STA306 [STMICROELECTRONICS]

MULTICHANNEL DIGITAL AUDIO PROCESSOR WITH DDX; 使用DDX多声道数字音频处理器
STA306
型号: STA306
厂家: ST    ST
描述:

MULTICHANNEL DIGITAL AUDIO PROCESSOR WITH DDX
使用DDX多声道数字音频处理器

音频控制集成电路 消费电路 商用集成电路
文件: 总33页 (文件大小:233K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STA306  
MULTICHANNEL DIGITAL AUDIO PROCESSOR WITH DDX™  
PRODUCT PREVIEW  
6 DDXTM Channels Capability (24 bit)  
From 32kHz to 192kHz Input Sample Rates  
Supported  
Volume Control from 0 to -127 dB (0.5 dB steps)  
Variable Digital Gain from 0 to 24dB (0.5dB  
TQFP64  
steps) with Digital Limiter Functionality and  
Variable Attack and Release Time  
ORDERING NUMBER: STA306  
I2S Inputs and Outputs  
Individual Channel and Master Gain/  
Attenuation  
Individual Channel Mute and Zero Input Detect  
DESCRIPTION  
Auto-Mute  
The STA306 is a single chip solution for digital audio  
processing and control in multi-channel applications.  
It provides output capabilities for DDXTM (Direct Digi-  
tal Amplification). In conjunction with a DDXTM power  
device, it provides high-quality, high-efficiency, all  
digital amplification. The device is extremely versatile  
allowing for input of most digital formats including  
192kHz, 24-bit DVD-Audio.  
Selectable Serial Audio Data Interface  
Bass/Treble Controls  
Channel Mapping of any Input to any  
Processing/DDXTM Channel  
Active Crossover Capability  
DC Blocking Selectable High-Pass Filter  
Selectable Bass Management on Channel 6  
Selectable Adjacent Channel Mixing Capability  
Selectable Clock Input Ratio  
The internal 24-bit DSP allows for high resolution  
processing at all standard input sample frequencies.  
Processing includes volume control, filtering, bass  
management, gain compression/limiting and PCM  
and DDXTM outputs. Filtering includes five user-pro-  
grammable 28-bit biquads for EQ per channel, as  
well as bass, treble and DC blocking. External clock-  
ing can be provided at 4 different ratios of the input  
sample frequency. All sample frequencies are up-  
sampled for processing. Each internal processing  
channel can receive any input channel, allowing flex-  
ibility and the ability to perform active digital cross-  
over for powered loudspeaker systems.  
Selectable De-emphasis  
Selectable DDXTM Ternary, or Binary PWM  
output  
AM Interference Reduction Mode  
I2C Control  
The serial audio data interface accepts many differ-  
ent formats, including the popular I2S format. STx-  
channels of DDX processing are performed.  
October 2003  
1/33  
This is preliminary information on a new product foreseen to be developed. Details are subject to change without notice.  
STA306  
BLOCK DIAGRAM  
SCL  
MVO  
SA  
SDA  
LRCKI  
BICKI  
OUT1A/B  
OUT2A/B  
OUT3A/B  
OUT4A/B  
OUT5A/B  
I2C  
SERIAL  
DATA  
IN  
OVERSAMPLING  
SDI12  
SDI34  
SDI56  
DDX  
SYSTEM  
CONTROL  
OUT6A/B  
VARIABLE  
OVER-  
SAMPLING  
TREBLE,  
BASS, EQ  
(BIQUADS)  
VOLUME  
LIMITING  
CHANNEL  
MAPPING  
LRCKO  
SERIAL  
DATA  
OUT  
BICKO  
SDO12  
SYSTEM TIMING  
VARIABLE  
DOWN-  
SAMPLING  
SDO34  
SDO56  
PLLB  
PLL  
POWER  
DOWN  
XTI  
CKOUT  
EAPD  
PWDN  
Figure 1. Signal Flow Diagram  
Channels 1-6  
1st Stage  
Interpolation  
Output  
Bass Management  
Scale  
& Mix  
Interp_Rate  
6 Inputs  
From I2S  
BME  
Channel  
Mapping  
1x,2x,4x  
Interp  
Biquads  
B/T  
Volume  
Limiter  
2x  
Interp  
DDX  
Output  
Noise & Distortion Reduction  
PWM  
2/33  
STA306  
IN CONNECTION (Top view)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
3
4
5
6
7
8
9
MVO  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
OUT2_A  
OUT2_B  
VDD  
TEST_MODE  
VDD3  
GND  
GND  
VDD  
VDD3  
N.C.  
OUT3_A  
OUT3_B  
OUT4_A  
OUT4_B  
OUT5_A  
OUT5_B  
VDD  
SDI_56  
SDI_34  
SDI_12  
LRCKI  
BICKI  
10  
11  
12  
13  
14  
VDD3  
GND  
GND  
VDD  
VDD3  
RESET  
PLLB  
OUT6_A  
OUT6_B  
15  
16  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
D02AU1522  
PIN FUNCTION  
PIN  
1
NAME  
TYPE  
DESCRIPTION  
Master Volume Override  
PAD TYPE  
CMOS Input Buffer with  
Pull-Down  
3.3V Digital Power  
Supply Voltage (pad ring)  
Digital Ground  
MVO  
VDD3  
GND  
VDD  
I
3, 12, 24, 28,  
35, 44, 52, 59  
2, 4, 13, 27,  
36, 45, 53, 60  
5, 14, 26, 37,  
46, 54, 61  
3.3V Digital Supply  
Digital Ground  
2.5V Digital Supply  
2.5V Digital Power  
Supply Voltage (core +  
ring)  
7
8
9
10  
11  
15  
SDI_56  
SDI_34  
SDI_12  
LRCKI  
BICKI  
I
I
I
I
I
I
Input I2S Serial Data Channels 5 & 6  
Input I2S Serial Data Channels 3 & 4  
Input I2S Serial Data Channels 1 & 2  
Inputs I2C Left/Right Clock  
Inputs I2C Serial Clock  
5V Tolerant TTL Input Buffer  
5V Tolerant TTL Input Buffer  
5V Tolerant TTL Input Buffer  
5V Tolerant TTL Input Buffer  
5V Tolerant TTL Input Buffer  
5V Tolerant TTL Schmitt  
Trigger Input Buffer  
CMOS Input Buffer with  
Pull-Down  
CMOS Input Buffer with  
Pull-Down  
Bidirectional Buffer:  
5V Tolerant TTL Schmitt  
Trigger Input;  
RESET  
Global Reset  
16  
17  
18  
PLLB  
SA  
I
I
PLL Bypass  
Select Address (I2C)  
I2C Serial Data  
SDA  
I/O  
3.3V Capable 2 mA  
Slew-rate control Output;  
5V Tolerant TTL Schmitt  
Trigger Input Buffer  
19  
SCL  
I
I2C Serial Clock  
3/33  
STA306  
PIN FUNCTION (continued)  
PIN  
NAME  
TYPE  
DESCRIPTION  
PAD TYPE  
20  
XTI  
I
Crystal Oscillator Input (Clock Input)  
3.3V Tolerant TTL Schmitt  
Trigger Input Buffe  
r
21  
22  
FILTER_PLL  
VDDA  
PLL Filter  
PLL 2.5V Supply  
Analog Pad  
2.5V Analog Power  
Supply Voltage  
23  
25  
GNDA  
CKOUT  
PLL Ground  
Clock Output  
Analog Ground  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
3.3V Capable TTL Tristate  
4mA Output Buffer  
3.3V Capable TTL 2mA  
Output Buffer  
3.3V Capable TTL 2mA  
Output Buffer  
3.3V Capable TTL 2mA  
Output Buffer  
3.3V Capable TTL 2mA  
Output Buffer  
3.3V Capable TTL 2mA  
Output Buffer  
3.3V Capable TTL 2mA  
Output Buffer  
3.3V Capable TTL 2mA  
Output Buffer  
3.3V Capable TTL 2mA  
Output Buffer  
3.3V Capable TTL 2mA  
Output Buffer  
3.3V Capable TTL 2mA  
Output Buffer  
3.3V Capable TTL 2mA  
Output Buffer  
3.3V Capable TTL 2mA  
Output Buffer  
3.3V Capable TTL 2mA  
Output Buffer  
3.3V Capable TTL 2mA  
Output Buffer  
3.3V Capable TTL 2mA  
Output Buffer  
3.3V Capable TTL 2mA  
Output Buffer  
33  
34  
38  
39  
40  
41  
42  
43  
47  
48  
49  
50  
51  
55  
56  
57  
58  
62  
63  
64  
OUT6_B  
OUT6_A  
OUT5_B  
OUT5_A  
OUT4_B  
OUT4_A  
OUT3_B  
OUT3_A  
OUT2_B  
OUT2_A  
OUT1_B  
OUT1_A  
EAPD  
PWM Channel 6 Output B  
PWM Channel 6 Output A  
PWM Channel 5 Output B  
PWM Channel 5 Output A  
PWM Channel 4 Output B  
PWM Channel 4 Output A  
PWM Channel 3 Output B  
PWM Channel 3 Output A  
PWM Channel 2 Output B  
PWM Channel 2 Output A  
