim.  
Min.  
Typ.  
Max.  
Min.  
Min.  
e
L
0.80  
0.50  
0.30  
3.40  
4.40  
5.00  
6.00  
0.85  
0.02  
0.02  
0.20  
0.0315  
0.0197  
0.0118  
0.1339  
0.1732  
0.1969  
0.2362  
0.0335  
0.0008  
0.0008  
0.0079  
0.45  
0.25  
3.30  
4.30  
0.55  
0.35  
3.50  
4.50  
0.0177  
0.0098  
0.1299  
0.1693  
0.0217  
0.0138  
0.1378  
0.1772  
b(1)  
D2  
E2  
D
E
A
0.80  
0.00  
0.90  
0.05  
0.0315  
0.0000  
0.0354  
0.0020  
A1  
A3  
K
N(2)  
20  
Doc ID 11928 Rev 8  
213/234  
 
Package characteristics  
ST7L34 ST7L35 ST7L38 ST7L39  
Table 128. QFN 5x6: 20-terminal very thin fine pitch quad flat no-lead package  
ND(3)  
NE(3)  
4
6
1. Dimension b applies to metallized terminals and is measured between 0.15 and 0.30 mm from terminal  
TIP. If the terminal has the optional radius on the other end of the terminal the dimension b should not be  
measured in that radius area.  
2. N is the total number of terminals  
3. ND and NE refer to the number of terminals on each D and E side respectively  
14.2  
Packaging for automatic handling  
The devices can be supplied in trays or with tape and reel conditioning.  
Tape and reel conditioning can be ordered with pin 1 left-oriented or right-oriented when  
facing the tape sprocket holes as shown in Figure 106.  
Figure 106. pin 1 orientation in tape and reel conditioning  
Left orientation  
Right orientation (EIA 481-C compliant)  
Pin 1  
Pin 1  
See also Figure 107: ST7FL3x Flash commercial product structure on page 220 and  
Figure 108: ST7FL3x FASTROM commercial product structure on page 221.  
14.3  
Thermal characteristics  
Table 129. Thermal characteristics  
Symbol  
Parameter  
Package  
Value  
Unit  
SO20  
QFN20  
SO20  
70  
30  
RthJA  
Package thermal resistance (junction to ambient)  
°C/W  
TJmax  
Maximum junction temperature(1)  
Maximum power dissipation(2)  
150  
°C  
QFN20  
SO20  
< 350  
< 800  
PDmax  
mW  
QFN20  
1. The maximum chip-junction temperature is based on technology characteristics  
2. The maximum power dissipation is obtained from the formula PD = (TJ -TA)/RthJA. The power dissipation of  
an application can be defined by the user with the formula: PD = PINT + PPORT, where PINT is the chip  
internal power (IDD x VDD) and PPORT is the port power dissipation depending on the ports used in the  
application.  
214/234  
Doc ID 11928 Rev 8  
 
 
 
ST7L34 ST7L35 ST7L38 ST7L39  
Device configuration and ordering information  
15  
Device configuration and ordering information  
15.1  
Introduction  
Each device is available for production in user programmable versions (Flash) as well as in factory coded  
versions (ROM). ST7L3x devices are ROM versions.  
ST7PL3x devices are factory advanced service technique ROM (FASTROM) versions: They are factory  
programmed Flash devices.  
ST7FL3 Flash devices are shipped to customers with a default program memory content (FFh), while  
ROM/FASTROM factory coded parts contain the code supplied by the customer. This implies that Flash  
devices have to be configured by the customer using the option bytes while the ROM/FASTROM devices  
are factory-configured.  
15.2  
Option bytes  
The two option bytes allow the hardware configuration of the microcontroller to be selected. Differences  
in option byte configuration between Flash and ROM devices are presented in Table 130 and are  
described in Section 15.2.1: Flash option bytes on page 216 and Section 15.2.2: ROM option bytes on  
page 217.  
Table 130. Flash and ROM option bytes  
Option byte 0  
Option byte 1  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SEC SEC FM  
FM  
PW  
Flash  
ROM  
1
0
PR  
AW OSCRANGE  
PLL  
OFF  
WDG WDG  
SW HALT  
Name  
Res  
1(1)  
Res OSC LVD 1:0  
UCK  
2:0  
ROP ROP  
_R  
Res  
_D  
Default value  
1
1
1
1
1
1
0
0
1
0(1)  
0
1
1
1
1
1. Contact your STMicroelectronics support  
Doc ID 11928 Rev 8  
215/234  
 
 
 
