STA350B [STMICROELECTRONICS]

声音终端2.1通道高效数字音频系统;
STA350B
型号: STA350B
厂家: ST    ST
描述:

声音终端2.1通道高效数字音频系统

放大器 消费电路 音频放大器 视频放大器
文件: 总86页 (文件大小:1977K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STA350BW  
Sound Terminal®  
2.1-channel high-efficiency digital audio system  
Datasheet production data  
Features  
Wide-range supply voltage  
– 5 V to 26 V (operating range)  
– 30 V (absolute maximum rating)  
(a)  
Four power output configurations  
PowerSSO-36  
– 2 channels of ternary PWM (stereo mode)  
with exposed pad down (EPD)  
(2 x 50 W into 6 Ω at 25 V)  
Automatic zero-detect mute  
– 3 channels - left, right using binary and LFE  
using ternary PWM (2.1 mode) (2 x 18 W +  
1 x 40 W into 2 x 4 Ω, 1 x 8 Ω at 25 V)  
– 2 channels of ternary PWM (2 x 50 W) +  
stereo lineout ternary  
Automatic invalid input-detect mute  
2
I S input data interface  
Input and output channel mapping  
Up to 8 user-programmable biquads per  
– 1 channel of ternary PWM as mono-BTL  
channel  
(1 x 90 W into 3 Ω at 24.5 V)  
3 coefficient banks for EQ presets storing with  
FFX 100 dB SNR and dynamic range  
2
fast recall via I C interface  
Selectable 32 to 192 kHz input sample rates  
Extended coefficient dynamic up to -4..4 for  
2
I C control with selectable device address  
easy implementation of high shelf filters  
Digital gain/attenuation +42 dB to -80 dB with  
Bass/treble tones and de-emphasis control  
Selectable high-pass filter for DC blocking  
0.125 dB/step resolution  
Soft-volume update with programmable ratio  
Individual channel and master gain/attenuation  
Two independent DRCs configurable as a  
Advanced AM interference frequency  
switching and noise suppression modes  
Selectable high or low bandwidth  
2
dual-band anti-clipper (B DRC) or independent  
noise-shaping topologies  
limiters/compressors  
Selectable clock input ratio  
EQ-DRC for DRC based on filtered signals  
96 kHz internal processing sample rate with  
quantization error noise shaping for very low  
cutoff frequency filters  
Dedicated LFE processing for bass boosting  
with 0.125 dB/step resolution  
Audio presets:  
Thermal overload and short-circuit protection  
– 15 preset crossover filters  
– 5 preset anti-clipping modes  
– Preset nighttime listening mode  
embedded  
Video apps: 576 x Fs input mode supported  
Fully compatible with STA339BW and  
Individual channel and master soft/hard mute  
Independent channel volume and DSP bypass  
STA339BWS  
a. Music output power with THD = 10%, using ST’s recommended board, see Section 4:  
Characterization curves for more details.  
April 2012  
Doc ID 018572 Rev 3  
1/86  
This is information on a product in full production.  
www.st.com  
1
Contents  
STA350BW  
Contents  
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.1  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.1  
2.2  
Connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3
4
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.1  
3.2  
3.3  
3.4  
3.5  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Electrical specifications for the digital section . . . . . . . . . . . . . . . . . . . . . 15  
Electrical specifications for the power section . . . . . . . . . . . . . . . . . . . . . 16  
Characterization curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.1  
Mono parallel BTL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5
6
Processing data paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2
I C bus specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.1  
Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
Data transition or change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.2  
6.3  
Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6.3.1  
6.3.2  
Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Multi-byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6.4  
Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6.4.1  
6.4.2  
6.4.3  
Current address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Current address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Random address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2/86  
Doc ID 018572 Rev 3  
STA350BW  
Contents  
6.4.4  
6.4.5  
6.4.6  
Random address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Write mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Read mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.1  
Configuration register A (addr 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
7.1.1  
7.1.2  
7.1.3  
7.1.4  
7.1.5  
Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Interpolation ratio select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
7.2  
Configuration register B (addr 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
Serial audio input interface format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Serial data interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Serial data first bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7.3  
7.4  
Configuration register C (addr 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7.3.1  
7.3.2  
7.3.3  
FFX power output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
FFX compensating pulse size register . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Overcurrent warning detect adjustment bypass . . . . . . . . . . . . . . . . . . . 40  
Configuration register D (addr 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
7.4.5  
7.4.6  
7.4.7  
7.4.8  
High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
De-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Post-scale link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Dynamic range compression/anti-clipping bit . . . . . . . . . . . . . . . . . . . . 41  
Zero-detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Submix mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.5  
Configuration register E (addr 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.5.5  
7.5.6  
Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Noise-shaper bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
AM mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Distortion compensation variable enable . . . . . . . . . . . . . . . . . . . . . . . . 43  
Doc ID 018572 Rev 3  
3/86  
Contents  
STA350BW  
7.5.7  
7.5.8  
Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Soft-volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
7.6  
Configuration register F (addr 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
7.6.1  
7.6.2  
7.6.3  
7.6.4  
7.6.5  
7.6.6  
7.6.7  
Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Binary output mode clock loss detection . . . . . . . . . . . . . . . . . . . . . . . . 50  
LRCK double trigger protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Auto EAPD on clock loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
IC power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
External amplifier power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
7.7  
Volume control registers (addr 0x06 - 0x0A) . . . . . . . . . . . . . . . . . . . . . . 51  
7.7.1  
7.7.2  
7.7.3  
7.7.4  
7.7.5  
Mute/line output configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Master volume register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Channel 1 volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Channel 2 volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Channel 3 / line output volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
7.8  
7.9  
Audio preset registers (addr 0x0B and 0x0C) . . . . . . . . . . . . . . . . . . . . . 53  
7.8.1  
7.8.2  
7.8.3  
7.8.4  
Audio preset register 1 (addr 0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Audio preset register 2 (addr 0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
AM interference frequency switching . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Bass management crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Channel configuration registers (addr 0x0E - 0x10) . . . . . . . . . . . . . . . . . 55  
7.9.1  
7.9.2  
7.9.3  
7.9.4  
7.9.5  
7.9.6  
Tone control bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
EQ bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Volume bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Binary output enable registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Limiter select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Output mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
7.10 Tone control register (addr 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
7.10.1 Tone control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
7.11 Dynamic control registers (addr 0x12 - 0x15) . . . . . . . . . . . . . . . . . . . . . 57  
7.11.1 Limiter 1 attack/release rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
7.11.2 Limiter 1 attack/release threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
7.11.3 Limiter 2 attack/release rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
7.11.4 Limiter 2 attack/release threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
7.11.5 Limiter 1 extended attack threshold (addr 0x32) . . . . . . . . . . . . . . . . . . 61  
4/86  
Doc ID 018572 Rev 3  
STA350BW  
Contents  
7.11.6 Limiter 1 extended release threshold (addr 0x33) . . . . . . . . . . . . . . . . . 61  
7.11.7 Limiter 2 extended attack threshold (addr 0x34 . . . . . . . . . . . . . . . . . . ) 62  
7.11.8 Limiter 2 extended release threshold (addr 0x35) . . . . . . . . . . . . . . . . . 62  
7.12 User-defined coefficient control registers (addr 0x16 - 0x26) . . . . . . . . . . 62  
7.12.1 Coefficient address register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
7.12.2 Coefficient b1 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
7.12.3 Coefficient b1 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
7.12.4 Coefficient b1 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
7.12.5 Coefficient b2 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.12.6 Coefficient b2 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.12.7 Coefficient b2 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.12.8 Coefficient a1 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.12.9 Coefficient a1 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.12.10 Coefficient a1 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.12.11 Coefficient a2 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.12.12 Coefficient a2 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
7.12.13 Coefficient a2 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
7.12.14 Coefficient b0 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
7.12.15 Coefficient b0 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
7.12.16 Coefficient b0 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
7.12.17 Coefficient write/read control register . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
7.12.18 User-defined EQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
7.12.19 Pre-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
7.12.20 Post-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
7.12.21 Overcurrent post-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
7.13 Variable max power correction registers (addr 0x27 - 0x28) . . . . . . . . . . 69  
7.14 Variable distortion compensation registers (addr 0x29 - 0x2A) . . . . . . . . 69  
7.15 Fault detect recovery constant registers (addr 0x2B - 0x2C) . . . . . . . . . . 70  
7.16 Device status register (addr 0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
7.17 EQ coefficients and DRC configuration register (addr 0x31) . . . . . . . . . . 71  
7.18 Extended configuration register (addr 0x36) . . . . . . . . . . . . . . . . . . . . . . 72  
7.18.1 Dual-band DRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
7.18.2 EQ DRC mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
7.18.3 Extended post-scale range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
7.18.4 Extended attack rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
7.18.5 Extended BIQUAD selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Doc ID 018572 Rev 3  
5/86  
Contents  
STA350BW  
7.19 EQ soft-volume configuration registers (addr 0x37 - 0x38) . . . . . . . . . . . 75  
7.20 DRC RMS filter coefficients (addr 0x39-0x3E) . . . . . . . . . . . . . . . . . . . . . 76  
7.21 Extra volume resolution configuration registers (address 0x3F) . . . . . . . 77  
7.22 Quantization error noise correction (address 0x48) . . . . . . . . . . . . . . . . . 78  
7.23 Extended coefficient range up to -4...4 (address 0x49, 0x4A) . . . . . . . . . 79  
7.24 Miscellaneous registers (address 0x4B, 0x4C) . . . . . . . . . . . . . . . . . . . . 80  
7.24.1 Rate powerdown enable (RPDNEN) bit (address 0x4B, bit D7) . . . . . . 80  
7.24.2 Noise-shaping on DC cut filter enable (NSHHPEN) bit (address 0x4B, bit  
D6) 80  
7.24.3 Bridge immediate off (BRIDGOFF) bit (address 0x4B, bit D5) . . . . . . . 80  
7.24.4 Channel PWM enable (CPWMEN) bit (address 0x4B, bit D2) . . . . . . . . 81  
7.24.5 Power-down delay selector (PNDLSL[2:0]) bits  
(address 0x4C, bit D4, D3, D2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
8
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
9
10  
6/86  
Doc ID 018572 Rev 3  
STA350BW  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Electrical specifications - digital section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Electrical specifications - power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Input sampling rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Internal interpolation ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
IR bit settings as a function of input sample rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Serial audio input interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Serial data first bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Support serial audio input formats for MSB-first (SAIFB = 0) . . . . . . . . . . . . . . . . . . . . . . . 36  
Supported serial audio input formats for LSB-first (SAIFB = 1) . . . . . . . . . . . . . . . . . . . . . 37  
Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Channel input mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
FFX power output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Output modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
FFX compensating pulse size bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Compensating pulse size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Overcurrent warning bypass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
De-emphasis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Post-scale link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Dynamic range compression/anti-clipping bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Zero-detect mute enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Submix mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Noise-shaper bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
AM mode enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Distortion compensation variable enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Soft-volume update enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Output configuration engine selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Binary output mode clock loss detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
LRCK double trigger protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Auto EAPD on clock loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
IC power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Doc ID 018572 Rev 3  
7/86  
List of tables  
STA350BW  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
External amplifier power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Line output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Master volume offset as a function of MV[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Channel volume as a function of CxV[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Audio preset gain compression/limiters selection for AMGC[3:2] = 00. . . . . . . . . . . . . . . . 53  
AM interference frequency switching bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Audio preset AM switching frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Bass management crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Bass management crossover frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Tone control bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
EQ bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Binary output enable registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Channel limiter mapping as a function of CxLS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Channel output mapping as a function of CxOM bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Tone control boost/cut as a function of BTC and TTC bits . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Limiter attack rate as a function of LxA bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Limiter release rate as a function of LxR bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Limiter attack threshold as a function of LxAT bits (AC-mode). . . . . . . . . . . . . . . . . . . . . . 60  
Limiter release threshold as a function of LxRT bits (AC-mode) . . . . . . . . . . . . . . . . . . . . 60  
Limiter attack threshold as a function of LxAT bits (DRC -mode). . . . . . . . . . . . . . . . . . . . 61  
Limiter release threshold as a as a function of LxRT bits (DRC-mode) . . . . . . . . . . . . . . . 61  
RAM block for biquads, mixing, scaling and bass management. . . . . . . . . . . . . . . . . . . . . 68  
Status register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
EQ RAM select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Anti-clipping and DRC preset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Anti-clipping selection for AMGC[3:2] = 01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Biquad filter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
PowerSSO-36 EPD dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
8/86  
Doc ID 018572 Rev 3  
STA350BW  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Pin connection PowerSSO-36 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Demonstration board, 2.0 channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Mono parallel BTL schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
THD+N vs. output power (V = 25 V, load = 6 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
CC  
THD+N vs. output power (V = 18 V, load = 8 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
CC  
Output power vs. V (load = 6 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
CC  
Output power vs. V (load = 8 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
CC  
Figure 10. Efficiency vs. output power (V = 25 V, load = 6 Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
CC  
Figure 11. Efficiency vs. output power (V = 25 V, load = 8 Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
CC  
Figure 12. THD+N vs. output power (V = 25 V, load = 3 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
CC  
Figure 13. Output power vs. V (load = 3 Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
CC  
Figure 14. Efficiency vs. output power (V = 26 V, load = 3 Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
CC  
Figure 15. Efficiency vs. output power (V = 18 V, load = 3 Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
CC  
Figure 16. Left and right processing - part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 17. Processing - part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 18. Write mode sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 19. Read mode sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 20. OCFG = 00 (default value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 21. OCFG = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 22. OCFG = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 23. OCFG = 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 24. Output mapping scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 25. 2.0 channels (OCFG = 00) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 26. 2.1 channels (OCFG = 01) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 27. 2.1 channels (OCFG = 10) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 28. Basic limiter and volume flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
2
Figure 29. B DRC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 30. EQDRC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 31. Extra resolution volume scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 32. Biquad filter structure with quantization error noise-shaping . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 33. Double-layer PCB with 2 copper ground areas and 24 via holes . . . . . . . . . . . . . . . . . . . 82  
Figure 34. PowerSSO-36 power derating curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 35. PowerSSO-36 EPD outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Doc ID 018572 Rev 3  
9/86  
Description  
STA350BW  
1
Description  
The STA350BW is an integrated solution of digital audio processing, digital amplifier control,  
and FFX-power output stage, thereby creating a high-power single-chip FFX solution  
comprising high-quality, high-efficiency, and all-digital amplification.  
The STA350BW is based on an FFX (fully flexible amplification) processor, a proprietary  
technology from STMicroelectronics. FFX is the evolution and the enlargement of ST’s  
ternary technology: the new processor can be configured to work in ternary, binary, binary  
differential and phase-shift PWM modulation schemes.  
The STA350BW contains the ternary, binary and binary differential implementations, a  
subset of the full capability of the FFX processor.  
®
The STA350BW is part of the Sound Terminal family that provides full digital audio  
streaming to the speaker, offering cost effectiveness, low power dissipation and sound  
enrichment.  
The STA350BW power section consists of four independent half-bridges. These can be  
configured via digital control to operate in different modes. 2.1 channels can be provided by  
two half-bridges and a single full-bridge, providing up to 2 x 18 W + 1 x 40 W of music output  
power, by using standard 4 and 8 Ω speakers. Two channels can be provided by two full-  
bridges, providing up to 2 x 50 W of music power, by using standard 6 Ω speaker or  
2 x 40 W by using 8 Ω speakers at 25 V. The IC can also be configured as 2.1 channels with  
2 x 40 W provided by the device and external power for FFX power drive. If configured as  
mono-BTL, the latter is capable of providing up to 1 x 90 W on a standard 3 Ω load or  
1 x 75 W by using a 4 Ω, setting the supply voltage at 25 V. Please refer to the package  
thermal characteristics and application suggestions for more details.  
Also provided in the STA350BW are a full assortment of digital processing features. This  
includes up to 8 programmable biquads (EQ) per channel. Special digital signal processing  
techniques are available in order to manage low-frequency quantization noise in case of  
very low frequency cutoff filter thresholds. The coefficient range -4..4 allows the easy  
implementation of high shelf filters. Available presets allow the advantage of earlier time-to-  
market by substantially reducing the amount of software development needed for certain  
functions. This includes audio preset volume loudness, preset volume curves and preset EQ  
settings. There are also new advanced AM radio interference reduction modes. Dual-band  
DRC dynamically equalizes the system to provide speaker linear frequency response  
regardless of output power level. This feature independently processes the two bands,  
controlling dynamically the output power level in each band and so providing better sound  
clarity.  
2
The serial audio data input interface accepts all possible formats, including the popular I S  
format. Three channels of FFX processing are provided. This high-quality conversion from  
PCM audio to FFX PWM switching waveform provides over 100 dB SNR and dynamic  
range.  
10/86  
Doc ID 018572 Rev 3  
STA350BW  
Description  
1.1  
Block diagram  
Figure 1.  
Block diagram  
2
I C  
Protection  
current/therm al  
2
I
S
Channel  
1A  
in ter fa ce  
Channel  
1B  
Logic  
Power  
control  
Vo lu me  
control  
FFX  
Channel  
2A  
Regulators  
Bias  
Channel  
2B  
PLL  
Digital DSP  
Power  
AM045167v1  
Doc ID 018572 Rev 3  
11/86  
Pin connections  
STA350BW  
2
Pin connections  
2.1  
Connection diagram  
Figure 2.  
Pin connection PowerSSO-36 (top view)  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
GND_SUB  
SA  
VDD_DIG  
GND_DIG  
SCL  
2
3
TEST_MODE  
VSS  
4
SDA  
5
VCC_REG  
OUT2B  
INT_LINE  
RESET  
6
7
GND2  
SDI  
8
VCC2  
LRCKI  
9
OUT2A  
BICKI  
10  
11  
12  
13  
14  
15  
16  
17  
18  
OUT1B  
XTI  
VCC1  
GND_PLL  
FILTER_PLL  
VDD_PLL  
PWRDN  
GND_DIG  
VDD_DIG  
TWARN/OUT4A  
EAPD/OUT4B  
GND1  
OUT1A  
GND_REG  
VDD  
CONFIG  
OUT3B/FFX3B  
OUT3A/FFX3A  
D05AU1638  
AM045168v1  
2.2  
Pin description  
Table 1.  
Pin  
Pin description  
Type Name  
GND  
Description  
1
2
3
4
5
6
7
8
9
10  
GND_SUB  
SA  
Substrate ground  
I2C select address (pull-down)  
I
I
TEST_MODE  
VSS  
This pin must be connected to ground (pull-down)  
Internal reference at Vcc-3.3 V  
Internal Vcc reference  
I/O  
I/O  
O
VCC_REG  
OUT2B  
GND2  
Output half-bridge 2B  
GND  
Power  
O
Power negative supply  
VCC2  
Power positive supply  
OUT2A  
OUT1B  
Output half-bridge 2A  
O
Output half-bridge 1B  
12/86  
Doc ID 018572 Rev 3  
STA350BW  
Pin connections  
Table 1.  
Pin  
Pin description (continued)  
Type  
Name  
Description  
11  
12  
13  
14  
15  
16  
17  
18  
19  
Power  
GND  
O
VCC1  
GND1  
Power positive supply  
Power negative supply  
Output half-bridge 1A  
OUT1A  
GND  
Power  
I
GND_REG  
VDD  
Internal ground reference  
Internal 3.3 V reference voltage  
Parallel mode command  
CONFIG  
O
OUT3B/FFX3B  
OUT3A/FFX3A  
EAPD/OUT4B  
PWM out CH3B / external bridge driver  
PWM out CH3A / external bridge driver  
O
O
Power-down for external bridge / PWM out CH4B  
Thermal warning from external bridge (pull-up when input)  
/ PWM out CH4A  
20  
I/O  
TWARN/OUT4A  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Power  
VDD_DIG  
GND_DIG  
PWRDN  
VDD_PLL  
FILTER_PLL  
GND_PLL  
XTI  
Digital supply voltage  
Digital ground  
GND  
I
Power down (pull-up)  
Positive supply for PLL  
Connection to PLL filter  
Negative supply for PLL  
PLL input clock  
Power  
I
GND  
I
I
BICKI  
I2S serial clock  
I
LRCKI  
I2S left/right clock  
I2S serial data channels 1 and 2  
Reset (pull-up)  
I
SDI  
I
RESET  
INT_LINE  
SDA  
O
Fault interrupt  
I/O  
I2C serial data  
I
SCL  
I2C serial clock  
GND  
Power  
GND_DIG  
VDD_DIG  
Digital ground  
Digital supply voltage  
Doc ID 018572 Rev 3  
13/86  
Electrical specifications  
STA350BW  
3
Electrical specifications  
3.1  
Absolute maximum ratings  
Table 2.  
Symbol  
Absolute maximum ratings  
Parameter  
Min  
Typ  
Max  
Unit  
Vcc  
Power supply voltage (VCCxA, VCCxB)  
-0.3  
-0.3  
-0.3  
-20  
30  
4
V
V
VDD_DIG Digital supply voltage  
VDD_PLL PLL supply voltage  
4
Top  
Operating junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
-40  
Warning: Stresses beyond those listed in Table 2 above may cause  
permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any  
other conditions beyond those indicated under  
“Recommended operating conditions” are not implied.  
Exposure to AMR conditions for extended periods may affect  
device reliability. In the real application, power supplies with  
nominal values rated within the recommended operating  
conditions may rise beyond the maximum operating  
conditions for a short time when no or very low current is  
sunk (amplifier in mute state). In this case the reliability of the  
device is guaranteed, provided that the absolute maximum  
ratings are not exceeded.  
3.2  
Thermal data  
Table 3.  
Symbol  
Thermal data  
Parameter  
Min  
Typ  
Max  
Unit  
Rth j-case  
Tth-sdj  
Thermal resistance junction-case (thermal pad)  
Thermal shutdown junction temperature  
Thermal warning temperature  
1.5  
°C/W  
°C  
150  
130  
20  
Tth-w  
°C  
Tth-sdh  
Rth j-amb  
Thermal shutdown hysteresis  
°C  
Thermal resistance junction-ambient (1)  
1. See Section 8: Package thermal characteristics on page 82 for details.  
14/86  
Doc ID 018572 Rev 3  
 