PWM Channel 1 Output B  
PWM Channel 1 Output A  
External Amplifier Power Down  
Output I2S Serial Clock  
BICKO  
LRCKO  
SDO_12  
SDO_34  
SDO_56  
SDO_78  
PWDN  
Output I2S Left/Right Clock  
Output I2S Serial Data Channels 1 & 2  
Output I2S Serial Data Channels 3 & 4  
Output I2S Serial Data Channels 5 & 6  
Output I2S Serial Data Channels 7 & 8  
Device Powerdown  
3.3V Capable TTL 2mA  
Output Buffer  
3.3V Capable TTL 2mA  
Output Buffer  
3.3V Capable TTL 2mA  
Output Buffer  
5V Tolerant TTL Schmitt  
Trigger Input Buffer  
4/33  
STA306  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
-0.5 to 4  
Unit  
V
V
3.3V I/O Power Supply  
2.5V Logic Power Supply  
Voltage on input pins  
Voltage on output pins  
Storage Temperature  
DD_3.3  
DD_2.5  
V
-0.5 to 3.3  
V
V
i
-0.5 to (VDD+0.5)  
-0.5 to (VDD+0.3)  
-40 to +150  
-20 to +85  
V
V
o
V
T
°C  
°C  
stg  
T
amb  
Ambient Operating Temperature  
THERMAL DATA  
Symbol  
Parameter  
Value  
Unit  
R
thj-amb  
Thermal resistance Junction to Ambient  
85  
°C/W  
RECOMMENDED DC OPERATING CONDITIONS  
Symbol Parameter  
Value  
Unit  
V
V
I/O Power Supply  
3.0 to 3.6  
2.3 to 2.7  
-20 to +125  
DD_3.3  
DD_2.5  
V
Logic Power Supply  
V
T
Operating Junction Temperature  
°C  
j
5/33  
STA306  
ELECTRICAL CHARACTERISTCS (V  
= 3.3V ± 0.3V; V = 2.5V ± 0.2V; T  
= 0 to 70 °C; unless other-  
amb  
DD3  
DD  
wise specified)  
GENERAL INTERFACE ELECTRICAL CHARACTERISTICS  
Symbol  
Parameter  
Test Condition  
V = 0V  
Min.  
Typ.  
Max.  
Unit  
µA  
Note  
I
il  
Low Level Input no pull-up  
High Level Input no pull-down  
1
2
2
1
1
1
i
I
V = V  
µA  
ih  
i
DD3  
I
Tristate output leakage without  
pullup/down  
V = V  
µA  
OZ  
i
DD3  
V
esd  
Electrostatic Protection  
Leakage < 1µA  
2000  
V
2
Note 1: The leakage currents are generally very small, < 1na. The values given here are maximum after an electrostatic stress on the pin.  
Note 2: Human Body Model  
DC ELECTRICAL CHARACTERISTICS: 3.3V BUFFERS  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
V
V
Low Level Input Voltage  
High Level Input Voltage  
Low Level Threshold  
High Level Threshold  
Schmitt Trigger Hysteresis  
Low Level Output  
0.8  
IL  
V
IH  
2.0  
0.8  
1.3  
0.3  
V
V
Input Falling  
Input Rising  
1.35  
2.0  
0.8  
0.2  
V
ILhyst  
IHhyst  
V
V
V
hyst  
V
V
ol  
IoI = 100uA  
V
V
oh  
High Level Output  
Ioh = -100uA  
Ioh = -2mA  
VDD3-0.2  
2.4  
V
V
DC ELECTRICAL CHARACTERISTICS: 2.5V BUFFERS  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
V
V
Low Level Input Voltage  
High Level Input Voltage  
Low Level Threshold  
Schmitt input  
0.26*VDD  
ILst  
V
Schmitt input  
0.7*VDD  
V
IHst  
V
non Schmitt, Input  
Falling  
0.5*VDD  
0.5*VDD  
V
ILhyst  
V
IHhyst  
High Level Threshold  
non Schmitt, Input  
Rising  
1.3  
2.0  
V
V
Schmitt Trigger Hysteresis  
Low Level Output  
0.23*VDD  
V
V
V
hyst  
V
Note 1  
Note 1  
0.15*VDD  
OL  
V
High Level Output  
0.85*VDD  
OH  
Notes: 1. Source/Sink current under worst-case conditions.  
6/33  
STA306  
1.0 PIN DESCRIPTION  
1.1 MVO: Master Volume Override  
This pin enables the user to bypass the Volume Control on all channels. When MVO is pulled High, the Master  
Volume Register is set to 00h, which corresponds to its Full Scale setting. The Master Volume Register Setting  
offsets the individual Channel Volume Settings, which default to 0dB.  
1.2 SDI_12 through 56: Serial Data In  
Audio information enters the device here. Six format choices are available including I2S, left- or right-justified,  
LSB or MSB first, with word widths of 16, 18, 20 and 24 bits.  
1.3 RESET  
Driving this pin (low) turns off the outputs and returns all settings to their defaults.  
1.4 I2C  
The SA, SDA and SCL pins operate per the Philips I2C specification. See Section 2.  
1.5 PLL: Phase Locked Loop  
The phase locked loop section provides the System Timing Signals and CKOUT.  
1.6 CKOUT: Clock Out  
System synchronization and master clocks are provided by the CKOUT.  
1.7 OUT1 through OUT6: PWM Outputs  
The PWM outputs provide the input signal for the power devices.  
1.8 EAPD: External Amplifier Power-Down  
This signal can be used to control the power-down of DDX power devices.  
1.9 SDO_12 through 56: Serial Data Out  
Audio information exits the device here. Six different format choices are available including I2S, left- or right-  
justified, LSB or MSB first, with word widths of 16, 18, 20 and 24 bits.  
1.10 PWDN: Device Power-Down  
This puts the STA306 into a low-power state via appropriate power-down sequence. Pulling PWDN low begins  
power-down sequence, and EAPD goes low ~30ms later.  
2.0 II2C BUS SPECIFICATION  
The STA306 supports the I2C protocol. This protocol defines any device that sends data on to the bus as a  
transmitter and any device that reads the data as a receiver. The device that controls the data transfer is known  
as the master and the other as the slave. The master always starts the transfer and provides the serial clock  
for synchronization. The STA306 is always a slave device in all of its communications.  
7/33  
STA306  
2.1 COMMUNICATION PROTOCOL  
2.1.1 Data Transition or change  
Data changes on the SDA line must only occur when the SCL clock is low. SDA transition while the clock is  
high is used to identify a START or STOP condition.  
2.1.2 Start Condition  
START is identified by a high to low transition of the data bus SDA signal while the clock signal SCL is stable  
in the high state. A START condition must precede any command for data transfer.  
2.1.3 Stop Condition  
STOP is identified by low to high transition of the data bus SDA signal while the clock signal SCL is stable in the  
high state. A STOP condition terminates communication between STA306 and the bus master.  
2.1.4 Data Input  
During the data input the STA306 samples the SDA signal on the rising edge of clock SCL. For correct device  
operation the SDA signal must be stable during the rising edge of the clock and the data can change only when  
the SCL line is low.  
2.2 DEVICE ADDRESSING  
To start communication between the master and the STA306, the master must initiate with a start condition.  
Following this, the master sends onto the SDA line 8-bits (MSB first) corresponding to the device select address  
and read or write mode.  
The 7 most significant bits are the device address identifiers, corresponding to the I2C bus definition. In the  
STA306 the I2C interface has two device addresses depending on the SA pin configuration, 0x30 or 0011000x  
when SA = 0, and 0x32 or 0011001x when SA = 1.  
The 8th bit (LSB) identifies read or write operation RW, this bit is set to 1 in read mode and 0 for write mode.  
