ST7FLITE29F2M7 [STMICROELECTRONICS]

8-bit microcontroller with single voltage Flash memory, data EEPROM, ADC, Timers, SPI;
ST7FLITE29F2M7
型号: ST7FLITE29F2M7
厂家: ST    ST
描述:

8-bit microcontroller with single voltage Flash memory, data EEPROM, ADC, Timers, SPI

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总166页 (文件大小:1378K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
8-bit microcontroller with single voltage Flash memory,  
data EEPROM, ADC, Timers, SPI  
Datasheet production data  
4 timers  
– Configurable watchdog timer  
Two 8-bit Lite timers with prescaler  
– 1 real-time base and 1 input capture  
– One 12-bit auto-reload timer with 4 PWM  
DIP20  
outputs, input capture and output compare  
functions.  
SO20 300”  
1 communication interface  
– SPI synchronous serial interface.  
Features  
Interrupt management  
– 10 interrupt vectors plus TRAP and RESET  
– 15 external interrupt lines (on 4 vectors).  
Memories  
– 8 Kbytes single voltage Flash Program  
memory with Read-out protection  
A/D converter  
– 7 input channels  
– In-circuit programming and in-application  
programming (ICP and IAP)  
– Fixed gain op-amp  
– 10K write/erase cycles guaranteed  
– Data retention: 20 years at 55 °C  
Temperature range: -40°C to 105°C  
– 384 bytes RAM.  
– 13-bit resolution for 0 to 430 mV (@ 5 V  
VDD  
)
– 10-bit resolution for 430 mV to 5 V (@ 5 V  
VDD).  
Instruction set  
Clock, reset and supply management  
– 8-bit data manipulation  
– Enhanced reset system  
– 63 basic instructions with illegal opcode  
detection  
– 17 main addressing modes  
– Enhanced low voltage supervisor (LVD) for  
main supply and an auxiliary voltage  
detector (AVD) with interrupt capability for  
implementing safe power-down procedures  
– 8 x 8 unsigned multiply instructions.  
– Clock sources: internal 1% RC oscillator,  
crystal/ceramic resonator or external clock  
– Internal 32-MHz input clock for auto-reload  
timer  
Development tools  
– Full hardware/software development  
package  
– DM (debug module)  
– Optional x4 or x8 PLL for 4 or 8 MHz  
internal clock  
– Five power saving modes: Halt, Active-halt,  
Wait and Slow, Auto-wakeup from Halt.  
I/O ports  
– Up to 15 multifunctional bidirectional I/O  
lines  
– 7 high sink outputs.  
June 2013  
Doc ID 8349 Rev 5  
1/166  
This is information on a product in full production.  
www.st.com  
1
 
Contents  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Contents  
1
2
3
4
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Register & memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Flash program memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.1  
4.2  
4.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Programming modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.3.1  
4.3.2  
In-circuit programming (ICP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
In-application programming (IAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.4  
4.5  
ICC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Memory protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.5.1  
4.5.2  
Read-out protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Flash write/erase protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.6  
4.7  
Related documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5
Data EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Memory access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Power saving modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Access error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Data EEPROM Read-out protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6
Central processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.1  
6.2  
6.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
2/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Contents  
7
Supply, reset and clock management . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
7.1  
7.2  
7.3  
7.4  
7.5  
Internal RC oscillator adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Phase locked loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Multi-oscillator (MO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Reset sequence manager (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.5.5  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Asynchronous external RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
External power-on RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Internal low voltage detector (LVD) RESET . . . . . . . . . . . . . . . . . . . . . . 39  
Internal watchdog RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
7.6  
System integrity management (SI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
7.6.1  
7.6.2  
7.6.3  
7.6.4  
Low voltage detector (LVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Auxiliary Voltage Detector (AVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
8
9
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
8.1  
8.2  
8.3  
Non maskable software interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
External interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Peripheral interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Power saving modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
9.1  
9.2  
9.3  
9.4  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
SLOW mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
WAIT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
HALT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
9.4.1  
HALT mode recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
9.5  
9.6  
ACTIVE-HALT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Auto-wakeup from HALT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
9.6.1  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
10  
I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
10.2 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
10.2.1 Input modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Doc ID 8349 Rev 5  
3/166  
Contents  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
10.2.2 Output modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
10.2.3 Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
10.3 I/O port implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
10.4 Unused I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
10.5 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
10.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
10.7 Device-specific I/O port configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
11  
On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
11.1 Watchdog timer (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
11.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
11.1.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
11.1.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
11.1.4 Hardware watchdog option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
11.1.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
11.1.6 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
11.2 12-bit autoreload timer 2 (AT2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
11.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
11.2.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
11.2.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
11.2.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
11.2.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
11.2.6 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
11.3 Lite timer 2 (LT2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
11.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
11.3.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
11.3.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
11.3.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
11.3.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
11.3.6 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
11.4 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
11.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
11.4.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
11.4.3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
11.4.4 Clock phase and clock polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
11.4.5 Error Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
11.4.6 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
11.4.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
4/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Contents  
11.4.8 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
11.5 10-bit A/D converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
11.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
11.5.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
11.5.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
11.5.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
11.5.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
11.5.6 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
12  
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
12.1 ST7 addressing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
12.1.1 Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
12.1.2 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
12.1.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
12.1.4 Indexed (no offset, short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
12.1.5 Indirect (short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
12.1.6 Indirect indexed (short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
12.1.7 Relative mode (direct, indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
12.2 Instruction groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
12.2.1 Illegal opcode reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
13  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
13.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
13.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
13.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
13.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
13.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
13.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
13.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
13.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
13.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
13.3.2 Operating conditions with low voltage detector (LVD) . . . . . . . . . . . . . 121  
13.3.3 Auxiliary voltage detector (AVD) thresholds . . . . . . . . . . . . . . . . . . . . . 122  
13.3.4 Internal RC oscillator and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
13.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
13.5 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
13.5.1 Crystal and ceramic resonator oscillators . . . . . . . . . . . . . . . . . . . . . . 129  
13.6 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Doc ID 8349 Rev 5  
5/166  
Contents  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
13.7 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
13.7.1 Functional EMS (Electro Magnetic Susceptibility) . . . . . . . . . . . . . . . . 131  
13.7.2 Electro Magnetic Interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
13.7.3 Absolute maximum ratings (Electrical sensitivity) . . . . . . . . . . . . . . . . 132  
13.8 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
13.9 Control pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
13.10 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . 141  
13.10.1 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
13.11 10-Bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
13.11.1 Amplifier output offset variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
14  
15  
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
14.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
14.2 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Device configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
15.1 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
15.1.1 Option byte 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
15.1.2 Option byte 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
15.2 Device ordering information and transfer of customer code . . . . . . . . . . 153  
15.3 Development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
15.4 Application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
16  
Important notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
16.1 Execution of BTJX instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
16.2 ADC conversion spurious results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
16.3 A/D converter accuracy for first conversion . . . . . . . . . . . . . . . . . . . . . . 161  
16.4 Negative injection impact on ADC accuracy . . . . . . . . . . . . . . . . . . . . . 161  
16.5 Clearing active interrupts outside interrupt routine . . . . . . . . . . . . . . . . . 161  
16.6 Using PB4 as external interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
16.7 Timebase 2 interrupt in slow mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
17  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
6/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Device pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Row definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
DATA EEPROM register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Predefined calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
ST7 clock sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
CPU Clock cycle delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Effect of low power modes on SI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Interrupt control bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Flag description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Interrupt sensitivity bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
External interrupt I/O pin selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
External interrupt I/O pin selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
External interrupt I/O pin selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
External interrupt I/O pin selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
ACTIVE-HALT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
AWU prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
AWU register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
DR value and output pin status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
I/O port mode options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
I/O configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Effect of low power modes on I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
I/O port interrupt control/wake-up capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Ports PA7:0, PB6:0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Port configuration (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Port configuration (Interrupt ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Ports where the external interrupt capability selected using the EISR register . . . . . . . . . 69  
I/O port register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Watchdog timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Watchdog timer register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Effect of low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Interrupts events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Counter clock selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Effect of low power modes on Lite timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
TBxF and ICF interrupt events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Lite timer register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
WAIT and HALT mode description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Interrupt events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
SPI Master mode SCK frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
SPI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Low power modes effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Channel selection bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
ADC clock speed selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
ADC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Addressing mode groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Doc ID 8349 Rev 5  
7/166  
List of tables  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
ST7 addressing mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Inherent instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Immediate instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Long and short instructions supporting direct, indexed, indirect and indirect indexed  
addressing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Short instructions supporting direct, indexed, indirect and indirect indexed addressing  
modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Relative direct and indirect instructions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Instruction groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Instruction set overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Power on/power down operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
AVD thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Internal RC oscillator and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
RC oscillator and PLL characteristics (tested for TA = -40 to +85°C)  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
@ VDD = 4.5 to 5.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
RC oscillator and PLL characteristics (tested for TA = -40 to +85°C)  
Table 65.  
@ VDD = 2.7 to 3.3V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
32MHz PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
General Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Auto Wakeup from Halt Oscillator (AWU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Resonator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Resonator performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Flash program memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
EEPROM data memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Emission test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Electrical Sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Asynchronous RESET Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
10-Bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
Table 84.  
Table 85.  
Table 86.  
Table 87.  
Table 88.  
Table 89.  
Table 90.  
Table 91.  
Table 92.  
Table 93.  
Table 94.  
Table 95.  
Table 96.  
ADC Accuracy with V =5.0V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
DD  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Typical offset variation over temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Small outline package characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Dual in-line package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Soldering compatibility (wave and reflow soldering process) . . . . . . . . . . . . . . . . . . . . . . 149  
Option bytes values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Size definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Option byte default values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
LVD Threshold Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
List of valid option combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
8/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
List of tables  
Table 97.  
Table 98.  
Table 99.  
Supported part numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
ST7LITE2 FASTROM microcontroller option list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
STMicroelectronics development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Table 100. ST7 application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Table 101. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Doc ID 8349 Rev 5  
9/166  
List of figures  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
General block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
20-pin SO package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
20-pin DIP package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Typical ICC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
EEPROM block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Data EEPROM programming flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Data EEPROM Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Data EEPROM programming cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 10. CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 11. Stack manipulation example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 12. PLL output frequency timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 13. Clock management block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 14. RESET sequence phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 15. Reset block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 16. RESET sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 17. Low voltage detector vs. Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 18. Reset and supply management block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 19. Using the AVD to monitor VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 20. Interrupt processing flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 21. Power saving mode transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 22. SLOW mode clock transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 23. WAIT mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 24. HALT timing overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 25. HALT mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 26. ACTIVE-HALT timing overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 27. ACTIVE-HALT mode Flow-chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 28. AWUF mode block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 29. AWUF halt timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 30. AWUF mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 31. I/O port general block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 32. Interrupt I/O port state transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 33. Watchdog block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 34. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 35. PWM inversion diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 36. PWM function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 37. PWM signal from 0% to 100% duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 38. Block diagram of break function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 39. Input capture timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 40. Lite timer 2 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 41. Input capture timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Figure 42. Serial peripheral interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Figure 43. Single master/ single slave application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 44. Generic SS timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 45. Hardware/software slave select management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 46. Data clock timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 47. Clearing the WCOL bit (write collision flag) software sequence . . . . . . . . . . . . . . . . . . . . . 98  
Figure 48. Single master / multiple slave configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
10/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
List of figures  
Figure 49. ADC block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 50. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Figure 51. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Figure 52. fCPU maximum operating frequency versus V supply voltage. . . . . . . . . . . . . . . . . . . 121  
DD  
Figure 53. RC Osc Freq vs VDD @ TA= 25°C (calibrated with RCCR1: 3V @ 25°C) . . . . . . . . . . . 124  
Figure 54. RC Osc Freq vs VDD (calibrated with RCCR0: 5V@ 25°C). . . . . . . . . . . . . . . . . . . . . . . 124  
Figure 55. Typical RC oscillator Accuracy vs temperature @ VDD=5V (calibrated with  
RCCR0: 5V @ 25°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Figure 56. RC Osc Freq vs VDD and RCCR Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Figure 57. PLL DfCPU/fCPU versus time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Figure 58. PLLx4 Output vs CLKIN frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Figure 59. PLLx8 Output vs CLKIN frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Figure 60. Typical I in RUN vs. f  
DD  
CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127  
Figure 61. Typical IDD in SLOW vs. fCPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Figure 62. Typical I in WAIT vs. f  
DD  
CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127  
Figure 63. Typical IDD in SLOW-WAIT vs. fCPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Figure 64. Typical IDD in AWUF mode at TA= 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Figure 65. Typical IDD vs. temperature at VDD = 5V and fCPU = 8MHz . . . . . . . . . . . . . . . . . . . . . 128  
Figure 66. Typical application with a crystal or ceramic resonator. . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Figure 67. Two typical applications with unused I/O Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Figure 68. Typical I vs. V with V =V  
PU  
DD  
IN  
SS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134  
Figure 69. Typical VOL at VDD = 2.4V (standard). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Figure 70. Typical V at V = 2.7V (standard). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
OL  
DD  
Figure 71. Typical VOL at VDD = 3.3V (standard). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Figure 72. Typical VOL at VDD = 5V (standard) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Figure 73. Typical VOL at VDD = 2.4V (high-sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Figure 74. Typical VOL at VDD = 5V (high-sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Figure 75. Typical VOL at VDD = 3V (high-sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Figure 76. Typical VDD-VOH at VDD = 2.4V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Figure 77. Typical VDD-VOH at VDD = 2.7V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Figure 78. Typical VDD-VOH at VDD = 3V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Figure 79. Typical VDD-VOH at VDD=4V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Figure 80. Typical VDD-VOH at VDD=5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Figure 81. VOL vs. VDD (standard I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Figure 82. Typical VOL vs. VDD (high-sink I/Os). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Figure 83. Typical VDD-VOH vs. VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Figure 84. RESET pin protection when LVD is enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Figure 85. RESET pin protection when LVD is disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142  
Figure 86. SPI slave timing diagram with CPHA = 0  
(1)  
Figure 87. SPI Slave Timing Diagram with CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
Figure 88. SPI Master Timing Diagram  
Figure 89. Typical Application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Figure 90. ADC accuracy characteristics with amplifier disabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Figure 91. ADC accuracy characteristics with amplifier enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Figure 92. Amplifier noise vs voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Figure 93. 20-Pin plastic small outline package, 300-mil width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Figure 94. 20-Pin Plastic Dual In-Line Package, 300-mil Width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Doc ID 8349 Rev 5  
11/166  
Description  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
1
Description  
ST7LITE20F2, ST7LITE25F2 and ST7LITE29F2 are referred to as ST7LITE2. The  
ST7LITE2 is a member of the ST7 microcontroller family. All ST7 devices are based on a  
common industry-standard 8-bit core, featuring an enhanced instruction set.  
The ST7LITE2 features FLASH memory with byte-by-byte In-Circuit Programming (ICP) and  
In-Application Programming (IAP) capability.  
Under software control, the ST7LITE2 device can be placed in WAIT, SLOW, or HALT mode,  
reducing power consumption when the application is in idle or standby state.  
The enhanced instruction set and addressing modes of the ST7 offer both power and  
flexibility to software developers, enabling the design of highly efficient and compact  
application code. In addition to standard 8-bit data management, all ST7 microcontrollers  
feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes.  
For easy reference, all parametric data are located in Section 15: Device configuration.  
The devices feature an on-chip Debug Module (DM) to support in-circuit debugging (ICD).  
For a description of the DM registers, refer to the ST7 ICC Protocol Reference Manual.  
Table 1.  
Device summary  
Features  
ST7LITE20F2  
ST7LITE25F2  
ST7LITE29F2  
Program memory -  
bytes  
8 Kbyte  
RAM (stack) - bytes  
384 (128)  
Data EEPROM - bytes  
256  
Lite timer with Watchdog,  
autoreload timer, SPI,  
10-bit ADC with Op-Amp  
Lite timer with watchdog,  
autoreload timer with 32-MHz input clock, SPI,  
10-bit ADC with op-amp  
Peripherals  
Operating supply  
CPU frequency  
2.4V to 5.5V  
Up to 8 MHz  
(w/ ext OSC up to 16 MHz)  
Up to 8 MHz (w/ ext OSC up to 16 MHz  
and int 1MHz RC 1% PLLx8/4 MHz)  
Operating temperature  
Packages  
–40 °C to +85 °C  
SO20 300”, DIP20  
12/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Description  
Figure 1.  
General block diagram  
PLL  
8 MHz -> 32 MHz  
Int.  
1% RC  
1MHz  
12-bit  
Auto-reload  
Timer 2  
PLL x 8  
or PLL X4  
CLKIN  
8-bit  
Lite timer 2  
/ 2  
OSC1  
OSC2  
Ext.  
OSC  
Internal  
clock  
1 MHz  
PA7:0  
(8 bits)  
PB6:0  
(7 bits)  
to  
Port A  
Port B  
16 MHz  
LVD  
ADC  
V
Power  
supply  
DD  
+ Op-amp  
V
SS  
SPI  
RESET  
Control  
8-bit core  
ALU  
Debug module  
Program  
memory  
(8 Kbytes)  
Data EEPROM  
(256 bytes)  
RAM  
(384 bytes)  
Watchdog  
Doc ID 8349 Rev 5  
13/166  
Pin description  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
2
Pin description  
Figure 2.  
20-pin SO package pinout  
VSS  
OSC1/CLKIN  
1
20  
VDD  
RESET  
2
OSC2  
PA0 (HS)/LTIC  
19  
18  
17  
3
SS/AIN0/PB0  
4
PA1 (HS)/ATIC  
16 PA2 (HS)/ATPWM0  
ei  
0
1
ei  
3
5
SCK/AIN1/PB1  
MISO/AIN2/PB2  
MOSI/AIN3/PB3  
CLKIN/AIN4/PB4  
AIN5/PB5  
6
15  
PA3 (HS)/ATPWM1  
PA4 (HS)/ATPWM2  
13 PA5 (HS)/ATPWM3/ICCDATA  
12 PA6/MCO/ICCCLK/BREAK  
11 PA7(HS)  
7
14  
8
ei2  
ei  
9
10  
IN/AIN6/PB6  
(HS) 20mA high sink capability  
eix associated external interrupt vector  
Figure 3.  
20-pin DIP package pinout  
ei3  
MISO/AIN2/PB2  
MOSI/AIN3/PB3  
CLKIN/AIN4/PB4  
SCK/AIN1/PB1  
1
20  
ei3  
2
SS/AIN0/PB0  
RESET  
19  
18  
17  
3
ei2  
AIN5/PB5  
AIN6/PB6  
PA7(HS)  
4
VDD  
5
16 VSS  
15  
6
OSC1/CLKIN  
7
14 OSC2  
13 PA0(HS)/LTIC  
12 PA1(HS)/ATIC  
MCO/ICCCLK/BREAK/PA6  
ATPWM3/ICCDATA/PA5(HS)  
ATPWM2/PA4(HS)  
ei1  
ei0  
8
9
ei0  
11  
10  
PA2(HS)/ATPWM0  
ATPWM1/PA3(HS)  
(HS) 20mA high sink capability  
eix associated external interrupt vector  
Legend and abbreviations for device pin description (seeTable 2 below):  
Type:  
I = input  
O = output  
S = supply  
In/Output level:  
C = CMOS 0.3V /0.7V with input trigger  
T
DD  
DD  
Output level:  
HS = 20mA high sink (on N-buffer only)  
14/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Pin description  
Port and control configuration:  
Input:  
float = floating, wpu = weak pull-up, int = interrupt, ana = analog  
Output:  
OD = open drain  
PP = push-pull  
The RESET configuration of each pin is shown in bold which is valid as long as the device is  
in reset state.  
Table 2.  
Device pin description  
Pin  
No.  
Level  
Port / Control  
Input Output  
OD PP  
Main  
function  
(after  
Pin name  
Alternate function  
reset)  
1
2
16 VSS  
17 VDD  
S
S
Ground  
Main power supply  
Top priority non maskable interrupt (active  
low)  
3
4
5
6
7
18 RESET  
I/O CT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
ADC analog input 0 or SPI Slave  
Port B0  
19 PB0/AIN0/SS  
20 PB1/AIN1/SCK  
I/O  
I/O  
CT  
Select (active low)(1)  
ADC analog input 1 or SPI Serial  
CT  
CT  
CT  
CT  
ei3  
Port B1  
Clock(1)  
ADC analog input 2 or SPI Master  
in/ Slave out data  
1
2
PB2/AIN2/MISO I/O  
Port B2  
ADC analog input 3 or SPI Master  
out / Slave in data  
PB3/AIN3/MOSI I/O  
PB4/AIN4/CLKIN I/O  
Port B3  
ADC analog input 4 or external  
clock input  
8
9
3
4
Port B4  
ei2  
PB5/AIN5  
I/O  
I/O  
CT  
CT  
X
X
X
X
X
X
X
X
X
X
X
Port B5  
Port B6  
Port A7  
ADC analog input 5  
ADC analog input 6  
10 5 PB6/AIN6  
11 6 PA7  
I/O CT HS  
ei1  
ei1  
Main clock output or in circuit  
communication clock or external  
BREAK(2)  
PA6 /MCO/  
12 7  
I/O CT  
X
X
X
X
X
Port A6  
Port A5  
ICCCLK/BREAK  
PA5 /ATPWM3/  
ICCDATA  
Auto-reload timer PWM3 or In  
circuit communication data  
13 8  
I/O CT HS  
X
ei1  
ei0  
14 9 PA4/ATPWM2  
15 10 PA3/ATPWM1  
16 11 PA2/ATPWM0  
17 12 PA1/ATIC  
I/O CT HS  
I/O CT HS  
I/O CT HS  
I/O CT HS  
I/O CT HS  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Port A4  
Port A3  
Port A2  
Port A1  
Port A0  
Auto-reload timer PWM2  
Auto-reload timer PWM1  
Auto-reload timer PWM0  
Auto-reload timer input capture  
Lite timer input capture  
18 13 PA0/LTIC  
Doc ID 8349 Rev 5  
15/166  
 
Pin description  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 2.  
Device pin description (continued)  
Level Port / Control  
Input Output  
OD PP  
Pin  
No.  
Main  
function  
(after  
Pin name  
Alternate function  
reset)  
19 14 OSC2  
O
I
Resonator oscillator inverter output  
Resonator oscillator inverter input or external  
clock input  
20 15 OSC1/CLKIN  
1. No negative current injection allowed on this pin. For details (refer toTable 58: Current characteristics).  
2. During normal operation this pin must be pulled- up, internally or externally (external pull-up of 10k mandatory in noisy  
environment). This is to avoid entering ICC mode unexpectedly during a reset. In the application, even if the pin is  
configured as output, any reset will put it back in input pull-up.  
16/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Register & memory map  
3
Register & memory map  
As shown in Figure 4, the MCU is able of addressing 64K bytes of memories and I/O  
registers.  
The available memory locations consist of 128 bytes of register locations, 384 bytes of  
RAM, 256 bytes of data EEPROM and 8 Kbytes of user program memory. The RAM space  
includes up to 128 bytes for the stack from 180h to 1FFh.  
The highest address bytes contain the user reset and interrupt vectors.  
The Flash memory contains two sectors (see Figure 4) mapped in the upper part of the ST7  
addressing space so the reset and interrupt vectors are located in Sector 0 (F000h-FFFFh).  
The size of Flash Sector 0 and other device options are configurable by Option byte (refer to  
Section 15: Device configuration).  
Note:  
Memory locations marked as “Reserved” must never be accessed. Accessing a reserved  
area can have unpredictable effects on the device.  
Figure 4.  
Memory map  
0080h  
Short Addressing  
RAM (zero page)  
00FFh  
0100h  
0000h  
HW  
registers(1)  
16-bit Addressing  
RAM  
007Fh  
0080h  
017Fh  
0180h  
RAM  
(384 Bytes)  
01FFh  
20h  
128 Bytes Stack  
01FFh  
Reserved  
0FFFh  
1000h  
1000h  
Data EEPROM  
(256 Bytes)  
RCCR0  
RCCR1  
(3)  
10FFh  
1100h  
1001h  
Reserved  
8K Flash  
PROGRAM MEMORY  
DFFFh  
E000h  
E000h  
7 Kbytes  
SECTOR 1  
FBFFh  
FC00h  
Flash memory  
(8K)  
1 Kbyte  
SECTOR 0  
FFFFh  
FFDFh  
FFE0h  
FFDEh  
Interrupt  
RCCR0  
RCCR1  
(3)  
& reset vectors(2)  
FFFFh  
FFDFh  
1. SeeTable 3: Hardware register map  
2. See Table 12: Interrupt mapping  
3. See Section 7.1: Internal RC oscillator adjustment  
Doc ID 8349 Rev 5  
17/166  
 
Register & memory map  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Reset  
(1)  
Table 3.  
Address  
Hardware register map  
Register  
label  
Block  
Register name  
Remarks  
status  
0000h  
0001h  
0002h  
PADR  
PADDR  
PAOR  
Port A Data Register  
Port A Data Direction Register  
Port A Option Register  
FFh(2)  
00h  
40h  
R/W  
R/W  
R/W  
Port A  
0003h  
0004h  
0005h  
PBDR  
PBDDR  
PBOR  
Port B Data Register  
Port B Data Direction Register  
Port B Option Register  
FFh(2)  
00h  
00h  
R/W  
Port B  
R/W  
R/W(3)  
0006h  
0007h  
Reserved area (2 bytes)  
0008h  
0009h  
000Ah  
000Bh  
000Ch  
LTCSR2  
LTARR  
LTCNTR  
LTCSR1  
LTICR  
Lite Timer Control/Status Register 2  
Lite Timer Auto-reload Register  
Lite Timer Counter Register  
Lite Timer Control/Status Register 1  
Lite Timer Input Capture Register  
00h  
00h  
00h  
R/W  
R/W  
Read only  
Lite  
TIMER 2  
0X00 0000h R/W  
00h  
Read only  
000Dh  
000Eh  
000Fh  
0010h  
0011h  
0012h  
0013h  
0014h  
0015h  
0016h  
0017h  
0018h  
0019h  
001Ah  
001Bh  
001Ch  
001Dh  
001Eh  
001Fh  
0020h  
0021h  
0022h  
ATCSR  
CNTRH  
CNTRL  
ATRH  
ATRL  
PWMCR  
PWM0CSR  
PWM1CSR  
PWM2CSR  
PWM3CSR  
DCR0H  
DCR0L  
DCR1H  
DCR1L  
DCR2H  
DCR2L  
Timer Control/Status Register  
Counter Register High  
Counter Register Low  
Auto-Reload Register High  
Auto-Reload Register Low  
0X00 0000h R/W  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
01h  
00h  
Read only  
Read only  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PWM Output Control Register  
PWM 0 Control/Status Register  
PWM 1 Control/Status Register  
PWM 2 Control/Status Register  
PWM 3 Control/Status Register  
PWM 0 Duty Cycle Register High  
PWM 0 Duty Cycle Register Low  
PWM 1 Duty Cycle Register High  
PWM 1 Duty Cycle Register Low  
PWM 2 Duty Cycle Register High  
PWM 2 Duty Cycle Register Low  
PWM 3 Duty Cycle Register High  
PWM 3 Duty Cycle Register Low  
Input Capture Register High  
Input Capture Register Low  
Transfer Control Register  
Auto-  
reload  
TIMER 2  
DCR3H  
DCR3L  
ATICRH  
ATICRL  
TRANCR  
BREAKCR  
Read only  
Read only  
R/W  
Break Control Register  
R/W  
0023h to  
002Dh  
Reserved area (11 bytes)  
002Eh  
0002Fh  
00030h  
WDG  
Flash  
WDGCR  
FCSR  
Watchdog Control Register  
7Fh  
00h  
00h  
R/W  
R/W  
R/W  
Flash Control/Status Register  
Data EEPROM Control/Status Register  
EEPROM EECSR  
SPIDR  
0031h  
0032h  
0033h  
SPI Data I/O Register  
SPI Control Register  
SPI Control Status Register  
xxh  
0xh  
00h  
R/W  
R/W  
R/W  
SPI  
SPICR  
SPICSR  
0034h  
0035h  
0036h  
ADCCSR  
ADCDRH  
ADCDRL  
A/D Control Status Register  
A/D Data Register High  
A/D Amplifier Control/Data Low Register  
00h  
xxh  
0xh  
R/W  
Read Only  
R/W  
ADC  
18/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Register & memory map  
(1)  
Table 3.  
Address  
Hardware register map (continued)  
Register  
Reset  
Block  
Register name  
Remarks  
status  
label  
EICR  
MCCSR  
0037h  
0038h  
ITC  
External Interrupt Control Register  
Main Clock Control/Status Register  
00h  
00h  
FFh  
R/W  
R/W  
R/W  
MCC  
0039h  
003Ah  
Clock and RCCR  
RC oscillator Control Register  
System Integrity Control/Status Register  
Reset  
SICSR  
0000 0XX0h R/W  
003Bh  
003Ch  
Reserved area (1 byte)  
ITC  
EISR  
External Interrupt Selection Register  
0Ch  
R/W  
003Dh to  
0048h  
Reserved area (12 bytes)  
0049h  
004Ah  
AWUPR  
AWUCSR  
AWU Prescaler Register  
AWU Control/Status Register  
FFh  
00h  
R/W  
R/W  
AWU  
004Bh  
004Ch  
004Dh  
004Eh  
004Fh  
0050h  
DMCR  
DMSR  
DMBK1H  
DMBK1L  
DMBK2H  
DMBK2L  
DM Control Register  
DM Status Register  
DM Breakpoint Register 1 High  
DM Breakpoint Register 1 Low  
DM Breakpoint Register 2 High  
DM Breakpoint Register 2 Low  
00h  
00h  
00h  
00h  
00h  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DM(4)  
0051h to  
007Fh  
Reserved area (47 bytes)  
1. Legend: x = undefined, R/W = read/write.  
2. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the  
I/O pins are returned instead of the DR register contents.  
3. The bits associated with unavailable pins must always keep their reset value.  
4. For a description of the Debug Module registers, see ICC reference manual.  
Doc ID 8349 Rev 5  
19/166  
Flash program memory  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
4
Flash program memory  
4.1  
Introduction  
The ST7 single voltage extended Flash (XFlash) is a non-volatile memory that can be  
electrically erased and programmed either on a byte-by-byte basis or up to 32 bytes in  
parallel.  
The XFlash devices can be programmed off-board (plugged in a programming tool) or on-  
board using in-circuit programming or in-application programming.  
The array matrix organization allows each sector to be erased and reprogrammed without  
affecting other sectors.  
4.2  
4.3  
Main features  
ICP (in-circuit programming)  
IAP (in-application programming)  
ICT (in-circuit testing) for downloading and executing user application test patterns in  
RAM  
Sector 0 size configurable by option byte  
Read-out and write protection  
Programming modes  
The ST7 can be programmed in three different ways:  
Insertion in a programming tool. In this mode, Flash sectors 0 and 1, option byte row  
and data EEPROM (if present) can be programmed or erased.  
In-circuit programming. In this mode, Flash sectors 0 and 1, option byte row and data  
EEPROM (if present) can be programmed or erased without removing the device from  
the application board.  
In-application programming. In this mode, sector 1 and data EEPROM (if present) can  
be programmed or erased without removing the device from the application board and  
while the application is running.  
4.3.1  
In-circuit programming (ICP)  
ICP uses a protocol called ICC (in-circuit communication) which allows an ST7 plugged on a  
printed circuit board (PCB) to communicate with an external programming device connected  
via cable. ICP is performed in three steps:  
1. Switch the ST7 to ICC mode (in-circuit communications). This is done by driving a  
specific signal sequence on the ICCCLK/DATA pins while the RESET pin is pulled low.  
When the ST7 enters ICC mode, it fetches a specific RESET vector which points to the  
ST7 System Memory containing the ICC protocol routine. This routine enables the ST7  
to receive bytes from the ICC interface.  
2. Download ICP driver code in RAM from the ICCDATA pin.  
3. Execute ICP driver code in RAM to program the Flash memory.  
20/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Flash program memory  
Depending on the ICP driver code downloaded in RAM, Flash memory programming can be  
fully customized (number of bytes to program, program locations, or selection of the serial  
communication interface for downloading).  
4.3.2  
In-application programming (IAP)  
This mode uses an IAP driver program previously programmed in Sector 0 by the user (in  
ICP mode).  
This mode is fully controlled by user software. This allows it to be adapted to the user  
application, (user-defined strategy for entering programming mode, choice of  
communications protocol used to fetch the data to be stored etc.).  
IAP mode can be used to program any memory areas except Sector 0, which is write/erase  
protected to allow recovery in case errors occur during the programming operation.  
4.4  
ICC interface  
ICP needs a minimum of 4 and up to 6 pins to be connected to the programming tool. These  
pins are:  
RESET: device reset  
: device power supply ground  
V
SS  
ICCCLK: ICC output serial clock pin  
ICCDATA: ICC input serial data pin  
CLKIN/PB4: main clock input for external source  
V
: application board power supply (optional).  
DD  
If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal  
isolation is necessary. As soon as the Programming Tool is plugged to the board, even if an  
ICC session is not in progress, the ICCCLK and ICCDATA pins are not available for the  
application. If they are used as inputs by the application, isolation such as a serial resistor  
has to be implemented in case another device forces the signal. Refer to the Programming  
Tool documentation for recommended resistor values.  
During the ICP session, the programming tool must control the RESET pin. This can lead to  
conflicts between the programming tool and the application reset circuit if it drives more than  
5mA at high level (push pull output or pull-up resistor<1K). A schottky diode can be used to  
isolate the application RESET circuit in this case. When using a classical RC network with  
R>1 kΩ or a reset management IC with open drain output and pull-up resistor > 1 kΩ, no  
additional components are needed. In all cases the user must ensure that no external reset  
is generated by the application during the ICC session.  
The use of Pin 7 of the ICC connector depends on the Programming Tool architecture. This  
pin must be connected when using most ST Programming Tools (it is used to monitor the  
application power supply). Please refer to the Programming Tool manual.  
Pin 9 has to be connected to the CLKIN/PB4 pin of the ST7 when the clock is not available  
in the application or if the selected clock option is not programmed in the option byte. ST7  
devices with multi-oscillator capability need to have OSC1 and OSC2 grounded in this case.  
With any programming tool, while the ICP option is disabled, the external clock has to be  
provided on PB4.  
Doc ID 8349 Rev 5  
21/166  
 