STA350BW  
Electrical specifications  
3.3  
Recommended operating conditions  
Table 4.  
Symbol  
Recommended operating conditions  
Parameter  
Min  
Typ  
Max  
Unit  
Vcc  
Power supply voltage (VCCxA, VCCxB)  
5
26  
3.6  
3.6  
+85  
V
V
VDD_DIG Digital supply voltage  
VDD_PLL PLL supply voltage  
2.7  
2.7  
-20  
3.3  
3.3  
V
Tamb  
Ambient temperature  
°C  
3.4  
Electrical specifications for the digital section  
Table 5.  
Symbol  
Electrical specifications - digital section  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Low-level input current without  
pull-up/down device  
Iil  
Vi = 0 V  
1
5
µA  
High-level input current without  
pull-up/down device  
Vi = VDD_DIG  
= 3.6 V  
Iih  
1
5
µA  
V
0.2 *  
VDD_DIG  
Vil  
Vih  
Vol  
Low-level input voltage  
High-level input voltage  
Low-level output voltage  
0.8 *  
VDD_DIG  
V
0.4 *  
VDD_DIG  
Iol=2 mA  
Ioh=2 mA  
V
0.8 *  
VDD_DIG  
Voh  
Ipu  
High-level output voltage  
Pull-up/down current  
V
25  
66  
50  
125  
µA  
kΩ  
Equivalent pull-up/down  
resistance  
Rpu  
Doc ID 018572 Rev 3  
15/86  
Electrical specifications  
STA350BW  
3.5  
Electrical specifications for the power section  
The specifications given in this section are valid for the operating conditions: V = 24 V,  
CC  
f = 1 kHz, f = 384 kHz, T  
= 25° C and R = 8 Ω, unless otherwise specified.  
sw  
amb  
L
Table 6.  
Symbol  
Electrical specifications - power section  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
THD = 1%  
THD = 10%  
THD = 1%  
THD = 10%  
27  
36  
Continuous output power, BTL, ternary  
mode  
W
Po  
12  
Continuous output power SE, binary  
W
mode, R = 4 Ω  
L
15.5  
Power Pchannel/Nchannel MOSFET (total  
bridge)  
RdsON  
ld = 1.5 A  
180  
250  
mΩ  
Idss  
ILDT  
IHDT  
tr  
Power Pchannel/Nchannel leakage  
Low current dead time (static)  
High current dead time (dynamic)  
Rise time  
VCC = 20 V  
10  
15  
30  
18  
18  
26  
μA  
ns  
ns  
ns  
ns  
V
Resistive load(1)  
I load(1) = 1.5 A  
Resistive load(1)  
Resistive load(1)  
8
15  
10  
10  
tf  
Fall time  
Vcc  
Supply voltage operating voltage  
Supply current from Vcc in power-down  
5
PWRDN = 0  
1
μA  
PCM input signal  
= -60 dBfs,  
Ivcc  
Supply current from Vcc in operation  
Switching frequency  
= 384 kHz,  
52  
60  
mA  
No LC filters  
Supply current FFX processing (reference Internal clock =  
Ivdd  
55  
70  
mA  
only)  
49.152 MHz  
(2)  
Ilim  
Isc  
Overcurrent limit  
3.0  
4.0  
3.8  
5.0  
4.0  
A
A
Short-circuit protection  
Undervoltage protection  
Overvoltage protection  
Output minimum pulse width  
Dynamic range  
Hi-Z output  
UVL  
OVP  
tmin  
DR  
4.3  
V
29  
100  
100  
100  
90  
V
No load  
ns  
dB  
dB  
dB  
Signal-to-noise ratio, ternary mode  
Signal-to-noise ratio binary mode  
A-Weighted  
SNR  
FFX stereo mode,  
Po = 1 W  
THD+N Total harmonic distortion + noise  
0.09  
%
f = 1 kHz  
16/86  
Doc ID 018572 Rev 3  
 
STA350BW  
Electrical specifications  
Table 6.  
Symbol  
Electrical specifications - power section (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
FFX stereo mode,  
<5 kHz  
One channel driven  
at 1 W  
XTALK  
Crosstalk  
80  
dB  
Other channel  
measured  
FFX stereo mode,  
<5 kHz  
PSRR  
Power Supply Rejection Ratio  
VRipple01V RMS  
80  
dB  
%
Audio input = dither  
only  
Po = 2 x 25 W  
into 8 Ω  
Peak efficiency, FFX mode  
90  
86  
η
Po = 2 x 10W into 4Ω  
+ 1 x 20W into 8 Ω  
Peak efficiency, binary modes  
1. Refer to Figure 3: Test circuit.  
2. Limit current if the register (OCRB Section 7.3.3) overcurrent warning detect adjustment bypass is enabled. When disabled  
refer to the Isc.  
Figure 3.  
Test circuit  
OUTxY  
VCC  
0.9*VCC  
Low current dead tim e = MAX(tr,tf)  
VCC/2  
0.1*VCC  
+VCC  
t
tr  
tf  
Duty cycle = 50%  
M P  
M N  
Ω
R= 8  
OUTxY  
INxY  
+
-
vdc = VCC/2  
GND  
AM045169v1  
Doc ID 018572 Rev 3  
17/86  
 
Characterization curves  
STA350BW  
4
Characterization curves  
The following characterization curves were made using the STA350BW demonstration  
board with 2.0 channels (refer to the schematic in Figure 6) under the following test  
conditions:  
V
= 25 V, f = 1 kHz, f  
= 384 kHz, Tamb = 25 °C and RL = 6 Ω, unless otherwise  
CC  
SW  
specified.  
Figure 4.  
Demonstration board, 2.0 channels  
AM045290v1  
18/86  
Doc ID 018572 Rev 3  
 
STA350BW  
Characterization curves  
Figure 5.  
Mono parallel BTL schematic  
AM045170v1  
Doc ID 018572 Rev 3  
19/86  
 
Characterization curves  
Figure 6.  
STA350BW  
THD+N vs. output power (V = 25 V, load = 6 Ω)  
CC  
10  
5
2
1
Vcc=25V , Load = 6Ω,  
Freq= 1KHz  
0.5  
%
0.2  
0.1  
0.05  
0.02  
0.01  
1m  
2m  
5m 10m 20m  
50m 100m 200m  
500m  
1
2
5
10  
20  
50 100  
W
AM045171v1  
Figure 7.  
THD+N vs. output power (V = 18 V, load = 8 Ω)  
CC  
10  
5
2
1
Vcc=18V , Load = 8Ω,  
Freq= 1KHz  
0.5  
%
0.2  
0.1  
0.05  
0.02  
0.01  
1m  
2m  
5m  
10m 20m  
50m 100m 200m  
W
500m  
1
2
5
10  
20  
50  
AM045172v1  
20/86  
Doc ID 018572 Rev 3  
STA350BW  
Characterization curves  
Figure 8.  
Output power vs. V (load = 6 Ω)  
CC  
60  
55  
50  
Load= 6 Ω,  
Freq=1KHz  
45  
40  
35  
THD = 10%  
W
30  
25  
20  
15  
10  
THD = 1%  
5
+6  
+8  
+10  
+12  
+14  
+16  
Vdc  
+18  
+20  
+22  
+24  
+26  
AM045173v1  
Figure 9.  
Output power vs. V (load = 8 Ω)  
CC  
50  
45  
Load= 8 Ω,  
Freq=1KHz  
40  
35  
30  
THD = 10%  
W
25  
20  
15  
10  
5
THD = 1%  
+6  
+8  
+10  
+12  
+14  
+16  
Vdc  
+18  
+20  
+22  
+24  
+26  
AM045174v1  
Doc ID 018572 Rev 3  
21/86  
Characterization curves  
STA350BW  
Figure 10. Efficiency vs. output power (V = 25 V, load = 6 Ω)  
CC  
+1  
+0.9  
+0.8  
+0.7  
+0.6  
+0.5  
+0.4  
+0.3  
+0.2  
+0.1  
η %  
Vcc= 25V,  
Load= 6 Ω,  
Freq=1KHz  
+0  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
W
AM045175v1  
Figure 11. Efficiency vs. output power (V = 25 V, load = 8 Ω)  
CC  
+1  
+0.9  
+0.8  
+0.7  
+0.6  
η %  
+0.5  
Vcc= 25V,  
Load= 8 Ω,  
+0.4  
Freq=1KHz  
+0.3  
+0.2  
+0.1  
+0  
5
10  
15  
20  
25  
30  
35  
40  
45  
W
AM045176v1  
22/86  
Doc ID 018572 Rev 3  
STA350BW  
Characterization curves  
4.1  
Mono parallel BTL characteristics  
Figure 12. THD+N vs. output power (V = 25 V, load = 3 Ω)  
CC  
10  
5
Vcc=25V  
2
Load= 3 Ω,  
1
Freq=1KHz  
0.5  
%
0.2  
0.1  
0.05  
0.02  
0.01  
1m  
2m  
5m 10m 20m  
50m 100m 200m 500m  
W
1
2
5
10  
20  
50  
100  
AM045177v1  
Figure 13. Output power vs. V (load = 3 Ω)  
CC  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
THD=10%  
Load= 3 Ω,  
Freq=1KHz  
W
THD=1%  
10  
+6  
+8  
+10  
+12  
+14  
+16  
Vdc  
+18  
+20  
+22  
+24  
+26  
AM045178v1  
Doc ID 018572 Rev 3  
23/86  
Characterization curves  
STA350BW  
Figure 14. Efficiency vs. output power (V = 26 V, load = 3 Ω)  
CC  
+1  
+0.9  
+0.8  
+0.7  
+0.6  
+0.5  
+0.4  
+0.3  
+0.2  
+0.1  
η %  
Vcc= 26V  
Load= 3 Ω,  
Freq=1KHz  
+0  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
W
AM045179v1  
Figure 15. Efficiency vs. output power (V = 18 V, load = 3 Ω)  
CC  
+1  
+0.9  
+0.8  
+0.7  
+0.6  
+0.5  
+0.4  
+0.3  
+0.2  
+0.1  
η %  
Vcc=18V  
Load= 3 Ω,  
Freq=1KHz  
+0  
5
10  
15  
20  
25  
W
30  
35  
40  
45  
50  
AM045180v1  
24/86  
Doc ID 018572 Rev 3  
STA350BW  
Processing data paths  
5
Processing data paths  
Figure 16 and 17 illustrate the data processing paths inside the STA350BW.  
The whole processing chain is composed of two consecutive sections. In the first one dual-  
channel processing is implemented, as described below, and then each channel is fed into  
the post-mixing block allowing to generate either a third channel (typically used in 2.1 output  
configuration and with crossover filters enabled) or to have the channels processed by the  
dual-band DRC block (2.0 output configuration with crossover filters used to define the cutoff  
frequency of the two bands).  
The first section begins with a 2x oversampling FIR filter allowing for 2*Fs audio processing.  
Then a selectable high-pass filter removes the DC level (enabled if HFB=0).  
The channel 1 and 2 processing chain can include up to 8 filters, depending on the selected  
configuration (bits BQL, BQ5, BQ6, BQ7 and XO[3:0]).  
By default 4 independent filters per channel are enabled, plus the pre-configured De-  
Emphasis, Bass and Treble controls (BQL=0, BQ5=0, BQ6=0, BQ7=0).  
If the coefficient sets are linked (BQL=1) it’s then possible to use De-Emphasis, Bass and  
Treble filter in a user-defined configuration (provided the relevant BQx bits are set). In other  
words both channels will use the same processing coefficients and can have up to 7 filters  
each. Note that if BQL=0 the BQx bits are ignored and the 5th, 6th and 7th filters are  
configured as, respectively, De-Emphasis, Bass and Treble controls.  
Moreover the common 8th filter, from the subsequent processing section, can be available  
on both channels (provided the pre-defined crossover frequencies are not used, XO[3:0]=0,  
and the dual-band DRC is not used).  
2
In the second section mixing and crossover filters are available. If B DRC is not enabled  
(Figure 17), they are fully user-programmable and allow generating a third channel (2.1  
2
outputs). Alternatively, in B DRC mode, those blocks will be used to split the sub-band and  
define the cutoff frequencies of the two bands. A prescaler and a final post scaler allow full  
control over the signal dynamic respectively before and after the filtering stages. A mixer  
function is also available.  
Figure 16. Left and right processing - part 1  
Sampling  
frequency=Fs  
Sampling  
frequency=2xFs  
If BQ5=1  
If BQ6=1 IF BQ7=1  
and BQL=1 and BQL=1 and BQL=1  
Biquad  
Biquad  
Biquad  
#5  
#6  
#7  
x2  
Hi-Pass  
Filter  
Biquad  
#1  
Biquad  
#2  
Biquad  
#3  
Biquad  
#4  
FIR  
PreScale  
L
Bass  
Treble  
De-Emph.  
over  
sampling  
If HPB=0  
If C1TCB=0  
BTC: Bass Boost/Cut  
TTC: Treble Boost/Cut  
User Defined Filters  
If DEMP=0  
If BQ5=1  
From  
I2S input  
interface  
If DSPB=0 and C1EQBP=0  
If BQ6=1 IF BQ7=1  
and BQL=1 and BQL=1 and BQL=1  
Biquad  
Biquad  
Biquad  
#5  
#6  
#7  
x2  
Hi-Pass  
Biquad  
#1  
Biquad  
Biquad  
#3  
Biquad  
#4  
FIR  
PreScale  
R
Bass  
Treble  
De-Emph.  
If DEMP=0  
Filter  
#2  
over  
sampling  
If HPB=0  
If C2TCB=0  
BTC: Bass Boost/Cut  
TTC: Treble Boost/Cut  
User Defined Filters  
If DSPB=0 and C2EQBP=0  
AM045181v1  
Doc ID 018572 Rev 3  
25/86  
 