After a START condition the STA306 identifies on the bus the device address and if a match is found, it acknowl-  
edges the identification on SDA bus during the 9th bit time. The byte following the device identification byte is  
the internal space address.  
2.3 WRITE OPERATION  
Following the START condition the master sends a device select code with the RW bit set to 0. The STA306  
acknowledges this and the writes for the byte of internal address. After receiving the internal byte address the  
STA306 again responds with an acknowledgement.  
2.3.1 Byte Write  
In the byte write mode the master sends one data byte, this is acknowledged by the STA306. The master then  
terminates the transfer by generating a STOP condition.  
2.3.2 Multi-byte Write  
The multi-byte write modes can start from any internal address. The master generating a STOP condition ter-  
minates the transfer.  
8/33  
STA306  
Write Mode Sequence  
ACK  
ACK  
ACK  
ACK  
ACK  
BYTE  
DEV-ADDR  
SUB-ADDR  
SUB-ADDR  
DATA IN  
DATA IN  
WRITE  
START  
RW  
STOP  
ACK  
ACK  
MULTIBYTE  
WRITE  
DEV-ADDR  
DATA IN  
START  
RW  
STOP  
Read Mode Sequence  
ACK  
NO ACK  
CURRENT  
ADDRESS  
READ  
DEV-ADDR  
DEV-ADDR  
DEV-ADDR  
DEV-ADDR  
DATA  
START  
START  
START  
START  
RW  
RW  
STOP  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
NO ACK  
RANDOM  
ADDRESS  
READ  
SUB-ADDR  
DEV-ADDR  
DATA  
START  
RW  
STOP  
STOP  
RW=  
HIGH  
NO ACK  
SEQUENTIAL  
CURRENT  
READ  
DATA  
DATA  
DATA  
DATA  
ACK  
ACK  
NO ACK  
SEQUENTIAL  
RANDOM  
READ  
SUB-ADDR  
DEV-ADDR  
DATA  
DATA  
RW  
START  
RW  
STOP  
Table 1. Register summary  
Address  
00h  
Name  
ConfA  
ConfB  
ConfC  
ConfD  
ConfE  
ConfF  
Mmute  
Mvol  
D7  
MPC  
DRC  
HPB  
BQL  
RES  
EAPD  
D6  
D5  
D4  
IR1  
D3  
D2  
D1  
D0  
HPE  
ZCE  
BME  
SAIFB  
RES  
IR0  
SAI1  
MCS2  
SAI0  
RES  
MCS1  
ZDE  
MCS0  
DSPB  
OM0  
01h  
SAI2  
RES  
COS0  
SAO1  
02h  
RES  
RES  
OM1  
03h  
PSL  
COS1  
SAO2  
C78BO  
SAO0  
AME  
C56BO  
DEMP  
COD  
C34BO  
VOLEN  
I2SD  
C12BO  
MIXE  
PWMD  
MMute  
MV0  
04h  
SAOFB  
05h  
06h  
07h  
MV7  
C8M  
MV6  
C7M  
MV5  
C6M  
MV4  
C5M  
MV3  
C4M  
MV2  
C3M  
MV1  
C2M  
08h  
Cmute  
C1Vol  
C2Vol  
C3Vol  
C4Vol  
C5Vol  
C6Vol  
C7Vol  
C1M  
09h  
C1V7  
C2V7  
C3V7  
C4V7  
C5V7  
C6V7  
C7V7  
C1V6  
C2V6  
C3V6  
C4V6  
C5V6  
C6V6  
C7V6  
C1V5  
C2V5  
C3V5  
C4V5  
C5V5  
C6V5  
C7V5  
C1V4  
C2V4  
C3V4  
C4V4  
C5V4  
C6V4  
C7V4  
C1V3  
C2V3  
C3V3  
C4V3  
C5V3  
C6V3  
C7V3  
C1V2  
C2V2  
C3V2  
C4V2  
C5V2  
C6V2  
C7V2  
C1V1  
C2V1  
C3V1  
C4V1  
C5V1  
C6V1  
C7V1  
C1V0  
C2V0  
C3V0  
C4V0  
C5V0  
C6V0  
C7V0  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
9/33  
STA306  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
C8Vol  
C12im  
C34im  
C56im  
C78im  
C1234ls  
C5678ls  
L1ar  
C8V7  
C8V6  
C2IM2  
C4IM2  
C6IM2  
C8IM2  
C4LS0  
C8LS0  
L1R2  
C8V5  
C2IM1  
C4IM1  
C6IM1  
C8IM1  
C3LS1  
C7LS1  
L1R1  
C8V4  
C2IM0  
C4IM0  
C6IM0  
C8IM0  
C3LS0  
C7LS0  
L1R0  
C8V3  
C8V2  
C1IM2  
C3IM2  
C5IM2  
C7IM2  
C2LS0  
C6LS0  
L1A2  
C8V1  
C1IM1  
C3IM1  
C5IM1  
C7IM1  
C1LS1  
C5LS1  
L1A1  
C8V0  
C1IM0  
C3IM0  
C5IM0  
C7IM0  
C1LS0  
C5LS0  
L1A0  
C4LS1  
C8LS1  
L1R3  
C2LS1  
C6LS1  
L1A3  
L1atrt  
L2ar  
L1AT3  
L2R3  
L1AT2  
L2R2  
L1AT1  
L2R1  
L1AT0  
L2R0  
L1RT3  
L2A3  
L1RT2  
L2A2  
L1RT1  
L2A1  
L1RT0  
L2A0  
L2atrt  
Tone  
L2AT3  
TTC3  
L2AT2  
TTC2  
L2AT1  
TTC1  
L2AT0  
TTC0  
L2RT3  
BTC3  
L2RT2  
BTC2  
L2RT1  
BTC1  
CFA1  
C1B17  
C1B9  
C1B1  
C2B17  
C2B9  
C2B1  
C3B17  
C3B9  
C3B1  
C4B17  
C4B9  
C4B1  
C5B17  
C5B9  
C5B1  
WA  
L2RT0  
BTC0  
CFA0  
C1B16  
C1B8  
C1B0  
C2B16  
C2B8  
C2B0  
C3B16  
C3B8  
C3B0  
C4B16  
C4B8  
C4B0  
C5B16  
C5B8  
C5B0  
W1  
Cfaddr  
B2cf1  
B2cf2  
B2cf3  
B0cf1  
B0cf2  
B0cf3  
A2cf1  
A2cf2  
A2cf3  
A1cf1  
A1cf2  
A1cf3  
B1cf1  
B1cf2  
B1cf3  
Cfud  
CFA7  
CFA6  
CFA5  
CFA4  
CFA3  
CFA2  
C1B23  
C1B15  
C1B7  
C1B22  
C1B14  
C1B6  
C1B21  
C1B13  
C1B5  
C1B20  
C1B12  
C1B4  
C1B19  
C1B11  
C1B3  
C1B18  
C1B10  
C1B2  
C2B23  
C2B15  
C2B7  
C2B22  
C2B14  
C2B6  
C2B21  
C2B13  
C2B5  
C2B20  
C2B12  
C2B4  
C2B19  
C2B11  
C2B3  
C2B18  
C2B10  
C2B2  
C3B23  
C3B15  
C3B7  
C3B22  
C3B14  
C3B6  
C3B21  
C3B13  
C3B5  
C3B20  
C3B12  
C3B4  
C3B19  
C3B11  
C3B3  
C3B18  
C3B10  
C3B2  
C4B23  
C4B15  
C4B7  
C4B22  
C4B14  
C4B6  
C4B21  
C4B13  
C4B5  
C4B20  
C4B12  
C4B4  
C4B19  
C4B11  
C4B3  
C4B18  
C4B10  
C4B2  
C5B23  
C5B15  
C5B7  
C5B22  
C5B14  
C5B6  
C5B21  
C5B13  
C5B5  
C5B20  
C5B12  
C5B4  
C5B19  
C5B11  
C5B3  
C5B18  
C5B10  
C5B2  
DC1  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
DC2  
RES  
RES  
BIST1  
BIST2  
RES  
RES  
RES  
RES  
10/33  
STA306  
3.0 CONFIGURATION REGISTER A (ADDRESS 00H)  
BIT  
NAME  
RST  
D7  
MPC  
1
D6  
HPE  
0
D5  
BME  
0
D4  
IR1  
0
D3  
IR0  
0
D2  
MCS2  
0
D1  
MCS1  
1
D0  
MCS0  
1
3.0.1 Master Clock Select  
BIT  
0
R/W  
R/W  
R/W  
R/W  
RST  
NAME  
DESCRIPTION  
2
1
1
0
MCS0  
MCS1  
MCS2  
Master Clock Select : Selects the ratio between the input I S  
sample frequency and the input clock.  
1
2
The STA306 will support sample rates of 32kHz, 44.1kHz, 48Khz, 88.2kHz, 96kHz, 176.4kHz, and 192kHz.  
Therefore the internal clock will be:  
– 65.536Mhz for 32kHz  
– 90.3168Mhz for 44.1khz, 88.2kHz, and 176.4kHz  
– 98.304Mhz for 48kHz, 96kHz, and 192kHz  
The external clock frequency provided to the XTI pin must be a multiple of the input sample frequency(fs). The  
relationship between the input clock and the input sample rate is determined by both the MCSx and the IRx (In-  
put Rate) register bits. The MCSx bits determine the PLL factor generating the internal clock and the IRx bits  
determine the oversampling ratio used internally.  
Input Sample Rate  
IR  
MCS(2..0)  
fs (kHz)  
1xx  
128fs  
64fs  
64fs  
011  
010  
001  
000  
32, 44.1, 48  
88.2, 96  
00  
01  
10  
256fs  
128fs  
128fs  
384fs  
192fs  
192fs  
512fs  
256fs  
256fs  
768fs  
384fs  
384fs  
176.4, 192  
3.0.2 Interpolation Ratio Select  
BIT  
3
R/W  
R/W  
R/W  
RST  
NAME  
IR0  
DESCRIPTION  
2
0
0
Interpolation Ratio Select : Selects internal interpolation ratio based on input I S  
sample frequency  
4
IR1  
The STA306 has variable interpolation (oversampling) settings such that internal processing and DDX output  
rates remain consistent. The first processing block interpolates by either 4 times, 2 times, or 1 time (pass-  
through). The IR bits determine the oversampling ratio of this interpolation.  
Table 2. IR bit settings as a function of Input Sample Rate.  
st  
Input Sample Rate Fs  
IR(1,0)  
1
Stage Interpolation Ratio  
4 times oversampling  
4 times oversampling  