Flash program memory  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Caution:  
During normal operation the ICCCLK pin must be pulled up, internally or externally (external  
pull-up of 10k mandatory in noisy environment). This is to avoid entering ICC mode  
unexpectedly during a reset. In the application, even if the pin is configured as output, any  
reset will put it back in input pull-up.  
Figure 5.  
Typical ICC interface  
Programming tool  
ICC connector  
ICC Cable  
ICC connector  
HE10 connector type  
Optional  
Application board  
9
7
5
6
3
1
2
10  
8
4
Application  
reset source  
Application  
power supply  
Application  
I/O  
ST7  
4.5  
Memory protection  
There are two different types of memory protection: Read-Out Protection and Write/Erase  
Protection which can be applied individually.  
4.5.1  
Read-out protection  
Read-out protection, when selected provides a protection against program memory content  
extraction and against write access to Flash memory. Even if no protection can be  
considered as totally unbreakable, the feature provides a very high level of protection for a  
2
general purpose microcontroller. Both program and data E memory are protected.  
In flash devices, this protection is removed by reprogramming the option. In this case, both  
2
program and data E memory are automatically erased and the device can be  
reprogrammed.  
Read-out protection selection depends on the device type:  
In Flash devices it is enabled and removed through the FMP_R bit in the option byte.  
In ROM devices it is enabled by mask option specified in the Option List.  
4.5.2  
Flash write/erase protection  
Write/erase protection, when set, makes it impossible to both overwrite and erase program  
2
memory. It does not apply to E data. Its purpose is to provide advanced security to  
applications and prevent any change being made to the memory content.  
Caution:  
Once set, Write/erase protection can never be removed. A write-protected flash device is no  
longer reprogrammable.  
22/166  
Doc ID 8349 Rev 5  
 
 
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Flash program memory  
Write/erase protection is enabled through the FMP_W bit in the option byte.  
4.6  
4.7  
Related documentation  
For details on Flash programming and ICC protocol, refer to the ST7 Flash Programming  
Reference Manual and to the ST7 ICC Protocol Reference Manual.  
Register description  
Flash control/status register (FCSR)  
Read / Write  
Reset value: 0000 0000 (00h)  
1st RASS Key: 0101 0110 (56h)  
2nd RASS Key: 1010 1110 (AEh)  
7
0
0
0
0
0
0
OPT  
LAT  
PGM  
Note:  
This register is reserved for programming using ICP, IAP or other programming methods. It  
controls the XFlash programming and erasing operations.  
When an EPB or another programming tool is used (in socket or ICP mode), the RASS keys  
are sent automatically.  
Doc ID 8349 Rev 5  
23/166  
Data EEPROM  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
5
Data EEPROM  
5.1  
Introduction  
The Electrically Erasable Programmable Read Only Memory can be used as a non-volatile  
backup for storing data. Using the EEPROM requires a basic access protocol described in  
this chapter.  
5.2  
Main features  
Up to 32 bytes programmed in the same cycle  
EEPROM mono-voltage (charge pump)  
Chained erase and programming cycles  
Internal control of the global programming cycle duration  
WAIT mode management  
Read-out protection  
Figure 6.  
EEPROM block diagram  
High voltage  
pump  
EECSR  
0
0
0
0
0
0
E2LAT E2PGM  
EEPROM  
Row  
Address  
decoder  
4
memory matrix  
decoder  
(1 ROW = 32 x 8 BITS)  
128  
128  
Data  
multiplexer  
32 x 8 bits  
4
4
data latches  
Address bus  
DATA BUS  
5.3  
Memory access  
The Data EEPROM memory read/write access modes are controlled by the E2LAT bit of the  
EEPROM Control/Status register (EECSR). The flowchart in Figure 7 describes these  
different memory access modes.  
24/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Read operation (E2LAT=0)  
Data EEPROM  
The EEPROM can be read as a normal ROM location when the E2LAT bit of the EECSR  
register is cleared.  
On this device, Data EEPROM can also be used to execute machine code. Take care not to  
write to the Data EEPROM while executing from it. This would result in an unexpected code  
being executed.  
Write operation (E2LAT=1)  
To access the write mode, the E2LAT bit has to be set by software (the E2PGM bit remains  
cleared). When a write access to the EEPROM area occurs, the value is latched inside the  
32 data latches according to its address.  
When PGM bit is set by the software, all the previous bytes written in the data latches (up to  
32) are programmed in the EEPROM cells. The effective high address (row) is determined  
by the last EEPROM write sequence. To avoid wrong programming, the user must take care  
that all the bytes written between two programming sequences have the same high address:  
only the five Least Significant Bits of the address can change.  
At the end of the programming cycle, the PGM and LAT bits are cleared simultaneously.  
Note:  
Care should be taken during the programming cycle. Writing to the same memory location  
will over-program the memory (logical AND between the two write access data result)  
because the data latches are only cleared at the end of the programming cycle and by the  
falling edge of the E2LAT bit.  
It is not possible to read the latched data.  
This note is illustrated by the Figure 9: Data EEPROM programming cycle.  
Figure 7.  
Data EEPROM programming flowchart  
Read mode  
E2LAT=0  
Write mode  
E2LAT=1  
E2PGM=0  
E2PGM=0  
Write up to 32 bytes  
in EEPROM area  
(with the same 11 MSB of the address)  
Read bytes  
in EEPROM area  
Start programming cycle  
E2LAT=1  
E2PGM=1 (set by software)  
0
1
E2LAT  
Cleared by hardware  
Doc ID 8349 Rev 5  
25/166  
Data EEPROM  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 4.  
Row definition  
Row / Byte   
0
1
2
3
...  
30 31  
Physical address  
0
1
00h...1Fh  
20h...3Fh  
...  
N
Nx20h...Nx20h+1Fh  
Figure 8.  
Data EEPROM Write operation  
Read operation impossible  
Read operation possible  
Programming cycle  
Byte 1 Byte 2  
PHASE 1  
Byte 32  
PHASE 2  
Waiting E2PGM and E2LAT to fall  
Writing data latches  
E2LAT bit  
Set by USER application  
Cleared by hardware  
E2PGM bit  
Note:  
If a programming cycle is interrupted (by a reset action), the integrity of the data in memory  
is not guaranteed.  
5.4  
Power saving modes  
WAIT mode  
The DATA EEPROM can enter WAIT mode on execution of the WFI instruction of the  
microcontroller or when the microcontroller enters ACTIVE-HALT mode.The DATA EEPROM  
will immediately enter this mode if there is no programming in progress, otherwise the DATA  
EEPROM will finish the cycle and then enter WAIT mode.  
ACTIVE-HALT mode  
Refer to WAIT mode.  
HALT mode  
The DATA EEPROM immediately enters HALT mode if the microcontroller executes the  
HALT instruction. Therefore the EEPROM will stop the function in progress, and data may  
be corrupted.  
5.5  
Access error handling  
If a read access occurs while E2LAT=1, then the data bus will not be driven.  
If a write access occurs while E2LAT=0, then the data on the bus will not be latched.  
If a programming cycle is interrupted (by a RESET action), the memory data will not be  
guaranteed.  
26/166  
Doc ID 8349 Rev 5  
 
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Data EEPROM  
5.6  
Data EEPROM Read-out protection  
The Read-out protection is enabled through an option bit (see Section 15.1: Option bytes).  
When this option is selected, the programs and data stored in the EEPROM memory are  
protected against Read-out (including a re-write protection). In Flash devices, when this  
protection is removed by reprogramming the Option Byte, the entire Program memory and  
EEPROM is first automatically erased.  
Note:  
Both Program Memory and DATA EEPROM are protected using the same option bit.  
Figure 9.  
Data EEPROM programming cycle  
Read operation not possible  
Read operation possible  
Internal  
programming  
voltage  
Erase cycle  
Write cycle  
Write of  
data latches  
t
PROG  
LAT  
PGM  
5.7  
Register description  
EEPROM Control/Status register (EECSR)  
Read/Write  
Reset Value: 0000 0000 (00h)  
7
0
0
0
0
0
0
0
E2LAT  
E2PGM  
Bits 7:2 = Reserved, forced by hardware to 0.  
Bit 1 = E2LAT Latch Access Transfer  
This bit is set by software. It is cleared by hardware at the end of the programming  
cycle. It can only be cleared by software if the E2PGM bit is cleared.  
0: Read mode  
1: Write mode  
Bit 0 = E2PGM Programming control and status  
This bit is set by software to begin the programming cycle. At the end of the  
programming cycle, this bit is cleared by hardware.  
0: Programming finished or not yet started  
1: Programming cycle is in progress  
Note:  
If the E2PGM bit is cleared during the programming cycle, the memory data is not  
guaranteed.  
Doc ID 8349 Rev 5  
27/166  
Data EEPROM  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 5.  
DATA EEPROM register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
EECSR  
E2LAT E2PGM  
0030h  
Reset  
Value  
0
0
0
0
0
0
0
0
28/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Central processing unit  
6
Central processing unit  
6.1  
Introduction  
This CPU has a full 8-bit architecture and contains six internal registers allowing efficient  
8-bit data manipulation.  
6.2  
Main features  
63 basic instructions  
Fast 8-bit by 8-bit multiply  
17 main addressing modes  
Two 8-bit index registers  
16-bit stack pointer  
Low power modes  
Maskable hardware interrupts  
Non-maskable software interrupt  
6.3  
CPU registers  
The 6 CPU registers shown in Figure 10 are not present in the memory mapping and are  
accessed by specific instructions.  
Figure 10. CPU registers  
7
0
Accumulator  
Reset value = XXh  
7
0
0
X index register  
Y index register  
Reset value = XXh  
7
Reset value = XXh  
PCL  
PCH  
7
8
15  
0
Program counter  
Condition code register  
Stack pointer  
Reset value = reset vector @ FFFEh-FFFFh  
7
0
1
1
1
1
1
1
H I N Z  
C
X
Reset value =  
X
1 X X  
15  
8
7
0
Reset value = stack higher address  
X = Undefined value  
Doc ID 8349 Rev 5  
29/166  
 
Central processing unit  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Accumulator (A)  
The Accumulator is an 8-bit general purpose register used to hold operands and the results  
of the arithmetic and logic calculations and to manipulate data.  
Index registers (X and Y)  
In indexed addressing modes, these 8-bit registers are used to create either effective  
addresses or temporary storage areas for data manipulation. The cross-assembler  
generates a precede instruction (PRE) to indicate that the following instruction refers to the  
Y register.  
The Y register is not affected by the interrupt automatic procedures (not pushed to and  
popped from the stack).  
Program counter (PC)  
The program counter is a 16-bit register containing the address of the next instruction to be  
executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is  
the LSB) and PCH (program counter high which is the MSB).  
Condition code register (CC)  
Read/Write  
Reset value: 111x1xxx  
7
0
1
1
1
H
I
N
Z
C
The 8-bit Condition Code register contains the interrupt masks and four flags representative  
of the result of the instruction just executed. This register can also be handled by the PUSH  
and POP instructions.  
These bits can be individually tested and/or controlled by specific instructions.  
Bit 4 = H Half carry  
This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during  
an ADD or ADC instruction. It is reset by hardware during the same instructions.  
0: No half carry has occurred  
1: A half carry has occurred  
This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD  
arithmetic subroutines.  
Bit 3 = I Interrupt mask  
This bit is set by hardware when entering in interrupt or by software to disable all  
interrupts except the TRAP software interrupt. This bit is cleared by software.  
0: Interrupts are enabled  
1: Interrupts are disabled  
This bit is controlled by the RIM, SIM and IRET instructions and is tested by the JRM  
and JRNM instructions.  
Note:  
Interrupts requested while I is set are latched and can be processed when I is cleared. By  
default an interrupt routine is not interruptible because the I bit is set by hardware at the start  
of the routine and reset by the IRET instruction at the end of the routine. If the I bit is cleared  
30/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Central processing unit  
by software in the interrupt routine, pending interrupts are serviced regardless of the priority  
level of the current interrupt routine.  
Bit 2 = N Negative  
This bit is set and cleared by hardware. It is representative of the result sign of the last  
th  
arithmetic, logical or data manipulation. It is a copy of the 7 bit of the result.  
0: The result of the last operation is positive or null  
1: The result of the last operation is negative  
(i.e. the most significant bit is a logic 1)  
This bit is accessed by the JRMI and JRPL instructions.  
Bit 1 = Z Zero  
This bit is set and cleared by hardware. This bit indicates that the result of the last  
arithmetic, logical or data manipulation is zero.  
0: The result of the last operation is different from zero  
1: The result of the last operation is zero  
This bit is accessed by the JREQ and JRNE test instructions.  
Bit 0 = C Carry/borrow  
This bit is set and cleared by hardware and software. It indicates an overflow or an  
underflow has occurred during the last arithmetic operation.  
0: No overflow or underflow has occurred  
1: An overflow or underflow has occurred  
This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC  
instructions. It is also affected by the “bit test and branch”, shift and rotate instructions.  
Stack pointer register (SP)  
Read/Write  
Reset value: 01FFh  
15  
8
0
7
1
0
0
0
0
0
0
1
0
SP6  
SP5  
SP4  
SP3  
SP2  
SP1  
SP0  
The Stack Pointer is a 16-bit register which is always pointing to the next free location in the  
stack. It is then decremented after data has been pushed onto the stack and incremented  
before data is popped from the stack (see Figure 11).  
Since the stack is 128 bytes deep, the 9 most significant bits are forced by hardware.  
Following an MCU Reset, or after a Reset Stack Pointer instruction (RSP), the Stack Pointer  
contains its reset value (the SP6 to SP0 bits are set) which is the stack higher address.  
The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD  
instruction.  
Note:  
When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit,  
without indicating the stack overflow. The previously stored information is then overwritten  
and therefore lost. The stack also wraps in case of an underflow.  
Doc ID 8349 Rev 5  
31/166  
Central processing unit  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
The stack is used to save the return address during a subroutine call and the CPU context  
during an interrupt. The user may also directly manipulate the stack by means of the PUSH  
and POP instructions. In the case of an interrupt, the PCL is stored at the first location  
pointed to by the SP. Then the other registers are stored in the next locations as shown in  
Figure 11:  
When an interrupt is received, the SP is decremented and the context is pushed on the  
stack.  
On return from interrupt, the SP is incremented and the context is popped from the  
stack.  
A subroutine call occupies two locations and an interrupt five locations in the stack area.  
Figure 11. Stack manipulation example  
CALL  
Subroutine  
RET  
or RSP  
PUSH Y  
POP Y  
IRET  
Interrupt  
Event  
@ 0180h  
SP  
SP  
SP  
Y
CC  
A
CC  
A
CC  
A
X
X
X
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
SP  
SP  
PCH  
PCL  
PCH  
PCL  
SP  
@ 01FFh  
Stack higher address = 01FFh  
0180h  
Stack lower address =  
32/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Supply, reset and clock management  
7
Supply, reset and clock management  
The device includes a range of utility features for securing the application in critical  
situations (for example in case of a power brown-out), and reducing the number of external  
components.  
Main features  
Clock management  
1 MHz internal RC oscillator (enabled by option byte, available on ST7LITE25 and  
ST7LITE29 devices only)  
1 to 16 MHz or 32kHz External crystal/ceramic resonator (selected by option byte)  
External Clock Input (enabled by option byte)  
PLL for multiplying the frequency by 8 or 4 (enabled by option byte)  
For clock ART counter only: PLL32 for multiplying the 8 MHz frequency by 4  
(enabled by option byte). The 8 MHz input frequency is mandatory and can be  
obtained in the following ways:  
. 1 MHz RC + PLLx8  
. 16 MHz external clock (internally divided by 2)  
. 2 MHz external clock (internally divided by 2) + PLLx8  
. Crystal oscillator with 16 MHz output frequency (internally divided by 2).  
Reset Sequence Manager (RSM)  
System Integrity Management (SI)  
Main supply Low Voltage Detection (LVD) with reset generation (enabled by option  
byte)  
Auxiliary Voltage Detector (AVD) with interrupt capability for monitoring the main  
supply (enabled by option byte).  
7.1  
Internal RC oscillator adjustment  
The device contains an internal RC oscillator with an accuracy of 1% for a given device,  
temperature and voltage range (4.5 V - 5.5 V). It must be calibrated to obtain the frequency  
required in the application. This is done by software writing a calibration value in the RCCR  
(RC Control Register).  
Whenever the microcontroller is reset, the RCCR returns to its default value (FFh), i.e. each  
time the device is reset, the calibration value must be loaded in the RCCR. Predefined  
calibration values are stored in EEPROM for 3 and 5 V V supply voltages at 25 °C, as  
DD  
shown in Table 6.  
Table 6.  
RCCR  
Predefined calibration values  
Conditions  
ST7LITE29  
address  
ST7LITE25  
address  
RCCR0  
RCCR1  
VDD = 5 V, TA = 25 °C, fRC = 1 MHz  
1000h and FFDEh  
FFDEh  
FFDFh  
VDD = 3 V, TA = 25 °C, fRC = 700 kHz 1001h and FFDFh  
Doc ID 8349 Rev 5  
33/166  
 
 
 
Supply, reset and clock management  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Note:  
See Section 13: Electrical characteristics for more information on the frequency and  
accuracy of the RC oscillator.  
To improve clock stability and frequency accuracy, it is recommended to place a decoupling  
capacitor, typically 100nF, between the V and V pins as close as possible to the ST7  
DD  
SS  
device.  
These two bytes are systematically programmed by ST, including on FASTROM devices.  
Consequently, customers intending to use FASTROM service must not use these two bytes.  
RCCR0 and RCCR1 calibration values will be erased if the Read-out protection bit is reset  
after it has been set. See Section 4.5.1: Read-out protection.  
Caution:  
If the voltage or temperature conditions change in the application, the frequency may need  
to be recalibrated.  
Refer to application note AN1324 for information on how to calibrate the RC frequency using  
an external reference signal.  
7.2  
Phase locked loop (PLL)  
The PLL can be used to multiply a 1 MHz frequency from the RC oscillator or the external  
clock by 4 or 8 to obtain f  
of 4 or 8 MHz. The PLL is enabled and the multiplication factor  
OSC  
of 4 or 8 is selected by 2 option bits.  
The x4 PLL is intended for operation with V in the 2.4 V to 3.3 V range  
DD  
The x8 PLL is intended for operation with V in the 3.3 V to 5.5 V range  
DD  
Note:  
Refer to Section 15.1: Option bytes for the option byte description.  
If the PLL is disabled and the RC oscillator is enabled, then f = 1 MHz.  
OSC  
If both the RC oscillator and the PLL are disabled, f  
is driven by the external clock.  
OSC  
Figure 12. PLL output frequency timing diagram  
LOCKED bit set  
4/8 x  
input  
freq.  
t
STAB  
t
LOCK  
t
STARTUP  
t
When the PLL is started, after reset or wakeup from HALT mode or AWUF mode, it outputs  
the clock after a delay of t  
.
STARTUP  
When the PLL output signal reaches the operating frequency, the LOCKED bit in the  
SICSCR register is set. Full PLL accuracy (ACC ) is reached after a stabilization time of  
PLL  
34/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Supply, reset and clock management  
t
(see Figure 12 below and Figure 64: RC oscillator and PLL characteristics (tested  
STAB  
for TA = -40 to +85°C) @ VDD = 4.5 to 5.5 V).  
Refer to Section 7.6.4: Register description for a description of the LOCKED bit in the  
SICSR register.  
7.3  
Register description  
Main clock control/status register (MCCSR)  
Read / Write  
Reset value: 0000 0000 (00h)  
7
0
0
0
0
0
0
0
MCO  
SMS  
Bits 7:2 = Reserved, must be kept cleared  
Bit 1 = MCO Main Clock Out enable  
This bit is read/write by software and cleared by hardware after a reset. This bit allows  
to enable the MCO output clock.  
0: MCO clock disabled, I/O port free for general purpose I/O.  
1: MCO clock enabled.  
Bit 0 = SMS Slow Mode select  
This bit is read/write by software and cleared by hardware after a reset. This bit selects  
the input clock f  
or f  
/32.  
OSC2  
OSC2  
0: Normal mode (f  
f
CPU = OSC2  
1: Slow mode (f  
f
/32)  
CPU = OSC2  
RC control register (RCCR)  
Read / Write  
Reset value: 1111 1111 (FFh)  
7
0
CR70  
CR60  
CR50  
CR40  
CR30  
CR20  
CR10  
CR0  
Bits 7:0 = CR[7:0] RC oscillator frequency adjustment bits  
These bits must be written immediately after reset to adjust the RC oscillator frequency  
and to obtain an accuracy of 1%. The application can store the correct value for each  
voltage range in EEPROM and write it to this register at startup.  
00h = maximum available frequency  
FFh = lowest available frequency  
Note:  
To tune the oscillator, write a serie of different values in the register until the correct  
frequency is reached. The fastest method is to use a dichotomy starting with 80h.  
Doc ID 8349 Rev 5  
35/166  
Supply, reset and clock management  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Figure 13. Clock management block diagram  
CR7 CR6 CR5 CR4 CR3 CR2 CR1  
CR0  
RCCR  
PLL  
12-bit  
at TIMER 2  
fCPU  
Tunable  
1% RC oscillator  
8 MHz -> 32 MHz  
Osc,PLLoff,  
RC OSC  
OSCRANGE[2:0]  
Option bits  
PLLx4x8  
CLKIN  
CLKIN  
CLKIN  
PLL 1 MHz -> 8 MHz  
PLL 1 MHz -> 4 MHz  
fOSC  
/2  
divider  
CLKIN/2  
CLKIN/2  
OSC/2  
CLKIN  
/OSC1  
OSC  
1-16 MHZ  
or 32 kHz  
OSC  
/2  
divider  
OSC2  
Osc,PLLoff,  
OSCRANGE[2:0]  
Option bits  
fLTIMER  
(1ms timebase @ 8 MHz fOSC  
8-bit  
)
Lite timer 2 counter  
fOSC  
fOSC/32  
1
/32 divider  
fCPU  
To CPU and  
peripherals  
fOSC  
0
MCCSR  
SMS  
MCO  
fCPU  
MCO  
7.4  
Multi-oscillator (MO)  
The main clock of the ST7 can be generated by four different source types coming from the  
multioscillator block (1 to 16MHz or 32kHz):  
an external source  
5 crystal or ceramic resonator oscillators  
an internal high frequency RC oscillator.  
Each oscillator is optimized for a given frequency range in terms of consumption and is  
selectable through the option byte. The associated hardware configurations are shown in  
Table 7.  
Note:  
Refer to Section 13: Electrical characteristics for more details.  
External clock source  
In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle  
has to drive the OSC1 pin while the OSC2 pin is tied to ground.  
36/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Supply, reset and clock management  
Note:  
When the Multi-oscillator is not used, PB4 is selected by default as external clock.  
Crystal/ceramic oscillators  
This family of oscillators has the advantage of producing a very accurate rate on the main  
clock of the ST7. The selection within a list of 4 oscillators with different frequency ranges  
has to be done by option byte in order to reduce consumption (refer to Section 15.1: Option  
bytes for more details on the frequency ranges). In this mode of the multi-oscillator, the  
resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. The loading  
capacitance values must be adjusted according to the selected oscillator.  
These oscillators are not stopped during the RESET phase to avoid losing time in the  
oscillator startup phase.  
Internal RC oscillator  
In this mode, the tunable 1% RC oscillator is used as main clock source. The two oscillator  
pins have to be tied to ground.  
Table 7.  
ST7 clock sources  
Clock source  
Hardware configuration  
ST7  
OSC1  
OSC2  
External clock  
External  
source  
ST7  
OSC1  
OSC2  
Crystal/ceramic resonators  
C
C
L2  
L1  
Load  
capacitors  
ST7  
OSC1  
OSC2  
Internal RC oscillator or  
external clock on PB4  
Doc ID 8349 Rev 5  
37/166  
Supply, reset and clock management  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
7.5  
Reset sequence manager (RSM)  
7.5.1  
Introduction  
The reset sequence manager includes three RESET sources as shown in Figure 15: Reset  
block diagram:  
External RESET source pulse  
Internal LVD RESET (low voltage detection)  
Internal WATCHDOG RESET  
Note:  
A reset can also be triggered following the detection of an illegal opcode or prebyte code.  
Refer to Section 12.2.1: Illegal opcode reset for further details.  
These sources act on the RESET pin and it is always kept low during the delay phase.  
The RESET service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory  
map.  
The basic RESET sequence consists of 3 phases as shown in Figure 14:  
Active Phase depending on the RESET source  
256 or 4096 CPU clock cycle delay (see table below)  
RESET vector fetch.  
The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilise and ensures that  
recovery has taken place from the Reset state. The shorter or longer clock cycle delay is  
automatically selected depending on the clock source chosen by option byte:  
Table 8.  
CPU Clock cycle delay  
Clock source  
CPU clock  
cycle delay  
Internal RC oscillator  
256  
256  
External clock (connected to CLKIN pin)  
External crystal/ceramic oscillator  
(connected to OSC1/OSC2 pins)  
4096  
The RESET vector fetch phase duration is 2 clock cycles.  
If the PLL is enabled by option byte, it outputs the clock after an additional delay of t  
STARTUP  
(see Figure 12: PLL output frequency timing diagram).  
Figure 14. RESET sequence phases  
RESET  
Internal reset  
256 or 4096 clock cycles  
Fetch  
vector  
Active phase  
38/166  
Doc ID 8349 Rev 5  
 
 
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Supply, reset and clock management  
7.5.2  
Asynchronous external RESET pin  
The RESET pin is both an input and an open-drain output with integrated R weak pull-up  
ON  
resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It  
can be pulled low by external circuitry to reset the device.  
Note:  
See Section 13: Electrical characteristics for more details.  
A RESET signal originating from an external source must have a duration of at least  
t
in order to be recognized (see Figure 16: RESET sequences). This detection is  
h(RSTL)in  
asynchronous and therefore the MCU can enter reset state even in HALT mode.  
Figure 15. Reset block diagram  
V
DD  
R
ON  
RESET  
Internal  
reset  
Filter  
WATCHDOG RESET  
Pulse  
generator  
Illegal OPCODE RESET  
LVD RESET  
Note:  
See Section 12.2.1: Illegal opcode reset for more details on illegal opcode reset conditions.  
The RESET pin is an asynchronous signal which plays a major role in EMS performance. In  
a noisy environment, it is recommended to follow the guidelines mentioned in Section 13:  
Electrical characteristics.  
7.5.3  
External power-on RESET  
If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must  
ensure by means of an external reset circuit that the reset signal is held low until V is over  
DD  
the minimum level specified for the selected f  
frequency.  
OSC  
A proper reset signal for a slow rising V supply can generally be provided by an external  
DD  
RC network connected to the RESET pin.  
7.5.4  
Internal low voltage detector (LVD) RESET  
Two different RESET sequences caused by the internal LVD circuitry can be distinguished:  
Power-on RESET  
Voltage drop RESET.  
The device RESET pin acts as an output that is pulled low when V <V (rising edge) or  
DD  
IT+  
V
<V (falling edge) as shown in Figure 16: RESET sequences.  
DD  
IT-  
The LVD filters spikes on V larger than t  
to avoid parasitic resets.  
g(VDD)  
DD  
Doc ID 8349 Rev 5  
39/166  
Supply, reset and clock management  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
7.5.5  
Internal watchdog RESET  
The RESET sequence generated by a internal Watchdog counter overflow is shown in  
Figure 16.  
Starting from the Watchdog counter underflow, the device RESET pin acts as an output that  
is pulled low during at least t  
.
w(RSTL)out  
Figure 16. RESET sequences  
V
DD  
VIT+(LVD)  
VIT-(LVD)  
LVD  
RESET  
External  
RESET  
Watchdog  
RESET  
Run  
Run  
Run  
Run  
Active  
phase  
Active  
phase  
Active phase  
t
w(RSTL)out  
t
h(RSTL)in  
External  
RESET  
SOURCE  
RESET PIN  
Watchdog  
RESET  
Watchdog underflow  
Internal RESET (256 or 4096 TCPU  
)
Vector fetch  
7.6  
System integrity management (SI)  
The system integrity management block contains the low voltage detector (LVD) and  
auxiliary voltage detector (AVD) functions. It is managed by the SICSR register.  
Note:  
A reset can also be triggered following the detection of an illegal opcode or prebyte code.  
Refer to Section 12.2.1: Illegal opcode reset for further details.  
7.6.1  
Low voltage detector (LVD)  
The low voltage detector function (LVD) generates a static reset when the V supply  
DD  
voltage is below a V  
reference value. This means that it secures the power-up as well  
IT-(LVD)  
as the power-down keeping the ST7 in reset.  
The V reference value for a voltage drop is lower than the V  
reference value  
IT+(LVD)  
IT-(LVD)  
for power-on in order to avoid a parasitic reset when the MCU starts running and sinks  
current on the supply (hysteresis).  
40/166  
Doc ID 8349 Rev 5  
 
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Supply, reset and clock management  
The LVD Reset circuitry generates a reset when VDD is below:  
V
V
when V is rising  
DD  
IT+(LVD)  
IT-(LVD)  
when V is falling.  
DD  
The LVD function is illustrated in Figure 17.  
The voltage threshold can be configured by option byte to be low, medium or high.  
Provided the minimum V value (guaranteed for the oscillator frequency) is above  
DD  
V
, the MCU can only be in two modes:  
IT-(LVD)  
under full software control  
in static safe reset.  
In these conditions, secure operation is always ensured for the application without the need  
for external reset hardware.  
During a Low Voltage Detector Reset, the RESET pin is held low, thus permitting the MCU  
to reset other devices.  
Note:  
The LVD allows the device to be used without any external RESET circuitry.  
The LVD is an optional function which can be selected by option byte.  
Use of LVD with capacitive power supply: with this type of power supply, if power cuts occur  
in the application, it is recommended to pull V down to 0V to ensure optimum restart  
DD  
conditions. Refer to circuit example in Figure 84: RESET pin protection when LVD is  
enabled  
It is recommended to make sure that the V supply voltage rises monotonously when the  
DD  
device is exiting from Reset, to ensure the application functions properly.  
Figure 17. Low voltage detector vs. Reset  
VDD  
Vhys  
VIT+  
(LVD)  
(LVD)  
VIT-  
RESET  
Doc ID 8349 Rev 5  
41/166  
 
Supply, reset and clock management  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Figure 18. Reset and supply management block diagram  
Watchdog  
STATUS FLAG  
timer (WDG)  
System integrity management  
Reset sequence  
manager  
AVD interrupt request  
RESET  
SICSR  
(RSM)  
0
0
0
WDGRF LOCKED LVDRFAVDFAVDIE  
Low voltage  
detector  
(LVD)  
VSS  
VDD  
Auxiliary voltage  
detector  
(AVD)  
7.6.2  
Auxiliary Voltage Detector (AVD)  
The voltage detector function (AVD) is based on an analog comparison between a V  
IT-(AVD)  
). The V  
AVD IT-(AVD)  
and V  
reference value and the V main supply voltage (V  
IT+(AVD)  
DD  
reference value for falling voltage is lower than the V  
reference value for rising  
IT+(AVD)  
voltage in order to avoid parasitic detection (hysteresis).  
The output of the AVD comparator is directly readable by the application software through a  
real time status bit (AVDF) in the SICSR register. This bit is read only.  
Note:  
The AVD functions only if the LVD is enabled through the option byte.  
Monitoring the VDD main supply  
The AVD voltage threshold value is relative to the selected LVD threshold configured by  
option byte (see Section 15.1: Option bytes).  
If the AVD interrupt is enabled, an interrupt is generated when the voltage crosses the  
V
or V  
threshold (AVDF bit is set).  
IT+(LVD)  
IT-(AVD)  
In the case of a drop in voltage, the AVD interrupt acts as an early warning, allowing  
software to shut down safely before the LVD resets the microcontroller (See Figure 19:  
Using the AVD to monitor VDD).  
42/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Figure 19. Using the AVD to monitor V  
Supply, reset and clock management  
DD  
VDD  
Early warning interrupt  
(Power has dropped, MCU not  
not yet in reset)  
V
hyst  
V
IT+(AVD)  
V
IT-(AVD)  
V
V
IT+(LVD)  
IT-(LVD)  
AVDF bit  
0
1
RESET  
1
0
AVD interrupt  
request  
if AVDIE bit = 1  
Interrupt cleared by  
reset  
Interrupt cleared by  
hardware  
LVD RESET  
7.6.3  
Low power modes  
Table 9.  
Mode  
Effect of low power modes on SI  
Description  
WAIT  
HALT  
No effect on SI. AVD interrupts cause the device to exit from WAIT mode.  
The SICSR register is frozen. The AVD remains active.  
Interrupts  
The AVD interrupt event generates an interrupt if the corresponding enable control bit  
(AVDIE) is set and the interrupt mask in the CC register is reset (RIM instruction).  
Table 10. Interrupt control bits  
Interrupt event  
Event flag  
Enable control bit Exit from Wait Exit from Halt  
AVDIE Yes No  
AVD event  
AVDF  
Doc ID 8349 Rev 5  
43/166  
 
