STA50613TR [STMICROELECTRONICS]

6A 4 CHANNEL, HALF BRIDGE BASED PRPHL DRVR, PDSO36, SOP-36;
STA50613TR
型号: STA50613TR
厂家: ST    ST
描述:

6A 4 CHANNEL, HALF BRIDGE BASED PRPHL DRVR, PDSO36, SOP-36

驱动 CD 光电二极管 接口集成电路
文件: 总14页 (文件大小:241K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STA506  
40V 4A QUAD POWER HALF BRIDGE  
1 FEATURES  
Figure 1. Package  
MINIMUM INPUT OUTPUT PULSE WIDTH  
DISTORTION  
200mRdsON COMPLEMENTARY DMOS  
PowerSO36  
OUTPUT STAGE  
CMOS COMPATIBLE LOGIC INPUTS  
THERMAL PROTECTION  
Table 1. Order Codes  
Part Number  
STA506  
Pacge  
PerSO36  
Tape & Reel  
THERMAL WARNING OUTPUT  
UNDER VOLTAGE PROTECTION  
SHORT CIRCUIT PROTECTION  
STA50613TR  
The device is particularly designed to make the out-  
put stage of stereo All-Digital High Efficiency  
(DDX™) amplifier capable to deliver 60 + 60W @  
2 DESCRIPTION  
STA506 is a monolithic quad half bridge stage in Mul-  
tipower BCD Technology.  
THD 10% at V 32V output power on 8  
load and  
cc  
80W @ THD = 10% at V 36V on 8  
load in single  
CC  
The device can be used as dual bridge or reconfig-  
ured, by connecting CONFIG pin to Vdd pin, as single  
bridge with double current capability, and as half  
bridge (Binary mode) with half current capability.  
BTL configuration. In single BTL configuration is also  
capable to deliver a peak of 120W @THD = 10% at  
V
= 32V on 4  
L
load. The input pins have threshold  
CC  
proportional to V pin voltage.  
Figure 2. Application Circuit (Dual TL)  
+VCC  
V
CC1A  
15  
17  
16  
C30  
1µF  
C55  
1000µF  
IN1A  
29  
M3  
M2  
M5  
M4  
IN1A  
L18 22µH  
C20  
V
L
23  
24  
+3.3V  
OUT1A  
CONFIG  
PWRDN  
FAULT  
100nF  
OUT1A  
GND1A  
C52  
330pF  
PWRDN  
25  
C99  
100nF  
14  
12  
R98  
6
PROTECTIONS  
R57  
10K  
R59  
10K  
27  
26  
&
C23  
470nF  
8Ω  
LOGIC  
VCC1B  
R63 R100  
C101  
100nF  
TRI-STATE  
20  
6
C58  
100nF  
C31  
1µF  
11  
10  
C21  
100nF  
TH_WAR  
IN1B  
28  
30  
OUT1B  
OUT1B  
GND1B  
TH_WAR  
L19 22µH  
IN1B  
VDD  
VDD  
VSS  
VSS  
21  
22  
33  
34  
13  
7
REGULATORS  
V
CC2A  
C32  
1µF  
M17  
M15  
M16  
M14  
C58  
100nF  
C53  
100nF  
L113 22µH  
VCCSIGN  
8
9
35  
OUT2A  
C60  
100nF  
C110  
100nF  
V
CCSIGN  
36  
31  
20  
19  
OUT2A  
GND2A  
C109  
330pF  
C107  
100nF  
6
4
R103  
6
IN2A  
IN2B  
IN2A  
C108  
470nF  
8Ω  
GND-Reg  
V
CC2B  
R104  
20  
R102  
6
C106  
100nF  
GND-Clean  
C33  
1µF  
3
2
C111  
100nF  
OUT2B  
OUT2B  
GND2B  
IN2B  
32  
1
L112 22µH  
GNDSUB  
5
D00AU1148B  
Rev. 6  
1/14  
February 2006  
STA506  
Table 2. Pin Function  
Pin n.  
1
Pin Name  
GND-SUB  
OUT2B  
Description  
Substrate Ground  
Output Half Bridge 2B  
Positive Supply  
2 ; 3  
4
V
CC 2B  
5
GND2B  
GND2A  
Negative Supply  
Negative Supply  
Positive Supply  
6
7
VCC 2A  
8 ; 9  
10 ; 11  
12  
OUT2A  
OUT1B  
VCC1B  
GND1B  
GND1A  
Output Half Bridge 2A  
Output Half Bridge 1B  
Positive Supply  
13  
Negative Supply  
Negative Supply  
Positive Supply  
14  
15  
VCC1A  
16 ; 17  
18  
OUT1A  
NC  
Output Half Bridge 1A  
Not Connected  
19  
GND-clean Logical Ground  
20  
GND-Reg  
Vdd  
Ground for Regulator Vdd  
21 ; 22  
23  
5V Regulator Referred to Ground  
Logic ReferenVoltage  
Confuration pin  
VL  
24  
CONFIG  
PWRDN  
25  
Stand-by pin  