4 times oversampling  
2 times oversampling  
2 times oversampling  
Pass-Through  
32kHz  
44.1kHz  
48kHz  
00  
00  
00  
01  
01  
10  
10  
88.2kHz  
96kHz  
176.4kHz  
192kHz  
Pass-Through  
11/33  
STA306  
3.0.3 Bass Management Enable  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
5
R/W  
0
BME  
Bass Management Enable : 0 – No Bass Management  
1 – Bass Management operation on channel 6, scale and add inputs  
Channel 6 of the STA306 features a bass management mode that enables redirection of information in all other  
channels to this channel and which can then be filtered appropriately using the EQ(Biquad) section. Setting the  
BME bit selects the output of the scale and mix block for channel 6 instead of the output of the channel mapping  
block. The settings for the scale and mix block are provided by the CxBMS registers  
3.0.4 Max Power Correction  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
7
R/W  
1
MPC  
Max Power Correction : Setting of 1 enables DDX correction for THD reduction  
near maximum power output.  
Setting the MPC bit turns on special processing that corrects the DDX power device at high power. This mode  
should lower the THD+N of a full DDX system at maximum power output and slightly below. This mode will only  
be operational in OM= 00 or 10.  
3.1 Configuration Register B (address 01h)  
BIT  
NAME  
RST  
D7  
DRC  
0
D6  
ZCE  
1
D5  
SAIFB  
0
D4  
SAI2  
0
D3  
SAI1  
0
D2  
SAI0  
0
D1  
ZDE  
1
D0  
DSPB  
0
3.1.1 DSP Bypass  
BIT  
R/W  
RST  
NAME  
DSPB  
DESCRIPTION  
0
R/W  
0
DSP Bypass Bit : 0 – Normal Operation  
1 – Bypass of Biquad and Bass/Treble Functionality  
Setting the DSPB bit bypasses the biquad and bass/treble functionality of the STA306.  
3.1.2 Zero-Detect Mute Enable  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
1
R/W  
1
ZDE  
Zero-Detect Mute Enable : Setting of 1 enables the  
automatic zero-detect mute  
Setting the ZDE bit enables the zero-detect automatic mute.  
The zero-detect circuit looks at the input data to each processing channel after the channel mapping block. If  
any channel receives 2048 consecutive zero value samples (regardless of fs) then that individual channel is  
muted if this function is enabled.  
12/33  
STA306  
Serial Audio Input Interface Format  
BIT  
R/W  
R/W  
R/W  
R/W  
RST  
NAME  
SAI0  
SAI1  
SAI2  
DESCRIPTION  
2
0
0
0
Serial Audio Input Interface Format : Determines the  
interface format of the input serial digital audio interface.  
3
4
The STA306 features a configurable digital serial audio interface. The settings of the SAIx bits determine how  
the input to this interface is interpreted. Six formats are accepted.  
Table 3. Interface format as a function of SAI bits.  
SAI(2..0)  
Interface Format  
2
000  
I S  
001  
010  
011  
100  
101  
Left-Justified Data  
Right-Justified 16-bit Data  
Right-Justified 18-bit Data  
Right-Justified 20-bit Data  
Right-Justified 24-bit Data  
Figure 2. Serial Audio Signals  
SAI=000 I2S  
Left  
Right  
LRCLK  
SCLK  
MSB  
LSB  
MSB  
LSB  
MSB  
SDATA  
SAI=001 Left Justified  
Left  
Right  
LRCLK  
SCLK  
SDATA  
MSB  
LSB  
MSB  
LSB  
MSB  
SAI=010 to 101 Right Justified  
Left  
Right  
LRCLK  
SCLK  
SDATA  
MSB  
LSB  
MSB  
LSB  
MSB  
13/33  
STA306  
3.1.3 Serial Audio Input Interface First Bit  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
5
R/W  
0
SAIFB  
Determines MSB or LSB first for all SAI formats  
0 – MSB First, 1 – LSB First  
3.1.4 Zero-Crossing Volume Enable  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
Zero-Crossing Volume Enable :  
6
R/W  
1
ZCE  
1 – Volume adjustments will only occur at digital zero-crossings  
0 – Volume adjustments will occur immediately  
The ZCE bit enables zero-crossing volume adjustments. When volume is adjusted on digital zero-crossings,  
"zipper noise" is eliminated  
3.1.5 Dynamic Range Compression/Anti-Clipping Bit  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
7
R/W  
0
DRC  
Dynamic Range Compression/Anti-Clipping  
0 – Limiters act in Anti-Clipping Mode  
1- Limiters act in Dynamic Range Compression Mode  
Both limiters can be used in one of two ways, anti-clipping or dynamic range compression. When used in anti-  
clipping mode the limiter threshold values are constant and dependent on the gain/attenuation settings applied  
to the input signal. In dynamic range compression mode the limiter threshold values vary with the volume set-  
tings allowing for limiting to occur independently of the gain/attenuation but dependent on the input signal  
3.2 Configuration Register C (address 02h)  
BIT  
NAME  
RST  
D7  
HPB  
0
D6  
RES  
1
D5  
RES  
1
D4  
RES  
1
D3  
RES  
1
D2  
RES  
1
D1  
OM1  
0
D0  
OM0  
0
3.2.1 DDX Power Output Mode  
BIT  
0
R/W  
R/W  
R/W  
RST  
NAME  
OM0  
DESCRIPTION  
DDX Power Output Mode : Selects configuration of DDX output.  
0
0
1
OM1  
The DDX Power Output Mode selects how the DDX output timing is configured. Different power devices use  
different output modes. The DDX recommended use is OM = 00. The variable mode uses the OMVx bits for  
adjustment  
OM(1,0)  
00  
Output Stage - Mode  
Fixed Compensation  
RESERVED  
01  
10  
Full Power Mode recommended for STA500 and STA505  
RESERVED  
11  
14/33  
STA306  
3.2.2 High-Pass Filter Bypass  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
7
R/W  
0
HPB  
High-Pass Filter Bypass Bit. Setting of one bypasses internal AC  
coupling digital high-pass filter  
The STA306 features an internal digital high-pass filter for the purpose of AC coupling. The purpose of this filter  
is to prevent DC signals from passing through a DDX amplifier. DC signals can cause speaker damage  
3.3 Configuration Register D (address 03h)  
BIT  
NAME  
RST  
D7  
BQL  
0
D6  
PSL  
0
D5  
COS1  
1
D4  
COS0  
0
D3  
C78BO  
0
D2  
C56BO  
0
D1  
C34BO  
0
D0  
C12BO  
0
3.3.1 Binary Output Enable Registers  
BIT  
0
R/W  
R/W  
R/W  
R/W  
R/W  
RST  
NAME  
C12BO  
C34BO  
C56BO  
C78BO  
DESCRIPTION  
0
0
0
0
Channels 1&2, 3&4, 5&6 Binary Output Mode Enable Bits. A  
setting of 0 indicates ordinary DDX tri-state output. A setting  
of 1 indicates binary output mode.  
1
2
3
Each two-channel pair of outputs can be set to output a binary PWM stream. In this mode, output A  
of a channel will be considered the positive output and output B is negative inverse. For example, setting C34BO  
= 1 sets channels 3&4 to Binary Output (PWM) Mode.  
3.3.2 Clock Output Select  
BIT  
4
R/W  
R/W  
R/W  
RST  
NAME  
COS0  
COS1  
DESCRIPTION  
Clock Output Select  
Clock Output Select  
0
1
5
The Clock Output Select register selects the frequency of the clock output pin relative to the PLL clock output.  