 
Device configuration and ordering information  
ST7L34 ST7L35 ST7L38 ST7L39  
15.2.1  
Flash option bytes  
Table 131. Option byte 0 description  
Bit  
Bit name  
Function  
Auto wake up clock selection  
0: 32 kHz oscillator (VLP) selected as AWU clock  
1: AWU RC oscillator selected as AWU clock.  
7
AWUCK  
Note: If this bit is reset, the internal RC oscillator must be selected  
(option OSC = 0).  
Oscillator range  
When the internal RC oscillator is not selected (Option OSC = 1),  
these option bits select the range of the resonator oscillator current  
source or the external clock source.  
000: Typ. frequency range with resonator (LP) = 1~2 MHz  
001: Typ. frequency range with resonator (MP) = 2~4 MHz)  
010: Typ. frequency range with resonator (MS) = 4~8 MHz)  
011: Typ. frequency range with resonator (HS) = 8~16 MHz)  
100: Typ. frequency range with resonator (VLP) = 32.768~ kHz)  
101: External clock on OSC1  
OSCRANGE  
[2:0]  
6:4  
110: Reserved  
111: External clock on PB4  
Note: OSCRANGE[2:0] has no effect when AWUCK option is set to 0.  
In this case, the VLP oscillator range is automatically selected as  
AWU clock.  
Sector 0 size definition  
These option bits indicate the size of sector 0 as follows:  
00: Sector 0 size = 0.5 Kbytes  
01: Sector 0 size = 1 Kbyte  
3:2  
SEC[1:0]  
10: Sector 0 size = 2 Kbytes  
11: Sector 0 size = 4 Kbytes  
Readout protection  
Readout protection, when selected provides a protection against  
program memory content extraction and against write access to Flash  
memory.  
Erasing the option bytes when the FMP_R option is selected will cause  
the whole memory to be erased first and the device can be  
reprogrammed.  
1
FMP_R  
Refer to the ST7 Flash Programming Reference Manual and  
Section 4.5: Memory protection on page 25 for more details.  
0: Readout protection off  
1: Readout protection on  
Flash write protection  
This option indicates if the Flash program memory is write protected.  
Warning: When this option is selected, the program memory (and  
the option bit itself) can never be erased or programmed again.  
0: Write protection off  
0
FMP_W  
1: Write protection on  
Note: The option bytes have no address in the memory map and are  
accessed only in programming mode (for example using a  
standard ST7 programming tool). The default content of the Flash  
is fixed to FFh.  
216/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Device configuration and ordering information  
Function  
Table 132. Option byte 1 description  
Bit Bit name  
7
-
Reserved, must be set to 1(1)  
PLL disable  
This option bit enables or disables the PLL.  
0: PLL enabled  
1: PLL disabled (bypassed)  
Reserved, must be set to 0(1)  
6
5
PLLOFF  
-
RC oscillator selection  
This option bit enables selection of the internal RC oscillator.  
0: RC oscillator on  
1: RC oscillator off  
4
OSC  
Note: To improve clock stability and frequency accuracy when the RC  
oscillator is selected, it is recommended to place a decoupling  
capacitor, typically 100 nF, between the VDD and VSS pins as close as  
possible to the ST7 device.  
Low voltage selection  
These option bits enable the voltage detection block (LVD and AVD) with a  
selected threshold to the LVD and AVD:  
11: LVD off  
3:2  
LVD[1:0]  
10: LVD on (highest voltage threshold)  
Hardware or software watchdog  
1
0
WDGSW  
0: Hardware (watchdog always enabled)  
1: Software (watchdog to be enabled by software)  
Watchdog reset on halt  
WDGHALT  
0: No reset generation when entering halt mode  
1: Reset generation when entering halt mode  
1. Contact your local STMicroelectronics sales office.  
15.2.2  
ROM option bytes  
Table 133. Option byte 0 description  
Bit  
Bit name  
Function  
Auto wake up clock selection  
0: 32 kHz oscillator (VLP) selected as AWU clock  
1: AWU RC oscillator selected as AWU clock.  
7
AWUCK  
Note: If this bit is reset, the internal RC oscillator must be selected  
(option OSC = 0).  
Doc ID 11928 Rev 8  
217/234  
 
 
 
Device configuration and ordering information  
Table 133. Option byte 0 description  
ST7L34 ST7L35 ST7L38 ST7L39  
Bit  
Bit name  
Function  
Oscillator range  
When the internal RC oscillator is not selected (option OSC = 1),  
these option bits select the range of the resonator oscillator current  
source or the external clock source.  
000: Typ. frequency range with resonator (LP) = 1~2 MHz  
001: Typ. frequency range with resonator (MP) = 2~4 MHz)  
010: Typ. frequency range with resonator (MS) = 4~8 MHz)  
011: Typ. frequency range with resonator (HS) = 8~16 MHz)  
100: Typ. frequency range with resonator (VLP) = 32.768~ kHz)  
101: External clock on OSC1  
6:4  
OSCRANGE[2:0]  
110: Reserved  
111: External clock on PB4  
Note: OSCRANGE[2:0] has no effect when AWUCK option is set to 0.  
In this case, the VLP oscillator range is automatically selected  
as AWU clock  
3:2  
1
-
Reserved, must be set to 1  
Readout protection for ROM  
This option is for read protection of ROM  
0: Readout protection off  
ROP_R  
1: Readout protection on  
Readout protection for data EEPROM  
This option is for read protection of EEPROM memory.  
0: Readout protection off  
0
ROP_D  
1: Readout protection on  
Table 134. Option byte 1 description  
Bit  
Bit name  
Function  
7
-
Reserved, must be set to 1(1)  
PLL disable  
This option bit enables or disables the PLL.  
0: PLL enabled  
1: PLL disabled (bypassed)  
Reserved, must be set to 0(1)  
6
5
PLLOFF  
-
RC oscillator selection  
This option bit enables selection of the internal RC oscillator.  
0: RC oscillator on  
1: RC oscillator off  
4
OSC  
Note: To improve clock stability and frequency accuracy when the RC  
oscillator is selected, it is recommended to place a decoupling  
capacitor, typically 100 nF, between the VDD and VSS pins as  
close as possible to the ST7 device.  
Low voltage selection  
These option bits enable the voltage detection block (LVD and AVD)  
with a selected threshold to the LVD and AVD:  
11: LVD off  
3:2  
LVD[1:0]  
10: LVD on (highest voltage threshold)  
218/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Device configuration and ordering information  
Function  
Table 134. Option byte 1 description  
Bit Bit name  
Hardware or software watchdog  
1
WDGSW  
0: Hardware (watchdog always enabled)  
1: Software (watchdog to be enabled by software)  
Watchdog reset on halt  
0
WDGHALT  
0: No reset generation when entering halt mode  
1: Reset generation when entering halt mode  
1. Contact your STMicroelectronics support  
15.3  
Device ordering information and transfer of customer code  
Customer code is made up of the ROM/FASTROM contents and the list of the selected  
options (if any). The ROM/FASTROM contents are to be sent on a diskette or by electronic  
means, with the S19 hexadecimal file generated by the development tool. All unused bytes  
must be set to FFh. The selected options are communicated to STMicroelectronics using  
the correctly completed option list appended on page 223.  
Refer to application note AN1635 for information on the counter listing returned by ST after  
code has been transferred.  
The STMicroelectronics Sales Organization will be pleased to provide detailed information  
on contractual points.  
Doc ID 11928 Rev 8  
219/234  
 