26  
TRI-STAE High-Z pin  
27  
FLT  
TH-WAR  
IN1A  
Fault pin advisor  
Thermal warning advisor  
Input of Half Bridge 1A  
Input of Half Bridge 1B  
Input of Half Bridge 2A  
Input of Half Bridge 2B  
5V Regulator Referred to +VCC  
Signal Positive Supply  
29  
30  
IN1B  
31  
IN2A  
32  
IN2B  
33 ; 34  
35 ; 36  
VSS  
VCC Sign  
2/14  
STA506  
Table 3. Functional Pin Status  
Pin name  
Pin n.  
27  
Logical value  
IC -STATUS  
FAULT  
0
1
Fault detected (Short circuit, or Thermal ..)  
Normal Operation  
FAULT (*)  
TRI-STATE  
TRI-STATE  
PWRDN  
27  
26  
26  
25  
25  
28  
28  
0
1
0
1
0
1
All powers in Hi-Z state  
Normal operation  
Low absorpion  
PWRDN  
Normal operation  
THWAR  
Temperature of the IC =130°C  
Normal operation  
THWAR(*)  
CONFIG  
24  
24  
0
1
Normal Operation  
CONFIG(**)  
OUT1A = OUT1B ; OUT2A=OUT2B  
(IF IN1A = IN1B; IN2A = IN2B)  
(*) :  
(**):  
The pin is open collector. To have the high logic value, it needs to be pulled up by a resistor.  
To put CONFIG = 1 means connect Pin 24 (CONFIG) to Pins 21, 22 (Vdd) to implement single BT(mono mode) operation for  
high current.  
Figure 3. Pin Connection  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
1
2
V
CCSign  
GND-SUB  
OUT2B  
OUT2B  
VCC2B  
VCCSign  
VSS  
3
4
VSS  
5
IN2B  
GND2B  
GND2A  
6
IN2A  
7
INB  
VCC2A  
8
IN1A  
OUT2A  
OUT2A  
OUT1B  
OUT1B  
9
TH_WAR  
FAULT  
TRI-STATE  
PWRDN  
CONFIG  
10  
11  
12  
13  
14  
15  
16  
17  
18  
VCC1B  
GND1B  
GND1A  
VCC1A  
OUT1A  
OUT1A  
N.C.  
V
L
V
V
DD  
DD  
GND-Reg  
GND-Clean  
D01AU1273  
3/14  
STA506  
Table 4. Absolute Maximum Ratings  
Symbol  
VCC  
Parameter  
Value  
40  
Unit  
V
DC Supply Voltage (Pin 4,7,12,15)  
Maximum Voltage on pins 23 to 32 (logic reference)  
Power Dissipation (Tcase = 70°C)  
Vmax  
Ptot  
5.5  
V
50  
W
Top  
Operating Temperature Range  
-40 to 90  
-40 to 150  
°C  
°C  
T
stg, Tj  
Storage and Junction Temperature  
Table 5. (*) Recommended Operating Conditions  
Symbol  
VCC  
Parameter  
Min.  
10  
Typ.  
Max.  
36.0  
5.0  
Unit  
V
DC Supply Voltage  
VL  
Input Logic Reference  
Ambient Temperature  
2.7  
0
3.3  
v
Tamb  
7
°C  
(*) performances not guaranteed beyond recommended operating conditions  
Table 6. Thermal Data  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
°C/W  
°C  
Tj-case Thermal Resistance Junction to Case (thermal pad)  
1.5  
TjSD  
Twarn  
thSD  
Thermal shut-down junction temperature  
Thermal warning temperature  
150  
130  
25  
°C  
Thermal shut-down hysteresis  
°C  
Table 7. Electrical Characteristcs: refer to circuit in Fig.1 (VL = 3.3V; VCC = 32V; RL = 8Ω;  
fsw = 384KHz; Tamb = 25°C unless otherwise specified)  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
RdsON Power Pchannel/Nchannel  
MOSFET RdsON  
Id=1A  
200  
270  
mΩ  
Idss  
Power Pchannl/Nchannel  
leakage Idss  
VCC =35V  
50  
µA  
gN  
gP  
PowPchannel RdsON Matching Id=1A  
95  
95  
%
%
Power Nchannel RdsON  
Matching  
Id=1A  
Dt_s  
Dt_d  
Low current Dead Time (static)  
see test circuit no.1; see fig. 3  
10  
20  
50  
ns  
ns  
High current Dead Time (dinamic) L=22µH; C = 470nF; RL = 8 Ω  
Id=3.5A; see fig. 5  
td ON  
td OFF  
tr  
Turn-on delay time  
Turn-off delay time  
Rise time  
Resistive load  
100  