Supply, reset and clock management  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
7.6.4  
Register description  
System integrity (SI) control/status register (SICSR)  
Read/Write  
Reset Value: 0000 0xx0 (0xh)  
7
0
0
0
0
WDGRF  
LOCKED  
LVDRF  
AVDF  
AVDIE  
Bit 7:5 = Reserved, must be kept cleared.  
Bit 4 = WDGRF Watchdog reset flag  
This bit indicates that the last Reset was generated by the Watchdog peripheral. It is  
set by hardware (watchdog reset) and cleared by software (writing zero) or an LVD  
Reset (to ensure a stable cleared state of the WDGRF flag when CPU starts).  
Combined with the LVDRF flag information, the flag description is given by the following  
table:  
Table 11. Flag description  
RESET sources  
LVDRF  
WDGRF  
External RESET pin  
Watchdog  
0
0
1
0
1
LVD  
X
Bit 3 = LOCKED PLL Locked Flag  
This bit is set and cleared by hardware. It is set automatically when the PLL reaches its  
operating frequency.  
0: PLL not locked  
1: PLL locked  
Bit 2 = LVDRF LVD reset flag  
This bit indicates that the last Reset was generated by the LVD block. It is set by  
hardware (LVD reset) and cleared by software (by reading). When the LVD is disabled  
by OPTION BYTE, the LVDRF bit value is undefined.  
Bit 1 = AVDF Voltage Detector flag  
This read-only bit is set and cleared by hardware. If the AVDIE bit is set, an interrupt  
request is generated when the AVDF bit is set.  
0: V over AVD threshold  
DD  
1: V under AVD threshold  
DD  
Note:  
Refer to Section : Monitoring the VDD main supply and to Figure 19: Using the AVD to  
monitor VDD for additional details.  
Bit 0 = AVDIE Voltage detector interrupt enable  
This bit is set and cleared by software. It enables an interrupt to be generated when the  
AVDF flag is set. The pending interrupt information is automatically cleared when  
software enters the AVD interrupt routine.  
0: AVD interrupt disabled  
1: AVD interrupt enabled  
44/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Supply, reset and clock management  
Note:  
The LVDRF flag is not cleared when another RESET type occurs (external or watchdog), the  
LVDRF flag remains set to keep trace of the original failure.  
In this case, a watchdog reset can be detected by software while an external reset can not.  
Doc ID 8349 Rev 5  
45/166  
Interrupts  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
8
Interrupts  
The ST7 core may be interrupted by one of two different methods: maskable hardware  
interrupts as listed in the Interrupt Mapping Table and a nonmaskable software interrupt  
(TRAP). The Interrupt processing flowchart is shown in Figure 20: Interrupt processing  
flowchart.  
The maskable interrupts must be enabled by clearing the I bit in order to be serviced.  
However, disabled interrupts may be latched and processed when they are enabled (see  
Section : External interrupt function).  
Note:  
After reset, all interrupts are disabled.  
When an interrupt has to be serviced:  
Normal processing is suspended at the end of the current instruction execution.  
The PC, X, A and CC registers are saved onto the stack.  
The I bit of the CC register is set to prevent additional interrupts.  
The PC is then loaded with the interrupt vector of the interrupt to service and the first  
instruction of the interrupt service routine is fetched (refer to Table 12: Interrupt  
mapping for vector addresses).  
The interrupt service routine should finish with the IRET instruction which causes the  
contents of the saved registers to be recovered from the stack.  
Note:  
As a consequence of the IRET instruction, the I bit will be cleared and the main program will  
resume.  
Priority management  
By default, a servicing interrupt cannot be interrupted because the I bit is set by hardware  
entering in interrupt routine.  
In the case when several interrupts are simultaneously pending, an hardware priority  
defines which one will be serviced first (see Table 12: Interrupt mapping).  
Interrupts and low power mode  
All interrupts allow the processor to leave the WAIT low power mode. Only external and  
specifically mentioned interrupts allow the processor to leave the HALT low power mode  
(refer to the “Exit from HALT“ column in Table 12: Interrupt mapping).  
8.1  
8.2  
Non maskable software interrupt  
This interrupt is entered when the TRAP instruction is executed regardless of the state of  
the I bit. It will be serviced according to the flowchart on Figure 20: Interrupt processing  
flowchart.  
External interrupts  
External interrupt vectors can be loaded into the PC register if the corresponding external  
interrupt occurred and if the I bit is cleared. These interrupts allow the processor to leave the  
Halt low power mode.  
46/166  
Doc ID 8349 Rev 5  
 
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Interrupts  
The external interrupt polarity is selected through the miscellaneous register or interrupt  
register (if available).  
An external interrupt triggered on edge will be latched and the interrupt request  
automatically cleared upon entering the interrupt service routine.  
Note:  
The type of sensitivity defined in the Miscellaneous or Interrupt register (if available) applies  
to the ei source. In case of a NANDed source (as described in Section 10: I/O ports), a low  
level on an I/O pin configured as input with interrupt, masks the interrupt request even in  
case of rising edge sensitivity.  
8.3  
Peripheral interrupts  
Different peripheral interrupt flags in the status register are able to cause an interrupt when  
they are active if both:  
The I bit of the CC register is cleared.  
The corresponding enable bit is set in the control register.  
If any of these two conditions is false, the interrupt is latched and thus remains pending.  
Clearing an interrupt request is done by:  
writing “0” to the corresponding bit in the status register or  
access to the status register while the flag is set followed by a read or write of an  
associated register.  
Note:  
The clearing sequence resets the internal latch. A pending interrupt (i.e. waiting for being  
enabled) will therefore be lost if the clear sequence is executed.  
Figure 20. Interrupt processing flowchart  
FROM RESET  
N
I BIT SET?  
N
Y
INTERRUPT  
PENDING?  
Y
FETCH NEXT INSTRUCTION  
N
IRET?  
STACK PC, X, A, CC  
SET I BIT  
Y
LOAD PC FROM INTERRUPT VECTOR  
EXECUTE INSTRUCTION  
RESTORE PC, X, A, CC FROM STACK  
THIS CLEARS I BIT BY DEFAULT  
Doc ID 8349 Rev 5  
47/166  
Interrupts  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 12. Interrupt mapping  
Source  
Exit  
Exit from  
HALT or  
AWUF  
Register Priority  
from  
ACTIVE-  
HALT  
Address  
vector  
No.  
Description  
block  
label  
order  
RESET Reset  
yes  
no  
yes  
FFFEh-FFFFh  
FFFCh-FFFDh  
FFFAh-FFFBh  
FFF8h-FFF9h  
FFF6h-FFF7h  
FFF4h-FFF5h  
FFF2h-FFF3h  
FFF0h-FFF1h  
FFEEh-FFEFh  
FFECh-FFEDh  
N/A  
TRAP  
AWU  
ei0  
Software interrupt  
0
1
2
3
4
5
6
7
Auto-wakeup interrupt  
External interrupt 0  
External interrupt 1  
External interrupt 2  
External interrupt 3  
AWUCSR  
yes (1)  
Highest  
priority  
ei1  
no  
N/A  
yes  
no  
ei2  
ei3  
Lite timer LITE TIMER RTC2 interrupt  
Not used  
LTCSR2  
SICSR  
SI  
AVD interrupt  
AT TIMER output compare  
interrupt or input capture  
interrupt  
no  
PWMxCSR  
or ATCSR  
8
FFEAh-FFEBh  
AT timer  
no  
9
AT TIMER overflow interrupt  
ATCSR  
LTCSR  
yes  
no  
FFE8h-FFE9h  
FFE6h-FFE7h  
Lowest  
priority  
LITE TIMER input capture  
interrupt  
10  
Lite timer  
SPI  
11  
12  
13  
LITE TIMER RTC1 interrupt  
SPI peripheral interrupts  
Not used  
LTCSR  
yes  
no  
FFE4h-FFE5h  
FFE2h-FFE3h  
FFE0h-FFE1h  
SPICSR  
yes  
1. This interrupt exits the MCU from “Auto-wakeup from HALT” mode only.  
48/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Interrupts  
External interrupt control register (EICR)  
Read/Write  
Reset Value: 0000 0000 (00h)  
7
0
IS31  
IS30  
IS21  
IS20  
IS11  
IS10  
IS01  
IS00  
Bit 7:6 = IS3[1:0] ei3 sensitivity  
These bits define the interrupt sensitivity for ei3 (Port B0) according to Table 13:  
Interrupt sensitivity bits.  
Bit 5:4 = IS2[1:0] ei2 sensitivity  
These bits define the interrupt sensitivity for ei2 (Port B3) according to Table 13:  
Interrupt sensitivity bits.  
Bit 3:2 = IS1[1:0] ei1 sensitivity  
These bits define the interrupt sensitivity for ei1 (Port A7) according to Table 13:  
Interrupt sensitivity bits.  
Bit 1:0 = IS0[1:0] ei0 sensitivity  
These bits define the interrupt sensitivity for ei0 (Port A0) according to Table 13:  
Interrupt sensitivity bits.  
Note:  
These 8 bits can be written only when the I bit in the CC register is set.  
Changing the sensitivity of a particular external interrupt clears this pending interrupt. This  
can be used to clear unwanted pending interrupts. Refer to Section : External interrupt  
function.  
Table 13. Interrupt sensitivity bits  
ISx1  
ISx0  
External interrupt sensitivity  
0
0
1
1
0
1
0
1
Falling edge & low level  
Rising edge only  
Falling edge only  
Rising and falling edge  
Doc ID 8349 Rev 5  
49/166  
 
Interrupts  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
External interrupt selection register (EISR)  
Read/Write  
Reset Value: 0000 1100 (0Ch)  
7
0
IS31  
IS30  
IS21  
IS20  
IS11  
IS10  
IS01  
IS00  
Bits 7:6 = ei3[1:0] ei3 pin selection  
These bits are written by software. They select the Port B I/O pin used for the ei3  
external interrupt according to the table below.  
Table 14. External interrupt I/O pin selection  
ei31  
ei30  
I/O pin  
0
0
1
0
PB0 (1)  
PB1  
0
1
PB2  
1. Reset state  
Bits 5:4 = ei2[1:0] ei2 pin selection  
These bits are written by software. They select the Port B I/O pin used for the ei2  
external interrupt according to the table below.  
Table 15. External interrupt I/O pin selection  
ei21  
ei20  
I/O pin  
0
0
1
0
1
PB3 (1)  
PB4 (2)  
PB5  
0
1
1
PB6  
1. Reset state  
2. PB4 cannot be used as an external interrupt in HALT mode.  
Bit 3:2 = ei1[1:0] ei1 pin selection  
These bits are written by software. They select the Port A I/O pin used for the ei1  
external interrupt according to the table below.  
50/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Interrupts  
Table 16. External interrupt I/O pin selection  
ei11 ei10  
I/O pin  
0
0
PA4  
PA5  
0
1
0
1
1
1
PA6  
PA7(1)  
1. Reset state  
Bits 1:0 = ei0[1:0] ei0 pin selection  
These bits are written by software. They select the Port A I/O pin used for the ei0  
external interrupt according to the table below.  
Table 17. External interrupt I/O pin selection  
ei01  
ei00  
I/O pin  
0
0
1
0
1
PA0 (1)  
PA1  
0
1
1
PA2  
PA3  
1. Reset state  
Doc ID 8349 Rev 5  
51/166  
Power saving modes  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
9
Power saving modes  
9.1  
Introduction  
To give a large measure of flexibility to the application in terms of power consumption, five  
main power saving modes are implemented in the ST7 (see Figure 21):  
Slow  
Wait (and Slow-Wait)  
Active Halt  
Auto Wake up From Halt (AWUF)  
Halt  
After a RESET the normal operating mode is selected by default (Run mode). This mode  
drives the device (CPU and embedded peripherals) by means of a master clock which is  
based on the main oscillator frequency divided or multiplied by 2 (f  
).  
OSC2  
From RUN mode, the different power saving modes may be selected by setting the relevant  
register bits or by calling the specific ST7 software instruction whose action depends on the  
oscillator status.  
Figure 21. Power saving mode transitions  
HIGH  
RUN  
SLOW  
WAIT  
SLOW-WAIT  
ACTIVE-HALT  
AUTO-WAKEUP FROM HALT  
HALT  
LOW  
POWER CONSUMPTION  
9.2  
SLOW mode  
This mode has two targets:  
To reduce power consumption by decreasing the internal clock in the device,  
To adapt the internal clock frequency (f ) to the available supply voltage.  
CPU  
52/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Power saving modes  
SLOW mode is controlled by the SMS bit in the MCCSR register which enables or disables  
SLOW mode.  
In this mode, the oscillator frequency is divided by 32. The CPU and peripherals are clocked  
at this lower frequency.  
Note:  
SLOW-WAIT mode is activated when entering WAIT mode while the device is already in  
SLOW mode.  
Figure 22. SLOW mode clock transition  
f
/32  
f
OSC  
OSC  
f
CPU  
f
OSC  
SMS  
Normal Run mode  
request  
9.3  
WAIT mode  
WAIT mode places the MCU in a low power consumption mode by stopping the CPU.  
This power saving mode is selected by calling the “WFI” instruction.  
All peripherals remain active. During WAIT mode, the I bit of the CC register is cleared, to  
enable all interrupts. All other registers and memory remain unchanged. The MCU remains  
in WAIT mode until an interrupt or RESET occurs, whereupon the Program Counter  
branches to the starting address of the interrupt or Reset service routine.  
The MCU will remain in WAIT mode until a RESET or an Interrupt occurs, causing it to wake  
up.  
Refer to Figure 23.  
Doc ID 8349 Rev 5  
53/166  
Power saving modes  
Figure 23. WAIT mode flowchart  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
ON  
OFF  
0
WFI INSTRUCTION  
I BIT  
N
RESET  
Y
N
INTERRUPT  
Y
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
OFF  
ON  
0
I BIT  
256 or 4096 CPU clock  
cycle delay  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
ON  
ON  
X(1)  
I BIT  
Fetch reset vector  
or service interrupt  
1. Before servicing an interrupt, the CC register is pushed on the stack. The I bit of the CC register is set  
during the interrupt routine and cleared when the CC register is popped.  
9.4  
HALT mode  
The HALT mode is the lowest power consumption mode of the MCU. It is entered by  
executing the "HALT” instruction when ACTIVVE-HALT is disabled (see Section 9.5:  
ACTIVE-HALT mode for more details) and when the AWUEN bit in the AWUCSR register is  
cleared.  
The MCU can exit HALT mode on reception of either a specific interrupt (see Table 12:  
Interrupt mapping) or a reset. When exiting HALT mode by means of a reset or an interrupt,  
the oscillator is immediately turned on and the 256 or 4096 CPU cycle delay is used to  
stabilize the oscillator. After the startup delay, the CPU resumes operation by servicing the  
interrupt or by fetching the reset vector which woke it up (see Figure 25: HALT mode  
flowchart).  
When entering HALT mode, the I bit in the CC register is forced to 0 to enable interrupts.  
Therefore, if an interrupt is pending, the MCU wakes up immediately.  
In HALT mode, the main oscillator is turned off causing all internal processing to be stopped,  
including the operation of the on-chip peripherals. All peripherals are not clocked except the  
54/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Power saving modes  
ones which get their clock supply from another clock generator (such as an external or  
auxiliary oscillator).  
The compatibility of Watchdog operation with HALT mode is configured by the “WDGHALT”  
option bit of the option byte. The HALT instruction when executed while the Watchdog  
system is enabled, can generate a Watchdog RESET (see Section 15.1: Option bytes for  
more details).  
Figure 24. HALT timing overview  
256 or 4096 CPU  
Run  
HALT  
Run  
cycle delay  
Reset  
or  
interrupt  
HALT  
instruction  
[ACTIVE-HALT disabled]  
Fetch  
vector  
Doc ID 8349 Rev 5  
55/166  
Power saving modes  
Figure 25. HALT mode flowchart  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
HALT instruction  
(ACTIVE-HALT disabled)  
(AWUCSR.AWUEN=0)  
Watchdog  
ENABLE  
0
DISABLE  
WDGHALT (1)  
1
Oscillator  
Peripherals (2)  
CPU  
OFF  
OFF  
OFF  
0
Watchdog  
reset  
I bit  
N
Reset  
Y
N
Interrupt (3)  
Oscillator  
Peripherals  
CPU  
Y
ON  
OFF  
ON  
I bit  
X 4)  
256 or 4096 CPU clock  
(5)  
cycle delay  
Oscillator  
Peripherals  
CPU  
ON  
ON  
ON  
X 4)  
I bit  
Fetch reset vector  
or service interrupt  
1. WDGHALT is an option bit (see Section 15.1: Option bytes for more details).  
2. Peripheral clocked with an external clock source can still be active.  
3. Only some specific interrupts can exit the MCU from HALT mode (such as external interrupt). Refer to  
Table 12: Interrupt mapping for more details.  
4. Before servicing an interrupt, the CC register is pushed on the stack. The I bit of the CC register is set  
during the interrupt routine and cleared when the CC register is popped.  
5. If the PLL is enabled by option byte, it outputs the clock after a delay of tSTARTUP (see Figure 12: PLL  
output frequency timing diagram).  
9.4.1  
HALT mode recommendations  
Make sure that an external event is available to wake up the microcontroller from Halt  
mode.  
When using an external interrupt to wake up the microcontroller, reinitialize the  
corresponding I/O as “Input Pull-up with Interrupt” before executing the HALT  
56/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Power saving modes  
instruction. The main reason for this is that the I/O may be wrongly configured due to  
external interference or by an unforeseen logical condition.  
For the same reason, reinitialize the level sensitiveness of each external interrupt as a  
precautionary measure.  
The opcode for the HALT instruction is 0x8E. To avoid an unexpected HALT instruction  
due to a program counter failure, it is advised to clear all occurrences of the data value  
0x8E from memory. For example, avoid defining a constant in program memory with  
the value 0x8E.  
As the HALT instruction clears the interrupt mask in the CC register to allow interrupts,  
the user may choose to clear all pending interrupt bits before executing the HALT  
instruction. This avoids entering other peripheral interrupt routines after executing the  
external interrupt routine corresponding to the wake-up event (reset or external  
interrupt).  
9.5  
ACTIVE-HALT mode  
ACTIVE-HALT mode is the lowest power consumption mode of the MCU with a real time  
clock available. It is entered by executing the ‘HALT’ instruction.  
The decision to enter either in ACTIVEHALT or HALT mode is given by the LTCSR/ATCSR  
register status as shown in the following table:  
Table 18. ACTIVE-HALT mode  
LTCSR1 TB1IE  
bit  
ATCSR OVFIE  
bit  
ATCSRCK1  
bit  
ATCSRCK0 bit  
Meaning  
ACTIVE-HALT  
0
0
1
x
x
0
x
1
x
x
x
0
0
x
x
1
mode disabled  
ACTIVE-HALT  
mode enabled  
The MCU can exit ACTIVE-HALT mode on reception of a specific interrupt (see Table 12:  
Interrupt mapping) or a RESET:  
When exiting ACTIVE-HALT mode by means of a RESET, a 256 or 4096 CPU cycle  
delay occurs. After the start up delay, the CPU resumes operation by fetching the reset  
vector which woke it up (see Figure 27: ACTIVE-HALT mode Flow-chart).  
When exiting ACTIVE-HALT mode by means of an interrupt, the CPU immediately  
resumes operation by servicing the interrupt vector which woke it up (see Figure 27:  
ACTIVE-HALT mode Flow-chart).  
When entering ACTIVE-HALT mode, the I bit in the CC register is cleared to enable  
interrupts.  
Therefore, if an interrupt is pending, the MCU wakes up immediately.  
In ACTIVE-HALT mode, only the main oscillator and the selected timer counter (LT/AT) are  
running to keep a wake-up time base. All other peripherals are not clocked except those  
which get their clock supply from another clock generator (such as external or auxiliary  
oscillator).  
Doc ID 8349 Rev 5  
57/166  
Power saving modes  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Note:  
As soon as ACTIVE-HALT is enabled, executing a HALT instruction while the Watchdog is  
active does not generate a RESET.  
This means that the device cannot spend more than a defined delay in this power saving  
mode.  
Figure 26. ACTIVE-HALT timing overview  
Active-  
halt  
256 or 4096 CPU  
cycle delay  
Run  
Run  
(1)  
Reset  
or  
interrupt  
HALT  
instruction  
Fetch  
vector  
[ACTIVE-HALT enabled]  
1. This delay occurs only if the MCU exits ACTIVE-HALT mode by means of a RESET.  
Figure 27. ACTIVE-HALT mode Flow-chart  
Oscillator  
Peripherals (1)  
CPU  
ON  
OFF  
OFF  
0
HALT instruction  
(ACTIVE-HALT enabled)  
(AWUCSR.AWUEN=0)  
I bit  
N
Reset  
Y
N
Interrupt (2)  
Oscillator  
Peripherals (1)  
CPU  
Y
ON  
OFF  
ON  
I bit  
X (3)  
256 or 4096 CPU clock  
cycle delay  
Oscillator  
Peripherals  
CPU  
ON  
ON  
ON  
X (3)  
I bit  
Fetch reset vector  
or service interrupt  
1. Peripherals clocked with an external clock source can still be active.  
2. Only the RTC1 interrupt and some specific interrupts can exit the MCU from ACTIVE-HALT mode. Refer to  
Table 12: Interrupt mapping for more details.  
3. Before servicing an interrupt, the CC register is pushed on the stack. The I bit of the CC register is set  
during the interrupt routine and cleared when the CC register is popped.  
58/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Power saving modes  
9.6  
Auto-wakeup from HALT mode  
Auto Wake Up From Halt (AWUF) mode is similar to Halt mode with the addition of a specific  
internal RC oscillator for wake-up (Auto Wake Up from Halt Oscillator). Compared to  
ACTIVE-HALT mode, AWUF has lower power consumption (the main clock is not kept  
running, but there is no accurate realtime clock available. It is entered by executing the HALT  
instruction when the AWUEN bit in the AWUCSR register has been set.  
Figure 28. AWUF mode block diagram  
AWU RC  
oscillator  
to Timer input capture  
f
AWU_RC  
AWUFH interrupt  
(ei0 source)  
AWUFH  
prescaler/1 .. 255  
/64  
divider  
As soon as HALT mode is entered, and if the AWUEN bit has been set in the AWUCSR  
register, the AWU RC oscillator provides a clock signal (f ). Its frequency is divided by  
AWU_RC  
a fixed divider and a programmable prescaler controlled by the AWUPR register. The output  
of this prescaler provides the delay time. When the delay has elapsed the AWUF flag is set  
by hardware and an interrupt wakes-up the MCU from Halt mode. At the same time the main  
oscillator is immediately turned on and a 256 or 4096 cycle delay is used to stabilize it. After  
this start-up delay, the CPU resumes operation by servicing the AWUF interrupt. The AWU  
flag and its associated interrupt are cleared by software reading the AWUCSR register.  
To compensate for any frequency dispersion of the AWU RC oscillator, it can be calibrated  
by measuring the clock frequency f  
and then calculating the right prescaler value.  
AWU_RC  
Measurement mode is enabled by setting the AWUM bit in the AWUCSR register in Run  
mode. This connects f to the input capture of the 12-bit Auto-Reload timer, allowing  
AWU_RC  
the f  
to be measured using the main oscillator clock as a reference timebase.  
AWU_RC  
Similarities with HALT mode:  
The following AWUF mode behavior is the same as normal Halt mode:  
The MCU can exit AWUF mode by means of any interrupt with exit from Halt capability  
or a reset (see Section 9.4: HALT mode).  
When entering AWUF mode, the I bit in the CC register is forced to 0 to enable  
interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.  
In AWUF mode, the main oscillator is turned off causing all internal processing to be  
stopped, including the operation of the on-chip peripherals. None of the peripherals are  
clocked except those which get their clock supply from another clock generator (such  
as an external or auxiliary oscillator like the AWU oscillator).  
The compatibility of Watchdog operation with AWUF mode is configured by the  
WDGHALT option bit in the option byte. Depending on this setting, the HALT instruction  
when executed while the Watchdog system is enabled, can generate a Watchdog  
RESET.  
Doc ID 8349 Rev 5  
59/166  
Power saving modes  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Figure 29. AWUF halt timing diagram  
tAWU  
Run mode  
HALT mode  
256 or 4096 tCPU  
Run mode  
Clear  
fCPU  
fAWU_RC  
by software  
AWUF interrupt  
Figure 30. AWUF mode flowchart  
HALT instruction  
(Active-halt disabled)  
(AWUCSR.AWUEN=1)  
ENABLE  
Watchdog  
DISABLE  
0
WDGHALT (1)  
1
AWU RC osc  
ON  
OFF  
OFF  
OFF  
10  
Watchdog  
reset  
Main osc  
Peripherals (2)  
CPU  
I[1:0] bits  
N
Reset  
Y
N
Interrupt (3)  
AWU RC osc  
Main osc  
OFF  
ON  
Y
Peripherals  
CPU  
I[1:0] bits  
OFF  
ON  
XX (4)  
256 or 4096 CPU clock  
(5)  
cycle delay  
AWU RC osc  
Main osc  
Peripherals  
CPU  
OFF  
ON  
ON  
ON  
I[1:0] bits  
XX (4)  
Fetch RESET vector  
or service interrupt  
1. WDGHALT is an option bit (see Section 15.1: Option bytes for more details).  
2. Peripheral clocked with an external clock source can still be active.  
3. Only an AWUF interrupt and some specific interrupts can exit the MCU from HALT mode (such as external  
60/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Power saving modes  
interrupt). Refer to Table 12: Interrupt mapping for more details.  
4. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are  
set to the current software priority level of the interrupt routine and recovered when the CC register is  
popped.  
5. If the PLL is enabled by option byte, it outputs the clock after an additional delay of tSTARTUP (see  
Figure 12: PLL output frequency timing diagram).  
9.6.1  
Register description  
AWUF control/status register (CR)  
Read/Write  
Reset value: 0000 0000 (0Ch)  
7
0
0
0
0
0
0
AWUF  
AWUM  
AWUEN  
Bits 7:3 = Reserved  
Bit 2 = AWUF Auto-Wakeup Flag  
This bit is set by hardware when the AWU module generates an interrupt and cleared  
by software on reading AWUCSR. Writing to this bit does not change its value.  
0: No AWU interrupt occurred  
1: AWU interrupt occurred  
Bit 1= AWUM Auto-Wakeup Measurement  
This bit enables the AWU RC oscillator and connects its output to the input capture of  
the 12-bit Auto-Reload timer. This allows the timer to be used to measure the AWU RC  
oscillator dispersion and then compensate this dispersion by providing the right value in  
the AWUPRE register.  
0: Measurement disabled  
1: Measurement enabled  
Bit 0 = AWUEN Auto Wake Up From Halt Enabled  
This bit enables the Auto Wake Up From Halt feature:  
once HALT mode is entered, the AWUF wakes up the microcontroller after a time delay  
dependent on the AWU prescaler value. It is set and cleared by software.  
0: AWUF (Auto Wake Up From Halt) mode disabled  
1: AWUF (Auto Wake Up From Halt) mode enabled  
Doc ID 8349 Rev 5  
61/166  
 
Power saving modes  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
AWUF prescaler register list (AWUPR)  
Read/Write  
Reset value: 1111 1111 (FFh)  
Bit  
7
0
Value AWUPR7 AWUPR6 AWUPR5 AWUPR4 AWUPR3 AWUPR2 AWUPR1 AWUPR0  
Bits 7:0= AWUPR[7:0] Auto-wakeup prescaler  
These 8 bits define the AWUPR dividing factor (as explained in Table 19: AWU  
prescaler below):  
Table 19. AWU prescaler  
AWUPR[7:0]  
Dividing factor  
00h  
01h  
Forbidden  
1
FEh  
FFh  
254  
255  
In AWU mode, the period that the MCU stays in HALT mode (t  
in Figure 29: AWUF halt  
AWU  
timing diagram) is defined by:  
1
tAWU = 64 × AWUPR × -------------------- + tRCSTRT  
fAWURC  
This prescaler register can be programmed to modify the time that the MCU stays in HALT  
mode before waking up automatically.  
Note:  
If 00h is written to AWUPR, depending on the product, an interrupt is generated immediately  
after a HALT instruction, or the AWUPR remains unchanged.  
Table 20. AWU register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
AWUPR  
Reset value  
AWUPR AWUPR AWUPR AWUPR AWUPR AWUPR AWUPR AWUPR  
0049h  
004Ah  
1
1
1
1
1
1
1
1
AWUCSR  
Reset value  
0
0
0
0
0
AWUF  
AWUM  
AWUEN  
62/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
I/O ports  
10  
I/O ports  
10.1  
Introduction  
The I/O ports allow data transfer. An I/O port can contain up to 8 pins. Each pin can be  
programmed independently either as a digital input or digital output. In addition, specific pins  
may have several other functions. These functions can include external interrupt, alternate  
signal input/output for on chip peripherals or analog input.  
10.2  
Functional description  
A Data Register (DR) and a Data Direction Register (DDR) are always associated with each  
port.  
The Option Register (OR), which allows input/output options, may or may not be  
implemented. The following description takes into account the OR register. Refer to  
Section 10.7: Device-specific I/O port configuration for device specific information.  
An I/O pin is programmed using the corresponding bits in the DDR, DR and OR registers: bit  
x corresponding to pin x of the port.  
Figure 31 shows the generic I/O block diagram.  
10.2.1  
Input modes  
Clearing the DDRx bit selects input mode. In this mode, reading its DR bit returns the digital  
value from that I/O pin.  
If an OR bit is available, different input modes can be configured by software: floating or pull-  
up. Refer to I/O Port Implementation section for configuration.  
Note:  
Writing to the DR modifies the latch value but does not change the state of the input pin.  
Do not use read/modify/write instructions (BSET/BRES) to modify the DR register.  
External interrupt function  
Depending on the device, setting the ORx bit while in input mode can configure an I/O as an  
input with interrupt. In this configuration, a signal edge or level input on the I/O generates an  
interrupt request via the corresponding interrupt vector (eix).  
Falling or rising edge sensitivity is programmed independently for each interrupt vector. The  
External Interrupt Control Register (EICR) or the Miscellaneous Register controls this  
sensitivity, depending on the device.  
Each external interrupt vector is linked to a dedicated group of I/O port pins (see pinout  
description in Section 2: Pin description and Section : Interrupts.  
If several I/O interrupt pins on the same interrupt vector are selected simultaneously, they  
are logically combined. For this reason if one of the interrupt pins is tied low, it may mask the  
others.  
External interrupts are hardware interrupts. Fetching the corresponding interrupt vector  
automatically clears the request latch. Changing the sensitivity of a particular external  
interrupt clears this pending interrupt. This can be used to clear unwanted pending  
interrupts.  
Doc ID 8349 Rev 5  
63/166  
 