Device configuration and ordering information  
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 107. ST7FL3x Flash commercial product structure  
Example:  
ST7  
F
L34  
F
2
M
A
X
S
Product class  
ST7 microcontroller  
Family type  
F = Flash  
Sub-family type  
L34 = without data EEPROM, without LIN  
L35 = without data EEPROM, with LIN  
L38 = with data EEPROM, without LIN  
L39 = with data EEPROM, with LIN  
Pin count  
F = 20 pins  
Program memory size  
2 = 8 Kbytes  
Package type  
M = SO  
U = QFN  
Temperature range  
A = -40 °C to 85 °C  
C = -40 °C to 125 °C  
Tape and Reel conditioning options (left blank if Tray)  
TR or R = Pin 1 left-oriented  
TX or X = Pin 1 right-oriented (EIA 481-C compliant)  
ECOPACK/Fab code  
Blank or E = Lead-free ECOPACK® Phoenix Fab  
S = Lead-free ECOPACK® Catania Fab  
1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further  
information on any aspect of this device, please go to www.st.com or contact the ST Sales Office nearest  
to you.  
220/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Device configuration and ordering information  
Figure 108. ST7FL3x FASTROM commercial product structure  
Example:  
ST7  
P
L34  
M
A
/xxx  
X
S
Product class  
ST7 microcontroller  
Family type  
P = FASTROM  
Sub-family type  
L34 = without data EEPROM, without LIN  
L35 = without data EEPROM, with LIN  
L38 = with data EEPROM, without LIN  
L39 = with data EEPROM, with LIN  
Package type  
M = SO  
U = QFN  
Temperature range  
A = -40 °C to 85 °C  
C = -40 °C to 125 °C  
Code name  
Defined by  
STMicroelectronics.  
Denotes ROM code, pinout  
and program memory size.  
Tape and Reel conditioning options (left blank if Tray)  
TR or R = Pin 1 left-oriented  
TX or X = Pin 1 right-oriented (EIA 481-C compliant)  
ECOPACK/Fab code  
Blank or E = Lead-free ECOPACK® Phoenix Fab  
S = Lead-free ECOPACK® Catania Fab  
Doc ID 11928 Rev 8  
221/234  
 