Processing data paths  
Figure 17. Processing - part 2  
STA350BW  
Dual-band DRC enabled  
CH3  
DRC2  
Volume  
C1Mx1=
0x7fffff  
L
DRC1  
B2DRC  
Post scale  
CH1  
+
Hi-pass  
-
-
+
+
filter  
Volume  
+
+
C1Mx2=  
0x00000  
R
C2Mx1=  
0x000000  
B2DRC  
Post scale  
CH2  
+
DRC1  
DRC2  
Hi-pass  
Volume  
filter  
C2Mx2=  
0x7fffff  
C3Mx1=  
0x40000  
CH3  
Volume  
+
C3Mx2=  
0x400000  
User-Defined Mix Coefficients  
Crossover Frequency determined by XO Setting  
User Defined If XO=0000  
Dual-band DRC disabled  
C1Mx1  
L
Channel ½  
Biquad #5  
Vol  
And  
Limiter  
Post scale  
+
--------------  
Hi-pass XO  
C1Mx2  
filter  
R
C2Mx1  
Channel ½  
Biquad #5  
Vol  
And  
Post scale  
+
--------------  
Hi-pass XO  
filter  
Limiter  
C2Mx2  
C3Mx1  
Channel 3  
Vol  
And  
Limiter  
Biquad  
Post scale  
+
--------------  
Low-pass XO  
C3Mx2  
filter  
User-Defined Mix Coefficients  
Crossover Frequency determined by XO Setting  
User Defined If XO=0000  
AM045182v1  
26/86  
Doc ID 018572 Rev 3  
2
STA350BW  
I C bus specification  
2
6
I C bus specification  
2
The STA350BW supports the I C protocol via the input ports SCL and SDA_IN (master to  
slave) and the output port SDA_OUT (slave to master). This protocol defines any device that  
sends data to the bus as a transmitter and any device that reads the data as a receiver. The  
device that controls the data transfer is known as the master and the other as the slave. The  
master always starts the transfer and provides data to the serial clock for synchronization.  
The STA350BW is always a slave device in all of its communications. It supports up to  
2
2
400 kb/sec rate (fast-mode bit rate). The STA350BW I C is a slave-only interface. The I C  
interface works properly only in the case that the master clock generated by the PLL has a  
frequency 10 times higher compared to the frequency of the applied SCL signal.  
6.1  
Communication protocol  
6.1.1  
Data transition or change  
Data changes on the SDA line must only occur when the SCL clock is low. An SDA transition  
while the clock is high is used to identify a START or STOP condition.  
6.1.2  
6.1.3  
6.1.4  
Start condition  
START is identified by a high-to-low transition of the data bus SDA signal while the clock  
signal SCL is stable in the high state. A START condition must precede any command for  
data transfer.  
Stop condition  
STOP is identified by a low-to-high transition of the data bus SDA signal while the clock  
signal SCL is stable in the high state. A STOP condition terminates communication between  
the STA350BW and the bus master.  
Data input  
During data input the STA350BW samples the SDA signal on the rising edge of clock SCL.  
For correct device operation the SDA signal must be stable during the rising edge of the  
clock and the data can change only when the SCL line is low.  
6.2  
Device addressing  
To start communication between the master and the STA350BW, the master must initiate a  
start condition. Following this, the master sends 8 bits (MSB first) corresponding to the  
device select address and read or write mode to the SDA line.  
2
The seven most significant bits are the device address identifiers, corresponding to the I C  
2
bus definition. In the STA350BW the I C interface has two device addresses depending on  
the SA port configuration, 0x38 when SA = 0, and 0x3A when SA = 1.  
The eighth bit (LSB) identifies the read or write operation RW, this bit is set to 1 in read  
mode and to 0 for write mode. After a START condition the STA350BW identifies on the bus  
the device address and if a match is found, it acknowledges the identification on the SDA  
Doc ID 018572 Rev 3  
27/86  
2
I C bus specification  
STA350BW  
bus during the 9th bit time. The byte following the device identification byte is the internal  
space address.  
6.3  
Write operation  
Following the START condition the master sends a device select code with the RW bit set  
to 0. The STA350BW acknowledges this and then writes the byte of the internal address.  
After receiving the internal byte address the STA350BW again responds with an  
acknowledgement.  
6.3.1  
6.3.2  
Byte write  
In the byte write mode the master sends one data byte which is acknowledged by the  
STA350BW. The master then terminates the transfer by generating a STOP condition.  
Multi-byte write  
The multi-byte write modes can start from any internal address. The master generating a  
STOP condition terminates the transfer.  
6.4  
Read operation  
6.4.1  
Current address byte read  
Following the START condition the master sends a device select code with the RW bit set  
to 1. The STA350BW acknowledges this and then responds by sending one byte of data.  
The master then terminates the transfer by generating a STOP condition.  
6.4.2  
6.4.3  
Current address multi-byte read  
The multi-byte read modes can start from any internal address. Sequential data bytes are  
read from sequential addresses within the STA350BW. The master acknowledges each  
data byte read and then generates a STOP condition, terminating the transfer.  
Random address byte read  
Following the START condition the master sends a device select code with the RW bit set  
to 0. The STA350BW acknowledges this and then the master writes the internal address  
byte. After receiving the internal byte address, the STA350BW again responds with an  
acknowledgement. The master then initiates another START condition and sends the device  
select code with the RW bit set to 1. The STA350BW acknowledges this and then responds  
by sending one byte of data. The master then terminates the transfer by generating a STOP  
condition.  
6.4.4  
Random address multi-byte read  
The multi-byte read modes can start from any internal address. Sequential data bytes are  
read from sequential addresses within the STA350BW. The master acknowledges each  
data byte read and then generates a STOP condition, terminating the transfer.  
28/86  
Doc ID 018572 Rev 3  
2
STA350BW  
I C bus specification  
6.4.5  
Write mode sequence  
Figure 18. Write mode sequence  
ACK  
ACK  
ACK  
ACK  
ACK  
BYTE  
WRITE  
DEV-ADDR  
DEV-ADDR  
SUB-ADDR  
DATA IN  
DATA IN  
START  
START  
RW  
STOP  
ACK  
ACK  
MULTIBYTE  
WRITE  
SUB-ADDR  
DATA IN  
RW  
STOP  
AM045183v1  
6.4.6  
Read mode sequence  
Figure 19. Read mode sequence  
ACK  
NO ACK  
CURRENT  
ADDRESS  
READ  
DEV-ADDR  
DEV-ADDR  
DEV-ADDR  
DEV-ADDR  
DATA  
SUB-ADDR  
DATA  
START  
START  
START  
START  
RW  
ACK  
STOP  
ACK  
ACK  
NO ACK  
RANDOM  
ADDRESS  
READ  
DEV-ADDR  
DATA  
DATA  
DATA  
RW  
START  
RW  
STOP  
STOP  
RW=  
HIGH  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
NO ACK  
SEQUENTIAL  
CURRENT  
READ  
DATA  
ACK  
ACK  
NO ACK  
SEQUENTIAL  
RANDOM  
READ  
SUB-ADDR  
DEV-ADDR  
DATA  
DATA  
RW  
START  
RW  
STOP  
AM045184v1  
Doc ID 018572 Rev 3  
29/86  
Register description  
STA350BW  
7
Register description  
Table 7.  
Addr  
Register summary  
Name D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
CONFA  
CONFB  
CONFC  
CONFD  
CONFE  
CONFF  
FDRB  
TWAB  
C1IM  
TWRB  
IR1  
IR0  
MCS2  
MCS1  
MCS0  
SAI0  
C2IM  
OCRB  
SME  
DSCKE  
CSZ3  
DRC  
SAIFB  
CSZ2  
BQL  
SAI3  
SAI2  
SAI1  
CSZ1  
PSL  
CSZ0  
DSPB  
NSBW  
IDE  
OM1  
OM0  
ZDE  
DEMP  
MPC  
HPB  
SVE  
ZCE  
DCCV  
ECLE  
Reserved  
MV5  
PWMS  
LDTE  
Reserved  
MV4  
AME  
MPCV  
OCFG0  
MMUTE  
MV0  
EAPD  
PWDN  
LOC0  
MV6  
BCLE  
C3M  
OCFG1  
C1M  
MUTE/LOC LOC1  
C2M  
MVOL  
MV7  
MV3  
MV2  
MV1  
C1VOL  
C2VOL  
C3VOL  
AUTO1  
AUTO2  
AUTO3  
C1CFG  
C2CFG  
C3CFG  
TONE  
C1V7  
C2V7  
C3V7  
C1V6  
C2V6  
C3V6  
C1V5  
C2V5  
C3V5  
C1V4  
C2V4  
C3V4  
AMGC0  
XO0  
C1V3  
C2V3  
C3V3  
Reserved  
AMAM2  
C1V2  
C2V2  
C3V2  
Reserved  
AMAM1  
C1V1  
C2V1  
C3V1  
C1V0  
C2V0  
C3V0  
Reserved Reserved AMGC1  
Reserved Reserved  
XO3  
XO2  
XO1  
AMAM0  
AMAME  
Reserved  
C1OM1  
C2OM1  
C3OM1  
TTC3  
C1OM0  
C2OM0  
C3OM0  
TTC2  
C1LS1  
C2LS1  
C3LS1  
TTC1  
L1A1  
C1LS0  
C2LS0  
C3LS0  
TTC0  
C1BO  
C2BO  
C3BO  
BTC3  
L1R3  
C1VBP  
C2VBP  
C3VBP  
BTC2  
C1EQBP  
C2EQBP  
C1TCB  
C2TCB  
Reserved Reserved  
BTC1  
L1R1  
BTC0  
L1R0  
L1AR  
L1A3  
L1A2  
L1A0  
L1R2  
L1ATRT  
L2AR  
L1AT3  
L2A3  
L1AT2  
L2A2  
L1AT1  
L2A1  
L1AT0  
L2A0  
L1RT3  
L2R3  
L1RT2  
L2R2  
L1RT1  
L2R1  
L1RT0  
L2R0  
L2ATRT  
CFADDR  
B1CF1  
B1CF2  
B1CF3  
B2CF1  
B2CF2  
B2CF3  
A1CF1  
A1CF2  
A1CF3  
L2AT3  
L2AT2  
L2AT1  
L2AT0  
CFA4  
L2RT3  
CFA3  
L2RT2  
CFA2  
L2RT1  
CFA1  
C1B17  
C1B9  
C1B1  
C2B17  
C2B9  
C2B1  
C3B17  
C3B9  
C3B1  
C4B17  
C4B9  
L2RT0  
CFA0  
C1B16  
C1B8  
C1B0  
C2B16  
C2B8  
C2B0  
C3B16  
C3B8  
C3B0  
C4B16  
C4B8  
Reserved Reserved CFA5  
C1B23  
C1B15  
C1B7  
C1B22  
C1B14  
C1B6  
C1B21  
C1B13  
C1B5  
C1B20  
C1B12  
C1B4  
C1B19  
C1B11  
C1B3  
C1B18  
C1B10  
C1B2  
C2B23  
C2B15  
C2B7  
C2B22  
C2B14  
C2B6  
C2B21  
C2B13  
C2B5  
C2B20  
C2B12  
C2B4  
C2B19  
C2B11  
C2B3  
C2B18  
C2B10  
C2B2  
C3B23  
C3B15  
C3B7  
C3B22  
C3B14  
C3B6  
C3B21  
C3B13  
C3B5  
C3B20  
C3B12  
C3B4  
C3B19  
C3B11  
C3B3  
C3B18  
C3B10  
C3B2  
C4B23  
C4B15  
C4B22  
C4B14  
C4B21  
C4B13  
C4B20  
C4B12  
C4B19  
C4B11  
C4B18  
C4B10  
0x20 A2CF1  
0x21 A2CF2  
30/86  
Doc ID 018572 Rev 3  
STA350BW  
Table 7.  
Register description  
Register summary (continued)  
Name D7 D6 D5  
Addr  
D4  
D3  
D2  
D1  
D0  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
A2CF3  
B0CF1  
B0CF2  
B0CF3  
CFUD  
C4B7  
C4B6  
C4B5  
C4B4  
C4B3  
C4B2  
C4B1  
C4B0  
C5B23  
C5B15  
C5B7  
C5B22  
C5B14  
C5B6  
C5B21  
C5B13  
C5B20  
C5B12  
C5B4  
C5B19  
C5B18  
C5B17  
C5B9  
C5B16  
C5B8  
C5B11  
C5B10  
C5B5  
C5B3  
C5B2  
C5B1  
C5B0  
Reserved  
MPCC13  
MPCC5  
DCC13  
RA  
R1  
WA  
W1  
MPCC1  
MPCC2  
DCC1  
MPCC15  
MPCC7  
DCC15  
DCC7  
MPCC14  
MPCC6  
DCC14  
DCC6  
MPCC12  
MPCC4  
MPCC11  
MPCC3  
DCC11  
MPCC10  
MPCC2  
DCC10  
MPCC9  
MPCC1  
DCC9  
MPCC8  
MPCC0  
DCC8  
DCC12  
DCC2  
DCC5  
DCC4  
DCC3  
DCC2  
DCC1  
DCC0  
FDRC1  
FDRC2  
STATUS  
Reserved  
Reserved  
Reserved  
EQCFG  
EATH1  
ERTH1  
EATH2  
ERTH2  
CONFX  
SVCA  
FDRC15  
FDRC7  
PLLUL  
FDRC14  
FDRC6  
FAULT  
FDRC13  
FDRC5  
FDRC12  
FDRC4  
FDRC11  
FDRC3  
FDRC10  
FDRC2  
FDRC9  
FDRC1  
TFAULT  
R2BACT  
R2BEND  
R2BBAD  
SEL1  
FDRC8  
FDRC0  
TWARN  
R1BACT  
R1BEND  
R1BBAD  
SEL0  
UVFAULT  
RO1BACT  
R01BEND  
OVFAULT  
R5BACT  
R5BEND  
R5BBAD  
AMGC3  
EATH1[4]  
ERTH1[4]  
EATH2[4]  
ERTH2[4]  
XAR1  
OCFAULT  
R4BACT  
R4BEND  
R4BBAD  
AMGC2  
EATH1[3]  
ERTH1[3]  
EATH2[3]  
ERTH2[3]  
XAR2  
OCWARN  
R3BACT  
R3BEND  
R3BBAD  
Reserved  
EATH1[2]  
ERTH1[2]  
EATH2[2]  
ERTH2[2]  
BQ5  
Reserved  
Reserved  
Reserved  
Reserved Reserved  
XOB  
EATHEN1 EATH1[6] EATH1[5]  
ERTHEN1 ERTH1[6] ERTH1[5]  
EATHEN2 EATH2[6] EATH2[5]  
ERTHEN2 ERTH2[6] ERTH2[5]  
EATH1[1] EATH1[0]  
ERTH1[1] ERTH1[0]  
EATH2[1] EATH2[0]  
ERTH2[1] ERTH2[0]  
MDRC[1]  
MDRC[0]  
PS48DB  
BQ6  
BQ7  
Reserved Reserved SVUPE  
Reserved Reserved SVDWE  
R_C0[23] R_C0[22] R_C0[21]  
R_C0[15] R_C0[14] R_C0[13]  
SVUP[4]  
SVDW[4]  
R_C0[20]  
R_C0[12]  
R_C0[4]  
R_C1[20]  
R_C1[12]  
R_C1[4]  
C3VR[0]  
SVUP[3]  
SVDW[3]  
R_C0[19]  
R_C0[11]  
R_C0[3]  
R_C1[19]  
R_C1[11]  
R_C1[3]  
C2VR[1]  
SVUP[2]  
SVDW[2]  
R_C0[18]  
R_C0[10]  
R_C0[2]  
R_C1[18]  
R_C1[10]  
R_C1[2]  
C2VR[0]  
SVUP[1]  
SVDW[1]  
SVUP[0]  
SVDW[0]  
SVCB  
RMS0A  
RMS0B  
RMS0C  
RMS1A  
RMS1B  
RMS1C  
R_C0[17] R_C0[16]  
R_C0[9]  
R_C0[1]  
R_C0[8]  
R_C0[0]  
R_C0[7]  
R_C0[6]  
R_C0[5]  
R_C1[23] R_C1[22] R_C1[21]  
R_C1[15] R_C1[14] R_C1[13]  
R_C1[17] R_C1[16]  
R_C1[9]  
R_C1[1]  
C1VR[1]  
R_C1[8]  
R_C1[0]  
C1VR[0]  
R_C1[7]  
R_C1[6]  
R_C1[5]  
C3VR[1]  
EVOLRES VRESEN  
Reserved  
VRESTG  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Doc ID 018572 Rev 3  
31/86  
Register description  
STA350BW  
Table 7.  
Addr  
Register summary (continued)  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x47  
Reserved  
NSHB1E  
N
0x48  
NSHAPE  
NSHXEN  
NSHB7EN NSHB6EN  
NSHB5EN  
NSHB4EN NSHB3EN NSHB2EN  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
CXT[B4B1] CXTB4[1] CXTB4[0] CXTB3[1]  
CXT[B7B5] Reserved Reserved CXTB7[1]  
CXTB3[0]  
CXTB7[0]  
CXTB2[1]  
CXTB6[1]  
Reserved  
CXTB2[0]  
CXTB6[0]  
CXTB1[1] CXTB1[0]  
CXTB5[1] CXTB5[0]  
MISC1  
RPDNEN NSHHPEN BRIDGOFF Reserved  
Reserved Reserved Reserved  
CPWMEN Reserved Reserved  
MISC2  
PNDLSL[2] PNDLSL[1] PNDLSL[0] Reserved Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
32/86  
Doc ID 018572 Rev 3  
STA350BW  
Register description  
7.1  
Configuration register A (addr 0x00)  
D7  
FDRB  
0
D6  
TWAB  
1
D5  
TWRB  
1
D4  
IR1  
0
D3  
IR0  
0
D2  
MCS2  
0
D1  
MCS1  
1
D0  
MCS0  
1
7.1.1  
Master clock select  
Table 8.  
Bit  
Master clock select  
R/W  
RST  
Name  
Description  
0
1
2
R/W  
R/W  
R/W  
1
1
0
MCS0  
MCS1  
MCS2  
Selects the ratio between the input I2S sample  
frequency and the input clock.  
The STA350BW supports sample rates of 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz,  
176.4 kHz, and 192 kHz. Therefore the internal clock is:  
32.768 MHz for 32 kHz  
45.1584 MHz for 44.1 kHz, 88.2 kHz, and 176.4 kHz  
49.152 MHz for 48 kHz, 96 kHz, and 192 kHz  
The external clock frequency provided to the XTI pin must be a multiple of the input sample  
frequency (f ).  
s
The relationship between the input clock and the input sample rate is determined by both  
the MCSx and the IR (input rate) register bits. The MCSx bits determine the PLL factor  
generating the internal clock and the IR bit determines the oversampling ratio used  
internally.  
Table 9.  
Input sample rate  
fs (kHz)  
Input sampling rates  
IR  
MCS[2:0]  
101  
100  
011  
010  
001  
000  
32, 44.1, 48  
88.2, 96  
00  
01  
1X  
576 * fs  
NA  
128 * fs  
64 * fs  
32 * fs  
256 * fs  
128 * fs  
64 * fs  
384 * fs  
192 * fs  
96 * fs  
512 * fs  
256 * fs  
128 * fs  
768 * fs  
384 * fs  
192 * fs  
176.4, 192  
NA  
Doc ID 018572 Rev 3  
33/86  
Register description  
STA350BW  
7.1.2  
Interpolation ratio select  
Table 10. Internal interpolation ratio  
Bit  
R/W  
RST  
Name  
Description  
Selects internal interpolation ratio based on input I2S  
sample frequency  
4:3  
R/W  
00  
IR [1:0]  
The STA350BW has variable interpolation (oversampling) settings such that internal  
processing and FFX output rates remain consistent. The first processing block interpolates  
by either 2-times or 1-time (pass-through) or provides a 2-times downsample. The  
oversampling ratio of this interpolation is determined by the IR bits.  
Table 11. IR bit settings as a function of input sample rate  
Input sample rate fs (kHz)  
IR  
1st stage interpolation ratio  
32  
44.1  
48  
00  
00  
00  
01  
01  
10  
10  
2 times oversampling  
2 times oversampling  
2 times oversampling  
Pass-through  
88.2  
96  
Pass-through  
176.4  
192  
2 times downsampling  
2 times downsampling  
7.1.3  
Thermal warning recovery bypass  
Table 12. Thermal warning recovery bypass  
Bit  
R/W  
RST  
Name  
Description  
0: Thermal warning recovery enabled  
1: Thermal warning recovery disabled  
5
R/W  
1
TWRB  
If the thermal warning adjustment is enabled (TWAB = 0), then the thermal warning  
recovery determines if the -3 dB output limit is removed when thermal warning is negative.  
If TWRB = 0 and TWAB = 0, then when a thermal warning disappears the -3 dB output limit  
is removed and the gain is added back to the system. If TWRB = 1 and TWAB = 0, then  
when a thermal warning disappears the -3 dB output limit remains until TWRB is changed to  
zero or the device is reset.  
7.1.4  
Thermal warning adjustment bypass  
Table 13. Thermal warning adjustment bypass  
Bit  
R/W  
RST  
Name  
Description  
0: Thermal warning adjustment enabled  
1: Thermal warning adjustment disabled  
6
R/W  
1
TWAB  
34/86  
Doc ID 018572 Rev 3  
 