The PLL clock runs at 2048fs for 32, 44.1, and 48kHz, at 1024fs for 88.2kHz and 96 kHz, and at 512fs for  
176.4kHz and 192kHz.  
COS(1,0)  
CKOUT Frequency  
PLL Output/4  
01  
10  
11  
PLL Output/8  
PLL Output/16  
3.3.3 Post-Scale Link  
BIT  
R/W  
RST  
NAME  
PSL  
DESCRIPTION  
6
R/W  
0
Post-Scale Link :0 – Each Channel uses individual Post-Scale value  
1 - Each Channel uses Channel 1 Post-Scale value  
For multi-channel applications, the post-scale values can be linked to the value of channel 1 for ease of use and  
update the values faster.  
15/33  
STA306  
3.3.4 Biquad Coefficient Link  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
7
R/W  
0
BQL  
Biquad Link :  
0 – Each Channel uses coefficient values  
1- Each Channel uses Channel 1 coefficient values  
For ease of use, all channels can use the biquad coefficients loaded into the Channel 1 Coefficient RAM space  
by setting the BQL bit to 1. Then any EQ updates would only have to be performed once.  
3.4 Configuration Register E (address 04h)  
BIT  
NAME  
RST  
D7  
RES  
0
D6  
SAOFB  
0
D5  
SAO2  
0
D4  
SAO1  
0
D3  
SAO0  
0
D2  
DEMP  
0
D1  
VOLEN  
1
D0  
MIXE  
0
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
0
R/W  
0
MIXE  
Mix Enable: 0 – Normal Operation  
1 - Adjacent Channel Mix Mode  
The scale and mix functionality can be used to mix adjacent channels instead of for bass management. By set-  
ting this bit(BME must be set to 0) odd channels will be mixed with their adjacent even channel and output in  
the place of the even channel. The odd channel wills pass-through unscaled. The values used for this function  
are the same as for bass management. Since this function occurs post channel mapping a large number of  
possibilities are present for two channel mixing. Up to four mixed channels can be obtained.  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
1
R/W  
1
VOLEN Volume Enable: 0 – Volume Operation Bypassed  
1 - Volume Operation Normal  
When VOLEN set to 1, volume operation is normal. When set to 0, volume operation is bypassed and the vol-  
ume stages are all set to pass-through. This also eliminates the digital volume offset of ~-0.6dB that is used to  
map full-scale digital input to full DDX modulation output.  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
2
R/W  
0
DEMP  
Deemphasis : 0 – No Deemphasis, 1- Deemphasis  
By setting this bit to one deemphasis will implemented on all channels. When this is used it takes the place of  
biquad #1 in each channel and any coefficients using biquad #1 will be ignored. DSPB(DSP Bypass) bit must  
be set to 0 for Deemphasis to function.  
BIT  
3
R/W  
R/W  
R/W  
R/W  
RST  
NAME  
SAO0  
SAO1  
SAO2  
DESCRIPTION  
0
0
0
Serial Audio Output Interface Format : Determines the interface  
format of the output serial digital audio interface.  
4
5
The STA306 features a configurable digital serial audio interface. The settings of the SAIx bits determine how  
the output to this interface is interpreted. Six formats are accepted.  
16/33  
STA306  
Table 4. Interface format as a function of SAO bits.  
SAO(2..0)  
Interface Format  
2
000  
I S  
001  
010  
011  
100  
101  
Left-Justified Data  
Right-Justified 16-bit Data  
Right-Justified 18-bit Data  
Right-Justified 20-bit Data  
Right-Justified 24-bit Data  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
6
R/W  
0
SAOFB  
Determines MSB or LSB first for all SAO formats;  
0 – MSB First  
1 – LSB First  
3.5 Configuration Register F (address 05h)  
BIT  
NAME  
RST  
D7  
EAPD  
0
D6  
D5  
D4  
D3  
AME  
0
D2  
COD  
0
D1  
SID  
0
D0  
PWMD  
0
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
0
R/W  
0
PWMD PWM Output Disable: 0 – PWM Output Normal  
1- No PWM Output  
2
2
1
R/W  
0
SID  
Serial Interface(I S Out) Disable: 0 – I S Output Normal  
2
1- No I S Output  
2
3
R/W  
R/W  
0
0
COD  
AME  
Clock Output Disable: 0 – Clock Output Normal  
1- No Clock Output  
AM Mode Enable : 0 – Normal DDX operation.  
1 – AM reduction mode DDX operation.  
The STA306 features a DDX processing mode that minimizes the amount of noise generated in frequency range  
of AM radio. This mode is intended to be used when DDX is operating in a device with an AM tuner active. The  
SNR of the DDX processing is reduced to ~83dB in this mode, which is still greater than the SNR of AM radio.  
BIT R/W RST NAME  
DESCRIPTION  
7
R/W EAPD External Amplifier Power Down:  
0
0 – External Power Stage Power Down Active  
1 - Normal Operation  
This output bit, on pin 51 of the device, is used to mute the DDX Power Devices for Power-Down.  
3.6 Master Mute Register (address 06h)  
BIT  
NAME  
RST  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MMUTE  
0
17/33  
STA306  
3.7 Master Volume Register (address 07h)  
BIT  
NAME  
RST  
D7  
MV7  
1
D6  
MV6  
1
D5  
MV5  
1
D4  
MV4  
1
D3  
MV3  
1
D2  
MV2  
1
D1  
MV1  
1
D0  
MV0  
1
3.8 Channels 1,2,3,4,5,6 Mute (address 08h)  
BIT  
NAME  
RST  
D7  
C8M  
0
D6  
C7M  
0
D5  
C6M  
0
D4  
C5M  
0
D3  
C4M  
0
D2  
C3M  
0
D1  
C2M  
0
D0  
C1M  
0
3.9 Channel 1 Volume (address 09h)  
BIT  
NAME  
RST  
D7  
C1V7  
0
D6  
C1V6  
0
D5  
C1V5  
1
D4  
C1V4  
1
D3  
C1V3  
0
D2  
C1V2  
0
D1  
C1V1  
0
D0  
C1V0  
0
3.10 Channel 2 Volume (address 0Ah)  
BIT  
NAME  
RST  
D7  
C2V7  
0
D6  
C2V6  
0
D5  
C2V5  
1
D4  
C2V4  
1
D3  
C2V3  
0
D2  
C2V2  
0
D1  
C2V1  
0
D0  
C2V0  
0
3.11 Channel 3 Volume (address 0Bh)  
BIT  
NAME  
RST  
D7  
C3V7  
D6  
C3V6  
0
D5  
C3V5  
D4  
D3  
D2  
D1  
D0  
C3V4  
C3V3  
C3V2  
C3V1  
C3V0  
0
1
1
0
0
0
0
3.12 Channel 4 Volume (address 0Ch)  
BIT  
NAME  
RST  
D7  
C4V7  
0
D6  
C4V6  
0
D5  
C4V5  
1
D4  
C4V4  
1
D3  
C4V3  
0
D2  
C4V2  
0
D1  
C4V1  
0
D0  
C4V0  
0
3.13 Channel 5 Volume (address 0Dh)  
BIT  
NAME  
RST  
D7  
C5V7  
0
D6  
C5V6  
0
D5  
C5V5  
1
D4  
C5V4  
1
D3  
C5V3  
0
D2  
C5V2  
0
D1  
C5V1  
0
D0  
C5V0  
0
18/33  
STA306  
3.14 Channel 6 Volume (address 0Eh)  
BIT  
NAME  
RST  
D7  
C6V7  
0
D6  
C6V6  
0
D5  
C6V5  
1
D4  
C6V4  
1
D3  
C6V3  
0
D2  
C6V2  
0
D1  
C6V1  
0
D0  
C6V0  
0
The Volume structure of the STA306 consists of individual volume registers for each channel and a master vol-  
ume register that provides an offset to each channels volume setting. The individual channel volumes are ad-  
justable in 0.5dB steps from +24dB to -103dB. As an example if C5V = 0Bh or +18.5dB and MV = 21h or -  
16.5dB, then the total gain for channel 5 = +2dB. The Master Mute when set to 1 will mute all channels at once,  
whereas the individual channel mutes(CxM) will mute only that channel. Both the Master Mute and the Channel  
Mutes provide a "soft mute" with the volume ramping down to mute in 8192 samples from the maximum volume  