Device configuration and ordering information  
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 109. ROM commercial product code structure  
Example:  
ST7 L34  
M
A
/xxx  
X
S
Product class  
ST7 microcontroller  
Sub-family type  
L34 = without data EEPROM, without LIN  
L35 = without data EEPROM, with LIN  
L38 = with data EEPROM, without LIN  
L39 = with data EEPROM, with LIN  
Package type  
M = SO  
U = QFN  
Temperature range  
A = -40 °C to 85 °C  
C = -40 °C to 125 °C  
Code name  
Defined by  
STMicroelectronics.  
Denotes ROM code, pinout  
and program memory size.  
Tape and Reel conditioning options (left blank if Tray)  
TR or R = Pin 1 left-oriented  
TX or X = Pin 1 right-oriented (EIA 481-C compliant)  
ECOPACK/Fab code  
Blank or E = Lead-free ECOPACK® Phoenix Fab  
S = Lead-free ECOPACK® Catania Fab  
222/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Device configuration and ordering information  
ST7L3 FASTROM and ROM microcontroller option list  
(Last update: October 2007)  
Customer:  
Address:  
.....................................................................  
.....................................................................  
.....................................................................  
.....................................................................  
Contact:  
Phone No: .....................................................................  
Reference/FASTROM or ROM code: ...............................  
The FASTROM/ROM code name is assigned by STMicroelectronics.  
FASTROM/ROM code must be sent in .S19 format. .Hex extension cannot be processed.  
Device type/memory size/package (check only one option):  
---------------------------------------------------------------------------------------------  
FASTROM device 8K  
|
SO20  
|
QFN20  
---------------------------------------------------------------------------------------------  
|
[ ] ST7PL34F2M  
|
[ ] ST7PL34F2U  
|
|
|
[ ] ST7PL35F2M  
[ ] ST7PL38F2M  
[ ] ST7PL39F2M  
|
|
|
[ ] ST7PL35F2U  
[ ] ST7PL38F2U  
[ ] ST7PL39F2U  
-----------------------------------------------------------------------------------------------------  
----------------------------------------------------------------------------------------------  
ROM device 8K  
|
SO20  
|
QFN20  
----------------------------------------------------------------------------------------------  
|
|
|
|
[ ] ST7L34F2M  
[ ] ST7L35F2M  
[ ] ST7L38F2M  
[ ] ST7L39F2M  
|
|
|
|
[ ] ST7L34F2U  
[ ] ST7L35F2U  
[ ] ST7L38F2U  
[ ] ST7L39F2U  
-----------------------------------------------------------------------------------------------  
Conditioning:  
(check only one option)  
[ ] Tape and reel  
[ ] Tube  
Special marking:  
[ ] No  
[ ] Yes ".........................."  
Authorized characters are letters, digits, '.', '-', '/' and spaces only.  
Maximum character count: SO20 (8 char. max): ..........................  
QFN20 (8 char. max): ..........................  
Temperature range:  
AWUCK selection:  
[ ] A (-40 to +85 °C)  
[ ] 32 kHz oscillator  
[ ] Resonator  
[ ] C (-40 to +125 °C)  
[ ] AWU RC oscillator  
Clock source selection:  
[ ] VLP: Very low power resonator (32 to 100 kHz)  
[ ] LP: Low power resonator (1 to 2 MHz)  
[ ] MP: Medium power resonator (2 to 4 MHz)  
[ ] MS: Medium speed resonator (4 to 8 MHz)  
[ ] HS: High speed resonator (8 to 16 MHz)  
[ ] on PB4  
[ ] External clock  
[ ] on OSCI  
[ ] Internal RC oscillator  
[ ] Disabled  
PLL:  
[ ] Enabled  
LVD reset threshold:  
Watchdog selection:  
Watchdog reset on halt:  
[ ] Disabled  
[ ] Enabled (highest voltage threshold)  
[ ] Hardware activation  
[ ] Enabled  
[ ] Software activation  
[ ] Disabled  
Flash devices only:  
Sector 0 size:  
Readout protection:  
Flash write protection:  
[ ] 0.5 K  
[ ] Disabled  
[ ] Disabled  
[ ] 1 K  
[ ] Enabled  
[ ] Enabled  
[ ] 2 K  
[ ] 4 K  
ROM devices only  
ROM readout protection:  
[ ] Disabled  
[ ] Enabled  
[ ] Enabled  
EEDATA readout protection:[ ] Disabled  
Comments:  
.............................  
.............................  
.............................  
.............................  
...........................  
Supply operating range in the application:  
Notes:  
Date:  
Signature:  
1. Not all configurations are available. See Section 15.2: Option bytes on page 215 for authorized option byte  
combinations.  
Doc ID 11928 Rev 8  
223/234  
 
Device configuration and ordering information  
ST7L34 ST7L35 ST7L38 ST7L39  
15.4  
Development tools  
15.4.1  
Starter Kits  
ST offers complete, affordable starter kits. Starter kits are complete, affordable  
hardware/software tool packages that include features and samples to help you quickly start  
developing your application.  
15.4.2  
Development and debugging tools  
Application development for ST7 is supported by fully optimizing C compilers and the ST7  
assembler-linker toolchain, which are all seamlessly integrated in the ST7 integrated  
development environments in order to facilitate the debugging and fine-tuning of your  
application. The cosmic C compiler is available in a free version that outputs up to 16 Kbytes  
of code.  
The range of hardware tools includes full featured ST7-EMU3 series emulators, cost  
effective ST7-DVP3 series emulators and the low-cost RLink in-circuit  
debugger/programmer. These tools are supported by the ST7 Toolset from  
STMicroelectronics, which includes the STVD7 integrated development environment (IDE)  
with high-level language debugger, editor, project manager and integrated programming  
interface.  
15.4.3  
Programming tools  
During the development cycle, the ST7-DVP3 and ST7-EMU3 series emulators and the  
RLink provide in-circuit programming capability for programming the Flash microcontroller  
on your application board.  
ST also provides a low-cost dedicated in-circuit programmer, the ST7-STICK, as well as  
ST7 socket boards which provide all the sockets required for programming any of the  
devices in a specific ST7 subfamily on a platform that can be used with any tool with in-  
circuit programming capability for ST7.  
For production programming of ST7 devices, ST’s third-party tool partners also provide a  
complete range of gang and automated programming solutions, which are ready to integrate  
into your production environment.  
224/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Device configuration and ordering information  
15.4.4  
Order codes for development and programming tools  
Table 135 below lists the ordering codes for the ST7L3x development and programming  
tools. For additional ordering codes for spare parts and accessories, refer to the online  
product selector at www.st.com/mcu.  
Table 135. ST7L3 development and programming tools  
In-circuit debugger,  
Emulator  
Programming tool  
RLink series(1)  
Supported  
products  
Starter kit  
with demo  
board  
Starter kit  
without  
demo board  
ST socket  
boards and  
EPBs  
EMU  
series  
In-circuit  
programmer  
DVP series  
ST7FL34  
ST7FL35  
ST7FL38  
ST7FL39  
ST7-STICK  
ST7FLITE-  
STX-  
ST7MDT10- ST7MDT10  
DVP3(4)  
-EMU3  
ST7SB10-  
123(4)  
STX-RLINK  
SK/RAIS(2)(3) RLINK(2)(3)  
(4)(5)  
1. Available from ST or from Raisonance  
2. USB connection to PC  
3. Parallel port connection to PC  
4. Add suffix /EU, /UK or /US for the power supply for your region  
5. Includes connection kit for DIP16/SO16 only. See “How to order an EMU or DVP” in ST product and tool  
selection guide for connection kit ordering information  
Doc ID 11928 Rev 8  
225/234  
 