100  
25  
ns  
ns  
ns  
ns  
V
Resistive load  
Resistive load; as fig.3  
Resistive load; as fig. 3  
tf  
Fall time  
25  
VCC  
VIN-H  
Supply voltage operating voltage  
High level input voltage  
10  
36  
VL/2  
V
+300mV  
4/14  
STA506  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
VIN-L  
Low level input voltage  
VL/2  
-
V
300mV  
IIN-H  
IIN-L  
High level Input current  
Low level input current  
Pin Voltage = VL  
1
1
µA  
µA  
µA  
Pin Voltage = 0.3V  
VL = 3.3V  
I
High level PWRDN pin input  
current  
35  
PWRDN-H  
VLOW  
Low logical state voltage VLow  
(pin PWRDN, TRISTATE) (note 1)  
VL = 3.3V  
VL = 3.3V  
PWRDN = 0  
0.8  
V
V
VHIGH  
High logical state voltage VHigh  
(pin PWRDN, TRISTATE) (note 1)  
1.7  
3
IVCC-  
PWRDN  
Supply CURRENT from Vcc in  
Power Down  
mA  
IFAULT  
Output Current pins  
FAULT -TH-WARN when  
FAULT CONDITIONS  
Vpin = 3.3V  
1
mA  
mA  
mA  
IVCC-hiz Supply Current from Vcc in Tri-  
state  
VCC = 30V; Tri-state = 0  
22  
50  
IVCC  
Supply Current from Vcc in  
operation  
both channel switching)  
VCC =30V;  
Input Pulse width = 50% Duty;  
Switching Frequency = 384KH
No LC filters;  
IVCC-q  
VUV  
Isc (short circuit current limit)  
(note 2)  
4
6
7
8
A
Undervoltage protection threshold  
V
tpw-min Output minimum pulse width  
Notes: 1. The following table explains the V  
No Load  
70  
150  
ns  
, V  
LOW  
variation with V  
HIGH  
L
Table 8.  
VL  
2.7  
3.3  
5
VLOW min  
0.7  
VHIGH max  
1.5  
Unit  
V
0.8  
1.7  
V
0.85  
1.85  
V
Note e relevant Application Note AN1994  
Table 9. Logic Truth Table (see fig. 4)  
OUTPUT  
MODE  
TRI-STATE  
INxA  
INxB  
Q1  
Q2  
Q3  
Q4  
0
1
1
1
1
x
0
0
1
1
x
0
1
0
1
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
ON  
OFF  
ON  
Hi-Z  
DUMP  
ON  
OFF  
ON  
NEGATIVE  
POSITIVE  
Not used  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
5/14  
STA506  
Figure 4. Test Circuit.  
OUTxY  
Vcc  
(3/4)Vcc  
Low current dead time = MAX(DTr,DTf)  
(1/2)Vcc  
(1/4)Vcc  
+Vcc  
t
DTr  
DTf  
Duty cycle = 50%  
INxY  
M58  
M57  
OUTxY  
R 8Ω  
+
-
V67 =  
vdc = Vcc/
gnd  
D03AU1458  
Figure 5.  
+VCC  
Q1  
Q2  
OUTxA  
OUTxB  
INxA  
INxB  
Q3  
Q4  
GND  
D00AU1134  
Figure 6.  
High Current Dead time for Bridge application = ABS(DTout(A)-DTin(A))+ABS(DTOUT(B)-DTin(B))  
+VCC  
Duty cycle=A  
Duty cycle=B  
DTout(A)  
M58  
M57  
M64  
M63  
Q1  
OUTA  
Iout=4.5A  
Q2  
OUTB  
Iout=4.5A  
DTin(A)  
DTout(B)  
L68 22µ  
DTin(B)  
INB  
Rload=8Ω  
INA  
L67 22µ  
Q3  
C69  
470nF  
C70  
470nF  
Q4  
C71 470nF  
Duty cycle A and B: Fixed to have DC output current of 4.5A in the direction shown in figure  
D03AU1517  
6/14  
STA506  
3 TECHNICAL INFO:  
The STA506 is a dual channel H-Bridge that is able to deliver more than 60W per channel (@ THD=10%) of  
audio output power in high efficiency.  
The STA506 converts both DDX and binary-controlled PWM signals into audio power at the load. It includes a  
logic interface , integrated bridge drivers, high efficiency MOSFET outputs and thermal and short circuit protec-  
tion circuitry.  
In DDX mode, two logic level signals per channel are used to control high-speed MOSFET switches to connect  
the speaker load to the input supply or to ground in a Bridge configuration, according to the damped ternary  