I/O ports  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Spurious interrupts  
When enabling/disabling an external interrupt by setting/resetting the related OR register bit,  
a spurious interrupt is generated if the pin level is low and its edge sensitivity includes  
falling/rising edge. This is due to the edge detector input which is switched to '1' when the  
external interrupt is disabled by the OR register.  
To avoid this unwanted interrupt, a "safe" edge sensitivity (rising edge for enabling and  
falling edge for disabling) has to be selected before changing the OR register bit and  
configuring the appropriate sensitivity again.  
Caution:  
In case a pin level change occurs during these operations (asynchronous signal input), as  
interrupts are generated according to the current sensitivity, it is advised to disable all  
interrupts before and to reenable them after the complete previous sequence in order to  
avoid an external interrupt occurring on the unwanted edge.  
This corresponds to the following steps:  
1. To enable an external interrupt:  
set the interrupt mask with the SIM instruction (in cases where a pin level change  
could occur)  
select rising edge  
enable the external interrupt through the OR register  
select the desired sensitivity if different from rising edge  
reset the interrupt mask with the RIM instruction (in cases where a pin level  
change could occur).  
2. To disable an external interrupt:  
set the interrupt mask with the SIM instruction SIM (in cases where a pin level  
change could occur)  
select falling edge  
disable the external interrupt through the OR register  
select rising edge  
reset the interrupt mask with the RIM instruction (in cases where a pin level  
change could occur).  
10.2.2  
Output modes  
Setting the DDRx bit selects output mode. Writing to the DR bits applies a digital value to the  
I/O through the latch. Reading the DR bits returns the previously stored value.  
If an OR bit is available, different output modes can be selected by software: push-pull or  
opendrain. Refer to I/O Port Implementation section for configuration.  
Table 21. DR value and output pin status  
DR  
Push-pull  
Open-drain  
0
1
VOL  
VOH  
VOL  
Floating  
64/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
I/O ports  
10.2.3  
Alternate functions  
Many ST7s I/Os have one or more alternate functions. These may include output signals  
from, or input signals to, on-chip peripherals. The Device Pin Description table describes  
which peripheral signals can be input/output to which ports.  
A signal coming from an on-chip peripheral can be output on an I/O. To do this, enable the  
on-chip peripheral as an output (enable bit in the peripheral’s control register). The  
peripheral configures the I/O as an output and takes priority over standard I/O programming.  
The I/O’s state is readable by addressing the corresponding I/O data register.  
Configuring an I/O as floating enables alternate function input. It is not recommended to  
configure an I/O as pull-up as this will increase current consumption.  
Before using an I/O as an alternate input, configure it without interrupt. Otherwise spurious  
interrupts can occur.  
Configure an I/O as input floating for an on-chip peripheral signal which can be input and  
output.  
Caution:  
I/Os which can be configured as both an analog and digital alternate function need special  
attention.  
The user must control the peripherals so that the signals do not arrive at the same time on  
the same pin. If an external clock is used, only the clock alternate function should be  
employed on that I/O pin and not the other alternate function.  
Figure 31. I/O port general block diagram  
Alternate  
output  
From on-chip peripheral  
1
0
Register  
access  
P-buffer  
(see table below)  
VDD  
Alternate  
enable  
bit  
PULL-UP  
(see table below)  
DR  
VDD  
DDR  
Pull-up  
condition  
PAD  
OR  
If implemented  
OR SEL  
N-buffer  
Diodes  
(see table below)  
DDR SEL  
DR SEL  
Analog  
input  
CMOS  
Schmitt  
trigger  
1
0
Alternate  
input  
To on-chip peripheral  
External  
interrupt  
request (eix)  
Combinational  
Logic  
From  
other  
bits  
Sensitivity  
selection  
.
Doc ID 8349 Rev 5  
65/166  
I/O ports  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Note:  
Refer to the Section 10.7: Device-specific I/O port configuration for device specific  
information.  
(1)  
Table 22. I/O port mode options  
Diodes  
Configuration mode  
Pull-up  
P-buffer  
to VDD  
to VSS  
Floating with/without interrupt  
Pull-up with/without interrupt  
Push-pull  
Off  
On  
Input  
Off  
On  
On  
Off  
NI  
On  
Off  
NI  
Output  
Open drain (logic level)  
True open drain  
NI(2)  
1. Legend:  
NI - not implemented  
Off - implemented not activated  
On - implemented and activated.  
2. The diode to VDD is not implemented in the true open drain pads. A local protection between the pad and  
OL is implemented to protect the device against positive stress.  
V
Table 23. I/O configurations  
I/O port  
Hardware configuration  
DR register access  
VDD  
NOTE 3  
Pull-up  
condition  
RPU  
W
R
DR  
register  
Databus  
Pad  
Input(1)  
Alternate input  
To on-chip peripheral  
From  
other  
pins  
External interrupt  
source (eix)  
Combinational  
logic  
Interrupt  
condition  
Polarity  
selection  
Analog input  
66/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 23. I/O configurations (continued)  
I/O ports  
I/O port  
Hardware configuration  
VDD  
RPU  
NOTE 3  
DR register access  
Open-drain  
output(2)  
PAD  
R/W  
DR  
register  
Databus  
DR register access  
NOTE 3  
VDD  
RPU  
R/W  
DR  
register  
Databus  
Push-pull  
output(3)  
PAD  
Alternate  
Enable  
bit  
Alternate  
output  
From on-chip periphera  
l
1. When the I/O port is in input configuration and the associated alternate function is enabled as an output,  
reading the DR register will read the alternate function output status.  
2. When the I/O port is in output configuration and the associated alternate function is enabled as an input,  
the alternate function reads the pin status given by the DR register content.  
3. For true open drain, these elements are not implemented.  
Analog alternate function  
Configure the I/O as floating input to use an ADC input. The analog multiplexer (controlled  
by the ADC registers) switches the analog voltage present on the selected pin to the  
common analog rail, connected to the ADC input.  
Analog recommendations  
Do not change the voltage level or loading on any I/O while conversion is in progress. Do not  
have clocking pins located close to a selected analog pin.  
Warning: The analog input voltage level must be within the limits  
stated in the absolute maximum ratings.  
10.3  
I/O port implementation  
The hardware implementation on each I/O port depends on the settings in the DDR and OR  
registers and specific I/O port features such as ADC input or open drain.  
Switching these I/O ports from one state to another should be done in a sequence that  
prevents unwanted side effects. Recommended safe transitions are illustrated in Figure 32.  
Other transitions are potentially risky and should be avoided, since they may present  
unwanted side-effects such as spurious interrupt generation.  
Doc ID 8349 Rev 5  
67/166  
I/O ports  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Figure 32. Interrupt I/O port state transitions  
01  
00  
10  
11  
INPUT  
floating/pull-up  
interrupt  
INPUT  
floating  
(reset state)  
OUTPUT  
open-drain  
OUTPUT  
push-pull  
= DDR, OR  
XX  
10.4  
10.5  
Unused I/O pins  
Unused I/O pins must be connected to fixed voltage levels. Refer to Section 13.8: I/O port  
pin characteristics.  
Low power modes  
Table 24. Effect of low power modes on I/O ports  
Mode  
Description  
WAIT  
HALT  
No effect on I/O ports. External interrupts cause the device to exit from WAIT mode.  
No effect on I/O ports. External interrupts cause the device to exit from HALT mode.  
10.6  
Interrupts  
The external interrupt event generates an interrupt if the corresponding configuration is  
selected with DDR and OR registers and if the I bit in the CC register is cleared (RIM  
instruction).  
Table 25. I/O port interrupt control/wake-up capability  
Enable  
control bit  
Exit from  
WAIT  
Exit from  
HALT  
Interrupt event  
Event flag  
External interrupt on selected  
external event  
DDRx  
ORx  
Yes  
Yes  
10.7  
Device-specific I/O port configuration  
The I/O port register configurations are summarized as follows:  
Standard ports  
Table 26. Ports PA7:0, PB6:0  
Mode  
DDR  
OR  
Floating input  
Pull-up input  
0
0
0
1
68/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
I/O ports  
OR  
Table 26. Ports PA7:0, PB6:0 (continued)  
Mode  
DDR  
Open drain output  
Push-pull output  
1
1
0
1
Table 27. Port configuration (standard ports)  
Input  
Output  
Port  
Pin name  
OR = 0  
OR = 1  
OR = 0  
OR = 1  
Port A  
Port B  
PA7:0  
PB6:0  
Floating  
Floating  
Pull-up  
Pull-up  
Open drain  
Open drain  
Push-pull  
Push-pull  
Note:  
On ports where the external interrupt capability is selected using the EISR register, the  
configuration will be as follows:  
Table 28. Port configuration (Interrupt ports)  
Input  
Output  
Port  
Pin name  
OR = 0  
OR = 1  
OR = 0  
OR = 1  
Port A  
Port B  
PA7:0  
PB6:0  
Floating  
Floating  
Pull-up interrupt  
Pull-up interrupt  
Open drain  
Open drain  
Push-pull  
Push-pull  
Interrupt ports  
Table 29. Ports where the external interrupt capability selected using the EISR  
register  
Mode  
DDR  
OR  
Floating input  
0
0
1
1
0
1
0
1
Pull-up interrupt input  
Open drain output  
Push-pull output  
Table 30. I/O port register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
PADR  
MSB  
1
LSB  
1
0000h  
0001h  
0002h  
Reset value  
1
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
PADDR  
MSB  
0
LSB  
0
Reset value  
PAOR  
MSB  
0
LSB  
0
Reset value  
Doc ID 8349 Rev 5  
69/166  
I/O ports  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 30. I/O port register map and reset values (continued)  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
PBDR  
MSB  
1
LSB  
1
0003h  
0004h  
0005h  
Reset value  
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
PBDDR  
MSB  
0
LSB  
0
Reset value  
PBOR  
MSB  
0
LSB  
0
Reset value  
70/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
On-chip peripherals  
11  
On-chip peripherals  
11.1  
Watchdog timer (WDG)  
11.1.1  
Introduction  
The Watchdog timer is used to detect the occurrence of a software fault, usually generated  
by external interference or by unforeseen logical conditions, which causes the application  
program to abandon its normal sequence. The Watchdog circuit generates an MCU reset on  
expiry of a programmed time period, unless the program refreshes the counter’s contents  
before the T6 bit becomes cleared.  
11.1.2  
11.1.3  
Main features  
Programmable free-running downcounter (64 increments of 16000 CPU cycles)  
Programmable reset  
Reset (if watchdog activated) when the T6 bit reaches zero  
Optional reset on HALT instruction (configurable by option byte)  
Hardware Watchdog selectable by option byte.  
Functional description  
The counter value stored in the CR register (bits T[6:0]), is decremented every 16000  
machine cycles, and the length of the time-out period can be programmed by the user in 64  
increments.  
If the watchdog is activated (the WDGA bit is set) and when the 7-bit timer (bits T[6:0]) rolls  
over from 40h to 3Fh (T6 becomes cleared), it initiates a reset cycle pulling low the reset pin  
for typically 30μs.  
Figure 33. Watchdog block diagram  
Reset  
Watchdog control register (CR)  
T5  
T0  
WDGA T6  
T1  
T4  
T2  
T3  
7-bit downcounter  
Clock divider  
f
CPU  
÷16000  
Doc ID 8349 Rev 5  
71/166  
On-chip peripherals  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
The application program must write in the CR register at regular intervals during normal  
operation to prevent an MCU reset. This downcounter is freerunning: it counts down even if  
the watchdog is disabled. The value to be stored in the CR register must be between FFh  
and C0h (see Table 31: Watchdog timing):  
The WDGA bit is set (watchdog enabled)  
The T6 bit is set to prevent generating an immediate reset  
The T[5:0] bits contain the number of increments which represents the time delay  
before the watchdog produces a reset.  
Following a reset, the watchdog is disabled. Once activated it cannot be disabled, except by  
a reset.  
The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is  
cleared).  
If the watchdog is activated, the HALT instruction will generate a Reset.  
(1)  
Table 31. Watchdog timing  
fCPU = 8 MHz  
WDG counter code  
min [ms]  
max [ms]  
C0h  
FFh  
1
2
127  
128  
1. The timing variation is due to the unknown status of the prescaler when writing to the CR register.  
Note:  
The number of CPU clock cycles applied during the reset phase (256 or 4096) must be  
taken into account in addition to these timings.  
11.1.4  
Hardware watchdog option  
If Hardware Watchdog is selected by option byte, the watchdog is always active and the  
WDGA bit in the CR is not used.  
Refer to the Option Byte description in Section 15: Device configuration.  
Using HALT mode or ACTIVE-HALT mode with the WDG (WDGHALT option)  
If Halt mode with Watchdog is enabled by option byte (No watchdog reset on HALT  
instruction), it is recommended before executing the HALT instruction to refresh the WDG  
counter, to avoid an unexpected WDG reset immediately after waking up the microcontroller.  
Same behavior in active-halt mode.  
11.1.5  
Interrupts  
None.  
72/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
On-chip peripherals  
11.1.6  
Register description  
Control register (CR)  
Read/Write  
Reset value: 0111 1111 (7Fh)  
7
0
T0  
WDGA  
T6  
T5  
T4  
T3  
T2  
T1  
Bit 7 = WDGA Activation bit.  
This bit is set by software and only cleared by hardware after a reset.  
When WDGA = 1, the watchdog can generate a reset.  
0: Watchdog disabled  
1: Watchdog enabled  
Note:  
This bit is not used if the hardware watchdog option is enabled by option byte.  
Bits 6:0 = T[6:0] 7-bit timer (MSB to LSB).  
These bits contain the decremented value. A reset is produced when it rolls over from  
40h to 3Fh (T6 becomes cleared).  
Table 32. Watchdog timer register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
WDGCR  
Reset value  
WDGA  
0
T6  
1
T5  
1
T4  
1
T3  
1
T2  
1
T1  
1
T0  
1
002Eh  
11.2  
12-bit autoreload timer 2 (AT2)  
11.2.1  
Introduction  
The 12-bit Autoreload Timer can be used for general-purpose timing functions. It is based  
on a free-running 12-bit upcounter with an input capture register and four PWM output  
channels. There are 6 external pins:  
Four PWM outputs  
ATIC pin for the Input Capture function  
BREAK pin for forcing a break condition on the PWM outputs.  
Doc ID 8349 Rev 5  
73/166  
On-chip peripherals  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
11.2.2  
Main features  
12-bit upcounter with 12-bit autoreload register (ATR)  
Maskable overflow interrupt  
Generation of four independent PWMx signals  
Frequency 2 kHz-4 MHz (@ 8 MHz f  
)
CPU  
programmable duty-cycles  
polarity control  
programmable output modes  
maskable Compare interrupt  
Input capture  
12-bit input capture register (ATICR)  
triggered by rising and falling edges  
maskable IC interrupt.  
Figure 34. Block diagram  
ATIC  
12-bit input capture register  
IC interrupt  
ATICR  
request  
OVF interrupt  
request  
ATCSR  
0
ICF  
ICIE  
CK1 CK0 OVF OVFIECMPIE  
CMP  
interrupt  
request  
f
CMPF0  
CMPF1  
CMPF2  
CMPF3  
LTIMER  
(1 ms  
timebase  
@ 8MHz)  
f
COUNTER  
12-bit upcounter  
f
CPU  
CNTR  
ATR  
32 MHz  
12-bit autoreload register  
OEx bit  
DCR0L  
DCR0H  
CMPFx bit  
OPx bit  
polarity  
Preload  
Preload  
PWMx  
f
Comp-  
PWM  
on OVF Event  
if TRAN=1  
pare  
12-bit duty cycle value (shadow)  
4 PWM channels  
11.2.3  
Functional description  
PWM mode  
This mode allows up to four Pulse Width Modulated signals to be generated on the PWMx  
output pins. The PWMx output signals can be enabled or disabled using the OEx bits in the  
PWMCR register.  
74/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
PWM frequency and duty cycle  
On-chip peripherals  
The four PWM signals have the same frequency (f  
) which is controlled by the counter  
PWM  
period and the ATR register value.  
f
= f / (4096 - ATR)  
PWM  
COUNTER  
Following the above formula,  
If f  
is 32 MHz, the maximum value of f  
is 8 MHz (ATR register value =  
PWM  
COUNTER  
4092), the minimum value is 8 KHz (ATR register value = 0)  
If f is 4 Mhz the maximum value of f is 2 MHz (ATR register value =  
COUNTER  
,
PWM  
4094),the minimum value is 1 KHz (ATR register value = 0).  
Note:  
The maximum value of ATR is 4094 because it must be lower than the DCR value which  
must be 4095 in this case.  
At reset, the counter starts counting from 0.  
When a upcounter overflow occurs (OVF event), the preloaded Duty cycle values are  
transferred to the Duty Cycle registers and the PWMx signals are set to a high level. When  
the upcounter matches the DCRx value the PWMx signals are set to a low level. To obtain a  
signal on a PWMx pin, the contents of the corresponding DCRx register must be greater  
than the contents of the ATR register.  
The polarity bits can be used to invert any of the four output signals. The inversion is  
synchronized with the counter overflow if the TRAN bit in the TRANCR register is set (reset  
value). See Figure 35.  
Figure 35. PWM inversion diagram  
inverter  
PWMx  
PWMx  
pin  
PWMxCSR register  
OPx  
DFF  
TRAN  
TRANCR register  
counter  
overflow  
The maximum available resolution for the PWMx duty cycle is:  
Resolution = 1 / (4096 – ATR)  
Note:  
To get the maximum resolution (1/4096), the ATR register must be 0. With this maximum  
resolution, 0% and 100% can be obtained by changing the polarity.  
Doc ID 8349 Rev 5  
75/166  
 
On-chip peripherals  
Figure 36. PWM function  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
4095  
Duty cycle  
register  
(DCRx)  
Auto-reload  
register  
(ATR)  
000  
t
With OE=1  
and OPx=0  
With OE=1  
and OPx=1  
Figure 37. PWM signal from 0% to 100% duty cycle  
fCOUNTER  
ATR= FFDh  
COUNTER  
FFDh  
FFEh  
FFFh  
FFDh  
FFEh  
FFFh  
FFDh  
FFEh  
DCRx=000h  
DCRx=FFDh  
DCRx=FFEh  
DCRx=000h  
t
Output compare mode  
To use this function, load a 12-bit value in the DCRxH and DCRxL registers.  
When the 12-bit upcounter (CNTR) reaches the value stored in the DCRxH and DCRxL  
registers, the CMPF bit in the PWMxCSR register is set and an interrupt request is  
generated if the CMPIE bit is set.  
Note:  
The output compare function is only available for DCRx values other than 0 (reset value).  
Break function  
The break function is used to perform an emergency shutdown of the power converter.  
The break function is activated by the external BREAK pin (active low). In order to use the  
BREAK pin it must be previously enabled by software setting the BPEN bit in the BREAKCR  
register.  
When a low level is detected on the BREAK pin, the BA bit is set and the break function is  
activated.  
76/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
On-chip peripherals  
Software can set the BA bit to activate the break function without using the BREAK pin.  
When the break function is activated (BA bit =1):  
the break pattern (PWM[3:0] bits in the BREAKCR) is forced directly on the PWMx  
output pins (after the inverter),  
the 12-bit PWM counter is set to its reset value,  
the ARR, DCRx and the corresponding shadow registers are set to their reset  
values,  
the PWMCR register is reset.  
When the break function is deactivated after applying the break (BA bit goes from 1 to  
0 by software):  
the control of PWM outputs is transferred to the port registers.  
Figure 38. Block diagram of break function  
BREAK pin (Active low)  
BREAKCR register  
BA  
BPEN PWM3 PWM2 PWM1 PWM0  
PWM0  
PWM1  
PWM2  
PWM3  
1
PWM0  
PWM1  
PWM2  
PWM3  
0
(Inverters)  
When BA is set:  
PWM counter -> Reset value  
ARR & DCRx -> Reset value  
PWM Mode -> Reset value  
Note:  
The BREAK pin value is latched by the BA bit.  
Input capture  
The 12-bit ATICR register is used to latch the value of the 12-bit free running upcounter after  
a rising or falling edge is detected on the ATIC pin.  
When an input capture occurs, the ICF bit is set and the ATICR register contains the value of  
the free running upcounter. An IC interrupt is generated if the ICIE bit is set. The ICF bit is  
reset by reading the ATICR register when the ICF bit is set. The ATICR is a read only  
register and always contains the free running upcounter value which corresponds to the  
most recent input capture. Any further input capture is inhibited while the ICF bit is set.  
Doc ID 8349 Rev 5  
77/166  
On-chip peripherals  
Figure 39. Input capture timing diagram  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
f
COUNTER  
COUNTER  
ATIC PIN  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
INTERRUPT  
ATICR READ  
INTERRUPT  
ICF FLAG  
ICR REGISTER  
09h  
xxh  
04h  
t
11.2.4  
Low power modes  
Table 33. Effect of low power modes  
Mode  
Description  
SLOW  
The input frequency is divided by 32  
No effect on AT timer  
WAIT  
ACTIVE-HALT  
HALT  
AT timer halted except if CK0=1, CK1=0 and OVFIE=1  
AT timer halted  
11.2.5  
Interrupts  
Table 34. Interrupts events  
Event  
Interrupt event(1)  
flag  
Enable  
Control bit  
Exit from  
WAIT  
Exit from  
HALT  
Exit from  
ACTIVE-HALT  
Overflow event  
IC event  
OVF  
ICF  
OVIE  
ICIE  
Yes  
Yes  
Yes  
No  
No  
No  
Yes(2)  
No  
CMP event  
CMPF0  
CMPIE  
No  
1. The CMP and IC events are connected to the same interrupt vector. The OVF event is mapped on a  
separate vector (see Interrupts chapter). They generate an interrupt if the enable bit is set in the ATCSR  
register and the interrupt mask in the CC register is reset (RIM instruction).  
2. Only if CK0=1 and CK1=0 (fCOUNTER = f  
)
LTIMER  
78/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
On-chip peripherals  
11.2.6  
Register description  
Timer control status register (ATCSR)  
Read / Write  
Reset value: 0x00 0000 (x0h)  
7
6
0
CMPIE  
0
ICF  
ICIE  
CK1  
CK0  
OVF  
OVFIE  
Bit 7 = Reserved.  
Bit 6 = ICF Input capture flag  
This bit is set by hardware and cleared by software by reading the ATICR register (a  
read access to ATICRH or ATICRL will clear this flag). Writing to this bit does not  
change the bit value.  
0: No input capture  
1: An input capture has occurred  
Bit 5 = ICIE IC interrupt enable  
This bit is set and cleared by software.  
0: Input capture interrupt disabled  
1: Input capture interrupt enabled  
Bits 4:3 = CK[1:0] Counter clock selection  
These bits are set and cleared by software and cleared by hardware after a reset. They  
select the clock frequency of the counter.  
Table 35. Counter clock selection  
Counter clock selection  
CK1  
CK0  
OFF  
0
0
1
1
0
1
0
1
fLTIMER (1 ms timebase @ 8 MHz) (1)  
fCPU  
32 MHz (2)  
1. PWM mode and Output Compare modes are not available at this frequency.  
2. ATICR counter may return inaccurate results when read. It is therefore not recommended to use Input  
Capture mode at this frequency.  
Bit 2 = OVF Overflow flag  
This bit is set by hardware and cleared by software by reading the TCSR register. It  
indicates the transition of the counter from FFFh to ATR value.  
0: No counter overflow occurred  
1: Counter overflow occurred  
Bit 1 = OVFIE Overflow interrupt enable  
This bit is read/write by software and cleared by hardware after a reset.  
0: OVF interrupt disabled.  
1: OVF interrupt enabled.  
Bit 0 = CMPIE Compare interrupt enable  
This bit is read/write by software and cleared by hardware after a reset. It can be used  
Doc ID 8349 Rev 5  
79/166  
 
On-chip peripherals  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
to mask the interrupt generated when the CMPF bit is set.  
0: CMPF interrupt disabled.  
1: CMPF interrupt enabled.  
Counter register high (CNTRH)  
Read only  
Reset value: 0000 0000 (000h)  
15  
8
0
0
0
0
CNTR11  
CNTR10  
CNTR9  
CNTR8  
Counter register low (CNTRL)  
Read only  
Reset value: 0000 0000 (000h)  
7
0
CNTR7  
CNTR6  
CNTR5  
CNTR4  
CNTR3  
CNTR2  
CNTR1  
CNTR0  
Bits 15:12 = Reserved  
Bits 11:0 = CNTR[11:0] Counter value  
This 12-bit register is read by software and cleared by hardware after a reset. The  
counter is incremented continuously as soon as a counter clock is selected. To obtain  
the 12-bit value, software should read the counter value in two consecutive read  
operations, LSB first. When a counter overflow occurs, the counter restarts from the  
value specified in the ATR register.  
Autoreload register (ATRH)  
Read / Write  
Reset Value: 0000 0000 (00h)  
15  
8
0
0
0
0
ATR11  
ATR10  
ATR9  
ATR8  
Bits 15:12 = Reserved  
Bits 11:0 = ATR[11:0] Counter value  
This 12-bit register is read by software and cleared by hardware after a reset. The  
counter is incremented continuously as soon as a counter clock is selected. To obtain  
the 12-bit value, software should read the counter value in two consecutive read  
operations, LSB first. When a counter overflow occurs, the counter restarts from the  
value specified in the ATR register.  
80/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
On-chip peripherals  
Autoreload register (ATRL)  
Read / Write  
Reset Value: 0000 0000 (00h)  
7
0
ATR7  
ATR6  
ATR5  
ATR4  
ATR3  
ATR2  
ATR1  
ATR0  
i
PWM output control register (PWMCR)  
Read/Write  
Reset Value: 0000 0000 (00h)  
7
0
0
OE3  
0
OE2  
0
OE1  
0
OE0  
Bits 7:0 = OE[3:0] PWMx output enable  
These bits are set and cleared by software and cleared by hardware after a reset.  
0: PWM mode disabled. PWMx output alternate function disabled: I/O pin free for  
general purpose I/O after an overflow event.  
1: PWM mode enabled  
PWMx control status register (PWMxCSR)  
Read / Write  
Reset Value: 0000 0000 (00h)  
7
6
0
0
0
0
0
0
0
OPx  
OE0  
Bits 7:2 = Reserved, must be kept cleared  
Bit 1 = OPx PWMx Output Polarity  
This bit is read/write by software and cleared by hardware after a reset. This bit selects  
the polarity of the PWM signal.  
0: The PWM signal is not inverted  
1: The PWM signal is inverted  
Bit 0 = CMPFx PWMx Compare Flag  
This bit is set by hardware and cleared by software by reading the PWMxCSR register.  
It indicates that the upcounter value matches the DCRx register value.  
0: Upcounter value does not match DCR value.  
1: Upcounter value matches DCR value  
Doc ID 8349 Rev 5  
81/166  
On-chip peripherals  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Break control register (BREAKCR)  
Read/Write  
Reset Value: 0000 0000 (00h)  
7
0
PWM0  
0
0
BA  
BPEN  
PWM3  
PWM2  
PWM1  
Bits 7:6 = Reserved. Forced by hardware to 0.  
Bit 5 = BA Break Active  
This bit is read/write by software, cleared by hardware after reset and set by hardware  
when the BREAK pin is low. It activates/deactivates the Break function.  
0: Break not active  
1: Break active  
Bit 4 = BPEN Break pin enable  
This bit is read/write by software and cleared by hardware after Reset.  
0: Break pin disabled  
1: Break pin enabled  
Bits 3:0 = PWM[3:0] Break pattern  
These bits are read/write by software and cleared by hardware after a reset. They are  
used to force the four PWMx output signals into a stable state when the Break function  
is active.  
PWMx duty cycle register high (DCRxH)  
Read / Write  
Reset Value: 0000 0000 (00h)  
15  
8
0
0
0
0
DCR11  
DCR10  
DCR9  
DCR8  
PWMx duty cycle register low (DCRxL)  
Read / Write  
Reset value: 0000 0000 (00h)  
7
0
DCR7  
DCR6  
DCR5  
DCR4  
DCR3  
DCR2  
DCR1  
DCR0  
Bits 15:12 = Reserved  
Bits 11:0 = DCR[11:0] PWMx duty cycle value  
This 12-bit value is written by software. It defines the duty cycle of the corresponding  
PWM output signal (see Figure 36).  
In PWM mode (OEx=1 in the PWMCR register) the DCR[11:0] bits define the duty  
cycle of the PWMx output signal (see Figure 36). In Output Compare mode, they define  
the value to be compared with the 12-bit upcounter value.  
82/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
On-chip peripherals  
Input capture register high (ATICRH)  
Read only  
Reset Value: 0000 0000 (00h)  
15  
8
0
0
0
0
ICR11  
ICR10  
ICR9  
ICR8  
Input capture register low (ATICRL)  
Read only  
Reset Value: 0000 0000 (00h)  
7
0
ICR7  
ICR6  
ICR5  
ICR4  
ICR3  
ICR2  
ICR1  
ICR0  
Bits 15:12 = Reserved.  
Bits 11:0 = ICR[11:0] Input capture data.  
This is a 12-bit register which is readable by software and cleared by hardware after a  
reset. The ATICR register contains captured the value of the 12-bit CNTR register when  
a rising or falling edge occurs on the ATIC pin. Capture will only be performed when the  
ICF flag is cleared.  
Transfer control register (TRANCR)  
Read/Write  
Reset Value: 0000 0001 (01h)  
7
0
0
0
0
0
0
0
0
TRAN  
Bits 7:1 Reserved. Forced by hardware to 0.  
Bit 0 = TRAN Transfer enable  
This bit is read/write by software, cleared by hardware after each completed transfer  
and set by hardware after reset.  
It allows the value of the DCRx registers to be transferred to the DCRx shadow  
registers after the next overflow event.  
The OPx bits are transferred to the shadow OPx bits in the same way.  
Doc ID 8349 Rev 5  
83/166  
On-chip peripherals  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 36. Register map and reset values  
Address Register  
7
6
5
4
3
2
1
0
(Hex.)  
label  
ATCSR  
Reset value  
ICF  
0
ICIE  
0
CK1  
0
CK0  
0
OVF  
0
OVFIE CMPIE  
0D  
0
0
0
0
CNTRH  
Reset value  
CNTR11 CNTR10 CNTR9 CNTR8  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
0
0
0
0
0
0
0
CNTRL  
Reset value  
CNTR7 CNTR8 CNTR7 CNTR6 CNTR3 CNTR2 CNTR1 CNTR0  
0
0
0
0
0
0
0
0
ATRH  
Reset value  
ATR11  
0
ATR10  
0
ATR9  
0
ATR8  
0
0
0
0
0
ATRL  
Reset value  
ATR7  
0
ATR6  
0
ATR5  
0
ATR4  
0
ATR3  
0
ATR2  
0
ATR1  
0
ATR0  
0
PWMCR  
Reset value  
OE3  
0
OE2  
0
OE1  
0
OE0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PWM0CSR  
Reset value  
OP0 CMPF0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PWM1CSR  
Reset value  
OP1 CMPF1  
0
0
PWM2CSR  
Reset value  
OP2 CMPF2  
0
0
PWM3CSR  
Reset value  
OP3 CMPF3  
0
0
DCR0H  
Reset value  
DCR11 DCR10 DCR9 DCR8  
0
0
0
0
DCR0L  
Reset value  
DCR7 DCR6 DCR5 DCR4  
DCR3  
0
DCR2  
0
DCR1 DCR0  
0
0
0
0
0
0
DCR1H  
Reset value  
DCR11 DCR10 DCR9 DCR8  
0
0
0
0
0
0
0
0
DCR1L  
Reset value  
DCR7 DCR6 DCR5 DCR4  
DCR3  
0
DCR2  
0
DCR1 DCR0  
0
0
0
0
0
0
DCR2H  
Reset value  
DCR11 DCR10 DCR9 DCR8  
0
0
0
0
0
0
0
0
DCR2L  
Reset value  
DCR7 DCR6 DCR5 DCR4  
DCR3  
0
DCR2  
0
DCR1 DCR0  
0
0
0
0
0
0
DCR3H  
Reset value  
DCR11 DCR10 DCR9 DCR8  
0
0
0
0
0
0
0
0
DCR3L  
Reset value  
DCR7 DCR6 DCR5 DCR4  
DCR3  
0
DCR2  
0
DCR1 DCR0  
0
0
0
0
0
0
ATICRH  
Reset value  
ICR11  
0
ICR10  
0
ICR9  
0
ICR8  
0
0
0
0
0
84/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 36. Register map and reset values (continued)  
On-chip peripherals  
Address Register  
7
6
5
4
3
2
1
0
(Hex.)  
label  
ATICRL  
Reset value  
ICR7  
0
ICR6  
0
ICR5  
0
ICR4  
0
ICR3  
0
ICR2  
0
ICR1  
0
ICR0  
0
20  
TRANCR  
Reset value  
TRAN  
1
21  
22  
0
0
0
0
0
0
0
0
0
BREAKCR  
Reset value  
BA  
0
BPEN  
0
PWM3  
0
PWM2 PWM1 PWM0  
0
0
0
11.3  
Lite timer 2 (LT2)  
11.3.1  
Introduction  
The Lite timer can be used for general-purpose timing functions. It is based on two free-  
running 8-bit upcounters, an 8-bit input capture register.  
11.3.2  
Main features  
Real-time clock  
One 8-bit upcounter 1 ms or 2 ms timebase period (@ 8 MHz f  
)
OSC  
One 8-bit upcounter with autoreload and programmable timebase period from 4µs  
to 1.024 ms in 4 µs increments (@ 8 MHz f  
)
OSC  
2 Maskable timebase interrupts.  
Input capture  
8-bit input capture register (LTICR)  
Maskable interrupt with wakeup from HALT mode capability.  
Doc ID 8349 Rev 5  
85/166  
On-chip peripherals  
Figure 40. Lite timer 2 block diagram  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
fOSC/32  
LTCNTR  
8-bit timebase  
LTTB2  
Interrupt request  
LTCSR2  
counter 2  
0
0
0
0
0
0
TB2IE TB2F  
8
LTARR  
fLTIMER  
To 12-bit AT TImer  
8-bit autoreload  
register  
/2  
fLTIMER  
1
0
8-bit timebase  
counter 1  
Timebase  
1 or 2 ms  
(@ 8MHz  
fOSC  
)
8
LTICR  
8-bit  
LTIC  
Input capture  
register  
LTCSR1  
ICIE  
ICF  
TB  
TB1IE TB1F  
LTTB1 interrupt request  
LTIC interrupt request  
11.3.3  
Functional description  
Timebase counter 1  
The 8-bit value of Counter 1 cannot be read or written by software. After an MCU reset, it  
starts incrementing from 0 at a frequency of f /32. An overflow event occurs when the  
OSC  
counter rolls over from F9h to 00h. If f  
= 8 MHz, then the time period between two  
OSC  
counter overflow events is 1 ms. This period can be doubled by setting the TB bit in the  
LTCSR1 register.  
When Counter 1 overflows, the TB1F bit is set by hardware and an interrupt request is  
generated if the TB1IE bit is set. The TB1F bit is cleared by software reading the LTCSR1  
register.  
Input capture  
The 8-bit input capture register is used to latch the free-running upcounter (Counter 1) 1  
after a rising or falling edge is detected on the LTIC pin. When an input capture occurs, the  
ICF bit is set and the LTICR1 register contains the MSB of Counter 1. An interrupt is  
generated if the ICIE bit is set. The ICF bit is cleared by reading the LTICR register.  
86/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
On-chip peripherals  
The LTICR is a read-only register and always contains the data from the last input capture.  
Input capture is inhibited if the ICF bit is set.  
Timebase counter 2  
Counter 2 is an 8-bit autoreload upcounter. It can be read by accessing the LTCNTR  
register. After an MCU reset, it increments at a frequency of f  
/32 starting from the value  
OSC  
stored in the LTARR register. A counter overflow event occurs when the counter rolls over  
from FFh to the LTARR reload value. Software can write a new value at anytime in the  
LTARR register, this value will be automatically loaded in the counter when the next overflow  
occurs.  
When Counter 2 overflows, the TB2F bit in the LTCSR2 register is set by hardware and an  
interrupt request is generated if the TB2IE bit is set. The TB2F bit is cleared by software  
reading the LTCSR2 register.  
Figure 41. Input capture timing diagram  
4µs  
(@ 8MHz f  
)
OSC  
f
CPU  
f
/32  
OSC  
CLEARED  
BY S/W  
READING  
LTIC REGISTER  
8-bit COUNTER 1  
LTIC PIN  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
ICF FLAG  
07h  
xxh  
04h  
LTICR REGISTER  
t
11.3.4  
Low power modes  
Table 37. Effect of low power modes on Lite timer  
Mode Description  
No effect on Lite timer  
(this peripheral is driven directly by fOSC/32)  
SLOW  
WAIT  
No effect on Lite timer  
ACTIVE-HALT  
HALT  
No effect on Lite timer  
Lite timer stops counting  
Doc ID 8349 Rev 5  
87/166  
 