 
Important notes  
ST7L34 ST7L35 ST7L38 ST7L39  
16  
Important notes  
16.1  
Clearing active interrupts outside interrupt routine  
When an active interrupt request occurs at the same time as the related flag or interrupt  
mask is being cleared, the CC register may be corrupted.  
Concurrent interrupt context  
The symptom does not occur when the interrupts are handled normally, that is, when:  
The interrupt request is cleared (flag reset or interrupt mask) within its own interrupt  
routine  
The interrupt request is cleared (flag reset or interrupt mask) within any interrupt  
routine  
The interrupt request is cleared (flag reset or interrupt mask) in any part of the code  
while this interrupt is disabled  
If these conditions are not met, the symptom is avoided by implementing the following  
sequence:  
Perform SIM and RIM operation before and after resetting an active interrupt request.  
Example:  
SIM  
Reset flag or interrupt mask  
RIM  
16.2  
LINSCI limitations  
16.2.1  
Header time-out does not prevent wake-up from mute mode  
Normally, when LINSCI is configured in LIN slave mode, if a header time-out occurs during a  
LIN header reception (that is, header length > 57 bits), the LIN header error bit (LHE) is set,  
an interrupt occurs to inform the application but the LINSCI should stay in mute mode,  
waiting for the next header reception.  
Problem description  
The LINSCI sampling period is Tbit/16. If a LIN header time-out occurs between the 9th and  
the 15th sample of the identifier field stop bit (refer to Figure 110), the LINSCI wakes up  
from mute mode. Nevertheless, LHE is set and LIN header detection flag (LHDF) is kept  
cleared.  
In addition, if LHE is reset by software before this 15th sample (by accessing the SCISR  
register and reading the SCIDR register in the LINSCI interrupt routine), the LINSCI will  
generate another LINSCI interrupt (due to the RDRF flag setting).  
226/234  
Doc ID 11928 Rev 8  
 
ST7L34 ST7L35 ST7L38 ST7L39  
Figure 110. Header reception event sequence  
Important notes  
LIN synch LIN synch  
Identifier  
field  
break  
field  
THEADER  
ID field STOP bit  
Critical  
window  
Active mode is set  
(RWU is cleared)  
RDRF flag is set  
Impact on application  
Software may execute the interrupt routine twice after header reception.  
Moreover, in reception mode, as the receiver is no longer in mute mode, an interrupt is  
generated on each data byte reception.  
Workaround  
The problem can be detected in the LINSCI interrupt routine. In case of time-out error (LHE  
is set and LHLR is loaded with 00h), the software can check the RWU bit in the SCICR2  
register. If RWU is cleared, it can be set by software (refer to Figure 111). The workaround is  
shown in bold characters.  
Figure 111. LINSCI interrupt routine  
@interrupt void LINSCI_IT ( void ) /* LINSCI interrupt routine */  
{
/* clear flags */  
SCISR_buffer = SCISR;  
SCIDR_buffer = SCIDR;  
if ( SCISR_buffer & LHE )/* header error ? */  
{
if (!LHLR)/* header time-out? */  
{
if ( !(SCICR2 & RWU) )/* active mode ? */  
{
_asm("sim");/* disable interrupts */  
SCISR;  
SCIDR;/* Clear RDRF flag */  
SCICR2 |= RWU;/* set mute mode */  
SCISR;  
SCIDR;/* Clear RDRF flag */  
SCICR2 |= RWU;/* set mute mode */  
_asm("rim");/* enable interrupts */  
}
}
}
}
Example using Cosmic compiler syntax  
Doc ID 11928 Rev 8  
227/234  
 