STA350BW  
Register description  
The on-chip STA350BW power output block provides feedback to the digital controller using  
inputs to the power control block. Input TWARN is used to indicate a thermal warning  
condition. When TWARN is asserted (set to 0) for a period of time greater than 400 ms, the  
power control block forces a -3 dB output limit (determined by TWOCL in the coefficient  
RAM) to the modulation limit in an attempt to eliminate the thermal warning condition. Once  
the thermal warning output limit adjustment is applied, it remains in this state until reset,  
unless FDRB = 0.  
7.1.5  
Fault detect recovery bypass  
Table 14. Fault detect recovery bypass  
Bit  
R/W  
RST  
Name  
Description  
0: fault detect recovery enabled  
1: fault detect recovery disabled  
7
R/W  
0
FDRB  
The on-chip STA350BW power output block provides feedback to the digital controller using  
inputs to the power control block. The FAULT input is used to indicate a fault condition (either  
over-current or thermal). When FAULT is asserted (set to 0), the power control block  
attempts a recovery from the fault by asserting the tri-state output (setting it to 0 which  
directs the power output block to begin recovery), holds it at 0 for period of time in the range  
of 0.1 ms to 1 second as defined by the fault-detect recovery constant register (FDRC  
registers 0x29-0x2A), then toggles it back to 1. This sequence is repeated as long as the  
fault indication exists. This feature is enabled by default but can be bypassed by setting the  
FDRB control bit to 1.  
7.2  
Configuration register B (addr 0x01)  
D7  
C2IM  
1
D6  
C1IM  
0
D5  
DSCKE  
0
D4  
SAIFB  
0
D3  
SAI3  
0
D2  
SAI2  
0
D1  
SAI1  
0
D0  
SAI0  
0
7.2.1  
Serial audio input interface format  
Table 15. Serial audio input interface  
Bit  
R/W  
RST  
Name  
Description  
0
1
2
3
R/W  
R/W  
R/W  
R/W  
0
0
0
0
SAI0  
SAI1  
SAI2  
SAI3  
Determines the interface format of the input serial  
digital audio interface.  
Doc ID 018572 Rev 3  
35/86  
Register description  
STA350BW  
7.2.2  
Serial data interface  
The STA350BW audio serial input was designed to interface with standard digital audio  
components and to accept a number of serial data formats. The STA350BW always acts as  
the slave when receiving audio input from standard digital audio components. Serial data for  
two channels is provided using three inputs: left/right clock LRCKI, serial clock BICKI, and  
serial data 1 and 2 SDI12.  
The SAI bits (D3 to D0) and the SAIFB bit (D4) are used to specify the serial data format.  
2
The default serial data format is I S, MSB-first. Available formats are shown in the tables  
that follow.  
7.2.3  
Serial data first bit  
Table 16. Serial data first bit  
SAIFB  
Format  
0
1
MSB-first  
LSB-first  
Table 17. Support serial audio input formats for MSB-first (SAIFB = 0)  
BICKI  
SAI [3:0]  
SAIFB  
Interface format  
0000  
0001  
0000  
0001  
0010  
0110  
1010  
1110  
0000  
0001  
0010  
0110  
1010  
1110  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
I2S 15-bit data  
32 * fs  
Left/right-justified 16-bit data  
I2S 16 to 23-bit data  
Left-justified 16 to 24-bit data  
Right-justified 24-bit data  
Right-justified 20-bit data  
Right-justified 18-bit data  
Right-justified 16-bit data  
I2S 16 to 24-bit data  
48 * fs  
Left-justified 16 to 24-bit data  
Right-justified 24-bit data  
Right-justified 20-bit data  
Right-justified 18-bit data  
Right-justified 16-bit data  
64 * fs  
36/86  
Doc ID 018572 Rev 3  
STA350BW  
Register description  
Table 18. Supported serial audio input formats for LSB-first (SAIFB = 1)  
BICKI  
SAI [3:0]  
SAIFB  
Interface format  
1100  
1110  
0100  
0100  
1000  
1100  
0001  
0101  
1001  
1101  
0010  
0110  
1010  
1110  
0000  
0100  
1000  
1100  
0001  
0101  
1001  
1101  
0010  
0110  
1010  
1110  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I2S 15-bit data  
32 * fs  
Left/right-justified 16-bit data  
I2S 23-bit data  
I2S 20-bit data  
I2S 18-bit data  
LSB first I2S 16-bit data  
Left-justified 24-bit data  
Left-justified 20-bit data  
Left-justified 18-bit data  
Left-justified 16-bit data  
Right-justified 24-bit data  
Right-justified 20-bit data  
Right-justified 18-bit data  
Right-justified 16-bit data  
I2S 24-bit data  
48 * fs  
I2S 20-bit data  
I2S 18-bit data  
LSB first I2S 16-bit data  
Left-justified 24-bit data  
Left-justified 20-bit data  
Left-justified 18-bit data  
Left-justified 16-bit data  
Right-justified 24-bit data  
Right-justified 20-bit data  
Right-justified 18-bit data  
Right-justified 16-bit data  
64 * fs  
To make the STA350BW work properly, the serial audio interface LRCKI clock must be  
synchronous to the PLL output clock. It means that:  
the frequency of PLL clock / frequency of LRCKI = N 4 cycles,  
where N depends on the settings in Table 11 on page 34  
the PLL must be locked.  
If these two conditions are not met, and the IDE bit (reg 0x05 bit 2) is set to 1, the  
2
STA350BW will immediately mute the I S PCM data out (provided to the processing block)  
and it will freeze any active processing task.  
Doc ID 018572 Rev 3  
37/86  
Register description  
STA350BW  
To avoid any audio side effects (like pop noise), it is strongly recommended to soft-mute any  
audio streams flowing into the STA350BW data path before the desynchronization event  
2
happens. At the same time any processing related to the I C configuration should be issued  
only after the serial audio interface and the internal PLL are synchronous again.  
2
Note:  
Any mute or volume change causes some delay in the completion of the I C operation due  
to the soft-volume feature. The soft-volume phase change must be finished before any clock  
desynchronization.  
7.2.4  
Delay serial clock enable  
Table 19. Delay serial clock enable  
Bit  
R/W  
RST  
Name  
Description  
0: No serial clock delay  
5
R/W  
0
DSCKE  
1: Serial clock delay by 1 core clock cycle to tolerate  
anomalies in some I2S master devices  
7.2.5  
Channel input mapping  
Table 20. Channel input mapping  
Bit  
R/W  
RST  
Name  
Description  
0: Processing channel 1 receives Left I2S Input  
1: Processing channel 1 receives Right I2S Input  
6
R/W  
0
C1IM  
0: Processing channel 2 receives Left I2S Input  
1: Processing channel 2 receives Right I2S Input  
7
R/W  
1
C2IM  
2
Each channel received via I S can be mapped to any internal processing channel via the  
Channel Input Mapping registers. This allows for flexibility in processing. The default  
2
settings of these registers map each I S input channel to its corresponding processing  
channel.  
38/86  
Doc ID 018572 Rev 3  
STA350BW  
Register description  
7.3  
Configuration register C (addr 0x02)  
D7  
OCRB  
1
D6  
D5  
CSZ3  
0
D4  
CSZ2  
1
D3  
CSZ1  
1
D2  
CSZ0  
1
D1  
OM1  
1
D0  
OM0  
1
7.3.1  
FFX power output mode  
Table 21. FFX power output mode  
Bit  
R/W  
RST  
Name  
Description  
Selects configuration of FFX output.  
0
1
R/W  
R/W  
1
1
OM0  
OM1  
The FFX power output mode selects how the FFX output timing is configured.  
Different power devices use different output modes.  
Table 22. Output modes  
OM[1,0]  
Output stage mode  
00  
01  
10  
11  
Drop compensation  
Discrete output stage - tapered compensation  
Full power mode  
Variable drop compensation (CSZx bits)  
7.3.2  
FFX compensating pulse size register  
Table 23. FFX compensating pulse size bits  
Bit  
R/W  
RST  
Name  
Description  
2
3
4
5
R/W  
R/W  
R/W  
R/W  
1
1
1
0
CSZ0  
CSZ1  
CSZ2  
CSZ3  
When OM[1,0] = 11, this register determines the  
size of the FFX compensating pulse from 0 clock  
ticks to 15 clock ticks.  
Table 6:  
Table 24. Compensating pulse size  
CSZ[3:0]  
Compensating pulse size  
0000  
0001  
0 ns (0 tick) compensating pulse size  
20 ns (1 tick) clock period compensating pulse size  
1111  
300 ns (15 tick) clock period compensating pulse size  
Doc ID 018572 Rev 3  
39/86  
Register description  
STA350BW  
7.3.3  
Overcurrent warning detect adjustment bypass  
Table 25. Overcurrent warning bypass  
Bit  
R/W  
RST  
Name  
Description  
0: Overcurrent warning adjustment enabled  
1: Overcurrent warning adjustment disabled  
7
R/W  
1
OCRB  
The OCWARN input is used to indicate an overcurrent warning condition. When OCWARN  
is asserted (set to 0), the power control block forces an adjustment to the modulation limit  
(default is -3 dB) in an attempt to eliminate the overcurrent warning condition. Once the  
overcurrent warning volume adjustment is applied, it remains in this state until a reset  
occurs. The level of adjustment can be changed via the TWOCL (thermal warning/over  
current limit) setting which is address 0x37 of the user-defined coefficient RAM.  
7.4  
Configuration register D (addr 0x03)  
D7  
SME  
0
D6  
ZDE  
1
D5  
DRC  
0
D4  
BQL  
0
D3  
PSL  
0
D2  
DSPB  
0
D1  
DEMP  
0
D0  
HPB  
0
7.4.1  
High-pass filter bypass  
Table 26. High-pass filter bypass  
Bit  
R/W  
RST  
Name  
Description  
Setting of one bypasses internal AC coupling digital  
high-pass filter  
0
R/W  
0
HPB  
The STA350BW features an internal digital high-pass filter for the purpose of AC coupling.  
The purpose of this filter is to prevent DC signals from passing through an FFX amplifier. DC  
signals can cause speaker damage. When HPB = 0, this filter is enabled.  
7.4.2  
De-emphasis  
Table 27. De-emphasis  
Bit  
R/W  
RST  
Name  
Description  
0: No de-emphasis  
1: Enable de-emphasis on all channels  
1
R/W  
0
DEMP  
40/86  
Doc ID 018572 Rev 3  
STA350BW  
Register description  
7.4.3  
DSP bypass  
Table 28. DSP bypass  
Bit  
R/W  
RST  
Name  
Description  
0: Normal operation  
1: Bypass of biquad and bass/treble functions  
2
R/W  
0
DSPB  
Setting the DSPB bit to 1 bypasses the EQ function of the STA350BW.  
7.4.4  
7.4.5  
7.4.6  
Post-scale link  
Table 29. Post-scale link  
Bit  
R/W  
RST  
Name  
Description  
0: Each channel uses individual post-scale value  
1: Each channel uses channel 1 post-scale value  
3
R/W  
0
PSL  
Post-scale functionality can be used for power-supply error correction. For multi-channel  
applications running off the same power-supply, the post-scale values can be linked to the  
value of channel 1 for ease of use and to update the values faster.  
Biquad coefficient link  
Table 30. Biquad coefficient link  
Bit  
R/W  
RST  
Name  
Description  
0: Each channel uses coefficient values  
4
R/W  
0
BQL  
1: Each channel uses channel 1 coefficient values  
For ease of use, all channels can use the biquad coefficients loaded into the Channel-1  
coefficient RAM space by setting the BQL bit to 1. Therefore, any EQ updates only have to  
be performed once.  
Dynamic range compression/anti-clipping bit  
Table 31. Dynamic range compression/anti-clipping bit  
Bit  
R/W  
RST  
Name  
Description  
0: Limiters act in anti-clipping mode  
5
R/W  
0
DRC  
1: Limiters act in dynamic range compression mode  
Both limiters can be used in one of two ways, anti-clipping or dynamic range compression.  
When used in anti-clipping mode the limiter threshold values are constant and dependent on  
the limiter settings. In dynamic range compression mode the limiter threshold values vary  
with the volume settings allowing a nighttime listening mode that provides a reduction in the  
dynamic range regardless of the volume level.  
Doc ID 018572 Rev 3  
41/86  
Register description  
STA350BW  
7.4.7  
Zero-detect mute enable  
Table 32. Zero-detect mute enable  
Bit  
R/W  
RST  
Name  
Description  
Setting of 1 enables the automatic zero-detect mute  
6
R/W  
1
ZDE  
Setting the ZDE bit enables the zero-detect automatic mute. The zero-detect circuit looks at  
the data for each processing channel at the output of the crossover (bass management)  
filter. If any channel receives 2048 consecutive zero value samples (regardless of fs) then  
that individual channel is muted if this function is enabled.  
7.4.8  
Submix mode enable  
Table 33. Submix mode enable  
Bit  
R/W  
RST  
Name  
Description  
0: Sub Mix into Left/Right disabled  
1: Sub Mix into Left/Right enabled  
7
R/W  
0
SME  
7.5  
Configuration register E (addr 0x04)  
D7  
SVE  
1
D6  
ZCE  
1
D5  
DCCV  
0
D4  
PWMS  
0
D3  
AME  
0
D2  
NSBW  
0
D1  
MPC  
1
D0  
MPCV  
0
7.5.1  
Max power correction variable  
Table 34. Max power correction variable  
Bit  
R/W  
RST  
Name  
Description  
0: Use standard MPC coefficient  
0
R/W  
0
MPCV  
1: Use MPCC bits for MPC coefficient  
7.5.2  
Max power correction  
Table 35. Max power correction  
Bit  
R/W  
RST  
Name  
Description  
Setting of 1 enables power bridge correction for THD  
reduction near maximum power output.  
1
R/W  
1
MPC  
Setting the MPC bit turns on special processing that corrects the STA350BW power device  
at high power. This mode should lower the THD+N of a full FFX system at maximum power  
output and slightly below. If enabled, MPC is operational in all output modes except tapered  
(OM[1,0] = 01) and binary. When OCFG = 00, MPC will not effect channels 3 and 4, the line-  
out channels.  
42/86  
Doc ID 018572 Rev 3  
 
STA350BW  
Register description  
7.5.3  
Noise-shaper bandwidth selection  
Table 36. Noise-shaper bandwidth selection  
Bit  
R/W  
RST  
Name  
Description  
1: Third order NS  
0: Fourth order NS  
2
R/W  
0
NSBW  
7.5.4  
AM mode enable  
Table 37. AM mode enable  
Bit  
R/W  
RST  
Name  
Description  
0: Normal FFX operation  
3
R/W  
0
AME  
1: AM reduction mode FFX operation  
The STA350BW features an FFX processing mode that minimizes the amount of noise  
generated in the frequency range of AM radio. This mode is intended for use when FFX is  
operating in a device with an AM tuner active. The SNR of the FFX processing is reduced to  
approximately 83 dB in this mode, which is still greater than the SNR of AM radio.  
7.5.5  
7.5.6  
7.5.7  
PWM speed mode  
Table 38. PWM speed mode  
Bit  
R/W  
RST  
Name  
Description  
0: Normal speed (384 kHz) all channels  
1: Odd speed (341.3 kHz) all channels  
4
R/W  
0
PWMS  
Distortion compensation variable enable  
Table 39. Distortion compensation variable enable  
Bit  
R/W  
RST  
Name  
Description  
0: Use preset DC coefficient  
1: Use DCC coefficient  
5
R/W  
0
DCCV  
Zero-crossing volume enable  
Table 40. Zero-crossing volume enable  
Bit  
R/W  
RST  
Name  
Description  
1: Volume adjustments only occur at digital zero-crossings  
0: Volume adjustments occur immediately  
6
R/W  
1
ZCE  
The ZCE bit enables zero-crossing volume adjustments. When volume is adjusted on digital  
zero-crossings, no clicks are audible.  
Doc ID 018572 Rev 3  
43/86  
 