On-chip peripherals  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
11.3.5  
Interrupts  
Table 38. TBxF and ICF interrupt events  
Exit from  
ACTIVE-  
HALT  
Enable Control  
Exit from  
WAIT  
Exit from  
HALT  
Interrupt event  
Event flag  
bit  
Timebase 1 event  
Timebase 2 event  
IC event  
TB1F  
TB2F  
ICF  
TB1IE  
TB2IE  
ICIE  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
Note:  
The TBxF and ICF interrupt events are connected to separate interrupt vectors (see  
Interrupts chapter).  
They generate an interrupt if the enable bit is set in the LTCSR1 or LTCSR2 register and the  
interrupt mask in the CC register is reset (RIM instruction).  
11.3.6  
Register description  
Lite timer control/status register 2 (LTCSR2)  
Read / Write  
Reset Value: 0000 0000 (00h)  
7
0
0
0
0
0
0
0
TB2IE  
TB2F  
Bits 7:2 = Reserved, must be kept cleared.  
Bit 1 = TB2IE Timebase 2 Interrupt enable  
This bit is set and cleared by software.  
0: Timebase (TB2) interrupt disabled  
1: Timebase (TB2) interrupt enabled  
Bit 0 = TB2F Timebase 2 Interrupt Flag  
This bit is set by hardware and cleared by software reading the LTCSR register. Writing  
to this bit has no effect.  
0: No Counter 2 overflow  
1: A Counter 2 overflow has occurred.  
88/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
On-chip peripherals  
Lite timer autoreload register (LTARR)  
Read / Write  
Reset Value: 0000 0000 (00h)  
7
0
AR0  
AR7  
AR7  
AR7  
AR7  
AR3  
AR2  
AR1  
Bits 7:0 = AR[7:0] Counter 2 Reload Value  
These bits register is read/write by software. The LTARR value is automatically loaded  
into Counter 2 (LTCNTR) when an overflow occurs.  
Lite timer counter 2 (LTCNTR)  
Read only  
Reset Value: 0000 0000 (00h)  
7
0
CNT7  
CNT6  
CNT5  
CNT4  
CNT3  
CNT2  
CNT1  
CNT0  
Bits 7:0 = CNT[7:0] Counter 2 Reload Value  
This register is read by software. The LTARR value is automatically loaded into Counter  
2 (LTCNTR) when an overflow occurs.  
Lite timer control/status register (LTCSR1)  
Read / Write  
Reset Value: 0x00 0000 (x0h)  
7
0
ICIE  
ICF  
TB  
TB1IE  
TB1F  
Bit 7 = ICIE Interrupt Enable  
This bit is set and cleared by software.  
0: Input Capture (IC) interrupt disabled  
1: Input Capture (IC) interrupt enabled  
Bit 6 = ICF Input Capture Flag  
This bit is set by hardware and cleared by software by reading the LTICR register.  
Writing to this bit does not change the bit value.  
0: No input capture  
1: An input capture has occurred  
Note:  
After an MCU reset, software must initialise the ICF bit by reading the LTICR register  
Bit 5 = TB Timebase period selection  
This bit is set and cleared by software.  
Doc ID 8349 Rev 5  
89/166  
On-chip peripherals  
0: Timebase period = t  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
* 8000 (1 ms @ 8 MHz)  
OSC  
OSC  
1: Timebase period = t  
* 16000 (2 ms @ 8 MHz)  
Bit 4 = TB1IE Timebase interrupt enable  
This bit is set and cleared by software.  
0: Timebase (TB1) interrupt disabled  
1: Timebase (TB1) interrupt enabled  
Bit 3 = TB1F Timebase interrupt flag  
This bit is set by hardware and cleared by software reading the LTCSR register. Writing  
to this bit has no effect.  
0: No counter overflow  
1: A counter overflow has occurred  
Bit 2:0 = reserved.  
Lite timer input capture register (LTICR)  
Read only  
Reset Value: 0000 0000 (00h)  
7
0
ICR7  
ICR6  
ICR5  
ICR4  
ICR3  
ICR2  
ICR1  
ICR0  
Bits 7:0 = ICR[7:0] Input capture value  
These bits are read by software and cleared by hardware after a reset. If the ICF bit in  
the LTCSR is cleared, the value of the 8-bit up-counter will be captured when a rising or  
falling edge occurs on the LTIC pin.  
Table 39. Lite timer register map and reset values  
Address  
(Hex.)  
Register  
Label  
7
6
5
4
3
2
1
0
TB2IE  
0
TB2F  
0
LTCSR2  
Reset Value  
08  
09  
0A  
0B  
0C  
0
0
0
0
0
0
LTARR  
Reset Value  
AR7  
0
AR6  
0
AR5  
0
AR4  
0
AR3  
0
AR2  
0
AR1  
0
AR0  
0
LTCNTR  
Reset Value  
CNT7  
0
CNT6  
0
CNT5  
0
CNT4  
0
CNT3  
0
CNT2  
0
CNT1  
0
CNT0  
0
LTCSR1  
Reset Value  
ICIE  
0
ICF  
x
TB  
0
TB1IE  
0
TB1F  
0
0
0
0
LTICR  
Reset Value  
ICR7  
0
ICR6  
0
ICR5  
0
ICR4  
0
ICR3  
0
ICR2  
0
ICR1  
0
ICR0  
0
90/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
On-chip peripherals  
11.4  
Serial peripheral interface (SPI)  
11.4.1  
Introduction  
The serial peripheral interface (SPI) allows full-duplex, synchronous, serial communication  
with external devices. An SPI system may consist of a master and one or more slaves or a  
system in which devices may be either masters or slaves.  
11.4.2  
Main features  
Full duplex synchronous transfers (on 3 lines)  
Simplex synchronous transfers (on 2 lines)  
Master or slave operation  
Six master mode frequencies (f  
/4 max.)  
CPU  
f
/2 max. slave mode frequency (see note)  
CPU  
SS Management by software or hardware  
Programmable clock polarity and phase  
End of transfer interrupt flag  
Write collision, Master mode Fault and Overrun flags.  
Note:  
In slave mode, continuous transmission is not possible at maximum frequency due to the  
software overhead for clearing status flags and to initiate the next transmission sequence.  
11.4.3  
General description  
Figure 42 shows the serial peripheral interface (SPI) block diagram. There are 3 registers:  
SPI Control Register (SPICR)  
SPI Control/Status Register (SPICSR)  
SPI Data Register (SPIDR)  
The SPI is connected to external devices through 3 pins:  
MISO: Master In / Slave Out data  
MOSI: Master Out / Slave In data  
SCK: Serial Clock out by SPI masters and input by SPI slaves  
SS: Slave select:  
This input signal acts as a "chip select” to let the SPI master communicate with slaves  
individually and to avoid contention on the data lines. Slave SS inputs can be driven by  
standard I/O ports on the master device.  
Doc ID 8349 Rev 5  
91/166  
On-chip peripherals  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Figure 42. Serial peripheral interface block diagram  
Data/Address Bus  
Read  
SPIDR  
Interrupt  
request  
Read Buffer  
MOSI  
MISO  
7
0
SPICSR  
8-Bit Shift Register  
SPIF WCOL OVR MODF  
0
SOD SSM SSI  
Write  
SOD  
bit  
1
SS  
SPI  
STATE  
0
SCK  
CONTROL  
7
0
SPICR  
MSTR  
SPR0  
SPIE SPE SPR2  
CPOL CPHA SPR1  
MASTER  
CONTROL  
SERIAL CLOCK  
GENERATOR  
SS  
Functional description  
A basic example of interconnections between a single master and a single slave is  
illustrated in Figure 43: Single master/ single slave application.  
The MOSI pins are connected together and the MISO pins are connected together. In this  
way data is transferred serially between master and slave (most significant bit first).  
The communication is always initiated by the master. When the master device transmits  
data to a slave device via MOSI pin, the slave device responds by sending data to the  
master device via the MISO pin. This implies full duplex communication with both data out  
and data in synchronized with the same clock signal (which is provided by the master device  
via the SCK pin).  
To use a single data line, the MISO and MOSI pins must be connected at each node (in this  
case only simplex communication is possible).  
Four possible data/clock timing relationships may be chosen (see Figure 46: Data clock  
timing diagram) but master and slave must be programmed with the same timing mode.  
92/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Figure 43. Single master/ single slave application  
On-chip peripherals  
SLAVE  
MASTER  
MSBit  
LSBit  
MSBit  
LSBit  
MISO  
MOSI  
MISO  
MOSI  
8-BIT SHIFT REGISTER  
8-BIT SHIFT REGISTER  
SPI  
CLOCK  
GENERATOR  
SCK  
SS  
SCK  
SS  
+5V  
Not used if SS is managed  
by software  
Slave select management  
As an alternative to using the SS pin to control the Slave Select signal, the application can  
choose to manage the Slave Select signal by software. This is configured by the SSM bit in  
the SPICSR register (see Figure 45: Hardware/software slave select management).  
In software management, the external SS pin is free for other application uses and the  
internal SS signal level is driven by writing to the SSI bit in the SPICSR register.  
In Master mode:  
SS internal must be held high continuously.  
In Slave mode:  
There are two cases depending on the data/clock timing relationship (see Figure 44):  
1. If CPHA=1 (data latched on 2nd clock edge):  
SS internal must be held low during the entire transmission. This implies that in single  
slave applications the SS pin either can be tied to V , or made free for standard I/O by  
SS  
managing the SS function by software (SSM= 1 and SSI=0 in the SPICSR register),  
2. If CPHA=0 (data latched on 1st clock edge):  
SS internal must be held low during byte transmission and pulled high between each  
byte to allow the slave to write to the shift register. If SS is not pulled high, a Write  
Collision error will occur when the slave writes to the shift register (see Write collision  
error (WCOL)).  
Figure 44. Generic SS timing diagram  
Byte 3  
Byte 1  
Byte 2  
MOSI/MISO  
Master SS  
Slave SS  
(if CPHA=0)  
Slave SS  
(if CPHA=1)  
Doc ID 8349 Rev 5  
93/166  
 
On-chip peripherals  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Figure 45. Hardware/software slave select management  
SSM bit  
SSI bit  
1
0
SS internal  
SS external pin  
Master mode operation  
In master mode, the serial clock is output on the SCK pin. The clock frequency, polarity and  
phase are configured by software (refer to the description of the SPICSR register).  
Note:  
The idle state of SCK must correspond to the polarity selected in the SPICSR register (by  
pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0).  
How to operate the SPI in master mode  
To operate the SPI in master mode, perform the following steps in order (if the SPICSR  
register is not written first, the SPICR register setting (MSTR bit) may be not taken into  
account):  
1. Write to the SPICR register:  
Select the clock frequency by configuring the SPR[2:0] bits.  
Select the clock polarity and clock phase by configuring the CPOL and CPHA bits.  
Figure 46 shows the four possible configurations.  
Note:  
Note:  
The slave must have the same CPOL and CPHA settings as the master.  
2. Write to the SPICSR register:  
Either set the SSM bit and set the SSI bit or clear the SSM bit and tie the SS pin  
high for the complete byte transmit sequence.  
3. Write to the SPICR register:  
Set the MSTR and SPE bits.  
MSTR and SPE bits remain set only if SS is high.  
If the SPICSR register is not written first, the SPICR register setting (MSTR bit) may be not  
taken into account.  
The transmit sequence begins when software writes a byte in the SPIDR register.  
Master mode transmit sequence  
When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift  
register and then shifted out serially to the MOSI pin most significant bit first.  
When data transfer is complete:  
1. The SPIF bit is set by hardware.  
2. An interrupt request is generated if the SPIE bit is set and the interrupt mask in the  
CCR register is cleared.  
Clearing the SPIF bit is performed by the following software sequence:  
1. An access to the SPICSR register while the SPIF bit is set  
2. A read to the SPIDR register.  
94/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
On-chip peripherals  
Note:  
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR  
register is read.  
Slave mode operation  
In slave mode, the serial clock is received on the SCK pin from the master device.  
To operate the SPI in slave mode:  
1. Write to the SPICSR register to perform the following actions:  
Select the clock polarity and clock phase by configuring the CPOL and CPHA bits  
(see Figure 46: Data clock timing diagram).  
Note:  
The slave must have the same CPOL and CPHA settings as the master.  
Manage the SS pin as described in Slave select management and Figure 44:  
Generic SS timing diagram. If CPHA=1 SS must be held low continuously. If  
CPHA=0 SS must be held low during byte transmission and pulled up between  
each byte to let the slave write in the shift register.  
2. Write to the SPICR register to clear the MSTR bit and set the SPE bit to enable the SPI  
I/O functions.  
Slave mode transmit sequence  
When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift  
register and then shifted out serially to the MISO pin most significant bit first.  
The transmit sequence begins when the slave device receives the clock signal and the most  
significant bit of the data on its MOSI pin.  
When data transfer is complete:  
The SPIF bit is set by hardware.  
An interrupt request is generated if SPIE bit is set and interrupt mask in the CCR  
register is cleared.  
Clearing the SPIF bit is performed by the following software sequence:  
1. An access to the SPICSR register while the SPIF bit is set.  
2. A write or a read to the SPIDR register.  
Note:  
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR  
register is read.  
The SPIF bit can be cleared during a second transmission; however, it must be cleared  
before the second SPIF bit in order to prevent an Overrun condition (see Section : Overrun  
condition (OVR)).  
11.4.4  
Clock phase and clock polarity  
Four possible timing relationships may be chosen by software, using the CPOL and CPHA  
bits (See Figure 46: Data clock timing diagram).  
Note:  
The idle state of SCK must correspond to the polarity selected in the SPICSR register (by  
pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0).  
The combination of the CPOL clock polarity and CPHA (clock phase) bits selects the data  
capture clock edge.  
Doc ID 8349 Rev 5  
95/166  
On-chip peripherals  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Figure 46 shows an SPI transfer with the four combinations of the CPHA and CPOL bits.  
The diagram may be interpreted as a master or slave timing diagram where the SCK pin, the  
MISO pin, the MOSI pin are directly connected between the master and the slave device.  
Note:  
If CPOL is changed at the communication byte boundaries, the SPI must be disabled by  
resetting the SPE bit.  
Figure 46. Data clock timing diagram  
CPHA =1  
SCK  
(CPOL = 1)  
SCK  
(CPOL = 0)  
Bit 4  
Bit 4  
Bit3  
Bit3  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
LSBit  
LSBit  
MSBit Bit 6  
MSBit Bit 6  
Bit 5  
Bit 5  
MISO  
(from master)  
MOSI  
(from slave)  
SS  
(to slave)  
CAPTURE STROBE  
CPHA =0  
SCK  
(CPOL = 1)  
SCK  
(CPOL = 0)  
Bit 4  
Bit 4  
Bit3  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
LSBit  
LSBit  
MISO  
(from master)  
MSBit Bit 6  
Bit 5  
Bit 5  
Bit3  
MOSI  
(from slave)  
MSBit  
Bit 6  
SS  
(to slave)  
CAPTURE STROBE  
Note:  
This figure should not be used as a replacement for parametric information. Refer to the  
Section 13: Electrical characteristics.  
11.4.5  
Error Flags  
Master mode fault (MODF)  
Master mode fault occurs when the master device has its SS pin pulled low.  
When a Master mode fault occurs:  
1. The MODF bit is set and an SPI interrupt request is generated if the SPIE bit is set.  
2. The SPE bit is reset. This blocks all output from the Device and disables the SPI  
peripheral.  
3. The MSTR bit is reset, thus forcing the Device into slave mode.  
96/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Clearing the MODF bit is done through a software sequence:  
On-chip peripherals  
1. A read access to the SPICSR register while the MODF bit is set.  
2. A write to the SPICR register.  
Note:  
To avoid any conflicts in an application with multiple slaves, the SS pin must be pulled high  
during the MODF bit clearing sequence. The SPE and MSTR bits may be restored to their  
original state during or after this clearing sequence.  
Hardware does not allow the user to set the SPE and MSTR bits while the MODF bit is set  
except in the MODF bit clearing sequence.  
In a slave device, the MODF bit can not be set, but in a multi master configuration the Device  
can be in slave mode with the MODF bit set.  
The MODF bit indicates that there might have been a multi-master conflict and allows  
software to handle this using an interrupt routine and either perform to a reset or return to an  
application default state.  
Overrun condition (OVR)  
An overrun condition occurs, when the master device has sent a data byte and the slave  
device has not cleared the SPIF bit issued from the previously transmitted byte.  
When an overrun occurs:  
The OVR bit is set and an interrupt request is generated if the SPIE bit is set.  
In this case, the receiver buffer contains the byte sent after the SPIF bit was last cleared. A  
read to the SPIDR register returns this byte. All other bytes are lost.  
The OVR bit is cleared by reading the SPICSR register.  
Write collision error (WCOL)  
A write collision occurs when the software tries to write to the SPIDR register while a data  
transfer is taking place with an external device. When this happens, the transfer continues  
uninterrupted; and the software write will be unsuccessful.  
Write collisions can occur both in master and slave mode. See also Section : Slave select  
management.  
Note:  
A "read collision" will never occur since the received data byte is placed in a buffer in which  
access is always synchronous with the CPU operation.  
The WCOL bit in the SPICSR register is set if a write collision occurs. No SPI interrupt is  
generated when the WCOL bit is set (the WCOL bit is a status flag only).  
Clearing the WCOL bit is done through a software sequence (see Figure 47: Clearing the  
WCOL bit (write collision flag) software sequence).  
Doc ID 8349 Rev 5  
97/166  
On-chip peripherals  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Figure 47. Clearing the WCOL bit (write collision flag) software sequence  
Clearing sequence after SPIF = 1 (end of a data byte transfer)  
Read SPICSR  
1st Step  
RESULT  
SPIF =0  
WCOL=0  
2nd Step  
Read SPIDR  
Clearing sequence before SPIF = 1 (during a data byte transfer)  
Read SPICSR  
1st Step  
RESULT  
2nd Step  
Read SPIDR  
WCOL=0  
1. Writing to the SPIDR register instead of reading it does not reset the WCOL bit  
Single master and multimaster configurations  
There are two types of SPI systems:  
1. Single master system  
2. Multimaster system.  
Single master system  
A typical single master system may be configured, using a device as the master and four  
devices as slaves (see Figure 48).  
The master device selects the individual slave devices by using four pins of a parallel port to  
control the four SS pins of the slave devices.  
The SS pins are pulled high during reset since the master device ports will be forced to be  
inputs at that time, thus disabling the slave devices.  
Note:  
To prevent a bus conflict on the MISO line the master allows only one active slave device  
during a transmission.  
For more security, the slave device may respond to the master with the received data byte.  
Then the master will receive the previous byte back from the slave device if all MISO and  
MOSI pins are connected and the slave has not written to its SPIDR register.  
Other transmission security methods can use ports for handshake lines or data bytes with  
command fields.  
Multi-master system  
A multi-master system may also be configured by the user. Transfer of master control could  
be implemented using a handshake method through the I/O ports or by an exchange of  
code messages through the serial peripheral interface system.  
The multi-master system is principally handled by the MSTR bit in the SPICR register and  
the MODF bit in the SPICSR register.  
98/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Figure 48. Single master / multiple slave configuration  
On-chip peripherals  
SS  
SS  
SS  
SS  
SCK  
SCK  
SCK  
Slave  
SCK  
Slave  
Slave  
Slave  
Device  
Device  
Device  
Device  
MOSI MISO  
MOSI MISO  
MOSI MISO  
MOSI MISO  
MOSI MISO  
SCK  
Master  
Device  
5V  
SS  
11.4.6  
Low power modes  
Table 40. WAIT and HALT mode description  
Mode  
Description  
No effect on SPI.  
WAIT  
SPI interrupt events cause the device to exit from WAIT mode.  
SPI registers are frozen.  
In HALT mode, the SPI is inactive. SPI operation resumes when the Device is  
woken up by an interrupt with “exit from HALT mode” capability. The data  
received is subsequently read from the SPIDR register when the software is  
running (interrupt vector fetching). If several data are received before the  
wakeup event, then an overrun error is generated. This error can be detected  
after the fetch of the interrupt routine that woke up the Device.  
HALT  
Using the SPI to wake up the device from HALT mode  
In slave configuration, the SPI is able to wake up the Device from HALT mode through a  
SPIF interrupt. The data received is subsequently read from the SPIDR register when the  
software is running (interrupt vector fetch). If multiple data transfers have been performed  
before software clears the SPIF bit, then the OVR bit is set by hardware.  
Note:  
When waking up from HALT mode, if the SPI remains in Slave mode, it is recommended to  
perform an extra communications cycle to bring the SPI from HALT mode state to normal  
state. If the SPI exits from Slave mode, it returns to normal state immediately.  
Caution:  
The SPI can wake up the Device from HALT mode only if the Slave Select signal (external  
SS pin or the SSI bit in the SPICSR register) is low when the Device enters HALT mode. So if  
Slave selection is configured as external (see Section : Slave select management), make  
sure the master drives a low level on the SS pin when the slave enters HALT mode.  
Doc ID 8349 Rev 5  
99/166  
On-chip peripherals  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
11.4.7  
Interrupts  
Table 41. Interrupt events  
Interrupt Event  
Enable  
control  
bit  
Exit  
from  
WAIT  
Exit  
from  
HALT  
Event  
flag  
SPI end of transfer event  
Master mode fault event  
Overrun error  
SPIF  
MODF  
OVR  
Yes  
Yes  
Yes  
Yes  
No  
No  
SPIE  
Note:  
The SPI interrupt events are connected to the same interrupt vector (see Section 8:  
Interrupts).  
They generate an interrupt if the corresponding Enable Control bit is set and the interrupt  
mask in the CC register is reset (RIM instruction).  
11.4.8  
Register description  
Control register (SPICR)  
Read/Write  
Reset Value: 0000 xxxx (0xh)  
7
0
SPIE  
SPE  
SPR2  
MSTR  
CPOL  
CPHA  
SPR1  
SPR0  
Bit 7 = SPIE Serial peripheral interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SPI interrupt is generated whenever an End of Transfer event, Master mode Fault  
or Overrun error occurs (SPIF=1, MODF=1 or OVR=1 in the SPICSR register).  
Bit 6 = SPE Serial Peripheral Output Enable  
This bit is set and cleared by software. It is also cleared by hardware when, in master  
mode, SS=0 (see Section : Master mode fault (MODF)). The SPE bit is cleared by  
reset, so the SPI peripheral is not initially connected to the external pins.  
0: I/O pins free for general purpose I/O  
1: SPI I/O pin alternate functions enabled.  
Bit 5 = SPR2 Divider enable  
This bit is set and cleared by software and is cleared by reset. It is used with the  
SPR[1:0] bits to set the baud rate. Refer to Table 42: SPI Master mode SCK frequency.  
0: Divider by 2 enabled  
1: Divider by 2 disabled  
Note:  
This bit has no effect in slave mode.  
Bit 4 = MSTR Master mode  
This bit is set and cleared by software. It is also cleared by hardware when, in master  
mode, SS=0 (see Section : Master mode fault (MODF)).  
0: Slave mode  
100/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
On-chip peripherals  
1: Master mode. The function of the SCK pin changes from an input to an output and  
the functions of the MISO and MOSI pins are reversed.  
Bit 3 = CPOL Clock polarity  
This bit is set and cleared by software. This bit determines the idle state of the serial  
Clock. The CPOL bit affects both the master and slave modes.  
0: SCK pin has a low level idle state  
1: SCK pin has a high level idle state  
Note:  
If CPOL is changed at the communication byte boundaries, the SPI must be disabled by  
resetting the SPE bit.  
Bit 2 = CPHA Clock Phase  
This bit is set and cleared by software.  
0: The first clock transition is the first data capture edge.  
1: The second clock transition is the first capture edge.  
Note:  
Note:  
The slave must have the same CPOL and CPHA settings as the master.  
Bits 1:0 = SPR[1:0] Serial Clock Frequency  
These bits are set and cleared by software. Used with the SPR2 bit, they select the  
baud rate of the SPI serial clock SCK output by the SPI in master mode.  
These 2 bits have no effect in slave mode.  
Table 42. SPI Master mode SCK frequency  
Serial Clock  
CPU/4  
SPR2  
SPR1  
SPR0  
f
1
0
0
1
0
0
0
0
0
1
1
1
0
0
1
0
0
1
fCPU/8  
fCPU/16  
fCPU/32  
fCPU/64  
fCPU/128  
Control/status register (SPICSR)  
Read/Write (some bits are Read Only)  
Reset Value: 0000 0000 (00h)  
7
0
SPIF  
WCOL  
OVR  
MODF  
-
SOD  
SSM  
SSI  
Bit 7 = SPIF Serial peripheral data transfer flag (Read only)  
This bit is set by hardware when a transfer has been completed. An interrupt is  
generated if SPIE=1 in the SPICR register. It is cleared by a software sequence (an  
access to the SPICSR register followed by a write or a read to the SPIDR register).  
0: Data transfer is in progress or the flag has been cleared.  
1: Data transfer between the Device and an external device has been completed.  
Doc ID 8349 Rev 5  
101/166  
On-chip peripherals  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Note:  
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR  
register is read.  
Bit 6 = WCOL Write collision status (Read only)  
This bit is set by hardware when a write to the SPIDR register is done during a transmit  
sequence. It is cleared by a software sequence (see Figure 47: Clearing the WCOL bit  
(write collision flag) software sequence).  
0: No write collision occurred  
1: A write collision has been detected.  
Bit 5 = OVR SPI Overrun error (Read only)  
This bit is set by hardware when the byte currently being received in the shift register is  
ready to be transferred into the SPIDR register while SPIF = 1 (See Section : Overrun  
condition (OVR)). An interrupt is generated if SPIE = 1 in the SPICR register. The OVR  
bit is cleared by software reading the SPICSR register.  
0: No overrun error  
1: Overrun error detected  
Bit 4 = MODF Mode fault flag (Read only).  
This bit is set by hardware when the SS pin is pulled low in master mode (see Section :  
Master mode fault (MODF)). An SPI interrupt can be generated if SPIE=1 in the SPICR  
register. This bit is cleared by a software sequence (An access to the SPICSR register  
while MODF=1 followed by a write to the SPICR register).  
0: No master mode fault detected  
1: A fault in master mode has been detected  
Bit 3 = Reserved, must be kept cleared.  
Bit 2 = SOD SPI output disable  
This bit is set and cleared by software. When set, it disables the alternate function of  
the SPI output (MOSI in master mode / MISO in slave mode).  
0: SPI output enabled (if SPE=1)  
1: SPI output disabled.  
Bit 1 = SSM SS Management.  
This bit is set and cleared by software. When set, it disables the alternate function of  
the SPI SS pin and uses the SSI bit value instead. See Section : Slave select  
management.  
0: Hardware management (SS managed by external pin)  
1: Software management (internal SS signal controlled by SSI bit. External SS pin free  
for general-purpose I/O).  
Bit 0 = SSI SS Internal Mode.  
This bit is set and cleared by software. It acts as a “chip select” by controlling the level  
of the SS slave select signal when the SSM bit is set.  
0: Slave selected  
1: Slave deselected.  
102/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
On-chip peripherals  
Data I/O register (SPIDR)  
Read/Write  
Reset Value: Undefined  
7
0
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
The SPIDR register is used to transmit and receive data on the serial bus. In a master  
device, a write to this register will initiate transmission/reception of another byte.  
Note:  
During the last clock cycle the SPIF bit is set, a copy of the received data byte in the shift  
register is moved to a buffer. When the user reads the serial peripheral data I/O register, the  
buffer is actually being read.  
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR  
register is read.  
Caution:  
A write to the SPIDR register places data directly into the shift register for transmission.  
A read to the SPIDR register returns the value located in the buffer and not the content of  
the shift register (see Figure 42: Serial peripheral interface block diagram).  
Table 43. SPI register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
SPIDR  
Reset value  
MSB  
x
LSB  
x
0031h  
0032h  
0033h  
x
x
x
x
x
x
SPICR  
Reset value  
SPIE  
0
SPE  
0
SPR2 MSTR CPOL CPHA  
0
SPR1  
x
SPR0  
x
0
x
x
SPICSR  
Reset value  
SPIF  
0
WCOL  
0
OVR  
0
MODF  
0
SOD  
0
SSM  
0
SSI  
0
0
11.5  
10-bit A/D converter (ADC)  
11.5.1  
Introduction  
The analog to digital converter (ADC) peripheral is a 10-bit, successive approximation  
converter with internal sample and hold circuitry. This peripheral has up to 7 multiplexed  
analog input channels (refer to Table 2: Device pin description) that allow the peripheral to  
convert the analog voltage levels from up to 7 different sources.  
The result of the conversion is stored in a 10-bit Data Register. The A/D converter is  
controlled through a Control/Status Register.  
Doc ID 8349 Rev 5  
103/166  
On-chip peripherals  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
11.5.2  
Main features  
10-bit conversion  
Up to 7 channels with multiplexed input  
Linear successive approximation  
Data register (DR) which contains the results  
Conversion complete status flag  
On/off bit (to reduce consumption)  
The block diagram is shown in Figure 49.  
11.5.3  
Functional description  
Analog power supply  
V
and V  
are the high and low level reference voltage pins. In some devices (refer to  
SSA  
DDA  
device pin out description) they are internally connected to the V and V pins.  
DD  
SS  
Conversion accuracy may therefore be impacted by voltage drops and noise in the event of  
heavily loaded or badly decoupled power supply lines.  
Figure 49. ADC block diagram  
DIV 4  
1
fCPU  
fADC  
DIV 2  
0
1
0
SLOW  
bit  
0
EOC SPEEDADON  
0
CH2 CH1 CH0  
ADCCSR  
3
AIN0  
AIN1  
HOLD CONTROL  
RADC  
ANALOG TO DIGITAL  
CONVERTER  
x 1 or  
ANALOG  
MUX  
x 8  
AINx  
CADC  
AMPSEL  
bit  
ADCDRH  
D9 D8 D7 D6 D5 D4 D3 D2  
AMP  
CAL  
AMP  
SEL  
ADCDRL  
0
0
0
SLOW  
D1  
D0  
Input voltage amplifier  
The input voltage can be amplified by a factor of 8 by enabling the AMPSEL bit in the  
ADCDRL register.  
When the amplifier is enabled, the input range is 0 V to V /8.  
DD  
104/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
On-chip peripherals  
For example, if V = 5 V, then the ADC can convert voltages in the range 0 V to 430 mV  
DD  
with an ideal resolution of 0.6 mV (equivalent to 13-bit resolution with reference to a V to  
SS  
V
range).  
DD  
Note:  
For more details, refer to Section 13: Electrical characteristics.  
The amplifier is switched on by the ADON bit in the ADCCSR register, so no additional  
startup time is required when the amplifier is selected by the AMPSEL bit.  
Digital A/D conversion result  
The conversion is monotonic, meaning that the result never decreases if the analog input  
does not and never increases if the analog input does not.  
If the input voltage (V ) is greater than V  
(high-level voltage reference) then the  
AIN  
DDA  
conversion result is FFh in the ADCDRH register and 03h in the ADCDRL register (without  
overflow indication).  
If the input voltage (V ) is lower than V  
(low-level voltage reference) then the  
SSA  
AIN  
conversion result in the ADCDRH and ADCDRL registers is 00 00h.  
The A/D converter is linear and the digital result of the conversion is stored in the ADCDRH  
and ADCDRL registers. The accuracy of the conversion is described in Section 13:  
Electrical characteristics.  
R
is the maximum recommended impedance for an analog input signal. If the impedance  
AIN  
is too high, this will result in a loss of accuracy due to leakage and sampling not being  
completed in the allowed time.  
A/D Conversion  
The analog input ports must be configured as input, no pull-up, no interrupt. Section 10: I/O  
ports. Using these pins as analog inputs does not affect the ability of the port to be read as  
a logic input.  
In the ADCCSR register, select the CS[2:0] bits to assign the analog channel to convert.  
ADC Conversion mode  
In the ADCCSR register:  
set the ADON bit to enable the A/D converter and to start the conversion. From  
this time on, the ADC performs a continuous conversion of the selected channel.  
When a conversion is complete:  
the EOC bit is set by hardware.  
the result is in the ADCDR registers.  
A read to the ADCDRH resets the EOC bit.  
To read the 10 bits, perform the following steps:  
1. Poll EOC bit  
2. Read ADCDRL  
3. Read ADCDRH. This clears EOC automatically.  
To read only 8 bits, perform the following steps:  
1. Poll EOC bit  
2. Read ADCDRH. This clears EOC automatically.  
Doc ID 8349 Rev 5  
105/166  
On-chip peripherals  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
11.5.4  
Low power modes  
Table 44. Low power modes effects  
Mode  
Description  
WAIT  
No effect on A/D Converter  
A/D Converter disabled.  
After wakeup from HALT mode, the A/D Converter requires a stabilization time  
STAB (see Electrical Characteristics) before accurate conversions can be  
performed.  
HALT  
t
Note:  
The A/D converter may be disabled by resetting the ADON bit. This feature allows reduced  
power consumption when no conversion is needed and between single shot conversions.  
11.5.5  
Interrupts  
None.  
11.5.6  
Register Description  
Control/status register (ADCCSR)  
Read/Write (Except Bit 7 read only)  
Reset Value: 0000 0000 (00h)  
7
0
EOC  
SPEED  
ADON  
0
CH3  
CH2  
CH1  
CH0  
Bit 7 = EOC End of Conversion  
This bit is set by hardware. It is cleared by software reading the ADCDRH register.  
0: Conversion is not complete  
1: Conversion complete.  
Bit 6 = SPEED ADC clock selection  
This bit is set and cleared by software. It is used together with the SLOW bit to  
configure the ADC clock speed. Refer to the table in the SLOW bit description.  
Bit 5 = ADON A/D Converter on  
This bit is set and cleared by software.  
0: A/D converter and amplifier are switched off  
1: A/D converter and amplifier are switched on.  
Bits 4:3 = Reserved. Must be kept cleared.  
Bits 2:0 = CH[2:0] Channel Selection  
These bits are set and cleared by software. They select the analog input to convert.  
Table 45. Channel selection bits  
Channel pin(1)  
CH2  
CH1  
CH0  
AIN0  
AIN1  
0
0
0
0
0
1
106/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 45. Channel selection bits (continued)  
On-chip peripherals  
Channel pin(1)  
CH2  
CH1  
CH0  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
0
0
1
1
1
1
1
0
0
1
0
1
0
1
0
1. The number of channels is device dependent. Refer to Table 2: Device pin description.  
Doc ID 8349 Rev 5  
107/166  
On-chip peripherals  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Data register high (ADCDRH)  
Read only  
Reset value: xxxx xxxx (xxh)  
7
0
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
Bits 7:0 = D[9:2] MSB of analog converted value.  
AMP control/data register low (ADCDRL)  
Read/Write  
Reset Value: 0000 00xx (0xh)  
7
0
0
0
0
AMP CAL  
SLOW  
AMPSEL  
D1  
D0  
Bits 7:5 = Reserved. Forced by hardware to 0.  
Bit 4 = AMPCAL Amplifier Calibration Bit  
This bit is set and cleared by software. User is suggested to use this bit to calibrate the  
ADC when amplifier is ON. Setting this bit internally connects amplifier input to 0v.  
Hence, corresponding ADC output can be used in software to eliminate amplifier-offset  
error.  
0: Calibration off  
1: Calibration on (The input voltage of the amp is set to 0V).  
Note:  
It is advised to use this bit to calibrate the ADC when the amplifier is ON. Setting this bit  
internally connects the amplifier input to 0v. Hence, the corresponding ADC output can be  
used in software to eliminate an amplifier-offset error.  
Bit 3 = SLOW SLOW mode  
This bit is set and cleared by software. It is used together with the SPEED bit to  
configure the ADC clock speed as shown Table 46.  
This bit is set and cleared by software.  
Table 46. ADC clock speed selection  
fADC  
SLOW  
SPEED  
f
CPU/2  
fCPU  
0
0
1
0
1
x
fCPU/4  
Bit 2 = AMPSEL Amplifier selection bit  
0: Amplifier is not selected  
1: Amplifier is selected  
Bits 1:0 = D[1:0] LSB of analog converted value  
Note:  
When AMPSEL=1 it is mandatory that f  
be less than or equal to 2 MHz.  
ADC  
108/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
On-chip peripherals  
Table 47. ADC register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
ADCCSR  
Reset Value  
EOC  
0
SPEED  
0
ADON  
0
0
0
0
0
CH2  
0
CH1  
0
CH0  
0
0034h  
0035h  
0036h  
ADCDRH  
Reset Value  
D9  
x
D8  
x
D7  
x
D6  
x
D5  
x
D4  
x
D3  
x
D2  
x
ADCDRL  
Reset Value  
0
0
0
0
0
0
AMPCAL  
0
SLOW AMPSEL  
D1  
x
D0  
x
0
0
Doc ID 8349 Rev 5  
109/166  
Instruction set  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
12  
Instruction set  
12.1  
ST7 addressing modes  
The ST7 Core features 17 different addressing modes which can be classified in seven main  
groups:  
:
Table 48. Addressing mode groups  
Addressing mode  
Example  
Inherent  
Immediate  
Direct  
nop  
ld A,#$55  
ld A,$55  
Indexed  
Indirect  
ld A,($55,X)  
ld A,([$55],X)  
jrne loop  
Relative  
Bit operation  
bset byte,#5  
The ST7 Instruction set is designed to minimize the number of bytes required per  
instruction: To do so, most of the addressing modes may be subdivided in two submodes  
called long and short:  
Long addressing mode is more powerful because it can use the full 64 Kbyte address  
space, however it uses more bytes and more CPU cycles.  
Short addressing mode is less powerful because it can generally only access page  
zero (0000h00FFh range), but the instruction size is more compact, and faster. All  
memory to memory instructions use short addressing modes only (CLR, CPL, NEG,  
BSET, BRES, BTJT, BTJF, INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP).  
The ST7 Assembler optimizes the use of long and short addressing modes.  
Table 49. ST7 addressing mode overview  
Destination/  
source  
Pointer  
address (Hex.) size (Hex.)  
Pointer  
Mode  
Syntax  
Length (bytes)  
Inherent  
Immediate  
Short  
nop  
+ 0  
+ 1  
+ 1  
+ 2  
ld A,#$55  
ld A,$10  
Direct  
Direct  
00..FF  
0000..FFFF  
Long  
ld A,$1000  
+ 0 (with x register)  
+ 1 (with Y register)  
No offset Direct Indexed ld A,(X)  
00..FF  
Short  
Long  
Short  
Long  
Direct Indexed ld A,($10,X)  
Direct Indexed ld A,($1000,X)  
00..1FE  
+ 1  
+ 2  
+ 2  
+ 2  
0000..FFFF  
00..FF  
Indirect  
Indirect  
ld A,[$10]  
00..FF  
00..FF  
byte  
word  
ld A,[$10.w]  
0000..FFFF  
110/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Instruction set  
Table 49. ST7 addressing mode overview (continued)  
Short  
Indirect Indexed ld A,([$10],X)  
00..1FE  
00..FF  
00..FF  
byte  
+ 2  
+ 2  
Long  
Indirect Indexed ld A,([$10.w],X) 0000..FFFF  
PC-128/  
word  
Relative  
Relative  
Direct  
jrne loop  
+ 1  
+ 2  
PC+127(1)  
PC-128/  
Indirect  
jrne [$10]  
00..FF  
byte  
PC+127(1)  
Bit  
Bit  
Bit  
Bit  
Direct  
bset $10,#7  
00..FF  
00..FF  
+ 1  
+ 2  
+ 2  
+ 3  
Indirect  
bset [$10],#7  
00..FF  
byte  
Direct Relative btjt $10,#7,skip 00..FF  
Indirect Relative btjt [$10],#7,skip 00..FF  
00..FF  
byte  
1. At the time the instruction is executed, the Program Counter (PC) points to the instruction following JRxx.  
12.1.1  
Inherent  
All Inherent instructions consist of a single byte. The opcode fully specifies all the required  
information for the CPU to process the operation.  
Table 50. Inherent instructions  
Instruction  
Function  
NOP  
No Operation  
S/W Interrupt  
TRAP  
WFI  
WAIT for Interrupt (low power mode)  
HALT oscillator (lowest power mode)  
Sub-routine Return  
HALT  
RET  
IRET  
SIM  
Interrupt sub-routine Return  
Set Interrupt Mask (level 3)  
Reset Interrupt Mask (level 0)  
Set Carry Flag  
RIM  
SCF  
RCF  
Reset Carry Flag  
RSP  
Reset Stack Pointer  
Load  
LD  
CLR  
Clear  
PUSH/POP  
INC/DEC  
TNZ  
Push/Pop to/from the stack  
Increment/Decrement  
Test Negative or Zero  
1 or 2 Complement  
CPL, NEG  
MUL  
Byte Multiplication  
Doc ID 8349 Rev 5  
111/166  
Instruction set  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Function  
Table 50. Inherent instructions (continued)  
Instruction  
SLL, SRL, SRA, RLC, RRC  
SWAP  
Shift and Rotate operations  
Swap nibbles  
12.1.2  
Immediate  
Immediate instructions have two bytes: The first byte contains the opcode and the second  
byte contains the operand value.  
.
Table 51. Immediate instructions  
Instruction  
Function  
LD  
Load  
CP  
Compare  
BCP  
Bit Compare  
Logical operations  
Arithmetic operations  
AND, OR, XOR  
ADC, ADD, SUB, SBC  
12.1.3  
Direct  
In Direct instructions, the operands are referenced by their memory address. The direct  
addressing mode consists of two submodes:  
Direct (short)  
The address is a byte, thus requiring only one byte after the opcode, but only allows  
00 - FF addressing space.  
Direct (long)  
The address is a word, thus allowing 64 Kbyte addressing space, but requires 2 bytes  
after the opcode.  
12.1.4  
Indexed (no offset, short, long)  
In this mode, the operand is referenced by its memory address, which is defined by the  
unsigned addition of an index register (X or Y) with an offset.  
The indexed addressing mode consists of three submodes:  
Indexed (no offset)  
There is no offset, (no extra byte after the opcode), and it allows 00 - FF addressing  
space.  
Indexed (short)  
The offset is a byte, thus requiring only one byte after the opcode and allows  
00 - 1FE addressing space.  
Indexed (long)  
The offset is a word, thus allowing 64 Kbyte addressing space and requires 2 bytes  
after the opcode.  
112/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Instruction set  
12.1.5  
Indirect (short, long)  
The required data byte to do the operation is found by its memory address, located in  
memory (pointer).  
The pointer address follows the opcode. The indirect addressing mode consists of two  
submodes:  
Indirect (short)  
The pointer address is a byte, the pointer size is a byte, thus allowing 00 - FF  
addressing space, and requires 1 byte after the opcode.  
Indirect (long)  
The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte  
addressing space, and requires 1 byte after the opcode.  
12.1.6  
Indirect indexed (short, long)  
This is a combination of indirect and short indexed addressing modes. The operand is  
referenced by its memory address, which is defined by the unsigned addition of an index  
register value (X or Y) with a pointer value located in memory. The pointer address follows  
the opcode.  
The indirect indexed addressing mode consists of two submodes:  
Indirect indexed (short)  
The pointer address is a byte, the pointer size is a byte, thus allowing 00 - 1FE  
addressing space, and requires 1 byte after the opcode.  
Indirect indexed (long)  
The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte  
addressing space, and requires 1 byte after the opcode.  
I
Table 52. Long and short instructions supporting direct, indexed, indirect and  
indirect indexed addressing modes  
Long and short instructions  
Function  
LD  
CP  
Load  
Compare  
AND, OR, XOR  
ADC, ADD, SUB, SBC  
BCP  
Logical operations  
Arithmetic Additions/Subtractions operations  
Bit Compare  
I
Table 53. Short instructions supporting direct, indexed, indirect and indirect  
indexed addressing modes  
Short instructions only  
Function  
CLR  
Clear  
INC, DEC  
TNZ  
Increment/Decrement  
Test Negative or Zero  
1 or 2 Complement  
Bit operations  
CPL, NEG  
BSET, BRES  
Doc ID 8349 Rev 5  
113/166  
Instruction set  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 53. Short instructions supporting direct, indexed, indirect and indirect  
indexed addressing modes (continued)  
Short instructions only  
BTJT, BTJF  
Function  
Bit Test and Jump operations  
SLL, SRL, SRA, RLC, RRC  
SWAP  
Shift and Rotate operations  
Swap nibbles  
CALL, JP  
Call or Jump sub-routine  
12.1.7  
Relative mode (direct, indirect)  
This addressing mode is used to modify the PC register value, by adding an 8-bit signed  
offset to it.  
.
Table 54. Relative direct and indirect instructions and functions  
Available relative direct/indirect instructions  
Function  
JRxx  
Conditional Jump  
Call Relative  
CALLR  
The relative addressing mode consists of two submodes:  
Relative (direct)  
The offset follows the opcode.  
Relative (indirect)  
The offset is defined in the memory, the address of which follows the opcode.  
12.2  
Instruction groups  
The ST7 family devices use an Instruction Set consisting of 63 instructions. The instructions  
may be subdivided into 13 main groups as illustrated in Table 55:  
Table 55. Instruction groups  
Group  
Load and Transfer  
Instructions  
LD  
CLR  
RSP  
Stack operation  
PUSH POP  
Increment/Decrement  
Compare and Tests  
Logical operations  
INC  
CP  
DEC  
TNZ  
OR  
BCP  
XOR  
AND  
CPL NEG  
Bit operation  
BSET BRES  
BTJT BTJF  
Conditional Bit Test and Branch  
Arithmetic operations  
Shift and Rotates  
ADC  
SLL  
JRA  
ADD  
SRL  
JRT  
SUB  
SRA  
JRF  
SBC MUL  
RLC RRC SWAP SLA  
JP  
Unconditional Jump or Call  
CALL CALLR NOP RET  
114/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 55. Instruction groups (continued)  
Instruction set  
Group  
Instructions  
Conditional Branch  
JRxx  
Interruption management  
TRAP WFI  
HALT IRET  
SCF RCF  
Condition Code Flag modification SIM  
RIM  
Using a prebyte  
The instructions are described with 1 to 4 bytes.  
In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three  
different prebyte opcodes are defined. These prebytes modify the meaning of the instruction  
they precede.  
The whole instruction becomes:  
PC-2: End of previous instruction  
PC-1: Prebyte  
PC: Opcode  
PC+1: Additional word (0 to 2) according to the number of bytes required to compute  
the effective address.  
These prebytes enable instruction in Y as well as indirect addressing modes to be  
implemented.  
They precede the opcode of the instruction in X or the instruction using direct addressing  
mode. The prebytes are:  
PDY 90: Replace an X based instruction using immediate, direct, indexed, or inherent  
addressing mode by a Y one.  
PIX 92: Replace an instruction using direct, direct bit or direct relative addressing mode  
to an instruction using the corresponding indirect addressing mode.  
It also changes an instruction using X indexed addressing mode to an instruction using  
indirect X indexed addressing mode.  
PIY 91: Replace an instruction using X indirect indexed addressing mode by a Y one.  
12.2.1  
Illegal opcode reset  
In order to provide enhanced robustness to the device against unexpected behavior, a  
system of illegal opcode detection is implemented. If a code to be executed does not  
correspond to any opcode or prebyte value, a reset is generated. This, combined with the  
Watchdog, allows the detection and recovery from an unexpected fault or interference.  
Note:  
A valid prebyte associated with a valid opcode forming an unauthorized combination does  
not generate a reset.  
Table 56. Instruction set overview  
Mnemo  
Description  
Add with Carry  
Function/example  
Dst  
Src  
H
I
N
Z
C
ADC  
ADD  
AND  
A = A + M + C  
A = A + M  
A
A
A
M
M
M
H
H
N
N
N
Z
Z
Z
C
C
Addition  
Logical And  
A = A . M  
Doc ID 8349 Rev 5  
115/166  
 