Revision history  
ST7L34 ST7L35 ST7L38 ST7L39  
17  
Revision history  
Table 136. Revision history  
Date  
Revision  
Changes  
Jun-2004  
1
First release  
Changed temperature range (added -40 to +125°C)  
Removed references to 1% internal RC accuracy; Changed Figure 4:  
Memory map on page 19  
Removed reference to amplifier for ADCDRL in Table 3: Hardware  
register map on page 20 and in Section 11.6.6: Register description  
on page 166 and replaced Data register low” by “Control and data  
register low”; Changed Section 4.4: ICC interface on page 23 and  
added note 6  
Modified note on clock stability and on ICC mode in Section 7.1:  
Internal RC oscillator adjustment on page 37  
Added text in note 1 in Table 7: RCCR calibration registers on page 37  
Added RCCR1 (Figure 4 on page 19 and Section 7: Supply, reset and  
clock management on page 37)  
Added note to Section 7.5: Reset sequence manager (RSM) on  
page 42; Added note 3 after Table 24: I/O port mode options on  
page 70  
Exit from halt mode during an overflow event set to ‘no’ in  
Section 11.2.4: Low power modes on page 88  
Removed watchdog section in Section 11.3: Lite timer 2 (LT2) on  
page 101  
Table 48: Effect of low power modes on lite timer 2 on page 104 and  
Table 49: Lite timer 2 interrupt control/wake-up capability on page 104  
expanded  
Added important note in Master mode operation on page 111  
Changed procedure description in Transmitter on page 126  
In Extended baud rate generation on page 130: Corrected equation  
for Rx to read: Rx = fCPU/(16 x ERPR x PR x RR), {instead of Rx =  
fCPU/(16 x ERPR x PR x TR)}  
23-Dec-2005  
2
Added note on illegal opcode reset to Section 12.2.2: Illegal opcode  
reset on page 175; Changed Section 13.1.2: Typical values on  
page 178  
Changed electrical characteristics in the following sections:  
Section 13.3: Operating conditions on page 182, Section 13.4: Supply  
current characteristics on page 189, Section 13.6: Memory  
characteristics on page 195, Section 13.7.3: Absolute maximum  
ratings (electrical sensitivity) on page 198, Section 13.8: I/O port pin  
characteristics on page 199, Section 13.9: Control pin characteristics  
on page 205, Section 13.10: Communication interface characteristics  
on page 207 and Section 13.11: 10-bit ADC characteristics on  
page 210  
Modified Section 14: Package characteristics on page 212  
Changed Section 15.2: Option bytes on page 215 (OPT 5 of option  
byte 1), Section 15.3: Device ordering information and transfer of  
customer code on page 219 and Section 15.4: Development tools on  
page 224  
Changed option list, Added Section 16: Important notes on page 226  
228/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Table 136. Revision history (continued)  
Revision history  
Date  
Revision  
Changes  
Removed all x4 PLL option references from document  
Changed Read operation section in Section 5.3: Memory access on  
page 28  
Changed note Figure 8: Data EEPROM write operation on page 29.  
Changed Section 5.5: Access error handling on page 30  
Replaced 3.3 V with 3.6 V in Section 7.2: Phase locked loop on  
page 38  
Changed Master mode operation on page 111: added important note  
Changed Section 13.1.2: Typical values on page 178  
Changed Section 13.3.1: General operating conditions on page 182  
and added note on clock stability and frequency accuracy; removed  
the following figure: PLL ΔfCPU CPU vs time  
/f  
Changed Section 13.3.2: Operating conditions with low voltage  
detector (LVD) on page 186 and Section 13.3.4: Internal RC oscillator  
and PLL on page 188  
Changed Section 13.4.1: Supply current on page 189 and added  
notes  
Changed Table 115: Characteristics of EEPROM data memory on  
page 196  
Removed note 6 from Section 13.6: Memory characteristics on  
page 195  
Changed Section 13.6.2: Flash program memory on page 195;  
Changed Section 13.6.3: EEPROM data memory on page 196  
Changed values in Section 13.7.2: Electromagnetic interference (EMI)  
on page 197  
06-Mar-2006  
3
Changed absolute maximum ratings in Table 118: ESD absolute  
maximum ratings on page 198  
Changed Section 13.8.1: General characteristics on page 199 and  
Section 13.8.2: Output driving current on page 200  
Changed Section 13.9.1: Asynchronous RESET pin on page 205  
(changed values, removed references to 3 V and added note 5)  
Changed Section 13.11: 10-bit ADC characteristics on page 210:  
changed values in ADC accuracy tables and added note 3  
Changed notes in Section 14.3: Thermal characteristics on page 214  
Changed Section 15: Device configuration and ordering information  
on page 215  
Changed Table 130: Soldering compatibility (wave and reflow  
soldering process) on page 208  
Added note to OSC option bit in Section 15.2: Option bytes on  
page 215  
Changed configuration of bit 7, option byte 1, in Table 130: Flash and  
ROM option bytes on page 215  
Changed device type/memory size/package and PLL options in  
ST7L1 FASTROM and ROM microcontroller option list on page 257.  
Doc ID 11928 Rev 8  
229/234  
Revision history  
Table 136. Revision history (continued)  
ST7L34 ST7L35 ST7L38 ST7L39  
Date  
Revision  
Changes  
Changed caution text in Section 8.2: External interrupts on page 51  
Changed external interrupt function in Section 10.2.1: Input modes on  
page 68  
Changed Table 101 and Table 102  
Changed Table 103 and Table 104  
Changed Figure 98: RESET pin protection when LVD Is enabled on  
page 206  
17-Mar-2006  
4
Removed EMC protective circuitry in Figure 97: RESET pin protection  
when LVD is disabled on page 206 (device works correctly without  
these components)  
Removed section ‘LINSCI wrong break duration’ from Section 16:  
Important notes on page 226  
Replaced ‘ST7L3’ with ‘ST7L34, ST7L35, ST7L38, ST7L39’ in  
document name and added QFN20 package to package outline on  
cover page.  
Changed Section 1: Description on page 14  
Transferred device summary table from cover page to Section 1:  
Description on page 14  
Added QFN20 package to the device summary table in Section 1:  
Description on page 14  
Figure 1: General block diagram on page 15: Replaced autoreload  
timer 2 with autoreload timer 3  
Added Figure 3: 20-pin QFN package pinout on page 16 to Section 2  
Table 2: Device pin description on page 17:  
- Added QFN20 package pin numbers  
- Removed caution about PB0 and PB1 negative current injection  
restriction  
Figure 4: Memory map on page 19: Removed references to note 2  
Table 3: Hardware register map on page 20:  
- Changed register name for LTCNTR  
- Changed reset status of registers LTCSR1, ATCSR and SICSR  
- Changed note 3  
20-Dec-2006  
5
Changed last paragraph of Section 5.5: Access error handling on  
page 30  
Added caution about avoiding unwanted behavior during reset  
sequence in Section 7.5.1: Introduction on page 42  
Figure 17: Reset sequences on page 45: Replaced ‘TCPU’ with ‘tCPU  
at bottom of figure  
Changed notes in Section 7.6.1: Low voltage detector (LVD) on  
page 45  
Figure 19: Reset and supply management block diagram on page 47:  
Removed names from SICSR bits 7:5  
Changed reset value of bits CR0 and CR1 from 0 to 1 in Section 7.6.4:  
Register description on page 48  
Table 16: Interrupt sensitivity bits on page 54: Restored table number  
(inadvertantly removed in Rev. 3)  
Figure 34: Watchdog block diagram on page 75: Changed register  
label  
Changed register name and label in Section 11.1.6: Register  
description on page 77  
Added note for ROM devices only to PWM mode on page 79  