Register description  
STA350BW  
7.5.8  
Soft-volume update enable  
Table 41. Soft-volume update enable  
Bit  
R/W  
RST  
Name  
Description  
1: Volume adjustments ramp according to SVR settings  
0: Volume adjustments occur immediately  
7
R/W  
1
SVE  
7.6  
Configuration register F (addr 0x05)  
D7  
EAPD  
0
D6  
PWDN  
1
D5  
ECLE  
0
D4  
LDTE  
1
D3  
BCLE  
1
D2  
IDE  
1
D1  
OCFG1  
0
D0  
OCFG0  
0
7.6.1  
Output configuration  
Table 42. Output configuration  
Bit  
R/W  
RST  
Name  
Description  
Selects the output configuration  
0
1
R/W  
R/W  
0
0
OCFG0  
OCFG1  
Table 43. Output configuration engine selection  
OCFG[1:0]  
Output configuration  
2-channel (full-bridge) power, 2-channel data-out:  
1A/1B 1A/1B  
Config pin  
2A/2B 2A/2B  
LineOut1 3A/3B  
LineOut2 4A/4B  
Line Out Configuration determined by LOC register  
2(half-bridge).1(full-bridge) on-board power:  
00  
0
0
1A 1A  
2A 1B  
3A/3B 2A/2B Binary 45°  
Binary 0 °  
Binary 90°  
01  
1A/B 3A/B  
2A/B 4A/B  
Binary 0°  
Binary 90°  
2 Channel (Full-Bridge) Power, 1 Channel FFX:  
1A/1B 1A/1B  
10  
11  
2A/2B 2A/2B  
3A/3B 3A/3B  
EAPDEXT and TWARNEXT Active  
1 Channel Mono-Parallel:  
0
1
3A 1A/1B  
3B 2A/2B  
w/ C3BO 45°  
w/ C3BO 45°  
1A/1B 3A/3B  
2A/2B 4A/4B  
Note:  
To the left of the arrow is the processing channel. When using channel output mapping, any  
of the three processing channel outputs can be used for any of the three inputs.  
44/86  
Doc ID 018572 Rev 3  
STA350BW  
Register description  
Figure 20. OCFG = 00 (default value)  
OUT1A  
Half  
Bridge  
Channel 1  
Channel 2  
Half  
Bridge  
OUT1B  
OUT2A  
Half  
Bridge  
Half  
Bridge  
OUT2B  
OUT3A  
OUT3B  
LineOut1  
LPF  
LPF  
OUT4A  
OUT4B  
LineOut2  
AM045185v1  
Figure 21. OCFG = 01  
Half  
Bridge  
Channel 1  
OUT1A  
Half  
Bridge  
Channel 2  
Channel 3  
OUT1B  
OUT2A  
Half  
Bridge  
Half  
Bridge  
OUT2B  
AM045186v1  
Figure 22. OCFG = 10  
OUT1A  
Half  
Bridge  
Channel 1  
Half  
Bridge  
OUT1B  
OUT2A  
Half  
Bridge  
Channel 2  
Half  
Bridge  
OUT2B  
OUT3A  
OUT3B  
Power  
Device  
Channel 3  
EAPD  
AM045187v1  
Doc ID 018572 Rev 3  
45/86  
Register description  
Figure 23. OCFG = 11  
STA350BW  
OUT1A  
Half  
Bridge  
OUT1B  
Half  
Bridge  
Channel 3  
Half  
Bridge  
OUT2A  
Half  
Bridge  
OUT2B  
OUT3A  
OUT3B  
Channel 1  
Channel 2  
OUT4A  
OUT4B  
AM045188v1  
The STA350BW can be configured to support different output configurations. For each PWM  
output channel a PWM slot is defined. A PWM slot is always 1 / (8 * fs) seconds length. The  
PWM slot defines the maximum extension for the PWM rising and falling edge, that is, the  
rising edge as well as the falling edge cannot range outside the PWM slot boundaries.  
Figure 24. Output mapping scheme  
FFX1A  
OUT1A  
OUT1B  
OUT2A  
OUT1A  
OUT1B  
OUT2A  
FFX1 B  
FFX2 A  
FFX 2B  
FFX ™  
modulator  
Power  
Bridge  
FFX3 A  
FFX3B  
FFX4 A  
FFX 4B  
OUT2B  
OUT2B  
REMAP  
OUT3A  
OUT3B  
OUT4A  
OUT4B  
AM045189v1  
For each configuration the PWM signals from the digital driver are mapped in different ways  
to the power stage.  
46/86  
Doc ID 018572 Rev 3  
STA350BW  
Register description  
2.0 channels, two full bridges (OCFG = 00)  
FFX1A -> OUT1A  
FFX1B -> OUT1B  
FFX2A -> OUT2A  
FFX2B -> OUT2B  
FFX3A -> OUT3A  
FFX3B -> OUT3B  
FFX4A -> OUT4A  
FFX4B -> OUT4B  
FFX1A/1B configured as ternary  
FFX2A/2B configured as ternary  
FFX3A/3B configured as lineout ternary  
FFX4A/4B configured as lineout ternary  
On channel 3 line out (LOC bits = 00) the same data as channel 1 processing is sent. On  
channel 4 line out (LOC bits = 00) the same data as channel 2 processing is sent. In this  
configuration, neither volume control nor EQ has any effect on channels 3 and 4.  
In this configuration the PWM slot phase is the following as shown in Figure 25.  
Figure 25. 2.0 channels (OCFG = 00) PWM slots  
OUT1A  
OUT1B  
OUT2A  
OUT2B  
OUT3A  
OUT3B  
OUT4A  
OUT4B  
AM045190v1  
Doc ID 018572 Rev 3  
47/86  
 
Register description  
STA350BW  
2.1 channels, two half-bridges + one full-bridge (OCFG = 01)  
FFX1A -> OUT1A  
FFX2A -> OUT1B  
FFX3A -> OUT2A  
FFX3B -> OUT2B  
FFX1A -> OUT3A  
FFX1B -> OUT3B  
FFX2A -> OUT4A  
FFX2B -> OUT4B  
FFX1A/1B configured as binary  
FFX2A/2B configured as binary  
FFX3A/3B configured as binary  
FFX4A/4B is not used  
In this configuration, channel 3 has full control (volume, EQ, etc…). On OUT3/OUT4  
channels the channel 1 and channel 2 PWM are replicated.  
In this configuration the PWM slot phase is the following as shown in Figure 26.  
Figure 26. 2.1 channels (OCFG = 01) PWM slots  
OUT1A  
OUT1B  
OUT2A  
OUT2B  
OUT3A  
OUT3B  
OUT4A  
OUT4B  
AM045191v1  
48/86  
Doc ID 018572 Rev 3  
 
STA350BW  
Register description  
2.1 channels, two full-bridge + one external full-bridge (OCFG = 10)  
FFX1A -> OUT1A  
FFX1B -> OUT1B  
FFX2A -> OUT2A  
FFX2B -> OUT2B  
FFX3A -> OUT3A  
FFX3B -> OUT3B  
EAPD -> OUT4A  
TWARN -> OUT4B  
FFX1A/1B configured as ternary  
FFX2A/2B configured as ternary  
FFX3A/3B configured as ternary  
FFX4A/4B is not used  
In this configuration, channel 3 has full control (volume, EQ, etc…). On OUT4 channel the  
external bridge control signals are muxed.  
In this configuration the PWM slot phase is the following as shown in Figure 27.  
Figure 27. 2.1 channels (OCFG = 10) PWM slots  
OUT1A  
OUT1B  
OUT2A  
OUT2B  
OUT3A  
OUT3B  
AM045192v1  
Doc ID 018572 Rev 3  
49/86  
 
Register description  
STA350BW  
7.6.2  
Invalid input detect mute enable  
Table 44. Invalid input detect mute enable  
Bit  
R/W  
RST  
Name  
Description  
2
R/W  
1
IDE  
Setting of 1 enables the automatic invalid input detect mute  
2
Setting the IDE bit enables this function, which looks at the input I S data and automatically  
mutes if the signals are perceived as invalid.  
7.6.3  
7.6.4  
7.6.5  
Binary output mode clock loss detection  
Table 45. Binary output mode clock loss detection  
Bit  
R/W  
RST  
Name  
Description  
3
R/W  
1
BCLE  
Binary output mode clock loss detection enable  
The BCLE bit detects loss of input MCLK in binary mode and will output 50% duty cycle.  
LRCK double trigger protection  
Table 46. LRCK double trigger protection  
Bit  
R/W  
RST  
Name  
Description  
4
R/W  
1
LDTE  
LRCLK double trigger protection enable  
The LDTE bit actively prevents double triggering of the LRCLK.  
Auto EAPD on clock loss  
Table 47. Auto EAPD on clock loss  
Bit  
R/W  
RST  
Name  
Description  
Auto EAPD on clock loss  
5
R/W  
0
ECLE  
When active, the ECLE bit issues a power device power-down signal (EAPD) on clock loss  
detection.  
7.6.6  
IC power-down  
Table 48. IC power-down  
Bit  
R/W  
RST  
Name  
Description  
0: IC power-down low-power condition  
1: IC normal operation  
7
R/W  
1
PWDN  
The PWDN register is used to place the IC in a low-power state. When PWDN is written  
as 0, the output begins a soft-mute. After the mute condition is reached, EAPD is asserted  
50/86  
Doc ID 018572 Rev 3  
STA350BW  
Register description  
to power down the power-stage, then the master clock to all internal hardware except the  
2
I C block is gated. This places the IC in a very low power consumption state.  
7.6.7  
External amplifier power-down  
Table 49. External amplifier power-down  
Bit  
R/W  
RST  
Name  
Description  
0: External power stage power down active  
1: Normal operation  
7
R/W  
0
EAPD  
The EAPD register directly disables/enables the internal power circuitry.  
When EAPD = 0, the internal power section is placed in a low-power state (disabled). This  
register also controls the FFX4B/EAPD output pin when OCFG = 10.  
7.7  
Volume control registers (addr 0x06 - 0x0A)  
7.7.1  
Mute/line output configuration register  
D7  
LOC1  
0
D6  
LOC0  
0
D5  
Reserved  
0
D4  
Reserved  
0
D3  
C3M  
0
D2  
C2M  
0
D1  
C1M  
0
D0  
MMUTE  
0
Table 50. Line output configuration  
LOC[1:0]  
Line output configuration  
00  
01  
10  
Line output fixed - no volume, no EQ  
Line output variable - CH3 volume effects line output, no EQ  
Line output variable with EQ - CH3 volume effects line output  
Line output is only active when OCFG = 00. In this case LOC determines the line output  
configuration. The source of the line output is always the channel 1 and 2 inputs.  
7.7.2  
7.7.3  
Master volume register  
D7  
MV7  
1
D6  
MV6  
1
D5  
MV5  
1
D4  
MV4  
1
D3  
MV3  
1
D2  
MV2  
1
D1  
MV1  
1
D0  
MV0  
1
Channel 1 volume  
D7  
C1V7  
0
D6  
C1V6  
1
D5  
C1V5  
1
D4  
C1V4  
0
D3  
C1V3  
0
D2  
C1V2  
0
D1  
C1V1  
0
D0  
C1V0  
0
Doc ID 018572 Rev 3  
51/86  
Register description  
STA350BW  
7.7.4  
Channel 2 volume  
D7  
C2V7  
0
D6  
C2V6  
1
D5  
C2V5  
1
D4  
C2V4  
0
D3  
C2V3  
0
D2  
C2V2  
0
D1  
C2V1  
0
D0  
C2V0  
0
7.7.5  
Channel 3 / line output volume  
D7  
C3V7  
0
D6  
C3V6  
1
D5  
C3V5  
1
D4  
C3V4  
0
D3  
C3V3  
0
D2  
C3V2  
0
D1  
C3V1  
0
D0  
C3V0  
0
The volume structure of the STA350BW consists of individual volume registers for each  
channel and a master volume register that provides an offset to each channels volume  
setting. The individual channel volumes are adjustable in 0.5 dB steps from +48 dB  
to -80 dB.  
As an example if C3V = 0x00 or +48 dB and MV = 0x18 or -12 dB, then the total gain for  
channel 3 = +36 dB.  
The master mute, when set to 1, mutes all channels at once, whereas the individual channel  
mute (CxM) mutes only that channel. Both the master mute and the channel mutes provide  
a “soft mute” with the volume ramping down to mute in 4096 samples from the maximum  
volume setting at the internal processing rate (approximately 96 kHz).  
A “hard (instantaneous) mute” can be obtained by programming a value of 0xFF (255) to  
any channel volume register or the master volume register. When volume offsets are  
provided via the master volume register, any channel whose total volume is less than -80 dB  
is muted.  
All changes in volume take place at zero-crossings when ZCE = 1 (Configuration register E  
(addr 0x04)) on a per channel basis as this creates the smoothest possible volume  
transitions. When ZCE = 0, volume updates occur immediately.  
Table 51. Master volume offset as a function of MV[7:0]  
MV[7:0]  
Volume offset from channel value  
00000000 (0x00)  
00000001 (0x01)  
00000010 (0x02)  
0 dB  
-0.5 dB  
-1 dB  
01001100 (0x4C)  
-38 dB  
11111110 (0xFE)  
11111111 (0xFF)  
-127.5 dB  
Hard master mute  
52/86  
Doc ID 018572 Rev 3  
STA350BW  
Register description  
Table 52. Channel volume as a function of CxV[7:0]  
CxV[7:0]  
Volume  
00000000 (0x00)  
+48 dB  
00000001 (0x01)  
00000010 (0x02)  
+47.5 dB  
+47 dB  
01011111 (0x5F)  
01100000 (0x60)  
01100001 (0x61)  
+0.5 dB  
0 dB  
-0.5 dB  
-59.5 dB  
-60 dB  
11010111 (0xD7)  
11011000 (0xD8)  
11011001 (0xD9)  
11011010 (0xDA)  
-61 dB  
-62 dB  
11101100 (0xEC)  
11101101 (0xED)  
-80 dB  
Hard channel mute  
11111111 (0xFF)  
Hard channel mute  
7.8  
Audio preset registers (addr 0x0B and 0x0C)  
7.8.1  
Audio preset register 1 (addr 0x0B)  
D7  
Reserved  
0
D6  
Reserved  
0
D5  
AMGC[1]  
0
D4  
AMGC[0]  
0
D3  
Reserved  
0
D2  
Reserved  
0
D1  
Reserved  
0
D0  
Reserved  
0
Using AMGC[3:0] bits, attack and release thresholds and rates are automatically configured  
to properly fit application specific configurations. AMGC[3:2] is defined in register EQ  
coefficients and DRC configuration register (addr 0x31) on page 71.  
The AMGC[1:0] bits behave in two different ways depending on the value of AMGC[3:2].  
When this value is 00, then bits AMGC[1:0] are defined below in Table 53.  
Table 53. Audio preset gain compression/limiters selection for AMGC[3:2] = 00  
AMGC[1:0]  
Mode  
00  
01  
10  
11  
User-programmable GC  
AC no clipping 2.1  
AC limited clipping (10%) 2.1  
DRC nighttime listening mode 2.1  
Doc ID 018572 Rev 3  
53/86  
 
Register description  
STA350BW  
7.8.2  
Audio preset register 2 (addr 0x0C)  
D7  
XO3  
0
D6  
XO2  
0
D5  
XO1  
0
D4  
XO0  
0
D3  
AMAM2  
0
D2  
AMAM1  
0
D1  
AMAM0  
0
D0  
AMAME  
0
7.8.3  
AM interference frequency switching  
Table 54. AM interference frequency switching bits  
Bit  
R/W  
RST  
Name  
Description  
Audio preset AM enable  
0
R/W  
0
AMAME  
0: switching frequency determined by PWMS setting  
1: switching frequency determined by AMAM settings  
Table 55. Audio preset AM switching frequency selection  
AMAM[2:0]  
48 kHz/96 kHz input fs  
44.1 kHz/88.2 kHz input fs  
000  
001  
010  
011  
100  
101  
110  
0.535 MHz - 0.720 MHz  
0.721 MHz - 0.900 MHz  
0.901 MHz - 1.100 MHz  
1.101 MHz - 1.300 MHz  
1.301 MHz - 1.480 MHz  
1.481 MHz - 1.600 MHz  
1.601 MHz - 1.700 MHz  
0.535 MHz - 0.670 MHz  
0.671 MHz - 0.800 MHz  
0.801 MHz - 1.000 MHz  
1.001 MHz - 1.180 MHz  
1.181 MHz - 1.340 MHz  
1.341 MHz - 1.500 MHz  
1.501 MHz - 1.700 MHz  
7.8.4  
Bass management crossover  
Table 56. Bass management crossover  
Bit  
R/W  
RST  
Name  
Description  
4
5
6
7
R/W  
R/W  
R/W  
R/W  
0
0
0
0
XO0  
XO1  
XO2  
XO3  
Selects the bass-management crossover frequency.  
A 1st-order hign-pass filter (channels 1 and 2) or a  
2nd-order low-pass filter (channel 3) at the selected  
frequency is performed.  
Table 57. Bass management crossover frequency  
XO[3:0]  
Crossover frequency  
0000  
0001  
0010  
0011  
User-defined  
80 Hz  
100 Hz  
120 Hz  
54/86  
Doc ID 018572 Rev 3  
STA350BW  
Register description  
Table 57. Bass management crossover frequency (continued)  
XO[3:0]  
Crossover frequency  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
140 Hz  
160 Hz  
180 Hz  
200 Hz  
220 Hz  
240 Hz  
260 Hz  
280 Hz  
300 Hz  
320 Hz  
340 Hz  
360 Hz  
7.9  
Channel configuration registers (addr 0x0E - 0x10)  
D7  
C1OM1  
0
D6  
C1OM0  
0
D5  
C1LS1  
0
D4  
C1LS0  
0
D3  
C1BO  
0
D2  
C1VPB  
0
D1  
C1EQBP  
0
D0  
C1TCB  
0
D7  
C2OM1  
0
D6  
C2OM0  
1
D5  
C2LS1  
0
D4  
C2LS0  
0
D3  
C2BO  
0
D2  
C2VPB  
0
D1  
C2EQBP  
0
D0  
C2TCB  
0
D7  
C3OM1  
1
D6  
C3OM0  
0
D5  
C3LS1  
0
D4  
C3LS0  
0
D3  
C3BO  
0
D2  
C3VPB  
0
D1  
Reserved  
0
D0  
Reserved  
0
7.9.1  
Tone control bypass  
Tone control (bass/treble) can be bypassed on a per-channel basis for channels 1 and 2.  
Table 58. Tone control bypass  
CxTCB  
Mode  
0
1
Perform tone control on channel x - normal operation  
Bypass tone control on channel x  
7.9.2  
EQ bypass  
EQ control can be bypassed on a per-channel basis for channels 1 and 2. If EQ control is  
bypassed on a given channel, the prescale and all filters (high-pass, biquads, de-emphasis,  
bass, treble in any combination) are bypassed for that channel.  
Doc ID 018572 Rev 3  
55/86  
Register description  
STA350BW  
Table 59. EQ bypass  
CxEQBP  
Mode  
0
1
Perform EQ on channel x - normal operation  
Bypass EQ on channel x  
7.9.3  
7.9.4  
Volume bypass  
Each channel contains an individual channel volume bypass. If a particular channel has  
volume bypassed via the CxVBP = 1 register then only the channel volume setting for that  
particular channel affects the volume setting, the master volume setting will not affect that  
channel.  
Binary output enable registers  
Each individual channel output can be set to output a binary PWM stream. In this mode  
output A of a channel is considered the positive output and output B is the negative inverse.  
Table 60. Binary output enable registers  
CxBO  
Mode  
0
1
FFX 3-state output - normal operation  
Binary output  
7.9.5  
Limiter select  
Limiter selection can be made on a per-channel basis according to the channel limiter select  
bits.  
.
Table 61. Channel limiter mapping as a function of CxLS bits  
CxLS[1:0]  
Channel limiter mapping  
Channel has limiting disabled  
00  
01  
10  
Channel is mapped to limiter #1  
Channel is mapped to limiter #2  
7.9.6  
Output mapping  
Output mapping can be performed on a per channel basis according to the CxOM channel  
output mapping bits. Each input into the output configuration engine can receive data from  
any of the three processing channel outputs.  
.
Table 62. Channel output mapping as a function of CxOM bits  
CxOM[1:0]  
Channel x output source from  
00  
01  
10  
Channel1  
Channel 2  
Channel 3  
56/86  
Doc ID 018572 Rev 3  
STA350BW  
Register description  
7.10  
Tone control register (addr 0x11)  
D7  
TTC3  
0
D6  
TTC2  
1
D5  
TTC1  
1
D4  
TTC0  
1
D3  
BTC3  
0
D2  
BTC2  
1
D1  
BTC1  
1
D0  
BTC0  
1
7.10.1  
Tone control  
Table 63. Tone control boost/cut as a function of BTC and TTC bits  
BTC[3:0]/TTC[3:0]  
Boost/Cut  
0000  
0001  
-12 dB  
-12 dB  
0111  
0110  
0111  
1000  
1001  
-4 dB  
-2 dB  
0 dB  
+2 dB  
+4 dB  
1101  
1110  
1111  
+12 dB  
+12 dB  
+12 dB  
7.11  
Dynamic control registers (addr 0x12 - 0x15)  
7.11.1  
Limiter 1 attack/release rate  
D7  
L1A3  
0
D6  
L1A2  
1
D5  
L1A1  
1
D4  
L1A0  
0
D3  
L1R3  
1
D2  
L1R2  
0
D1  
L1R1  
1
D0  
L1R0  
0
7.11.2  
7.11.3  
Limiter 1 attack/release threshold  
D7  
L1AT3  
0
D6  
L1AT2  
1
D5  
L1AT1  
1
D4  
L1AT0  
0
D3  
L1RT3  
1
D2  
L1RT2  
0
D1  
L1RT1  
0
D0  
L1RT0  
1
Limiter 2 attack/release rate  
D7  
L2A3  
0
D6  
L2A2  
1
D5  
L2A1  
1
D4  
L2A0  
0
D3  
L2R3  
1
D2  
L2R2  
0
D1  
L2R1  
1
D0  
L2R0  
0
Doc ID 018572 Rev 3  
57/86  
 