Instruction set  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 56. Instruction set overview (continued)  
Mnemo  
Description  
Function/example  
tst (A . M)  
Dst  
Src  
H
I
N
Z
C
BCP  
Bit compare A, memory  
Bit reset  
A
M
H
0
I
N
0
N
N
N
N
N
N
Z
1
Z
Z
Z
Z
Z
Z
C
C
C
1
C
BRES  
BSET  
BTJF  
BTJT  
CALL  
CALLR  
CLR  
bres Byte, #3  
M
M
M
M
Bit set  
bset Byte, #3  
Jump if bit is false (0)  
Jump if bit is true (1)  
Call sub-routine  
Call sub-routine relative  
Clear  
btjf Byte, #3, Jmp1  
btjt Byte, #3, Jmp1  
reg, M  
CP  
Arithmetic Compare  
One Complement  
Decrement  
reg  
M
CPL  
A = FFH-A  
dec Y  
reg, M  
DEC  
HALT  
IRET  
INC  
reg, M  
HALT  
Interrupt routine return  
Increment  
Pop CC, A, X, PC  
inc X  
reg, M  
JP  
Absolute Jump  
Jump relative always  
Jump relative  
jp [TBL.w]  
JRA  
JRT  
JRF  
Never jump  
jrf *  
JRIH  
JRIL  
Jump if ext. interrupt = 1  
Jump if ext. interrupt = 0  
Jump if H = 1  
JRH  
H = 1 ?  
H = 0 ?  
I = 1 ?  
JRNH  
JRM  
Jump if H = 0  
Jump if I1:0 = 11  
Jump if I1:0 <> 11  
Jump if N = 1 (minus)  
Jump if N = 0 (plus)  
Jump if Z = 1 (equal)  
Jump if Z = 0 (not equal)  
Jump if C = 1  
JRNM  
JRMI  
JRPL  
JREQ  
JRNE  
JRC  
I = 0 ?  
N = 1 ?  
N = 0 ?  
Z = 1 ?  
Z = 0 ?  
C = 1 ?  
C = 0 ?  
Unsigned <  
Jmp if unsigned >=  
Unsigned >  
Unsigned <=  
dst <= src  
JRNC  
JRULT  
JRUGE  
JRUGT  
JRULE  
LD  
Jump if C = 0  
Jump if C = 1  
Jump if C = 0  
Jump if (C + Z = 0)  
Jump if (C + Z = 1)  
Load  
reg, M  
M, reg  
116/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Instruction set  
Table 56. Instruction set overview (continued)  
Mnemo  
Description  
Function/example  
Dst  
Src  
H
I
N
Z
C
MUL  
NEG  
NOP  
OR  
Multiply  
X,A = X * A  
neg $10  
A, X, Y X, Y, A  
0
H
I
N
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
0
C
Negate (2's compl)  
No Operation  
reg, M  
OR operation  
A = A + M  
A
M
N
pop reg  
pop CC  
reg  
CC  
M
M
POP  
Pop from the Stack  
N
C
PUSH  
RCF  
RET  
RIM  
Push onto the Stack  
Reset carry flag  
Subroutine return  
Enable Interrupts  
Rotate Left true C  
Rotate Right true C  
Reset Stack Pointer  
Subtract with Carry  
Set carry flag  
push Y  
M
reg, CC  
0
1
1
0
C = 0  
0
I = 0  
RLC  
RRC  
RSP  
SBC  
SCF  
SIM  
C <= Dst <= C  
C => Dst => C  
S = Max allowed  
A = A - M - C  
C = 1  
reg, M  
N
N
C
C
reg, M  
A
M
N
C
1
Disable Interrupts  
Shift Left Arithmetic  
Shift Left Logic  
I = 1  
reg, M  
reg, M  
reg, M  
reg, M  
A
SLA  
C <= Dst <= 0  
C <= Dst <= 0  
0 => Dst => C  
Dst7 => Dst => C  
A = A - M  
N
N
0
C
C
C
C
C
SLL  
SRL  
SRA  
SUB  
SWAP  
TNZ  
TRAP  
WFI  
Shift Right Logic  
Shift Right Arithmetic  
Subtraction  
N
N
N
N
M
SWAP nibbles  
Dst[7..4] <=> Dst[3..0]  
tnz lbl1  
reg, M  
Test for Neg and Zero  
S/W TRAP  
S/W interrupt  
WAIT for Interrupt  
Exclusive OR  
XOR  
A = A XOR M  
A
M
N
Doc ID 8349 Rev 5  
117/166  
Electrical characteristics  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
13  
Electrical characteristics  
13.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
13.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T =25°C and T =T max (given by the  
A
A
A
selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3Σ).  
13.1.2  
Typical values  
Unless otherwise specified, typical data are based on T =25 °C, V =5 V (for the  
A
DD  
4.5VV 5.5 V voltage range) and V =3.3 V (for the 3 VV 4 V voltage range).  
DD  
DD  
DD  
They are given only as design guidelines and are not tested.  
13.1.3  
13.1.4  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 50.  
Figure 50. Pin loading conditions  
ST7 PIN  
C
L
118/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Electrical characteristics  
13.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 51.  
Figure 51. Pin input voltage  
ST7 PIN  
V
IN  
13.2  
Absolute maximum ratings  
Stresses above those listed as “absolute maximum ratings” may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Table 57. Voltage characteristics  
Symbol  
Ratings  
Maximum value  
Unit  
VDD - VSS  
VIN  
Supply voltage  
7.0  
V
Input voltage on any pin (1)  
VSS- 0.3 to VDD+ 0.3  
see Section 13.7.3:  
Absolute maximum  
ratings (Electrical  
sensitivity)  
VESD(HBM)  
Electrostatic discharge voltage (Human Body Model)  
V
1. Directly connecting the I/O pins to VDD or VSS could damage the device if an unexpected change of the I/O configuration  
occurs (for example, due to a corrupted program counter). To guarantee safe operation, this connection has to be done  
through a pull-up or pull-down resistor (typical: 10 kΩ for I/Os). Unused I/O pins must be tied in the same way to VDD or VSS  
according to their reset configuration.  
I
INJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be  
respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN>VDD  
while a negative injection is induced by VIN<VSS. For true open-drain pads, there is no positive injection current, and the  
corresponding VIN maximum must always be respected.  
Doc ID 8349 Rev 5  
119/166  
 
Electrical characteristics  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 58. Current characteristics  
Symbol  
Ratings  
Maximum value  
Unit  
IVDD  
IVSS  
Total current into VDD power lines (source)(1)  
Total current out of VSS ground lines (sink) (1)  
Output current sunk by any standard I/O and control pin  
Output current sunk by any high sink I/O pin  
Output current source by any I/Os and control pin  
Injected current on RESET pin  
100  
100  
25  
50  
- 25  
5
IIO  
mA  
Injected current on OSC1 and OSC2 pins  
Injected current on PB0 and PB1 pins (4)  
Injected current on any other pin(5)  
5
(2) & (3)  
IINJ(PIN)  
+5  
5
(1)  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(5)  
20  
1. All power (VDD) and ground (VSS) lines must always be connected to the external supply.  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be  
respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN>VDD  
while a negative injection is induced by VIN<VSS. For true open-drain pads, there is no positive injection current, and the  
corresponding VIN maximum must always be respected.  
3. Negative injection disturbs the analog performance of the device. In particular, it induces leakage currents throughout the  
device including the analog inputs. To avoid undesirable effects on the analog functions, care must be taken:  
- Analog input pins must have a negative injection less than 0.8 mA (assuming that the impedance of the analog voltage is  
lower than the specified limits)  
- Pure digital pins must have a negative injection less than 1.6mA. In addition, it is recommended to inject the current as far  
as possible from the analog input pins.  
4. No negative current injection allowed on PB0 and PB1 pins.  
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and  
negative injected currents (instantaneous values). These results are based on characterization with ΣIINJ(PIN) maximum  
current injection on four I/O port pins of the device.  
Table 59. Thermal characteristics  
Symbol  
Ratings  
Storage temperature range  
Maximum junction temperature(1)  
Value  
Unit  
TSTG  
TJ  
-65 to +150  
°C  
1. (seeTable 90: Thermal characteristics)  
13.3  
Operating conditions  
13.3.1  
General operating conditions  
T = -40 to +85 °C unless otherwise specified.  
A
120/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Electrical characteristics  
Table 60. General operating conditions  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
f
CPU = 4 MHz. max.  
2.4  
3.3  
5.5  
5.5  
VDD  
Supply voltage  
V
fCPU = 8 MHz. max.  
3.3 VVDD5.5 V  
2.4 VVDD<3.3 V  
up to 8  
up to 4  
fCPU  
CPU clock frequency  
MHz  
Figure 52.  
f
maximum operating frequency versus VDD supply voltage  
CPU  
FUNCTIONALITY  
GUARANTEED  
IN THIS AREA  
f
[MHz]  
CPU  
(UNLESS OTHERWISE  
STATED IN THE  
TABLES OF  
PARAMETRIC DATA)  
8
FUNCTIONALITY  
NOT GUARANTEED  
IN THIS AREA  
4
2
0
SUPPLY VOLTAGE [V]  
5.5  
2.0  
2.4 2.7 3.3  
3.5  
4.0  
4.5  
5.0  
13.3.2  
Operating conditions with low voltage detector (LVD)  
T = -40 to 85°C, unless otherwise specified  
A
Table 61. Power on/power down operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
High Threshold  
Med. Threshold  
Low Threshold  
4.00(1)  
3.40(1)  
2.65(1)  
4.25  
3.60  
2.90  
4.50  
3.80  
3.15  
Reset release threshold  
(VDD rise)  
VIT+  
(LVD)  
V
High Threshold  
Med. Threshold  
Low Threshold  
3.80  
3.20  
2.40  
4.05 4.30(1)  
3.40 3.65(1)  
2.70 2.90(1)  
Reset generation threshold  
(VDD fall)  
VIT-  
(LVD)  
LVD voltage threshold  
hysteresis  
Vhys  
VIT+(LVD)-VIT-  
20  
200  
mV  
(LVD)  
VtPOR  
tg(VDD)  
IDD(LVD  
VDD rise time rate (2)  
20000 μs/V  
Not detected by the  
LVD  
Filtered glitch delay on VDD  
LVD/AVD current consumption  
150  
ns  
)
220  
μA  
1. Not tested in production.  
2. Not tested in production. The VDD rise time rate condition is needed to insure a correct device power-on  
and LVD reset. When the VDD slope is outside these values, the LVD may not ensure a proper reset of the  
MCU.  
Use of LVD with capacitive power supply: with this type of power supply, if power cuts occur in the  
application, it is recommended to pull VDD down to 0 V to ensure optimum restart conditions. Refer to  
circuit example in Figure 84: RESET pin protection when LVD is enabled  
Doc ID 8349 Rev 5  
121/166  
 
Electrical characteristics  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
13.3.3  
Auxiliary voltage detector (AVD) thresholds  
T = -40 to 85°C, unless otherwise specified.  
A
Table 62. AVD thresholds  
Symbol  
Parameter  
Conditions  
High Threshold  
Med. Threshold  
Low Threshold  
Min  
Typ  
Max  
Unit  
4.40(1)  
3.90(1)  
3.20(1)  
4.70  
4.10  
3.40  
5.00  
4.30  
3.60  
1=>0 AVDF flag toggle threshold  
(VDD rise)  
VIT+  
(AVD)  
V
High Threshold  
Med. Threshold  
Low Threshold  
4.30  
3.70  
2.90  
4.60  
3.90  
3.20  
4.90(1)  
4.10(1)  
3.40(1)  
0=>1 AVDF flag toggle threshold  
(VDD fall)  
VIT-  
(AVD)  
Vhys  
AVD voltage threshold hysteresis  
VIT+(AVD)-VIT-  
150  
mV  
V
(AVD)  
Voltage drop between AVD flag set and  
LVD reset activation  
ΔVIT-  
VDD fall  
0.45  
1. Not tested in production.  
13.3.4  
Internal RC oscillator and PLL  
The ST7 internal clock can be supplied by an internal RC oscillator and PLL (selectable by  
option byte).  
Table 63. Internal RC oscillator and PLL  
Symbol  
Parameter  
Min  
Typ  
Max  
5.5  
Unit  
VDD(RC)  
VDD(x4PLL)  
VDD(x8PLL)  
Internal RC Oscillator operating voltage  
x4 PLL operating voltage  
2.4  
2.4  
3.3  
3.3  
5.5  
V
x8 PLL operating voltage  
PLL  
input  
clock  
tSTARTUP  
PLL Startup time  
60  
(fPLL  
)
cycles  
The RC oscillator and PLL characteristics are temperature-dependent and are grouped in  
four tables.  
Table 64. RC oscillator and PLL characteristics (tested for T = -40 to +85°C) @ V = 4.5 to  
A
DD  
5.5 V  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RCCR = FF (reset value), TA=25 °C,  
VDD=5 V  
760  
Internal RC oscillator  
frequency (1)  
(1)  
fRC  
kHz  
RCCR = RCCR0(2), TA=25 °C, VDD=5 V  
-1  
1000  
+1  
TA=25° C, VDD=4.5 to 5.5 V  
%
%
%
Accuracy of Internal RC  
ACCRC oscillator with  
TA=-40 to +85 °C, VDD=5 V  
-5  
+2  
RCCR=RCCR0(2)  
TA=0 to +85° C, VDD=4.5 to 5.5 V  
-2 (3)  
+2(3)  
122/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Electrical characteristics  
Table 64. RC oscillator and PLL characteristics (tested for T = -40 to +85°C) @ V = 4.5 to  
A
DD  
5.5 V (continued)  
Parameter  
Symbol  
Conditions  
TA=25° C, VDD=5 V  
Min  
Typ  
Max  
Unit  
RC oscillator current  
consumption  
IDD(RC)  
970(3)  
μA  
tsu(RC)  
fPLL  
tLOCK  
tSTAB  
RC oscillator setup time TA=25° C, VDD=5 V  
x8 PLL input clock  
1(3)  
10(2)  
μs  
MHz  
ms  
ms  
%
PLL Lock time(4)  
2
PLL Stabilization time(4)  
4
f
RC = 1 MHz@TA=25° C, VDD=4.5 to 5.5 V  
RC = 1 MHz@TA=-40 to +85° C, VDD=5 V  
0.1(5)  
0.1(5)  
125(6)  
1(6)  
ACCPLL x8 PLL Accuracy  
f
%
tw(JIT)  
PLL jitter period  
PLL jitter (ΔfCPU CPU  
fRC = 1 MHz  
µs  
JITPLL  
/f  
)
%
IDD(PLL) PLL current consumption TA=25° C  
600(3)  
μA  
1. If the RC oscillator clock is selected, to improve clock stability and frequency accuracy, it is recommended to place a  
decoupling capacitor, typically 100nF, between the VDD and VSS pins as close as possible to the ST7 device.  
2. See Section 7.1: Internal RC oscillator adjustment.  
3. Data based on characterization results, not tested in production.  
4. After the LOCKED bit is set ACCPLL is max. 10% until tSTAB has elapsed. See Figure 12: PLL output frequency timing  
diagram.  
5. Averaged over a 4ms period. After the LOCKED bit is set, a period of tSTAB is required to reach ACCPLL accuracy.  
6. Guaranteed by design.  
Table 65. RC oscillator and PLL characteristics (tested for TA = -40 to +85°C) @ VDD = 2.7 to  
3.3V  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
RCCR = FF (reset value), TA=25 °C, VDD= 3.0V  
RCCR=RCCR1(3) ,TA=25°C, VDD= 3 V  
TA=25°C,VDD=3V  
560  
700  
Internal RC oscillator  
frequency(1)  
(1)  
fRC  
kHz  
-2  
+2  
+25  
15  
%
%
%
Accuracy of Internal RC  
ACCRC oscillator when calibrated  
TA=25°C,VDD=2.7 t 3.3V  
-25  
-15  
with RCCR=RCCR1(2)(3)  
TA=-40 to +85°C,VDD=3V  
RC oscillator current  
IDD(RC)  
TA=25°C,VDD=3V  
700(2)  
μA  
consumption  
tsu(RC)  
fPLL  
tLOCK  
tSTAB  
RC oscillator setup time  
TA=25°C,VDD=3V  
10(3) μs  
x4 PLL input clock  
0.7(2)  
MHz  
ms  
ms  
%
PLL Lock time(4)  
2
PLL Stabilization time(4)  
4
fRC = 1MHz@TA=25°C,VDD=2.7 to 3.3V  
fRC = 1MHz@TA=40 to +85°C,VDD= 3V  
fRC = 1MHz  
0.1(5)  
0.1(5)  
125(6)  
ACCPLL x4 PLL Accuracy  
tw(JIT) PLL jitter period  
%
µs  
Doc ID 8349 Rev 5  
123/166  
Electrical characteristics  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 65. RC oscillator and PLL characteristics (tested for TA = -40 to +85°C) @ VDD = 2.7 to  
3.3V (continued)  
Symbol  
Parameter  
PLL jitter (ΔfCPU/fCPU  
Conditions  
Min Typ Max Unit  
JITPLL  
)
1(6)  
%
IDD(PLL) PLL current consumption  
TA=25°C  
190(2)  
μA  
1. If the RC oscillator clock is selected, to improve clock stability and frequency accuracy, it is recommended to place a  
decoupling capacitor, typically 100nF, between the VDD and VSS pins as close as possible to the ST7 device.  
2. Data based on characterization results, not tested in production.  
3. See Section 7.1: Internal RC oscillator adjustment.  
4. After the LOCKED bit is set ACCPLL is max. 10% until tSTAB has elapsed. See Figure 12: PLL output frequency timing  
diagram.  
5. Averaged over a 4ms period. After the LOCKED bit is set, a period of tSTAB is required to reach ACCPLL accuracy.  
6. Guaranteed by design.  
Figure 53. RC Osc Freq vs V @ T = 25°C (calibrated with RCCR1: 3V @ 25°C)  
DD  
A
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
4
VDD(V)  
Figure 54. RC Osc Freq vs V (calibrated with RCCR0: 5V@ 25°C)  
DD  
1.10  
1.00  
0.90  
-45°  
0.80  
0°  
0.70  
25°  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
90°  
105°  
130°  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Vdd (V)  
Figure 55. Typical RC oscillator Accuracy vs temperature @ V =5V (calibrated with  
DD  
RCCR0: 5V @ 25°C)  
2
(
)
*
1
0
(
)
*
-1  
-2  
-3  
-4  
(
)
*
-5  
-45  
0
25  
Temperature (°C)  
85  
125  
(
) tested in production  
*
124/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Electrical characteristics  
Figure 56. RC Osc Freq vs V and RCCR Value  
DD  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
rccr=00h  
rccr=64h  
rccr=80h  
rccr=C0h  
rccr=FFh  
2.4 2.7  
3
3.3 3.75  
4
4.5  
5
5.5  
6
Vdd (V)  
Figure 57. PLL Δf  
/f  
versus time  
CPU CPU  
Δf  
/f  
CPU CPU  
Max  
0
t
Min  
t
t
w(JIT)  
w(JIT)  
Figure 58. PLLx4 Output vs CLKIN frequency  
7.00  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
3.3  
3
2.7  
1
1.5  
2
2.5  
3
External Input Clock Frequency (MHz)  
1. fOSC = fCLKIN/2*PLL4  
Figure 59. PLLx8 Output vs CLKIN frequency  
11.00  
9.00  
7.00  
5.00  
3.00  
1.00  
5.5  
5
4.5  
4
0.85  
0.9  
1
1.5  
2
2.5  
External Input Clock Frequency (MHz)  
1. fOSC = fCLKIN/2*PLL8  
Doc ID 8349 Rev 5  
125/166  
Electrical characteristics  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 66. 32MHz PLL  
Symbol  
Parameter  
Voltage (1)  
Min  
Typ  
Max  
Unit  
VDD  
4.5  
5
32  
8
5.5  
V
fPLL32  
fINPUT  
Frequency (1)  
MHz  
MHz  
Input Frequency  
7
9
1. 32 MHz is guaranteed within this voltage range.  
Note:  
T = -40 to 85°C, unless otherwise specified.  
A
13.4  
Supply current characteristics  
The following current consumption specified for the ST7 functional operating modes over  
temperature range does not take into account the clock source current consumption. To get  
the total device consumption, the two current values must be added (except for HALT mode  
for which the clock is stopped).  
Table 67. Supply Current  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
External Clock, fCPU = 1MHz(1)  
Internal RC, fCPU=1MHz  
fCPU=8MHz(1)  
1
Supply current in Run mode  
2.2  
7.5  
0.8  
1.8  
3.7  
1.6  
1.6  
1
12  
External Clock, fCPU=1MHz(2)  
Internal RC, fCPU=1MHz  
fCPU = 8MHz(2)  
mA  
Supply current in WAIT mode  
IDD  
6
Supply current in SLOW mode  
f
CPU = 250kHz(3)  
2.5  
2.5  
10  
50  
30  
Supply current in SLOW-wait mode  
fCPU = 250kHz(4)  
-40°CTA+85°C  
TA = +125°C  
Supply current in HALT mode(5)  
Supply current in AWUF mode(6)  
15  
μA  
TA = +25°C  
20  
1. CPU running with memory access, all I/O pins in input mode with a static value at VDD or VSS (no load), all peripherals in  
reset state; clock input (CLKIN) driven by external square wave, LVD disabled.  
2. All I/O pins in input mode with a static value at VDD or VSS (no load), all peripherals in reset state; clock input (CLKIN)  
driven by external square wave, LVD disabled.  
3. SLOW mode selected with fCPU based on fOSC divided by 32. All I/O pins in input mode with a static value at VDD or VSS  
(no load), all peripherals in reset state; clock input (CLKIN) driven by external square wave, LVD disabled.  
4. SLOW-WAIT mode selected with fCPU based on fOSC divided by 32. All I/O pins in input mode with a static value at VDD or  
VSS (no load), all peripherals in reset state; clock input (CLKIN) driven by external square wave, LVD disabled.  
5. All I/O pins in output mode with a static value at VSS (no load), LVD disabled. Data based on characterization results,  
tested in production at VDD max and fCPU max.  
6. All I/O pins in input mode with a static value at VDD or VSS (no load). Data tested in production at VDD max. and fCPU  
max.  
This consumption refers to the Halt period only and not the associated run period which is software dependent.  
Note:  
TA = -40 to +85°C unless otherwise specified, V =5.5V.  
DD  
126/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Electrical characteristics  
Figure 60. Typical I in RUN vs. f  
DD  
CPU  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
8Mhz  
4Mhz  
1Mhz  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Vdd (V)  
Figure 61. Typical I in SLOW vs. f  
DD  
CPU  
1.6  
1.4  
250Khz  
125Khz  
62.5Hz  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Vdd (V)  
Figure 62. Typical I in WAIT vs. f  
DD  
CPU  
4.5  
4.0  
8Mhz  
4Mhz  
1MHz  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Vdd (V)  
Figure 63. Typical I in SLOW-WAIT vs. f  
DD  
CPU  
1.4  
250KHz  
1.2  
125KHz  
1.0  
62.5Khz  
0.8  
0.6  
0.4  
0.2  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Vdd (V)  
Figure 64. Typical I in AWUF mode at T = 25°C  
DD  
A
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0.000  
fawu_rc ~125 KHz  
2.0  
2.5  
3.0  
3.5  
4.0  
Vdd(V)  
4.5  
5.0  
5.5  
6.0  
Doc ID 8349 Rev 5  
127/166  
Electrical characteristics  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Figure 65. Typical I vs. temperature at V = 5V and f  
= 8MHz  
DD  
DD  
CPU  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
25°  
-45°  
90°  
130°  
2.4  
2.8  
3.2  
3.6  
4
4.4  
4.8  
5.2  
5.6  
Vdd (V)  
Table 68. On-chip peripherals  
Symbol Parameter  
Conditions  
Typ  
Unit  
fCPU=4MHz  
fCPU=8MHz  
fCPU=4MHz  
fCPU=8MHz  
VDD=3.0V  
VDD=5.0V  
VDD=3.0V  
VDD=5.0V  
VDD=3.0V  
VDD=5.0V  
300  
1000  
50  
IDD(AT) 12-bit Auto-Reload Timer supply current(1)  
IDD(SPI) SPI supply current(2)  
μA  
300  
250  
1100  
IDD(ADC) ADC supply current when converting(3)  
fADC=4MHz  
1. Data based on a differential IDD measurement between reset configuration (timer stopped) and a timer  
running in PWM mode at fcpu= 8MHz.  
2. Data based on a differential IDD measurement between reset configuration and a permanent SPI master  
communication (data sent equal to 55h).  
3. Data based on a differential IDD measurement between reset configuration and continuous A/D  
conversions with amplifier off.  
13.5  
Clock and timing characteristics  
Subject to general operating conditions for V , f  
, and T .  
A
DD OSC  
Table 69. General Timings  
Symbol  
Parameter(1)  
Conditions  
fCPU=8MHz  
Min  
Typ(2)  
Max  
Unit  
2
3
375  
12  
1500  
22  
tCPU  
ns  
tc(INST) Instruction cycle time  
250  
10  
Interrupt reaction time(3)  
tv(IT)  
tCPU  
μs  
fCPU=8MHz  
tv(IT) = Δtc(INST) + 10  
1.25  
2.75  
1. Guaranteed by design. Not tested in production.  
2. Data based on typical application software.  
3. Time measured between interrupt event and interrupt vector fetch. Dtc(INST) is the number of tCPU cycles  
needed to finish the current instruction execution.  
128/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Electrical characteristics  
Table 70. Auto Wakeup from Halt Oscillator (AWU)  
Symbol  
fAWU  
tRCSRT  
Parameter(1)  
Conditions  
Min  
Typ  
Max  
Unit  
AWU Oscillator Frequency  
AWU Oscillator startup time  
50  
125  
250  
50  
kHz  
µs  
1. Guaranteed by design.  
13.5.1  
Crystal and ceramic resonator oscillators  
The ST7 internal clock can be supplied with eight different Crystal/Ceramic resonator  
oscillators. All the information given in this paragraph are based on characterization results  
with specified typical external components. In the application, the resonator and the load  
capacitors have to be placed as close as possible to the oscillator pins in order to minimize  
output distortion and start-up stabilization time. Refer to the crystal/ceramic resonator  
manufacturer for more details (frequency, package, accuracy...).  
Table 71. Resonator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fCrOSC  
Crystal Oscillator Frequency(1)  
2
16  
MHz  
Recommended load capacitance  
versus equivalent serial  
resistance of the crystal or  
ceramic resonator (RS)  
See Table 72:  
Resonator  
performances  
CL1  
CL2  
pF  
1. When PLL is used, please refer to the Section 13.3.4: Internal RC oscillator and PLL and Section 7:  
Supply, reset and clock management (fCrOSC min. is 8 Mhz with PLL).  
Table 72. Resonator performances  
Typical ceramic  
resonators(1)  
Supply  
CL1(2) CL2(2) Rd  
Temperature  
range [°C]  
fCrOSC  
[MHz]  
Supplier  
voltage  
range [V]  
[pF]  
[pF] [Ω]  
Type  
Reference  
(3)  
2
4
SMD CSTCC2M00G56-R0 (47)  
SMD CSTCR4M00G53-R0 (15)  
(47)  
(15)  
(15)  
(10)  
(15)  
(5)  
0
0
0
0
0
0
0
LEAD CSTLS4M00G53-B0  
(15)  
2.4V to 5.5V  
SMD CSTCE8M00G52-R0 (10)  
8
-40 to 85  
LEAD CSTLS8M00G53-B0  
SMD CSTCE16M0V51-R0  
LEAD CSTLS16M0X53-B0  
LEAD CSALS16M0X55-B0  
(15)  
(5)  
(15)  
7
3.3V to 5.5V  
4.5V to 5.5V  
16  
(15)  
7
1.5k 3.8V to 5.5V  
1. Resonator characteristics given by the ceramic resonator manufacturer. For more information on these  
resonators, please consult www.murata.com  
2. () means load capacitor built in resonator.  
3. SMD = -R0: Plastic tape package (=180mm).  
LEAD = -B0: Bulk  
Doc ID 8349 Rev 5  
129/166  
 