setting at the internal processing rate(~192kHz). A "hard mute" can be obtained by commanding a value of all  
1's(255) to any channel volume register or the master volume register. When volume offsets are provided via  
the master volume register any channel that whose total volume is less than -103dB will be muted. All changes  
in volume take place at zero-crossings when ZCE = 1(configuration register B) on a per channel basis as this  
creates the smoothest possible volume transitions. When ZCE=0, volume updates will occur immediately.  
19/33  
STA306  
Table 5. Master Volume Offset as a function of MV(7..0).  
MV(7..0)  
00000000(00h)  
00000001(01h)  
00000010(02h)  
Volume Offset from Channel Value  
0dB  
-0.5dB  
-1dB  
-38dB  
01001100(4Ch)  
11111110(FEh)  
11111111(FFh)  
-127dB  
Hard Master Mute  
Channel Volume as a function of CxV(7..0)  
CxV(7..0)  
00000000(00h)  
00000001(01h)  
00000010(02h)  
Volume  
+24dB  
+23.5dB  
+23dB  
00101111(2Fh)  
00110000(30h)  
00110001(31h)  
+0.5dB  
0dB  
-0.5dB  
11111110(FEh)  
11111111(FFh)  
-103dB  
Hard Channel Mute  
3.15 Channel Input Mapping Channels 1 & 2 (address 11h)  
BIT  
NAME  
RST  
D7  
D6  
C2IM2  
0
D5  
C2IM1  
0
D4  
C2IM0  
1
D3  
D3  
D3  
D2  
C1IM2  
0
D1  
C1IM1  
0
D0  
C1IM0  
0
3.16 Channel Input Mapping Channels 3 & 4 (address 12h)  
BIT  
NAME  
RST  
D7  
D6  
C4IM2  
0
D5  
C4IM1  
1
D4  
C4IM0  
1
D2  
C3IM2  
0
D1  
C3IM1  
1
D0  
C3IM0  
0
3.17 Channel Input Mapping Channels 5 & 6 (address 13h)  
BIT  
NAME  
RST  
D7  
D6  
C6IM2  
1
D5  
C6IM1  
0
D4  
C6IM0  
1
D2  
C5IM2  
1
D1  
C5IM1  
0
D0  
C5IM0  
0
20/33  
STA306  
Each channel received via I2S can be mapped to any internal processing channel via the Channel Input Map-  
ping registers. This allows for flexibility in processing, simplifies output stage designs, and enables the ability  
to perform crossovers. The default settings of these registers map each I2S input channel to its corresponding  
processing channel.  
For example, to map input 2 to Channel 5, set Address 11h, bits D6, D5 and D4 to 100. Now, inputs 2 and 5 go  
to Channel 5.  
Table 6. Channel Mapping as a function of CxIM bits  
2
CxIM(2..0)  
I S Input Mapped to:  
Channel 1  
000  
001  
010  
011  
100  
101  
Channel 1  
Channel 2  
Channel 3  
Channel 4  
Channel 5  
Channel 6  
6:1  
Channel 2  
Mux  
Channel X  
Channel 3  
Channel 4  
3
CxIM(2..0)  
Channel 5  
Channel 6  
STA306 Output Phasing  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
1/384kHz or 2.874us  
21/33  
STA306  
3.18 Channel Limiter Select Channels 1,2,3,4 (address 15h)  
BIT  
NAME  
RST  
D7  
C4LS1  
0
D6  
C4LS0  
0
D5  
C3LS1  
0
D4  
C3LS0  
0
D3  
C2LS1  
0
D2  
C2LS0  
0
D1  
C1LS1  
0
D0  
C1LS0  
0
3.19 Channel Limiter Select Channels 5,6 (address 16h)  
BIT  
NAME  
RST  
D7  
C8LS1  
0
D6  
C8LS0  
0
D5  
C7LS1  
0
D4  
C7LS0  
0
D3  
C6LS1  
0
D2  
C6LS0  
0
D1  
C5LS1  
0
D0  
C5LS0  
0
3.20 Limiter 1 Attack/Release Rate (address 17h)  
BIT  
NAME  
RST  
D7  
L1R3  
1
D6  
L1R2  
0
D5  
L1R1  
1
D4  
L1R0  
0
D3  
L1A3  
0
D2  
L1A2  
1
D1  
L1A1  
1
D0  
L1A0  
0
3.21 Limiter 1 Attack/Release Threshold (address 18h)  
BIT  
NAME  
RST  
D7  
L1AT3  
0
D6  
L1AT2  
1
D5  
L1AT1  
1
D4  
L1AT0  
0
D3  
L1RT3  
0
D2  
L1RT2  
1
D1  
L1RT1  
1
D0  
L1RT0  
1
3.22 Limiter 2 Attack/Release Rate (address 19h)  
BIT  
NAME  
RST  
D7  
L2R3  
1
D6  
L2R2  
0
D5  
L2R1  
1
D4  
L2R0  
0
D3  
L2A3  
0
D2  
L2A2  
1
D1  
L2A1  
1
D0  
L2A0  
0
3.23 Limiter 2 Attack/Release Threshold (address 1Ah)  
BIT  
NAME  
RST  
D7  
L2AT3  
0
D6  
L2AT2  
1
D5  
L2AT1  
1
D4  
L2AT0  
0
D3  
L2RT3  
0
D2  
L2RT2  
1
D1  
L2RT1  
1
D0  
L2RT0  
1
22/33  
STA306  
Basic Limiter and Volume Flow Diagram  
.
Limiter  
RMS  
Gain/Volume  
Input  
Gain  
Output  
Attenuation  
Saturation  
A limiter is basically a variable gain device, where the amount of gain applied depends on the input signal level.  
As the name implies, compression limits the dynamic range of the signal.  
The STA306 includes 2 independent limiter blocks.  
The purpose of the limiters is to automatically reduce the dynamic range of the input signal to prevent the out-  
puts from clipping in anti-clipping mode or to actively reduce the dynamic range for a better listening environ-  
ment such as a night-time listening mode which is often needed for DVDs. The two modes are selected via the  
DRC bit in Configuration Register B; address 0x02, bit 7.  
Each channel can be mapped to either limiter or not mapped. Non-mapped channels will clip when 0dBFS is  
exceeded. Each limiter will look at the present value of each channel that is mapped to it, select the maximum  
absolute value of all these channels, perform the limiting algorithm on that value, and then, if needed, adjust the  
gain of the mapped channels in unison.  
The limiter attack thresholds are determined by the LxAT registers. It is recommended in anti-clipping mode to  
set this to 0dBFS, which corresponds to the maximum unclipped output power of a DDX amplifier. Since gain  
can be added digitally within the STA306 it is possible to exceed 0dBFS or any other LxAT setting. When this  
occurs, the limiter, when active, will automatically start reducing the gain. The rate at which the gain is reduced  
when the attack threshold is exceeded is dependent upon the attack rate register setting for that limiter. The  
gain reduction occurs on a peak-detect algorithm.  
The release of limiter (uncompression), when the gain is again increased, is dependent on a RMS-detect algo-  
rithm. The output of the volume/limiter block is passed through a RMS filter. The output of this filter is compared  
to the release threshold, determined by the Release Threshold register. When the RMS filter output falls below  
the release threshold, the gain is again increased (uncompressed) at a rate dependent upon the Release Rate  
register. The gain can never be increased past its set value and therefore the release will only occur if the limiter  
has already reduced the gain.  
The release threshold value can be used to set what is effectively a minimum dynamic range, this is helpful as  
over-limiting can reduce the dynamic range to virtually zero and cause program material to sound "lifeless". In  
AC mode the attack and release thresholds are set relative to full-scale. In DRC mode the attack threshold is  
set relative to the maximum volume setting of the channels mapped to that limiter and the release threshold is  
set relative to the maximum volume setting plus the attack threshold.  
Table 7. Channel Limiter Mapping as a function of CxLS bits.  
CxLS(1,0)  
Channel Limiter Mapping  
Channel has limiting disabled  
00  
01  
10  
Channel is mapped to limiter #1  
Channel is mapped to limiter #2  
23/33  