230/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Table 136. Revision history (continued)  
Revision history  
Date  
Revision  
Changes  
Replaced bit name OVIE1 with OVFIE1 in Table 35: AT3 interrupt  
control/wake-up capability on page 89  
Changed description of bits 11:0 in Counter register 1 high (CNTR1H)  
on page 90, Counter register 1 low (CNTR1L) on page 90 and  
Table 37: CNTR1H and CNTR1L register descriptions on page 91  
Changed name of register ATR1H and ATR1L in Autoreload register  
high (ATR1H), Autoreload register low (ATR1L) and Table 38: ATR1H  
and ATR1L register descriptions on page 92  
Changed name of register ATCSR2 in Timer control register2  
(ATCSR2) and Table 44: ATCSR2 register description on page 97  
Changed name of register ATR2H and ATR2L in Autoreload register2  
high (ATR2H), Autoreload register2 low (ATR2L) and Table 45: ATR2H  
and ATR2L register descriptions on page 98  
Changed name of register LTCSR1 in Lite timer control/status register  
(LTCSR1) and Table 53: LTCSR1 register description on page 106.  
Changed names of registers SPIDR, SPICR and SPICSR in  
Section 11.4.8: Register description on page 118  
Figure 64: LIN synch field measurement on page 148:  
- replaced ‘tCPU’ with ‘TCPU  
- replaced ‘tBR’ with ‘TBR  
Modified Table 98: Current characteristics on page 180:  
- Changed IIO values  
- Removed ‘Injected current on PB0 and PB1 pins’ from table  
- Removed note 5 ‘no negative current injection allowed on PB0 and  
PB1 pins’  
Restored symbol for PLL jitter in Table 102: Operating conditions  
(tested for TA = -40 to +125 °C) @ VDD = 4.5 to 5.5 V on page 183  
(inadvertantly changed in Rev. 4)  
5
20-Dec-2006  
cont’d  
Added note 5 to Table 105: Operating conditions with low voltage  
detector on page 186  
Specified applicable TA in Table 113: RAM and hardware registers on  
page 195, Table 114: Characteristics of dual voltage HDFlash  
memory on page 195 and Table 115: Characteristics of EEPROM  
data memory on page 196  
Changed TA for programming time for 1~32 bytes and changed TPROG  
from 125°C to 85°C for write erase cycles in Table 114:  
Characteristics of dual voltage HDFlash memory on page 195  
Figure 84: Two typical applications with unused I/O pin on page 199:  
Replaced ST7XXX with ST7  
Table 121: Output driving current on page 200: Added table number  
and title  
Table 122: Asynchronous RESET pin on page 205: Added table  
number and title  
Replaced ST72XXX with ST7 in Figure 98: RESET pin protection  
when LVD Is enabled on page 206 and Figure 97: RESET pin  
protection when LVD is disabled on page 206  
Changed Section 13.10.1: Serial peripheral interface (SPI) on  
page 207  
Figure 100: SPI slave timing diagram with CPHA = 1 on page 208:  
Replaced CPHA = 0 with CPHA = 1  
Figure 101: SPI master timing diagram on page 209: Repositioned  
tv(MO) and th(MO)  
Doc ID 11928 Rev 8  
231/234  
Revision history  
Table 136. Revision history (continued)  
ST7L34 ST7L35 ST7L38 ST7L39  
Date  
Revision  
Changes  
Table 124: 10-bit ADC characteristics on page 210: Added table  
number and title  
Changed PDmax value for SO20 package in Table 129: Thermal  
characteristics on page 214  
Removed text concerning LQFP, TQFP and SDIP packages from  
Section 15: Device configuration and ordering information on  
page 215.  
Figure 102: Typical application with ADC on page 210: Replaced  
ST72XXX with ST7  
Changed typical and maximum values and added table number and  
title to Table 125: ADC accuracy with 4.5 V < VDD < 5.5 V on  
page 210 and to Table 126: ADC accuracy with 3 V < VDD < 3.6 V on  
page 211  
Added Figure 105: QFN 5x6, 20-terminal very thin fine pitch quad flat  
no-lead package on page 213  
Added QFN20 package to Table 129: Thermal characteristics on  
page 214  
Table 130: Soldering compatibility (wave and reflow soldering  
process) on page 208:  
- Changed title of ‘Plating material’ column  
- Added QFN package  
- Removed note concerning Pb-package temperature for leadfree  
soldering compatibility  
5
20-Dec-2006  
cont’d  
Changed Section 15.2: Option bytes on page 215 to add different  
configurations between Flash and ROM devices for OPTION BYTE 0  
Removed ‘automotive’ from title of Section 15.3: Device ordering  
information and transfer of customer code on page 219  
Removed ‘Supported part numbers’ table from Section 15.3: Device  
ordering information and transfer of customer code on page 219  
Added Figure 107: ST7FL3x Flash commercial product structure on  
page 220  
Added Table 135: Flash user programmable device types on page 213  
Added Figure 108: ST7FL3x FASTROM commercial product structure  
on page 221  
Added Table 136: FASTROM factory coded device types on page 215  
Added Figure 109: ROM commercial product code structure on  
page 222  
Added Table 137: ROM factory coded device types on page 216  
Updated ST7L3 FASTROM and ROM microcontroller option list on  
page 223  
Changed Section 15.4: Development tools on page 224 and  
Table 135: ST7L3 development and programming tools on page 225  
Updated disclaimer (last page) to include a mention about the use of  
STproducts in automotive applications  
Changed the description of internal RC oscillator from ‘high precision’  
to ‘1% in Clock, reset and supply management on cover page and in  
Section 7.4.3: Internal RC oscillator on page 41  
Table 7: RCCR calibration registers on page 37: Added footnote 2  
Section 7.6.1: Low voltage detector (LVD) on page 45: Changed the  
sentence about the LVD to read that it can be enabled with ‘highest  
voltage threshold’ instead of ‘low, medium or high’  
02-Aug-2010  
6
Figure 26: Halt mode flowchart on page 60: Added footnote 5  
232/234  
Doc ID 11928 Rev 8  
ST7L34 ST7L35 ST7L38 ST7L39  
Table 136. Revision history (continued)  
Revision history  
Date  
Revision  
Changes  
Figure 31: AWUFH mode flowchart on page 65: Added footnote 5  
Table 101: Operating conditions (tested for TA = -40 to +125 °C) @  
VDD = 4.5 to 5.5 V on page 183: Changed fRC and ACCRC Flash  
values  
Table 102: Operating conditions (tested for TA = -40 to +125 °C) @  
VDD = 4.5 to 5.5 V on page 183: Changed ACCPLL ‘typical’ value  
Table 103: Operating conditions (tested for TA = -40 to +125 °C) @  
VDD = 3.0 to 3.6 V on page 184: Changed fRC and ACCRC Flash  
values  
6
02-Aug-2010  
Table 118: ESD absolute maximum ratings on page 198: Changed  
cont’d  
values of VESD(HBM) and VESD(HBM)  
.
Table 132: Option byte 1 description on page 217: Added ‘must be set  
to 1’ to option bit 7 and ‘must be set to 0’ to option bit 5  
Table 133: Option byte 0 description on page 217: Added ‘must be set  
to 1’ to option bits 3:2  
Updated Figure 107: ST7FL3x Flash commercial product structure,  
Figure 108: ST7FL3x FASTROM commercial product structure and  
Figure 109: ROM commercial product code structure  
Updated fCLKIN test conditions and maximum values in Table 100:  
General operating conditions and Figure 72: fCLKIN maximum  
operating frequency vs VDD supply voltage  
11-Oct-2010  
18-Nov-2011  
7
8
Updated the maximum value of external clock frequency on CLKIN pin  
(fCLKIN) when VDD = 3 to 3.3 V in Table 100: General operating  
conditions on page 182 and in Figure 72: fCLKIN maximum operating  
frequency vs VDD supply voltage on page 182.  
Doc ID 11928 Rev 8  
233/234  
ST7L34 ST7L35 ST7L38 ST7L39  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2011 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
234/234  
Doc ID 11928 Rev 8  