Electrical characteristics  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Figure 66. Typical application with a crystal or ceramic resonator  
WHEN RESONATOR WITH  
INTEGRATED CAPACITORS  
i
2
f
OSC  
C
L1  
OSC1  
OSC2  
RESONATOR  
C
L2  
ST7LITE2  
R
d
13.6  
Memory characteristics  
T = -40°C to 85°C, unless otherwise specified.  
A
Table 73. RAM and hardware registers  
Symbol  
Parameter  
Conditions  
Min  
1.6  
Typ  
Max  
Unit  
VRM  
Data retention mode(1)  
HALT mode (or RESET)  
V
1. Minimum VDD supply voltage without losing data stored in RAM (in HALT mode or under RESET) or in hardware registers  
(only in HALT mode). Guaranteed by construction, not tested in production.  
Table 74. Flash program memory  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDD  
Operating voltage for Flash write/erase  
Programming time for 1~32 bytes(1)  
Programming time for 1.5 kBytes  
Data retention(2)  
2.4  
5
5.5  
10  
0.48  
V
ms  
TA=−40 to +85°C  
tprog  
TA=+25°C  
TA=+55°C(3)  
TA=+25°C  
0.24  
s
tRET  
NRW  
20  
years  
cycles  
Write erase cycles  
10K(4)  
Read / Write / Erase modes  
fCPU = 8MHz, VDD = 5.5V  
2.6(5)  
mA  
IDD  
Supply current  
No Read/No Write mode  
Power down mode / HALT  
100  
0.1  
μA  
μA  
0
1. Up to 32 bytes can be programmed at a time.  
2. Data based on reliability test results and monitored in production.  
3. The data retention time increases when the TA decreases.  
4. Design target value pending full product characterization.  
5. Guaranteed by Design. Not tested in production.  
130/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 75. EEPROM data memory  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Operating voltage for EEPROM  
write/erase  
VDD  
2.4  
5.5  
V
tprog  
tret  
Programming time for 1~32 bytes  
Data retention(1)  
TA=−40 to +85°C  
TA=+55°C(2)  
TA=+25°C  
20  
5
10  
ms  
years  
cycles  
NRW  
Write erase cycles  
300K(3)  
1. Data based on reliability test results and monitored in production.  
2. The data retention time increases when the TA decreases.  
3. Design target value pending full product characterization.  
13.7  
EMC characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
13.7.1  
Functional EMS (Electro Magnetic Susceptibility)  
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),  
the product is stressed by two electro magnetic events until a failure occurs (indicated by the  
LEDs).  
ESD: Electro-Static Discharge (positive and negative) is applied on all pins of the  
device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2  
standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100pF capacitor, until a functional disturbance occurs. This test  
SS  
conforms with the IEC 1000-4-4 standard.  
A device reset allows normal operations to be resumed. The test results are given in the  
Table 76 based on the EMS levels and classes defined in application note AN1709.  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical data corruption (control registers...)  
Doc ID 8349 Rev 5  
131/166  
Electrical characteristics  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring.  
Note:  
For more details, refer to the application note AN1015.  
Table 76. Test results  
Symbol  
Parameter  
Conditions  
Level/Class  
Voltage limits to be applied on any I/O pin VDD=5V, TA=+25°C, fOSC=8MHz  
VFESD  
3B  
to induce a functional disturbance  
conforms to IEC 1000-4-2  
Fast transient voltage burst limits to be  
VFFTB applied through 100pF on VDD and VDD  
pins to induce a functional disturbance  
VDD=5V, TA=+25°C, fOSC=8MHz  
conforms to IEC 1000-4-4  
3B  
13.7.2  
Electro Magnetic Interference (EMI)  
Based on a simple application running on the product (toggling 2 LEDs through the I/O  
ports), the product is monitored in terms of emission. This emission test is in line with the  
norm SAE J 1752/3 which specifies the board and the loading of each pin.  
Table 77. Emission test  
Symbol Parameter  
Max vs. [fOSC/fCPU  
]
Unit  
Monitored  
Frequency Band  
Conditions  
8/4MHz  
16/8MHz  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
SAE EMI Level  
9
17  
36  
27  
4
VDD=5V, TA=+25°C,  
31  
25  
3.5  
dBμV  
SEMI  
Peak level SO20 package,  
conforming to SAE J 1752/3  
Note:  
Data based on characterization results, not tested in production.  
13.7.3  
Absolute maximum ratings (Electrical sensitivity)  
Based on three different tests (ESD, LU and DLU) using specific measurement methods, the  
product is stressed in order to determine its performance in terms of electrical sensitivity.  
Note:  
For more details, refer to the application note AN1181.  
Electro-Static Discharge (ESD)  
Electro-Static Discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test  
conforms to the JESD22-A114A/A115A standard.  
132/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Electrical characteristics  
Maximum value(1) Unit  
Table 78. Absolute Maximum Ratings  
Symbol Ratings  
Conditions  
TA=+25°C  
Electro-static discharge voltage  
(Human body model)  
VESD(HBM)  
4000  
V
1. Data based on characterization results, not tested in production.  
Static and dynamic latch-up  
LU: 3 complementary static tests are required on 10 parts to assess the latch-up  
performance. A supply overvoltage (applied to each power supply pin) and a current  
injection (applied to each input, output and configurable I/O pin) are performed on each  
sample. This test conforms to the EIA/JESD 78 IC latch-up standard.  
DLU: Electro-Static Discharges (one positive then one negative test) are applied to  
each pin of 3 samples when the micro is running to assess the latch-up performance in  
dynamic mode. Power supplies are set to the typical values, the oscillator is connected  
as near as possible to the pins of the micro and the component is put in reset mode.  
This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards.  
Note:  
For more details, refer to the application note AN1181.  
Table 79. Electrical Sensitivities  
Symbol  
Parameter  
Conditions  
Class(1)  
A
LU  
Static latch-up class  
TA=+25°C  
VDD=5.5V, fOSC=4MHz, TA=+25°C  
DLU  
Dynamic latch-up class  
A
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the  
JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B  
Class strictly covers all the JEDEC criteria (international standard).  
13.8  
I/O port pin characteristics  
(1)  
Table 80. General Characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
VIH  
Input low level voltage  
Input high level voltage  
VSS - 0.3  
0.3 x VDD  
VDD + 0.3  
V
0.7 x VDD  
Schmitt trigger voltage  
hysteresis(2)  
Vhys  
IL  
400  
1
mV  
Input leakage current  
VSSVINVDD  
μA  
Static current consumption induced  
by each floating input pin(3)  
IS  
Floating input mode  
VDD=5V  
400  
50  
120  
160  
5
250  
VIN  
VSS  
=
RPU  
CIO  
Weak pull-up equivalent resistor(4)  
I/O pin capacitance  
kΩ  
VDD=3V  
pF  
Doc ID 8349 Rev 5  
133/166  
 
Electrical characteristics  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
(1)  
Table 80. General Characteristics (continued)  
Symbol Parameter Conditions  
Min  
Typ  
Max  
Unit  
tf(IO)out Output high to low level fall time(2)  
tr(IO)out Output low to high level rise time(2)  
tw(IT)in External interrupt pulse time(5)  
1
25  
25  
CL=50pF  
Between 10% and 90%  
ns  
tCPU  
1. Subject to general operating conditions for VDD, fOSC, and TA unless otherwise specified.  
2. Data based on characterization results, not tested in production.  
3. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of the I/O for  
example or an external pull-up or pull-down resistor (seeFigure 67). Static peak current value taken at a fixed VIN value,  
based on design simulation and technology characteristics, not tested in production. This value depends on VDD and  
temperature values.  
4. The RPU pull-up equivalent resistor is based on a resistive transistor (corresponding IPU current characteristics described in  
Figure 68).  
5. To generate an external interrupt, a minimum pulse width has to be applied on an I/O port pin configured as an external  
interrupt source.  
Figure 67. Two typical applications with unused I/O Pin  
V
ST7XXX  
DD  
UNUSED I/O PORT  
10kΩ  
10kΩ  
UNUSED I/O PORT  
ST7XXX  
Caution:  
To avoid entering ICC mode unexpectedly during a reset, the ICCCLK pin must be pulled-up  
internally or externally during normal operation (external pull-up of 10k mandatory in noisy  
environment).  
Note:  
I/O can be left unconnected if it is configured as output (0 or 1) by the software. This has the  
advantage of greater EMC robustness and lower cost.  
Figure 68. Typical I vs. V with V =V  
PU  
DD  
IN  
SS  
90  
Ta=140°C  
Ta=95°C  
Ta=25°C  
Ta=-45°C  
80  
70  
60  
50  
40  
30  
20  
10  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Vdd(V)  
134/166  
Doc ID 8349 Rev 5  
 
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Electrical characteristics  
(1)  
Table 81. Output driving current  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
IIO=+5mA  
TA85°C  
1.0  
1.2  
Output low level voltage for a standard I/O  
pin when 8 pins are sunk at same time  
(see Figure 72)  
TA85°C  
IIO=+2mA  
TA85°C  
TA85°C  
0.4  
0.5  
(2)  
VOL  
IIO=+20mA TA85°C  
TA85°C  
1.3  
1.5  
Output low level voltage for a high sink I/O  
pin when 4 pins are sunk at same time  
(see Figure 74)  
IIO=+8mA  
IIO=-5mA  
IIO=-2mA  
TA85°C  
TA85°C  
0.75  
0.85  
TA85°C  
TA85°C VDD-1.6  
VDD-1.5  
Output high level voltage for an I/O pin  
when 4 pins are sourced at same time  
(see Figure 80)  
(3)  
VOH  
TA85°C VDD-0.8  
TA85°C VDD-1.0  
Output low level voltage for a standard I/O  
pin when 8 pins are sunk at same time  
(see Figure 71)  
IIO=+2mA  
TA85°C  
TA85°C  
0.5  
0.6  
V
(2)(4)  
VOL  
Output low level voltage for a high sink I/O  
pin when 4 pins are sunk at same time  
IIO=+8mA  
IIO=-2mA  
TA85°C  
TA85°C  
0.5  
0.6  
Output high level voltage for an I/O pin  
when 4 pins are sourced at same time  
TA85°C  
TA85°C VDD-1.0  
VDD-0.8  
(3)(4)  
VOH  
Output low level voltage for a standard I/O  
pin when 8 pins are sunk at same time  
(see Figure 69)  
IIO=+2mA  
IIO=+8mA  
IIO=-2mA  
TA85°C  
TA85°C  
0.6  
0.7  
(2)(4)  
VOL  
Output low level voltage for a high sink I/O  
pin when 4 pins are sunk at same time  
TA85°C  
TA85°C  
0.6  
0.7  
Output high level voltage for an I/O pin  
when 4 pins are sourced at same time  
(see Figure 77)  
TA85°C  
TA85°C VDD-1.0  
VDD-0.9  
(3)(4)  
VOH  
1. Subject to general operating conditions for VDD, fOSC, and TA unless otherwise specified.  
2. The IIO current sunk must always respect the absolute maximum rating specified in Table 58: Current characteristics and  
the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
3. The IIO current sourced must always respect the absolute maximum rating specified in Table 58: Current characteristics  
and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
4. Not tested in production, based on characterization results.  
Figure 69. Typical V at V = 2.4V (standard)  
OL  
DD  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
-45  
0°C  
25°C  
90°C  
130°C  
0.01  
1
2
lio (mA)  
Doc ID 8349 Rev 5  
135/166  
 
Electrical characteristics  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Figure 70. Typical V at V = 2.7V (standard)  
OL  
DD  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
-45°C  
0°C  
25°C  
90°C  
130°C  
0.01  
1
2
lio (mA)  
Figure 71. Typical V at V = 3.3V (standard)  
OL  
DD  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
-45°C  
0°C  
25°C  
90°C  
130°C  
0.01  
1
2
3
lio (mA)  
Figure 72. Typical V at V = 5V (standard)  
OL  
DD  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
-45°C  
0°C  
25°C  
90°C  
130°C  
0.01  
1
2
3
4
5
lio (mA)  
Figure 73. Typical V at V = 2.4V (high-sink)  
OL  
DD  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
-45  
0°C  
25°C  
90°C  
130°C  
6
7
8
9
10  
lio (mA)  
136/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Figure 74. Typical V at V = 5V (high-sink)  
Electrical characteristics  
OL  
DD  
2.50  
2.00  
-45  
1.50  
1.00  
0°C  
25°C  
90°C  
130°C  
0.50  
0.00  
6
7
8
9
10 15 20 25 30 35 40  
l i o (mA)  
Figure 75. Typical V at V = 3V (high-sink)  
OL  
DD  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
-45  
0°C  
25°C  
90°C  
130°C  
6
7
8
9
10  
15  
lio (mA)  
Figure 76. Typical V -V at V = 2.4V  
DD OH  
DD  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
-45°C  
0°C  
25°C  
90°C  
130°C  
-0.01  
-1  
-2  
lio (mA)  
Figure 77. Typical V -V at V = 2.7V  
DD OH  
DD  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
-45°C  
0°C  
25°C  
90°C  
130°C  
-0.01  
-1  
-2  
lio(mA)  
Doc ID 8349 Rev 5  
137/166  
Electrical characteristics  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Figure 78. Typical V -V at V = 3V  
DD OH  
DD  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
-45°C  
0°C  
25°C  
90°C  
130°C  
-0.01  
-1  
-2  
-3  
lio (mA)  
Figure 79. Typical V -V at V =4V  
DD OH  
DD  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
-45°C  
0°C  
25°C  
90°C  
130°C  
-0.01  
-1  
-2  
-3  
-4  
-5  
lio (mA)  
Figure 80. Typical V -V at V =5V  
DD OH  
DD  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
-45°C  
0°C  
25°C  
90°C  
130°C  
-0.01  
-1  
-2  
-3  
-4  
-5  
lio (mA)  
Figure 81.  
V
vs. V (standard I/Os)  
OL DD  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
-45  
-45  
0°C  
0°C  
25°C  
90°C  
130°C  
25°C  
90°C  
130°C  
2.4  
2.7  
3.3  
5
2.4  
2.7  
3.3  
5
VDD (V)  
VDD (V)  
138/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Electrical characteristics  
Figure 82. Typical V vs. V (high-sink I/Os)  
OL  
DD  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
-45  
-45  
0°C  
0°C  
25°C  
90°C  
130°C  
25°C  
90°C  
130°C  
2.4  
3
5
2.4  
3
5
VDD (V)  
VDD (V)  
Figure 83. Typical V -V vs. V  
DD OH  
DD  
1.80  
1.70  
1.60  
1.50  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
-45°C  
0°C  
-45°C  
0°C  
25°C  
90°C  
130°C  
25°C  
90°C  
130°C  
2.4  
2.7  
3
4
5
4
5
VDD  
VDD (V)  
13.9  
Control pin characteristics  
(1)  
Table 82. Asynchronous RESET Pin  
Symbol  
Parameter  
Conditions  
Min  
VSS  
Typ  
Max  
Unit  
-
VIL  
Input low level voltage  
0.3xVDD  
0.3  
V
V
V
0.7xVD  
VDD  
0.3  
+
VIH  
Input high level voltage  
2
D
Vhys  
Schmitt trigger voltage hysteresis(2)  
IIO=+5mA TA85°C  
TA85°C  
1.0  
1.2  
0.5  
VOL  
Output low level voltage(3)  
VDD=5V  
IIO=+2mA TA85°C  
TA85°C  
0.4  
0.5  
0.2  
VDD=5V  
VDD=3V  
20  
40  
40  
70  
30  
80  
RON  
Pull-up equivalent resistor(2)(4)  
kΩ  
120  
tw(RSTL)out Generated reset pulse duration  
th(RSTL)in External reset pulse hold time(5)  
tg(RSTL)in Filtered glitch duration  
Internal reset sources  
μs  
μs  
ns  
20  
200  
1. TA = -40°C to 85°C, unless otherwise specified.  
2. Data based on characterization results, not tested in production.  
Doc ID 8349 Rev 5  
139/166  
 
Electrical characteristics  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
3. The IIO current sunk must always respect the absolute maximum rating and the sum of IIO (I/O ports and control pins) must  
not exceed IVSS  
.
4. The RON pull-up equivalent resistor is based on a resistive transistor. Specified for voltages on RESET pin between VILmax  
and VDD  
.
5. To guarantee the reset of the device, a minimum pulse has to be applied to the RESET pin. All short pulses applied on  
RESET pin with a duration below th(RSTL)in can be ignored.  
Figure 84. RESET pin protection when LVD is enabled  
V
ST72XXX  
DD  
Optional  
(note 3)  
Required  
RON  
INTERNAL  
RESET  
EXTERNAL  
RESET  
Filter  
0.01μF  
1MΩ  
WATCHDOG  
ILLEGALOPCODE  
LVD RESET  
PULSE  
GENERATOR  
Figure 85. RESET pin protection when LVD is disabled  
V
ST72XXX  
DD  
RON  
INTERNAL  
RESET  
USER  
EXTERNAL  
RESET  
Filter  
CIRCUIT  
0.01μF  
WATCHDOG  
PULSE  
GENERATOR  
ILLEGALOPCODE  
Required  
The reset network protects the device against parasitic resets.  
The output of the external reset circuit must have an open-drain output to drive the ST7  
reset pad. Otherwise the device can be damaged when the ST7 generates an internal reset  
(LVD or watchdog).  
Whatever the reset source is (internal or external), the user must ensure that the level on the  
RESET pin can go below the V max. level specified in Table 82: Asynchronous RESET  
IL  
Pin. Otherwise the reset will not be taken into account internally.  
Because the reset circuit is designed to allow the internal RESET to be output in the RESET  
pin, the user must ensure that the current sunk on the RESET pin is less than the absolute  
maximum value specified for I  
in Table 58: Current characteristics.  
INJ(RESET)  
When the LVD is enabled, it is recommended not to connect a pull-up resistor or capacitor. A  
10nF pull-down capacitor is required to filter noise on the reset line.  
In case a capacitive power supply is used, it is recommended to connect a 1MΩ pull-down  
resistor to the RESET pin to discharge any residual voltage induced by the capacitive effect  
of the power supply (this will add 5µA to the power consumption of the MCU).  
Tips when using the LVD:  
140/166  
Doc ID 8349 Rev 5  
 
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Electrical characteristics  
1. Check that all recommendations related to ICCCLK and reset circuit have been applied  
(seeTable 2: Device pin description)  
2. Check that the power supply is properly decoupled (100nF + 10µF close to the MCU).  
Refer to AN1709 and AN2017. If this cannot be done, it is recommended to put a  
100nF + 1MΩ pull-down on the RESET pin.  
3. The capacitors connected on the RESET pin and also the power supply are key to  
avoid any startup marginality. In most cases, steps 1 and 2 above are sufficient for a  
robust solution. Otherwise: replace 10nF pull-down on the RESET pin with a 5µF to  
20µF capacitor.”  
Note:  
Please refer to Section 12.2.1: Illegal opcode reset for more details.  
13.10  
Communication interface characteristics  
13.10.1 Serial peripheral interface (SPI)  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD OSC  
Refer to I/O port characteristics for more details on the input/output alternate function  
characteristics (SS, SCK, MOSI, MISO).  
(1)  
Table 83. Serial peripheral interface (SPI)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Master  
fCPU/128 = 0.0625  
fCPU/4 = 2  
fCPU = 8MHz  
fSCK =  
1/tc(SCK)  
SPI clock frequency  
MHz  
Slave  
fCPU = 8MHz  
0
fCPU/2 = 4  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall time  
see I/O port pin description  
SS setup time(3)  
SS hold time  
Slave  
Slave  
(4 x TCPU) +150  
(2)  
tsu(SS)  
(2)  
th(SS)  
120  
tw(SCKH)  
tw(SCKL)  
Master  
Slave  
100  
90  
SCK high and low time  
Data input setup time  
tsu(MI)  
tsu(SI)  
Master  
Slave  
100  
100  
th(MI)  
th(SI)  
Master  
Slave  
100  
100  
Data input hold time  
ns  
ta(SO)  
Data output access time  
Slave  
Slave  
0
0
0
120  
240  
120  
tdis(SO) Data output disable time  
tv(SO)  
th(SO)  
tv(MO)  
th(MO)  
Data output valid time  
Data output hold time  
Data output valid time  
Data output hold time  
Slave (after  
enable edge)  
120  
Master (after  
enable edge)  
1. Subject to general operating conditions for VDD, fOSC, and TA unless otherwise specified.  
2. Data based on design simulation and/or characterization results, not tested in production.  
Doc ID 8349 Rev 5  
141/166  
Electrical characteristics  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
3. Depends on fCPU. For example, if fCPU = 8MHz, then TCPU = 1/ fCPU = 125ns and tSU(SS) = 550ns  
(1)  
Figure 86. SPI slave timing diagram with CPHA = 0  
SS  
INPUT  
t
t
su(SS)  
c(SCK)  
t
h(SS)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
t
t
w(SCKH)  
w(SCKL)  
t
t
t
t
dis(SO)  
a(SO)  
v(SO)  
h(SO)  
t
t
r(SCK)  
f(SCK)  
MISO  
OUTPUT  
INPUT  
(2)  
MSB OUT  
(2)  
BIT6 OUT  
LSB OUT  
t
t
h(SI)  
su(SI)  
MSB IN  
BIT1 IN  
LSB IN  
MOSI  
1. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD  
.
2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave  
mode) has its alternate function capability released. In this case, the pin status depends on the I/O port  
configuration.  
(1)  
Figure 87. SPI Slave Timing Diagram with CPHA = 1  
SS  
INPUT  
t
t
su(SS)  
c(SCK)  
t
h(SS)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
t
t
w(SCKH)  
w(SCKL)  
t
t
dis(SO)  
a(SO)  
t
t
h(SO)  
v(SO)  
t
t
r(SCK)  
f(SCK)  
MISO  
(2)  
(2)  
OUTPUT  
INPUT  
MSB OUT  
BIT6 OUT  
HZ  
LSB OUT  
t
t
h(SI)  
su(SI)  
MSB IN  
BIT1 IN  
LSB IN  
MOSI  
1. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD  
.
2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave  
mode) has its alternate function capability released. In this case, the pin status depends on the I/O port  
configuration.  
142/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Figure 88. SPI Master Timing Diagram  
Electrical characteristics  
(1)  
SS  
INPUT  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
w(SCKH)  
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
h(MI)  
su(MI)  
MISO  
MOSI  
INPUT  
MSB IN  
h(MO)  
BIT6 IN  
LSB IN  
t
t
v(MO)  
MSB OUT  
LSB OUT  
(2)  
BIT6 OUT  
(2)  
OUTPUT  
1. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD  
.
2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave  
mode) has its alternate function capability released. In this case, the pin status depends on the I/O port  
configuration.  
13.11  
10-Bit ADC characteristics  
(1)  
Table 84. 10-Bit ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ(2)  
Max  
Unit  
fADC  
VAIN  
RAIN  
ADC clock frequency  
VSSA  
4
MHz  
V
Conversion voltage range(3)  
VDDA  
10(4)  
External input resistor  
kΩ  
Internal sample and hold  
capacitor  
CADC  
tSTAB  
6
pF  
Stabilization time after ADC  
enable  
0(5)  
3.5  
μs  
Conversion time  
(Sample+Hold)  
fCPU=8MHz,  
fADC=4MHz  
tADC  
- Sample capacitor loading time  
- Hold conversion time  
4
10  
1/fADC  
mA  
Analog Part  
Digital Part  
1
IADC  
0.2  
1. Subject to general operating condition for VDD, fOSC, and TA unless otherwise specified.  
2. Unless otherwise specified, typical data are based on TA=25°C and VDD-VSS=5V. They are given only as  
design guidelines and are not tested.  
3. When VDDA and VSSA pins are not available on the pinout, the ADC refers to VDD and VSS  
.
4. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than  
10kΩ). Data based on characterization results, not tested in production.  
Doc ID 8349 Rev 5  
143/166  
Electrical characteristics  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
5. The stabilization time of the AD converter is masked by the first tLOAD. The first conversion after the enable  
is then always valid.  
Figure 89. Typical Application with ADC  
V
DD  
V
T
0.6V  
R
AIN  
AINx  
10-Bit A/D  
Conversion  
V
AIN  
C
V
T
0.6V  
AIN  
I
C
ADC  
6pF  
L
1μA  
ST72XXX  
Table 85. ADC Accuracy with V =5.0V  
DD  
Symbol  
Parameter  
Conditions  
Typ Max(1) Unit  
|ET|  
|EO|  
|EG|  
Total unadjusted error(2)  
Offset error (2)  
3
1.5  
2
6
5
Gain Error (2)  
4.5  
fCPU=8MHz, fADC=4MHz(1), VDD=5.0V  
LSB  
Differential linearity  
error(2)  
|ED|  
|EL|  
2.5  
2.5  
4.5  
4.5  
Integral linearity error(2)  
1. Data based on characterization results over the whole temperature range, not tested in production.  
2. Injecting negative current on any of the analog input pins significantly reduces the accuracy of any  
conversion being performed on any analog input.  
Analog pins can be protected against negative injection by adding a Schottky diode (pin to ground).  
Injecting negative current on digital input pins degrades ADC accuracy especially if performed on a pin  
close to the analog input pins.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 13.8: I/O port  
pin characteristics does not affect the ADC accuracy.  
144/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Electrical characteristics  
Figure 90. ADC accuracy characteristics with amplifier disabled  
Digital result ADCDR  
E
G
(1) Example of an actual  
transfer curve  
1023  
1022  
1021  
V
V  
DD  
SS  
1LSB  
= -------------------------------  
IDEAL  
1024  
(2) The ideal transfer curve  
(3) End point correlation line  
(2)  
E
T
(3)  
7
6
5
4
3
2
1
(1)  
E
O
E
L
E
D
1 LSB  
IDEAL  
7
V (LSB )  
IDEAL  
0
in  
1
2
3
4
5
6
1021 1022 1023 1024  
V
V
DD  
SS  
E =Total Unadjusted Error: maximum deviation between the actual and the ideal  
T
transfer curves.  
E =Offset Error: deviation between the first actual transition and the first ideal one.  
O
E =Gain Error: deviation between the last ideal transition and the last actual one.  
G
E =Differential Linearity Error: maximum deviation between actual steps and the ideal  
D
one.  
E =Integral Linearity Error: maximum deviation between any actual transition and the  
L
end point correlation line.  
Figure 91. ADC accuracy characteristics with amplifier enabled  
E
Digital Result ADCDR  
G
(1) Example of an actual  
transfer curve  
704  
V
V  
DD  
SS  
1LSB  
= -------------------------------  
IDEAL  
1024  
(2) The ideal transfer curve  
(3) End point correlation line  
(2)  
E
T
(3)  
(1)  
E
O
E
L
E
D
1 LSB  
IDEAL  
7
108  
V (LSB  
)
IDEAL  
in  
0
1
2
3
4
5
6
701 702 703 704  
430mV  
V
SS  
V (OPAMP)  
62.5mV  
in  
Note:  
When the AMPSEL bit in the ADCDRL register is set, it is mandatory that f  
be less than  
ADC  
or equal to 2 MHz (if f  
=8MHz, then SPEED=0, SLOW=1).  
CPU  
E =Total Unadjusted Error: maximum deviation between the actual and the ideal  
T
transfer curves.  
E =Offset Error: deviation between the first actual transition and the first ideal one.  
O
E =Gain Error: deviation between the last ideal transition and the last actual one.  
G
E =Differential Linearity Error: maximum deviation between actual steps and the ideal  
D
one.  
E =Integral Linearity Error: maximum deviation between any actual transition and the  
L
end point correlation line.  
Doc ID 8349 Rev 5  
145/166  
Electrical characteristics  
Figure 92. Amplifier noise vs voltage  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Vout (ADC input)  
Vmax  
Noise  
Vmin  
Vin  
(OPAMP input)  
0V  
430mV  
(1)  
Table 86. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
5.5  
Unit  
VDD(AMP)  
Amplifier operating voltage  
Amplifier input voltage(2)  
3.6  
0
V
VDD=3.6V  
350  
500  
VIN  
mV  
mV  
mV  
VDD=5V  
VDD=5V  
0
Amplifier output offset  
voltage(3)  
VOFFSET  
200  
VDD=3.6V  
3.5  
VSTEP  
Step size for monotonicity(4)  
VDD=5V  
4.89  
Linearity  
Output voltage response  
Linear  
Gain factor Amplified analog input gain(5)  
8
3.94  
V
Vmax  
Vmin  
Output linearity max voltage  
Output linearity min voltage  
3.65  
200  
VINmax = 430mV,  
VDD=5V  
mV  
1. Data based on characterization results over the whole temperature range, not tested in production.  
2. Please refer to the application note AN1830 for details of TE% vs Vin.  
3. Refer to the offset variation in temperature below.  
4. Monotonicity guaranteed if VIN increases or decreases in steps of min. 5mV.  
5. For precise conversion results, it is recommended to calibrate the amplifier at the following two points:  
offset at VINmin = 0V  
gain at full scale (for example VIN=430mV).  
13.11.1 Amplifier output offset variation  
The offset is quite sensitive to temperature variations. In order to ensure a good reliability in  
measurements, the offset must be recalibrated periodically i.e. during power on or whenever  
the device is reset depending on the customer application and during temperature variation.  
Table 87 gives the typical offset variation over temperature.  
Table 87. Typical offset variation over temperature  
Typical offset variation (LSB)  
Unit  
-45  
-12  
-20  
-7  
+25  
+90  
+13  
°C  
LSB  
146/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Package characteristics  
14  
Package characteristics  
14.1  
Package mechanical data  
Figure 93. 20-Pin plastic small outline package, 300-mil width  
D
h x 45×  
L
A
c
A1  
a
e
B
E
H
Table 88. Small outline package characteristics  
mm  
inches  
Dim.  
Min  
2.35  
0.10  
0.33  
0.23  
12.60  
7.40  
Typ  
Max  
2.65  
0.30  
0.51  
0.32  
13.00  
7.60  
Min  
0.093  
0.004  
0.013  
0.009  
0.496  
0.291  
Typ  
Max  
0.104  
0.012  
0.020  
0.013  
0.512  
0.299  
A
A1  
B
C
D
E
e
1.27  
0.050  
H
h
10.00  
0.25  
0°  
10.65  
0.75  
8°  
0.394  
0.010  
0°  
0.419  
0.030  
8°  
α
L
0.40  
1.27  
0.016  
0.050  
Number of Pins  
N
20  
Doc ID 8349 Rev 5  
147/166  
Package characteristics  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Figure 94. 20-Pin Plastic Dual In-Line Package, 300-mil Width  
A2  
A1  
A
L
c
b
eB  
D1  
e
b2  
D
11  
10  
20  
1
E1  
Table 89. Dual in-line package characteristics  
mm  
inches  
Typ  
Dim.  
Min  
Typ  
Max  
5.33  
Min  
Max  
0.210  
A
A1  
A2  
b
0.38  
2.92  
0.36  
1.14  
0.20  
24.89  
0.13  
0.015  
0.115  
0.014  
0.045  
0.008  
0.980  
0.005  
3.30  
0.46  
1.52  
0.25  
26.16  
4.95  
0.56  
1.78  
0.36  
26.92  
0.130  
0.018  
0.060  
0.010  
1.030  
0.195  
0.022  
0.070  
0.014  
1.060  
b2  
c
D
D1  
e
2.54  
0.100  
eB  
E1  
L
10.92  
7.11  
3.81  
0.430  
0.280  
0.150  
6.10  
2.92  
6.35  
3.30  
0.240  
0.115  
0.250  
0.130  
Number of Pins  
N
20  
148/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 90. Thermal characteristics  
Package characteristics  
Symbol  
Ratings  
Value  
Unit  
SO20  
DIP20  
Package thermal resistance  
(junction to ambient)  
125  
63  
RthJA  
°C/W  
TJmax  
PDmax  
Maximum junction temperature(1)  
Power dissipation(2)  
150  
500  
°C  
mW  
1. The maximum chip-junction temperature is based on technology characteristics.  
2. The maximum power dissipation is obtained from the formula PD = (TJ -TA) / RthJA  
.
The power dissipation of an application can be defined by the user with the formula: PD=PINT+PPORT  
where PINT is the chip internal power (IDDxVDD) and PPORT is the port power dissipation depending on the  
ports used in the application.  
14.2  
Soldering information  
In accordance with the RoHS European directive, all STMicroelectronics packages have  
TM  
been converted to lead-free technology, named ECOPACK  
.
TM  
ECOPACK packages are qualified according to the JEDEC STD-020C compliant  
soldering profile.  
TM  
Detailed information on the STMicroelectronics ECOPACK transition program is  
available on www.st.com/stonline/leadfree/, with specific technical Application notes  
covering the main technical aspects related to lead-free conversion (AN2033, AN2034,  
AN2035, AN2036).  
Backward and forward compatibility  
The main difference between Pb and Pb-free soldering process is the temperature range.  
TM  
ECOPACK TQFP, SDIP and SO packages are fully compatible with Lead (Pb)  
containing soldering process (see application note AN2034)  
TQFP, SDIP and SO Pb-packages are compatible with Lead-free soldering process,  
nevertheless it's the customer's duty to verify that the Pb packages maximum  
temperature (mentioned on the Inner box label) is compatible with their Leadfree  
soldering temperature.  
Table 91. Soldering compatibility (wave and reflow soldering process)  
Package  
Plating material devices  
Sn (pure Tin)  
NiPdAu (Nickel-palladium-Gold)  
Pb solder paste Pb-free solder paste  
SDIP & PDIP  
TQFP and SO  
Yes  
Yes  
Yes(1)  
Yes(1)  
1. Assemblers must verify that the Pb-package maximum temperature (mentioned on the Inner box label) is  
compatible with their Lead-free soldering process.  
Doc ID 8349 Rev 5  
149/166  
 