STA306  
Table 8. Limiter Attack Rate as a function of LxA bits.  
LxA(3..0)  
Attack Rate dB/ms  
0001  
0010  
0011  
LxA(3..0)  
1.3536  
0.9024  
0.4512  
0.2256  
0.1504  
0.1123  
0.0902  
0.0752  
0.0645  
0.0564  
0.0501  
0.0451  
0000  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
note: Shaded areas are Default Settings  
Table 9. Limiter Release Rate and Uncompression Threshold as a function of LxR bits  
LxR(3..0)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Release Rate dB/ms  
0.5116  
0.1370  
0.0744  
0.0499  
0.0360  
0.0299  
0.0264  
0.0208  
0.0198  
0.0172  
0.0147  
0.0137  
0.0134  
0.0117  
0.0110  
0.0104  
24/33  
STA306  
Table 10. Limiter Attack Threshold as a function of LxAT bits.  
LxAT(3..0)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
AC(dB relative to FS)  
DRC(db relative to Volume)  
-12  
-10  
-8  
-22  
-20  
-18  
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
+2  
+3  
+4  
+5  
+6  
+7  
+8  
+9  
+10  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
Table 11. Limiter Release Threshold as a function of LxRT bits  
LxRT(3..0)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
AC(dB relative to FS)  
DRC(db relative to Volume + LxAT)  
-23dB  
-33dB  
-16.9dB  
-13.4dB  
-10.9dB  
-9.0dB  
-26.9dB  
-23.4dB  
-20.9dB  
-19.0dB  
-17.4dB  
-16.0dB  
-14.9dB  
-13.8dB  
-12.9dB  
-12.1dB  
-11.3dB  
-10.65dB  
-10dB  
-7.4dB  
-6.0dB  
-4.9dB  
-3.8dB  
-2.9dB  
-2.1dB  
-1.3dB  
-0.65dB  
0dB  
+0.6dB  
-9.4dBdB  
25/33  
STA306  
3.24 Bass and Treble Tone Control(address 1Bh)  
BIT  
NAME  
RST  
D7  
TTC3  
0
D6  
TTC2  
1
D5  
TTC1  
1
D4  
TTC0  
1
D3  
BTC3  
0
D2  
BTC2  
1
D1  
BTC1  
1
D0  
BTC0  
1
The STA306 contains bass and treble tone control adjustments. These are selectable from +12dB to -12dB of  
boost or cut. These are 1st order shelving filters with a corner frequency of 150Hz for bass and 3kHz for treble.  
Any gain introduced in the tone controls will carry through to the volume and limiting block without saturation.  
Table 12. Tone Control Boost/Cut as a function of BTC and TTC bits  
BTC(3..0)/TTC(3..0)  
Boost/Cut  
-12dB  
-12dB  
0000  
0001  
0111  
0110  
0111  
1000  
1001  
-4dB  
-2dB  
0dB  
+2dB  
+4dB  
1101  
1110  
1111  
+12dB  
+12dB  
+12dB  
3.25 Coefficient Address Register (address 1Ch)  
BIT  
NAME  
RST  
D7  
CFA7  
0
D6  
CFA6  
0
D5  
CFA5  
0
D4  
CFA4  
0
D3  
CFA3  
0
D2  
CFA2  
0
D1  
CFA1  
0
D0  
CFA0  
0
3.26 Coefficient b2 Data Register Bits 23..16 (address 1Dh)  
BIT  
NAME  
RST  
D7  
C1B23  
0
D6  
C1B22  
0
D5  
C1B21  
0
D4  
C1B20  
0
D3  
C1B19  
0
D2  
C1B18  
0
D1  
C1B17  
0
D0  
C1B16  
0
3.27 Coefficient b2 Data Register Bits 15..8 (address 1Eh)  
BIT  
NAME  
RST  
D7  
C1B15  
0
D6  
C1B14  
0
D5  
C1B13  
0
D4  
C1B12  
0
D3  
C1B11  
0
D2  
C1B10  
0
D1  
C1B9  
0
D0  
C1B8  
0
26/33  
STA306  
3.28 Coefficient b2 Data Register Bits 7..0 (address 1Fh)  
BIT  
NAME  
RST  
D7  
C1B7  
0
D6  
C1B6  
0
D5  
C1B5  
0
D4  
C1B4  
0
D3  
C1B3  
0
D2  
C1B2  
0
D1  
C1B1  
0
D0  
C1B0  
0
3.29 Coefficient b0 Data Register Bits 23..16 (address 20h)  
BIT  
NAME  
RST  
D7  
C2B23  
0
D6  
C2B22  
0
D5  
C2B21  
0
D4  
C2B20  
0
D3  
C2B19  
0
D2  
C2B18  
0
D1  
C2B17  
0
D0  
C2B16  
0
3.30 Coefficient b0 Data Register Bits 15..8 (address 21h)  
BIT  
NAME  
RST  
D7  
C2B15  
0
D6  
C2B14  
0
D5  
C2B13  
0
D4  
C2B12  
0
D3  
C2B11  
0
D2  
C2B10  
0
D1  
C2B9  
0
D0  
C2B8  
0
3.31 Coefficient b0 Data Register Bits 7..0 (address 22h)  
BIT  
NAME  
RST  
D7  
C2B7  
0
D6  
C2B6  
0
D5  
C2B5  
0
D4  
C2B4  
0
D3  
C2B3  
0
D2  
C2B2  
0
D1  
C2B1  
0
D0  
C2B0  
0
3.32 Coefficient a2 Data Register Bits 23..16 (address 23h)  
BIT  
NAME  
RST  
D7  
C3B23  
0
D6  
C3B22  
0
D5  
C3B21  
0
D4  
C3B20  
0
D3  
C3B19  
0
D2  
C3B18  
0
D1  
C3B17  
0
D0  
C3B16  
0
3.33 Coefficient a2 Data Register Bits 15..8 (address 24h)  
BIT  
NAME  
RST  
D7  
C3B15  
0
D6  
C3B14  
0
D5  
C3B13  
0
D4  
C3B12  
0
D3  
C3B11  
0
D2  
C3B10  
0
D1  
C3B9  
0
D0  
C3B8  
0
3.34 Coefficient a2 Data Register Bits 7..0 (address 25h)  
BIT  
NAME  
RST  
D7  
C3B7  
0
D6  
C3B6  
0
D5  
C3B5  
0
D4  
C3B4  
0
D3  
C3B3  
0
D2  
C3B2  
0
D1  
C3B1  
0
D0  
C3B0  
0
3.35 Coefficient a1 Data Register Bits 23..16 (address 26h)  
BIT  
NAME  
RST  
D7  
C4B23  
0
D6  
C4B22  
0
D5  
C4B21  
0
D4  
C4B20  
0
D3  
C4B19  
0
D2  
C4B18  
0
D1  
C4B17  
0
D0  
C4B16  
0
27/33  
STA306  
3.36 Coefficient a1 Data Register Bits 15..8 (address 27h)  
BIT  
NAME  
RST  
D7  
C4B15  
0
D6  
C4B14  
0
D5  
C4B13  
0
D4  
C4B12  
0
D3  
C4B11  
0
D2  
C4B10  
0
D1  
C4B9  
0
D0  
C4B8  
0
3.37 Coefficient a1 Data Register Bits 7..0 (address 28h)  
BIT  
NAME  
RST  
D7  
C4B7  
0
D6  
C4B6  
0
D5  
C4B5  
0
D4  
C4B4  
0
D3  
C4B3  
0
D2  
C4B2  
0
D1  
C4B1  
0
D0  
C4B0  
0
3.38 Coefficient b1 Data Register Bits 23..16 (address 29h)  
BIT  
NAME  
RST  
D7  
C5B23  
0
D6  
C5B22  
0
D5  
C5B21  
0
D4  
C5B20  
0
D3  
C5B19  
0
D2  
C5B18  
0
D1  
C5B17  
0
D0  
C5B16  
0
3.39 Coefficient b1 Data Register Bits 15..8 (address 2Ah)  
BIT  
NAME  
RST  
D7  
C5B15  
0
D6  
C5B14  
0
D5  
C5B13  
0
D4  
C5B12  
0
D3  
C5B11  
0
D2  
C5B10  
0
D1  
C5B9  
0
D0  
C5B8  
0
3.40 Coefficient b1 Data Register Bits 7..0 (address 2Bh)  
BIT  
NAME  
RST  
D7  
C5B7  
0
D6  
C5B6  
0
D5  
C5B5  
0
D4  
C5B4  
0
D3  
C5B3  
0
D2  
C5B2  
0
D1  
C5B1  
0
D0  
C5B0  
0
3.41 Coefficient Write Control Register (address 2Ch)  
BIT  
NAME  
RST  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
WA  
W1  
Coefficients for EQ and Bass Management are handled internally in the STA306 via RAM. Access to this RAM  
is available to the user via an I2C register interface. A collection of I2C registers is dedicated to this function.  
One contains a coefficient base address, five sets of three store the values of the 24-bit coefficients to be written  
or that were read, and one contains bits used to control the writing of the coefficient(s) to RAM. The following  
are step instructions for reading and writing coefficients.  
Reading a coefficient from RAM  
– write 8-bit address to I2C register 1Ch  
– ead top 8-bits of coefficient in I2C address 1Dh  
– ead middle 8-bits of coefficient in I2C address 1Eh  
– ead bottom 8-bits of coefficient in I2C address 1Fh  
28/33  
STA306  
Writing a single coefficient to RAM  
– write 8-bit address to I2C register 1Ch  
– write top 8-bits of coefficient in I2C address 1Dh  
– write middle 8-bits of coefficient in I2C address 1Eh  
– write bottom 8-bits of coefficient in I2C address 1Fh  
– write 1 to W1 bit in I2C address 2Bh  
Writing a set of coefficients to RAM  
– write 8-bit starting address to I2C register 1Ch  