相关型号:

ST7FL39F2UARS

8-BIT, FLASH, 8MHz, MICROCONTROLLER, QCC20, 5 X 6 MM, ROHS COMPLIANT, QFN-20
STMICROELECTR

ST7FL39F2UATRE

8-BIT, FLASH, 8MHz, MICROCONTROLLER, QCC20, 5 X 6 MM, ROHS COMPLIANT, QFN-20
STMICROELECTR

ST7FL39F2UAXS

8-BIT, FLASH, 8MHz, MICROCONTROLLER, QCC20, 5 X 6 MM, ROHS COMPLIANT, QFN-20
STMICROELECTR

ST7FL39F2UCRS

8-BIT, FLASH, 8MHz, MICROCONTROLLER, QCC20, 5 X 6 MM, ROHS COMPLIANT, QFN-20
STMICROELECTR

ST7FL39F2UCS

8-BIT, FLASH, 8MHz, MICROCONTROLLER, QCC20, 5 X 6 MM, ROHS COMPLIANT, QFN-20
STMICROELECTR

ST7FL39F2UCXE

8-BIT, FLASH, 8MHz, MICROCONTROLLER, QCC20, 5 X 6 MM, ROHS COMPLIANT, QFN-20
STMICROELECTR

ST7FL39F2UCXS

8-BIT, FLASH, 8MHz, MICROCONTROLLER, QCC20, 5 X 6 MM, ROHS COMPLIANT, QFN-20
STMICROELECTR

ST7FLCD1

8-bit MCU for LCD Monitors with 60 KBytes Flash, 2 KBytes RAM, 2 DDC Ports and Infrared Controller
STMICROELECTR

ST7FLCD1G9M1

8-BIT, FLASH, 24MHz, MICROCONTROLLER, PDSO28, ROHS COMPLIANT, SO-28
STMICROELECTR

ST7FLCD1_05

8-bit MCU for LCD Monitors with 60 KBytes Flash,2 KBytes RAM, 2 DDC Ports and Infrared Controller
STMICROELECTR

ST7FLI15BF1U6TR

8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY, DATA EEPROM, ADC, 5 TIMERS, SPI
STMICROELECTR

ST7FLI19BF1U6TR

8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY, DATA EEPROM, ADC, 5 TIMERS, SPI
STMICROELECTR