 
Register description  
STA350BW  
7.11.4  
Limiter 2 attack/release threshold  
D7  
L2AT3  
0
D6  
L2AT2  
1
D5  
L2AT1  
1
D4  
L2AT0  
0
D3  
L2RT3  
1
D2  
L2RT2  
0
D1  
L2RT1  
0
D0  
L2RT0  
1
The STA350BW includes two independent limiter blocks. The purpose of the limiters is to  
automatically reduce the dynamic range of a recording to prevent the outputs from clipping  
in anti-clipping mode or to actively reduce the dynamic range for a better listening  
environment such as a night-time listening mode which is often needed for DVDs. The two  
modes are selected via the DRC bit in Configuration register E (addr 0x04) on page 42.  
Each channel can be mapped to either limiter or not mapped, meaning that the channel will  
clip when 0 dBfs is exceeded. Each limiter looks at the present value of each channel that is  
mapped to it, selects the maximum absolute value of all these channels, performs the  
limiting algorithm on that value, and then if needed adjusts the gain of the mapped channels  
in unison.  
The limiter attack thresholds are determined by the LxAT registers if EATHx[7] bits are set  
to 0 else the thresholds are determined by EATHx[6:0] . It is recommended in anti-clipping  
mode to set this to 0 dBfs, which corresponds to the maximum unclipped output power of an  
FFX amplifier. Since gain can be added digitally within the STA350BW, it is possible to  
exceed 0 dBfs or any other LxAT setting. When this occurs, the limiter, when active,  
automatically starts reducing the gain. The rate at which the gain is reduced when the attack  
threshold is exceeded is dependent upon the attack rate register setting for that limiter. Gain  
reduction occurs on a peak-detect algorithm. Setting the EATHx[7] bits to 1 selects the  
anti-clipping mode.  
The limiter release thresholds are determined by the LxRT registers if ERTHx[7] bits are set  
to 0, else the thresholds are determined by ERTHx[6:0]. Setting the ERTHx[7] bits to 1  
automatically selects the anti-clipping mode. The release of the limiter, when the gain is  
again increased, is dependent on an RMS-detect algorithm. The output of the volume/limiter  
block is passed through an RMS filter. The output of this filter is compared to the release  
threshold, determined by the Release Threshold register. When the RMS filter output falls  
below the release threshold, the gain is again increased at a rate dependent upon the  
Release Rate register. The gain can never be increased past its set value and, therefore, the  
release only occurs if the limiter has already reduced the gain. The release threshold value  
can be used to set what is effectively a minimum dynamic range, this is helpful as  
overlimiting can reduce the dynamic range to virtually zero and cause program material to  
sound “lifeless”.  
In AC mode, the attack and release thresholds are set relative to full-scale. In DRC mode,  
the attack threshold is set relative to the maximum volume setting of the channels mapped  
to that limiter and the release threshold is set relative to the maximum volume setting plus  
the attack threshold.  
58/86  
Doc ID 018572 Rev 3  
STA350BW  
Register description  
Figure 28. Basic limiter and volume flow diagram  
LIMITER  
RMS  
GAIN / VOLUME  
+
INPUT  
OUTPUT  
ATTENUATION  
SATURATION  
GAIN  
AM045193v1  
Table 64. Limiter attack rate as a function  
of LxA bits  
Table 65. Limiter release rate as a  
function of LxR bits  
LxA[3:0]  
Attack rate dB/ms  
LxR[3:0]  
Release rate dB/ms  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
3.1584  
2.7072  
2.2560  
1.8048  
1.3536  
0.9024  
0.4512  
0.2256  
0.1504  
0.1123  
0.0902  
0.0752  
0.0645  
0.0564  
0.0501  
0.0451  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0.5116  
0.1370  
0.0744  
0.0499  
0.0360  
0.0299  
0.0264  
0.0208  
0.0198  
0.0172  
0.0147  
0.0137  
0.0134  
0.0117  
0.0110  
0.0104  
Fast  
Fast  
Slow  
Slow  
Doc ID 018572 Rev 3  
59/86  
 
Register description  
STA350BW  
Anti-clipping mode  
Table 66. Limiter attack threshold as a  
function of LxAT bits (AC-mode)  
Table 67. Limiter release threshold as a  
function of LxRT bits (AC-  
mode)  
LxAT[3:0]  
AC (dB relative to fs)  
LxRT[3:0]  
AC (dB relative to fs)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
-12  
-10  
-8  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
-∞  
-29 dB  
-20 dB  
-16 dB  
-14 dB  
-12 dB  
-10 dB  
-8 dB  
-7 dB  
-6 dB  
-5 dB  
-4 dB  
-3 dB  
-2 dB  
-1 dB  
-0 dB  
-6  
-4  
-2  
0
+2  
+3  
+4  
+5  
+6  
+7  
+8  
+9  
+10  
60/86  
Doc ID 018572 Rev 3  
STA350BW  
Register description  
Dynamic range compression mode  
Table 68. Limiter attack threshold as a  
function of LxAT bits (DRC -  
mode)  
Table 69. Limiter release threshold as a  
as a function of LxRT bits  
(DRC-mode)  
DRC (db relative to Volume +  
LxAT[3:0]  
DRC (dB relative to Volume)  
LxRT[3:0]  
LxAT)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
-31  
-29  
-27  
-25  
-23  
-21  
-19  
-17  
-16  
-15  
-14  
-13  
-12  
-10  
-7  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
-∞  
-38 dB  
-36 dB  
-33 dB  
-31 dB  
-30 dB  
-28 dB  
-26 dB  
-24 dB  
-22 dB  
-20 dB  
-18 dB  
-15 dB  
-12 dB  
-9 dB  
-4  
-6 dB  
7.11.5  
Limiter 1 extended attack threshold (addr 0x32)  
D7  
EATHEN1  
TBD  
D6  
EATH1[6]  
TBD  
D5  
EATH1[5]  
TBD  
D4  
EATH1[4]  
TBD  
D3  
EATH1[3]  
TBD  
D2  
EATH1[2]  
TBD  
D1  
EATH1[1]  
TBD  
D0  
EATH1[0]  
TBD  
The extended attack threshold value is determined as follows:  
attack threshold = -12 + EATH1 / 4  
7.11.6  
Limiter 1 extended release threshold (addr 0x33)  
D7  
ERTHEN1  
TBD  
D6  
ERTH1[6]  
TBD  
D5  
ERTH1[5]  
TBD  
D4  
ERTH1[4]  
TBD  
D3  
ERTH1[3]  
TBD  
D2  
ERTH1[2]  
TBD  
D1  
ERTH1[1]  
TBD  
D0  
ERTH1[0]  
TBD  
The extended release threshold value is determined as follows:  
release threshold = -12 + ERTH1 / 4  
Doc ID 018572 Rev 3  
61/86  
Register description  
STA350BW  
7.11.7  
Limiter 2 extended attack threshold (addr 0x34)  
D7  
EATHEN2  
TBD  
D6  
EATH2[6]  
TBD  
D5  
EATH2[5]  
TBD  
D4  
EATH2[4]  
TBD  
D3  
EATH2[3]  
TBD  
D2  
EATH2[2]  
TBD  
D1  
EATH2[1]  
TBD  
D0  
EATH2[0]  
TBD  
The extended attack threshold value is determined as follows:  
attack threshold = -12 + EATH2 / 4  
7.11.8  
Limiter 2 extended release threshold (addr 0x35)  
D7  
ERTHEN2  
TBD  
D6  
ERTH2[6]  
TBD  
D5  
ERTH2[5]  
TBD  
D4  
ERTH2[4]  
TBD  
D3  
ERTH2[3]  
TBD  
D2  
ERTH2[2]  
TBD  
D1  
ERTH2[1]  
TBD  
D0  
ERTH2[0]  
TBD  
The extended release threshold value is determined as follows:  
release threshold = -12 + ERTH2 / 4  
Note:  
Attack/release threshold step is 0.125 dB in the range -12 dB to 0 dB.  
7.12  
User-defined coefficient control registers (addr 0x16 - 0x26)  
7.12.1  
Coefficient address register  
D7  
D6  
D5  
CFA5  
0
D4  
CFA4  
0
D3  
CFA3  
0
D2  
CFA2  
0
D1  
CFA1  
0
D0  
CFA0  
0
7.12.2  
7.12.3  
7.12.4  
Coefficient b1 data register bits 23:16  
D7  
C1B23  
0
D6  
C1B22  
0
D5  
C1B21  
0
D4  
C1B20  
0
D3  
C1B19  
0
D2  
C1B18  
0
D1  
C1B17  
0
D0  
C1B16  
0
Coefficient b1 data register bits 15:8  
D7  
C1B15  
0
D6  
C1B14  
0
D5  
C1B13  
0
D4  
C1B12  
0
D3  
C1B11  
0
D2  
C1B10  
0
D1  
C1B9  
0
D0  
C1B8  
0
Coefficient b1 data register bits 7:0  
D7  
C1B7  
0
D6  
C1B6  
0
D5  
C1B5  
0
D4  
C1B4  
0
D3  
C1B3  
0
D2  
C1B2  
0
D1  
C1B1  
0
D0  
C1B0  
0
62/86  
Doc ID 018572 Rev 3  
STA350BW  
Register description  
7.12.5  
Coefficient b2 data register bits 23:16  
D7  
C2B23  
0
D6  
C2B22  
0
D5  
C2B21  
0
D4  
C2B20  
0
D3  
C2B19  
0
D2  
C2B18  
0
D1  
C2B17  
0
D0  
C2B16  
0
7.12.6  
7.12.7  
7.12.8  
7.12.9  
Coefficient b2 data register bits 15:8  
D7  
C2B15  
0
D6  
C2B14  
0
D5  
C2B13  
0
D4  
C2B12  
0
D3  
C2B11  
0
D2  
C2B10  
0
D1  
C2B9  
0
D0  
C2B8  
0
Coefficient b2 data register bits 7:0  
D7  
C2B7  
0
D6  
C2B6  
0
D5  
C2B5  
0
D4  
C2B4  
0
D3  
C2B3  
0
D2  
C2B2  
0
D1  
C2B1  
0
D0  
C2B0  
0
Coefficient a1 data register bits 23:16  
D7  
C1B23  
0
D6  
C1B22  
0
D5  
C1B21  
0
D4  
C1B20  
0
D3  
C1B19  
0
D2  
C1B18  
0
D1  
C1B17  
0
D0  
C1B16  
0
Coefficient a1 data register bits 15:8  
D7  
C3B15  
0
D6  
C3B14  
0
D5  
C3B13  
0
D4  
C3B12  
0
D3  
C3B11  
0
D2  
C3B10  
0
D1  
C3B9  
0
D0  
C3B8  
0
7.12.10 Coefficient a1 data register bits 7:0  
D7  
C3B7  
0
D6  
C3B6  
0
D5  
C3B5  
0
D4  
C3B4  
0
D3  
C3B3  
0
D2  
C3B2  
0
D1  
C3B1  
0
D0  
C3B0  
0
7.12.11 Coefficient a2 data register bits 23:16  
D7  
C4B23  
0
D6  
C4B22  
0
D5  
C4B21  
0
D4  
C4B20  
0
D3  
C4B19  
0
D2  
C4B18  
0
D1  
C4B17  
0
D0  
C4B16  
0
Doc ID 018572 Rev 3  
63/86  
Register description  
STA350BW  
7.12.12 Coefficient a2 data register bits 15:8  
D7  
C4B15  
0
D6  
C4B14  
0
D5  
C4B13  
0
D4  
C4B12  
0
D3  
C4B11  
0
D2  
C4B10  
0
D1  
C4B9  
0
D0  
C4B8  
0
7.12.13 Coefficient a2 data register bits 7:0  
D7  
C4B7  
0
D6  
C4B6  
0
D5  
C4B5  
0
D4  
C4B4  
0
D3  
C4B3  
0
D2  
C4B2  
0
D1  
C4B1  
0
D0  
C4B0  
0
7.12.14 Coefficient b0 data register bits 23:16  
D7  
C5B23  
0
D6  
C5B22  
0
D5  
C5B21  
0
D4  
C5B20  
0
D3  
C5B19  
0
D2  
C5B18  
0
D1  
C5B17  
0
D0  
C5B16  
0
7.12.15 Coefficient b0 data register bits 15:8  
D7  
C5B15  
0
D6  
C5B14  
0
D5  
C5B13  
0
D4  
C5B12  
0
D3  
C5B11  
0
D2  
C5B10  
0
D1  
C5B9  
0
D0  
C5B8  
0
7.12.16 Coefficient b0 data register bits 7:0  
D7  
C5B7  
0
D6  
C5B6  
0
D5  
C5B5  
0
D4  
C5B4  
0
D3  
C5B3  
0
D2  
C5B2  
0
D1  
C5B1  
0
D0  
C5B0  
0
7.12.17 Coefficient write/read control register  
D7  
D6  
D5  
D4  
D3  
RA  
0
D2  
R1  
0
D1  
WA  
0
D0  
W1  
0
Reserved  
0
Coefficients for user-defined EQ, mixing, scaling, and bass management are handled  
2
internally in the STA350BW via RAM. Access to this RAM is available to the user via an I C  
2
register interface. A collection of I C registers are dedicated to this function. One contains a  
coefficient base address, five sets of three store the values of the 24-bit coefficients to be  
written or that were read, and one contains bits used to control the write/read of the  
coefficient(s) to/from RAM.  
Three different RAM banks are embedded in the STA350BW. The three banks are managed  
in paging mode using EQCFG register bits. They can be used to store different EQ settings.  
For speaker frequency compensation, a sampling frequency independent EQ must be  
implemented. Computing three different coefficients set for 32 kHz, 44.1kHz, 48 kHz and  
downloading them into the three RAM banks, it is possible to select the suitable RAM block  
2
depending on the incoming frequency with a simple I C write operation in register 0x31.  
64/86  
Doc ID 018572 Rev 3  
STA350BW  
Register description  
For example, in case of different input sources (different sampling rates), the three different  
sets of coefficients can be downloaded once at startup, and during normal play it is possible  
to switch among the three RAM blocks allowing faster operation, without any additional  
download from the microcontroller.  
To write the coefficients in a particular RAM bank, this bank must be selected first, writing  
bit 0 and bit 1 in register 0x31. Then the write procedure below can be used.  
Note that as soon as a RAM bank is selected, the EQ settings are automatically switched to  
the coefficients stored in the active RAM block.  
Note:  
The read and write operation on RAM coefficients works only if LRCKI (pin 29) is switching.  
Reading a coefficient from RAM  
1. Select the RAM block with register 0x31 bit 1, bit 0.  
2
2. Write 6 bits of address to I C register 0x16.  
2
3. Write 1 to R1 bit in I C address 0x26.  
2
4. Read top 8 bits of coefficient in I C address 0x17.  
2
5. Read middle 8 bits of coefficient in I C address 0x18.  
2
6. Read bottom 8 bits of coefficient in I C address 0x19.  
Reading a set of coefficients from RAM  
1. Select the RAM block with register 0x31 bit1, bit0.  
2
2. Write 6 bits of address to I C register 0x16.  
2
3. Write 1 to RA bit in I C address 0x26.  
2
4. Read top 8 bits of coefficient in I C address 0x17.  
2
5. Read middle 8 bits of coefficient in I C address 0x18.  
2
6. Read bottom 8 bits of coefficient in I C address 0x19.  
2
7. Read top 8 bits of coefficient b2 in I C address 0x1A.  
2
8. Read middle 8 bits of coefficient b2 in I C address 0x1B.  
2
9. Read bottom 8 bits of coefficient b2 in I C address 0x1C.  
2
10. Read top 8 bits of coefficient a1 in I C address 0x1D.  
2
11. Read middle 8 bits of coefficient a1 in I C address 0x1E.  
2
12. Read bottom 8 bits of coefficient a1 in I C address 0x1F.  
2
13. Read top 8 bits of coefficient a2 in I C address 0x20.  
2
14. Read middle 8 bits of coefficient a2 in I C address 0x21.  
2
15. Read bottom 8 bits of coefficient a2 in I C address 0x22.  
2
16. Read top 8 bits of coefficient b0 in I C address 0x23.  
2
17. Read middle 8 bits of coefficient b0 in I C address 0x24.  
2
18. Read bottom 8 bits of coefficient b0 in I C address 0x25.  
Doc ID 018572 Rev 3  
65/86  
Register description  
STA350BW  
Writing a single coefficient to RAM  
1. Select the RAM block with register 0x31 bit1, bit0.  
2
2. Write 6 bits of address to I C register 0x16.  
2
3. Write top 8 bits of coefficient in I C address 0x17.  
2
4. Write middle 8 bits of coefficient in I C address 0x18.  
2
5. Write bottom 8 bits of coefficient in I C address 0x19.  
2
6. Write 1 to the W1 bit in I C address 0x26.  
Writing a set of coefficients to RAM  
1. Select the RAM block with register 0x31 bit1, bit0.  
2
2. Write 6 bits of starting address to I C register 0x16.  
2
3. Write top 8 bits of coefficient b1 in I C address 0x17.  
2
4. Write middle 8 bits of coefficient b1 in I C address 0x18.  
2
5. Write bottom 8 bits of coefficient b1 in I C address 0x19.  
2
6. Write top 8 bits of coefficient b2 in I C address 0x1A.  
2
7. Write middle 8 bits of coefficient b2 in I C address 0x1B.  
2
8. Write bottom 8 bits of coefficient b2 in I C address 0x1C.  
2
9. Write top 8 bits of coefficient a1 in I C address 0x1D.  
2
10. Write middle 8 bits of coefficient a1 in I C address 0x1E.  
2
11. Write bottom 8 bits of coefficient a1 in I C address 0x1F.  
2
12. Write top 8 bits of coefficient a2 in I C address 0x20.  
2
13. Write middle 8 bits of coefficient a2 in I C address 0x21.  
2
14. Write bottom 8 bits of coefficient a2 in I C address 0x22.  
2
15. Write top 8 bits of coefficient b0 in I C address 0x23.  
2
16. Write middle 8 bits of coefficient b0 in I C address 0x24.  
2
17. Write bottom 8 bits of coefficient b0 in I C address 0x25.  
2
18. Write 1 to the WA bit in I C address 0x26.  
The mechanism for writing a set of coefficients to RAM provides a method of updating the  
five coefficients corresponding to a given biquad (filter) simultaneously to avoid possible  
unpleasant acoustic side-effects. When using this technique, the 6-bit address specifies the  
address of the biquad b1 coefficient (for example, 0, 5, 10, 20, 35 decimal), and the  
STA350BW generates the RAM addresses as offsets from this base value to write the  
complete set of coefficient data.  
66/86  
Doc ID 018572 Rev 3  
STA350BW  
Register description  
7.12.18 User-defined EQ  
The STA350BW can be programmed for four EQ filters (biquads) per each of the two input  
channels. The biquads use the following equation:  
Y[n] = 2 * (b / 2) * X[n] + 2 * (b / 2) * X[n-1] + b * X[n-2] - 2 * (a / 2) * Y[n-1] - a * Y[n-2]  
0
1
2
1
2
= b * X[n] + b * X[n-1] + b * X[n-2] - a * Y[n-1] - a * Y[n-2]  
0
1
2
1
2
where Y[n] represents the output and X[n] represents the input. Multipliers are 24-bit signed  
fractional multipliers, with coefficient values in the range of 0x800000 (-1) to 0x7FFFFF  
(0.9999998808).  
Coefficients stored in the user-defined coefficient RAM are referenced in the following  
manner:  
CxHy0 = b / 2  
1
CxHy1 = b  
2
CxHy2 = -a / 2  
1
CxHy3 = -a  
2
CxHy4 = b / 2  
0
where x represents the channel and the y the biquad number. For example, C2H41 is the b  
coefficient in the fourth biquad for channel 2.  
2
Additionally, the STA350BW can be programmed for a high-pass filter (processing  
channels 1 and 2) and a low-pass filter (processing channel 3) to be used for bass-  
management crossover when the XO setting is 000 (user-defined). Both of these filters  
when defined by the user (rather than using the preset crossover filters) are second order  
filters that use the biquad equation given above. They are loaded into the C12H0-4 and  
C3Hy0-4 areas of RAM noted in Table 70.  
By default, all user-defined filters are pass-through where all coefficients are set to 0, except  
the b /2 coefficient which is set to 0x400000 (representing 0.5).  
0
7.12.19 Pre-scale  
The STA350BW provides a multiplication for each input channel for the purpose of scaling  
the input prior to EQ. This pre-EQ scaling is accomplished by using a 24-bit signed  
fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The scale factor  
2
for this multiplication is loaded into RAM using the same I C registers as the biquad  
coefficients and the bass-management. All channels can use the channel-1 pre-scale factor  
by setting the Biquad link bit. By default, all pre-scale factors are set to 0x7FFFFF.  
7.12.20 Post-scale  
The STA350BW provides one additional multiplication after the last interpolation stage and  
the distortion compensation on each channel. This post-scaling is accomplished by using a  
24-bit signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The  
2
scale factor for this multiplication is loaded into RAM using the same I C registers as the  
biquad coefficients and the bass-management. This post-scale factor can be used in  
conjunction with an ADC equipped microcontroller to perform power-supply error correction.  
All channels can use the channel-1 post-scale factor by setting the post-scale link bit. By  
default, all post-scale factors are set to 0x7FFFFF. When line output is being used,  
channel-3 post-scale will affect both channels 3 and 4.  
Doc ID 018572 Rev 3  
67/86  
Register description  
STA350BW  
7.12.21 Overcurrent post-scale  
The STA350BW provides a simple mechanism for reacting to overcurrent detection in the  
power block. When the ocwarn input is asserted, the overcurrent post-scale value is used in  
place of the normal post-scale value to provide output attenuation on all channels. The  
default setting provides 3 dB of output attenuation when ocwarn is asserted.  
The amount of attenuation to be applied in this situation can be adjusted by modifying the  
Overcurrent Post-scale value. As with the normal post-scale, this scaling value is a 24-bit  
signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. By default,  
the overcurrent post-scale factor is set to 0x5A9DF7. Once the overcurrent attenuation is  
applied, it remains until the device is reset.  
Table 70. RAM block for biquads, mixing, scaling and bass management  
Index (decimal)  
Index (hex)  
Coefficient  
Default  
0
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
C1H10(b1/2)  
C1H11(b2)  
C1H12(a1/2)  
C1H13(a2)  
C1H14(b0/2)  
C1H20  
0x000000  
0x000000  
0x000000  
0x000000  
0x400000  
0x000000  
1
2
Channel 1 - Biquad 1  
3
4
5
Channel 1 - Biquad 2  
19  
20  
21  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
0x13  
0x14  
0x15  
Channel 1 - Biquad 4  
C1H44  
0x400000  
0x000000  
0x000000  
C2H10  
Channel 2 - Biquad 1  
C2H11  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
Channel 2 - Biquad 4  
C2H44  
0x400000  
0x000000  
0x000000  
0x000000  
0x000000  
0x400000  
0x000000  
0x000000  
0x000000  
0x000000  
0x400000  
0x7FFFFF  
0x7FFFFF  
0x7FFFFF  
0x7FFFFF  
C12H0(b1/2)  
C12H1(b2)  
C12H2(a1/2)  
C12H3(a2)  
C12H4(b0/2)  
C3H0(b1/2)  
C3H1(b2)  
C3H2(a1/2)  
C3H3(a2)  
C3H4(b0/2)  
C1PreS  
Channel 1/2 - Biquad 5  
for XO = 000  
Hi-pass 2nd Order filter  
for XO000  
Channel 3 - Biquad  
for XO = 000  
Low-pass 2nd Order filter  
for XO000  
Channel 1 - Pre-Scale  
Channel 2 - Pre-Scale  
Channel 1 - Post-Scale  
Channel 2 - Post-Scale  
C2PreS  
C1PstS  
C2PstS  
68/86  
Doc ID 018572 Rev 3  
 