Modulation operation.  
In Binary Mode operation , both Full Bridge and Half Bridge Modes are supported. The STA506 includes over-  
current and thermal protection as well as an under-voltage  
Lockout with automatic recovery. A thermal warning status is also provided.  
Figure 7. STA506 Block Diagram Full-Bridge DDX® or Binary Modes  
INL[1:2]  
INR[1:2]  
VL  
OUTPL  
Left  
H-Bridge  
Logic I/F  
and Decode  
PWRDN  
OUTNL  
TRI-STATE  
Protection  
Circuitry  
FAULT  
OR  
OUTNR  
TWARN  
Right  
H-Bridge  
Regulators  
Figure 8. STA506 Block Diagram Binary Half-Bridge Mode  
INL[1:2]  
LeftA  
-Bridge  
OUTPL  
OUTNL  
INR[1:2]  
Logic I/F  
and Decode  
V
LeftB  
-Bridge  
PWRDN  
TRI-STATE  
Protection  
Circuitry  
FAULT  
RightA  
-Bridge  
OUTPR  
OUTNR  
TWARN  
RightB  
-Bridge  
Regulators  
3.1 Logic Interface and Decode:  
The STA506 power outputs are controlled using one or two logic level timing signals. In order to provide a proper  
logic interface, the Vbias input must operate at the dame voltage as the DDX control logic supply.  
3.2 Protection Circuitry:  
The STA506 includes protection circuitry for over-current and thermal overload conditions. A thermal warning  
pin (pin.28) is activated low (open drain MOSFET) when the IC temperature exceeds 130C, in advance of the  
thermal shutdown protection. When a fault condition is detected , an internal fault signal acts to immediately  
disable the output power MOSFETs, placing both H-Bridges in high impedance state. At the same time an open-  
drain MOSFET connected to the fault pin (pin.27) is switched on.  
There are two possible modes subsequent to activating a fault:  
7/14  
STA506  
1) SHUTDOWN mode: with FAULT (pull-up resistor) and TRI-STATE pins independent, an activated  
fault will disable the device, signaling low at the FAULT output.  
The device may subsequently be reset to normal operation by toggling the TRI-STATE pin from  
High to Low to High using an external logic signal.  
2) AUTOMATIC recovery mode: This is shown in the Application Circuit of fig.1.  
The FAULT and TRI-STATE pins are shorted together and connected to a time constant circuit com-  
prising R59 and C58.  
An activated FAULT will force a reset on the TRI-STATE pin causing normal operation to resume fol-  
lowing a delay determined by the time constant of the circuit.  
If the fault condition is still present , the circuit operation will continue repeating until the fault condition  
is removed .  
An increase in the time constant of the circuit will produce a longer recovery interval. Care must be  
taken in the overall system design as not to exceed the protection thesholds under normal operation.  
3.3 Power Outputs:  
The STA506 power and output pins are duplicated to provide a low impedance path the device's bridged  
outputs .  
All duplicate power, ground and output pins must be connected for proper operation.  
The PWRDN or TRI-STATE pins should be used to set all MOSFETS to the Hi-Z state during power-up until the  
logic power supply, V , is settled.  
L
3.4 Parallel Output / High Current Operation:  
When using DDX Mode output , the STA506 outputs can be connected in parallel in order to increase the output  
current capability to a load.  