Device configuration  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
15  
Device configuration  
Each device is available for production in user programmable versions (FLASH) as well as in  
factory coded versions (FASTROM).  
ST7FLITE2 devices are FLASH versions. ST7PLITE2 devices are Factory Advanced  
Service Technique ROM (FASTROM) versions: they are factory programmed FLASH  
devices.  
ST7FLITE2 devices are shipped to customers with a default program memory content  
(FFh), while FASTROM factory coded parts contain the code supplied by the customer. This  
implies that FLASH devices have to be configured by the customer using the Option Bytes  
while the FASTROM devices are factory configured.  
15.1  
Option bytes  
The two option bytes allow the hardware configuration of the microcontroller to be selected.  
The option bytes can be accessed only in programming mode (for example using a standard  
ST7 programming tool).  
15.1.1  
Option byte 0  
OPT7 = Reserved, must always be 1  
OPT6:4 = OSCRANGE[2:0] Oscillator range  
When the internal RC oscillator is not selected (Option OSC=1), these option bits  
select the range of the resonator oscillator current source or the external clock source.  
Table 92. Option bytes values  
OSCRANGE  
1
2
0
LP  
1~2MHz  
2~4MHz  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
MP  
Typ.  
frequency range with  
Resonator  
MS  
4~8MHz  
HS  
8~16MHz  
32.768kHz  
VLP  
External  
on OSC1  
Clock source:  
CLKIN  
on PB4  
1
1
1
1
1
0
Reserved  
Note:  
When the internal RC oscillator is selected, the OSCRANGE option bits must be kept at  
their default value in order to select the 256 clock cycle delay (see Section 7.5: Reset  
sequence manager (RSM)).  
OPT3:2 = SEC[1:0] Sector 0 size definition  
These option bits indicate the size of sector 0 according to Table 93.  
150/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Device configuration  
Table 93. Size definition  
Sector 0 size  
SEC1  
SEC0  
0.5k  
1k  
0
0
1
1
0
1
0
1
2k  
4k  
OPT1 = FMP_R Read-out protection  
Read-out protection, when selected provides a protection against program memory  
content extraction and against write access to Flash memory. Erasing the option bytes  
when the FMP_R option is selected will cause the whole memory to be erased first and  
the device can be reprogrammed. Refer to the ST7 Flash Programming Reference  
Manual and Section 4.5: Memory protection for more details  
0: Read-out protection off  
1: Read-out protection on  
OPT0 = FMP_W Flash write protection  
This option indicates if the Flash program memory is write protected.  
0: Write protection off  
1: Write protection on  
Warning: When this option is selected, the program memory (and the  
option bit itself) can never be erased or programmed again.  
Table 94. Option byte default values  
Option byte 0  
Option byte 1  
7
0
7
0
OSCRANGE  
2:0  
SEC SEC FMP FMP PLL PLL PLL32  
LVD LVD WDG WDG  
Res.  
1
OSC  
0
1
0
R
W
x4x8 OFF OFF  
1
0
SW HALT  
Default  
Value  
1
1
1
1
1
0
0
1
1
1
1
1
1
1
Doc ID 8349 Rev 5  
151/166  
Device configuration  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
15.1.2  
Option byte 1  
OPT7 = PLLx4x8 PLL Factor selection.  
0: PLLx4  
1: PLLx8  
OPT6 = PLLOFF PLL disable  
0: PLL enabled  
1: PLL disabled (by-passed)  
OPT5 = PLL32OFF 32MHz PLL disable  
0: PLL32 enabled  
1: PLL32 disabled (by-passed)  
OPT4 = OSC RC Oscillator selection  
0: RC oscillator on  
1: RC oscillator off  
Note:  
1% RC oscillator available on ST7LITE25 and ST7LITE29 devices only  
If the RC oscillator is selected, then to improve clock stability and frequency accuracy, it is  
recommended to place a decoupling capacitor, typically 100nF, between the V and V  
DD  
SS  
pins as close as possible to the ST7 device.  
OPT3:2 = LVD[1:0] Low voltage detection selection  
These option bits enable the LVD block with a selected threshold as shown in Table 95.  
Table 95. LVD Threshold Configuration  
Configuration  
LVD1  
LVD0  
LVD Off  
1
1
0
0
1
0
1
0
Highest Voltage Threshold (4.1V)  
Medium Voltage Threshold (3.5V)  
Lowest Voltage Threshold (2.8V)  
OPT1 = WDG SW Hardware or Software Watchdog  
This option bit selects the watchdog type.  
0: Hardware (watchdog always enabled)  
1: Software (watchdog to be enabled by software)  
OPT0 = WDG HALT Watchdog Reset on HALT  
This option bit determines if a RESET is generated when entering HALT mode while  
the Watchdog is active.  
0: No Reset generation when entering HALT mode  
1: Reset generation when entering HALT mode  
152/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Device configuration  
Table 96. List of valid option combinations  
Operating conditions  
Option bits  
V
DD range  
Clock Source  
PLL  
off  
x4  
x8  
off  
x4  
x8  
off  
x4  
x8  
off  
x4  
x8  
Typ fCPU  
0.7MHz @3V  
2.8MHz @3V  
OSC  
PLLOFF PLLx4x8  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
Internal RC 1%(1)  
0
1
1
0
0
1
1
2.4V - 3.3V  
0-4MHz  
4MHz  
External clock or  
oscillator  
(depending on OPT6:4  
selection)  
1MHz @5V  
Internal RC 1%(1)  
8MHz @5V  
0-8MHz  
3.3V - 5.5V  
External clock or  
oscillator  
(depending on OPT6:4  
selection)  
8 MHz  
1. Configuration available on ST7LITE25 and ST7LITE29 devices only  
Note:  
For further information, see clock management block diagram in Figure 13.  
15.2  
Device ordering information and transfer of customer code  
Customer code is made up of the FASTROM contents and the list of the selected options (if  
any).  
The FASTROM contents are to be sent on diskette, or by electronic means, with the S19  
hexadecimal file generated by the development tool. All unused bytes must be set to FFh.  
The selected options are communicated to STMicroelectronics using the correctly  
completed Option list appended on Table 98: ST7LITE2 FASTROM microcontroller option  
list.  
Refer to application note AN1635 for information on the counter listing returned by ST after  
code has been transferred.  
The STMicroelectronics Sales Organization will be pleased to provide detailed information  
on contractual points.  
Doc ID 8349 Rev 5  
153/166  
 
Device configuration  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 97. Supported part numbers  
Program  
memory  
(Bytes)  
Data  
EEPROM  
(Bytes)  
RAM  
(Bytes)  
Temp.  
range  
Part number  
Package  
ST7FLITE20F2B6  
ST7FLITE20F2M6  
ST7FLITE25F2B6  
ST7FLITE25F2M6  
ST7FLITE29F2B6  
ST7FLITE29F2M6  
ST7FLITE29F2M7  
ST7PLITE20F2B6  
ST7PLITE20F2M6  
ST7PLITE25F2B6  
ST7PLITE25F2M6  
ST7PLITE29F2B6  
ST7PLITE29F2M6  
DIP20  
SO20  
DIP20  
SO20  
DIP20  
SO20  
SO20  
DIP20  
SO20  
DIP20  
SO20  
DIP20  
SO20  
8K Flash  
384  
-40°C to 85°C  
256  
8K  
FASTROM  
384  
-40°C to 85°C  
256  
Note:  
Contact ST sales office for product availability.  
154/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Device configuration  
Table 98. ST7LITE2 FASTROM microcontroller option list  
Customer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Phone No . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Reference/FASTROM code (assigned by STMicroelectronics) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
FASTROM code must be sent in .S19 format. .Hex extension cannot be processed.  
Device Type/Memory Size/Package (check only one option):  
FASTROM device  
8K  
SO20:  
[ ] ST7PLITE20F2M6  
[ ] ST7PLITE25F2M6  
[ ] ST7PLITE29F2M6  
[ ] ST7FLITE29F2M7  
[ ] ST7PLITE20F2B6  
[ ] ST7PLITE25F2B6  
[ ] ST7PLITE29F2B6  
DIP20:  
Note:  
Addresses 1000h, 1001h, FFDEh and FFDFh are reserved areas for ST to program  
RCCR0 and RCCR1 (see Section 7.1: Internal RC oscillator adjustment).  
Conditioning (do not specify for DIP package)  
[ ] Tape & Reel  
Special marking:  
[ ] Tube  
[ ] No  
[ ] Yes "_ _ _ _ _ _ _ _ "  
Authorized characters are letters, digits, '.', '-', '/' and spaces only.  
Maximum character count:  
DIP20/S020 (8 char. max) : _ _ _ _ _ _ _ _  
Watchdog Selection:  
Watchdog Reset on HALT:  
LVD Reset  
[ ] Software Activation  
[ ] Reset  
[ ] Disabled  
[ ] Hardware Activation  
[ ] No Reset  
[ ] Enabled  
[ ] Highest threshold  
[ ] Medium threshold  
[ ] Lowest threshold  
[ ] 2K  
Sector 0 size:  
[ ] 0.5K  
[ ] 1K  
[ ] 4K  
Read-out Protection:  
FLASH write Protection:  
Clock Source Selection:  
[ ] Disabled  
[ ] Disabled  
[ ] Resonator:  
[ ] Enabled  
[ ] Enabled  
[ ] VLP: Very Low power resonator (32 to 100 kHz)  
[ ] LP: Low power resonator (1 to 2 MHz)  
[ ] MP: Medium power resonator (2 to 4 MHz)  
[ ] MS: Medium speed resonator (4 to 8 MHz)  
[ ] HS: High speed resonator (8 to 16 MHz)  
[ ] External Clock:  
[ ] On OSC1  
[ ] On PB4  
[ ] Internal RC Oscillator (ST7PLITE25 and ST7PLITE29 only)  
PLL  
PLL32  
[ ] Disabled  
[ ] Disabled  
[ ] PLLx4  
[ ] Enabled  
[ ] PLLx8  
Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Supply operating range in the application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Note:  
Not all configurations are available. See Table 96 for authorized option byte combinations.  
Doc ID 8349 Rev 5  
155/166  
 
Device configuration  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
15.3  
Development tools  
STMicroelectronics offers a range of hardware and software development tools for the ST7  
microcontroller family. Full details of tools available for the ST7 from third party  
manufacturers can be obtained from the STMicroelectronics Internet site: http//www.st.com.  
Tools from these manufacturers include C compliers, evaluation tools, emulators and  
programmers.  
Emulators  
Two types of emulators are available from ST for the ST7LITE2 family (refer to Table 99):  
ST7 DVP3 entry-level emulator offers a flexible and modular debugging and  
programming solution. SO20 packages need a specific connection kit.  
ST7 EMU3 high-end emulator is delivered with everything (probes, TEB, adapters etc.)  
needed to start emulating the ST7LITE2. To configure it to emulate other ST7 subfamily  
devices, the active probe for the ST7EMU3 can be changed and the ST7EMU3 probe  
is designed for easy interchange of TEBs (Target Emulation Board).  
In-circuit debugging kit  
Two configurations are available from ST:  
ST7FLIT2-IND/USB: Low-cost In-Circuit Debugging kit from Softec Microsystems.  
Includes STX-InDART/USB board (USB port) and a specific demo board for  
ST7FLITE29 (DIP16) (a promotion package of 15 STFLIT2-IND/USB can be ordered  
with the following order code: STFLIT2-IND/15)  
STxF-INDART/USB (a promotion package of 15 STxF-INDART/USB can be ordered  
with the following order code: STxF-INDART)  
Flash programming tools  
ST7-STICK ST7 In-circuit Communication Kit, a complete software/hardware package  
for programming ST7 Flash devices. It connects to a host PC parallel port and to the  
target board or socket board via ST7 ICC connector.  
ICC Socket Boards provide an easy to use and flexible means of programming ST7  
Flash devices. They can be connected to any tool that supports the ST7 ICC interface,  
such as ST7 EMU3, ST7-DVP3, inDART, ST7-STICK, or many third-party development  
tools.  
Evaluation boards  
One evaluation tool is available from ST:  
ST7FLIT2-COS/COM: STReal time starter kit from Cosmic software.  
156/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Device configuration  
Table 99. STMicroelectronics development tools  
Emulation  
Programming  
ICC Socket  
Supported  
Products  
ST7 DVP3 Series  
Emulator Connection kit  
ST7 EMU3 series  
Active Probe &  
T.E.B.  
Board  
Emulator  
ST7FLITE20  
ST7FLITE25 ST7MDT10-DVP3  
ST7FLITE29  
ST7MDT10-20/  
DVP  
ST7MDT10-EMU3 ST7MDT10-TEB  
ST7SB10/123(1)  
1. Add suffix /EU, /UK, /US for the power supply of your region.  
15.4  
Application notes  
Table 100. ST7 application notes  
Identification  
Description  
Application examples  
AN1658  
AN1720  
AN1755  
AN1756  
AN1812  
Serial Numbering Implementation  
Managing the Read-out Protection in Flash Microcontrollers  
A High Resolution/Precision thermometer using ST7 and NE555  
Choosing a DALI Implementation Strategy with ST7DALI  
A High Precision, Low Cost, Single Supply ADC for Positive and Negative Input Voltages  
Example drivers  
AN 969  
AN 970  
AN 971  
AN 972  
AN 973  
AN 974  
AN 976  
AN 979  
AN 980  
AN1017  
AN1041  
AN1042  
AN1044  
AN1045  
AN1046  
AN1047  
SCI Communication Between ST7 and PC  
SPI Communication Between ST7 and EEPROM  
I²C Communication Between ST7 and M24Cxx EEPROM  
ST7 Software SPI Master Communication  
SCI Software Communication with a PC Using ST72251 16-Bit Timer  
Real Time Clock with ST7 Timer Output Compare  
Driving a Buzzer Through ST7 Timer PWM Function  
Driving An Analog Keyboard with the ST7 ADC  
ST7 Keypad Decoding Techniques, Implementing wakeup on Keystroke  
Using the ST7 Universal Serial Bus Microcontroller  
Using ST7 PWM Signal to Generate Analog Output (Sinusoïd)  
ST7 Routine for I²C Slave Mode Management  
Multiple Interrupt Sources Management for ST7 MCUs  
ST7 S/W Implementation of I²C Bus Master  
UART Emulation Software  
Managing Reception Errors with the ST7 SCI Peripherals  
Doc ID 8349 Rev 5  
157/166  
Device configuration  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 100. ST7 application notes (continued)  
Identification  
Description  
AN1048  
AN1078  
AN1082  
AN1083  
AN1105  
AN1129  
AN1130  
AN1148  
AN1149  
AN1180  
AN1276  
AN1321  
AN1325  
AN1445  
AN1475  
AN1504  
AN1602  
AN1633  
AN1712  
AN1713  
AN1753  
AN1947  
ST7 Software LCD Driver  
PWM Duty Cycle Switch Implementing True 0% & 100% Duty Cycle  
Description of the ST72141 Motor Control Peripherals Registers  
ST72141 BLDC Motor Control Software and Flowchart Example  
ST7 pCAN Peripheral Driver  
PWM Management for BLDC Motor Drives Using the ST72141  
An Introduction to Sensorless Brushless DC Motor Drive applications with the ST72141  
Using the ST7263 for Designing a USB Mouse  
Handling Suspend Mode on a USB Mouse  
Using the ST7263 Kit to Implement a USB Game Pad  
BLDC Motor Start Routine for the ST72141 Microcontroller  
Using the ST72141 Motor Control MCU in Sensor Mode  
Using the ST7 USB LOW-SPEED Firmware V4.x  
Emulated 16 bit slave SPI  
Developing an ST7265X Mass Storage Application  
Starting a PWM Signal Directly at High Level using the ST7 16-Bit timer  
16-bit timing operations using ST7262 or ST7263B ST7 USB MCUs  
Device Firmware Upgrade (DFU) implementation in ST7 non-USB applications  
Generating a high resolution sinewave using ST7 PWMART  
SMBus Slave Driver for ST7 I2C Peripherals  
Software UART using 12-bit ART  
ST7MC PMAC Sine Wave Motor Control Software Library  
General purpose  
AN1476  
AN1526  
AN1709  
AN1752  
Low Cost Power Supply for Home Appliances  
ST7FLITE0 Quick Reference Note  
EMC Design for ST Microcontrollers  
ST72324 Quick Reference Note  
Product evaluation  
AN 910  
AN 990  
AN1077  
AN1086  
AN1103  
AN1150  
Performance Benchmarking  
ST7 Benefits Versus Industry Standard  
Overview of Enhanced CAN Controllers for ST7 and ST9 MCUs  
U435 Can-Do Solutions for Car Multiplexing  
Improved B-EMF detection for Low Speed, Low Voltage with ST72141  
Benchmark ST72 Vs PC16  
158/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Device configuration  
Table 100. ST7 application notes (continued)  
Identification  
Description  
AN1151  
AN1278  
Performance Comparison Between ST72254 & PC16F876  
LIN (Local Interconnect Network) Solutions  
Product Migration  
AN1131  
AN1322  
AN1365  
AN1604  
AN2200  
Migrating applications from ST72511/311/214/124 to ST72521/321/324  
Migrating an application from ST7263 Rev.B to ST7263B  
Guidelines for migrating ST72C254 applications to ST72F264  
How to use ST7MDT1-TRAIN with ST72F264  
guidelines for migrating st7lite1x applications to st7flite1xb  
Product Optimization  
AN 982  
AN1014  
Using ST7 with Ceramic Resonator  
How to Minimize the ST7 Power Consumption  
SOFTWARE TECHNIQUES FOR IMPROVING MICROCONTROLLER EMC  
PERFORMANCE  
AN1015  
AN1040  
AN1070  
AN1181  
AN1324  
AN1502  
AN1529  
AN1530  
AN1605  
AN1636  
AN1828  
Monitoring the Vbus Signal for USB Self-Powered Devices  
ST7 Checksum Self-Checking Capability  
Electrostatic Discharge Sensitive Measurement  
Calibrating the RC Oscillator of the ST7FLITE0 MCU using the MAINS  
Emulated Data EEPROM with ST7 HDFlash Memory  
Extending the current & voltage capability on the ST7265 VDDF Supply  
Accurate timebase for low-cost ST7 applications with internal RC oscillator  
Using an active RC to wakeup the ST7LITE0 from power saving mode  
UNDERSTANDING AND MINIMIZING ADC CONVERSION ERRORS  
PIR (Passive Infrared) Detector using the ST7FLITE05/09/SUPERLITE  
SENSORLESS BLDC MOTOR CONTROL AND BEMF SAMPLING METHODS WITH  
ST7MC  
AN1946  
AN1953  
AN1971  
PFC FOR ST7MC STARTER KIT  
ST7LITE0 MICROCONTROLLED BALLAST  
Programming and Tools  
AN 978  
AN 983  
AN 985  
AN 986  
AN 987  
AN 988  
AN 989  
ST7 Visual DeVELOP Software Key Debugging Features  
Key Features of the Cosmic ST7 C-Compiler Package  
Executing Code In ST7 RAM  
Using the Indirect Addressing Mode with ST7  
ST7 Serial Test Controller Programming  
Starting with ST7 Assembly Tool Chain  
Getting Started with the ST7 Hiware C Toolchain  
Doc ID 8349 Rev 5  
159/166  
Device configuration  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 100. ST7 application notes (continued)  
Identification  
Description  
AN1039  
AN1064  
AN1071  
AN1106  
AN1179  
AN1446  
AN1477  
AN1478  
AN1527  
AN1575  
AN1576  
AN1577  
AN1601  
AN1603  
AN1635  
AN1754  
AN1796  
AN1900  
AN1904  
AN1905  
ST7 Math Utility Routines  
Writing Optimized Hiware C Language for ST7  
Half duplex USB-to-Serial Bridge using the ST72611 USB Microcontroller  
Translating Assembly Code From HC05 to ST7  
Programming ST7 Flash Microcontrollers In Remote ISP Mode (In-Situ Programming)  
Using the ST72521 Emulator to Debug a ST72324 Target Application  
Emulated Data EEPROM with Xflash Memory  
Porting an ST7 Panta Project to Codewarrior IDE  
Developing a USB Smartcard Reader with ST7SCR  
On-Board Programming Methods for XFLASH and HDFLASH ST7 MCUs  
In-Application Programming (IAP) drivers for ST7 HDFlash or XFlash MCUs  
Device Firmware Upgrade (DFU) implementation for ST7 USB applications  
Software Implementation for ST7DALI-EVAL  
Using the ST7 USB Device Firmware Upgrade Development Kit (DFU-DK)  
ST7 Customer ROM Code Release Information  
Data Logging Program for Testing ST7 Applications via ICC  
Field updates for Flash Based ST7 Applications using a PC COMM Port  
HARDWARE IMPLEMENTATION FOR ST7DALI-EVAL  
ST7MC three-phase AC Induction Motor Control Software Library  
ST7MC three-phase BLDC Motor Control Software Library  
System Optimization  
AN1711  
AN1827  
AN2009  
AN2030  
software techniques for compensating st7 adc errors  
Implementation of SIGMA-DELTA ADC with ST7FLITE05/09  
PWM Management for 3-Phase BLDC Motor Drives using the ST7FMC  
Back EMF Detection during PWM on time by ST7MC  
160/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Important notes  
16  
Important notes  
16.1  
Execution of BTJX instruction  
When testing the address $FF with the "BTJT" or "BTJF" instructions, the CPU may perform  
an incorrect operation when the relative jump is negative and performs an address page  
change.  
To avoid this issue, including when using a C compiler, it is recommended to never use  
address $00FF as a variable (using the linker parameter for example).  
16.2  
16.3  
ADC conversion spurious results  
Spurious conversions occur with a rate lower than 50 per million. Such conversions happen  
when the measured voltage is just between 2 consecutive digital values.  
Workaround  
A software filter should be implemented to remove erratic conversion results whenever they  
may cause unwanted consequences.  
A/D converter accuracy for first conversion  
When the ADC is enabled after being powered down (for example when waking up from  
HALT, ACTIVE-HALT or setting the ADON bit in the ADCCSR register), the first conversion  
(8-bit or 10-bit) accuracy does not meet the accuracy specified in the datasheet.  
Workaround  
In order to have the accuracy specified in the datasheet, the first conversion after a ADC  
switch-on has to be ignored.  
16.4  
16.5  
Negative injection impact on ADC accuracy  
Injecting a negative current on an analog input pins significantly reduces the accuracy of the  
AD Converter. Whenever necessary, the negative injection should be prevented by the  
addition of a Schottky diode between the concerned I/Os and ground.  
Injecting a negative current on digital input pins degrades ADC accuracy especially if  
performed on a pin close to ADC channel in use.  
Clearing active interrupts outside interrupt routine  
When an active interrupt request occurs at the same time as the related flag or interrupt  
mask is being cleared, the CC register may be corrupted.  
Doc ID 8349 Rev 5  
161/166  
Important notes  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Concurrent interrupt context  
The symptom does not occur when the interrupts are handled normally, i.e. when:  
The interrupt request is cleared (flag reset or interrupt mask) within its own interrupt  
routine.  
The interrupt request is cleared (flag reset or interrupt mask) within any interrupt  
routine.  
The interrupt request is cleared (flag reset or interrupt mask) in any part of the code  
while this interrupt is disabled.  
If these conditions are not met, the symptom can be avoided by implementing the following  
sequence:  
Perform SIM and RIM operation before and after resetting an active interrupt request  
Ex:  
SIM  
reset flag or interrupt mask  
RIM  
16.6  
16.7  
Using PB4 as external interrupt  
PB4 cannot be used as an external interrupt in HALT mode because the port pin PB4 is not  
active in this mode.  
Timebase 2 interrupt in slow mode  
Timebase 2 interrupt is not available in slow mode.  
162/166  
Doc ID 8349 Rev 5  
 
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Revision history  
17  
Revision history  
Table 101. Revision history  
Date  
Revision  
Description of changes  
Updated Figure 62. Typical IDD in WAIT vs. fCPU with correct data  
Added data for Fcpu @ 1MHz into Section 13.4.1 Supply Current table.  
EnabledProgramming Capability for EMU3, Table 26  
Reset delay in section 11.1.3 on page 53 changed to 30µs  
Altered note 1 for section 13.2.3 on page 94 removing references to  
RESET  
Removed sentence relating to an effective change only after overflow  
for CK[1:0], page 61  
MOD00 replaced by 0Ex in Figure 37 on page 58  
Added Note 2 related to Exit from Active Halt, section 11.2.5 on page  
60  
Changed section 11.4.2 on page 71  
Changed section 11.4.3.3 on page 74  
Added illegal opcode detection to page 1, section 7.6 on page 30,  
section 12 on page 87  
Clarification of Flash Readout protection, section 4.5.1 on page 14  
Added note 4 and description relating to Total Percentage in Error and  
Amplifier Output Offset Variation to the ADC Characteristics  
subsection and table, page 120  
30-Aug-2004  
3
Added note 5 and description relating to Offset Variation in  
Temperature to ADC Characteristics subsection and table, page 120  
fPLL value of 1MHz quoted as Typical instead of a Minimum in section  
13.3.4.1 on page 97  
Updated fSCK in section 13.10.1 on page 115 to fCPU/4 and fCPU/2  
CorrectedfCPU in SLOW and SLOW WAIT modes in section 13.4.1 on  
page 101  
Max values updated for ADC Accuracy, page 118  
Socket Board development kit details added in Table 27 on page 126  
Notes indicating that PB4 cannot be used as an external interrupt in  
HALT mode, section 16.6 on page 132 and Section 8.3 PERIPHERAL  
INTERRUPTS  
-Removed “optional” referring to VDD in Figure 5 on page 13  
-Changed FMP_R option bit description in section 15.1 on page 124  
-Added “CLEARING ACTIVE INTERRUPTS OUTSIDE INTERRUPT  
ROUTINE” on page 132  
Doc ID 8349 Rev 5  
163/166  
Revision history  
Table 101. Revision history (continued)  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Description of changes  
Date  
Revision  
Added 300K read/write cycles for EEPROM on first page  
Updated Section 4.4 on page 21 and modified note 5 and Figure 5  
Added note 2 in External interrupt control register (EICR) on page 41  
and changed External interrupt function on page 63  
Modified read operation section in Memory access on page 24  
Added note to Section 7.1 on page 33  
Modified one note in Section 7.1 on page 33  
Modified Table on page 37  
Added note on illegal opcode reset to Section 7.5.1 on page 38  
Added note to Section 7.6.1 on page 40  
Changed note below Figure 8 on page 26 and the last paragraph of  
Access error handling on page 26  
In Section 11.2.6 on page 79, modified description of OE bits in the  
PWMCR register (added “after an overflow event”).  
Added important note to Section on page 94  
Changed Section 13.2.1 on page 117 (fOSC or fCLKIN replaced by fCPU  
and frequency values changed accordingly)  
Added note 1 and modified note 3 in Section on page 113 and  
Section on page 122 and changed table titles  
Added Crystal and Ceramic Resonator Oscillators on page 120  
Changed IS value and note 2 in Section 12.7.1 on page 127  
Updated Section 14.2 on page 149  
Added note to Figure 67 on page 134  
Changed notes 1 and 2 to Table 89 on page 144 and added RthJA  
value for DIP20 package  
Changed Figure 84, Figure 85 on page 140 (and notes) and removed  
EMC protection circuitry in Figure 85 on page 140 (device works  
correctly without these components)  
07-Jul-2006  
4
Added note 2 to opt 4 (option byte 2) in Section 15.1 on page 150  
Modified Section 14.2 on page 149  
Changed Section 15.3 on page 156  
Added Section 16.7 on page 162  
Changed LTICR reset value in Table 3 on page 18  
Modified “caution” in Section 8.2 on page 46  
Replaced bit1 by bit2 for AWUF bit in AWUCSR description in  
Section 9.6.1 on page 61  
Modified Section on page 63  
Changed order of Section and Section on page 87 and removed two  
paragraphs before Section 11.3.4 on page 87  
Added note 3 to Section 13.3.2 on page 121  
Modified Section 12.9 on page 137: changed th(MO) and tv(MO), as well  
as tsu(SS) and th (SS) values and added note 4. The change made to  
tsu(SS) and th (SS) values applies from silicon rev B of this product.  
Changed tw(JIT) value in Section on page 113 and Section on page  
122  
Added note to Section 12.4.2 on page 120  
Changed LTCSR2 reset value in Section 11.3.6 on page 88  
Modified Figure 84 and Figure 85 on page 140  
Added note 1 to the max column in table on page 144 and modified  
the content of this note.  
164/166  
Doc ID 8349 Rev 5  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Table 101. Revision history (continued)  
Revision history  
Date  
Revision  
Description of changes  
Added Temperature range in Features on page 1.  
25-Jun-2013  
5
Added ST7FLITE29F2M toTable 97: Supported part numbers and  
Table 98: ST7LITE2 FASTROM microcontroller option list.  
Doc ID 8349 Rev 5  
165/166  
ST7LITE20F2 ST7LITE25F2 ST7LITE29F2  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve  
the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at  
any time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE  
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH  
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR  
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED  
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN  
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMO-  
TIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.  
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRE-  
SPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately  
void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever,  
any liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2013 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
166/166  
Doc ID 8349 Rev 5  

相关型号:

ST7FLITE29FF2B3

IC,MICROCONTROLLER,8-BIT,ST72 CPU,CMOS,DIP,20PIN,PLASTIC
STMICROELECTR

ST7FLITE29FF2B6

IC,MICROCONTROLLER,8-BIT,ST72 CPU,CMOS,DIP,20PIN,PLASTIC
STMICROELECTR

ST7FLITE29FF2M3

IC,MICROCONTROLLER,8-BIT,ST72 CPU,CMOS,SOP,20PIN,PLASTIC
STMICROELECTR

ST7FLITE29FF2M6

IC,MICROCONTROLLER,8-BIT,ST72 CPU,CMOS,SOP,20PIN,PLASTIC
STMICROELECTR

ST7FLITE29M1

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDSO20, 0.300 INCH, PLASTIC, SO-20
STMICROELECTR

ST7FLITE29M6

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDSO20, 0.300 INCH, PLASTIC, SO-20
STMICROELECTR

ST7FLITE29M7

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDSO20, 0.300 INCH, PLASTIC, SO-20
STMICROELECTR

ST7FLITE30F2B6

8-BIT MCU WITH SINGLE VOLTAGE FLASH, DATA EEPROM, ADC, TIMERS, SPI, LINSCI
STMICROELECTR

ST7FLITE30F2M6

8-BIT MCU WITH SINGLE VOLTAGE FLASH, DATA EEPROM, ADC, TIMERS, SPI, LINSCI
STMICROELECTR

ST7FLITE35F2B6

8-BIT MCU WITH SINGLE VOLTAGE FLASH, DATA EEPROM, ADC, TIMERS, SPI, LINSCI
STMICROELECTR

ST7FLITE35F2M6

8-BIT MCU WITH SINGLE VOLTAGE FLASH, DATA EEPROM, ADC, TIMERS, SPI, LINSCI
STMICROELECTR

ST7FLITE35F2M6TR

8-BIT, FLASH, 16MHz, MICROCONTROLLER, PDSO20, 0.300 INCH, ROHS COMPLIANT, PLASTIC, SOP-20
STMICROELECTR