STA350BW  
Register description  
Table 70. RAM block for biquads, mixing, scaling and bass management (continued)  
Index (decimal)  
Index (hex)  
Coefficient  
Default  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
Channel 3 - Post-Scale  
TWARN/OC - Limit  
Channel 1 - Mix 1  
Channel 1 - Mix 2  
Channel 2 - Mix 1  
Channel 2 - Mix 2  
Channel 3 - Mix 1  
Channel 3 - Mix 2  
UNUSED  
C3PstS  
TWOCL  
C1MX1  
C1MX2  
C2MX1  
C2MX2  
C3MX1  
C3MX2  
0x7FFFFF  
0x5A9DF7  
0x7FFFFF  
0x000000  
0x000000  
0x7FFFFF  
0x400000  
0x400000  
UNUSED  
7.13  
Variable max power correction registers (addr 0x27 - 0x28)  
D7  
D6  
MPCC14  
0
D5  
MPCC13  
0
D4  
MPCC12  
1
D3  
MPCC11  
1
D2  
MPCC10  
0
D1  
MPCC9  
1
D0  
MPCC8  
0
MPCC15  
0
D7  
MPCC7  
1
D6  
MPCC6  
1
D5  
MPCC5  
0
D4  
MPCC4  
0
D3  
MPCC3  
0
D2  
MPCC2  
0
D1  
MPCC1  
0
D0  
MPCC0  
0
The MPCC bits determine the 16 MSBs of the MPC compensation coefficient. This  
coefficient is used in place of the default coefficient when MPCV = 1.  
7.14  
Variable distortion compensation registers (addr 0x29 -  
0x2A)  
D7  
DCC15  
1
D6  
DCC14  
1
D5  
DCC13  
1
D4  
DCC12  
1
D3  
DCC11  
0
D2  
DCC10  
0
D1  
DCC9  
1
D0  
DCC8  
1
D7  
DCC7  
0
D6  
DCC6  
0
D5  
DCC5  
1
D4  
DCC4  
1
D3  
DCC3  
0
D2  
DCC2  
0
D1  
DCC1  
1
D0  
DCC0  
1
The DCC bits determine the 16 MSBs of the distortion compensation coefficient. This  
coefficient is used in place of the default coefficient when DCCV = 1.  
Doc ID 018572 Rev 3  
69/86  
Register description  
STA350BW  
7.15  
Fault detect recovery constant registers (addr 0x2B - 0x2C)  
D7  
FDRC15  
0
D6  
FDRC14  
0
D5  
FDRC13  
0
D4  
FDRC12  
0
D3  
FDRC11  
0
D2  
FDRC10  
0
D1  
FDRC9  
0
D0  
FDRC8  
0
D7  
FDRC7  
0
D6  
FDRC6  
0
D5  
FDRC5  
0
D4  
FDRC4  
0
D3  
FDRC3  
1
D2  
FDRC2  
1
D1  
FDRC1  
0
D0  
FDRC0  
0
The FDRC bits specify the 16-bit fault detect recovery time delay. When FAULT is asserted,  
the TRISTATE output is immediately asserted low and held low for the time period specified  
by this constant. A constant value of 0x0001 in this register is approximately 0.083 ms. The  
default value of 0x000C gives approximately 0.1 ms.  
7.16  
Device status register (addr 0x2D)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PLLUL  
FAULT  
UVFAULT  
OVFAULT  
OCFAULT  
OCWARN  
TFAULT  
TWARN  
This read-only register provides fault and thermal-warning status information from the power  
control block. Logic value 1 for faults or warning means normal state. Logic 0 means a fault  
or warning detected on power bridge. The PLLUL = 1 means that the PLL is not locked.  
Table 71. Status register bits  
Bit  
R/W  
RST  
Name  
Description  
0: PLL locked  
1: PLL not locked  
7
R
-
PLLUL  
0: fault detected on power bridge  
1: normal operation  
6
5
4
R
R
R
-
-
-
FAULT  
0: VCCxX internally detected  
< undervoltage threshold  
UVFAULT  
OVFAULT  
0: VCCxX internally detected  
> overvoltage threshold  
3
2
R
R
-
-
OCFAULT  
OCWARN  
0: overcurrent fault detected  
0: overcurrent warning  
0: thermal fault, junction temperature over limit  
detection  
1
0
R
R
-
-
TFAULT  
TWARN  
0: thermal warning, junction temperature is close to  
the fault condition  
70/86  
Doc ID 018572 Rev 3  
STA350BW  
Register description  
7.17  
EQ coefficients and DRC configuration register (addr 0x31)  
D7  
XOB  
0
D6  
Reserved  
0
D5  
Reserved  
0
D4  
AMGC[3]  
0
D3  
AMGC[2]  
0
D2  
Reserved  
0
D1  
SEL[1]  
0
D0  
SEL[0]  
0
Table 72. EQ RAM select  
SEL[1:0]  
EQ RAM bank selected  
00/11  
01  
Bank 0 activated  
Bank 1 activated  
Bank 2 activated  
10  
Bits AMGC[3:2] change the behavior of the bits AMGC[1:0] as given in Table 73 below.  
Table 73.  
Anti-clipping and DRC preset  
AMGC[3:2]  
Anti clipping and DRC preset selected  
00  
01  
DRC/Anti-clipping behavior described in Table 53 on page 53 (default).  
DRC/Anti-clipping behavior is described Table 74 on page 71  
Reserved, do not use  
10/11  
When AMGC[3:2] = 01 then the bits 1:0 are defined as given here in Table 74.  
Table 74. Anti-clipping selection for AMGC[3:2] = 01  
AMGC[1:0]  
Mode  
AC0, stereo anticlipping 0 dB limiter  
00  
01  
10  
11  
AC1, stereo anticlipping +1.25 dB limiter  
AC2, stereo anticlipping +2 dB limiter  
Reserved do not use  
The AC0, AC1, AC2 settings are designed for the loudspeaker protection function, limiting at  
the minimum any audio artifacts introduced by typical anti-clipping/DRC algorithms. More  
detailed information is available in the applications notes “Configurable output power rate  
using STA335BW” and “STA335BWS vs STA335BW”.  
The XOB bit can be used to bypass the crossover filters. Logic 1 means that the function is  
not active. In this case, the high-pass crossover filter works as a pass-through on the data  
path (b0 = 1, all the other coefficients at logic 0) while the low-pass filter is configured to  
have zero signal on channel-3 data processing (all the coefficients are at logic 0).  
Doc ID 018572 Rev 3  
71/86  
 
 
Register description  
STA350BW  
7.18  
Extended configuration register (addr 0x36)  
D7  
Mdrc[1]  
0
D6  
Mdrc[0]  
0
D5  
PS48DB  
0
D4  
XAR1  
0
D3  
XAR2  
0
D2  
BQ5  
0
D1  
BQ6  
0
D0  
BQ7  
0
2
The extended configuration register provides access to B DRC and biquad 5, 6 and 7.  
7.18.1  
Dual-band DRC  
2
The STA350BW device provide a dual-band DRC (B DRC) on the left and right channels  
data path, as depicted in Figure 29. Dual-band DRC is activated by setting MDRC[1:0] = 1x.  
2
Figure 29. B DRC scheme  
CH1  
DRC1  
Volume  
+
+
2
B DRC  
Hi-pass  
CH3  
L
filter  
DRC2  
Volume  
-
CH2  
DRC1  
Volume  
B2DRC  
CH3  
DRC2  
R
Hi-pass  
Volume  
filter  
-
AM045194v1  
The low frequency information (LFE) is extracted from left and right channels, removing the  
high frequencies using a programmable Biquad filter, and then computing the difference with  
the original signal. Limiter 1 (DRC1) is then used to control Left/Right high-frequency  
amplitude of the components, while limiter 2 (DRC2) is used to control the low-frequency  
components (see Chapter 7.11).  
The cutoff frequency of the high-pass filters can be user-defined, XO[3:0] = 0, or selected  
from the pre-defined values.  
DRC1 and DRC2 are then used to independently limit L/R high frequencies and LFE  
channels amplitude (see Chapter 7.11) as well as their volume control. To be noted that, in  
this configuration, the dedicated channel 3 volume control can actually act as a bass boost  
enhancer as well (0.5 dB/step resolution).  
The processed LFE channel is then recombined with the L and R channels in order to  
reconstruct the 2.0 output signal.  
Sub-band decomposition  
2
The sub-band decomposition for B DRC can be configured specifying the cutoff frequency.  
The cutoff frequency can be programmed in two ways, using XO bits in register 0x0C, or  
using the “user programmable” mode (coefficients stored in RAM addresses 0x28 to 0x31).  
72/86  
Doc ID 018572 Rev 3  
 