In this configuration the STA506 can provide 80W into 8 ohm or up to 120W into 4ohm.  
This mode of operation is enabled with the CONFIG pin (pin.24) connected to VREG1 and the inputs combined  
INLA=INLB, INRA=INRB and the outpcombined OUTLA=OTLB, OUTRA=OUTRB.  
3.5 Additional Informatios:  
Output Filter: A passive 2nd-order passive filter is used on the STA506 power outputs to reconstruct an analog  
Audio Signal .  
System performce can be significantly affected by the output filter design and choice of passive components.  
A filter design for 6ohm/8ohm loads is shown in the Typical Application circuit of fig.1. Figure 9 shows a filter  
desisuable for 4ohm loads.  
Figure 10 shows a filter for ½ bridge mode , 4 ohm loads.  
Power Dissipation & Heat Sink requirements: The power dissipated within the device will depend primarily  
on the supply voltage, load impedance and output modulation level.  
The PowerSO36 package of the STA506 includes an exposed thermal slug on the top of the device to provide  
a direct thermal path from the IC to the heatsink.  
Careful consideration must be given to the overall thermal design . See figure 8 for power derating  
versus Slug temperature using different heatsinks and considering the Rth-jc =1.5°C/W.  
8/14  
STA506  
Figure 9. STA506 Power Derating Curve  
60  
50  
40  
30  
20  
10  
0
Pdiss(W)  
1 –Infinite  
2- 1.5C/W  
3- 3 C/W  
4- 4 C/W  
1
2
3
4
0
20  
40  
60  
80 100 120 140 160  
Slug temperature C°  
Figure 10. Typical Single BTL Configurationto Obtain 120W @ THD 10%, RL= 4, VCC = 32V (note 1))  
VL  
+3.3V  
23  
18  
N.C.  
10µH  
100nF  
GND-Clean  
GND-Reg  
17  
16  
O1A  
19  
20  
100nF  
FILM  
11  
10  
100nF  
X7R  
10K  
100nF  
X7R  
470nF  
FILM  
100nF  
OUT1B  
OUT1B  
OUT2A  
OUT2A  
22Ω  
6.2  
1/2W  
VDD  
VDD  
1/2W  
21  
22  
24  
4Ω  
6.2  
1/2W  
CONFIG  
9
8
330pF  
X7R  
32V  
32V  
TH_WAR  
PWRDN  
FAULT  
TH_WAR  
OUT2B  
OUT2B  
28  
25  
100nF  
FILM  
3
2
nPWRDN  
10µH  
10K  
VCC1A  
27  
26  
15  
TRI-STATE  
IN1A  
1µF  
2200µF  
63V  
100nF  
X7R  
VCC1B  
VCC2A  
29  
30  
31  
32  
12  
7
IN1B  
IN1A  
IN1B  
IN2A  
IN2B  
1µF  
X7R  
VSS  
VSS  
VCC2B  
33  
34  
4
14  
13  
GND1A  
GND1B  
100nF  
X7R  
VCCSIGN  
35  
100nF  
X7R  
VCCSIGN  
GNDSUB  
GND2A  
GND2B  
36  
1
6
5
Add.  
D03AU1514  
Note: 1. "A PWM modulator as driver is needed . In particular, this result is performed using the STA30X+STA50X demo board". Peak Pow-  
er for t 1sec  
9/14  
STA506  
Figure 11. Typical Quad Half Bridge Configuration  
+VCC  
VCC1P  
15  
17  
16  
C21  
2200µF  
IN1A  
29  
M3  
M2  
M5  
M4  
R61  
5K  
IN1A  
C31 820µF  
L11 22µH  
V
23  
24  
L
+3.3V  
OUTPL  
C71  
100nF  
CONFIG  
PWRDN  
FAULT  
R41  
20  
C91  
1µF  
4Ω  
OUTPL  
PWRDN  
25  
C81  
100nF  
14  
12  
PGND1P  
R51  
6
R62  
5K  
C41  
330pF  
PROTECTIONS  
R57  
10K  
R59  
10K  
27  
26  
&
LOGIC  
VCC1N  
TRI-STATE  
C58  
100nF  
C51  
1µF  
C61  
100nF  
11  
10  
R63  
5K  
TH_WAR  
IN1B  
28  
30  
OUTNL  
OUTNL  
PGND1N  
C32 820µF  
L12 22µH  
TH_WAR  
C72  
100nF  
R42  
20  
IN1B  
C92  
1µF  
4Ω  
VDD  
VDD  
VSS  
VSS  
21  
22  
33  
34  
13  
7
C82  
100nF  
R52  
6
R64  
5K  
C42  
330pF  
REGULATORS  
VCC2P  
M17  
M15  
M16  
M14  
R65  
5K  
C58  
100nF  
C53  
100nF  