– write top 8-bits of coefficient b2 in I2C address 1Dh  
– write middle 8-bits of coefficient b2 in I2C address 1Eh  
– write bottom 8-bits of coefficient b2 in I2C address 1Fh  
– write top 8-bits of coefficient b0 in I2C address 20h  
– write middle 8-bits of coefficient b0 in I2C address 21h  
– write bottom 8-bits of coefficient b0 in I2C address 22h  
– write top 8-bits of coefficient a2 in I2C address 23h  
– write middle 8-bits of coefficient a2 in I2C address 24h  
– write bottom 8-bits of coefficient a2 in I2C address 25h  
– write top 8-bits of coefficient a1 in I2C address 26h  
– write middle 8-bits of coefficient a1 in I2C address 27h  
– write bottom 8-bits of coefficient a1 in I2C address 28h  
– write top 8-bits of coefficient b1 in I2C address 29h  
– write middle 8-bits of coefficient b1 in I2C address 2Ah  
– write bottom 8-bits of coefficient b1 in I2C address 2Bh  
– write 1 to WA bit in I2C address 2Ch  
The mechanism for writing a set of coefficients to RAM provides a method of updating the five coefficients cor-  
responding to a given biquad (filter) simultaneously to avoid possible unpleasant acoustic side effects. When  
using this technique, the 8-bit address would specify the address of the biquad b2 coefficient (e.g. 0, 5, 10, 15,  
…, 50, … 195 decimal), and the STA306 will generate the RAM addresses as offsets from this base value to  
write the complete set of coefficient data.  
Equalization:  
Figure 3. Data Flow for single channel Biquad / Bass / Treble block.:  
From  
To  
1st Interpolation  
Stage  
Volume/  
Limiter  
Bass/  
Treble  
PreScale  
Biquad1  
Biquad2  
Biquad3  
Biquad4  
Biquad5  
Five user-programmable 28-bit biquads are available per channel in the STA306. These biquads run at 192kHz  
for 48kHz, 96kHz, or 192kHz input and at 176.4kHz for 44.1kHz, 88.2kHz, and 176.4kHz input. The PreScale  
block is used for attenuation when filters are to be designed that boost frequencies above 0dBFS. This is a  
29/33  
STA306  
single 28-bit signed multiply, with 800000h = -1 and 7FFFFFh = 0.9999998808. These values are labeled  
CxPS, with x representing the channel. The biquads use this equation:  
Y[n] = 2(b0/2)X[n] + 2(b1/2)X[n-1] + b2X[n-2] - 2(a1/2)Y[n-1] - a2Y[n-2]  
= b0X[n] + b1X[n-1] + b2X[n-2] - a1Y[n-1] - a2Y[n-2]  
Y[n] represents the output and X[n] represents the input. Coefficients are defined in the following manner:  
CxHx0 = b2  
CxHx1 = b0/2  
CxHx2 = -a2  
CxHx3 = -a1/2  
CxHx4 = b1/2  
The first x represents the channel and the second the biquad number. For example C3H41 is the b0/2 coeffi-  
cient in the fourth series biquad in channel 3. The biquad link bit allows all channels to use the coefficients of  
channel 1.  
Bass Management  
Channel 6 provides the ability to scale and mix all channels before the biquad block. This allows for information  
from any channel to be redirected to this channel and then filtered appropriately for a subwoofer application.  
When the BME bit is set (bit D5 of Configuration Register A, at address 00h) the input to the biquad section is  
routed from the scale and mix block instead of the normal channel 6 1st stage interpolation output.  
Eight scaling coefficients are provided to perform this function. They are labeled CxBMS with x representing the  
channel that is being scaled. Each input channel is multiplied by its corresponding scale factor and summed.  
The output of the summation is the output of the scale and mix block.  
Post-Scale  
The STA306 provides one additional multiplication after the last interpolation stage and before the distortion  
compensation on each channel. This is a 24-bit signed fractional multiply. The scale factor for this multiply is  
loaded into RAM using the same I2C registers as the biquad coefficients and the bass-management. All chan-  
nels can use the channel 1 by setting the post-scale link bit.  
RAM Block for Biquads and Bass Management:  
Index  
(Decimal)  
Index  
(Hex)  
Coefficient  
Default  
000000h  
0
00h  
01h  
02h  
03h  
04h  
05h  
Channel 1 - Biquad 1  
C1H10(b  
2)  
C1H11(b0/2)  
C1H12(a2)  
C1H13(a1/2)  
C1H14(b1/2)  
C1H20  
1
3FFFFFh  
000000h  
000000h  
000000h  
000000h  
2
3
4
5
Channel 1 - Biquad 2  
30/33  
STA306  
24  
18h  
19h  
1Ah  
Channel 1 - Biquad 5  
Channel 2 - Biquad 1  
C1H54  
C2H10  
C2H11  
000000h  
25  
000000h  
3FFFFFh  
26  
45  
2Dh  
Distortion Compensation  
DCC 23…0  
000000h  
49  
31h  
32h  
Channel 2 - Biquad 5  
C2H54  
C3H10  
000000h  
000000h  
50  
Channel 3 - Biquad 1  
200  
201  
202  
C8h  
C9h  
CAh  
Channel 1 - Pre-Scale  
C1PS  
C2PS  
C3PS  
800000h  
800000h  
800000h  
Channel 2 – Pre-Scale  
Channel 3 – Pre-Scale  
208  
209  
D0h  
D1h  
Channel 1 – BassM Scale  
C1BMS  
C2BMS  
000000h  
000000h  
Channel 2 – BassM Scale  
216  
217  
D8h  
D9h  
Channel 1 – Post-Scale  
C1PS  
C2PS  
800000h  
800000h  
Channel 2 – Post-Scale  
224  
F0h  
Not Used  
255  
FFh  
Not Used  
31/33  
STA306  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN. TYP. MAX. MIN.  
TYP. MAX.  
0.063  
A
1.60  
A1  
A2  
B
0.05  
0.15 0.002  
0.006  
1.35  
0.17  
0.09  
1.40  
0.22  
1.45 0.053 0.055 0.057  
0.27 0.0066 0.0086 0.0086  
0.0035  
C
D
11.80 12.00 12.20 0.464 0.472 0.480  
9.80 10.00 10.20 0.386 0.394 0.401  
D1  
D3  
e
7.50  
0.50  
0.295  
0.0197  
E
11.80 12.00 12.20 0.464 0.472 0.480  
9.80 10.00 10.20 0.386 0.394 0.401  
E1  
E3  
L
7.50  
0.60  
1.00  
0.295  
0.75 0.0177 0.0236 0.0295  
0.0393  
0.45  
L1  
K
TQFP64 (10 x 10 x 1.4mm)  
0˚ (min.), 3.5˚ (min.), 7˚(max.)  
0.080  
ccc  
0.0031  
D
D1  
D3  
A
A2  
A1  
48  
33  
32  
49  
0.08mm  
ccc  
Seating Plane  
17  
16  
64  
1
C
e
K
TQFP64  
0051434 E  
32/33  
STA306  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2003 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
33/33  

相关型号:

STA308

MULTICHANNEL DIGITAL AUDIO PROCESSOR WITH DDX⑩
STMICROELECTR

STA30813TR

1 CHANNEL(S), TONE CONTROL CIRCUIT, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, TQFP-64
STMICROELECTR

STA308A

PNP Darlington General purpose
SANKEN

STA308A

Multi-channel digital audio processor with DDX TM
STMICROELECTR

STA308A

Power Bipolar Transistor, 4A I(C), 120V V(BR)CEO, 3-Element, PNP, Silicon, Plastic/Epoxy, 8 Pin, STA300, 8 PIN
ALLEGRO

STA308A_07

Multi-channel digital audio processor with DDX TM
STMICROELECTR

STA309A

Multi-channel digital audio processor with DDX
STMICROELECTR

STA309A

PNP Darlington General purpose/3-phase motor drive
SANKEN

STA309A_07

Multi-channel digital audio processor with DDX
STMICROELECTR

STA309B

Multichannel digital audio processor with FFX®
STMICROELECTR

STA310

6+2-CH. MULTISTANDARD AUDIO DECODER
STMICROELECTR

STA311B

Multichannel digital audio processor with FFXTM
STMICROELECTR