STA350BW  
Register description  
For the user programmable mode, use the formulas below to compute the high-pass filters:  
b0 = (1 + alpha) / 2  
b1 = -(1 + alpha) / 2  
b2 = 0  
a0 = 1  
a1 = -alpha  
a2 = 0  
where alpha = (1-sin(ω ))/cos(ω ), and ω is the cutoff frequency.  
0
0
0
A first-order filter is suggested to guarantee that for every ω the corresponding low-pass  
0
filter obtained as the difference (as shown in Figure 29) will have a symmetric (relative to HP  
filter) frequency response, and the corresponding recombination after the DRC has low  
ripple. Second-order filters can be used as well, but in this case the filter shape must be  
carefully chosen to provide good low-pass response and minimum ripple recombination. For  
second-order filters it is not possible to give a closed formula to get the best coefficients, but  
empirical adjustment should be done.  
DRC settings  
2
2
The DRC blocks used by B DRC are the same as those described in Chapter 7.11. B DRC  
configure automatically the DRC blocks in anticlipping mode. Attack and release thresholds  
can be selected using registers 0x32, 0x33, 0x34, 0x35, while attack and release rates are  
configured by registers 0x12 and 0x14.  
Band downmixing  
2
The low-frequency band is down-mixed to the left and right channels at the B DRC output.  
Channel volume can be used to weight the bands recombination to fine-tune the overall  
frequency response.  
7.18.2  
EQ DRC mode  
Setting MDRC = 01, it is possible to add a programmable biquad (the XO biquad at RAM  
addresses 0x28 to 0x2C is used for this purpose) to the Limiter/compressor measure path  
(side chain). Using EQDRC the peak detector input can be shaped in frequency using the  
programmable biquad. For example if a +2 dB bass boost is applied (using a low shelf filter  
for example), the effect is that the EQDRC output will limit bass frequencies to -2 dB below  
the selected attack threshold.  
Generally speaking, if the biquad boosts frequency f with an amount of X dB, the level of a  
compressed sine wave at the output will be TH - X, where TH is the selected attack  
threshold.  
Note:  
EQDRC works only if the biquad frequency response magnitude is 0 dB for every  
frequency.  
Doc ID 018572 Rev 3  
73/86  
Register description  
Figure 30. EQDRC scheme  
STA350BW  
EQDRC  
ATTENUATION  
ATTENUATION  
CLACULATOR  
PEAK  
Channel In  
BIQUAD  
DETECTOR  
Standard DRC  
ATTENUATION  
PEAK  
ATTENUATION  
Channel In  
DETECTOR  
CLACULATOR  
AM045195v1  
7.18.3  
Extended post-scale range  
PS48DB  
Mode  
0
1
Post-scale value is applied as defined in coefficient RAM  
Post-scale value is applied with +48 dB offset with respect to the  
coefficient RAM value  
Post-scale is an attenuation by default. When PS48DB is set to 1, a 48-dB offset is applied  
to the coefficient RAM value, so post-scale can act as a gain too.  
7.18.4  
Extended attack rate  
The attack rate shown in Table 64 can be extended to provide up to an 8 dB/ms attack rate  
on both limiters.  
XAR1  
Mode  
0
1
Limiter1 attack rate is configured using Table 64  
Limiter1 attack rate is 8 dB/ms  
XAR2  
Mode  
0
1
Limiter2 attack rate is configured using Table 64  
Limiter2 attack rate is 8 dB/ms  
74/86  
Doc ID 018572 Rev 3  
STA350BW  
Register description  
7.18.5  
Extended BIQUAD selector  
De-emphasis filter as well as bass and treble controls can be configured as user-defined  
filters when the equalization coefficients link is activated (BQL = 1) and the corresponding  
BQx bit is set to 1.  
BQ5  
Mode  
Pre-set de-emphasis filter selected  
0
1
User-defined biquad 5 coefficients are selected  
BQ6  
Mode  
0
1
Pre-set bass filter selected as per Table 63  
User-defined biquad 6 coefficients are selected  
BQ7  
Mode  
0
1
Pre-set treble filter selected as per Table 63  
User-defined biquad 7 coefficients are selected  
When filters from 5th to 7th are configured as user-programmable, the corresponding  
coefficients are stored respectively in addresses 0x20-0x24 (BQ5), 0x25-0x29 (BQ6), 0x2A-  
0x2E (BQ7) as in Table 70.  
Note:  
BQx bits are ignored if BQL = 0 or if DEMP = 1 (relevant for BQ5) or CxTCB = 1 (relevant for  
BQ6 and BQ7).  
7.19  
EQ soft-volume configuration registers (addr 0x37 - 0x38)  
D7  
D6  
D5  
SVUPE  
0
D4  
SVUP[4]  
0
D3  
SVUP[3]  
0
D2  
SVUP[2]  
0
D1  
SVUP[1]  
0
D0  
SVUP[0]  
0
0
0
D7  
D6  
D5  
SVDWE  
0
D4  
SVDW4]  
0
D3  
SVDW[3]  
0
D2  
SVDW[2]  
0
D1  
SVDW[1]  
0
D0  
SVDW[0]  
0
0
0
The soft-volume update has a fixed rate by default. Using register 0x37 and 0x38 it is  
possible to override the default behavior allowing different volume change rates.  
It is also possible to independently define the fade-in (volume is increased) and fade-out  
(volume is decreased) rates according to the desired behavior.  
SVUPE  
Mode  
0
1
When volume is increased, use the default rate  
When volume is increased, use the rates defined by SVUP[4:0]  
Doc ID 018572 Rev 3  
75/86  
Register description  
STA350BW  
When SVUPE = 1 the fade-in rate is defined by the SVUP[4:0] bits according to the following  
formula:  
Fade-in rate = 48 / (N + 1) dB/ms  
where N is the SVUP[4:0] value.  
SVDWE  
Mode  
0
1
When volume is decreased, use the default rate  
When volume is decreased, use the rates defined by SVDW[4:0]  
When SVDWE = 1 the fade-out rate is defined by the SVDW[4:0] bits according to the  
following formula:  
Fade-in rate = 48 / (N + 1) dB/ms  
where N is the SVDW[4:0] value.  
Note:  
For fade-out rates greater than 6 dB/msec it is suggested to disable the CPWMEN bit  
(Section 7.24.4 ) and ZCE bit (Section 7.5.7) in order to avoid any audible pop noise.  
7.20  
DRC RMS filter coefficients (addr 0x39-0x3E)  
D7  
R_C0[23]  
0
D6  
R_C0[22]  
0
D5  
R_C0[21]  
0
D4  
R_C0[20]  
0
D3  
R_C0[19]  
0
D2  
R_C0[18]  
0
D1  
R_C0[17]  
0
D0  
R_C0[16]  
1
D7  
R_C0[15]  
1
D6  
R_C0[14]  
1
D5  
R_C0[13]  
1
D4  
R_C0[12]  
0
D3  
R_C0[11]  
1
D2  
R_C0[10]  
1
D1  
R_C0[9]  
1
D0  
R_C0[8]  
0
D7  
R_C0[7]  
1
D6  
R_C0[6]  
1
D5  
R_C0[5]  
1
D4  
R_C0[4]  
1
D3  
R_C0[3]  
1
D2  
R_C0[2]  
1
D1  
R_C0[1]  
1
D0  
R_C0[0]  
1
D7  
R_C1[23]  
0
D6  
R_C1[22]  
1
D5  
R_C1[21]  
1
D4  
R_C1[20]  
1
D3  
R_C1[19]  
1
D2  
R_C1[18]  
1
D1  
R_C1[17]  
1
D0  
R_C1[16]  
0
D7  
R_C1[15]  
1
D6  
R_C1[14]  
1
D5  
R_C1[13]  
0
D4  
R_C1[12]  
0
D3  
R_C1[11]  
0
D2  
R_C1[10]  
0
D1  
R_C1[9]  
0
D0  
R_C1[8]  
0
D7  
R_C1[7]  
0
D6  
R_C1[6]  
0
D5  
R_C1[5]  
1
D4  
R_C1[4]  
0
D3  
R_C1[3]  
0
D2  
R_C1[2]  
1
D1  
R_C1[1]  
1
D0  
R_C1[0]  
0
Signal level detection in DRC algorithm is computed using the following formula:  
y(t) = c0 * abs(x(t)) + c1 * y(t-1)  
where x(t) represents the audio signal applied to the limiter, and y(t) the measured level.  
76/86  
Doc ID 018572 Rev 3  
STA350BW  
Register description  
7.21  
Extra volume resolution configuration registers (address  
0x3F)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
VRESEN  
0
VRESTG  
0
C3VR[1]  
0
C3VR[0]  
0
C2VR[1]  
0
C2VR[0]  
0
C1VR[1]  
0
C1VR[0]  
0
The extra volume resolution allows fine volume tuning by steps of 0.125dB.  
The feature is enabled when VRESEN=1 , as depicted in Figure 31. The overall channel  
volume in this case will be CxVol+CxVR (in dB). On top of the total volume range from  
-80 dB to +48 dB, this extra volume resolution works in a volume range from -80 dB to +42  
dB. For volumes greater than +42 dB, this function must not be selected.  
Figure 31. Extra resolution volume scheme  
Audio Data In  
CxVOL  
Soft  
Volume  
0
1
Audio Data Out  
X
X
VRESEN  
1
0
VRESTG  
MVOL or CxVOL’event  
CxVR  
AM045196v1  
If VRESEN = 0 the channel volume will be defined only by the CxVol registers.  
Fine-tuning steps can be set according to the following table for channels 1, 2, 3:  
CxVR  
Mode  
00  
01  
10  
11  
0 dB  
-0.125dB  
-0.25dB  
-0.375dB  
Doc ID 018572 Rev 3  
77/86  
 
Register description  
Two different behaviors can be configured by the VRESTG bit:  
STA350BW  
If VRESTG=’0’ the CxVR contribution will be applied immediately after the  
corresponding I C bits are written.  
2
If VRESTG=’1’ the CxVR bits will be effective on channel volume only after the  
corresponding CxVol register or master volume register is written (even to the previous  
values).  
VRESEN  
VRESTG  
Mode  
0
0
1
0
1
0
Extra Volume Resolution disabled  
Extra Volume Resolution disabled  
Volume fine-tuning enabled and applied immediately.  
Volume fine-tuning enabled and applied when master or  
channel volume is updated  
1
1
7.22  
Quantization error noise correction (address 0x48)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NSHXEN NSHB7EN NSHB6EN NSHB5EN NSHB4EN NSHB3EN NSHB2EN NSHB1EN  
0
0
0
0
0
0
0
0
A special feature inside the digital processing block is available. In case of poles positioned  
at very low frequencies, biquad filters can generate some audible quantization noise or  
unwanted DC level. In order to avoid this kind of effect, a quantization noise-shaping  
capability can be used. The filter structure including this special feature, relative to each  
biquad, is shown in Figure 32.  
By default, this capability is not activated to maintain backward compatibility with all the  
previous Sound Terminal products. The new feature can be enabled independently for each  
2
biquad using the I C registers. The D7 bit, when set, is responsible for activating this  
function on the crossover filter while the other bits address any specific biquads according to  
the previous table. Channels 1 and 2 share the same settings. Bit D7 is effective also for  
channel 3 if the relative OCFG is used.  
78/86  
Doc ID 018572 Rev 3  
 
STA350BW  
Register description  
Figure 32. Biquad filter structure with quantization error noise-shaping  
z-1  
+
-
Out(t)  
z-1  
In(t)  
b0  
Q
z-1  
z-1  
b1  
b2  
a
1
z-1  
a
2
AM045197v1  
7.23  
Extended coefficient range up to -4...4 (address 0x49, 0x4A)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CXTB4[1]  
0
CXTB4[0]  
0
CXTB3[1] CXTB3[0] CX_B2[1] CXTB2[0] CXTB1[1] CXTB1[0]  
0
0
0
0
0
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
0
Reserved  
0
CXTB7[1] CXTB7[0] CXTB6[1] CXTB6[0] CXTB5[1] CXTB5[0]  
0
0
0
0
0
0
Biquads from 1 to 7 have in the STA350BW the possibility to extend the coefficient range  
from [-1,1) to [-4..4). This allows the realization of high shelf filters that may require a  
coefficients dynamic greater in absolute value than 1.  
Three ranges are available, [-1;1) [-2;2) [-4;4). By default the extended range is not activated  
to maintain backward compatibility with all the previous Sound Terminal products.  
Each biquad has its independent setting according to the following table:  
Table 75. Biquad filter settings  
CEXT_Bx[1]  
CEXT_Bx[0]  
0
0
1
1
0
1
0
1
[-1;1)  
[-2;2)  
[-4;4)  
Reserved  
Doc ID 018572 Rev 3  
79/86  
Register description  
STA350BW  
In this case the user can decide, for each filter stage, the right coefficients range. Note that  
for a given biquad the same range will be applied to Left and Right (Channel 1 and Channel  
2).  
The crossover biquad does not have the availability of this feature, maintaining the [-1;1)  
range unchanged.  
7.24  
Miscellaneous registers (address 0x4B, 0x4C)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
RPDNEN  
0
NSHHPEN  
0
BRIDGOFF Reserved Reserved CPWMEN Reserved  
Reserved  
0
0
0
0
1
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
0
Reserved  
0
Reserved  
0
PNDLSL[2] PNDLSL[1] PNDLSL[0] Reserved  
Reserved  
0
0
0
0
0
7.24.1  
7.24.2  
Rate powerdown enable (RPDNEN) bit (address 0x4B, bit D7)  
2
In the STA350BW, by default, the power-down pin and I C power-down act on mute  
commands to perform the fadeout. This default can be changed so that the fadeout can be  
started using the master volume. The RPDNEN bit, when set, activates this feature.  
Noise-shaping on DC cut filter enable (NSHHPEN) bit (address 0x4B,  
bit D6)  
Following the description in Section 7.22, this bit, when set, enables the noise-shaping  
technique on the DC cutoff filter. Channels 1 and 2 share the same settings.  
7.24.3  
Bridge immediate off (BRIDGOFF) bit (address 0x4B, bit D5)  
A fadeout procedure is started in the STA350BW once the PWDN function is enabled.  
Independently from the fadeout time, after 13 million clock cycles (PLL internal frequency)  
the bridge is put in powerdown (tristate mode). There is also the possibility to change this  
behavior so that the power bridge will be switched off immediately after the PWDN pin is tied  
to ground, without therefore waiting for the 13 million clock cycles. The BRIDGOFF bit, when  
set, activates this function. Obviously the immediate power-down will generate a pop noise  
at the output. therefore this procedure must be used only in case pop noise is not relevant in  
the application. Note that this feature works only for hardware PWDN assertion and not for a  
2
powerdown applied through the I C interface. Refer to Section 7.24.5 in order to program a  
different number of clock cycles.  
80/86  
Doc ID 018572 Rev 3  
 
STA350BW  
Register description  
7.24.4  
Channel PWM enable (CPWMEN) bit (address 0x4B, bit D2)  
This bit, when set, activates a mute output in case the volume will reach a value lower than  
-76 dBFS.  
7.24.5  
Power-down delay selector (PNDLSL[2:0]) bits (address 0x4C, bit D4,  
D3, D2)  
As per Section 7.24.3, the assertion of PWDN activates a counter that, by default, after 13  
million clock cycles puts the power bridge in tristate mode, independently from the fadeout  
time. Using these registers it is possible to program this counter according to the following  
table:  
PNDLSL[2]  
PNDLSL[1]  
PNDLSL[2]  
Fade out time  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Default time (13M clock cycles)  
Default time divided by 2  
Default time divided by 4  
Default time divided by 8  
Default time divided by 16  
Default time divided by 32  
Default time divided by 64  
Default time divided by 128  
Doc ID 018572 Rev 3  
81/86  
Package thermal characteristics  
STA350BW  
8
Package thermal characteristics  
Using a four-layer PCB the thermal resistance junction-to-ambient with 2 copper ground  
2
areas of 6 x 4 cm and with 24 via holes (see Figure 33) is 17 °C/W in natural air convection.  
The dissipated power within the device depends primarily on the supply voltage, load  
impedance and output modulation level.  
Thus, the maximum estimated dissipated power for the STA350BW is:  
2 x 40 W @ 8 Ω, 25.5 V  
Pd max ~ 8 W  
2 x 17 W + 1 x 35 W @ 4 Ω, 8 Ω, 25 V Pd max < 7 W  
Figure 33. Double-layer PCB with 2 copper ground areas and 24 via holes  
AM045200v1  
Figure 34 shows the power derating curve for the PowerSSO-36 slug-down package on  
2
2
PCBs with copper areas of 5 x 4 cm and 6 x 4cm .  
Figure 34. PowerSSO-36 power derating curve  
8
7
6
5
4
3
2
1
0
Pd (W)  
Copper Area 6x4 cm  
and 24 via holes  
STA350BW  
Power-SSO36  
Copper Area 5x4 cm  
and 20 via holes  
0
20  
40  
60  
80  
100  
120  
140  
160  
Tamb ( °C)  
AM045201v1  
82/86  
Doc ID 018572 Rev 3  
 
 
STA350BW  
Package mechanical data  
9
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Table 76. PowerSSO-36 EPD dimensions  
Dimensions in mm  
Typ  
Dimensions in inches  
Typ  
Symbol  
Min  
Max  
Min  
Max  
A
A2  
a1  
b
2.15  
-
2.47  
2.40  
0.10  
0.36  
0.32  
10.50  
7.60  
-
0.085  
-
0.097  
0.094  
0.004  
0.014  
0.013  
0.413  
0.299  
-
2.15  
-
0.085  
-
0.00  
-
0.00  
-
0.18  
-
0.007  
-
c
0.23  
-
0.009  
-
D
E
e
10.10  
-
-
0.398  
-
7.40  
0.291  
-
-
0.5  
8.5  
2.3  
-
-
0.020  
e3  
F
-
-
-
0.335  
-
-
-
-
0.091  
-
G
H
h
-
0.10  
10.50  
0.40  
-
-
-
-
0.004  
0.413  
0.016  
10.10  
-
0.398  
-
-
-
k
0
-
8 degrees  
0
-
8 degrees  
L
0.60  
-
1.00  
0.024  
-
0.039  
-
M
N
O
Q
S
T
-
4.30  
-
-
-
0.169  
-
-
10 degrees  
-
10 degrees  
-
1.20  
0.80  
2.90  
3.65  
1.00  
-
-
-
0.047  
0.031  
0.114  
0.144  
0.039  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
U
X
Y
-
-
-
-
4.10  
6.50  
4.70  
7.10  
0.161  
0.256  
0.185  
0.280  
-
-
Doc ID 018572 Rev 3  
83/86  
Figure 35. PowerSSO-36 EPD outline drawing  
h x 45°  
STA350BW  
Revision history  
10  
Revision history  
Table 77. Document revision history  
Date  
Revision  
Changes  
11-Mar-2011  
1
Initial release.  
Updated Figure 4: Demonstration board, 2.0 channels  
Added Figure 5: Mono parallel BTL schematic  
20-Apr-2011  
13-Apr-2012  
2
3
Updated min. and typ. values for Isc in Table 6: Electrical  
specifications - power section  
Doc ID 018572 Rev 3  
85/86  
STA350BW  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2012 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
86/86  
Doc ID 018572 Rev 3  

相关型号:

STA350BW

Sound Terminal® 2.1-channel high-efficiency digital audio system
STMICROELECTR

STA351A

Power Bipolar Transistor, 5A I(C), 100V V(BR)CEO, 3-Element, NPN, Silicon, Plastic/Epoxy, 8 Pin, STA, SIP-8
SANKEN

STA352A

General Purpose Source Driver Array
ETC

STA353

PNP Silicon Transistor
AUK

STA369BW

Sound Terminal® 2.1-channel high-efficiency digital audio system
STMICROELECTR

STA369BWS

2.1-channel 40-watt high-efficiency digital audio system Sound Terminal™
STMICROELECTR

STA370BWS

2.1-channel 40-W high-efficiency digital audio system Sound Terminal™
STMICROELECTR

STA370BWSTR

2.1-channel 40-W high-efficiency digital audio system Sound Terminal™
STMICROELECTR

STA371A

NPN Darlington With built-in avalanche diode
SANKEN

STA381BW

Sound Terminal® 2.1-channel high-efficiency digital audio system
STMICROELECTR

STA381BWS

Sound Terminal® 2.1-channel high-efficiency digital audio system
STMICROELECTR

STA381BWTR

Sound Terminal® 2.1-channel high-efficiency digital audio system
STMICROELECTR