C33 820µF  
L13 22µH  
VCCSIGN  
VCCSIGN  
8
9
35  
OUTPR  
C60  
100nF  
C73  
100nF  
R43  
20  
C9
1µF  
4Ω  
36  
31  
20  
19  
OUTPR  
C83  
100nF  
6
4
PGND2P  
R53  
6
R66  
5K  
IN2A  
IN2B  
C43  
330pF  
IN2A  
GND-Reg  
V
CC2N  
GND-Clean  
C52  
1µF  
C62  
100nF  
3
2
R67  
5K  
OUTNR  
OUTNR  
PGND2N  
C34 820µF  
L14 22µH  
IN2B  
32  
1
C74  
100nF  
R44  
20  
GNDSUB  
C94  
1µF  
4Ω  
5
C84  
100nF  
R54  
6
R68  
5K  
330pF  
D03AU1474  
For more information refer to the application notes AN1456 and AN1661  
10/14  
STA506  
Figure 12. THD+N vs Frequency  
Figure 15. THD+N vs Output Power  
1
THD(%)  
10  
5
T
0.5  
Vcc=32V  
Vcc=36V  
Rl=8ohm  
F=1KHz  
Rl=8ohm  
2
1
0.2  
0.5  
0.1  
%
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
100m 200m  
500m  
1
2
5
10  
20  
50 80  
Pout(W)  
Figure 16. THD+N vs Output PoerRevision  
Figure 13. Output Power vs Vsupply  
10  
5
THD(%)  
80  
70  
60  
Po(W)  
Rl=8ohm  
F=1KHz  
Vcc=32V  
Rl=8oh
F=1KHz  
2
1
THD=10%  
50  
40  
30  
20  
0.2  
0.1  
THD=1%  
+24  
0.05  
10  
0.02  
0.01  
+14  
+16  
+18  
+20  
+22  
+26  
+28  
+30  
+32  
+34 +36  
100m 200m  
500m  
1
2
5
10  
20  
50 80  
Vsuppl
Pout(W)  
Figure 14. THD+N vs Output Power  
THD(%)  
10  
5
Vcc=34V  
Rl=8ohm  
1
F=1KHz  
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
100m 200m  
500m  
1
2
5
10  
20  
50 80  
Pout(W)  
11/14  
STA506  
Figure 17. PowerSO36 (Slug Up) Mechanical Data & Package Dimensions  
mm  
inch  
TYP. MAX.  
0.135  
0.126  
0.039  
0.008  
-0.0015  
0.015  
0.012  
0.630  
0.38  
DIM.  
MIN.  
3.25  
3.1  
TYP. MAX. MIN.  
3.43 0.128  
OUTLINE AND  
MECHANICAL DATA  
A
A2  
A4  
A5  
a1  
b
3.2  
1
0.122  
0.031  
0.8  
0.2  
0.030  
0.22  
0.23  
15.8  
9.4  
-0.040 0.0011  
0.38 0.008  
0.32 0.009  
c
D
16  
0.622  
0.37  
D1  
D2  
E
9.8  
1
0.039  
0.57  
13.9  
10.9  
14.5 0.547  
11.1 0.429  
2.9  
E1  
E2  
E3  
E4  
e
0.437  
0.114  
0.244  
1.259  
0.026  
0.435  
0.003  
0.625  
0.043  
0.043  
10˚  
5.8  
2.9  
6.2  
3.2  
0.228  
0.114  
0.65  
e3  
G
11.05  
0
0.075  
15.9  
1.1  
0
H
15.5  
0.61  
h
L
0.8  
1.1  
0.031  
N
10˚  
s
8 ˚  
8˚  
owerSO36 (SLUG UP)  
(1) “D and E1” do not include mold flash or protusions.  
Mold flash or protusions shall not exceed 0.15mm (0.006”)  
(2) No intrusion allowed inwards the leads.  
7183931 D  
12/14  
STA506  
Table 10. Revision History  
Date  
Revision  
Description of Changes  
December 2003  
April 2004  
1
2
3
4
5
6
First Issue  
Inserted Technical Info and Graphics  
Small changes in pag 4 and 5  
April 2004  
June 2004  
Note 2: See relevant Application Note AN1994  
Changed Vcc from 9 min to 10 min  
Changed Top value on Table 4.  
November 2004  
February 2006  
13/14  
STA506  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectcs NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN STTERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO HE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR FRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,  
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,  
NOR IN PRODUCOR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR  
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.  
Resale ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
14/14  

相关型号:

STA5063Z

3.3GHz to 6.2GHz GENERAL PURPOSE 3.3V 15dBm AMPLIFIER
RFMD

STA5063ZPCK-EVB1

3.3GHz to 6.2GHz GENERAL PURPOSE 3.3V 15dBm AMPLIFIER
RFMD

STA5063ZPCK-EVB2

3.3GHz to 6.2GHz GENERAL PURPOSE 3.3V 15dBm AMPLIFIER
RFMD

STA5063ZSQ

3.3GHz to 6.2GHz GENERAL PURPOSE 3.3V 15dBm AMPLIFIER
RFMD

STA5063ZSR

3.3GHz to 6.2GHz GENERAL PURPOSE 3.3V 15dBm AMPLIFIER
RFMD

STA506A

N-channel General purpose
SANKEN

STA506A

45V 4A QUAD POWER HALF BRIDGE
STMICROELECTR

STA506A_04

45V 4A QUAD POWER HALF BRIDGE
STMICROELECTR

STA508

40V 4.5A QUAD POWER HALF BRIDGE
STMICROELECTR

STA508A

MOS FET Array
SANKEN

STA508TR

IC,AUDIO AMPLIFIER,DUAL,BCDMOS,SSOP,36PIN,PLASTIC
STMICROELECTR

STA508_06

40V 4.5A QUAD POWER HALF BRIDGE
STMICROELECTR